WorldWideScience

Sample records for blackhole dynamic potentials

  1. On the blackhole dynamic potentials

    CERN Document Server

    Kabe, Koustubh Ajit

    2010-01-01

    In the following paper, certain blackhole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of blackhole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental blackhole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats and have been defined. For a blackhole, these quantities are negative. The equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the blackhole, the additional available energy defined as the first free energy function, and the surface gravity, has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in blackhole spacetimes that ....

  2. The second law of blackhole dynamics

    CERN Document Server

    Kabe, Koustubh Ajit

    2010-01-01

    In this paper, the non-generalized or restricted second law blackhole dynamics as given by Bekenstein in the beginning is restated, with a rigid proof, in a different form akin to the statement of the second law of thermodynamics given by Clausius. The various physical possibilities and implications of this statement are discussed therein. This paper is a mere venture into the restricted second law of blackhole dynamics pertaining to blackholes emitting Hawking radiation. The paper thus considers a didactically interesting reformulation of the second law of blackhole thermodynamics after some revisions.

  3. Dynamics And Thermodynamics Of Blackholes And Naked Singularities II

    CERN Document Server

    Fatibene, Lorenzo; GiambÒ, Roberto; Magli, Giulio

    2012-01-01

    Proceedings of the second edition of the international Workshop "Dynamics and Thermodynamics of Blackholes and Naked Singularities" (Department of Mathematics of the Politecnico of Milano from May 10-12, 2007.

  4. Dynamics and Thermodynamics of Blackholes and Naked Singularities

    OpenAIRE

    Fatibene, Lorenzo; Francaviglia, Mauro; Giambo', Roberto; Magli, Giulio

    2005-01-01

    Proceedings of the international Workshop on ``Dynamics and Thermodynamics of Blackholes and Naked Singularities``, that took place at the Department of Mathematics of the Politecnico of Milano from 13 to 15 May 2004.

  5. precession: Dynamics of spinning black-hole binaries with python

    Science.gov (United States)

    Gerosa, Davide; Kesden, Michael

    2016-06-01

    We present the numerical code precession, a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. precession is a ready-to-use tool to add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation. precession provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also a useful tool to compute initial parameters for numerical-relativity simulations targeting specific precessing systems. precession can be installed from the python Package Index, and it is freely distributed under version control on github, where further documentation is provided.

  6. PRECESSION. Dynamics of spinning black-hole binaries with python

    CERN Document Server

    Gerosa, Davide

    2016-01-01

    We present the numerical code PRECESSION: a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulae obtained from numerical-relativity simulations. PRECESSION is a ready-to-use tool to add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation. PRECESSION provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where t...

  7. PRECESSION: Python toolbox for dynamics of spinning black-hole binaries

    Science.gov (United States)

    Gerosa, Davide; Kesden, Michael

    2016-11-01

    PRECESSION is a comprehensive toolbox for exploring the dynamics of precessing black-hole binaries in the post-Newtonian regime. It allows study of the evolution of the black-hole spins along their precession cycles, performs gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and predicts the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. PRECESSION can add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation, and provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also useful for computing initial parameters for numerical-relativity simulations targeting specific precessing systems.

  8. On geodesic dynamics in deformed black-hole fields

    CERN Document Server

    Semerák, Oldřich

    2015-01-01

    "Almost all" seems to be known about isolated stationary black holes in asymptotically flat space-times and about the behaviour of {\\em test} matter and fields in their backgrounds. The black holes likely present in galactic nuclei and in some X-ray binaries are commonly being represented by the Kerr metric, but actually they are not isolated (they are detected only thanks to a strong interaction with the surroundings), they are not stationary (black-hole sources are rather strongly variable) and they also probably do not live in an asymptotically flat universe. Such "perturbations" may query the classical black-hole theorems (how robust are the latter against them?) and certainly affect particles and fields around, which can have observational consequences. In the present contribution we examine how the geodesic structure of the static and axially symmetric black-hole space-time responds to the presence of an additional matter in the form of a thin disc or ring. We use several different methods to show that ...

  9. Black-hole horizons as probes of black-hole dynamics II: geometrical insights

    CERN Document Server

    Jaramillo, José Luis; Moesta, o Philipp; Rezzolla, Luciano

    2011-01-01

    In a companion paper [1], we have presented a cross-correlation approach to near-horizon physics in which bulk dynamics is probed through the correlation of quantities defined at inner and outer spacetime hypersurfaces acting as test screens. More specifically, dynamical horizons provide appropriate inner screens in a 3+1 setting and, in this context, we have shown that an effective-curvature vector measured at the common horizon produced in a head-on collision merger can be correlated with the flux of linear Bondi-momentum at null infinity. In this paper we provide a more sound geometric basis to this picture. First, we show that a rigidity property of dynamical horizons, namely foliation uniqueness, leads to a preferred class of null tetrads and Weyl scalars on these hypersurfaces. Second, we identify a heuristic horizon news-like function, depending only on the geometry of spatial sections of the horizon. Fluxes constructed from this function offer refined geometric quantities to be correlated with Bondi f...

  10. Black-hole horizons as probes of black-hole dynamics I: post-merger recoil in head-on collisions

    CERN Document Server

    Jaramillo, José Luis; Moesta, Philipp; Rezzolla, Luciano

    2011-01-01

    The understanding of strong-field dynamics near black-hole horizons is a long-standing and challenging problem in general relativity. Recent advances in numerical relativity and in the geometric characterization of black-hole horizons open new avenues into the problem. In this first paper in a series of two, we focus on the analysis of the recoil occurring in the merger of binary black holes, extending the analysis initiated in [1] with Robinson-Trautman spacetimes. More specifically, we probe spacetime dynamics through the correlation of quantities defined at the black-hole horizon and at null infinity. The geometry of these hypersurfaces responds to bulk gravitational fields acting as test screens in a scattering perspective of spacetime dynamics. Within a 3+1 approach we build an effective-curvature vector from the intrinsic geometry of dynamical-horizon sections and correlate its evolution with the flux of Bondi linear momentum at large distances. We employ this setup to study numerically the head-on coll...

  11. Black-hole dynamics in BHT massive gravity

    Science.gov (United States)

    Maeda, Hideki

    2011-02-01

    Using an exact Vaidya-type null-dust solution, we study the area and entropy laws for dynamical black holes defined by a future outer trapping horizon in (2 + 1) dimensional Bergshoeff-Hohm-Townsend (BHT) massive gravity. We consider the theory admitting a degenerate (anti-)de Sitter vacuum and pure BHT gravity. It is shown that, while the area of a black hole decreases by the injection of a null dust with positive energy density in several cases, the Wald-Kodama dynamical entropy always increases.

  12. The Arduous Journey to Black-Hole Formation in Potential Gamma-Ray Burst Progenitors

    CERN Document Server

    Dessart, Luc; Ott, Christian D

    2012-01-01

    We present a quantitative study on the properties at death of fast-rotating massive stars evolved at low-metallicity, objects that are proposed as likely progenitors of long-duration gamma-ray bursts (LGRBs). We perform 1D+rotation stellar-collapse simulations on the progenitor models of Woosley & Heger (2006) and critically assess their potential for the formation of a black hole and a Keplerian disk (namely a collapsar) or a proto-magnetar. We note that theoretical uncertainties in the treatment of magnetic fields and the approximate handling of rotation compromises the accuracy of stellar-evolution models. We find that only the fastest rotating progenitors achieve sufficient compactness for black-hole formation while the bulk of models possess a core density structure typical of garden-variety core-collapse supernova (SN) progenitors evolved without rotation and at solar metallicity. Of the models that do have sufficient compactness for black-hole formation, most of them also retain a large amount of a...

  13. Dynamics of current-carrying string loops in the Kerr naked-singularity and black-hole spacetimes

    CERN Document Server

    Kološ, M

    2013-01-01

    Current-carrying string-loop dynamics is studied in the Kerr spacetimes. With attention concentrated to the axisymmetric motion of string loops around symmetry axis of both black-hole (BH) and naked singularity (NS) spacetimes, it is shown that the resulting motion is governed by the presence of an outer tension barrier and an inner angular momentum barrier that are influenced by the BH or NS spin. We classify the string dynamics according to properties of the energy boundary function (effective potential) for the string loop motion. We have found that for NS there exist new types of energy boundary function, namely those with off-equatorial minima. Conversion of the energy of the string oscillations to the energy of the linear translational motion has been studied. Such a transmutation effect is much more efficient in the NS spacetimes because lack of the event horizon. For BH spacetimes efficiency of the transmutation effect is only weakly spin dependent. Transition from regular to chaotic regime of the str...

  14. DPRAODV: A Dynamic Learning System Against Blackhole Attack In AODV Based MANET

    OpenAIRE

    Swadas, Prashant B.; Raj, Payal N.

    2009-01-01

    Security is an essential requirement in mobile ad hoc networks to provide protected communication between mobile nodes. Due to unique characteristics of MANETS, it creates a number of consequential challenges to its security design. To overcome the challenges, there is a need to build a multifence security solution that achieves both broad protection and desirable network performance. MANETs are vulnerable to various attacks, blackhole, is one of the possible attacks. Black hole is a type of ...

  15. DPRAODV: A Dynamic Learning System Against Blackhole Attack In AODV Based MANET

    Directory of Open Access Journals (Sweden)

    Prashant B. Swadas

    2009-08-01

    Full Text Available Security is an essential requirement in mobile ad hoc networks to provide protected communication between mobile nodes. Due to unique characteristics of MANETS, it creates a number of consequential challenges to its security design. To overcome the challenges, there is a need to build a multifence security solution that achieves both broad protection and desirable network performance. MANETs are vulnerable to various attacks, blackhole, is one of the possible attacks. Black hole is a type of routing attack where a malicious node advertise itself as having the shortest path to all nodes in the environment by sending fake route reply. By doing this, the malicious node can deprive the traffic from the source node. It can be used as a denial-of-service attack where it can drop the packets later. In this paper, we proposed a DPRAODV (Detection, Prevention and Reactive AODV to prevent security threats of blackhole by notifying other nodes in the network of the incident. The simulation results in ns2 (ver-2.33 demonstrate that our protocol not only prevents blackhole attack but consequently improves the overall performance of (normal AODV in presence of black hole attack.

  16. Constraints on the Dynamical Environments of Supermassive Black-Hole Binaries Using Pulsar-Timing Arrays.

    Science.gov (United States)

    Taylor, Stephen R; Simon, Joseph; Sampson, Laura

    2017-05-05

    We introduce a technique for gravitational-wave analysis, where Gaussian process regression is used to emulate the strain spectrum of a stochastic background by training on population-synthesis simulations. This leads to direct Bayesian inference on astrophysical parameters. For pulsar timing arrays specifically, we interpolate over the parameter space of supermassive black-hole binary environments, including three-body stellar scattering, and evolving orbital eccentricity. We illustrate our approach on mock data, and assess the prospects for inference with data similar to the NANOGrav 9-yr data release.

  17. Effective potentials and morphological transitions for binary black-hole spin precession

    CERN Document Server

    Kesden, Michael; O'Shaughnessy, Richard; Berti, Emanuele; Sperhake, Ulrich

    2014-01-01

    Binary black holes (BBHs) on quasicircular orbits are fully characterized by their total mass $M$, mass ratio $q$, spins $\\mathbf{S}_1$ and $\\mathbf{S}_2$, and orbital angular momentum $\\mathbf{L}$. When the binary separation $r \\gg GM/c^2$, the precession timescale is much shorter than the radiation-reaction time on which $L = |\\mathbf{L}|$ decreases due to gravitational-wave (GW) emission. We use conservation of the total angular momentum $\\mathbf{J} = \\mathbf{L} + \\mathbf{S}_1 + \\mathbf{S}_2$ (with magnitude $J$) and the projected effective spin $\\xi \\equiv M^{-2} [(1+q) \\mathbf{S}_1 + (1+q^{-1})\\mathbf{S}_2] \\cdot \\hat{\\mathbf{L}}$ on the precession time to derive an effective potential for BBH spin precession. This effective potential allows us to solve the orbit-averaged spin-precession equations analytically for arbitrary mass ratios and spins. These solutions are quasiperiodic functions of time: after a period $\\tau(L, J, \\xi)$ the angular momenta return to their initial relative orientations and prec...

  18. The Black-Hole Accretion Disk in NGC 4258: One of Nature's Most Beautiful Dynamical Systems

    Science.gov (United States)

    Moran, J. M.

    2008-08-01

    In this talk I will summarize some of the work that the CfA group has done to study the structure of the water masers in the accretion disk of NGC 4258. A series of 18 epochs of VLBA data taken from 1997.3 to 2000.8 were used for this study. The vertical distribution of maser features in the systemic group was found to be Gaussian, as expected for hydrostatic equilibrium, with a σ-width of 5.1 microarcsec (μas). If the disk is in hydrostatic equilibrium, its temperature is about 600 K. The systemic features exhibit a small, but persistent, gradient in acceleration versus impact parameter. This characteristic may indicate the presence of a spiral density wave rotating at sub-Keplerian speed. A more precise understanding of the dynamical properties of the disk is expected to lead to a more refined estimate of the distance to the galaxy.

  19. High redshift supermassive blackholes: accretion through cold flows

    CERN Document Server

    Feng, Yu; Croft, Rupert; Khandai, Nishikanta

    2013-01-01

    We use zoom-in techniques to re-simulate three high-redshift (z > 5.5) halos which host 10^9 solar mass blackholes from the ~ Gpc volume, MassiveBlack cosmological hydrodynamic simulation. We examine a number of factors potentially affecting supermassive blackhole growth at high redshift in cosmological simulations. These include numerical resolution, feedback prescriptions and formulation of smoothed particle hydrodynamics. We find that varying the size of the region over which feedback energy is deposited directly, either for fixed number of neighbours or fixed volume makes very little difference to the accretion history of blackholes. Changing mass resolution by factors of up to 64 also does not change the blackhole growth history significantly. We find that switching from the density-entropy formulation to the pressure-entropy formulation of smoothed particle hydrodynamics slightly increases the accretion rate onto blackholes. In general numerical details appear to have small effects on the main fueling m...

  20. Cassini states for black-hole binaries

    CERN Document Server

    Correia, Alexandre C M

    2016-01-01

    Cassini states correspond to equilibria of the spin axis of a celestial body when its orbit is perturbed. They were initially described for planetary satellites, but the spin axes of black-hole binaries also present this kind of equilibria. In previous works, Cassini states were reported as spin-orbit resonances, but actually the spin of black-hole binaries is in circulation and there is no resonant motion. Here we provide a general description of the spin dynamics of black-hole binary systems based on a Hamiltonian formalism. In absence of dissipation the problem is integrable and it is easy to identify all possible trajectories for the spin for a given value of the total angular momentum. As the system collapses due to radiation reaction, the Cassini states are shifted to different positions, which modifies the dynamics around them. This is why the final spin distribution may differ from the initial one. Our method provides a simple way of predicting the distribution of the spin of black-hole binaries at th...

  1. Geodesic Motion in a Charged 2D Stringy Blackhole Spacetime

    CERN Document Server

    Uniyal, Rashmi; Purohit, K D

    2014-01-01

    We study the timelike geodesics and geodesic deviation for a two-dimensional stringy blackhole spacetime in Schwarzschild gauge. We have analyzed the properties of effective potential along with the structure of the possible orbits for test particles with different settings of blackhole parameters. The exactly solvable geodesic deviation equation is used to obtain corresponding deviation vector. The nature of deviation and tidal force is also examined in view of the behavior of corresponding deviation vector.The results are also compared with an another two-dimensional stringy blackhole spacetime.

  2. Black-Hole Mass Measurements

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2004-01-01

    The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....

  3. Schwarzschild black-holes are quantum complete

    CERN Document Server

    Hofmann, Stefan

    2016-01-01

    The singularity theorem by Hawking and Penrose qualifies Schwarzschild black-holes as geodesic incomplete space-times. Albeit this is a mathematically rigorous statement, it requires an operational framework that allows to probe the space-like singularity via a measurement process. Any such framework necessarily has to be based on quantum theory. As a consequence, the notion of classical completeness needs to be adapted to situations where the only adequate description is in terms of quantum fields in dynamical space-times. It is shown that Schwarzschild black-holes turn out to be complete when probed by self-interacting quantum fields in the ground state and in excited states. The measure for populating quantum fields on hypersurfaces in the vicinity of the black-hole singularity goes to zero towards the singularity. This statement is robust under non-Gaussian deformations of and excitations relative to the ground state. The clash of completeness cultures as exemplified with black holes is discussed.

  4. Numerical simulations of black-hole spacetimes

    Science.gov (United States)

    Chu, Tony

    This thesis covers various aspects of the numerical simulation of black-hole spacetimes according to Einstein's general theory of relativity, using the Spectral Einstein Code developed by the Caltech-Cornell-CITA collaboration. The first topic is improvement of binary-black-hole initial data. One such issue is the construction of binary-black-hole initial data with nearly extremal spins that remain nearly constant during the initial relaxation in an evolution. Another concern is the inclusion of physically realistic tidal deformations of the black holes to reduce the high-frequency components of the spurious gravitational radiation content, and represents a first step in incorporating post-Newtonian results in constraint-satisfying initial data. The next topic is the evolution of black-hole binaries and the gravitational waves they emit. The first spectral simulation of two inspiralling black holes through merger and ringdown is presented, in which the black holes are nonspinning and have equal masses. This work is extended to perform the first spectral simulations of two inspiralling black holes with moderate spins and equal masses, including the merger and ringdown. Two configurations are considered, in which both spins are either anti-aligned or aligned with the orbital angular momentum. Highly accurate gravitational waveforms are computed for all these cases, and are used to calibrate waveforms in the effective-one-body model. The final topic is the behavior of quasilocal black-hole horizons in highly dynamical situations. Simulations of a rotating black hole that is distort ed by a pulse of ingoing gravitational radiation are performed. Multiple marginally outer trapped surfaces are seen to appear and annihilate with each other during the evolution, and the world tubes th ey trace out are all dynamical horizons. The dynamical horizon and angular momentum flux laws are evaluated in this context, and the dynamical horizons are contrasted with the event horizon

  5. Performance Evaluation of AODV under Blackhole Attack

    National Research Council Canada - National Science Library

    Tarunpreet Bhatia; A K Verma

    2013-01-01

    .... This paper simulates one of the most malicious behaviors known as blackhole attack. The blackhole node creates forged reply, advertising valid and fresh route to destination and thereafter drops data packets maliciously...

  6. Black Hole Dynamic Potentials

    Indian Academy of Sciences (India)

    Koustubh Ajit Kabe

    2012-09-01

    In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.

  7. Thermodynamics of Two-Dimensional Black-Holes

    OpenAIRE

    Nappi, Chiara R.; Pasquinucci, Andrea

    1992-01-01

    We explore the thermodynamics of a general class of two dimensional dilatonic black-holes. A simple prescription is given that allows us to compute the mass, entropy and thermodynamic potentials, with results in agreement with those obtained by other methods, when available.

  8. On quantum potential dynamics

    Science.gov (United States)

    Goldstein, Sheldon; Struyve, Ward

    2015-01-01

    Non-relativistic de Broglie-Bohm theory describes particles moving under the guidance of the wave function. In de Broglie's original formulation, the particle dynamics is given by a first-order differential equation. In Bohm's reformulation, it is given by Newton's law of motion with an extra potential that depends on the wave function—the quantum potential—together with a constraint on the possible velocities. It was recently argued, mainly by numerical simulations, that relaxing this velocity constraint leads to a physically untenable theory. We provide further evidence for this by showing that for various wave functions the particles tend to escape the wave packet. In particular, we show that for a central classical potential and bound energy eigenstates the particle motion is often unbounded. This work seems particularly relevant for ways of simulating wave function evolution based on Bohm's formulation of the de Broglie-Bohm theory. Namely, the simulations may become unstable due to deviations from the velocity constraint.

  9. A Black-Hole Primer: Particles, Waves, Critical Phenomena and Superradiant Instabilities

    CERN Document Server

    Berti, Emanuele

    2014-01-01

    These notes were prepared for a lecture on black holes delivered at the DPG Physics School "General Relativity @ 99" (Physikzentrum Bad Honnef, Germany, September 2014). The common thread of the lecture is the relation between geodesic stability and black-hole perturbations in the geometric optics limit. Chapter 1 establishes notation and discusses a common misconception on Michell's "Newtonian black holes". Chapters 2 and 3 deal with particle dynamics and wave dynamics in black-hole spacetimes, respectively. All calculations should be simple enough that they can be done with pen and paper. Chapter 4 builds on this introduction to discuss two exciting topics in current research: critical phenomena in black-hole mergers and the black-hole bomb instability.

  10. Blackhole evaporation model without information loss

    CERN Document Server

    Villegas, Kristian Hauser A

    2016-01-01

    A simple model of a blackhole evaporation without information loss is given. In this model, the blackhole is \\textit{not} in a specific mass eigenstate as it evaporates but rather, is in a superposition of various mass eigenstates and is entangled with the radiation. For astrophysical blackhole, the mass distribution is sharply peak about its average value with a vanishingly small standard deviation, which is consistent with our intuition of a classical object. It is then shown that as the blackhole evaporates, the evolution of the closed blackhole-radiation system is unitary. This is done by showing that the full density matrix satisfies Tr$\\rho^2=1$ at all times. Finally, it is shown that the entanglement entropy, after an initial increase, decreases and approaches zero. These show that this model of blackhole evaporation has no infromation loss.

  11. Black-Hole Binaries, Gravitational Waves, and Numerical Relativity

    Science.gov (United States)

    Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.

  12. Black-Hole Binaries, Gravitational Waves, and Numerical Relativity

    Science.gov (United States)

    Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.

  13. Detecting Blackholes and Volcanoes in Directed Networks

    CERN Document Server

    Li, Zhongmou; Liu, Yanchi

    2010-01-01

    In this paper, we formulate a novel problem for finding blackhole and volcano patterns in a large directed graph. Specifically, a blackhole pattern is a group which is made of a set of nodes in a way such that there are only inlinks to this group from the rest nodes in the graph. In contrast, a volcano pattern is a group which only has outlinks to the rest nodes in the graph. Both patterns can be observed in real world. For instance, in a trading network, a blackhole pattern may represent a group of traders who are manipulating the market. In the paper, we first prove that the blackhole mining problem is a dual problem of finding volcanoes. Therefore, we focus on finding the blackhole patterns. Along this line, we design two pruning schemes to guide the blackhole finding process. In the first pruning scheme, we strategically prune the search space based on a set of pattern-size-independent pruning rules and develop an iBlackhole algorithm. The second pruning scheme follows a divide-and-conquer strategy to fur...

  14. Black-hole evaporation and ultrashort distances

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, T. (Department of Physics, University of Maryland, College Park, Maryland (USA))

    1991-09-15

    The role played by ultrahigh frequencies of ultrashort distances in the usual derivations of the Hawking effect is discussed and criticized. The question would a blackhole radiate if there were a Planck scale cutoff in the rest frame of the hole '' is posed. Guidance is sought from Unruh's fluid-flow analogue of black-hole radiation, by taking into account the atomic nature of the fluid. Two arguments for black-hole radiation are given which assume a Planck length cutoff. One involves the response of static accelerated detectors outside the horizon, and the other involves conservation of the expectation value of the stress tensor. Neither argument is conclusive, but they do strongly suggest that, in spite of reasonable doubt about the usual derivations of black-hole radiation, a safe'' derivation which avoids our ignorance of ultrashort-distance physics can likely be formulated. Remaining open questions are discussed.

  15. Growth rate for blackhole instabilities

    Science.gov (United States)

    Prabhu, Kartik; Wald, Robert

    2015-04-01

    Hollands and Wald showed that dynamic stability of stationary axisymmetric black holes is equivalent to positivity of canonical energy on a space of linearised axisymmetric perturbations satisfying certain boundary and gauge conditions. Using a reflection isometry of the background, we split the energy into kinetic and potential parts. We show that the kinetic energy is positive. In the case that potential energy is negative, we show existence of exponentially growing perturbations and further obtain a variational formula for the growth rate.

  16. Advanced Methods in Black-Hole Perturbation Theory

    CERN Document Server

    Pani, Paolo

    2013-01-01

    Black-hole perturbation theory is a useful tool to investigate issues in astrophysics, high-energy physics, and fundamental problems in gravity. It is often complementary to fully-fledged nonlinear evolutions and instrumental to interpret some results of numerical simulations. Several modern applications require advanced tools to investigate the linear dynamics of generic small perturbations around stationary black holes. Here, we present an overview of these applications and introduce extensions of the standard semianalytical methods to construct and solve the linearized field equations in curved spacetime. Current state-of-the-art techniques are pedagogically explained and exciting open problems are presented.

  17. 33 CFR 110.72 - Blackhole Creek, Md.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Blackhole Creek, Md. 110.72... ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72 Blackhole Creek, Md. The waters on the west side of Blackhole Creek, a tributary of Magothy River, southwest of a line bearing 310°30′ from the most...

  18. Origin of the blackhole information paradox

    CERN Document Server

    Brustein, Ram

    2012-01-01

    It is argued that the blackhole information paradox originates from treating the blackhole geometry as strictly classical. It is further argued that the theory of quantum fields in a classical curved space with a horizon is an ill posed problem. If the geometry is allowed to fluctuate quantum mechanically, then the horizon effectively disappears. The sharp horizon emerges only in the classical limit when the ratio of the Compton wavelength of the black hole to its Schwarzschild radius vanishes. The region of strong gravity that develops when matter collapses to form the blackhole remains visible to the whole of spacetime and has to be described by a microscopic theory of strong gravity. The arguments imply that the information paradox is demoted from a paradox involving fundamental principles of physics to the problem of describing how matter at the highest densities gravitates.

  19. Instability of the extreme Kerr-Newman black-holes

    OpenAIRE

    Reiris, M.

    2013-01-01

    Using black-hole inequalities and the increase of the horizon's areas, we show that there are arbitrarily small electro-vacuum perturbations of the standard initial data of the extreme Reissner-Nordstrom black-hole that, (by contradiction), cannot decay in time into any extreme Kerr-Newman black-hole. This proves the expectation that the family of extreme Kerr-Newman black-holes is unstable. It remains of course to be seen whether the whole family of charged black-holes, including those extre...

  20. Bohmian trajectories for an evaporating blackhole

    Energy Technology Data Exchange (ETDEWEB)

    Acacio de Barros, J. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, CEP 36036-330, Juiz de Fora, Minas Gerais (Brazil)]. E-mail: acacio@fisica.ufjf.br; Oliveira-Neto, G. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, CEP 36036-330, Juiz de Fora, Minas Gerais (Brazil)]. E-mail: gilneto@fisica.ufjf.br; Vale, T.B. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, CEP 36036-330, Juiz de Fora, Minas Gerais (Brazil)]. E-mail: tiberio@fisica.ufjf.br

    2005-03-14

    In this work we apply Bohm's interpretation to the quantized spherically-symmetric blackhole coupled to a massless scalar field. We show that the quantum trajectories for linear combinations of eigenstates of the Wheeler-DeWitt equation form a large set of different curves that cannot be predicted by the standard interpretation of quantum mechanics. Some of them are consistent with the expected value of the time derivative of the mass, whereas other trajectories are not, because they represent blackholes that switch from absorbing to emitting regimes.

  1. Black-Hole Solutions to Einstein's Equations in the Presence of Matter and Modifications of Gravitation in Extra Dimensions

    CERN Document Server

    Goutéraux, B

    2010-01-01

    In this thesis, we wish to examine the black-hole solutions of modified gravity theories inspired by String Theory or Cosmology. Namely, these modifications will take the guise of additional gauge and scalar fields for the so-called Einstein-Maxwell-Dilaton theories with an exponential Liouville potential; and of extra spatial dimensions for Einstein-Gauss-Bonnet theories. The black-hole solutions of EMD theories as well as their integrability are reviewed. One of the main results is that a master equation is obtained in the case of planar horizon topology, which allows to completely integrate the problem for s special relationship between the couplings. We also classify existing solutions. We move on to the study of Gauss-Bonnet black holes, focusing on the six-dimensional case. It is found that the Gauss-Bonnet coupling exposes the Weyl tensor of the horizon to the dynamics, severely restricting the Einstein spaces admissible and effectively lifting some of the degeneracy on the horizon topology. We then tu...

  2. Blackhole State-Controlled Regulated Pushdown Automata

    NARCIS (Netherlands)

    Csuhaj-Varju, E.; Masopust, T.; Vaszil, G.; Bordihn, H.; Freund, R.; Hinze, T.; Holzer, M.; Kutrib, M.; Otto, F.

    2010-01-01

    In this paper, we introduce and study a variant of regulated pushdown automata, called blackhole state-controlled R-PDA where a symbol can always be pushed to the pushdown, but only a given depth of the pushdown contents is remembered; the rest of the pushdown contents is lost. In addition, the auto

  3. A black-hole mass measurement from molecular gas kinematics in NGC4526.

    Science.gov (United States)

    Davis, Timothy A; Bureau, Martin; Cappellari, Michele; Sarzi, Marc; Blitz, Leo

    2013-02-21

    The masses of the supermassive black holes found in galaxy bulges are correlated with a multitude of galaxy properties, leading to suggestions that galaxies and black holes may evolve together. The number of reliably measured black-hole masses is small, and the number of methods for measuring them is limited, holding back attempts to understand this co-evolution. Directly measuring black-hole masses is currently possible with stellar kinematics (in early-type galaxies), ionized-gas kinematics (in some spiral and early-type galaxies) and in rare objects that have central maser emission. Here we report that by modelling the effect of a black hole on the kinematics of molecular gas it is possible to fit interferometric observations of CO emission and thereby accurately estimate black-hole masses. We study the dynamics of the gas in the early-type galaxy NGC 4526, and obtain a best fit that requires the presence of a central dark object of 4.5(+4.2)(-3.1) × 10(8) solar masses (3σ confidence limit). With the next-generation millimetre-wavelength interferometers these observations could be reproduced in galaxies out to 75 megaparsecs in less than 5 hours of observing time. The use of molecular gas as a kinematic tracer should thus allow one to estimate black-hole masses in hundreds of galaxies in the local Universe, many more than are accessible with current techniques.

  4. Charged Heterotic Black-Holes in Four and Two Dimensions

    OpenAIRE

    Cardoso, Gabriel Lopes

    1998-01-01

    We consider four-dimensional charged black-holes occuring in toroidally compactified heterotic string theory, whose ten-dimensional interpretation involves a Kaluza-Klein monopole and a five-brane. We show that these four-dimensional black-holes can be connected to two-dimensional charged heterotic black-holes upon removal of the constants appearing in the harmonic functions associated with the Kaluza-Klein monopole and the five-brane.

  5. A Measurement Study of BGP Blackhole Routing Performance

    Science.gov (United States)

    2006-09-01

    STUDY OF BGP BLACKHOLE ROUTING PERFORMANCE by Nikolaos Stamatelatos September 2006 Thesis Advisor: Geoffrey Xie Second Reader: J. D. Fulp...September 2006 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE A Measurement Study of BGP Blackhole Routing Performance 6...distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) BGP Blackhole routing is a mechanism used to protect networks from DDoS

  6. Gravitomagnetism and Angular Momenta of Black-Holes

    OpenAIRE

    Marcelo Samuel Berman

    2006-01-01

    We review the energy contents formulae of Kerr-Newman black-holes, where gravitomagnetic energy term comes to play(Berman, 2006; 2006a; 2004). Then, we obtain the angular momenta formulae, which include the gravitomagnetic effect. Three theorems can be enunciated: (1) No black-hole has its energy confined to its interior; (2) Rotating black-holes do not have confined angular momenta; (3) The energy density of a black-hole is not confined to its interior. The difference between our calculation...

  7. Quantum-gravity fluctuations and the black-hole temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-05-15

    Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum. (orig.)

  8. Hybrid Black-Hole Binary Initial Data

    Science.gov (United States)

    Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-01-01

    "Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."

  9. Hybrid black-hole binary initial data

    CERN Document Server

    Mundim, Bruno C; Zlochower, Yosef; Nakano, Hiroyuki; Campanelli, Manuela

    2010-01-01

    Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class.Quant.Grav.27:114005,2010], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculation was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features.

  10. SECURING MANET FROM BLACKHOLE AND WORMHOLE ATTACKS

    Directory of Open Access Journals (Sweden)

    C.M.Vidhyapathi

    2013-06-01

    Full Text Available Mobile Ad-Hoc networks are self-configuring and self-organizing multi-hop wireless networks. They do not have any fixed infrastructure or centralized management. Due to this, the ad hoc networks are vulnerable to attacks. The routing protocol for MANET considered in this paper is AODV(Ad hoc On-demand Distance Vector Routing Protocol. Blackhole and Wormhole nodes are malicious nodeswhich degrade the performance of the network. They actively participate in the network and conform to forward packets to the destination. The Watchdog Mechanism is used to correct the network from both blackhole and wormhole attacks. The networks originally, with the attacks and after being prevented from attacks are compared on the basis of packets received, throughput, end-to-end delay and packet delivery ratio. ns2 software is used for the simulation.

  11. A new blackhole theorem and its applications to cosmology and astrophysics

    Science.gov (United States)

    Wang, Shouhong; Ma, Tian

    2015-04-01

    We shall present a blackhole theorem and a theorem on the structure of our Universe, proved in a recently published paper, based on 1) the Einstein general theory of relativity, and 2) the cosmological principle that the universe is homogeneous and isotropic. These two theorems are rigorously proved using astrophysical dynamical models coupling fluid dynamics and general relativity based on a symmetry-breaking principle. With the new blackhole theorem, we further demonstrate that both supernovae explosion and AGN jets, as well as many astronomical phenomena including e.g. the recent reported are due to combined relativistic, magnetic and thermal effects. The radial temperature gradient causes vertical Benard type convection cells, and the relativistic viscous force (via electromagnetic, the weak and the strong interactions) gives rise to a huge explosive radial force near the Schwarzschild radius, leading e.g. to supernovae explosion and AGN jets.

  12. The dynamic polarization potential and dynamical non-locality in nuclear potentials: Deuteron-nucleus potential

    CERN Document Server

    Mackintosh, R S

    2016-01-01

    The consequences for direct reactions of the dynamical non-locality generated by the excitation of the target and projectile are much less studied than the effects of non-locality arising from exchange processes. Here we are concerned with the dynamical non-locality due to projectile excitation in deuteron induced reactions. The consequences of this non-locality can be studied by the comparison of deuteron induced direct reactions calculated with alternative representations of the elastic channel wave functions: (i) the elastic channel wave functions from coupled channel (CC) calculations involving specific reaction processes, and, (ii) elastic channel wave functions calculated from local potentials that exactly reproduce the elastic scattering $S$-matrix from the same CC calculations. In this work we produce the local equivalent deuteron potentials required for the study of direct reactions involving deuterons. These will enable the study of the effects of dynamical non-locality following a method previously...

  13. Black-hole kicks as new gravitational-wave observables

    CERN Document Server

    Gerosa, Davide

    2016-01-01

    Generic black-hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick velocity to the merger remnant. If a component of the kick along the line-of-sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler-shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational-wave experiments will be able to perform direct measurements, not only of the black-hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black-hole kick velocities as low as ~500 km/s, which are expected to be a common outcome of black-hole binary coalescence following galaxy mergers. Black-hole kicks thus constitute a promising new observable in the growing field of gravitational-wave astronomy.

  14. No blackhole and no atomic bomb

    Science.gov (United States)

    Shin, Philip

    2011-11-01

    Title: c=c(1+1=2) The light speed 1+1=2. So we count the number by step by step for one point. When we count the number by one point, we use the number written on the paper. This means this is not number, but the graph and line. The light speed is the truth in physics. I can prove it by number. 10%=0.1 As %=kg So 10kg=0.1 kg=1/10 x 1/10 kg=1/100 And 100%=1 So kg=100%/100 kg=% So 1kg=1%=1/100 E=mc^2 So cx kgx m^2/sec^2= 1kgx cx m^2/sec^2 cx 1/100x m^2/sec^2= 1/100x cx m^2/sec^2 So c/100=c/100 So c=c And c is the truth never changed. Title: By faith, no blackhole As to be, we glory to God and that is basic theology for christian. And I want to say that BE means just thinking. There is no clue of nature and no proposition to prove it. I just believe by feeling and emotion. I trust that it can be the physic really. There are only human beings and there is no idol that is different existence from human beings, that is true to be. So the nature we see is zero and we, human beings make the zero nature as from no start and no ending. No alpha and omega mean we are idol and that there is no blackhole. Blackhole means the block is existing in the nothing(as we are no alpha and no omega). So the block cannot be existence. So if there is blackhole, then there must be the wall to block me and never walk again. The big bang and evolution mean they are no alpha and no omega and existing by themselves. So they could be existence, but big bang and evolution are just logical fact to be. We need faith as God give us the direction into our spirit.

  15. Genericity of blackhole formation in the gravitational collapse of homogeneous self-interacting scalar fields

    CERN Document Server

    Giambó, R; Magli, G

    2008-01-01

    The gravitational collapse of a wide class of self-interacting homogeneous scalar fields models is analyzed. The class is characterized by certain general conditions on the scalar field potential, which, in particular, include both asymptotically polynomial and exponential behaviors. Within this class, we show that the generic evolution is always divergent in a finite time, and then make use of this result to construct radiating star models of the Vaidya type. It turns out that blackholes are generically formed in such models.

  16. Dirty blackholes Thermodynamics and horizon structure

    CERN Document Server

    Visser, M

    1992-01-01

    Considerable interest has recently been expressed in (static spherically symmetric) blackholes in interaction with various classical matter fields (such as electromagnetic fields, dilaton fields, axion fields, Abelian Higgs fields, non--Abelian gauge fields, {\\sl etc}). A common feature of these investigations that has not previously been remarked upon is that the Hawking temperature of such systems appears to be suppressed relative to that of a vacuum blackhole of equal horizon area. That is: $k T_H \\leq \\hbar/(4\\pi r_H) \\equiv \\hbar/\\sqrt{4\\pi A_H}$. This paper will argue that this suppression is generic. Specifically, it will be shown that \\[ k T_H = {\\hbar\\over4\\pi r_H} \\; e^{-\\phi(r_H)} \\; \\left( 1 - 8\\pi G \\; \\rho_H \\; r_H^2 \\right). \\] Here $\\phi(r_H)$ is an integral quantity, depending on the distribution of matter, that is guaranteed to be positive if the Weak Energy Condition is satisfied. Several examples of this behaviour will be discussed. Generalizations of this behaviour to non--symmetric non--...

  17. Astrophysical Implications of the Binary Black-Hole Merger GW150914

    CERN Document Server

    ,

    2016-01-01

    The discovery of the gravitational-wave source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe. Such black-hole mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively "heavy" black holes ($\\gtrsim 25\\, M_\\odot$) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with metallicity lower than $\\sim 1/2$ of the solar value. The rate of binary black-hole mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions ($\\gtrsim 1 \\, \\mathrm{Gpc}^{-3} \\, \\mathrm{yr}^{-1}$) from both types of formation models. The low measured redshift ($z \\sim 0.1$) of GW150914 and the low inferr...

  18. Influence of Morse Potential on DNA Dynamics

    Institute of Scientific and Technical Information of China (English)

    ZDRAVKOVI(C) S.; SATARI(C) M.V.

    2006-01-01

    Based on the Peyrard-Bishop-Dauxois (i.e.the extended Peyrard-Bishop) model of DNA dynamics,the transversal hydrogen interaction is modelled by Morse potential and the impact of the Morse parameters on the DNA dynamics is investigated.In particular,we show how modulation of the signal,moving through the DNA chain, depends on those parameters,It is also shown that the DNA dynamics represents the interplay between dispersion and nonlinearity.Finally,we discuss the values of coupling constants κ and K.

  19. Modified AODV Protocol against Blackhole Attacks in MANET

    Directory of Open Access Journals (Sweden)

    K.Rama,

    2010-12-01

    Full Text Available Mobile Adhoc Network (MANET consists of a collection of wireless mobile hosts without the required intervention of any existing infrastructure or centralized access point such as base station. The dynamic topology of MANET allows nodes to join and leave the network at any point of time. Wireless MANET is particularly vulnerabledue to its fundamental characteristics such as open medium, dynamic topology, distributed cooperation and constrained capability. So security in MANET is a complex issue. There are many routing protocols that establish the routes between the nodes in the network. The control towards the management of the nodes in the MANET is distributed. This features does not give assurance towards the security aspects of the network. There are many routing attacks caused due to lack of security. In this paper, therefore, we attempt to focus on analyzing and improving the security of one of the popularrouting protocol for MANET viz. the Adhoc On Demand Distance Vector (AODV routing protocol. Our focus specifically, is on ensuring the security against the Blackhole Attack. The proposed solution is that capable of detecting and removing black hole nodes in the MANET at the initial stage itself without any delay.

  20. Black-hole thermodynamics: Entropy, information and beyond

    Indian Academy of Sciences (India)

    Saurya Das

    2004-10-01

    We review some recent advances in black-hole thermodynamics including statistical mechanical origins of black-hole entropy and its leading order corrections from the view points of various quantum gravity theories. We then examine the problem of information loss and some possible approaches to its resolution. Finally, we study some proposed experiments which may be able to provide experimental signatures of black holes.

  1. Hybrid black-hole binary initial data

    Energy Technology Data Exchange (ETDEWEB)

    Mundim, Bruno C; Zlochower, Yosef; Nakano, Hiroyuki; Campanelli, Manuela [Center for Computational Relativity and Gravitation, School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY14623 (United States); Kelly, Bernard J, E-mail: bcmsma@astro.rit.edu, E-mail: bernard.j.kelly@nasa.gov, E-mail: yosef@astro.rit.edu, E-mail: nakano@astro.rit.edu, E-mail: manuela@astro.rit.edu [CRESST and Gravitational Astrophysics Laboratory, NASA/GSFC, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2011-07-07

    Traditional black-hole (BH) binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al (2010, Class. Quantum Grav. 27 114005), a new binary BH initial data with radiation content derived from post-Newtonian (PN) theory was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless 'wavy' metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesirable features: unphysical horizon mass loss and large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features.

  2. Learning about Black-Hole Formation from Gravitational Waves

    Science.gov (United States)

    Kesden, Michael H.

    2017-01-01

    The first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) discovered gravitational waves from two binary black-hole mergers. Although astrophysical black holes are simple objects fully characterized by their masses and spins, key features of binary black-hole formation such as mass transfer, natal kicks, and common-envelope evolution can misalign black-hole spins with the orbital angular momentum of the binary. These misaligned spins will precess as gravitational-wave emission causes the black holes to inspiral to separations at which the waves are detectable by observatories like LIGO. Spin precession modulates the amplitude and frequency of the gravitational waves observed by LIGO, allowing it to not only test general relativity but also reveal the secrets of black-hole formation. This talk will briefly describe those elements of binary black-hole formation responsible for initial spin misalignments, how spin precession and radiation reaction in general relativity determine how spins evolve from formation until the black holes enter LIGO’s sensitivity band, and how spin-induced gravitational-wave modulation in band can be used as a diagnostic of black-hole formation.

  3. Evolving test-fields in a black-hole geometry

    CERN Document Server

    Andersson, N

    1997-01-01

    We consider the initial value problem for a massless scalar field in the Schwarzschild geometry. When constructed using a complex-frequency approach the necessary Green's function splits into three components. We discuss all of these in some detail: 1) The contribution from the singularities (the quasinormal modes of the black hole) is approximated and the mode-sum is demonstrated to converge after a certain well defined time in the evolution. A dynamic description of the mode-excitation is introduced and tested. 2) It is shown how a straightforward low-frequency approximation to the integral along the branch cut in the black-hole Green's function leads to the anticipated power-law fall off at very late times. We also calculate higher order corrections to this tail and show that they provide an important complement to the leading order. 3) The high-frequency problem is also considered. We demonstrate that the combination of the obtained approximations for the quasinormal modes and the power-law tail provide a...

  4. Evolving test fields in a black-hole geometry

    Science.gov (United States)

    Andersson, Nils

    1997-01-01

    We consider the initial value problem for a massless scalar field in the Schwarzschild geometry. When constructed using a complex-frequency approach the necessary Green's function splits into three components. We discuss all of these in some detail. (1) The contribution from the singularities (the quasinormal modes of the black hole) is approximated and the mode sum is demonstrated to converge after a certain well-defined time in the evolution. A dynamic description of the mode excitation is introduced and tested. (2) It is shown how a straightforward low-frequency approximation to the integral along the branch cut in the black-hole Green's function leads to the anticipated power-law falloff at very late times. We also calculate higher order corrections to this tail and show that they provide an important complement to the leading order. (3) The high-frequency problem is also considered. We demonstrate that the combination of the obtained approximations for the quasinormal modes and the power-law tail provide a complete description of the evolution at late times. Problems that arise (in the complex-frequency picture) for early times are also discussed, as is the fact that many of the presented results generalize to, for example, Kerr black holes.

  5. Testing general relativity using golden black-hole binaries

    CERN Document Server

    Ghosh, Abhirup; Johnson-McDaniel, Nathan K; Mishra, Chandra Kant; Ajith, Parameswaran; Del Pozzo, Walter; Nichols, David A; Chen, Yanbei; Nielsen, Alex B; Berry, Christopher P L; London, Lionel

    2016-01-01

    The coalescences of stellar-mass black-hole binaries through their inspiral, merger, and ringdown are among the most promising sources for ground-based gravitational-wave (GW) detectors. If a GW signal is observed with sufficient signal-to-noise ratio, the masses and spins of the black holes can be estimated from just the inspiral part of the signal. Using these estimates of the initial parameters of the binary, the mass and spin of the final black hole can be uniquely predicted making use of general-relativistic numerical simulations. In addition, the mass and spin of the final black hole can be independently estimated from the merger-ringdown part of the signal. If the binary black hole dynamics is correctly described by general relativity, these independent estimates have to be consistent with each other. We present a Bayesian implementation of such a test of general relativity, and outline the expected constraints from upcoming GW observations using the second-generation of ground-based GW detectors.

  6. Nonlinear Dynamics in Double Square Well Potential

    CERN Document Server

    Khomeriki, Ramaz; Ruffo, Stefano; Wimberger, Sandro; 10.1007/s11232-007-0096-y

    2009-01-01

    Considering the coherent nonlinear dynamics in double square well potential we find the example of coexistence of Josephson oscillations with a self-trapping regime. This macroscopic bistability is explained by proving analytically the simultaneous existence of symmetric, antisymmetric and asymmetric stationary solutions of the associated Gross-Pitaevskii equation. The effect is illustrated and confirmed by numerical simulations. This property allows to make suggestions on possible experiments using Bose-Einstein condensates in engineered optical lattices or weakly coupled optical waveguide arrays.

  7. Disappearing Inflaton Potential via Heavy Field Dynamics

    CERN Document Server

    Kitajima, Naoya

    2015-01-01

    We propose a possibility that the inflaton potential is significantly modified after inflation due to heavy field dynamics. During inflation there may be a heavy scalar field stabilized at a value deviated from the low-energy minimum. As the heavy field moves to the low-energy minimum, the inflaton potential could be significantly modified. In extreme cases, the inflaton potential vanishes and the inflaton becomes almost massless at some time after inflation. Such transition of the inflaton potential has interesting implications for primordial density perturbations, reheating, creation of unwanted relics, dark radiation, and experimental search for light degrees of freedom. To be concrete, we consider a chaotic inflation in supergravity where the inflaton mass parameter is promoted to a modulus field, finding that the inflaton becomes stable after the transition and contributes to dark matter. Another example is the new inflation by the MSSM Higgs field which acquires a large expectation value just after infl...

  8. 2.5PN kick from black-hole binaries in circular orbit: Nonspinning case

    CERN Document Server

    Mishra, Chandra Kant; Iyer, Bala R

    2013-01-01

    Using the Multipolar post-Minskowskian formalism, we compute the linear momentum flux from black-hole binaries in circular orbits and having no spins. The total linear momentum flux contains various types of instantaneous (which are functions of the retarded time) and hereditary (which depends on the dynamics of the binary in the past) terms both of which are analytically computed. In addition to the inspiral contribution, we use a simple model of plunge to compute the kick or recoil accumulated during this phase.

  9. The Blackhole-Dark Matter Halo Connection

    CERN Document Server

    Sabra, Bassem M; Akl, Maya Abi; Chahine, Gilbert

    2015-01-01

    We explore the connection between the central supermassive blackholes (SMBH) in galaxies and the dark matter halo through the relation between the masses of the SMBHs and the maximum circular velocities of the host galaxies, as well as the relationship between stellar velocity dispersion of the spheroidal component and the circular velocity. Our assumption here is that the circular velocity is a proxy for the mass of the dark matter halo. We rely on a heterogeneous sample containing galaxies of all types. The only requirement is that the galaxy has a direct measurement of the mass of its SMBH and a direct measurement of its circular velocity and its velocity dispersion. Previous studies have analyzed the connection between the SMBH and dark matter halo through the relationship between the circular velocity and the bulge velocity dispersion, with the assumption that the bulge velocity dispersion stands in for the mass of the SMBH, via the well{}-established SMBH mass{}-bulge velocity dispersion relation. Using...

  10. What is the closest black-hole to the sun?

    CERN Document Server

    Foellmi, C

    2008-01-01

    We examine the question of the distance of the two galactic microquasars GRO J1655-40 and A0620-00, which are potentially the two closest black-holes to the Sun. We aim at providing a picture as wide and complete as possible of the problem of measuring the distance of microquasars in our galaxy. The purpose of this work is to fairly yet critically review in great details every distance methods that have been used for these two microquasars in order to show that the distances of probably all microquasars in our galaxy are much more uncertain that currently admitted. Moreover, we show that many confirmations of a quantitative results are often entangled and rely themselves on very uncertain measurements. We also present a new determination of the maximal distance of GRO J1655-40 using red clump giant stars, and show that it confirms our earlier result of a distance lower than 2 kpc. Since it then becomes more likely that GRO J1655-40 could originate from the stellar cluster NGC 6242 located at 1.0 kpc instead o...

  11. Smooth Horizonless Geometries Deep Inside the Black-Hole Regime.

    Science.gov (United States)

    Bena, Iosif; Giusto, Stefano; Martinec, Emil J; Russo, Rodolfo; Shigemori, Masaki; Turton, David; Warner, Nicholas P

    2016-11-11

    We construct the first family of horizonless supergravity solutions that have the same mass, charges, and angular momenta as general supersymmetric rotating D1-D5-P black holes in five dimensions. This family includes solutions with arbitrarily small angular momenta, deep within the regime of quantum numbers and couplings for which a large classical black hole exists. These geometries are well approximated by the black-hole solution, and in particular exhibit the same near-horizon throat. Deep in this throat, the black-hole singularity is resolved into a smooth cap. We also identify the holographically dual states in the N=(4,4) D1-D5 orbifold conformal field theory (CFT). Our solutions are among the states counted by the CFT elliptic genus, and provide examples of smooth microstate geometries within the ensemble of supersymmetric black-hole microstates.

  12. Smooth horizonless geometries deep inside the black-hole regime

    CERN Document Server

    Bena, Iosif; Martinec, Emil J; Russo, Rodolfo; Shigemori, Masaki; Turton, David; Warner, Nicholas P

    2016-01-01

    We construct the first family of horizonless supergravity solutions that have the same mass, charges and angular momenta as general supersymmetric rotating D1-D5-P black holes in five dimensions. This family includes solutions with arbitrarily small angular momenta, deep within the regime of quantum numbers and couplings for which a large classical black hole exists. These geometries are well-approximated by the black-hole solution, and in particular exhibit the same near-horizon throat. Deep in this throat, the black-hole singularity is resolved into a smooth cap. We also identify the holographically-dual states in the N=(4,4) D1-D5 orbifold CFT. Our solutions are among the states counted by the CFT elliptic genus, and provide examples of smooth microstate geometries within the ensemble of supersymmetric black-hole microstates.

  13. The status of black-hole binary merger simulations with numerical relativity

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, Sean T, E-mail: sean@astro.columbia.edu [Institute for Strings, Cosmology and Astroparticle Physics (ISCAP), Columbia University, New York, NY 10027 (United States); Physics Department, Princeton University, Princeton, NJ 08544 (United States)

    2011-07-07

    The advent of long-term stability in numerical relativity has yielded a windfall of answers to long-standing questions regarding the dynamics of space-time, matter, and electromagnetic fields in the strong-field regime of black-hole binary mergers. In this review, we will briefly summarize the methodology currently applied to these problems, emphasizing the most recent advancements. We will discuss recent results of astrophysical relevance, and present some novel interpretation. Although we primarily present a review, we also present a simple analytical model for the time-dependent Poynting flux from two orbiting black holes immersed in a magnetic field, which compares favorably with recent numerical results. Finally, we will discuss recent advancements in our theoretical understanding of merger dynamics and gravitational waveforms that have resulted from interpreting the ever-growing body of numerical relativity results.

  14. The Status of Black-Hole Binary Merger Simulations with Numerical Relativity

    CERN Document Server

    McWilliams, Sean T

    2010-01-01

    The advent of long-term stability in numerical relativity has yielded a windfall of answers to long-standing questions regarding the dynamics of space-time, matter, and electromagnetic fields in the strong-field regime of black-hole binary mergers. In this review, we will briefly summarize the methodology currently applied to these problems, emphasizing the most recent advancements. We will discuss recent results of astrophysical relevance, and present some novel interpretation. Though we primarily present a review, we also present a simple analytical model for the time-dependent Poynting flux from two orbiting black holes immersed in a magnetic field, which compares favorably with recent numerical results. Finally, we will discuss recent advancements in our theoretical understanding of merger dynamics and gravitational waveforms that have resulted from interpreting the ever-growing body of numerical relativity results.

  15. SIMULATION STUDY OF BLACKHOLE ATTACK IN THE MOBILE AD HOC NETWORKS

    Directory of Open Access Journals (Sweden)

    SHEENU SHARMA

    2009-06-01

    Full Text Available A wireless ad hoc network is a temporary network set up by wireless nodes usually moving randomly and communicating without a network infrastructure. Due to security vulnerabilities of the routing protocols, however, wireless ad hoc networks may be unprotected against attacks by the malicious nodes. In this study we investigated the effects of Blackhole attacks on the network performance. We simulated Blackhole attacks in Qualnet Simulator and measured the packet loss in the network with and without a blackhole. The simulation is done on AODV (Ad hoc On Demand Distance Vector Routing Protocol. The network performance in the presence of a blackhole is reduced up to 26%.

  16. Is black-hole ringdown a memory of its progenitor?

    Science.gov (United States)

    Kamaretsos, Ioannis; Hannam, Mark; Sathyaprakash, B S

    2012-10-05

    We perform an extensive numerical study of coalescing black-hole binaries to understand the gravitational-wave spectrum of quasinormal modes excited in the merged black hole. Remarkably, we find that the masses and spins of the progenitor are clearly encoded in the mode spectrum of the ringdown signal. Some of the mode amplitudes carry the signature of the binary's mass ratio, while others depend critically on the spins. Simulations of precessing binaries suggest that our results carry over to generic systems. Using Bayesian inference, we demonstrate that it is possible to accurately measure the mass ratio and a proper combination of spins even when the binary is itself invisible to a detector. Using a mapping of the binary masses and spins to the final black-hole spin allows us to further extract the spin components of the progenitor. Our results could have tremendous implications for gravitational astronomy by facilitating novel tests of general relativity using merging black holes.

  17. ISCOs in Extremal Gibbons-Maeda-Garfinkle-Horowitz-Strominger Blackholes

    CERN Document Server

    Pradhan, Partha Pratim

    2012-01-01

    We examine the geodesic motion of neutral test particles for equatorial timelike circular geodesics and null circular geodesics, both extremal and non-extremal case of charged blackholes in string theory. We show that at the extremal limit ($Q^{2}=2M^{2}e^{2\\phi_{0}}$) for Gibbons-Maeda-Garfinkle-Horowitz-Strominger(GMGHS) blackholes, the radius of ISCO(Innermost Stable Circular Orbit)$(r_{ISCO})$, photon orbit$(r_{ph})$ and marginally bound circular orbit $(r_{mb})$ coincides with the event horizon$(r_{hor})$ i.e. $r_{ISCO}=r_{ph}=r_{mb}=r_{hor}=2M $. Since the proper radial distances on a constant time slice both in Schwarzschild and Painlev\\'{e}-Gullstrand coordinates becomes zero, therefore these three orbits indeed coincident with the null geodesic generators of the event horizon.

  18. By emotion, no atomic bomb and no blackhole

    Science.gov (United States)

    Shin, Philip

    2011-10-01

    As to be, we glory to God and that is basic theology for christian. And I want to say that BE means just thinking. There is no clue of nature and no proposition to prove it. I just believe by feeling and emotion. I trust that it can be the physic really. As for me, I believe when there is atomic bomb, than anytime it has to blow out the world each time of we are living. So the atomic bomb we thinking is just accident and not by the atomic theory. Also when there is blackhole, than there must be the wall to block me forever and never to walk again. So there are no blackhole. And these two subject is the best two subject for the physic.

  19. Accurate Evolutions of Orbiting Black-Hole Binaries Without Excision

    CERN Document Server

    Campanelli, M; Marronetti, P; Zlochower, Y

    2006-01-01

    We present a new algorithm for evolving orbiting black-hole binaries that does not require excision or a corotating shift. Our algorithm is based on a novel technique to handle the singular puncture conformal factor. This system, based on the BSSN formulation of Einstein's equations, when used with a `pre-collapsed' initial lapse, is non-singular at the start of the evolution, and remains non-singular and stable provided that a good choice is made for the gauge. As a test case, we use this technique to fully evolve orbiting black-hole binaries from near the Innermost Stable Circular Orbit (ISCO) regime. We show fourth order convergence of waveforms and compute the radiated gravitational energy and angular momentum from the plunge. These results are in good agreement with those predicted by the Lazarus approach.

  20. Non-Abelian magnetized blackholes and unstable attractors

    Energy Technology Data Exchange (ETDEWEB)

    Mosaffa, A.E. [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: mosaffa@theory.ipm.ac.ir; Randjbar-Daemi, S. [The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11 34014, Trieste (Italy)], E-mail: seif@ictp.trieste.it; Sheikh-Jabbari, M.M. [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@theory.ipm.ac.ir

    2008-01-21

    Fluctuations of non-Abelian gauge fields in a background magnetic charge contain 'tachyonic' modes which as we will show cause an instability of the background. We extend this result to the cases where the background charge (flux) is coupled to four-dimensional Einstein gravity and show that the corresponding spherically symmetric geometries, which in the absence of a cosmological constant are of the form of (colored) Reissner-Nordstroem blackholes or the AdS{sub 2}xS{sup 2}, are also unstable unless the flux assumes its smallest allowed value, in which case the configuration is stable. We discuss the relevance of these instabilities to several places in string theory including various string compactifications and the attractor mechanism. Our results for the latter imply that the attractor mechanism shown to work for the extremal Abelian charged blackholes, cannot be applied in a straightforward way to the extremal non-Abelian colored blackholes, with the exception of the minimally charged stable ones.

  1. Instability of the Superfluid Flow as Black-Hole Lasing Effect

    Science.gov (United States)

    Finazzi, S.; Piazza, F.; Abad, M.; Smerzi, A.; Recati, A.

    2015-06-01

    We show that the critical velocity of a superfluid flow through a penetrable barrier coincides with the onset of the analog black-hole lasing effect. This dynamical instability is triggered by modes resonating in an effective cavity formed by two horizons enclosing the barrier. The location of the horizons is set by v (x )=c (x ) , with v (x ),c (x ) being the local fluid velocity and sound speed, respectively. We compute the critical velocity analytically and show that it is univocally determined by the configuration of the horizons. In the limit of broad barriers, the continuous spectrum at the origin of the Hawking-like radiation and of the Landau energetic instability is recovered.

  2. Beltrami state in black-hole accretion disk: A magnetofluid approach

    CERN Document Server

    Bhattacharjee, Chinmoy; Stark, David J; Mahajan, S M

    2015-01-01

    Using the magnetofluid unification framework, we show that the accretion disk plasma (embedded in the background geometry of a blackhole) can relax to a class of states known as the Beltrami-Bernoulli (BB) equilibria. Modeling the disk plasma as a Hall MHD system, we find that the space-time curvature can significantly alter the magnetic/velocity decay rate as we move away from the compact object; the velocity profiles in BB states, for example, deviate substantially from the predicted corresponding geodesic velocity profiles. These departures imply a rich interplay of plasma dynamics and general relativity revealed by examining the corresponding Bernoulli condition representing "homogeneity" of total energy. The relaxed states have their origin in the constraints provided by the two helicity invariants of Hall MHD. These helicities conspire to introduce a new oscillatory length scale into the system that is strongly influenced by relativistic and thermal effects.

  3. Modelling gravitational waves from precessing black-hole binaries: Progress, challenges and prospects

    CERN Document Server

    Hannam, Mark

    2013-01-01

    The inspiral and merger of two orbiting black holes is among the most promising sources for the first (hopefully imminent) direct detection of gravitational waves (GWs), and measurements of these signals could provide a wealth of information about astrophysics, fundamental physics and cosmology. Detection and measurement require a theoretical description of the GW signals from all possible black-hole-binary configurations, which can include complicated precession effects due to the black-hole spins. Modelling the GW signal from generic precessing binaries is therefore one of the most urgent theoretical challenges facing GW astronomy. This article briefly reviews the phenomenology of generic-binary dynamics and waveforms, and recent advances in modelling them.

  4. Dynamic analysis of a diffusing particle in a trapping potential

    NARCIS (Netherlands)

    Lindner, M.; Nir, G.; Vivante, A.; Young, I.T.; Garini, Y.

    2013-01-01

    The dynamics of a diffusing particle in a potential field is ubiquitous in physics, and it plays a pivotal role in single-molecule studies. We present a formalism for analyzing the dynamics of diffusing particles in harmonic potentials at low Reynolds numbers using the time evolution of the particle

  5. Dynamic analysis of a diffusing particle in a trapping potential

    NARCIS (Netherlands)

    Lindner, M.; Nir, G.; Vivante, A.; Young, I.T.; Garini, Y.

    2013-01-01

    The dynamics of a diffusing particle in a potential field is ubiquitous in physics, and it plays a pivotal role in single-molecule studies. We present a formalism for analyzing the dynamics of diffusing particles in harmonic potentials at low Reynolds numbers using the time evolution of the particle

  6. Puzzling with potential : dynamic testing of analogical reasoning in children

    NARCIS (Netherlands)

    Stevenson, Claire Elisabeth

    2012-01-01

    Assessment procedures are frequent in children's school careers; however, measuring potential for learning has remained a puzzle. Dynamic testing is a method to assess cognitive potential that includes training in the assessment process. The goal of this thesis project was to develop a new dynamic

  7. Higher-order blackhole solutions in N=2 supergravity and Calabi-Yau string backgrounds

    NARCIS (Netherlands)

    Behrndt, K.; Cardoso, G.L.; de Wit, B.Q.P.J.; Lüst, D.; Mohaupt, T.; Sabra, W.A.

    1998-01-01

    Based on special geometry, we consider corrections to N=2 extremal black-hole solutions and their entropies originating from higher-order derivative terms in N=2 supergravity. These corrections are described by a holomorphic function, and the higher-order black-hole solutions can be expressed in ter

  8. Exact Coupling Of Event Horizons In Curved Spacetime Heterostructures. Application To Black-Hole Physics

    CERN Document Server

    Michael, Fredrick

    2010-01-01

    Recently we have discussed the generalized parametrized Klein-Gordon equation for curved spacetime. We have also discussed its derivation from several approaches, the direct Feynman parametrization, the state function entropy or equivalently the information theory approach, and the stochastic differential equation approach. We have even suggested a generalization of the statistics of the entropy to the generalized entropies and derived the particular nonextensive statistics parametrized Klein-Gordon equation, and discussed its nonlinear FPE replacement of the complicated Gibbs-Boltzmann statistics entropy derived analog with complicated nonlinear potential or drift and diffusion coefficients. In this article we apply these previously derived results to the quantum transport in abruptly coupled curved space-time heterostructures, applied here specifically to Black-Hole event horizon coupling to normal curved space-time. We derive the coupling self energy, and the Garcia-Molliner surface Green's functions from ...

  9. Modification of black-hole entropy by strings

    CERN Document Server

    Parthasarathy, R

    1996-01-01

    A generalized action for strings which is a sum of the Nambu-Goto and the extrinsic curvature (the energy integral of the surface) terms, is used to couple strings to gravity. It is shown that the conical singularity has deficit angle that has contributions from both the above terms. It is found that the effect of extrinsic curvature is to oppose that of the N-G action for the temperature of the black-hole and to modify the entropy-area relation.

  10. Non-Abelian Magnetized Blackholes and Unstable Attractors

    OpenAIRE

    Mosaffa, A. E.; Randjbar-Daemi, S.; Sheikh-Jabbari, M. M.

    2006-01-01

    Fluctuations of non-Abelian gauge fields in a background magnetic flux contain tachyonic modes and hence the background is unstable. We extend these results to the cases where the background flux is coupled to Einstein gravity and show that the corresponding spherically symmetric geometries, which in the absence of a cosmological constant are of the form of Reissner-Nordstrom blackholes or the AdS_2xS^2, are also unstable. We discuss the relevance of these instabilities to several places in s...

  11. To mitigate Black-hole attack with CBDS in MANET

    Directory of Open Access Journals (Sweden)

    Navjot

    2015-06-01

    Full Text Available Mobile ad-hoc network is self configured network that consist of mobile nodes which communicate with each other. Distributed self-organized nature of this network makes it venerable to various attacks likes DOS attack, Black hole attack, wormhole attack and jamming attack etc. Blackhole attack is one of the serious attack in network in which information loss occur which degrades the performance of network. In this work black hole attack is detected with the help of CBDS (cooperative Bait Detection Algorithm and MD5 is used for the security purpose. This work is implemented in Network simulator and performance is checked on the bases of network parameters.

  12. Confronting Numerical Relativity With Nature: A model-independent characterization of binary black-hole systems in LIGO

    Science.gov (United States)

    Jani, Karan; Clark, James; Shoemaker, Deirdre; LIGO Scientific Collaboration; Virgo Collaboration

    2016-03-01

    Stellar and Intermediate mass binary black hole systems (10-1000 solar masses) are likely to be among the strongest sources of gravitational wave detection in Advanced LIGO. In this talk we discuss the prospects for the detection and characterization of these extreme astrophysical system using robust, morphology-independent analysis techniques. In particular, we demonstrate how numerical relativity simulations of black hole collisions may be combined with waveform reconstructions to constrain properties of a binary black-hole system using only exact solutions from general relativity and any potential gravitational wave signal in the data.

  13. Slowly decaying resonances of charged massive scalar fields in the Reissner–Nordström black-hole spacetime

    Directory of Open Access Journals (Sweden)

    Shahar Hod

    2016-10-01

    Full Text Available We determine the characteristic timescales associated with the linearized relaxation dynamics of the composed Reissner–Nordström-black-hole-charged-massive-scalar-field system. To that end, the quasinormal resonant frequencies {ωn(μ,q,M,Q}n=0n=∞ which characterize the dynamics of a charged scalar field of mass μ and charge coupling constant q in the charged Reissner–Nordström black-hole spacetime of mass M and electric charge Q are determined analytically in the eikonal regime 1≪Mμblack-hole electric charge Q/M, the imaginary part of the resonant oscillation frequency is a monotonically decreasing function of the dimensionless ratio μ/q. In particular, it is shown that the quasinormal resonance spectrum is characterized by the asymptotic behavior ℑω→0 in the limiting case Mμ→qQ. This intriguing finding implies that the composed Reissner–Nordström-black-hole-charged-massive-scalar-field system is characterized by extremely long relaxation times τrelax≡1/ℑω→∞ in the Mμ/qQ→1− limit.

  14. Slowly decaying resonances of charged massive scalar fields in the Reissner-Nordström black-hole spacetime

    Science.gov (United States)

    Hod, Shahar

    2016-10-01

    We determine the characteristic timescales associated with the linearized relaxation dynamics of the composed Reissner-Nordström-black-hole-charged-massive-scalar-field system. To that end, the quasinormal resonant frequencies {ωn(μ , q , M , Q)}n = 0 n = ∞ which characterize the dynamics of a charged scalar field of mass μ and charge coupling constant q in the charged Reissner-Nordström black-hole spacetime of mass M and electric charge Q are determined analytically in the eikonal regime 1 ≪ Mμ < qQ. Interestingly, we find that, for a given value of the dimensionless black-hole electric charge Q / M, the imaginary part of the resonant oscillation frequency is a monotonically decreasing function of the dimensionless ratio μ / q. In particular, it is shown that the quasinormal resonance spectrum is characterized by the asymptotic behavior ℑ ω → 0 in the limiting case Mμ → qQ. This intriguing finding implies that the composed Reissner-Nordström-black-hole-charged-massive-scalar-field system is characterized by extremely long relaxation times τrelax ≡ 1 / ℑ ω → ∞ in the Mμ / qQ →1- limit.

  15. Slowly decaying resonances of charged massive scalar fields in the Reissner-Nordstr\\"om black-hole spacetime

    CERN Document Server

    Hod, Shahar

    2016-01-01

    We determine the characteristic timescales associated with the linearized relaxation dynamics of the composed Reissner-Nordstr\\"om-black-hole-charged-massive-scalar-field system. To that end, the quasinormal resonant frequencies $\\{\\omega_n(\\mu,q,M,Q)\\}_{n=0}^{n=\\infty}$ which characterize the dynamics of a charged scalar field of mass $\\mu$ and charge coupling constant $q$ in the charged Reissner-Nordstr\\"om black-hole spacetime of mass $M$ and electric charge $Q$ are determined {\\it analytically} in the eikonal regime $1\\ll M\\mublack-hole electric charge $Q/M$, the imaginary part of the resonant oscillation frequency is a monotonically {\\it decreasing} function of the dimensionless ratio $\\mu/q$. In particular, it is shown that the quasinormal resonance spectrum is characterized by the asymptotic behavior $\\Im\\omega\\to0$ in the limiting case $M\\mu\\to qQ$. This intriguing finding implies that the composed Reissner-Nordstr\\"om-black-...

  16. NVU dynamics. III. Simulating molecules at constant potential energy

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Dyre, J. C.

    2012-01-01

    This is the final paper in a series that introduces geodesic molecular dynamics at constant potential energy. This dynamics is entitled NVU dynamics in analogy to standard energy-conserving Newtonian NVE dynamics. In the first two papers [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B....... In this paper, the NVU algorithm for atomic systems is extended to be able to simulate the geodesic motion of molecules at constant potential energy. We derive an algorithm for simulating rigid bonds and test this algorithm on three different systems: an asymmetric dumbbell model, Lewis-Wahnström o......-terphenyl (OTP) and rigid SPC/E water. The rigid bonds introduce additional constraints beyond that of constant potential energy for atomic systems. The rigid-bond NVU algorithm conserves potential energy, bond lengths, and step length for indefinitely long runs. The quantities probed in simulations give results...

  17. Dynamic Assessment, Potential Giftedness and Mathematics Achievement in Elementary School

    Science.gov (United States)

    Popa, Nicoleta Laura; Pauc, Ramona Loredana

    2015-01-01

    Dynamic assessment is currently discussed in educational literature as one of the most promising practices in stimulating learning among various groups of students, including gifted and potentially gifted students. The present study investigates effects of dynamic assessment on mathematics achievement among elementary school students, with…

  18. On wave-packet dynamics in a decaying quadratic potential

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Henriksen, Niels Engholm

    1997-01-01

    We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....

  19. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  20. Pondermotive acceleration of charged particles along the relativistic jets of an accreting blackhole

    Science.gov (United States)

    Ebisuzaki, T.; Tajima, T.

    2014-05-01

    Accreting blackholes such as miniquasars and active galactic nuclei can contribute to the highest energy components of intra- (˜1015 eV) galactic and extra-galactic components (˜1020 eV) of cosmic rays. Alfven wave pulses which are excited in the accretion disk around blackholes propagate in relativistic jets. Because of their highly non-linear nature of the waves, charged particles (protons, ions, and electrons) can be accelerated to high energies in relativistic jets in accreting blackhole systems, the central engine of miniquasars and active galactic nuclei.

  1. Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations

    NARCIS (Netherlands)

    Bulacu, Monica; Goga, Nicolae; Zhao, Wei; Rossi, Giulia; Monticelli, Luca; Periole, Xavier; Tieleman, D. Peter; Marrink, Siewert J.

    2013-01-01

    Potentials routinely used in atomistic molecular dynamics simulations are not always suitable for modeling systems at coarse-grained resolution. For example, in the calculation of traditional torsion angle potentials, numerical instability is often encountered in the case of very flexible molecules.

  2. Enhanced Secure Trusted AODV (ESTA) Protocol to Mitigate Blackhole Attack in Mobile Ad Hoc Networks

    National Research Council Canada - National Science Library

    Dilraj Singh; Amardeep Singh

    2015-01-01

    .... One such malicious behavior is introduced by blackhole nodes, which can be easily introduced in the network and, in turn, such nodes try to crumble the working of the network by dropping the maximum...

  3. Time-asymmetric initial data for black holes and black-hole collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, J.M.; York, J.W. Jr.

    1980-04-15

    As a first step in constructing initial data for dynamic black holes and general black-hole collisions, we study nonsingular vacuum Cauchy hypersurfaces with two isometric asymptotically flat ends connected by an Einstein-Rosen-type bridge. These hypersurfaces are assumed to be conformally flat and maximally embedded in space-time but are neither spherically symmetric nor time symmetric. Three of the four constraints are solved explicitly for suitable extrinsic curvature tensors that possess linear momentum and/or intrinsic angular momentum. The complete initial data are shown to transform invariantly, modulo the sign of the extrinsic curvature tensor, under inversion through a minimal two-surface that represents the ''throat'' of the geometry. These and other properties show that the data represent a particular epoch in the history of a dynamic black hole. We describe the relation of our data to that of the Schwarzschild and Kerr black holes. Finally, we discuss the generalization to encounters of two or more black holes.

  4. Improved constraints on primordial blackholes and gravitational waves for a generic model of inflation

    CERN Document Server

    Choudhury, Sayantan

    2014-01-01

    In this article we provide a new closed relationship between the cosmic abundance of primordial gravitational waves and primordial blackholes originated from initial inflationary perturbations for a generic model of inflation where inflation occurs below the Planck scale. We have obtained a strict bound on the current abundance of primordial blackholes from the Planck measurements, $9.99712\\times 10^{-3}<\\Omega_{PBH}h^{2}< 9.99736\\times 10^{-3}$.

  5. A Review Paper on Cooperative Blackhole and Grayhole Attacks in Mobile Ad hoc Networks

    Directory of Open Access Journals (Sweden)

    Sweta Jain

    2011-09-01

    Full Text Available This paper presents a review on a major category of coordinated attacks i.e. cooperative blackhole / grayhole attack which are a serious threat to ad ho c network security. In cooperative blackhole attack multiple nodes collude to hide the malicious activi ty of other nodes; hence such attacks are more diff icult to detect. In this paper a survey of various security mechanisms that have been proposed in the literatur e for diction of such attacks is presented.

  6. Black-hole bombs and photon-mass bounds.

    Science.gov (United States)

    Pani, Paolo; Cardoso, Vitor; Gualtieri, Leonardo; Berti, Emanuele; Ishibashi, Akihiro

    2012-09-28

    Generic extensions of the standard model predict the existence of ultralight bosonic degrees of freedom. Several ongoing experiments are aimed at detecting these particles or constraining their mass range. Here we show that massive vector fields around rotating black holes can give rise to a strong superradiant instability, which extracts angular momentum from the hole. The observation of supermassive spinning black holes imposes limits on this mechanism. We show that current supermassive black-hole spin estimates provide the tightest upper limits on the mass of the photon (m(v) is black holes could further lower this bound to m(v) black holes in the slow-rotation regime, that we developed up to second order in rotation, and that can be extended to other spacetime metrics and other theories.

  7. Black-hole Merger Simulations for LISA Science

    Science.gov (United States)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; Centrella, Joan M.; McWilliams, Sean T.

    2009-01-01

    The strongest expected sources of gravitational waves in the LISA band are the mergers of massive black holes. LISA may observe these systems to high redshift, z>10, to uncover details of the origin of massive black holes, and of the relationship between black holes and their host structures, and structure formation itself. These signals arise from the final stage in the development of a massive black-hole binary emitting strong gravitational radiation that accelerates the system's inspiral toward merger. The strongest part of the signal, at the point of merger, carries much information about the system and provides a probe of extreme gravitational physics. Theoretical predictions for these merger signals rely on supercomputer simulations to solve Einstein's equations. We discuss recent numerical results and their impact on LISA science expectations.

  8. Effective photon mass from black-hole formation

    Directory of Open Access Journals (Sweden)

    Slava Emelyanov

    2017-06-01

    Full Text Available We compute the value of effective photon mass mγ at one-loop level in QED in the background of small (1010 g≲M≪1016 g spherically symmetric black hole in asymptotically flat spacetime. This effect is associated with the modification of electron/positron propagator in presence of event horizon. Physical manifestations of black-hole environment are compared with those of hot neutral plasma. We estimate the distance to the nearest black hole from the upper bound on mγ obtained in the Coulomb-law test. We also find that corrections to electron mass me and fine structure constant α at one-loop level in QED are negligible in the weak gravity regime.

  9. The Impact of Black-Hole Attack on ZRP Protocol

    Directory of Open Access Journals (Sweden)

    CHAHIDI Badr

    2016-07-01

    Full Text Available lack of infrastructure in ad hoc networks makes their deployment easier. Each node in an ad hoc network can route data using a routing protocol, which decreases the level of security. Ad hoc networks are exposed to several attacks such as the blackhole attack. In this article, a study has been made on the impact of the attack on the hybrid routing protocol ZRP (Zone Routing Protocol. In this attack a malicious node is placed between two or more nodes in order to drop data. The trick of the attack is simple, the malicious node declares to have the most reliable way to the destination so that the wife destination chooses this path. In this study, NS2 is used to assess the impact of the attack on ZRP. Two metrics measure, namely the packet delivered ratio and end to end delay.

  10. Gravitational-wave modes from precessing black-hole binaries

    CERN Document Server

    Boyle, Michael; Ossokine, Serguei; Pfeiffer, Harald P

    2014-01-01

    Gravitational waves from precessing black-hole binaries exhibit features that are absent in nonprecessing systems. The most prominent of these is a parity-violating asymmetry that beams energy and linear momentum preferentially along or opposite to the orbital angular momentum, leading to recoil of the binary. The asymmetry will appear as amplitude and phase modulations at the orbital frequency. For strongly precessing systems, it accounts for at least 3% amplitude modulation for binaries in the sensitivity band of ground-based gravitational-wave detectors, and can exceed 50% for massive systems. Such asymmetric features are also clearly visible when the waves are decomposed into modes of spin-weighted spherical harmonics, and are inherent in the waves themselves---rather than resulting from residual eccentricity in numerical simulations, or from mode-mixing due to precession. In particular, there is generically no instantaneous frame for which the mode decomposition will have any symmetry. We introduce a met...

  11. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces

    Science.gov (United States)

    Heaps, Charles W.; Mazziotti, David A.

    2016-04-01

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O ( N ) potential energy calculations, in contrast to O ( N 2 ) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O ( N ) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  12. Dynamics of Quantum Particles in Perturbed Parabolic 2d Potential

    Directory of Open Access Journals (Sweden)

    A.S. Mazmanishvili

    2016-11-01

    Full Text Available 2d quantum-mechanical problem of the time evolution of a particle in a quadratic potential is studied. We suppose that the center of the potential is displaced in arbitrary way in time. An analytical expression for the wave function in arbitrary instant time was built. It is shown the dynamic shift of the center of the potential doesn’t change the variance. Moreover, the system can exhibit the resonance: when the frequency of the potential perturbation approaches to the natural frequency the amplitude of the wave packet of particle is increased.

  13. Streaming potential-modulated capillary filling dynamics of immiscible fluids.

    Science.gov (United States)

    Bandopadhyay, Aditya; Mandal, Shubhadeep; Chakraborty, Suman

    2016-02-21

    The pressure driven transport of two immiscible electrolytes in a narrow channel with prescribed surface potential (zeta potential) is considered under the influence of a flow-induced electric field. The latter consideration is non-trivially and fundamentally different from the problem of electric field-driven motion (electroosmosis) of two immiscible electrolytes in a channel in a sense that in the former case, the genesis of the induced electric field, termed as streaming potential, is the advection of ions in the absence of any external electric field. As the flow occurs, one fluid displaces the other. Consequently, in cases where the conductivities of the two fluids differ, imbibition dynamically alters the net conductivity of the channel. We emphasize, through numerical simulations, that the alteration in the net conductivity has a significant impact on the contact line dynamics and the concomitant induced streaming potential. The results presented herein are expected to shed light on multiphase electrokinetics devices.

  14. Dynamic of cold-atom tips in anharmonic potentials

    Directory of Open Access Journals (Sweden)

    Tobias Menold

    2016-10-01

    Full Text Available Background: Understanding the dynamics of ultracold quantum gases in an anharmonic potential is essential for applications in the new field of cold-atom scanning probe microscopy. Therein, cold atomic ensembles are used as sensitive probe tips to investigate nanostructured surfaces and surface-near potentials, which typically cause anharmonic tip motion.Results: Besides a theoretical description of this anharmonic tip motion, we introduce a novel method for detecting the cold-atom tip dynamics in situ and real time. In agreement with theory, the first measurements show that particle interactions and anharmonic motion have a significant impact on the tip dynamics.Conclusion: Our findings will be crucial for the realization of high-sensitivity force spectroscopy with cold-atom tips and could possibly allow for the development of advanced spectroscopic techniques such as Q-control.

  15. Constraining the Milky Way potential using the dynamical kinematic substructures

    NARCIS (Netherlands)

    Monari, G.; Antoja Castelltort, Teresa; Helmi, A.; Reyle, C; Robin, A; Schultheis, M

    2012-01-01

    We present a method to constrain the potential of the non-axisymmetric components of the Galaxy using the kinematics of stars in the solar neighborhood. The basic premise is that dynamical substructures in phase-space (i.e. due to the bar and/or spiral arms) are associated with families of periodic

  16. Assessing atmospheric bias correction for dynamical consistency using potential vorticity

    Science.gov (United States)

    Rocheta, Eytan; Evans, Jason P.; Sharma, Ashish

    2014-12-01

    Correcting biases in atmospheric variables prior to impact studies or dynamical downscaling can lead to new biases as dynamical consistency between the ‘corrected’ fields is not maintained. Use of these bias corrected fields for subsequent impact studies and dynamical downscaling provides input conditions that do not appropriately represent intervariable relationships in atmospheric fields. Here we investigate the consequences of the lack of dynamical consistency in bias correction using a measure of model consistency—the potential vorticity (PV). This paper presents an assessment of the biases present in PV using two alternative correction techniques—an approach where bias correction is performed individually on each atmospheric variable, thereby ignoring the physical relationships that exists between the multiple variables that are corrected, and a second approach where bias correction is performed directly on the PV field, thereby keeping the system dynamically coherent throughout the correction process. In this paper we show that bias correcting variables independently results in increased errors above the tropopause in the mean and standard deviation of the PV field, which are improved when using the alternative proposed. Furthermore, patterns of spatial variability are improved over nearly all vertical levels when applying the alternative approach. Results point to a need for a dynamically consistent atmospheric bias correction technique which results in fields that can be used as dynamically consistent lateral boundaries in follow-up downscaling applications.

  17. Quantum-Accurate Molecular Dynamics Potential for Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Mitchell; Thompson, Aidan P.

    2017-03-01

    The purpose of this short contribution is to report on the development of a Spectral Neighbor Analysis Potential (SNAP) for tungsten. We have focused on the characterization of elastic and defect properties of the pure material in order to support molecular dynamics simulations of plasma-facing materials in fusion reactors. A parallel genetic algorithm approach was used to efficiently search for fitting parameters optimized against a large number of objective functions. In addition, we have shown that this many-body tungsten potential can be used in conjunction with a simple helium pair potential1 to produce accurate defect formation energies for the W-He binary system.

  18. Constraining the Milky Way potential using the dynamical kinematic substructures

    Directory of Open Access Journals (Sweden)

    Antoja T.

    2012-02-01

    Full Text Available We present a method to constrain the potential of the non-axisymmetric components of the Galaxy using the kinematics of stars in the solar neighborhood. The basic premise is that dynamical substructures in phase-space (i.e. due to the bar and/or spiral arms are associated with families of periodic or irregular orbits, which may be easily identified in orbital frequency space. We use the “observed” positions and velocities of stars as initial conditions for orbital integrations in a variety of gravitational potentials. We then compute their characteristic frequencies, and study the structure present in the frequency maps. We find that the distribution of dynamical substructures in velocity- and frequency-space is best preserved when the integrations are performed in the “true” gravitational potential.

  19. Neural network potentials for dynamics and thermodynamics of gold nanoparticles

    Science.gov (United States)

    Chiriki, Siva; Jindal, Shweta; Bulusu, Satya S.

    2017-02-01

    For understanding the dynamical and thermodynamical properties of metal nanoparticles, one has to go beyond static and structural predictions of a nanoparticle. Accurate description of dynamical properties may be computationally intensive depending on the size of nanoparticle. Herein, we demonstrate the use of atomistic neural network potentials, obtained by fitting quantum mechanical data, for extensive molecular dynamics simulations of gold nanoparticles. The fitted potential was tested by performing global optimizations of size selected gold nanoparticles (Aun, 17 ≤ n ≤ 58). We performed molecular dynamics simulations in canonical (NVT) and microcanonical (NVE) ensembles on Au17, Au34, Au58 for a total simulation time of around 3 ns for each nanoparticle. Our study based on both NVT and NVE ensembles indicate that there is a dynamical coexistence of solid-like and liquid-like phases near melting transition. We estimate the probability at finite temperatures for set of isomers lying below 0.5 eV from the global minimum structure. In the case of Au17 and Au58, the properties can be estimated using global minimum structure at room temperature, while for Au34, global minimum structure is not a dominant structure even at low temperatures.

  20. Dynamical nonlocal coherent-potential approximation for itinerant electron magnetism.

    Science.gov (United States)

    Rowlands, D A; Zhang, Yu-Zhong

    2014-11-26

    A dynamical generalisation of the nonlocal coherent-potential approximation is derived based upon the functional integral approach to the interacting electron problem. The free energy is proven to be variational with respect to the self-energy provided a self-consistency condition on a cluster of sites is satisfied. In the present work, calculations are performed within the static approximation and the effect of the nonlocal physics on the formation of the local moment state in a simple model is investigated. The results reveal the importance of the dynamical correlations.

  1. Versatile Method for Renormalized Stress-Energy Computation in Black-Hole Spacetimes.

    Science.gov (United States)

    Levi, Adam; Ori, Amos

    2016-12-02

    We report here on a new method for calculating the renormalized stress-energy tensor (RSET) in black-hole (BH) spacetimes, which should also be applicable to dynamical BHs and to spinning BHs. This new method only requires the spacetime to admit a single symmetry. Thus far, we have developed three variants of the method, aimed for stationary, spherically symmetric, or axially symmetric BHs. We used this method to calculate the RSET of a minimally coupled massless scalar field in Schwarzschild and Reissner-Nordström backgrounds for several quantum states. We present here the results for the RSET in the Schwarzschild case in the Unruh state (the state describing BH evaporation). The RSET is type I at weak field, and becomes type IV at r≲2.78M. Then we use the RSET results to explore violation of the weak and null energy conditions. We find that both conditions are violated all the way from r≃4.9M to the horizon. We also find that the averaged weak energy condition is violated by a class of (unstable) circular timelike geodesics. Most remarkably, the circular null geodesic at r=3M violates the averaged null energy condition.

  2. Robust GRMHD Evolutions of Merging Black-Hole Binaries in Magnetized Plasma

    Science.gov (United States)

    Kelly, Bernard; Etienne, Zachariah; Giacomazzo, Bruno; Baker, John

    2016-03-01

    Black-hole binary (BHB) mergers are expected to be powerful sources of gravitational radiation at stellar and galactic scales. A typical astrophysical environment for these mergers will involve magnetized plasmas accreting onto each hole; the strong-field gravitational dynamics of the merger may churn this plasma in ways that produce characteristic electromagnetic radiation visible to high-energy EM detectors on and above the Earth. Here we return to a cutting-edge GRMHD simulation of equal-mass BHBs in a uniform plasma, originally performed with the Whisky code. Our new tool is the recently released IllinoisGRMHD, a compact, highly-optimized ideal GRMHD code that meshes with the Einstein Toolkit. We establish consistency of IllinoisGRMHD results with the older Whisky results, and investigate the robustness of these results to changes in initial configuration of the BHB and the plasma magnetic field, and discuss the interpretation of the ``jet-like'' features seen in the Poynting flux post-merger. Work supported in part by NASA Grant 13-ATP13-0077.

  3. Violation of the averaged null energy condition in semiclassical black-hole evaporation

    CERN Document Server

    Levi, Adam

    2016-01-01

    We report here on a new method for calculating the renormalized stress-energy tensor (RSET) in black-hole (BH) spacetimes, which should be applicable to dynamical BHs as well. We used this method to calculate the RSET of a massless, minimally coupled scalar field in Schwarzschild and Reissner-Nordstrom backgrounds, for several quantum states. We present here the results for the RSET in the Schwarzschild case in Unruh state (the state describing BH evaporation). The RSET is type I at weak field, and becomes type IV at $r\\lesssim2.78M$. Then we use the RSET results to explore violation of the weak and null Energy conditions. We find that both conditions are violated all the way from $r\\simeq4.9M$ to the horizon. We also find that the averaged weak energy condition is violated by a class of (unstable) circular timelike geodesics. Most remarkably, the circular null geodesic at $r=3M$ is found to violate the averaged null energy condition (ANEC). To the best of our knowledge this is the first demonstration of ANEC...

  4. Material Discovery and Design with Dynamic Charge Reactive Potentials

    Science.gov (United States)

    Sinnott, Susan

    2015-03-01

    Atomic scale computational simulations of multi-phase systems is increasingly important as our ability to simulate nanometer-sized systems becomes routine. The recently developed charge optimized many body potential (COMB) potentials have significantly enhanced our ability to carry out atomic-scale simulations of heterogeneous material systems. The formalism of this potential combines variable charge electrostatic interactions with a classical analytical bond-order potential. It therefore has the capacity to adaptively model metallic, covalent, ionic, and van der Waals bonding within the same simulation cell and dynamically determine the charges on individual atoms according to the local environment. The utility of the COMB potentials is illustrated for materials design and discovery by exploring the structure, stability, mechanical properties, and thermal properties of intermetallic systems and oxide-metal interfaces. They are also used to address key questions associated with corrosion, thin film growth, and heterogeneous catalysis.

  5. A study of tachyon dynamics for broad classes of potentials

    Energy Technology Data Exchange (ETDEWEB)

    Quiros, Israel [Division de Ciencias e Ingenieria de la Universidad de Guanajuato, AP 150, 37150, Leon, Guanajuato (Mexico); Gonzalez, Tame [Departamento de Fisica, Universidad Central de Las Villas, 54830 Santa Clara (Cuba); Gonzalez, Dania; Napoles, Yunelsy [Departamento de Matematica, Universidad Central de Las Villas, 54830 Santa Clara (Cuba); GarcIa-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria del IPN, Mexico DF (Mexico); Moreno, Claudia, E-mail: iquiros@Fisica.ugto.m, E-mail: tame@uclv.edu.c, E-mail: dgm@uclv.edu.c, E-mail: yna@uclv.edu.c, E-mail: rigarcias@ipn.m, E-mail: claudia.moreno@cucei.udg.m [Departamento de Fisica y Matematicas, Centro Universitario de Ciencias Exactas e IngenierIas, Av. Revolucion 1500 SR, Universidad de Guadalajara, 44430 Guadalajara, Jalisco (Mexico)

    2010-11-07

    We investigate in detail the asymptotic properties of tachyon cosmology for a broad class of self-interaction potentials. The present approach relies on an appropriate re-definition of the tachyon field, which, in conjunction with a method formerly applied in the bibliography in a different context allows us to generalize the dynamical systems study of tachyon cosmology to a wider class of self-interaction potentials beyond the (inverse) square-law one. It is revealed that independent of the functional form of the potential, the matter-dominated solution and the ultra-relativistic (also matter-dominated) solution are always associated with equilibrium points in the phase space of the tachyon models. The latter is always the past attractor, while the former is a saddle critical point. For inverse power-law potentials V{proportional_to}{phi}{sup -2{lambda}} the late-time attractor is always the de Sitter solution, while for sinh-like potentials V{proportional_to}sinh {sup -{alpha}}({lambda}{sup {phi}}), depending on the region of parameter space, the late-time attractor can be either the inflationary tachyon-dominated solution or the matter-scaling (also inflationary) phase. In general, for most part of known quintessential potentials, the late-time dynamics will be associated either with de Sitter inflation, or with matter-scaling, or with scalar field-dominated solutions.

  6. The 7 Ms Chandra Deep Field-South Survey: Cosmic Black-Hole Growth is Mainly Linked to Host-Galaxy Stellar Mass

    Science.gov (United States)

    Brandt, W. Niel; Yang, Guang; Chen, Chien-Ting; Vito, Fabio

    2017-08-01

    The Chandra exposure on the Chandra Deep Field-South (CDF-S) has recently been increased to 7 Ms, allowing unmatched X-ray and multiwavelength characterization of cosmic black-hole growth in active galactic nuclei (AGNs). We have used these data to investigate the dependence of black-hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M*) at z = 0.5-2. Our sample consists of 18,000 galaxies with SFR and M* measurements, and we use sample-mean BHAR for these galaxies to approximate their long-term average BHAR. Our sample-mean BHARs are derived from the CDF-S observations via both direct spectral analysis and stacking. The average BHAR is correlated positively with both SFR and M*, and the BHAR-SFR and BHAR-M* relations can both be described acceptably by linear models with a slope of unity. However, according to partial-correlation analyses, BHAR is correlated more strongly with M* than SFR. This result indicates that M* is the primary host-galaxy property related to black-hole growth, and the well-known BHAR-SFR relation is largely a secondary effect due to the "star-forming main sequence". Among our sources, massive galaxies have significantly higher BHAR/SFR ratios than less-massive galaxies, indicating the former have higher black-hole fueling efficiency and/or higher SMBH occupation fraction than the latter; e.g., the deeper potential wells in higher mass galaxies may promote black-hole accretion and counteract AGN/supernova feedback. Our results can naturally explain the observed proportionality between MBH and M* for local giant ellipticals, and suggest their MBH/M* ratios are higher than those of local star-forming galaxies. Finally, prospects for extending this work will be discussed; e.g., by further investigating the redshift evolution of the primary BHAR-M* relation and measuring this relation for even higher values of M*, above ~ 1011 solar masses, using wide-field X-ray surveys.

  7. Blackhole/String Transition for the Small Schwarzschild Blackhole of $AdS_5 \\times S^5$ and Critical Unitary Matrix Models

    CERN Document Server

    Alvarez-Gaumé, Luís; Marino, M; Wadia, S R; Alvarez-Gaume, Luis; Basu, Pallab; Marino, Marcos; Wadia, Spenta R.

    2006-01-01

    In this paper we discuss the blackhole-string transition of the small Schwarzschild blackhole of $AdS_5 \\times S^5$ using the AdS/CFT correspondence at finite temperature. The finite temperature gauge theory effective action, at weak {\\it and} strong coupling, can be expressed entirely in terms of constant Polyakov lines which are $SU (N)$ matrices. In showing this we have taken into account that there are no Nambu-Goto modes associated with the fact that the 10 dimensional blackhole solution sits at a point in $S^5$. We show that the phase of the gauge theory in which the eigenvalue spectrum has a gap corresponds to supergravity saddle points in the bulk theory. We identify the third order $N = \\infty$ phase transition with the blackhole-string transition. This singularity can be resolved using a double scaling limit in the transition region where the large N expansion is organized in terms of powers of $N^{-2/3}$. The $N = \\infty$ transition now becomes a smooth crossover in terms of a renormalized string c...

  8. Potential energy surfaces and reaction dynamics of polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yan-Tyng.

    1991-11-01

    A simple empirical valence bond (EVB) model approach is suggested for constructing global potential energy surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous potential surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogen atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.

  9. Complex dynamical invariants for two-dimensional complex potentials

    Indian Academy of Sciences (India)

    J S Virdi; F Chand; C N Kumar; S C Mishra

    2012-08-01

    Complex dynamical invariants are searched out for two-dimensional complex potentials using rationalization method within the framework of an extended complex phase space characterized by $x = x_{1} + ip_{3}. y = x_{2} + ip_{4}, p_{x} = p_{1} + ix_{3}, p_{y} = p_{2} + ix_{4}$. It is found that the cubic oscillator and shifted harmonic oscillator admit quadratic complex invariants. THe obtained invariants may be useful for studying non-Hermitian Hamiltonian systems.

  10. Mesoscopic dynamics of copolymer melts : From density dynamics to external potential dynamics using nonlocal kinetic coupling

    NARCIS (Netherlands)

    Maurits, N.M; Fraaije, J.G E M

    1997-01-01

    In this paper we apply nonlocal kinetic coupling to the dynamic mean-field density functional method, which is derived from generalized time-dependent Ginzburg-Landau theory. The method is applied to the mesoscopic dynamics of copolymer melts, which was previously simulated using a local coupling ap

  11. Mesoscopic dynamics of copolymer melts : From density dynamics to external potential dynamics using nonlocal kinetic coupling

    NARCIS (Netherlands)

    Maurits, NM; Fraaije, JGEM

    1997-01-01

    In this paper we apply nonlocal kinetic coupling to the dynamic mean-field density functional method, which is derived from generalized time-dependent Ginzburg-Landau theory. The method is applied to the mesoscopic dynamics of copolymer melts, which was previously simulated using a local coupling ap

  12. Observing Mergers of Non-Spinning Black-Hole Binaries

    Science.gov (United States)

    McWilliams, Sean T.; Boggs, William D.; Baker, John G.; Kelly, Bernard J.

    2010-01-01

    Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied m8BS ratio on merger signal-to-noise ratios (SNR) for several detectors, and compare our results with expectations from the test-mass limit. We note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our equal-mass and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This is an indicator of the amount of degeneracy in mass ratio for mergers of moderate mass ratio systems.

  13. A mystery of black-hole gravitational resonances

    Science.gov (United States)

    Hod, Shahar

    2016-08-01

    More than three decades ago, Detweiler provided an analytical formula for the gravitational resonant frequencies of rapidly-rotating Kerr black holes. In the present work we shall discuss an important discrepancy between the famous analytical prediction of Detweiler and the recent numerical results of Zimmerman et al. In addition, we shall refute the claim that recently appeared in the physics literature that the Detweiler-Teukolsky-Press resonance equation for the characteristic gravitational eigenfrequencies of rapidly-rotating Kerr black holes is not valid in the regime of damped quasinormal resonances with Im ω/TBH gg 1 (here ω and TBH are respectively the characteristic quasinormal resonant frequency of the Kerr black hole and its Bekenstein-Hawking temperature). The main goal of the present paper is to highlight and expose this important black-hole quasinormal mystery (that is, the intriguing discrepancy between the analytical and numerical results regarding the gravitational quasinormal resonance spectra of rapidly-rotating Kerr black holes).

  14. A mystery of black-hole gravitational resonances

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Academic College, Jerusalem 91010 (Israel)

    2016-08-30

    More than three decades ago, Detweiler provided an analytical formula for the gravitational resonant frequencies of rapidly-rotating Kerr black holes. In the present work we shall discuss an important discrepancy between the famous analytical prediction of Detweiler and the recent numerical results of Zimmerman et al. In addition, we shall refute the claim that recently appeared in the physics literature that the Detweiler-Teukolsky-Press resonance equation for the characteristic gravitational eigenfrequencies of rapidly-rotating Kerr black holes is not valid in the regime of damped quasinormal resonances with ℑω/T{sub BH}≫1 (here ω and T{sub BH} are respectively the characteristic quasinormal resonant frequency of the Kerr black hole and its Bekenstein-Hawking temperature). The main goal of the present paper is to highlight and expose this important black-hole quasinormal mystery (that is, the intriguing discrepancy between the analytical and numerical results regarding the gravitational quasinormal resonance spectra of rapidly-rotating Kerr black holes).

  15. Black-hole binaries with non-precessing spins

    CERN Document Server

    Hannam, Mark; Ohme, Frank; Mueller, Doreen; Bruegmann, Bernd

    2010-01-01

    We present gravitational waveforms for the last orbits and merger of black-hole-binary (BBH) systems along two branches of the BBH parameter space: equal-mass binaries with equal non-precessing spins, and nonspinning unequal-mass binaries. The waveforms are calculated from numerical solutions of Einstein's equations for black-hole binaries that complete between six and ten orbits before merger. Along the equal-mass spinning branch, the spin parameter of each BH is $\\chi_i = S_i/M_i^2 \\in [-0.85,0.85]$, and along the unequal-mass branch the mass ratio is $q =M_2/M_1 \\in [1,4]$. We discuss the construction of low-eccentricity puncture initial data for these cases, the properties of the final merged BH, and compare the last 8-10 GW cycles up to $M\\omega = 0.1$ with the phase and amplitude predicted by standard post-Newtonian (PN) approximants. As in previous studies, we find that the phase from the 3.5PN TaylorT4 approximant is most accurate for nonspinning binaries. For equal-mass spinning binaries the 3.5PN Ta...

  16. Black-hole binaries go to eleven orbits

    CERN Document Server

    Sperhake, Ulrich; Mueller, Doreen; Sopuerta, Carlos F

    2010-01-01

    We analyse an eleven-orbit inspiral of a non-spinning black-hole binary with mass ratio q=M1/M2=4. The numerically obtained gravitational waveforms are compared with post-Newtonian (PN) predictions including several sub-dominant multipoles up to multipolar indices (l=5,m=5). We find that (i) numerical and post-Newtonian predictions of the phase of the (2,2) mode accumulate a phase difference of about 0.35 rad at the PN cut off frequency 0.1 for the Taylor T1 approximant; (ii) in contrast to previous studies of equal-mass and specific spinning binaries, we find the Taylor T4 approximant to agree less well with numerical results, provided the latter are extrapolated to infinite extraction radius; (iii) extrapolation of gravitational waveforms to infinite extraction radius is particularly important for subdominant multipoles with l unequal m; (iv) 3PN terms in post-Newtonian multipole expansions significantly improve the agreement with numerical predictions for sub-dominant multipoles.

  17. Extracting black-hole's rotational energy: the generalized Penrose process

    CERN Document Server

    Lasota, J -P; Abramowicz, M; Tchekhovskoy, A; Narayan, R

    2014-01-01

    In the case involving particles the necessary and sufficient condition for the Penrose process to extract energy from a rotating black hole is absorption of particles with negative energies and angular momenta. No torque at the black hole horizon occurs. In this article we consider the case of arbitrary fields or matter described by an unspecified, general energy-momentum tensor and show that the necessary and sufficient condition for extraction of black-hole's rotational energy is analogous to that in mechanical Penrose process: absorption of negative energy and negative angular momentum. We also show that a necessary condition for the Penrose process to occur is for the Noether current (the conserved energy-momentum density vector) to be spacelike or past-directed (timelike or null) on some part of the horizon. In the particle case our general criterion for the occurrence of a Penrose process reproduces the standard result. In the case of relativistic jet-producing "magnetically arrested disks" we show that...

  18. Determining the progenitors of merging black-hole binaries

    Science.gov (United States)

    Raccanelli, Alvise; Kovetz, Ely D.; Bird, Simeon; Cholis, Ilias; Muñoz, Julian B.

    2016-07-01

    We investigate a possible method for determining the progenitors of black-hole (BH) mergers observed via their gravitational wave (GW) signal. We argue that measurements of the cross-correlation of the GW events with overlapping galaxy catalogs may provide an additional tool in determining if BH mergers trace the stellar mass of the Universe, as would be expected from mergers of the end points of stellar evolution. If, on the other hand, the BHs are of primordial origin, as has been recently suggested, their merging would be preferentially hosted by lower biased objects and thus have a lower cross-correlation with luminous galaxies. Here, we forecast the expected precision of the cross-correlation measurement for current and future GW detectors such as LIGO and the Einstein Telescope. We then predict how well these instruments can distinguish the model that identifies high-mass BH-BH mergers as the merger of primordial black holes that constitute the dark matter in the Universe from more traditional astrophysical sources.

  19. Observing mergers of non-spinning black-hole binaries

    CERN Document Server

    McWilliams, Sean T; Baker, John G

    2010-01-01

    Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied mass ratio on merger signal-to-noise ratios (SNRs) for several detectors, and compare our results with expectations from the test-mass limit. We note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our 1:1 (equal mass) and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This i...

  20. Black-Hole Approach to the Singular Problem of Quantum Mechanics. II

    CERN Document Server

    Shabad, A E

    2004-01-01

    A new approach is proposed for the quantum mechanical problem of the falling of a particle to a singularly attracting center, basing on a black-hole concept of the latter. The singularity r^{-2} in the potential of the radial Schroedinger equation is considered as an emitting/absorbing center. The two solutions oscillating in the origin are treated as asymptotically free particles, which implies that the singular point r=0 in the Schroedinger equation is treated on the same physical ground as the singular point r=infinity. To make this interpretation possible, it is needed that the norm squared of the wave function should diverge when r tends to zero, in other words, the measure used in definition of scalar products should be singular in the origin. Such measure comes into play if the Schroedinger equation is written in the form of the generalized (Kamke) eigenvalue problem for either of two - chosen differently depending on the sign of the energy E - operators, other than Hamiltonian. The Hilbert spaces wher...

  1. Quantification of Dynamic Excitation Potential of Pedestrian Population Crossing Footbridges

    Directory of Open Access Journals (Sweden)

    Stana Žcaronivanović

    2011-01-01

    Full Text Available Due to their slenderness, many modern footbridges may vibrate significantly under pedestrian traffic. Consequently, the vibration serviceability of these structures under human-induced dynamic loading is becoming their governing design criterion. Many current vibration serviceability design guidelines, concerned with prediction of the vibration in the vertical direction, estimate a single response level that corresponds to an "average" person crossing the bridge with the step frequency that matches a footbridge natural frequency. However, different pedestrians have different dynamic excitation potential, and therefore could generate significantly different vibration response of the bridge structure. This paper aims to quantify this potential by estimating the range of structural vibrations (in the vertical direction that could be induced by different individuals and the probability of occurrence of any particular vibration level. This is done by introducing the inter- and intra-subject variability in the walking force modelling. The former term refers to inability of a pedestrian to induce an exactly the same force with each step while the latter refers to different forces (in terms of their magnitude, frequency and crossing speed induced by different people. Both types of variability are modelled using the appropriate probability density functions. The probability distributions were then implemented into a framework procedure for vibration response prediction under a single person excitation. Instead of a single response value obtained using currently available design guidelines, this new framework yields a range of possible acceleration responses induced by different people and a distribution function for these responses. The acceleration ranges estimated are then compared with experimental data from two real-life footbridges. The substantial differences in the dynamic response induced by different people are obtained in both the numerical and

  2. Study of the dynamical potential barriers in heavy ion collisions

    Science.gov (United States)

    Zhu, Long; Su, Jun; Xie, Wen-Jie; Zhang, Feng-Shou

    2013-10-01

    The nucleus-nucleus interaction potentials for the fusion reactions 16O + 208Pb, 64Ni + 64Ni, 58Ni + 58Ni and 16O + 154Sm are extracted from the improved isospin-dependent quantum molecular dynamics model. The shell correction effects are discussed. The negative shell correction energies lower potential barriers of a certain reaction. The incident energy dependence of the potential barrier is investigated for each system. A complex phenomenon of energy dependence is observed. It is also found that incident energy dependence of the barrier radius and barrier height shows opposite behaviors. The Coulomb potential shows weak energy dependence when distance of two colliding nuclei is lower than the touching distance. The isospin effects of the potential barrier are investigated. The orientation effects of the potential barrier is also discussed for the system 16O + 154Sm. The fusion cross sections that correspond to the equatorial orientation of 154Sm are very low in sub-barrier region because of the high fusion barriers and the shallow potential pockets.

  3. Enterprise marketing potential modeling taking into account optimizing and dynamic essence of the potential

    Directory of Open Access Journals (Sweden)

    Potrashkova Lyudmyla Vladimirovna

    2014-12-01

    Full Text Available The aim of the article. The aim of the research is to develop models system concerning b2b-enterprise marketing potential result-based estimation, which will consider enterprise potential optimizing essence, its hierarchic structure (i.e. strategic, tactic and operative potential levels and marketing resources dynamics. The results of the analysis. The simulation and optimization models system of the b2b-enterprise marketing potential estimation is suggested. The suggested models system is based on the following theoretical grounds: 1 enterprise marketing potential is interpreted as enterprise ability to satisfy consumers’ needs and to get maximum economic benefits from it; 2 the result-based estimation of the enterprise marketing potential is set of the best results (profit from sales, which sales and marketing enterprise subsystem may achieve in the prognosticative period in the view of environmental conditions variants. The suggested system unites models to estimate three managerial levels of the marketing potential (operative, tactic and strategic, which are different from each other by: the set of the given managerial decisions; the set of the changeable managerial decisions; descriptions of the environment parameters; specification of the resources featured describing. Model of each marketing potential level has the following constituents: - objective function, which is the sum of profit from production realization during the whole prognosticative period; - model of the constrained optimization, oriented to define maximum possible profit value from production realization in each elementary period with given marketing resources features values, environmental parameters and marketing complex parameters; - model of the enterprise marketing resources dynamics. Developed models system belongs to the simulation class, because search of the optimal decisions there is conducted with method concerning controllable parameters alternative variants

  4. Stable Event-Driven Particle Dynamics: Spherically Symmetric Potentials

    CERN Document Server

    Bannerman, Marcus N

    2012-01-01

    Event-Driven Particle Dynamics is a fast and precise method to simulate particulate systems of all scales. These advantages arise from the analytical solution of the dynamics required by the discrete-potential models used. Despite the high precision solution, the finite calculation-precision of computers will still cause the simulation to enter invalid states which, if left unchecked, can lead to unresolvable errors. In this work, the treatment of these marginal invalid-states is discussed and a general event-detection algorithm is proposed which stably handles these situations. This requires a definition of the dynamics of invalid states and leads to improved algorithms for event-detection in spherically symmetric systems, including the well-established hard-sphere and square-well models. Finally, the Event-Driven Particle Dynamics technique is extended to allow the study of systems with complex spherical-mesh boundary conditions and distance constraints as a demonstration of the generality of the proposed a...

  5. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    Science.gov (United States)

    Dai, De-Chang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Rizvi, Eram; Tseng, Jeff

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.

  6. BlackMax: A black-hole event generator with rotation, recoil, split branes and brane tension

    CERN Document Server

    Dai, De-Chang; Stojkovic, Dejan; Issever, Cigdem; Rizvi, Eram; Tseng, Jeff

    2007-01-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole graybody factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, non-zero brane tension and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia.

  7. Manual of BlackMax, a black-hole event generator with rotation, recoil, split branes, and brane tension

    CERN Document Server

    Dai, De-Chang; Rizvi, Eram; Starkman, Glenn; Stojkovic, Dejan; Tseng, Jeff

    2009-01-01

    This is the users manual of the black-hole event generator BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at proton-proton, proton-antiproton and electron-positron colliders in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity. It includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, non-zero brane tension and black-hole recoil due to Hawking radiation (although not all simultaneously).

  8. Effects of auroral potential drops on plasma sheet dynamics

    Science.gov (United States)

    Xi, Sheng; Lotko, William; Zhang, Binzheng; Wiltberger, Michael; Lyon, John

    2016-11-01

    The reaction of the magnetosphere-ionosphere system to dynamic auroral potential drops is investigated using the Lyon-Fedder-Mobarry global model including, for the first time in a global simulation, the dissipative load of field-aligned potential drops in the low-altitude boundary condition. This extra load reduces the field-aligned current (j||) supplied by nightside reconnection dynamos. The system adapts by forcing the nightside X line closer to Earth, with a corresponding reduction in current lensing (j||/B = constant) at the ionosphere and additional contraction of the plasma sheet during substorm recovery and steady magnetospheric convection. For steady and moderate solar wind driving and with constant ionospheric conductance, the cross polar cap potential and hemispheric field-aligned current are lower by approximately the ratio of the peak field-aligned potential drop to the cross polar cap potential (10-15%) when potential drops are included. Hemispheric ionospheric Joule dissipation is less by 8%, while the area-integrated, average work done on the fluid by the reconnecting magnetotail field increases by 50% within |y| < 8 RE. Effects on the nightside plasma sheet include (1) an average X line 4 RE closer to Earth; (2) a 12% higher mean reconnection rate; and (3) dawn-dusk asymmetry in reconnection with a 17% higher rate in the premidnight sector.

  9. Complex dynamics of a particle in an oscillating potential field

    Indian Academy of Sciences (India)

    BARNALI PAL; DEBJIT DUTTA; SWARUP PORIA

    2017-08-01

    In this paper, the classical problem of the motion of a particle in one dimension with an external time dependent field is studied from the point of view of the dynamical system. The dynamical equations of motion of the particle are formulated. Equilibrium points of the non-oscillating systems are found and their local stability natures are analysed. Effect of oscillating potential barrier is analysed through numerical simulations. Phase diagrams,bifurcation diagrams and variations of largest Lyapunov exponents are presented to show the existence of a wide range of nonlinear phenomena such as limit cycle, quasiperiodic and chaotic oscillations in the system. Effects ofnonlinear damping in the model are also reported. Analysis of the physically interesting cases where damping is proportional to higher powers of velocity are presented for the sake of generalizing our findings and establishingfirm conclusion.

  10. Efficient simulation of wave-packet dynamics on multiple coupled potential surfaces with split potential propagation

    CERN Document Server

    Aharonovich, Igal

    2016-01-01

    We present a simple method to expedite simulation of quantum wave-packet dynamics by more than a factor of $2$ with the Strang split-operator propagation. Dynamics of quantum wave-packets are often evaluated using the the \\emph{Strang} split-step propagation, where the kinetic part of the Hamiltonian $\\hat{T}$ and the potential part $\\hat{V}$ are piecewise integrated according to $e^{- i \\hat{H} \\delta t} \\approx e^{- i \\hat{V} \\delta t/2} e^{- i \\hat{T}\\delta t} e^{- i \\hat{V} \\delta t/2}$, which is accurate to second order in the propagation time $\\delta t$. In molecular quantum dynamics, the potential propagation occurs over multiple coupled potential surfaces and requires matrix exponentiation for each position in space and time which is computationally demanding. Our method employs further splitting of the potential matrix $\\hat{V}$ into a diagonal space dependent part $\\hat{V}_{D}(R)$ and an off-diagonal time-dependent coupling-field $\\hat{V}_{OD}(t)$, which then requires only a single matrix exponentia...

  11. Ultra-high energy particle collisions in a regular spacetime without blackholes or naked singularities

    CERN Document Server

    Patil, Mandar

    2012-01-01

    We investigate here the particle acceleration and collisions with extremely large center of mass energies in a perfectly regular spacetime containing neither singularity nor an event horizon. The ultra-high energy collisions of particles near the event horizon of extremal Kerr blackhole, and also in many other examples of extremal blackholes have been investigated and reported recently. We studied an analogous particle acceleration process in the Kerr and Reissner- Nordstrom spacetimes without horizon, containing naked singularities. Further to this, we show here that the particle acceleration and collision process is in fact independent of blackholes and naked singularities, and can happen in a fully regular spacetime containing neither of these. We derive the conditions on the general static spherically symmetric metric for such a phenomena to happen. We show that in order to have ultra-high energy collisions it is necessary for the norm of the timelike Killing vector to admit a maximum with a vanishingly s...

  12. Testing general relativity with black-hole binary observations: results and prospects

    Science.gov (United States)

    Vallisneri, Michele

    2017-01-01

    The first two LIGO-Virgo detections of gravitational waves from binary black-hole inspirals offered the first opportunity to test gravitation in its strong-field, relativistic-motion, and radiative sector. The initial tests reported in PRL 116 (2016) probed consistency with the predictions of general relativity, to moderate precision. The space-based observatory LISA will observe black-hole binary signals with much larger SNRs, allowing for even more precise tests. Last, the detection of a binary black-hole stochastic background with pulsar-timing arrays will offer more constraints on the speed and polarizations of gravitational waves. I review these results and examine synergies across the gravitational-wave spectrum. I discuss the main challenges and opportunities from the viewpoint of data analysis, and outline prospects for making contact with current alternative theories of gravitation, in particular those motivated by models of dark energy.

  13. Performance Potential-based Neuro-dynamic Programming for SMDPs

    Institute of Scientific and Technical Information of China (English)

    TANGHao; YUANJi-Bin; LUYang; CHENGWen-Juan

    2005-01-01

    An alpha-uniformized Markov chain is defined by the concept of equivalent infinitesimal generator for a semi-Markov decision process (SMDP) with both average- and discounted-criteria.According to the relations of their performance measures and performance potentials, the optimization of an SMDP can be realized by simulating the chain. For the critic model of neuro-dynamic programming (NDP), a neuro-policy iteration (NPI) algorithm is presented, and the performance error bound is shown as there are approximate error and improvement error in each iteration step.The obtained results may be extended to Markov systems, and have much applicability. Finally, a numerical example is provided.

  14. Theory-Agnostic Constraints on Black-Hole Dipole Radiation with Multiband Gravitational-Wave Astrophysics.

    Science.gov (United States)

    Barausse, Enrico; Yunes, Nicolás; Chamberlain, Katie

    2016-06-17

    The aLIGO detection of the black-hole binary GW150914 opens a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by 6 orders of magnitude relative to current constraints, provided that eLISA is not dramatically descoped.

  15. Primordial blackholes and gravitational waves for an inflection-point model of inflation

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sayantan [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700 108 (India); Mazumdar, Anupam [Consortium for Fundamental Physics, Physics Department, Lancaster University, LA1 4YB (United Kingdom)

    2014-06-02

    In this article we provide a new closed relationship between cosmic abundance of primordial gravitational waves and primordial blackholes that originated from initial inflationary perturbations for inflection-point models of inflation where inflation occurs below the Planck scale. The current Planck constraint on tensor-to-scalar ratio, running of the spectral tilt, and from the abundance of dark matter content in the universe, we can deduce a strict bound on the current abundance of primordial blackholes to be within a range, 9.99712×10{sup −3}<Ω{sub PBH}h{sup 2}<9.99736×10{sup −3}.

  16. Primordial blackholes and gravitational waves for an inflection-point model of inflation

    Science.gov (United States)

    Choudhury, Sayantan; Mazumdar, Anupam

    2014-06-01

    In this article we provide a new closed relationship between cosmic abundance of primordial gravitational waves and primordial blackholes that originated from initial inflationary perturbations for inflection-point models of inflation where inflation occurs below the Planck scale. The current Planck constraint on tensor-to-scalar ratio, running of the spectral tilt, and from the abundance of dark matter content in the universe, we can deduce a strict bound on the current abundance of primordial blackholes to be within a range, 9.99712 ×10-3 <ΩPBHh2 < 9.99736 ×10-3.

  17. Greybody factors for a nonminimally coupled scalar field in BTZ black-hole background

    CERN Document Server

    Panotopoulos, Grigoris

    2016-01-01

    In the present work we study the greybody factors for a nonminimally scalar field in BTZ black-hole background. We find analytical expressions for the reflection coefficient, the absorption cross-section, and the decay rate, and we show in figures what the role of the angular-momentum and the coupling is. Our results show that in the zero angular-momentum case the greybody factor in the low energy regime tends to a finite constant that does not always coincide with the area of the horizon of the black-hole. There is, however, a special case in which this is true.

  18. String-theoretic unitary S-matrix at the threshold of black-hole production

    CERN Document Server

    Veneziano, Gabriele

    2004-01-01

    Previous results on trans-Planckian collisions in superstring theory are rewritten in terms of an explicitly unitary S-matrix whose validity covers a large region of the energy/impact-parameter plane. Amusingly, as part of this region's border is approached, properties of the final state start resembling those expected from the evaporation of a black-hole even well below its production threshold. More specifically, we conjecture that, in an energy window extending up such a threshold, inclusive cross sections satisfy a peculiar "anti-scaling" behaviour seemingly preparing for a smooth transition to black-hole physics.

  19. WATERWAVES: wave particles dynamics on a complex triatomic potential

    Science.gov (United States)

    Taioli, Simone; Tennyson, Jonathan

    2006-07-01

    The WATERWAVES program suite performs complex scattering calculations by propagating a wave packet in a complex, full-dimensional potential for non-rotating ( J=0) but vibrating triatomic molecules. Potential energy and decay probability surfaces must be provided. Expectation values of geometric quantities can be calculated, which are useful for following the wave packet motion. The programs use a local complex potential approximation (LCP) for the Hamiltonian and Jacobi coordinates. The bottleneck of the calculation is the application of each term of the Hamiltonian to the wave packet. To solve this problem the programs use a different representation for each term: normalized associated Legendre polynomials PjK(x) as a functional basis for the angular kinetic term and an evenly spaced grid for the radial kinetic term yielding a fully point-wise representation of the wave functions. The potential term is treated using an efficient Discrete Variable Representation (DVR) being diagonal in the coordinate representation. The radial kinetic term uses a fast Fourier transform (FFT) to obtain an operator which is diagonal in the momentum space. To avoid artificial reflection at the boundaries of the grid a complex absorbing potential is included for calculating continuum quantities. Asymptotic analysis is performed to obtain scattering observables such as cross sections and other dynamical properties. Program summaryProgram title: WATERWAVES Catalogue identifier:ADXT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXT_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: Freely available from CPC Programming language: Fortran 77 Computer(s) for which the program has been designed: PC Operating system(s) for which the program has been designed: Linux RAM required to execute with typical data: case dependent: test run requires 976 024 kB No. of bytes in distributed program, including test data, etc.:11

  20. Optical vortices as potential indicators of biophysical dynamics

    Science.gov (United States)

    Majumdar, Anindya; Kirkpatrick, Sean J.

    2017-03-01

    Laser speckle patterns are granular patterns produced as a result of random interference of light waves. Optical vortices (OVs) are phase singularities in such speckle fields, characterized by zero intensity and an undefined phase. Decorrelation of the speckle fields causes these OVs to move in both time and space. In this work, a variety of parameters of these OVs have been studied. The speckle fields were simulated to undergo three distinct decorrelation behaviors- Gaussian, Lorentzian and constant decorrelations. Different decorrelation behaviors represent different dynamics. For example, Lorentzian and Gaussian decorrelations represent Brownian and ordered motions, respectively. Typical dynamical systems in biophysics are generally argued to be a combination of these. For each of the decorrelation behaviors under study, the vortex trails were tracked while varying the rate of decorrelation. Parameters such as the decorrelation length, average trail length and the deviation of the vortices as they traversed in the speckle field, were studied. Empirical studies were also performed to define the distinction between trails arising from different speckle decorrelation behaviors. The initial studies under stationary speckle fields were followed up by similar studies on shifting fields. A new idea to employ Poincaŕe plots in speckle analysis has also been introduced. Our studies indicate that tracking OVs can be a potential method to study cell and tissue dynamics.

  1. Do resting brain dynamics predict oddball evoked-potential?

    Directory of Open Access Journals (Sweden)

    Lee Tien-Wen

    2011-11-01

    Full Text Available Abstract Background The oddball paradigm is widely applied to the investigation of cognitive function in neuroscience and in neuropsychiatry. Whether cortical oscillation in the resting state can predict the elicited oddball event-related potential (ERP is still not clear. This study explored the relationship between resting electroencephalography (EEG and oddball ERPs. The regional powers of 18 electrodes across delta, theta, alpha and beta frequencies were correlated with the amplitude and latency of N1, P2, N2 and P3 components of oddball ERPs. A multivariate analysis based on partial least squares (PLS was applied to further examine the spatial pattern revealed by multiple correlations. Results Higher synchronization in the resting state, especially at the alpha spectrum, is associated with higher neural responsiveness and faster neural propagation, as indicated by the higher amplitude change of N1/N2 and shorter latency of P2. None of the resting quantitative EEG indices predict P3 latency and amplitude. The PLS analysis confirms that the resting cortical dynamics which explains N1/N2 amplitude and P2 latency does not show regional specificity, indicating a global property of the brain. Conclusions This study differs from previous approaches by relating dynamics in the resting state to neural responsiveness in the activation state. Our analyses suggest that the neural characteristics carried by resting brain dynamics modulate the earlier/automatic stage of target detection.

  2. Dragging of inertial frames in the composed black-hole-ring system

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-11-15

    A well-established phenomenon in general relativity is the dragging of inertial frames by a spinning object. In particular, due to the dragging of inertial frames by a ring orbiting a central black hole, the angular velocity Ω{sub H}{sup BH-ring} of the black-hole horizon in the composed black-hole-ring system is no longer related to the black-hole angular momentum J{sub H} by the simple Kerr-like (vacuum) relation Ω{sub H}{sup Kerr}(J{sub H}) = J{sub H}/2M{sup 2}R{sub H} (here M and R{sub H} are the mass and horizon-radius of the black hole, respectively). Will has performed a perturbative treatment of the composed black-hole-ring system in the regime of slowly rotating black holes and found the explicit relation Ω{sub H}{sup BH-ring}(J{sub H} = 0, J{sub R}, R) = 2J{sub R}/R{sup 3} for the angular velocity of a central black hole with zero angular momentum, where J{sub R} and R are respectively the angular momentum of the orbiting ring and its proper circumferential radius. Analyzing a sequence of black-hole-ring configurations with adiabatically varying (decreasing) circumferential radii, we show that the expression found by Will for Ω{sub H}{sup BH-ring}(J{sub H} = 0, J{sub R}, R) implies a smooth transition of the central black-hole angular velocity from its asymptotic near-horizon value Ω{sub H}{sup BH-ring}(J{sub H} = 0, J{sub R}, R → R{sub H}{sup +}) → 2J{sub R}/R{sub H}{sup 3} (that is, just before the assimilation of the ring by the central black hole), to its final Kerr (vacuum) value Ω{sub H}{sup Kerr}(J{sub H}{sup new})= J{sub H}{sup new}/2M{sup new2}R{sub H}{sup new} [that is, after the adiabatic assimilation of the ring by the central black hole. Here J{sub H}{sup new} = J{sub R}, M{sup new}, and R{sub H}{sup new} are the new parameters of the resulting Kerr (vacuum) black hole after it assimilated the orbiting ring]. We use this important observation in order to generalize the result of Will to the regime of black-hole-ring configurations

  3. Universality in the relaxation dynamics of the composed black-hole-charged-massive-scalar-field system: The role of quantum Schwinger discharge

    Directory of Open Access Journals (Sweden)

    Shahar Hod

    2015-07-01

    Full Text Available The quasinormal resonance spectrum {ωn(μ,q,M,Q}n=0n=∞ of charged massive scalar fields in the charged Reissner–Nordström black-hole spacetime is studied analytically in the large-coupling regime qQ≫Mμ (here {μ,q} are respectively the mass and charge coupling constant of the field, and {M,Q} are respectively the mass and electric charge of the black hole. This physical system provides a striking illustration for the validity of the universal relaxation bound τ×T≥ħ/π in black-hole physics (here τ≡1/ℑω0 is the characteristic relaxation time of the composed black-hole-scalar-field system, and T is the Bekenstein–Hawking temperature of the black hole. In particular, it is shown that the relaxation dynamics of charged massive scalar fields in the charged Reissner–Nordström black-hole spacetime may saturate this quantum time-times-temperature inequality. Interestingly, we prove that potential violations of the bound by light scalar fields are excluded by the Schwinger-type pair-production mechanism (a vacuum polarization effect, a quantum phenomenon which restricts the physical parameters of the composed black-hole-charged-field system to the regime qQ≪M2μ2/ħ.

  4. Dynamics of atom trapping in an rf-dressed potential

    CERN Document Server

    Chakraborty, A; Ram, S P; Tiwari, S K; Rawat, H S

    2016-01-01

    The dynamics of atom trapping in a radio-frequency-dressed-state potential formed by static and radio frequency (rf) fields has been studied using the Direct Simulation Monte Carlo (DSMC) technique. Using the simulations, a case of formation of a toroidal trap for cold $^{87}Rb$ atoms is investigated for atoms trapped in a static quadrupole magnetic trap and exposed to an rf-field with temporally increasing amplitude and decreasing frequency. We first calculate the adiabatic rf-dressed potential for an atom interacting with these fields and then apply DSMC algorithm to simulate the motion of the atom in this time dependent adiabatic potential. In the simulations the Landau-Zener (LZ) transition probability is calculated to know if the atom is in the trappable or untrappable dressed state. The results show that, initially at lower rf-field strength, the rf-field ejects atoms from the trap and leads to evaporative cooling of the atom cloud. However at higher rf-field strength, the atoms make LZ transition to th...

  5. Some blackhole and compactification solutions of noncanonical global monopole in 4-dimensional spacetime

    Science.gov (United States)

    Prasetyo, I.; Ramadhan, H. S.

    2017-07-01

    Here we present some solutions with noncanonical global monopole in nonlinear sigma model in 4-dimensional spacetime. We discuss some blackhole solutions and its horizons. We also obtain some compactification solutions. We list some possible compactification channels from 4-space to 2 × 2-spaces of constant curvatures.

  6. Determination of Reference Chemical Potential Using Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Krishnadeo Jatkar

    2010-01-01

    Full Text Available A new method implementing molecular dynamics (MD simulations for calculating the reference properties of simple gas hydrates has been proposed. The guest molecules affect interaction between adjacent water molecules distorting the hydrate lattice, which requires diverse values of reference properties for different gas hydrates. We performed simulations to validate the experimental data for determining Δ0, the chemical potential difference between water and theoretical empty cavity at the reference state, for structure II type gas hydrates. Simulations have also been used to observe the variation of the hydrate unit cell volume with temperature. All simulations were performed using TIP4P water molecules at the reference temperature and pressure conditions. The values were close to the experimental values obtained by the Lee-Holder model, considering lattice distortion.

  7. Molecular Dynamics Simulations of Solutions at Constant Chemical Potential

    CERN Document Server

    Perego, Claudio; Parrinello, Michele

    2015-01-01

    Molecular Dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, that range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, that influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a Grand-Canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work we propose the C$\\mu$MD method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the C$\\mu$MD method to the paradigmatic case of urea crystall...

  8. Water savings potentials of irrigation systems: dynamic global simulation

    Science.gov (United States)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-04-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatio-temporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a dynamic representation of the three major irrigation systems (surface, sprinkler, and drip) into a process-based bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded worldmap of dynamically retrieved irrigation efficiencies reflecting differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with lowest values (values (> 60%) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2396 km3 (2004-2009 average); irrigation water consumption is calculated to be 1212 km3, of which 511 km3 are non-beneficially consumed, i.e. lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76%, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15%, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of irrigation systems while providing a framework for assessing

  9. Suited Occupant Injury Potential During Dynamic Spacecraft Flight Phases

    Science.gov (United States)

    Dub, Mark O.; McFarland, Shane M.

    2010-01-01

    In support of the Constellation Space Suit Element [CSSE], a new space-suit architecture will be created for support of Launch, Entry, Abort, Microgravity Extra- Vehicular Activity [EVA], and post-landing crew operations, safety and, under emergency conditions, survival. The space suit is unique in comparison to previous launch, entry, and abort [LEA] suit architectures in that it utilizes rigid mobility elements in the scye (i.e., shoulder) and the upper arm regions. The suit architecture also utilizes rigid thigh disconnect elements to create a quick disconnect approximately located above the knee. This feature allows commonality of the lower portion of the suit (from the thigh disconnect down), making the lower legs common across two suit configurations. This suit must interface with the Orion vehicle seat subsystem, which includes seat components, lateral supports, and restraints. Due to the unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic vehicle events, risks have been identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series has been developed in coordination with the Injury Biomechanics Research Laboratory [IBRL] to evaluate the likelihood and consequences of these potential issues. Testing includes use of Anthropomorphic Test Devices [ATDs; vernacularly referred to as "crash test dummies"], Post Mortem Human Subjects [PMHS], and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on test purpose and objectives; test hardware, facility, and setup; and preliminary results.

  10. Potential-dependent dynamic fracture of nanoporous gold

    Science.gov (United States)

    Sun, Shaofeng; Chen, Xiying; Badwe, Nilesh; Sieradzki, Karl

    2015-09-01

    When metallic alloys are exposed to a corrosive environment, porous nanoscale morphologies spontaneously form that can adversely affect the mechanical integrity of engineered structures. This form of stress-corrosion cracking is responsible for the well-known `season cracking’ of brass and stainless steel components in nuclear power generating stations. One explanation for this is that a high-speed crack is nucleated within the porous layer, which subsequently injects into non-porous parent-phase material. We study the static and dynamic fracture properties of free-standing monolithic nanoporous gold as a function electrochemical potential using high-speed photography and digital image correlation. The experiments reveal that at electrochemical potentials typical of porosity formation these structures are capable of supporting dislocation-mediated plastic fracture at crack velocities of 200 m s-1. Our results identify the important role of high-speed fracture in stress-corrosion cracking and are directly applicable to the behaviour of monolithic dealloyed materials at present being considered for a variety of applications.

  11. On potential kernels associated with random dynamical systems

    Directory of Open Access Journals (Sweden)

    Mohamed Hmissi

    2015-01-01

    In particular, we provide a constructive method for global Lyapunov functions for gradient-like random dynamical systems. This result generalizes an analogous theorem known for deterministic dynamical systems.

  12. A Subspace Method for Dynamical Estimation of Evoked Potentials

    Directory of Open Access Journals (Sweden)

    Stefanos D. Georgiadis

    2007-01-01

    Full Text Available It is a challenge in evoked potential (EP analysis to incorporate prior physiological knowledge for estimation. In this paper, we address the problem of single-channel trial-to-trial EP characteristics estimation. Prior information about phase-locked properties of the EPs is assesed by means of estimated signal subspace and eigenvalue decomposition. Then for those situations that dynamic fluctuations from stimulus-to-stimulus could be expected, prior information can be exploited by means of state-space modeling and recursive Bayesian mean square estimation methods (Kalman filtering and smoothing. We demonstrate that a few dominant eigenvectors of the data correlation matrix are able to model trend-like changes of some component of the EPs, and that Kalman smoother algorithm is to be preferred in terms of better tracking capabilities and mean square error reduction. We also demonstrate the effect of strong artifacts, particularly eye blinks, on the quality of the signal subspace and EP estimates by means of independent component analysis applied as a prepossessing step on the multichannel measurements.

  13. Dynamic hyperinflation and pulmonary inflammation: a potentially relevant relationship?

    Directory of Open Access Journals (Sweden)

    A. Agusti

    2006-12-01

    Full Text Available In patients with moderate-to-severe chronic obstructive pulmonary disease (COPD, end-expiratory lung volume increases under conditions of greater minute ventilation (e.g. exercise. This abnormal response is termed dynamic hyperinflation (DH and has now been recognised as a key determinant of symptomatology and exercise intolerance in COPD. Reduced elastic recoil, loss of alveolar attachments and increased airway resistance are the mechanical factors traditionally invoked to explain the occurrence of DH in COPD. An abnormal inflammatory response to, most frequently, tobacco smoking is a key pathophysiological component of COPD, but its potential relationship with DH has not been directly investigated and is poorly understood. The present article discusses, first, the mechanisms by which DH can enhance inflammation in COPD (including cellular stretching, tissue damage and danger signals, hyperventilation and hypoxia. It then reviews how the abnormal inflammatory response that characterises the disease can augment DH (oedema and increased airway resistance, increased mucus production and alveolar destruction. Finally, it speculates that if these relationships eventually prove to be real, then the use of long-acting bronchodilators may help reduce the inflammatory load of these patients and, conversely, the use of anti-inflammatory therapy can contribute to the reduction of DH.

  14. PERFORMANCE ANALYSIS OF ADHOC ON DEMAND DISTANCE VECTOR PROTOCOL WITH BLACKHOLE ATTACK IN WSN

    Directory of Open Access Journals (Sweden)

    Adnan Ahmed

    2014-01-01

    Full Text Available The security is major challenging issue in wireless sensor network applications because they are operated in public and unrestrained areas which also makes difficult to protect against tampering or captured by an adversary force that can launch insider attacks to make a node compromised. One type of such attack is black hole attack. Existing AODV routing protocol does not have mechanism to defend against such attacks. In this study, we comprehensively investigates the performance of AODV protocol by simulating it on the various network parameters with various number of blackhole nodes. The metrics for evaluation has been considered as packet delivery ratio, end to end delay, normalized routing overhead and total number of packets drop. The simulation results show that blackhole attack severely degrades the performance of WSN.

  15. MAXI J1659-152: the shortest orbital period black-hole binary

    DEFF Research Database (Denmark)

    Kuulkers, E.; Kouveliotou, C.; van der Horst, A. J.

    Following the detection of a bright new X-ray source, MAXI J1659-152, a series of observations was triggered with almost all currently flying high-energy missions. We report here on XMM-Newton, INTEGRAL and RXTE observations during the early phase of the X-ray outburst of this transient black-hole...... candidate. We confirm the dipping nature in the X-ray light curves. We find that the dips recur on a period of 2.4139+/-0.0005 hrs, and interpret this as the orbital period of the system. It is thus the shortest period black-hole X-ray binary known to date. Using the various observables, we derive...

  16. SFTP: A Secure and Fault-Tolerant Paradigm against Blackhole Attack in MANET

    Science.gov (United States)

    KumarRout, Jitendra; Kumar Bhoi, Sourav; Kumar Panda, Sanjaya

    2013-02-01

    Security issues in MANET are a challenging task nowadays. MANETs are vulnerable to passive attacks and active attacks because of a limited number of resources and lack of centralized authority. Blackhole attack is an attack in network layer which degrade the network performance by dropping the packets. In this paper, we have proposed a Secure Fault-Tolerant Paradigm (SFTP) which checks the Blackhole attack in the network. The three phases used in SFTP algorithm are designing of coverage area to find the area of coverage, Network Connection algorithm to design a fault-tolerant model and Route Discovery algorithm to discover the route and data delivery from source to destination. SFTP gives better network performance by making the network fault free.

  17. Superradiance energy extraction, black-hole bombs and implications for astrophysics and particle physics

    CERN Document Server

    Brito, Richard; Pani, Paolo

    2015-01-01

    This volume gives a unified picture of the multifaceted subject of superradiance, with a focus on recent developments in the field, ranging from fundamental physics to astrophysics. Superradiance is a radiation enhancement process that involves dissipative systems. With a 60 year-old history, superradiance has played a prominent role in optics, quantum mechanics and especially in relativity and astrophysics. In Einstein's General Relativity, black-hole superradiance is permitted by dissipation at the event horizon, which allows energy extraction from the vacuum, even at the classical level. When confined, this amplified radiation can give rise to strong instabilities known as "blackhole bombs'', which have applications in searches for dark matter, in physics beyond the Standard Model and in analog models of gravity. This book discusses and draws together all these fascinating aspects of superradiance.

  18. Two spectral states of the black-hole candidate GX 339-4

    Science.gov (United States)

    Lavrov, S. V.; Borozdin, K. N.; Aleksandrovich, N. L.; Aref'ev, V. A.; Sunyaev, R. A.; Skinner, G. K.

    1997-07-01

    We performed two series of observations of the X-ray source GX 339-4, a black-hole candidate, between 1989 and 1994 using the TTM instrument of the Roentgen Observatory. In March 1989, the source was in a soft state with a spectrum described by a multicolor accretion disk model (Shakura and Sunyaev 1973). In March 1994, a hard state with a power-law spectrum and a transition from the hard to the soft state was observed. The spectral states of the source show similarities to the spectra of other black-hole candidates. The presence of two states is considered as evidence that GX 339-4 belongs to this class of objects.

  19. Darkholes Nicer than blackholes, with a bright side, too (Does energy produce gravity?)

    CERN Document Server

    Ellis, H G

    2000-01-01

    The geometry of three-dimensional space guides the search for a better modelthan the blackhole with its unwelcome singularity. An elementary constructionproduces on the 4-manifold of 2-spheres in a Riemannian 3-space a space-timemetric invariant under uniform conformal transformations of the 3-space. Whenthe 3-space is Euclidean, the metric reduces to de Sitter's expanding universemetric. Generalization yields a space-time metric that retains the `exponentialexpansion property' of the de Sitter metric. A strictly geometric actionprinciple gives field equations which, because they do not adhere to Einstein'searly confounding of energy and inertial mass with gravitating mass, admitsolutions that escape the Penrose-Hawking singularity theorems. A sphericallysymmetric solution that is asymptotic to the Schwarzschild blackhole metrichas, in place of a horizon and a singularity, an Einstein-Rosen `bridge', or`tunnel', connecting two asymptotically Euclidean regions. On one side thegravitational center attracts, and...

  20. Supermassive recoil velocities for binary black-hole mergers with antialigned spins.

    Science.gov (United States)

    González, José A; Hannam, Mark; Sperhake, Ulrich; Brügmann, Bernd; Husa, Sascha

    2007-06-08

    Recent calculations of the recoil velocity in binary black-hole mergers have found the kick velocity to be of the order of a few hundred km/s in the case of nonspinning binaries and about 500 km/s in the case of spinning configurations, and have lead to predictions of a maximum kick of up to 1300 km/s. We test these predictions and demonstrate that kick velocities of at least 2500 km/s are possible for equal-mass binaries with antialigned spins in the orbital plane. Kicks of that magnitude are likely to have significant repercussions for models of black-hole formation, the population of intergalactic black holes, and the structure of host galaxies.

  1. Enhanced Secure Trusted AODV (ESTA Protocol to Mitigate Blackhole Attack in Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Dilraj Singh

    2015-09-01

    Full Text Available The self-organizing nature of the Mobile Ad hoc Networks (MANETs provide a communication channel anywhere, anytime without any pre-existing network infrastructure. However, it is exposed to various vulnerabilities that may be exploited by the malicious nodes. One such malicious behavior is introduced by blackhole nodes, which can be easily introduced in the network and, in turn, such nodes try to crumble the working of the network by dropping the maximum data under transmission. In this paper, a new protocol is proposed which is based on the widely used Ad hoc On-Demand Distance Vector (AODV protocol, Enhanced Secure Trusted AODV (ESTA, which makes use of multiple paths along with use of trust and asymmetric cryptography to ensure data security. The results, based on NS-3 simulation, reveal that the proposed protocol is effectively able to counter the blackhole nodes in three different scenarios.

  2. Accretion and ejection in black-hole X-ray transients

    Science.gov (United States)

    Kylafis, N. D.; Belloni, T. M.

    2015-02-01

    Context. A rich phenomenology has been accumulated over the years regarding accretion and ejection in black-hole X-ray transients (BHTs) and it needs an interpretation. Aims: Here we summarize the current observational picture of the outbursts of BHTs, based on the evolution traced in a hardness-luminosity diagram (HLD), and we offer a physical interpretation. Methods: The basic ingredient in our interpretation is the Poynting-Robertson cosmic battery (PRCB), which provides locally the poloidal magnetic field needed for the ejection of the jet. In addition, we make two assumptions, easily justifiable. The first is that the mass-accretion rate to the black hole in a BHT outburst has a generic bell-shaped form, whose characteristic time scale is much longer than the dynamical or the cooling ones. This is guaranteed by the observational fact that all BHTs start their outburst and end it at the quiescent state, i.e., at very low accretion rate, and that state transitions take place over long time scales (hours to days). The second assumption is that at low accretion rates the accretion flow is geometrically thick, ADAF-like, while at high accretion rates it is geometrically thin. Last, but not least, we demonstrate that the previous history of the system is absolutely necessary for the interpretation of the HLD. Results: Both, at the beginning and the end of an outburst, the PRCB establishes a strong poloidal magnetic field in the ADAF-like part of the accretion flow, and this explains naturally why a jet is always present in the right part of the HLD. In the left part of the HLD, the accretion flow is in the form of a thin disk, and such a disk cannot sustain a strong poloidal magnetic filed. Thus, no jet is expected in this part of the HLD. Finally, the counterclockwise traversal of the HLD is explained as follows: all outbursts start from the quiescent state, in which the inner part of the accretion flow is ADAF-like, threaded by a poloidal magnetic field. As the

  3. Black-hole production at LHC: Special features, problems, and expectations

    Science.gov (United States)

    Savina, M. V.

    2011-03-01

    A brief survey of the present-day status of the problem of multidimensional-black-hole production at accelerators according to models featuring large extra dimensions is given. The respective production cross section and the Hawking temperature and decay rate are estimated versus model parameters. Possible flaws and assumptions whose accurate inclusion can reduce significantly the probability of blackhole production at accelerators in relation to earlier optimistic estimates are also discussed.

  4. Primordial blackholes and gravitational waves for an inflection-point model of inflation

    OpenAIRE

    Choudhury, Sayantan; Mazumdar, Anupam

    2014-01-01

    In this article we provide a new closed relationship between cosmic abundance of primordial gravitational waves and primordial blackholes that originated from initial inflationary perturbations for inflection-point models of inflation where inflation occurs below the Planck scale. The current Planck constraint on tensor-to-scalar ratio, running of the spectral tilt, and from the abundance of dark matter content in the universe, we can deduce a strict bound on the current abundance of primordi...

  5. Negative specific heat of black-holes from Fluid-Gravity Correspondence

    OpenAIRE

    Bhattacharya, Swastik; Shankaranarayanan, S.

    2017-01-01

    Black-holes in asymptotically flat space-times have negative specific heat --- they get hotter as they loose energy. A clear statistical mechanical understanding of this has remained a challenge. In this work, we address this issue using fluid-gravity correspondence which aims to associate fluid degrees of freedom to the horizon. Using linear response theory and the teleological nature of event horizon, we show explicitly that the fluctuations of the horizon-fluid lead to negative specific he...

  6. Black-hole production at LHC: Special features, problems, and expectations

    Energy Technology Data Exchange (ETDEWEB)

    Savina, M. V., E-mail: savina@cern.ch [Joint Institute for Nuclear Research (Russian Federation)

    2011-03-15

    A brief survey of the present-day status of the problem of multidimensional-black-hole production at accelerators according to models featuring large extra dimensions is given. The respective production cross section and the Hawking temperature and decay rate are estimated versus model parameters. Possible flaws and assumptions whose accurate inclusion can reduce significantly the probability of blackhole production at accelerators in relation to earlier optimistic estimates are also discussed.

  7. Dpraodv: A Dyanamic Learning System Against Blackhole Attack in Aodv Based Manet

    OpenAIRE

    Raj, Payal N.; Swadas, Prashant B.

    2009-01-01

    Security is an essential requirement in mobile ad hoc networks to provide protected communication between mobile nodes. Due to unique characteristics of MANETS, it creates a number of consequential challenges to its security design. To overcome the challenges, there is a need to build a multifence security solution that achieves both broad protection and desirable network performance. MANETs are vulnerable to various attacks, blackhole, is one of the possible attacks. Black hole is a type of ...

  8. Flat Symplectic Bundles of N-Extended Supergravities, Central Charges and Black-Hole Entropy

    CERN Document Server

    Andrianopoli, Laura; Ferrara, Sergio

    1998-01-01

    In these lectures we give a geometrical formulation of N-extended supergravities which generalizes N=2 special geometry of N=2 theories. In all these theories duality symmetries are related to the notion of "flat symplectic bundles" and central charges may be defined as "sections" over these bundles. Attractor points giving rise to "fixed scalars" of the horizon geometry and Bekenstein-Hawking entropy formula for extremal black-holes are discussed in some details.

  9. MAXI J1659-152: The shortest orbital period black-hole transient in outburst

    DEFF Research Database (Denmark)

    Kuulkers, E.; Kouveliotou, C.; Belloni, T.

    2013-01-01

    MAXI J1659−152 is a bright X-ray transient black-hole candidate binary system discovered in September 2010. We report here on MAXI, RXTE, Swift, and XMM-Newton observations during its 2010/2011 outburst. We find that during the first one and a half week of the outburst the X-ray light curves...... referred to as transition dips). The absorption dips recur with a period of 2.414  ±  0.005 h, which we interpret as the orbital period of the system. This implies that MAXI J1659−152 is the shortest period black-hole candidate binary known to date. The inclination of the accretion disk with respect...... to the line of sight is estimated to be 65–80°. We propose the companion to the black-hole candidate to be close to an M5 dwarf star, with a mass and radius of about 0.15–0.25 M⊙ and 0.2–0.25 R⊙, respectively. We derive that the companion had an initial mass of about 1.5 M⊙, which evolved to its current mass...

  10. Remnant mass, spin, and recoil from spin aligned black-hole binaries

    CERN Document Server

    Healy, James; Zlochower, Yosef

    2014-01-01

    We perform a set of 36 nonprecessing black-hole binary simulations with spins either aligned or counteraligned with the orbital angular momentum in order to model the final mass, spin, and recoil of the merged black hole as a function of the individual black hole spin magnitudes and the mass ratio of the progenitors. We find that the maximum recoil for these configurations is $V_{max}=526\\pm23\\,km/s$, which occurs when the progenitor spins are maximal, the mass ratio is $q_{max}=m_1/m_2=0.623\\pm0.038$, the smaller black-hole spin is aligned with the orbital angular momentum, and the larger black-hole spin is counteraligned ($\\alpha_1=-\\alpha_2=1$). This maximum recoil is about $80\\,km/s$ larger than previous estimates, but most importantly, because the maximum occurs for smaller mass ratios, the probability for a merging binary to recoil faster than $400\\,km/s$ can be as large as $17\\%$, while the probability for recoils faster than $250\\, km/s$ can be as large as $45\\%$. We provide explicit phenomenological ...

  11. Measuring the dimensionality of compact extra dimensions with inspiral gravitational waves from black-hole binaries

    Science.gov (United States)

    Qiang, Li-E.; Zhao, Shu Hong; Xu, Peng

    2016-12-01

    Gravitational waves from coalescing black-hole binaries (BHBs) were recently observed by the advanced LIGO detectors. Based on the perturbation analysis, for general Kaluza-Klein theories with compact extra dimensions, we find a 1st-order post-Newtonian correction to the inspiral gravitational waveforms of black-hole binaries, that comes from the variations of the volume of the extra dimensions in near source zones. Such correction depends on a new parameter χ=\\frac{n}{2+n} with n the dimensionality of the extra space and it is irrelevant to the particular choice of the topology of the extra space. For the ideal case of a black-hole binary system following nearly circular orbital motion with almost equal or intermediate mass ratio, such higher-dimensional corrections to the chirping amplitude are worked out. Giving the power of tracing inspiral waves from coalescing massive BHBs with high signal-to-noise ratios, the planned space-borne antennas such as the eLISA and DECIGO may give us a measurement of the parameter χ in the near future and may serve us as new probes in the searching for the evidence of the hidden compact dimensions.

  12. Velocity Potential in Engineering Hydraulics versus Force Potential in Groundwater Dynamics

    Science.gov (United States)

    Weyer, K.

    2013-12-01

    required to overcome the resistance to downward flow in penetrated rocks. As one of the consequences, the engineering hydraulics concept of buoyancy forces does not comply with physics. In general the vectorial forces within gravitationally-driven flow systems are ignored when using engineering hydraulics. Scheidegger (1974, p. 79) states, however, verbatim and unequivocally: 'It is thus a force potential and not a velocity potential which governs flow through porous media' (emphasis added). This presentation will outline the proper forces for groundwater flow and their calculations based on Hubbert's force potential and additional physical insights by Weyer (1978). REFERENCES Bear, J. 1972. Dynamics of Fluids in Porous Media. American Elsevier Publishing Company, Inc., New York, NY, USA. de Marsily, G. 1986. Quantitative Hydrogeology: Groundwater Hydrology for Engineers. Academic Press, San Diego, California, USA. Hubbert, M.K. 1940. The theory of groundwater motion. Journal of Geology 48(8): 785-944. Muskat, Morris, 1937. The flow of homogeneous fluids through porous media. McGraw-Hill Book Company Inc., New York, NY, USA Scheidegger. A.E., 1974. The physics of flow through permeable media. Third Edition. University of Toronto Press, Toronto, Ontario, Canada Weyer, K.U., 1978. Hydraulic forces in permeable media. Bulletin du B.R.G.M., Vol. 91, pp. 286-297, Orléans, France.

  13. Dynamic testing : Assessing cognitive potential of children with culturally diverse backgrounds

    NARCIS (Netherlands)

    Stevenson, C.E.; Heiser, W.J.; Resing, W.C.M.

    Dynamic testing may be useful in assessing cognitive potential in disadvantaged populations such as ethnic minorities. Majority and minority culture children's performance on a dynamic test of figural matrices was examined using a pretest-training-posttest design. Dynamically tested children were

  14. Dynamic interaction potential and the scattering cross sections of the semiclassical plasma particles

    Energy Technology Data Exchange (ETDEWEB)

    Dzhumagulova, K. N.; Shalenov, E. O.; Gabdullina, G. L. [IETP, Al Farabi Kazakh National University, 71al Farabi Street, Almaty 050040 (Kazakhstan)

    2013-04-15

    The dynamic model of the charged particles interaction in non-ideal semiclassical plasma is presented. This model takes into account the quantum mechanical diffraction effect and the dynamic screening effect. On the basis of the dynamic interaction potential, the electron scattering cross sections are investigated. Comparison with the results obtained on the basis of other models and conclusions were made.

  15. Potential Originality and Effectiveness: The Dynamic Definition of Creativity

    Science.gov (United States)

    Corazza, Giovanni Emanuele

    2016-01-01

    Given the central role of creativity in the future post-information society, a call for a pragmatist approach to the study of creativity is advocated, that brings as a consequence the recognition of the dynamic nature of this phenomenon. At the foundation of the proposed new theoretical framework lies the definition of creativity itself, which is…

  16. Relaxation dynamics in a double-well potential

    Energy Technology Data Exchange (ETDEWEB)

    Cacciari, Ilaria [Istituto di Fisica Applicata ' Nello Carrara' , C.N.R., via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy)]. E-mail: i.cacciari@ifac.cnr.it; Moretti, Paolo [Istituto dei Sistemi Complessi, C.N.R., Sezione di Firenze, via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence (Italy)]. E-mail: paolo.moretti@isc.cnr.it

    2006-10-30

    The dynamics of a two-state system subject to coherent tunneling and decay is studied using a simple quantum mechanical model, that can be applied to various physical situations. A satisfactory result, describing the behaviour of the relaxation trajectories, is obtained.

  17. Global dynamical analysis of vibrational manifolds of HOCl and HOBr under anharmonicity and Fermi resonance: the dynamical potential approach

    Science.gov (United States)

    Fang, Chao; Wu, Guo-Zhen

    2010-01-01

    The vibrational dynamics of HOCl and HOBr between bending and OCl/OBr stretching coordinates with anharmonicity and Fermi coupling is studied with the classical dynamical potential approach. The quantal vibrational dynamics is mostly mapped out by the classical nonlinear variables such as fixed points, except for the state energies, which are quantized. This approach is global in the sense that the focus is on a set of levels instead of individual ones. The dynamics of HOBr is demonstrated to be less complicated. The localized modes along the OCl/OBr stretching coordinates are also shown to have O-Br bonds more prone to dissociation.

  18. Spectroscopic analysis of stellar mass black-hole mergers in our local universe with ground-based gravitational wave detectors

    Science.gov (United States)

    Bhagwat, Swetha; Brown, Duncan; Ballmer, Stefan

    2017-01-01

    Motivated by the recent discoveries of binary black-hole mergers by the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO), we investigate the prospects of ground based detectors to perform a spectroscopic analysis of signals emitted during the ringdown of the Kerr black-hole formed by a stellar mass binary black-hole merger. We investigate the detectability and resolvability of the sub-dominant modes l = m = 3, l = m = 4 and l = 2;m = 1. We find that new ground-based facilities such as Einstein Telescope or Cosmic Explorer could measure multiple ringdown modes in over 300 events per year. We also investigate detector tuning for ringdown oriented searches.

  19. In Pursuit of Analogs for Europa's Dynamics & Potential Habitats

    Science.gov (United States)

    Schmidt, Britney E.; Blankenship, D. D.; Greenbaum, J. S.; Young, D. A.

    2010-10-01

    Future Europa exploration will seek to characterize the distribution of shallow subsurface water as well as to understand the formation of surface features through dynamic ice-shell processes. Radar sounding will be a critical tool for imaging these features, and should be of primary interest to the astrobiology community for understanding how and where life might arise on Europa. To develop successful instrumentation and data interpretation techniques for exploring Europa, we must leverage analogous terrestrial environments and processes. Airborne ice penetrating radar is now a mature tool in terrestrial studies of Earth's ice sheets, and orbital examples have been successfully deployed at Earth's Moon and Mars. It is a distinct possibility that water within or just below the ice on Europa has played a role in forming some of its dynamic terrain. Observations of rotated blocks and dark floor materials may suggest that brines existed in the near subsurface and enabled the formation of such features. The University of Texas High Capability Airborne Radar Sounder (HiCARS) developed to study Antarctic ice sheet dynamics has been configured to test observation scenarios for Europa. We discuss recent results from the 60 MHz HiCARS system over brine infiltrated Antarctic marine ice as an analog for processes affecting the formation of pits and chaos. Basal melt occurring below terrestrial marine ice is directly analogous to processes that may operate on Europa if the shell is "thin,” and will be similar to processes occurring instead within the ice sheet in the case of a thicker, multi-layer ice sheet where enriched brines may remain liquid within the shell. A key site for further investigation of conductive and "convective” ices is found in the polythermal glaciers in the Arctic, and the case for this exploration will be illuminated.

  20. Dynamical stabilization of runaway potentials at finite density

    CERN Document Server

    Buchel, A; Miransky, V A; Buchel, Alex; Jia, Junji

    2006-01-01

    We study four dimensional non-abelian gauge theories with classical moduli. Introducing a chemical potential for a flavor charge causes moduli to become unstable and start condensing. We show that the moduli condensation in the presence of a chemical potential generates nonabelian field strength condensates. These condensates are homogeneous but non-isotropic. The end point of the condensation process is a stable homogeneous, but non-isotropic, vacuum in which both gauge and flavor symmetries and the rotational invariance are spontaneously broken. Possible applications of this phenomenon for the gauge theory/string theory correspondence and in cosmology are briefly discussed.

  1. Puncture initial data for black-hole binaries with high spins and high boosts

    Science.gov (United States)

    Ruchlin, Ian; Healy, James; Lousto, Carlos O.; Zlochower, Yosef

    2017-01-01

    We solve the Hamiltonian and momentum constraints of general relativity for two black holes with nearly extremal spins and relativistic boosts in the puncture formalism. We use a non-conformally-flat ansatz with an attenuated superposition of two Lorentz-boosted, conformally Kerr or conformally Schwarzschild 3-metrics and their corresponding extrinsic curvatures. We compare evolutions of these data with the standard Bowen-York conformally flat ansatz (technically limited to intrinsic spins χ =S /MADM2=0.928 and boosts P /MADM=0.897 ), finding, typically, an order of magnitude smaller burst of spurious radiation and agreement with inspiral and merger. As a first case study, we evolve two equal-mass black holes from rest with an initial separation of d =12 M and spins χi=Si/mi2=0.99 , compute the waveforms produced by the collision, the energy and angular momentum radiated, and the recoil of the final remnant black hole. We find that the black-hole trajectories curve at close separations, leading to the radiation of angular momentum. We also study orbiting nonspinning and moderate-spin black-hole binaries and compare these with standard Bowen-York data. We find a substantial reduction in the nonphysical initial burst of radiation which leads to cleaner waveforms. Finally, we study the case of orbiting binary black-hole systems with spin magnitude χi=0.95 in an aligned configuration and compare waveform and final remnant results with those of the SXS Collaboration [54 A. H. Mroue et al., Phys. Rev. Lett. 111, 241104 (2013)., 10.1103/PhysRevLett.111.241104], finding excellent agreement. This represents the first moving puncture evolution of orbiting and spinning black holes exceeding the Bowen-York limit. Finally, we study different choices of the initial lapse and lapse evolution equation in the moving puncture approach to improve the accuracy and efficiency of the simulations.

  2. Molecular dynamics study of two- and three-dimensional classical fluids using double Yukawa potential

    Indian Academy of Sciences (India)

    Y Pathania; P K Ahluwalla

    2005-09-01

    We have carried out a molecular dynamics simulation of two- and three- dimensional double Yukawa fluids near the triple point. We have compared some of the static and dynamic correlation functions with those of Lennard{Jones, when parameters occurring in double Yukawa potential are chosen to fit Lennard-Jones potential. The results are in good agreement. However, when repulsive and attractive parameters occurring in double Yukawa potential are varied, we found distinct differences in static and dynamic correlation functions. We have also compared the two-dimensional correlation functions with those of three-dimensional to study the effect of dimensionality, near the triple point region.

  3. Cosmological dynamics of scalar fields with kinetic corrections: Beyond the exponential potential

    CERN Document Server

    Dutta, Jibitesh; Tamanini, Nicola

    2016-01-01

    We expand the dynamical systems investigation of cosmological scalar fields characterised by kinetic corrections presented in [N. Tamanini, Phys. Rev. D 89 (2014) 083521]. In particular we do not restrict the analysis to exponential potentials only, but we consider arbitrary scalar field potentials and derive general results regarding the corresponding cosmological dynamics. Two specific potentials are then used as examples to show how these models can be employed not only to describe dark energy, but also to achieve dynamical crossing of the phantom barrier at late times. Stability and viability issues at the classical level are also discussed.

  4. Quasi-periodic variability and the inner radii of thin accretion disks in galactic black-hole systems

    CERN Document Server

    Matteo, T D; Matteo, Tiziana Di; Psaltis, Dimitrios

    1999-01-01

    We calculate upper bounds on the inner radii of geometrically thin accretion disks in galactic black-hole systems by relating their rapid variability properties to those of neutron stars. We infer that the inner disk radii do not exhibit large excursions between different spectral states, in contrast with the concept that the disk retreats significantly during the soft-to-hard state transition. We find that, in the hard state, the accretion disks extend down to radii less than 6-25 GM/c^2 and discuss the implications of our results for models of black-hole X-ray spectra.

  5. Estimates of black-hole natal kick velocities from observations of low-mass X-ray binaries

    CERN Document Server

    Mandel, Ilya

    2015-01-01

    The birth kicks of black holes, arising from asymmetric mass ejection or neutrino emission during core-collapse supernovae, are of great interest for both observationally constraining supernova models and population-synthesis studies of binary evolution. Recently, several efforts were undertaken to estimate black hole birth kicks from observations of black-hole low-mass X-ray binaries. We follow up on this work, specifically focussing on the highest estimated black-hole kick velocities. We find that existing observations do not require black hole birth kicks in excess of approximately 100 km/s, although higher kicks are not ruled out.

  6. Theory-Agnostic Constraints on Black-Hole Dipole Radiation with Multi-Band Gravitational-Wave Astrophysics

    CERN Document Server

    Barausse, Enrico; Chamberlain, Katherine

    2016-01-01

    The aLIGO detection of the black-hole binary GW150914 opened a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by five orders of magnitude relative to current constraints, probing extreme gravity with unprecedented accuracy.

  7. Higher-order black-hole solutions in N=2 supergravity and Calabi-Yau string backgrounds

    Science.gov (United States)

    Behrndt, Klaus; Lopes Cardoso, Gabriel; de Wit, Bernard; Lüst, Dieter; Mohaupt, Thomas; Sabra, Wafic A.

    1998-06-01

    Based on special geometry, we consider corrections to N=2 extremal black-hole solutions and their entropies originating from higher-order derivative terms in N=2 supergravity. These corrections are described by a holomorphic function, and the higher-order black-hole solutions can be expressed in terms of symplectic Sp(2n+2) vectors. We apply the formalism to N=2 type-IIA Calabi-Yau string compactifications and compare our results to recent related results in the literature.

  8. Intermediate-mass-ratio black-hole binaries: numerical relativity meets perturbation theory.

    Science.gov (United States)

    Lousto, Carlos O; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-05-28

    We study black-hole binaries in the intermediate-mass-ratio regime 0.01≲q≲0.1 with a new technique that makes use of nonlinear numerical trajectories and efficient perturbative evolutions to compute waveforms at large radii for the leading and nonleading (ℓ, m) modes. As a proof-of-concept, we compute waveforms for q=1/10. We discuss applications of these techniques for LIGO and VIRGO data analysis and the possibility that our technique can be extended to produce accurate waveform templates from a modest number of fully nonlinear numerical simulations.

  9. Effect of Blackhole Attack on Single Hop and Multihop Leach Protocol

    Directory of Open Access Journals (Sweden)

    Siddiq Iqbal,

    2014-05-01

    Full Text Available Wireless micro sensor networks provide reliable monitoring of remote areas for data-gathering. Due to the limited battery capacity of sensor nodes, energy consumption plays an important role in the operation of WSN. This can be improved by using a protocol called Low energy adaptive clustering hierarchy (LEACH.Malicious attacks are generated in the network due to power supply, processing abilities and capacity for high power radio transmission. In this paper one such attack namely BlackHole attack and its effect on single hop LEACH and multihop LEACH has been compared, simulated and analyzed.

  10. High frequency quasi-normal modes for black-holes with generic singularities

    OpenAIRE

    Das, Saurya; Shankaranarayanan, S.

    2004-01-01

    We compute the high frequency quasi-normal modes (QNM) for scalar perturbations of spherically symmetric single horizon black-holes in $(D+2)$-space-time dimensions with generic curvature singularities and having metrics of the form $ds^2 = \\eta x^p (dy^2-dx^2) + x^q d\\O_D^2$ near the singularity $x=0$. The real part of the QN frequencies is shown to be proportional to $\\log \\le[ 1 + 2\\cos \\le(\\p \\le[ qD -2 \\ri]/2 \\ri) \\ri]$ where the constant of proportionality is equal to the Hawking temper...

  11. Detecting black-hole binary clustering via the second-generation gravitational-wave detectors

    OpenAIRE

    Namikawa, Toshiya; Nishizawa, Atsushi; Taruya, Atsushi

    2016-01-01

    The first discovery of the gravitational wave (GW) event, GW150914, suggests a higher merger rate of black-hole (BH) binaries. If this is true, a number of BH binaries will be observed via the second-generation GW detectors, and the statistical properties of the observed BH binaries can be scrutinized. A naive but important question to ask is whether the spatial distribution of BH binaries faithfully traces the matter inhomogeneities in the Universe or not. Although the BH binaries are though...

  12. Quantum Nuclear Extension of Electron Nuclear Dynamics on Folded Effective-Potential Surfaces

    DEFF Research Database (Denmark)

    Hall, B.; Deumens, E.; Ohrn, Y.;

    2014-01-01

    A perennial problem in quantum scattering calculations is accurate theoretical treatment of low energy collisions. We propose a method of extracting a folded, nonadiabatic, effective potential energy surface from electron nuclear dynamics (END) trajectories; we then perform nuclear wave packet...

  13. Crossover to potential energy landscape dominated dynamics in a model glass-forming liquid

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Sastry, S.; Dyre, Jeppe;

    2000-01-01

    An equilibrated model glass-forming liquid is studied by mapping successive configurations produced by molecular dynamics simulation onto a time series of inherent structures (local minima in the potential energy). Using this "inherent dynamics" approach we find direct numerical evidence for the ...

  14. Potential energy landscape signatures of slow dynamics in glass forming liquids

    DEFF Research Database (Denmark)

    Sastry, S.; Debenedetti, P. G.; Stillinger, F. H.;

    1999-01-01

    We study the properties of local potential energy minima (‘inherent structures’) sampled by liquids at low temperatures as an approach to elucidating the mechanisms of the observed dynamical slowing down observed as the glass transition temperature is approached. This onset of slow dynamics is ac...

  15. Dynamic Behavior and Quasi-energy Spectrum of Multiband Superlattice Bloch Electrons in Quantum Kicked Potential

    Institute of Scientific and Technical Information of China (English)

    OUYANG BiYao; ZHAO XianGeng; CHEN ShiGang; LIU Jie

    2001-01-01

    In this paper, we study the dynamic behavior and quasi-energy spectrum of multiband superlattice Bloch electrons in quantum kicked potential. We show analytically and numerically the avoided crossing and band suppression about the quasi-energy spectrum, the dynamic nonlocalization, and the electron oscillation behavior between two bands.

  16. Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester

    Science.gov (United States)

    Kim, Pilkee; Nguyen, Minh Sang; Kwon, Ojin; Kim, Young-Jin; Yoon, Yong-Jin

    2016-09-01

    A system of magnetically coupled oscillators has been recently considered as a promising compact structure to integrate multiple bistable energy harvesters (BEHs), but its design is not straightforward owing to its varying potential energy pattern, which has not been understood completely yet. This study introduces the concept of phase-dependent dynamic potential in a magnetically coupled BEH system with two degrees of freedom (DOFs) to explain the underlying principle of the complicated dynamics of the system. Through theoretical simulations and analyses, two distinct dynamic regimes, called the out-of-phase and in-phase mode regimes in this report, are found to exist in the frequency regions of the 1st and 2nd primary intrawell resonances. For the out-of-phase mode regime, the frequency displacement (and output power) responses of the 2-DOF BEH system exhibit typical double-well dynamics, whereas for the in-phase mode regime, only single-well dynamics is observed though the system is statically bistable. These dynamic regimes are also revealed to be caused by the difference in the dynamic potential energy trajectories propagating on a high-dimensional potential energy surface. The present approach to the dynamics of the 2-DOF BEH system can be extended and applied to higher-DOF systems, which sheds light on compact and efficient designs of magnetically coupled BEH chain structures.

  17. Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester

    Science.gov (United States)

    Kim, Pilkee; Nguyen, Minh Sang; Kwon, Ojin; Kim, Young-Jin; Yoon, Yong-Jin

    2016-01-01

    A system of magnetically coupled oscillators has been recently considered as a promising compact structure to integrate multiple bistable energy harvesters (BEHs), but its design is not straightforward owing to its varying potential energy pattern, which has not been understood completely yet. This study introduces the concept of phase-dependent dynamic potential in a magnetically coupled BEH system with two degrees of freedom (DOFs) to explain the underlying principle of the complicated dynamics of the system. Through theoretical simulations and analyses, two distinct dynamic regimes, called the out-of-phase and in-phase mode regimes in this report, are found to exist in the frequency regions of the 1st and 2nd primary intrawell resonances. For the out-of-phase mode regime, the frequency displacement (and output power) responses of the 2-DOF BEH system exhibit typical double-well dynamics, whereas for the in-phase mode regime, only single-well dynamics is observed though the system is statically bistable. These dynamic regimes are also revealed to be caused by the difference in the dynamic potential energy trajectories propagating on a high-dimensional potential energy surface. The present approach to the dynamics of the 2-DOF BEH system can be extended and applied to higher-DOF systems, which sheds light on compact and efficient designs of magnetically coupled BEH chain structures. PMID:27677356

  18. Dynamical equations for the vector potential and the velocity potential in incompressible irrotational Euler flows: a refined Bernoulli theorem.

    Science.gov (United States)

    Ohkitani, Koji

    2015-09-01

    We consider incompressible Euler flows in terms of the stream function in two dimensions and the vector potential in three dimensions. We pay special attention to the case with singular distributions of the vorticity, e.g., point vortices in two dimensions. An explicit equation governing the velocity potentials is derived in two steps. (i) Starting from the equation for the stream function [Ohkitani, Nonlinearity 21, T255 (2009)NONLE50951-771510.1088/0951-7715/21/12/T02], which is valid for smooth flows as well, we derive an equation for the complex velocity potential. (ii) Taking a real part of this equation, we find a dynamical equation for the velocity potential, which may be regarded as a refinement of Bernoulli theorem. In three-dimensional incompressible flows, we first derive dynamical equations for the vector potentials which are valid for smooth fields and then recast them in hypercomplex form. The equation for the velocity potential is identified as its real part and is valid, for example, flows with vortex layers. As an application, the Kelvin-Helmholtz problem has been worked out on the basis the current formalism. A connection to the Navier-Stokes regularity problem is addressed as a physical application of the equations for the vector potentials for smooth fields.

  19. A potentially dynamic lysosomal role for the endogenous TRPML proteins.

    Science.gov (United States)

    Zeevi, David A; Frumkin, Ayala; Offen-Glasner, Vered; Kogot-Levin, Aviram; Bach, Gideon

    2009-10-01

    Lysosomal storage disorders (LSDs) constitute a diverse group of inherited diseases that result from lysosomal storage of compounds occurring in direct consequence to deficiencies of proteins implicated in proper lysosomal function. Pathology in the LSD mucolipidosis type IV (MLIV), is characterized by lysosomal storage of lipids together with water-soluble materials in cells from every tissue and organ of affected patients. Mutations in the mucolipin 1 (TRPML1) protein cause MLIV and TRPML1 has also been shown to interact with two of its paralogous proteins, mucolipin 2 (TRPML2) and mucolipin 3 (TRPML3), in heterologous expression systems. Heterogeneous lysosomal storage is readily identified in electron micrographs of MLIV patient cells, suggesting that proper TRPML1 function is essential for the maintenance of lysosomal integrity. In order to investigate whether TRPML2 and TRPML3 also play a role in the maintenance of lysosomal integrity, we conducted gene-specific knockdown assays against these protein targets. Ultrastructural analysis revealed lysosomal inclusions in both TRPML2 and TRPML3 knockdown cells, suggestive of a common mechanism for these proteins, in parallel with TRPML1, in the regulation of lysosomal integrity. However, co-immunoprecipitation assays revealed that physical interactions between each of the endogenous TRPML proteins are quite limited. In addition, we found that all three endogenous proteins only partially co-localize with each other in lysosomal as well as extra-lysosomal compartments. This suggests that native TRPML2 and TRPML3 might participate with native TRPML1 in a dynamic form of lysosomal regulation. Given that depletion of TRPML2/3 led to lysosomal storage typical to an LSD, we propose that depletion of these proteins might also underlie novel LSD pathologies not described hitherto.

  20. Classical and quantum dynamics in an inverse square potential

    Energy Technology Data Exchange (ETDEWEB)

    Guillaumín-España, Elisa, E-mail: ege@correo.azc.uam.mx [Laboratorio de Sistemas Dinámicos, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Azcapotzalco CP 02200 D. F. (Mexico); Núñez-Yépez, H. N., E-mail: nyhn@xanum.uam.mx [Departamento de Física, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Apartado Postal 55-534, Iztapalapa CP 09340 D. F. (Mexico); Salas-Brito, A. L., E-mail: asb@correo.azc.uam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (ICN-UNAM), Apartado Postal 70-543, 04510 México D F (Mexico)

    2014-10-15

    The classical motion of a particle in a 3D inverse square potential with negative energy, E, is shown to be geodesic, i.e., equivalent to the particle's free motion on a non-compact phase space manifold irrespective of the sign of the coupling constant. We thus establish that all its classical orbits with E < 0 are unbounded. To analyse the corresponding quantum problem, the Schrödinger equation is solved in momentum space. No discrete energy levels exist in the unrenormalized case and the system shows a complete “fall-to-the-center” with an energy spectrum unbounded by below. Such behavior corresponds to the non-existence of bound classical orbits. The symmetry of the problem is SO(3) × SO(2, 1) corroborating previously obtained results.

  1. An effective pair potential for liquid semiconductor, Se: Structure and related dynamical properties

    Indian Academy of Sciences (India)

    P P Nath; S Sarkar; R N Joarder

    2005-07-01

    The effective pair potential of liquid semiconductor Se is extracted from its experimental structure factor data using an accurate liquid state theory and this shows important basic features. A model potential incorporating the basic features of the structure factor extracted potential is suggested. This model potential is then used to describe through low-order perturbation theory, the structure and related dynamical properties like self-diffusion coefficient and shear viscosity of this complex liquid over a wide range of temperatures.

  2. MAXI J1659-152: the shortest orbital period black-hole binary

    CERN Document Server

    Kuulkers, E; van der Horst, A J; Belloni, T; Chenevez, J; Ibarra, A; Munoz-Darias, T; Bazzano, A; Bel, M Cadolle; De Cesare, G; Trigo, M Diaz; Jourdain, E; Lubinski, P; Natalucci, L; Ness, J -U; Parmar, A; Pollock, A M T; Rodriguez, J; Roques, J -P; Sanchez-Fernandez, C; Ubertini, P; Winkler, C

    2011-01-01

    Following the detection of a bright new X-ray source, MAXI J1659-152, a series of observations was triggered with almost all currently flying high-energy missions. We report here on XMM-Newton, INTEGRAL and RXTE observations during the early phase of the X-ray outburst of this transient black-hole candidate. We confirm the dipping nature in the X-ray light curves. We find that the dips recur on a period of 2.4139+/-0.0005 hrs, and interpret this as the orbital period of the system. It is thus the shortest period black-hole X-ray binary known to date. Using the various observables, we derive the properties of the source. The inclination of the accretion disk with respect to the line of sight is estimated to be 60-75 degrees. The companion star to the black hole is possibly a M5 dwarf star, with a mass and radius of about 0.15 M_sun and 0.23 R_sun, respectively. The system is rather compact (orbital separation is about 1.35 R_sun) and is located at a distance of roughly 7 kpc. In quiescence, MAXI J1659-152 is e...

  3. The Black-Hole Mass in M87 from Gemini/NIFS Adaptive Optics Observations

    CERN Document Server

    Gebhardt, Karl; Richstone, Douglas; Lauer, Tod R; Faber, S M; Gultekin, Kayhan; Murphy, Jeremy; Tremaine, Scott

    2011-01-01

    We present the stellar kinematics in the central 2" of the luminous elliptical galaxy M87 (NGC 4486), using laser adaptive optics to feed the Gemini telescope integral-field spectrograph, NIFS. The velocity dispersion rises to 480 km/s at 0.2". We combine these data with extensive stellar kinematics out to large radii to derive a black-hole mass equal to (6.6+-0.4)x10^9 Msun, using orbit-based axisymmetric models and including only the NIFS data in the central region. Including previously-reported ground-based data in the central region drops the uncertainty to 0.25x10^9 Msun with no change in the best-fit mass; however, we rely on the values derived from the NIFS-only data in the central region in order to limit systematic differences. The best-fit model shows a significant increase in the tangential velocity anisotropy of stars orbiting in the central region with decreasing radius; similar to that seen in the centers of other core galaxies. The black-hole mass is insensitive to the inclusion of a dark halo ...

  4. Cosmological Simulations of Early Blackhole Formation: Halo Mergers, Tidal Disruption, and the Conditions for Direct Collapse

    CERN Document Server

    Chon, Sunmyon; Hosokawa, Takashi; Yoshida, Naoki

    2016-01-01

    Gravitational collapse of a massive primordial gas cloud is thought to be a promising path for the formation of supermassive blackholes in the early universe. We study conditions for the so-called direct collapse (DC) blackhole formation in a fully cosmological context. We combine a semi-analytic model of early galaxy formation with halo merger trees constructed from dark matter $N$-body simulations. We locate a total of 68 possible DC sites in a volume of $20\\;h^{-1}\\;\\mathrm{Mpc}$ on a side. We then perform hydrodynamics simulations for 42 selected halos to study in detail the evolution of the massive clouds within them. We find only two successful cases where the gas clouds rapidly collapse to form stars. In the other cases, gravitational collapse is prevented by the tidal force exerted by a nearby massive halo, which otherwise should serve as a radiation source necessary for DC. Ram pressure stripping disturbs the cloud approaching the source. In many cases, a DC halo and its nearby light source halo merg...

  5. From Gamma-Ray Bursts/Hypernovae To Black-Hole Binaries

    CERN Document Server

    Méndez, Enrique Moreno

    2013-01-01

    In this work I summarize a model of binary stellar evolution involving Case C mass transfer followed by a common envelope that strips away the hydrogen from the core of the primary star at the cost of shrinking the orbital separation and then, through tidal interaction, spins it up. This model is then used to produce the possible progenitors of long gamma-ray burst / hypernova (GRB/HN) explosions. As the core collapses with the newly supplied angular momentum it produces a Kerr black hole surrounded by an accretion disk. Energy is extracted from the rotation of the black hole (BH) through the Blandford-Znajek (BZ) mechanism to power both, the long gamma-ray burst and the accompanying hypernova (supernova type Ic broad line). If the binary survives the asymmetric mass loss its remnant is a black-hole binary that may eventually be observed as a soft X-ray transient (SXT) when the companion evolves and starts to transfer mass back to the black hole. A comparison with a sample of black-hole binaries where the mas...

  6. High-Frequency QPOs and Overstable Oscillations of Black-Hole Accretion Disks

    CERN Document Server

    Lai, Dong; Tsang, David; Horak, Jiri; Yu, Cong

    2012-01-01

    The physical origin of high-frequency QPOs (HFQPOs) in black-hole X-ray binaries remains an enigma despite many years of detailed observational studies. Although there exists a number of models for HFQPOs, many of these are simply "notions" or "concepts" without actual calculation derived from fluid or disk physics. Future progress requires a combination of numerical simulations and semi-analytic studies to extract physical insights. We review recent works on global oscillation modes in black-hole accretion disks, and explain how, with the help of general relativistic effects, the energy stored in the disk differential rotation can be pumped into global spiral density modes in the disk, making these modes grow to large amplitudes under certain conditions ("corotational instability"). These modes are robust in the presence of disk magnetic fields and turbulence. The computed oscillation mode frequencies are largely consistent with the observed values for HFQPOs in BH X-ray binaries. The approximate 2:3 frequen...

  7. Can we measure individual black-hole spins from gravitational-wave observations?

    CERN Document Server

    Pürrer, Michael; Ohme, Frank

    2015-01-01

    Measurements of black-hole spins from gravitational-wave observations of black-hole binaries with ground-based detectors are expected to be hampered by partial degeneracies in the gravitational-wave phasing: between the two component spins, and between the spins and the binary's mass ratio, at least for signals that are dominated by the binary's inspiral. Through the merger and ringdown, however, a different set of degeneracies apply. This suggests the possibility that, if the inspiral, merger and ringdown are all within the sensitive frequency band of a detector, we may be able to break these degeneracies and more accurately measure both spins. In this work we investigate our ability to measure individual spins for non-precessing binaries, for a range of configurations and signal strengths, and conclude that in general the spin of the larger black hole will be measurable (at best) with observations from Advanced LIGO and Virgo. This implies that in many applications waveform models parameterized by only one ...

  8. Dpraodv: A Dyanamic Learning System Against Blackhole Attack in Aodv Based Manet

    CERN Document Server

    Raj, Payal N

    2009-01-01

    Security is an essential requirement in mobile ad hoc networks to provide protected communication between mobile nodes. Due to unique characteristics of MANETS, it creates a number of consequential challenges to its security design. To overcome the challenges, there is a need to build a multifence security solution that achieves both broad protection and desirable network performance. MANETs are vulnerable to various attacks, blackhole, is one of the possible attacks. Black hole is a type of routing attack where a malicious node advertise itself as having the shortest path to all nodes in the environment by sending fake route reply. By doing this, the malicious node can deprive the traffic from the source node. It can be used as a denial-of-service attack where it can drop the packets later. In this paper, we proposed a DPRAODV (Detection, Prevention and Reactive AODV) to prevent security threats of blackhole by notifying other nodes in the network of the incident. The simulation results in ns2 (ver- 2.33) de...

  9. Can we measure individual black-hole spins from gravitational-wave observations?

    Science.gov (United States)

    Pürrer, Michael; Hannam, Mark; Ohme, Frank

    2016-04-01

    Measurements of black-hole spins from gravitational-wave observations of black-hole binaries with ground-based detectors are known to be hampered by partial degeneracies in the gravitational-wave phasing: between the two component spins, and between the spins and the binary's mass ratio, at least for signals that are dominated by the binary's inspiral. Through the merger and ringdown, however, a different set of degeneracies apply. This suggests the possibility that, if the inspiral, merger and ringdown are all within the sensitive frequency band of a detector, we may be able to break these degeneracies and more accurately measure both spins. In this work we investigate our ability to measure individual spins for nonprecessing binaries, for a range of configurations and signal strengths, and conclude that in general the spin of the larger black hole will be measurable (at best) with observations from Advanced LIGO and Virgo. This implies that in many applications waveform models parameterized by only one effective spin will be sufficient. Our work does not consider precessing binaries or subdominant harmonics, although we provide some arguments why we expect that these will not qualitatively change our conclusions.

  10. Dynamics of warm Chaplygin gas inflationary models with quartic potential

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul; Rani, Shamaila [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Butt, Sadaf [Lahore Leads University, Department of Mathematics, Lahore (Pakistan); Kinnaird College for Women, Department of Mathematics, Lahore (Pakistan)

    2016-05-15

    Warm inflationary universe models in the context of the generalized Chaplygin gas, the modified Chaplygin gas, and the generalized cosmic Chaplygin gas are being studied. The dissipative coefficient of the form Γ ∝ T, and the weak and the strong dissipative regimes are being considered. We use the quartic potential, (λ{sub *}φ{sup 4})/(4), which is ruled out by current data in cold inflation but in our models by analysis it is seen to be in agreement with the WMAP9 and the latest Planck data. In these scenarios, the power spectrum, the spectral index, and the tensor-to-scalar ratio are being examined in the slow-roll approximation. We show the dependence of the tensor-scalar ratio r on the spectral index n{sub s} and observe that the range of the tensor-scalar ratio is r < 0.05 in the generalized Chaplygin gas, r < 0.15 in the modified Chaplygin gas, and r < 0.12 in the generalized cosmic Chaplygin gas models. Our results are in agreement with recent observational data like WMAP9 and the latest Planck data. (orig.)

  11. Nonstatistical dynamics on potentials exhibiting reaction path bifurcations and valley-ridge inflection points

    CERN Document Server

    Collins, Peter; Ezra, Gregory S; Wiggins, Stephen

    2013-01-01

    We study reaction dynamics on a model potential energy surface exhibiting post-transition state bifurcation in the vicinity of a valley ridge inflection point. We compute fractional yields of products reached after the VRI region is traversed, both with and without dissipation. It is found that apparently minor variations in the potential lead to significant changes in the reaction dynamics. Moreover, when dissipative effects are incorporated, the product ratio depends in a complicated and highly non-monotonic fashion on the dissipation parameter. Dynamics in the vicinity of the VRI point itself play essentially no role in determining the product ratio, except in the highly dissipative regime.

  12. Dynamical potential approach to dissociation of H-C bond in HCO highly excited vibration

    Institute of Scientific and Technical Information of China (English)

    Fang Chao; Wu Guo-Zhen

    2009-01-01

    The highly excited vibrational levels of HCO in the electronic ground state, X1A', are employed to determine the coefficients of an algebraic Hamiltonian, by which the dynamical potential is derived and shown to be very useful for interpreting thc intramolecular vibrational relaxation (IVR) which operates via the HCO bending motion. The IVR inhibits the dissociation of H atom and enhances the stochastic degree of dynamical character. This approach is from a global viewpoint on a series of levels classified by the polyad number which is a constant of motion in a certain dynamical domain. In this way, the seemingly complicated level structure shows very regular picture, dynamically.

  13. Dynamic assessment: an approach to assessing children's language-learning potential.

    Science.gov (United States)

    Gutiérrez-Clellen, V F

    2000-01-01

    Dynamic assessment represents an alternative approach to traditional language assessments. In dynamic assessment, the examiner attempts to assess the child's potential for language change or modifiability. This article discusses the development of this approach from its early psychological applications to current models of dynamic assessment as they apply to the assessment of child language. Dynamic assessment is particularly useful in addressing cultural differences that may influence children's assessment performance. The approach involves a test-teach-retest paradigm that includes mediated learning experiences, measures of test score gains, ratings of modifiability and language-learning strategies, as well as analyses of qualitative changes in children's responses.

  14. Dynamics of Bose-Einstein condensates in novel optical potentials

    Energy Technology Data Exchange (ETDEWEB)

    Kueber, Johannes

    2014-07-21

    Matter wave interferometry offers a novel approach for high precision measurements, such as the determination of physical constants like the local gravity constant g or the fine-structure constant. Since its early demonstration, it has become an important tool in the fields of fundamental and applied physics. The present work covers the implementation of matter wave interferometers as well as the creation of novel guiding potentials for ultra-cold ensembles of atoms and Bose-Einstein condensates for this purpose. In addition, novel techniques for the manipulation of atoms with Bragg lattices are presented, serving as elements for interferometry. The measurements in this work are performed with a Bose-Einstein condensate of 25000 {sup 87}rubidium atoms created in a crossed optical dipole trap. The crossed optical dipole trap is loaded from a magneto-optical trap and allows a measurement every 25 s. This work introduces the novel technique of double Bragg diffraction as a tool for atom optics for the first time experimentally. The creation of beamsplitters and mirrors for advanced interferometric measurements is characterized. An in depth discussion on the momentum distribution of atomic clouds and its influence on double Bragg diffraction is given. Additionally experimental results for higher-order Bragg diffraction are explained and double Bragg diffraction is used to implement a full Ramsey-type interferometer. A second central result of this work is the implementation of novel guiding structures for ultra-cold atoms. These structures are created with conical refraction, an effect that occurs when light is guided along one of the optical axis of a bi-axial crystal. The conical refraction crystal used to operate the novel trapping geometries is a KGd(WO{sub 4}){sub 2} crystal that has been specifically cut orthogonal to one of the optical axis. Two regimes are discussed in detail: the creation of a toroidal matter wave guide and the implementation of a three

  15. Electron injection dynamics in high-potential porphyrin photoanodes.

    Science.gov (United States)

    Milot, Rebecca L; Schmuttenmaer, Charles A

    2015-05-19

    There is a growing need to utilize carbon neutral energy sources, and it is well known that solar energy can easily satisfy all of humanity's requirements. In order to make solar energy a viable alternative to fossil fuels, the problem of intermittency must be solved. Batteries and supercapacitors are an area of active research, but they currently have relatively low energy-to-mass storage capacity. An alternative and very promising possibility is to store energy in chemical bonds, or make a solar fuel. The process of making solar fuel is not new, since photosynthesis has been occurring on earth for about 3 billion years. In order to produce any fuel, protons and electrons must be harvested from a species in its oxidized form. Photosynthesis uses the only viable source of electrons and protons on the scale needed for global energy demands: water. Because artificial photosynthesis is a lofty goal, water oxidation, which is a crucial step in the process, has been the initial focus. This Account provides an overview of how terahertz spectroscopy is used to study electron injection, highlights trends from previously published reports, and concludes with a future outlook. It begins by exploring similarities and differences between dye-sensitized solar cells (DSSCs) for producing electricity and a putative device for splitting water and producing a solar fuel. It then identifies two important problems encountered when adapting DSSC technology to water oxidation-improper energy matching between sensitizer energy levels with the potential for water oxidation and the instability of common anchoring groups in water-and discusses steps to address them. Emphasis is placed on electron injection from sensitizers to metal oxides because this process is the initial step in charge transport. Both the rate and efficiency of electron injection are analyzed on a sub-picosecond time scale using time-resolved terahertz spectroscopy (TRTS). Bio-inspired pentafluorophenyl porphyrins are

  16. Gravitational wave signatures in black-hole forming core collapse

    CERN Document Server

    Cerdá-Durán, Pablo; Aloy, Miguel A; Font, José A; Obergaulinger, Martin

    2013-01-01

    We present numerical simulations in general relativity of collapsing stellar cores. Our initial model consists of a low metallicity rapidly-rotating progenitor which is evolved in axisymmetry with the latest version of our general relativistic code CoCoNuT, which allows for black hole formation and includes the effects of a microphysical equation of state (LS220) and a neutrino leakage scheme to account for radiative losses. The motivation of our study is to analyze in detail the emission of gravitational waves in the collapsar scenario of long gamma-ray bursts. Our simulations show that the phase during which the proto-neutron star (PNS) survives before ultimately collapsing to a black hole is particularly optimal for gravitational wave emission. The high-amplitude waves last for several seconds and show a remarkable quasi-periodicity associated with the violent PNS dynamics, namely during the episodes of convection and the subsequent nonlinear development of the standing-accretion shock instability (SASI). ...

  17. Spectroscopic analysis of stellar mass black-hole mergers in our local universe with ground-based gravitational wave detectors

    CERN Document Server

    Bhagwat, Swetha; Ballmer, Stefan W

    2016-01-01

    Motivated by the recent discoveries of binary black-hole mergers by the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO), we investigate the prospects of ground-based detectors to perform a spectroscopic analysis of signals emitted during the ringdown of the final Kerr black-hole formed by a stellar mass binary black-hole merger. Although it is unlikely that Advanced LIGO can measure multiple modes of the ringdown, assuming an optimistic rate of 240 Gpc$^{-3}$yr$^{-1}$, upgrades to the existing LIGO detectors could measure multiple ringdown modes in $\\sim$6 detections per year. New ground-based facilities such as Einstein Telescope or Cosmic Explorer could measure multiple ringdown modes in over 300 events per year. We perform Monte-Carlo injections of $10^{6}$ binary black-hole mergers in a search volume defined by a sphere of radius 1500 Mpc centered at the detector, for various proposed ground-based detector models. We assume a uniform random distribution in component masses of ...

  18. Hawking radiation and the Stefan-Boltzmann law: The effective radius of the black-hole quantum atmosphere

    CERN Document Server

    Hod, Shahar

    2016-01-01

    It has recently been suggested [S. B. Giddings, Phys. Lett. B {\\bf 754}, 39 (2016)] that the Hawking black-hole radiation spectrum originates from an effective quantum "atmosphere" which extends well outside the black-hole horizon. In particular, comparing the Hawking radiation power of a $(3+1)$-dimensional Schwarzschild black hole of horizon radius $r_{\\text{H}}$ with the familiar Stefan-Boltzmann radiation power of a $(3+1)$-dimensional flat space perfect blackbody emitter, Giddings concluded that the source of the Hawking semi-classical black-hole radiation is a quantum region outside the Schwarzschild black-hole horizon whose effective radius $r_{\\text{A}}$ is characterized by the relation $\\Delta r\\equiv r_{\\text{A}}-r_{\\text{H}}\\sim r_{\\text{H}}$. It is of considerable physical interest to test the general validity of Giddings's intriguing conclusion. To this end, we study the Hawking radiation of $(D+1)$-dimensional Schwarzschild black holes. We find that the dimensionless radii $r_{\\text{A}}/r_{\\text...

  19. Coupled Wavepackets for Non-Adiabatic Molecular Dynamics: A Generalization of Gaussian Wavepacket Dynamics to Multiple Potential Energy Surfaces

    CERN Document Server

    White, Alexander; Mozyrsky, Dmitry

    2016-01-01

    Accurate simulation of the non-adiabatic dynamics of molecules in excited electronic states is key to understanding molecular photo-physical processes. Here we present a novel method, based on a semiclassical approximation, that is as efficient as the commonly used mean field Ehrenfest or ad hoc Surface Hopping methods and properly accounts for interference and decoherence effects. This novel method is an extension of Hellers Thawed Gaussian wavepacket dynamics that includes coupling between potential energy surfaces. The accuracy of the method can be systematically improved.

  20. Constraining the formation of black-holes in short-period Black-Hole Low-Mass X-ray Binaries

    CERN Document Server

    Repetto, Serena

    2015-01-01

    The formation of stellar mass black holes is still very uncertain. Two main uncertainties are the amount of mass ejected in the supernova event (if any) and the magnitude of the natal kick the black hole receives at birth (if any). Repetto et al. (2012), studying the position of Galactic X-ray binaries containing black holes, found evidence for black holes receiving high natal kicks at birth. In this Paper we extend that study, taking into account the previous binary evolution of the sources as well. The seven short-period black-hole X-ray binaries that we use, are compact binaries consisting of a low-mass star orbiting a black hole in a period less than $1$ day. We trace their binary evolution backwards in time, from the current observed state of mass-transfer, to the moment the black hole was formed, and we add the extra information on the kinematics of the binaries. We find that several systems could be explained by no natal kick, just mass ejection, while for two systems (and possibly more) a high kick is...

  1. Dynamic instability of shallow shells in three-dimensional incompressible inviscid potential flow

    Science.gov (United States)

    Avramov, K. V.; Papazov, S. V.; Breslavsky, I. D.

    2017-04-01

    The system of the hypersingular integral equations with respect to the aerodynamic derivatives of the shell pressure drop is obtained to analyze the interaction of the shallow shell with three-dimensional incompressible potential air flow. This system of the integral equations is very applicable to analyze aeroelastic vibrations of thin-walled structures. The numerical approach based on the discrete vortices method is suggested to solve the system of the hypersingular integral equations. Using the assumed-mode method, the finite degrees of freedom dynamical system is derived to analyze the shallow shell dynamic instability. The dynamic instability of the shallow shell equilibrium in the subsonic air flow is analyzed numerically. This type of instability results in flutter. The influence of the structure parameters on the dynamic instability is analyzed. The parameters of the dynamic instability are compared with the data, which are calculated by the software ANSYS.

  2. Generalized sigma model with dynamical antisymplectic potential and non-Abelian de Rham's differential

    Science.gov (United States)

    Batalin, Igor A.; Lavrov, Peter M.

    2017-04-01

    For topological sigma models, we propose that their local Lagrangian density is allowed to depend non-linearly on the de Rham's "velocities" DZA. Then, by differentiating the Lagrangian density with respect to the latter de Rham's "velocities", we define a "dynamical" anti-symplectic potential, in terms of which a "dynamical" anti-symplectic metric is defined, as well. We define the local and the functional antibracket via the dynamical anti-symplectic metric. Finally, we show that the generalized action of the sigma model satisfies the functional master equation, as required.

  3. Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity

    Science.gov (United States)

    Sperhake, Ulrich; Berti, Emanuele; Cardoso, Vitor; González, José A.; Brügmann, Bernd; Ansorg, Marcus

    2008-09-01

    We study the transition from inspiral to plunge in general relativity by computing gravitational waveforms of nonspinning, equal-mass black-hole binaries. We consider three sequences of simulations, starting with a quasicircular inspiral completing 1.5, 2.3 and 9.6 orbits, respectively, prior to coalescence of the holes. For each sequence, the binding energy of the system is kept constant and the orbital angular momentum is progressively reduced, producing orbits of increasing eccentricity and eventually a head-on collision. We analyze in detail the radiation of energy and angular momentum in gravitational waves, the contribution of different multipolar components and the final spin of the remnant, comparing numerical predictions with the post-Newtonian approximation and with extrapolations of point-particle results. We find that the motion transitions from inspiral to plunge when the orbital angular momentum L=Lcrit≃0.8M2. For Lcensorship conjecture.

  4. Mergers of Black-Hole Binaries with Aligned Spins: Waveform Characteristics

    Science.gov (United States)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; McWilliams, Sean T.; Centrella, Joan

    2011-01-01

    "We apply our gravitational-waveform analysis techniques, first presented in the context of nonspinning black holes of varying mass ratio [1], to the complementary case of equal-mass spinning black-hole binary systems. We find that, as with the nonspinning mergers, the dominant waveform modes phases evolve together in lock-step through inspiral and merger, supporting the previous model of the binary system as an adiabatically rigid rotator driving gravitational-wave emission - an implicit rotating source (IRS). We further apply the late-merger model for the rotational frequency introduced in [1], along with a new mode amplitude model appropriate for the dominant (2, plus or minus 2) modes. We demonstrate that this seven-parameter model performs well in matches with the original numerical waveform for system masses above - 150 solar mass, both when the parameters are freely fit, and when they are almost completely constrained by physical considerations."

  5. Astrophysical ZeV acceleration in the relativistic jet from an accreting supermassive blackhole

    Science.gov (United States)

    Ebisuzaki, Toshikazu; Tajima, Toshiki

    2014-04-01

    An accreting supermassive blackhole, the central engine of active galactic nucleus (AGN), is capable of exciting extreme amplitude Alfven waves whose wavelength (wave packet) size is characterized by its clumpiness. The pondermotive force and wakefield are driven by these Alfven waves propagating in the AGN (blazar) jet, and accelerate protons/nuclei to extreme energies beyond Zetta-electron volt (ZeV=1021 eV). Such acceleration is prompt, localized, and does not suffer from the multiple scattering/bending enveloped in the Fermi acceleration that causes excessive synchrotron radiation loss beyond 1019 eV. The production rate of ZeV cosmic rays is found to be consistent with the observed gamma-ray luminosity function of blazars and their time variabilities.

  6. Supermassive blackhole growth and the supernovae history in high-z early-type galaxies

    Science.gov (United States)

    Rocca-Volmerange, Brigitte

    2015-08-01

    A large variety of feedback models, supported by many galaxy surveys, tentatively relate AGN to star formation by stimulation or quenching. However any accretion process from variable AGNs has never been observed to be turned on or off by star formation. We propose to follow the supernovae explosions through the star formation laws of early-type galaxies with the help of the galaxy evolution model Pégase.3. Applied to the continuous Spectral Energy Distribution, including Herschel data of two z=3.8 radio galaxies (4C41.17 and TN J2007-1316), the comparison with Supermassive BlackHole masses from SDSS opens a new interpretation of the AGN-starburst relation without any need of feedback (Rocca-Volmerange et al, 2015, 2013)

  7. Mergers of non-spinning black-hole binaries: Gravitational radiation characteristics

    CERN Document Server

    Baker, John G; Centrella, Joan; Kelly, Bernard J; McWilliams, Sean T; van Meter, James R

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an {\\em implicit rotating source}. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the $\\ell=m$ modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the $\\ell=m$ modes among all mass-ratios. We identify relationships, with...

  8. Astrophysical ZeV acceleration in the relativistic jet from an accreting supermassive blackhole

    CERN Document Server

    Ebisuzaki, Toshikazu

    2013-01-01

    An accreting supermassive blackhole, the central engine of active galactic nucleus (AGN), is capable of exciting extreme amplitude Alfven waves whose wavelength (wave packet) size is characterized by its clumpiness. Alfvenic wakefelds excited in the AGN (blazar) jet can accelerate protons/nuclei to extreme energies beyond Zettaelectron volt (ZeV= 10^21 eV). Such acceleration is prompt, localized, and does not suffer from the multiple scattering/bending enveloped in the Fermi acceleration that causes excessive synchrotron radiation loss beyond 10^19 eV. The production rate of ZeV cosmic rays is found to be consistent with the observed gamma-ray luminosity function of blazars and their time variability.

  9. A jet model for Galactic black-hole X-ray sources: Some constraining correlations

    CERN Document Server

    Kylafis, N D; Reig, P; Giannios, D; Pooley, G G

    2008-01-01

    Some recent observational results impose significant constraints on all the models that have been proposed to explain the Galactic black-hole X-ray sources in the hard state. In particular, it has been found that during the hard state of Cyg X-1 the power-law photon number spectral index is correlated with the average time lag between hard and soft X-rays. Furthermore, the peak frequencies of the four Lorentzians that fit the observed power spectra are correlated with both the photon index and the time lag. We performed Monte Carlo simulations of Compton upscattering of soft, accretion-disk photons in the jet and computed the time lag between hard and soft photons and the power-law index of the resulting photon number spectra. We demonstrate that our jet model naturally explains the above correlations, with no additional requirements and no additional parameters.

  10. "Complete" gravitational waveforms for black-hole binaries with non-precessing spins

    CERN Document Server

    Ajith, P; Husa, S; Chen, Y; Brügmann, B; Dorband, N; Müller, D; Ohme, F; Pollney, D; Reisswig, C; Santamaria, L; Seiler, J

    2009-01-01

    We present the first analytical inspiral-merger-ringdown gravitational waveforms from black-hole (BH) binaries with non-precessing spins. By matching a post-Newtonian description of the inspiral to a set of numerical calculations performed in full general relativity, we obtain a waveform family with a conveniently small number of physical parameters. The physical content of these waveforms includes the "orbital hang-up" effect, when BHs are spinning rapidly along the direction of the orbital angular momentum. These waveforms will allow us to detect a larger parameter space of BH binary coalescence, to explore various scientific questions related to GW astronomy, and could dramatically improve the expected detection rates of GW detectors.

  11. Dynamic responses of a multilayer piezoelectric hollow cylinder under electric potential excitation

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-ming; CHEN Yun-min; DING Hao-jiang

    2005-01-01

    The dynamic responses of a multilayer piezoelectric infinite hollow cylinder under electric potential excitation were obtained. The method of superposition was used to divide the solution into two parts, the part satisfying the mechanical boundary conditions and continuity conditions was first obtained by solving a system of linear equations;the other part was obtained by the separation of variables method. The present method is suitable for a multilayer piezoelectric infinite hollow cylinder consisting of arbitrary layers and subjected to arbitrary axisymmetric electric excitation. Dynamic responses of stress and electric potential are finally presented and analyzed.

  12. Quantum wave packet dynamics with trajectories: reflections on a downhill ramp potential

    Science.gov (United States)

    Lopreore, Courtney L.; Wyatt, Robert E.

    2000-07-01

    The quantum trajectory method (QTM) for wave packet dynamics involves solving discretized hydrodynamic equations-of-motion in the Lagrangian picture (C. Lopreore, R.E. Wyatt, Phys. Rev. Lett. 82 (1999) 5190). In this Letter, results are presented which illustrate the dynamics of an initial Gaussian wave packet on a downhill ramp potential. Plots are shown for the time evolving probability density, as well as phase space plots and force diagrams. The mechanism, deduced from these plots, surprisingly shows some of the transmitted fluid elements of the wave packet making a U-turn before they head downhill on the ramp potential.

  13. Quantum grow--a quantum dynamics sampling approach for growing potential energy surfaces and nonadiabatic couplings.

    Science.gov (United States)

    Godsi, Oded; Collins, Michael A; Peskin, Uri

    2010-03-28

    A quantum sampling algorithm for the interpolation of diabatic potential energy matrices by the Grow method is introduced. The new procedure benefits from penetration of the wave packet into classically forbidden regions, and the accurate quantum mechanical description of nonadiabatic transitions. The increased complexity associated with running quantum dynamics is reduced by using approximate low order expansions of the nuclear wave function within a Multi-configuration time-dependent Hartree scheme during the Grow process. The sampling algorithm is formulated and applied for three representative test cases, demonstrating the recovery of analytic potentials by the interpolated ones, and the convergence of a dynamic observable.

  14. Determination of Mean Inner Potential by Electron Holography Along with Electron Dynamic Simulation

    Institute of Scientific and Technical Information of China (English)

    王岩国; 刘红荣; 杨奇斌; 张泽

    2003-01-01

    Off-axis electron holography in a field-emission-gun transmission electron microscope and electron dynamic simulation is used to determine the mean inner potential of copper. The phase shift of object wave versus specimen thickness is calculated up to 30 nm using electron dynamic formula, and the sample thickness is decided by match of the experimental and calculated phase shift. Based on the measured phase shift, the calculated mean inner potential of Cu is 21.2 V, which agrees with the reported values within the experimental error.

  15. The dynamical behaviour of homogeneous scalar-field spacetimes with general self-interaction potentials

    CERN Document Server

    Giambó, Roberto; Magli, Giulio

    2008-01-01

    The dynamics of homogeneous Robertson--Walker cosmological models with a self-interacting scalar field source is examined here in full generality, requiring only the scalar field potential to be bounded from below and divergent when the field diverges. In this way we are able to give a unified treatment of all the already studied cases - such as positive potentials which exhibit asymptotically polynomial or exponential behaviors - together with its extension to a much wider set of physically sensible potentials. Since the set includes potentials with negative inferior bound, we are able to give, in particular, the analysis of the asymptotically anti De Sitter states for such cosmologies.

  16. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations.

    Science.gov (United States)

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-28

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential

  17. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Vaidehi, Nagarajan, E-mail: nvaidehi@coh.org [Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, California 91010 (United States); Jain, Abhinandan, E-mail: Abhi.Jain@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2016-01-28

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential

  18. Size dependency and potential field influence on deriving mechanical properties of carbon nanotubes using molecular dynamics

    Directory of Open Access Journals (Sweden)

    K.G.S. Dilrukshi

    2015-07-01

    Full Text Available A thorough understanding on the mechanical properties of carbon nanotube (CNT is essential in extending the advanced applications of CNT based systems. However, conducting experiments to estimate mechanical properties at this scale is extremely challenging. Therefore, development of mechanistic models to estimate the mechanical properties of CNTs along with the integration of existing continuum mechanics concepts is critically important. This paper presents a comprehensive molecular dynamics simulation study on the size dependency and potential function influence of mechanical properties of CNT. Commonly used reactive bond order (REBO and adaptive intermolecular reactive bond order (AIREBO potential functions were considered in this regard. Young’s modulus and shear modulus of CNTs are derived by integrating classical continuum mechanics concepts with molecular dynamics simulations. The results indicate that the potential function has a significant influence on the estimated mechanical properties of CNTs, and the influence of potential field is much higher when studying the torsional behaviour of CNTs than the tensile behaviour.

  19. Dynamics of action potential initiation in the GABAergic thalamic reticular nucleus in vivo.

    Directory of Open Access Journals (Sweden)

    Fabián Muñoz

    Full Text Available Understanding the neural mechanisms of action potential generation is critical to establish the way neural circuits generate and coordinate activity. Accordingly, we investigated the dynamics of action potential initiation in the GABAergic thalamic reticular nucleus (TRN using in vivo intracellular recordings in cats in order to preserve anatomically-intact axo-dendritic distributions and naturally-occurring spatiotemporal patterns of synaptic activity in this structure that regulates the thalamic relay to neocortex. We found a wide operational range of voltage thresholds for action potentials, mostly due to intrinsic voltage-gated conductances and not synaptic activity driven by network oscillations. Varying levels of synchronous synaptic inputs produced fast rates of membrane potential depolarization preceding the action potential onset that were associated with lower thresholds and increased excitability, consistent with TRN neurons performing as coincidence detectors. On the other hand the presence of action potentials preceding any given spike was associated with more depolarized thresholds. The phase-plane trajectory of the action potential showed somato-dendritic propagation, but no obvious axon initial segment component, prominent in other neuronal classes and allegedly responsible for the high onset speed. Overall, our results suggest that TRN neurons could flexibly integrate synaptic inputs to discharge action potentials over wide voltage ranges, and perform as coincidence detectors and temporal integrators, supported by a dynamic action potential threshold.

  20. THE VIRIAL OF ANGLE-DEPENDENT POTENTIALS IN MOLECULAR-DYNAMICS SIMULATIONS

    NARCIS (Netherlands)

    BEKKER, H; AHLSTROM, P

    1994-01-01

    It is proved that the scalar virial of potentials that only depend on angles is zero. This is proved for nonperiodic boundary conditions as well as periodic boundary condition (PBC) systems. This theory is tested on an molecular dynamics simulation of butane with PBC.

  1. Dynamic Airline Scheduling: An Analysis of the Potentials of Refleeting and Retiming

    DEFF Research Database (Denmark)

    Warburg, Valdemar; Hansen, Troels G.; Larsen, Allan

    We present a Dynamic Airline Scheduling (DAS) technique which is able to change departure times and reassign aircraft types during the booking process to meet fluctuating passenger demands. The procedure is tested on several different days before departure, resulting in a significant profit...... increase for a major European airline. The results also indicate that applying DAS close to departure yields the largest potential....

  2. Dynamic Airline Scheduling: An Analysis of the Potentials of Refleeting and Retiming

    DEFF Research Database (Denmark)

    Warburg, Valdemar; Hansen, Troels G.; Larsen, Allan

    2008-01-01

    We present a Dynamic Airline Scheduling (DAS) technique which is able to change departure times and reassign aircraft types during the booking process to meet fluctuating passenger demands. The procedure is tested on several different days before departure, resulting in a significant profit...... increase for a major European airline. The results also indicate that applying DAS close to departure yields the largest potential....

  3. Program for quantum wave-packet dynamics with time-dependent potentials

    CERN Document Server

    Dion, C M; Rahali, G

    2014-01-01

    We present a program to simulate the dynamics of a wave packet interacting with a time-dependent potential. The time-dependent Schr\\"odinger equation is solved on a one-, two-, or three-dimensional spatial grid using the split operator method. The program can be compiled for execution either on a single processor or on a distributed-memory parallel computer.

  4. A dynamic model of potential growth of olive (Olea europaea L.) orchards

    NARCIS (Netherlands)

    Morales Sierra, Alejandro; Leffelaar, Peter A.; Testi, Luca; Orgaz, Francisco; Villalobos, Francisco J.

    2016-01-01

    A model of potential olive oil production is presented, based on a three-dimensional model of canopy photosynthesis and respiration and dynamic distribution of assimilates among organs. The model is used to analyse the effects of planting density (high and super-high density orchards with 408 and

  5. The Dynamic Electric Polarizability of a Particle Bound by a Double Delta Potential

    Science.gov (United States)

    Maize, M. A.; Smetanka, J. J.

    2008-01-01

    In this paper we derive an expression for the dynamic electric polarizability of a particle bound by a double delta potential for frequencies below and above the absolute value of the particle's ground state energy. The derived expression will be used to study some of the fundamental features of the system and its representation of real systems.…

  6. A dynamic model of potential growth of olive (Olea europaea L.) orchards

    NARCIS (Netherlands)

    Morales Sierra, Alejandro; Leffelaar, Peter A.; Testi, Luca; Orgaz, Francisco; Villalobos, Francisco J.

    2016-01-01

    A model of potential olive oil production is presented, based on a three-dimensional model of canopy photosynthesis and respiration and dynamic distribution of assimilates among organs. The model is used to analyse the effects of planting density (high and super-high density orchards with 408 and

  7. Eliminating black-hole problem of DWDC by adjusting thermal conditions of feed and intermediate product%通过调整进出料热状况消除隔离壁精馏塔的黑洞

    Institute of Scientific and Technical Information of China (English)

    焦英杰; 黄克谨

    2014-01-01

    While four-point control strategy (i.e.,the main compositions of the three products and the ratio between the two impurities in the intermediate product are controlled simultaneously) is used for the dividing-wall distillation column (DWDC),the black-hole problem occurs and limits process flexibility and operability. In this paper,a philosophy was proposed to eliminate the black-hole problem with careful adjustment of the thermal conditions of feed and intermediate product. Through strong influence on the overall energy balance of the DWDC,these two variables affected the interlinking flows between prefractionator and main distillation column involved and could thus serve to coordinate their relationship. The dynamic responses were also improved after elimination of the black-hole problem. A simple rule was proposed to adjust the thermal conditions and three possible configurations could be obtained. The separation of a hypothetical ternary mixture,A,B,and C simulated with Aspen Plus,was chosen to evaluate the feasibility and effectiveness of the proposed philosophy. After steady-state analysis and closed-loop control studies,the results demonstrated that the black-hole problem could be completely removed through careful adjustment of the thermal conditions of feed and intermediate product. This philosophy brought the method of eliminating the black-hole problem to completion and enhanced the flexibility and operability of the DWDC.%隔离壁精馏塔在同时控制4个质量指标(塔顶、侧线、塔底产品浓度以及侧线采出杂质比)时会产生设计与操作黑洞,黑洞的产生对隔离壁精馏塔的应用范围带来很大的限制。本文提出了一种通过调整进料和侧线采出的热状况对隔离壁精馏塔的黑洞进行填补的策略。这两个操作变量通过对全塔热平衡的影响,改善预分离塔与主塔之间的耦合关系,进而改善两者分离能力并最终消除黑洞,同时改善了隔离壁精馏

  8. Carrying the physics of black-hole binary evolution into gravitational-wave models for pulsar-timing arrays

    Science.gov (United States)

    Taylor, Stephen; Sampson, Laura; Simon, Joseph

    2016-03-01

    There has recently been significant interest in how the galactic environments of supermassive black-hole binaries influences the stochastic gravitational-wave background signal from a population of these systems, and in how the resulting detection prospects for pulsar-timing arrays are effected. Tackling these problems requires us to have robust and computationally-efficient models for the strain spectrum as a function of different environment influences or the binary orbital eccentricity. In this talk we describe a new method of constructing these models from a small number of synthesized black-hole binary populations which have varying input physics. We use these populations to train an interpolant via Gaussian-process regression, allowing us to carry real physics into our subsequent pulsar-timing array inferences, and to also correctly propagate forward uncertainties from our interpolation.

  9. Best Approximation to a Reversible Process in Black-Hole Physics and the Area Spectrum of Spherical Black Holes

    CERN Document Server

    Hod, S

    1999-01-01

    The assimilation of a quantum (finite size) particle by a Reissner-Nordström black hole inevitably involves an increase in the black-hole surface area. It is shown that this increase can be minimized if one considers the capture of the lightest charged particle in nature. The unavoidable area increase is attributed to two physical reasons: the Heisenberg quantum uncertainty principle and a Schwinger-type charge emission (vacuum polarization). The fundamental lower bound on the area increase is $4 \\hbar$, which is smaller than the value given by Bekenstein for neutral particles. Thus, this process is a better approximation to a reversible process in black-hole physics. The universality of the minimal area increase is a further evidence in favor of a uniformly spaced area spectrum for spherical quantum black holes. Moreover, this universal value is in excellent agreement with the area spacing predicted by Mukhanov and Bekenstein and independently by Hod.

  10. Chandra reveals a black-hole X-ray binary within the ultraluminous supernova remnant MF 16

    CERN Document Server

    Roberts, T P

    2003-01-01

    We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraodinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black-hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black-hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly discuss the nature of the hard X-ray variability, and the origin of the extreme radio and optical luminosity of MF 16 in light of this identification.

  11. H-FGK formalism for black-hole solutions of N=2, d=4 and d=5 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Meessen, Patrick, E-mail: meessenpatrick@uniovi.es [HEP Theory Group, Departamento de Fisica, Universidad de Oviedo, Avda. Calvo Sotelo s/n, 33007 Oviedo (Spain); Ortin, Tomas, E-mail: Tomas.Ortin@csic.es [Instituto de Fisica Teorica UAM/CSIC, C/ Nicolas Cabrera, 13-15, C.U. Cantoblanco, 28049 Madrid (Spain); Perz, Jan, E-mail: Jan.Perz@uam.es [Instituto de Fisica Teorica UAM/CSIC, C/ Nicolas Cabrera, 13-15, C.U. Cantoblanco, 28049 Madrid (Spain); Shahbazi, C.S., E-mail: Carlos.Shabazi@uam.es [Instituto de Fisica Teorica UAM/CSIC, C/ Nicolas Cabrera, 13-15, C.U. Cantoblanco, 28049 Madrid (Spain)

    2012-03-19

    We rewrite the Ferrara-Gibbons-Kallosh (FGK) black-hole effective action of N=2, d=4,5 supergravities coupled to vector multiplets, replacing the metric warp factor and the physical scalars with real variables that transform in the same way as the charges under duality transformations, which simplifies the equations of motion. For a given model, the form of the solution in these variables is the same for all spherically symmetric black holes, regardless of supersymmetry or extremality.

  12. Circular geodesic of Bardeen and Ayon-Beato-Garcia regular black-hole and no-horizon spacetimes

    Science.gov (United States)

    Stuchlík, Zdeněk; Schee, Jan

    2015-12-01

    In this paper, we study circular geodesic motion of test particles and photons in the Bardeen and Ayon-Beato-Garcia (ABG) geometry describing spherically symmetric regular black-hole or no-horizon spacetimes. While the Bardeen geometry is not exact solution of Einstein's equations, the ABG spacetime is related to self-gravitating charged sources governed by Einstein's gravity and nonlinear electrodynamics. They both are characterized by the mass parameter m and the charge parameter g. We demonstrate that in similarity to the Reissner-Nordstrom (RN) naked singularity spacetimes an antigravity static sphere should exist in all the no-horizon Bardeen and ABG solutions that can be surrounded by a Keplerian accretion disc. However, contrary to the RN naked singularity spacetimes, the ABG no-horizon spacetimes with parameter g/m > 2 can contain also an additional inner Keplerian disc hidden under the static antigravity sphere. Properties of the geodesic structure are reflected by simple observationally relevant optical phenomena. We give silhouette of the regular black-hole and no-horizon spacetimes, and profiled spectral lines generated by Keplerian rings radiating at a fixed frequency and located in strong gravity region at or nearby the marginally stable circular geodesics. We demonstrate that the profiled spectral lines related to the regular black-holes are qualitatively similar to those of the Schwarzschild black-holes, giving only small quantitative differences. On the other hand, the regular no-horizon spacetimes give clear qualitative signatures of their presence while compared to the Schwarschild spacetimes. Moreover, it is possible to distinguish the Bardeen and ABG no-horizon spacetimes, if the inclination angle to the observer is known.

  13. Potential energy landscape and inherent dynamics of a hard-sphere fluid.

    Science.gov (United States)

    Ma, Qingqing; Stratt, Richard M

    2014-10-01

    Hard-sphere models exhibit many of the same kinds of supercooled-liquid behavior as more realistic models of liquids, but the highly nonanalytic character of their potentials makes it a challenge to think of that behavior in potential energy landscape terms. We show here that it is possible to calculate an important topological property of hard-sphere landscapes, the geodesic pathways through those landscapes, and to do so without artificially coarse-graining or softening the potential. We show, moreover, that the rapid growth of the lengths of those pathways with increasing packing fraction quantitatively predicts the precipitous decline in diffusion constants in a glass-forming hard-sphere mixture model. The geodesic paths themselves can be considered as defining the intrinsic dynamics of hard spheres, so it is also revealing to find that they (and therefore the features of the underlying potential energy landscape) correctly predict the occurrence of dynamic heterogeneity and nonzero values of the non-Gaussian parameter. The success of these landscape predictions for the dynamics of such a singular model emphasizes that there is more to potential energy landscapes than is revealed by looking at the minima and saddle points.

  14. Dynamic Flaring Non-potential Fields on Quiet Sun Network Scales

    Science.gov (United States)

    Chesny, D. L.; Oluseyi, H. M.; Orange, N. B.

    2016-05-01

    We report on the identification of dynamic flaring non-potential structures on quiet Sun (QS) supergranular network scales. Data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory allow for the high spatial and temporal resolution of this diverse class of compact structures. The rapidly evolving non-potential events presented here, with lifetimes 100″) and micro-sigmoids (>10″) with lifetimes on the order of hours to days. The photospheric magnetic field environment derived from the Helioseismic and Magnetic Imager shows a lack of evidence for these flaring non-potential fields being associated with significant concentrations of bipolar magnetic elements. Of much interest to our events is the possibility of establishing them as precursor signatures of eruptive dynamics, similar to notions for AR sigmoids and micro-sigmoids, but associated with uneventful magnetic network regions. We suggest that the mixed network flux of QS-like magnetic environments, though unresolved, can provide sufficient free magnetic energy for flaring non-potential plasma structuring. The appearance of non-potential magnetic fields could be a fundamental process leading to self-organized criticality in the QS-like supergranular network and contribute to coronal heating, as these events undergo rapid helicial and vortical relaxations.

  15. Dynamic extraction of visual evoked potentials through spatial analysis and dipole localization.

    Science.gov (United States)

    Wang, Y; Yang, F

    1995-08-01

    The dynamic extraction of evoked potential is a problem of great interest in EEG signal processing. In this paper, a comprehensive method is presented which integrates spatial analysis and dipole localization to make full use of the spatial-temporal information contained in the multichannel stimulation records. A realistic double boundary head model is constructed through CT scans and a two-step method devised to overcome the ill-posed nature of the forward problem of EEG caused by the low conductivity of the skull. As a result, visual evoked potentials can be effectively extracted from only two consecutive records and the dynamic information of visual evoked potential thus procured. The efficiency of the presented method has been verified by means of computer simulation and a clinical experiment.

  16. Dynamical Screening of Gravitational Interaction and Planetary Motions in Modified Solar Potential

    CERN Document Server

    Bashkirov, A G; Pechernikova, G V

    2001-01-01

    A density disturbance in a system of gravitating mass, induced by a moving selected body gives rise to a dynamical screening of Newtonian potential of this body. When applied to the solar planetary system it means that as a result of the motion of the Sun in the Galaxy its effective force potential appears more weak than the Newtonian potential. The relevant modifications of main relations of the solar dynamics are considered here and it is found in particular that the reestimated period of the Earth revolution around the Sun rises in 1 second per year and semimajor axis of the Earth orbit increases on 4 kilometers. Similar relations are obtained for other planets too. It may be supposed that the inclusion of these effects can help to explain the observable anomalous acceleration of spacecrafts Pioneer 10 and 11.

  17. Dynamics of Tachyon and Phantom Field beyond the Inverse Square Potentials

    CERN Document Server

    Fang, Wei; 10.1140/epjc/s10052-010-1352-0

    2010-01-01

    We investigate the cosmological evolution of the tachyon and phantom-tachyon scalar field by considering the potential parameter $\\Gamma$($=\\frac{V V"}{V'^2}$) as a function of another potential parameter $\\lambda$($=\\frac{V'}{\\kappa V^{3/2}}$), which correspondingly extends the analysis of the evolution of our universe from two-dimensional autonomous dynamical system to the three-dimension. It allows us to investigate the more general situation where the potential is not restricted to inverse square potential and .One result is that, apart from the inverse square potential, there are a large number of potentials which can give the scaling and dominant solution when the function $\\Gamma(\\lambda)$ equals $3/2$ for one or some values of $\\lambda_{*}$ as well as the parameter $\\lambda_{*}$ satisfies condition Eq.(18) or Eq.(19). We also find that for a class of different potentials the dynamics evolution of the universe are actually the same and therefore undistinguishable.

  18. Thermal expansion coefficient of graphene using molecular dynamics simulation: A comparative study on potential functions

    Science.gov (United States)

    Ghasemi, Hamid; Rajabpour, Ali

    2017-01-01

    In this paper, we studied the thermal expansion coefficient (TEC) of pristine graphene sheets (GSs) using molecular dynamics (MD) simulation. We validated our model with previous studies employing AIREBO potential function and repeated the same simulation with the optimized Tersoff potential function. We also discussed the differences of the results and the corresponding reasons: evaluating the negative TEC of graphene by measuring the C-C bond length and out-of-plane vibrations of the GS. We finally showed that the ripples and wrinkles are more represented over the GS during the simulation with the AIREBO potential function rather than the optimized Tersoff. Comparing the results of both potential functions; it is seen that the results obtained by AIREBO potential function are in better agreement with those reported by previous scholars.

  19. Calculation of the electrostatic potential of lipid bilayers from molecular dynamics simulations: methodological issues

    DEFF Research Database (Denmark)

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    that it is employed in conjunction with tin-foil boundary conditions, which exactly balance a nonzero surface charge of a periodically replicated multibilayer system. Furthermore, we show that vacuum boundary conditions give qualitatively similar potential profiles for asymmetric lipid bilayers as compared......The electrostatic properties of lipid membranes are of profound importance as they are directly associated with membrane potential and, consequently, with numerous membrane-mediated biological phenomena. Here we address a number of methodological issues related to the computation...... of the electrostatic potential from atomic-scale molecular dynamics simulations of lipid bilayers. We discuss two slightly different forms of Poisson equation that are normally used to calculate the membrane potential: (i) a classical form when the potential and the electric field are chosen to be zero on one...

  20. Dynamic kinetic energy potential for orbital-free density functional theory.

    Science.gov (United States)

    Neuhauser, Daniel; Pistinner, Shlomo; Coomar, Arunima; Zhang, Xu; Lu, Gang

    2011-04-14

    A dynamic kinetic energy potential (DKEP) is developed for time-dependent orbital-free (TDOF) density function theory applications. This potential is constructed to affect only the dynamical (ω ≠ 0) response of an orbital-free electronic system. It aims at making the orbital-free simulation respond in the same way as that of a noninteracting homogenous electron gas (HEG), as required by a correct kinetic energy, therefore enabling extension of the success of orbital-free density functional theory in the static case (e.g., for embedding and description of processes in bulk materials) to dynamic processes. The potential is constructed by expansions of terms, each of which necessitates only simple time evolution (concurrent with the TDOF evolution) and a spatial convolution at each time-step. With 14 such terms a good fit is obtained to the response of the HEG at a large range of frequencies, wavevectors, and densities. The method is demonstrated for simple jellium spheres, approximating Na(9)(+) and Na(65)(+) clusters. It is applicable both to small and large (even ultralarge) excitations and the results converge (i.e., do not blow up) as a function of time. An extension to iterative frequency-resolved extraction is briefly outlined, as well as possibly numerically simpler expansions. The approach could also be extended to fit, instead of the HEG susceptibility, either an experimental susceptibility or a theoretically derived one for a non-HEG system. The DKEP potential should be a powerful tool for embedding a dynamical system described by a more accurate method (such as time-dependent density functional theory, TDDFT) in a large background described by TDOF with a DKEP potential. The type of expansions used and envisioned should be useful for other approaches, such as memory functionals in TDDFT. Finally, an appendix details the formal connection between TDOF and TDDFT.

  1. Angular Momentum Dependent Quark Potential of QCD Traits and Dynamical O(4) Symmetry

    CERN Document Server

    Compean, C B

    2006-01-01

    A common quark potential that captures the essential traits of the QCD quark-gluon dynamics is expected to (i) interpolate between a Coulomb-like potential (associated with one-gluon exchange) and the infinite wall potential (associated with trapped but asymptotically free quarks), (ii) reproduce in the intermediary region the linear confinement potential (associated with multi-gluon self-interactions) as established by lattice QCD calculations of hadron properties. We first show that the exactly soluble trigonometric Rosen-Morse potential possesses all these properties. Next we observe that this potential, once interpreted as angular momentum dependent, acquires a dynamical O(4) symmetry and reproduces exactly quantum numbers and level splittings of the non-strange baryon spectra in the SU(2)_I* O(4) classification scheme according to which baryons cling on to multi-spin parity clusters of the type (K/2,K/2)*[(1/2,0) + (0, 1/2)], whose relativistic image is \\psi_{\\mu_{1}...\\mu_{K}}. Finally, we bring exact e...

  2. Global dynamics and asymptotics for monomial scalar field potentials and perfect fluids

    CERN Document Server

    Alho, Artur; Uggla, Claes

    2015-01-01

    We consider a minimally coupled scalar field with a monomial potential and a perfect fluid in flat FLRW cosmology. We apply local and global dynamical systems techniques to a new three-dimensional dynamical systems reformulation of the field equations on a compact state space. This leads to a visual global description of the solution space and asymptotic behavior. At late times we employ averaging techniques to prove statements about how the relationship between the equation of state of the fluid and the monomial exponent of the scalar field affects asymptotic source dominance and asymptotic manifest self-similarity breaking. We also situate the `attractor' solution in the three-dimensional state space and show that it corresponds to the one-dimensional unstable center manifold of a de Sitter fixed point, located on an unphysical boundary associated with the dynamics at early times. By deriving a center manifold expansion we obtain approximate expressions for the attractor solution. We subsequently improve th...

  3. Long-range dynamic polarization potentials for 11Be projectiles on 64Zn

    Science.gov (United States)

    So, W. Y.; Kim, K. S.; Choi, K. S.; Cheoun, Myung-Ki

    2015-07-01

    We investigate the effects of the long-range dynamic polarization (LRDP) potential, which consists of the Coulomb dipole excitation (CDE) potential and the long-range nuclear (LRN) potential, for the 11Be projectile on 64Zn. To study these effects, we perform a χ2 analysis of an optical model including the LRDP potential as well as a conventional short-range nuclear (SRN) potential. To take these effects into account, we argue that both the CDE and LRN potentials are essential to explaining the experimental values of PE, which is the ratio of the elastic scattering cross section to the Rutherford cross section. The Coulomb and nuclear parts of the LRDP potential are found to contribute to a strong absorption effect. Strong absorption occurs because the real part of the CDE and LRN potentials lowers the barrier, and the imaginary part of the CDE and LRN potentials removes the flux from the elastic channel in the 11Be+64Zn system. Finally, we extract the total reaction cross section σR including the inelastic, breakup, and fusion cross sections. The contribution of the inelastic scattering by the first excited state at ɛx1 st=0.32 MeV (1 /2-) is found to be relatively large and cannot be ignored. In addition, our results are shown to agree quite well with the experimental breakup reaction cross section by using a fairly large radius parameter.

  4. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    Science.gov (United States)

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-08-31

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution.

  5. Dynamic properties of the action potential encoder in an insect mechanosensory neuron.

    Science.gov (United States)

    French, A S

    1984-08-01

    A variety of sensory receptors show adaptation to dynamic stimuli that can be well characterized as fractional differentiation of the input signal. The cause of this behavior is unknown, but because it can be represented by linear systems theory, it has been assumed to arise during early linear processes of transduction or adaptation, rather than during the nonlinear process of action potential encoding. I measured the action potential encoding properties of an insect mechanoreceptor by direct electrical stimulation of the sensory cell axon and found a dynamic response that is identical to the response given by mechanical stimulation. This indicates that the fractional differentiation is a property of the encoder rather than the transducer.

  6. Ionization-potential depression and dynamical structure factor in dense plasmas

    Science.gov (United States)

    Lin, Chengliang; Röpke, Gerd; Kraeft, Wolf-Dietrich; Reinholz, Heidi

    2017-07-01

    The properties of a bound electron system immersed in a plasma environment are strongly modified by the surrounding plasma. The modification of an essential quantity, the ionization energy, is described by the electronic and ionic self-energies, including dynamical screening within the framework of the quantum statistical theory. Introducing the ionic dynamical structure factor as the indicator for the ionic microfield, we demonstrate that ionic correlations and fluctuations play a critical role in determining the ionization potential depression. This is, in particular, true for mixtures of different ions with large mass and charge asymmetry. The ionization potential depression is calculated for dense aluminum plasmas as well as for a CH plasma and compared to the experimental data and more phenomenological approaches used so far.

  7. Josephson Dynamics of a Bose-Einstein Condensate Trapped in a Double-Well Potential

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-Wei; ZUO Wei

    2007-01-01

    The Josephson equations for a Bose-Einstein Condensate gas trapped in a double-well potential are derived with the two-mode approximation by the Gross-Pitaevskii equation. The dynamical characteristics of the equations are obtained by the numerical phase diagrams. The nonlinear self-trapping effect appeared in the phase diagrams are emphatically discussed, and the condition EcN>4EJ is presented.

  8. Bias driven coherent carrier dynamics in a two-dimensional aperiodic potential

    NARCIS (Netherlands)

    de Moura, F. A. B. F.; Viana, L. P.; Lyra, M. L.; Malyshev, Victor; Dominguez-Adame, F.

    2008-01-01

    We study the dynamics of an electron wave-packet in a two-dimensional square lattice with an aperiodic site potential in the presence of an external uniform electric field. The aperiodicity is described by epsilon(m) = V cos(pi alpha m(x)(nu x)) cos(pi alpha m(y)(nu y)) at lattice sites (m(x),m(y)),

  9. Numerical computation of soliton dynamics for NLS equations in a driving potential

    Directory of Open Access Journals (Sweden)

    Marco Caliari

    2010-06-01

    Full Text Available We provide numerical computations for the soliton dynamics of the nonlinear Schrodinger equation with an external potential. After computing the ground state solution r of a related elliptic equation we show that, in the semi-classical regime, the center of mass of the solution with initial datum built upon r is driven by the solution to $ddot x=- abla V(x$. Finally, we provide examples and analyze the numerical errors in the two dimensional case when V is a harmonic potential.

  10. Dynamics of two-dimensional vortex pairs in a spatially varying potential

    Science.gov (United States)

    Lee, H. H.; Gunn, J. M. F.

    1992-10-01

    We consider the dynamics of vortices in a superfluid 4He film flowing over a substrate at zero temperature. The vortex trajectories are assumed to be governed by the Magnus-force equation with the effect of the substrate incorporated via the gradient of a potential. We use an equivalent Hamiltonian formulation to show that two vortices in a slowly varying potential can exhibit stochastic behavior. In this regard, there are differences between the cases of two vortices of the same sign and those of the opposite sign, the latter becoming stochastic more readily.

  11. Scalar-fluid interacting dark energy: Cosmological dynamics beyond the exponential potential

    Science.gov (United States)

    Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola

    2017-01-01

    We extend the dynamical systems analysis of scalar-fluid interacting dark energy models performed in C. G. Boehmer et al., Phys. Rev. D 91, 123002 (2015), 10.1103/PhysRevD.91.123002 by considering scalar field potentials beyond the exponential type. The properties and stability of critical points are examined using a combination of linear analysis, computational methods and advanced mathematical techniques, such as center manifold theory. We show that the interesting results obtained with an exponential potential can generally be recovered also for more complicated scalar field potentials. In particular, employing power law and hyperbolic potentials as examples, we find late time accelerated attractors, transitions from dark matter to dark energy domination with specific distinguishing features, and accelerated scaling solutions capable of solving the cosmic coincidence problem.

  12. The energy savings potential of using dynamic external louvers in an office building

    Energy Technology Data Exchange (ETDEWEB)

    Hammad, Fawwaz [W.S. Atkins, Abu Dhabi (United Arab Emirates); Abu-Hijleh, Bassam [Atkins Chair, Faculty of Engineering, The British University in Dubai, PO Box 345015, Dubai (United Arab Emirates)

    2010-10-15

    This research is aimed at exploring the influence of external dynamic louvers on the energy consumption of an office building located in Abu Dhabi-UAE. The IES-VR software was used to predict the energy consumption of a representative office module in order to evaluate the overall energy performance of employing external louvers on the south, east and west oriented facades. The use of dynamic facades was compared to another simpler method of using light-sensor controlled light dimmers. The results show that the potential energy savings using light dimming strategy only was 24.4%, 24.45% and 25.19% for the south, east and west oriented facades, respectively. The proposed dynamic louvers system with light dimming strategy achieved energy savings of 34.02%, 28.57% and 30.31% for the south, east and west orientations, respectively. Detailed analysis of the results showed that the facade's optimal static angle was -20 for the south oriented facade and 20 for the east and west oriented facades. Using these fixed optimal angles resulted in slightly lower energy savings than that of the dynamic facades. This would seem to be a good tradeoff between savings in energy running cost and the investment required to install, operate and maintain a dynamic facades system. (author)

  13. The Study of Dynamic Potentials of Highly Excited Vibrational States of DCP: From Case Analysis to Comparative Study with HCP.

    Science.gov (United States)

    Wang, Aixing; Fang, Chao; Liu, Yibao

    2016-08-22

    The dynamic potentials of highly excited vibrational states of deuterated phosphaethyne (DCP) in the D-C and C-P stretching coordinates with anharmonicity and Fermi coupling are studied in this article and the results show that the D-C-P bending vibration mode has weak effects on D-C and C-P stretching modes under different Polyad numbers (P number). Furthermore, the dynamic potentials and the corresponding phase space trajectories of DCP are given, as an example, in the case of P = 30. In the end, a comparative study between deuterated phosphaethyne (DCP) and phosphaethyne (HCP) with dynamic potential is done, and it is elucidated that the uncoupled mode makes the original horizontal reversed symmetry breaking between the dynamic potential of HCP ( q 3 ) and DCP ( q 1 ), but has little effect on the vertical reversed symmetry, between the dynamic potential of HCP ( q 2 ) and DCP ( q 3 ).

  14. Black-Hole Engine Kinematics, Flares from PKS 2155-304, and Multiwavelength Blazar Analysis

    CERN Document Server

    Dermer, Charles D; Menon, Govind

    2008-01-01

    Kinematical and luminosity relations for black-hole jet sources are reviewed. If the TeV flares observed from PKS 2155-304 in 2006 July are assumed to originate from a black hole with mass $\\approx 10^8 M_8 M_\\odot$, then the $\\sim 5$ minute variability timescale is consistent with the light-travel time across the Schwarzschild radius of the black hole if $M_8\\sim 1$. The absolute jet power in a synchrotron/SSC model exceeds, however, the Eddington luminosity for a black hole with $M_8\\sim 1$ unless the jet is highly efficient. The maximum Blandford-Znajek power is $\\sim 10^{46}M_8$ ergs s$^{-1}$ if the magnetic-field energy density threading the horizon is equated with the luminous energy density in the vicinity of the black hole. An external Compton component can relax power requirements, so a black hole with mass $\\sim 10^8 M_\\odot$ could explain the observed flaring behavior. For the Swift and HESS data taken in 2006 July, relativistic outflows with bulk Lorentz factor $\\Gamma \\gtrsim 30$ satisfy $\\gamma$...

  15. Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity

    CERN Document Server

    Sperhake, U; Cardoso, V; González, J A; Brügmann, B; Ansorg, M

    2007-01-01

    We study the transition from inspiral to plunge in general relativity by computing gravitational waveforms of non-spinning, equal-mass black-hole binaries. We consider two sequences of simulations. The longer (shorter) sequence starts with a quasi-circular inspiral completing about 2.3 (1.5) orbits prior to coalescence of the holes. For each sequence, the binding energy of the system is kept constant and the orbital angular momentum is progressively reduced to zero, producing orbits of increasing eccentricity and eventually a head-on collision. We analyze in detail the radiation of energy and angular momentum in gravitational waves, the contribution of different multipolar components and the final spin of the remnant. We find that the motion transitions from inspiral to plunge when the orbital angular momentum L=L_crit is about 0.8M. For L

  16. Systematic Biases in Parameter Estimation of Binary Black-Hole Mergers

    Science.gov (United States)

    Littenberg, Tyson B.; Baker, John G.; Buonanno, Alessandra; Kelly, Bernard J.

    2012-01-01

    Parameter estimation of binary-black-hole merger events in gravitational-wave data relies on matched filtering techniques, which, in turn, depend on accurate model waveforms. Here we characterize the systematic biases introduced in measuring astrophysical parameters of binary black holes by applying the currently most accurate effective-one-body templates to simulated data containing non-spinning numerical-relativity waveforms. For advanced ground-based detectors, we find that the systematic biases are well within the statistical error for realistic signal-to-noise ratios (SNR). These biases grow to be comparable to the statistical errors at high signal-to-noise ratios for ground-based instruments (SNR approximately 50) but never dominate the error budget. At the much larger signal-to-noise ratios expected for space-based detectors, these biases will become large compared to the statistical errors but are small enough (at most a few percent in the black-hole masses) that we expect they should not affect broad astrophysical conclusions that may be drawn from the data.

  17. Frequency domain reduced order models for gravitational waves from aligned-spin black-hole binaries

    CERN Document Server

    Pürrer, Michael

    2014-01-01

    Black-hole binary coalescences are one of the most promising sources for the first detection of gravitational waves. Fast and accurate theoretical models of the gravitational radiation emitted from these coalescences are highly important for the detection and extraction of physical parameters. Spinning effective-one-body (EOB) models for binaries with aligned spins have been shown to be highly faithful, but are slow to generate and thus have not yet been used for parameter estimation studies. I provide a frequency-domain singular value decomposition (SVD)-based surrogate reduced order model that is thousands to hundred thousands times faster for typical system masses and has a faithfulness mismatch of better than $\\sim 0.1\\%$ with the original SEOBNRv1 model for advanced LIGO detectors. This model enables parameter estimation studies up to signal-to-noise ratios (SNRs) of 20 and even up to SNR 50 for masses below $50 M_\\odot$. This article discusses various choices for approximations and interpolation over th...

  18. The Vainshtein mechanism as a duality of the particle creation process of black-holes

    CERN Document Server

    Arraut, Ivan

    2014-01-01

    I explain the origin of the Vainshtein mechanism in terms of the "gauge" transformation function $T_0(r,t)$ for the stationary spherically-symmetric solutions obtained in {\\it Prog. Theor. Exp. Phys. 023E02, (2014)}, where the extra degrees of freedom enter through the spatial dependence of the gauge transformation function $T_0(r,t)\\backsim t+A(r)$. Written in this form, the Vainshtein mechanism is a way to recover the Birkhoff theorem for scales near the source and the Cosmic no-hair conjecture for scales near the cosmological horizon. Additionally, the Vainshtein mechanism is the dual version of the particle creation process in a black-Hole (radiation). Then if we want to analyze the Hawking radiation inside dRGT, we have to be careful when some apparent extra contribution appears. This extra contribution comes from the dual version of the Vainshtein mechanism, behaving as a particle creation process from the point of view of an observer located at scales $r>>r_V$, with $r_V$ being the Vainshtein scale.

  19. Black-hole horizon and metric singularity at the brane separating two sliding superfluids

    CERN Document Server

    Volovik, G E

    2002-01-01

    An analog of black hole can be realized in the low-temperature laboratory. The horizon can be constructed for the `relativistic' ripplons (surface waves) living on the brane. The brane is represented by the interface between two superfluid liquids, 3He-A and 3He-B, sliding along each other without friction. Similar experimental arrangement has been recently used for the observation and investigation of the Kelvin-Helmholtz type of instability in superfluids (cond-mat/0111343). The shear-flow instability in superfluids is characterized by two critical velocities. The lowest threshold measured in recent experiments (cond-mat/0111343) corresponds to appearance of the ergoregion for ripplons. In the modified geometry this will give rise to the black-hole event horizon in the effective metric experienced by ripplons. In the ergoregion behind the horizon, the brane vacuum is unstable due to interaction with the higher-dimensional world of bulk superfluids. The time of the development of instability can be made very...

  20. A massive binary black-hole system in OJ287 and a test of general relativity

    CERN Document Server

    Valtonen, M J; Nilsson, K; Heidt, J; Takalo, L O; Sillanpää, A; Villforth, C; Kidger, M; Poyner, G; Pursimo, T; Zola, S; Wu, J H; Zhou, X; Sadakane, K; Drozdz, M; Koziel, D; Marchev, D; Ogloza, W; Porowski, C; Siwak, M; Stachowski, G; Winiarski, M; Hentunen, V P; Nissinen, M; Liakos, A; Dogru, S

    2008-01-01

    Tests of Einstein's general theory of relativity have mostly been carried out in weak gravitational fields where the space-time curvature effects are first-order deviations from Newton's theory. Binary pulsars provide a means of probing the strong gravitational field around a neutron star, but strong-field effects may be best tested in systems containing black holes. Here we report such a test in a close binary system of two candidate black holes in the quasar OJ287. This quasar shows quasi-periodic optical outbursts at 12 yr intervals, with two outburst peaks per interval. The latest outburst occurred in September 2007, within a day of the time predicted by the binary black-hole model and general relativity. The observations confirm the binary nature of the system and also provide evidence for the loss of orbital energy in agreement (within 10 per cent) with the emission of gravitational waves from the system. In the absence of gravitational wave emission the outburst would have happened twenty days later.

  1. Accretion and ejection in black-hole X-ray transients

    CERN Document Server

    Kylafis, N D

    2014-01-01

    Aims: We summarize the current observational picture of the outbursts of black-hole X-ray transients (BHTs), based on the evolution traced in a hardness-luminosity diagram (HLD), and we offer a physical interpretation. Methods: The basic ingredient in our interpretation is the Poynting-Robertson Cosmic Battery (PRCB, Contopoulos & Kazanas 1998), which provides locally the poloidal magnetic field needed for the ejection of the jet. In addition, we make two assumptions, easily justifiable. The first is that the mass-accretion rate to the black hole in a BHT outburst has a generic bell-shaped form. This is guaranteed by the observational fact that all BHTs start their outburst and end it at the quiescent state. The second assumption is that at low accretion rates the accretion flow is geometrically thick, ADAF-like, while at high accretion rates it is geometrically thin. Results: Both, at the beginning and the end of an outburst, the PRCB establishes a strong poloidal magnetic field in the ADAF-like part of ...

  2. Powerful non-thermal emission in black-hole powered sources

    CERN Document Server

    Bosch-Ramon, V

    2009-01-01

    Powerful non-thermal emission has been detected coming from relativistic collimated outflows launched in the vicinity of black holes of a very wide range of masses, from few to $\\sim 10^{10}$ M$_{\\odot}$. At different scales along the outflows, i.e. $\\sim 10-10^{10} R_{\\rm Sch}$ from the black hole, the local conditions can lead to the generation of non-thermal populations of particles via, e.g., magnetic reconnection, magneto-centrifugal mechanisms, diffusive processes, or the so-called converter mechanism. These non-thermal populations of particles, interacting with dense matter, magnetic, and radiation fields, could yield radio-to-gamma-ray emission via synchrotron process, inverse Compton scattering, relativistic Bremsstrahlung, proton-proton and photo-hadron colissions, and even heavy nuclei photo-disintegration. Other processes, like pair creation or the development of electromagnetic cascades, could be also relevant in black-hole jets and their surroundings. Black holes of different masses, accretion r...

  3. Mergers of Non-spinning Black-hole Binaries: Gravitational Radiation Characteristics

    Science.gov (United States)

    Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an implicit rotating source. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the l = m modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the l = m modes among all mass-ratios. We identify relationships, with a simple interpretation in terms of the implicit rotating source, among the evolution of frequency and amplitude, which hold for the late-time radiation. These detailed relationships provide sufficient information about the late-time radiation to yield a predictive model for the late-time waveforms, an alternative to the common practice of modeling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.

  4. The Missing Link: Bayesian Detection and Measurement of Intermediate-Mass Black-Hole Binaries

    CERN Document Server

    Graff, Philip B; Sathyaprakash, B S

    2015-01-01

    We perform Bayesian analysis of gravitational-wave signals from non-spinning, intermediate-mass black-hole binaries (IMBHBs) with observed total mass, $M_{\\mathrm{obs}}$, from $50\\mathrm{M}_{\\odot}$ to $500\\mathrm{M}_{\\odot}$ and mass ratio $1\\mbox{--}4$ using advanced LIGO and Virgo detectors. We employ inspiral-merger-ringdown waveform models based on the effective-one-body formalism and include subleading modes of radiation beyond the leading $(2,2)$ mode. The presence of subleading modes increases signal power for inclined binaries and allows for improved accuracy and precision in measurements of the masses as well as breaking of extrinsic parameter degeneracies. For low total masses, $M_{\\mathrm{obs}} \\lesssim 50 \\mathrm{M}_{\\odot}$, the observed chirp mass $\\mathcal{M}_{\\rm obs} = M_{\\mathrm{obs}}\\,\\eta^{3/5}$ ($\\eta$ being the symmetric mass ratio) is better measured. In contrast, as increasing power comes from merger and ringdown, we find that the total mass $M_{\\mathrm{obs}}$ has better relative prec...

  5. 11-orbit inspiral of a mass ratio 4:1 black-hole binary

    Energy Technology Data Exchange (ETDEWEB)

    Sperhake, U; Sopuerta, C F [Institute of Space Sciences (CSIC-IEEC), Campus UAB, Torre C5 Parells, 08193 Bellaterra (Spain); Bruegmann, B; Mueller, D, E-mail: sperhake@ieec.uab.es [Theoretisch Physikalisches Institut, Friedrich Schiller Universitaet, Max-Wien Platz 1, 07743 Jena (Germany)

    2011-07-07

    We analyse an 11-orbit inspiral of a non-spinning black-hole binary with mass ratio q {identical_to} M{sub 1}/M{sub 2} = 4. The numerically obtained gravitational waveforms are compared with post-Newtonian (PN) predictions including several subdominant multipoles up to multipolar indices (l = 5, m = 5). We find that (i) numerical and post-Newtonian predictions of the phase of the (2, 2) mode accumulate a phase difference of about 0.35 rad at the PN cut-off frequency M{omega} = 0.1 for the Taylor T1 approximant when numerical and PN waveforms are matched over a window in the early inspiral phase; (ii) in contrast to previous studies of equal mass and specific spinning binaries, we find the Taylor T4 approximant to agree less well with numerical results, provided the latter are extrapolated to infinite extraction radius; (iii) extrapolation of gravitational waveforms to infinite extraction radius is particularly important for subdominant multipoles with l {ne} m; (iv) 3PN terms in post-Newtonian multipole expansions significantly improve the agreement with numerical predictions for subdominant multipoles.

  6. Simulations of Overstable Inertial-acoustic Modes in Black-Hole Accretion Discs

    CERN Document Server

    Fu, Wen

    2012-01-01

    We present two-dimensional inviscid hydrodynamic simulations of overstable inertial-acoustic oscillation modes (p-modes) in black-hole accretion discs. These global spiral waves are trapped in the inner-most region of the disc, and are driven overstable by wave absorption at the corotation resonance ($r_c$) when the gradient of the background disc vortensity (vorticity divided by surface density) at $r_c$ is positive and the disc inner boundary is sufficiently reflective. Previous linear calculations have shown that the growth rates of these modes can be as high as 10% of the rotation frequency at the disc inner edge. We confirm these linear growth rates and the primary disc oscillation frequencies in our simulations when the mode amplitude undergoes exponential growth. We show that the mode growth saturates when the radial velocity perturbation becomes comparable to the disc sound speed. During the saturation stage, the primary disc oscillation frequency differs only slightly (by less than a few percent) fro...

  7. Constraining Primordial Black-Hole Bombs through Spectral Distortions of the Cosmic Microwave Background

    CERN Document Server

    Pani, Paolo

    2013-01-01

    We consider the imprint of superradiant instabilities of nonevaporating primordial black holes (PBHs) on the spectrum of the cosmic microwave background (CMB). In the radiation dominated era, PBHs are surrounded by a roughly homogeneous cosmic plasma which endows photons with an effective mass through the plasma frequency. In this setting, spinning PBHs are unstable to a spontaneous spindown through the well-known "black-hole bomb" mechanism. At linear level, the photon density is trapped by the effective photon mass and grows exponentially in time due to superradiance. As the plasma density declines due to cosmic expansion, the associated energy around PBHs is released and dissipated in the CMB. We evaluate the resulting spectral distortions of the CMB in the redshift range 10^3 < z < 2x10^6. Using the existing COBE/FIRAS bounds on CMB spectral distortions, we derive upper limits on the fraction of dark matter that can be associated with spinning PBHs in the mass range 10^{-8}*Msun < M < 0.2*Msin...

  8. Detecting black-hole binary clustering via the second-generation gravitational-wave detectors

    Science.gov (United States)

    Namikawa, Toshiya; Nishizawa, Atsushi; Taruya, Atsushi

    2016-07-01

    The first discovery of the gravitational-wave (GW) event, GW150914, suggests a higher merger rate of black-hole (BH) binaries. If this is true, a number of BH binaries will be observed via the second-generation GW detectors, and the statistical properties of the observed BH binaries can be scrutinized. A naive but important question to ask is whether the spatial distribution of BH binaries faithfully traces the matter inhomogeneities in the Universe or not. Although the BH binaries are thought to be formed inside the galaxies in most of the scenarios, there is no observational evidence to confirm such a hypothesis. Here, we estimate how well the second-generation GW detectors can statistically confirm the BH binaries to be a tracer of the large-scale structure by looking at the auto- and cross-correlation of BH binaries with photometric galaxies and weak-lensing measurements, finding that, with a 3 year observation, the >3 σ detection of a nonzero signal is possible if the BH merger rate today is n˙ 0≳100 Gpc-3 yr-1 and the clustering bias of BH binaries is bBH ,0≳1.5 .

  9. Detecting Black-Hole Binary Clustering via the Second-Generation Gravitational-Wave Detectors

    CERN Document Server

    Namikawa, Toshiya; Taruya, Atsushi

    2016-01-01

    First discovery of the gravitational wave (GW) event, GW150914, suggests a higher merger rate of black-hole (BH) binaries. If this is true, a number of BH binaries will be observed via the second-generation GW detectors, and the statistical properties of the observed BH binaries can be scrutinized. A naive but important question to ask is whether the spatial distribution of BH binaries faithfully traces the matter inhomogeneities in the Universe or not. Although the BH binaries are thought to be formed inside the galaxies in most of the scenarios, there is no observational evidence to confirm such a hypothesis. Here, we estimate how well the second-generation GW detectors can statistically confirm the BH binaries to be a tracer of the large-scale structure by looking at the auto- and cross-correlation of BH binaries with photometric galaxies and weak lensing measurements, finding that, with a three-year observation, the $>3\\sigma$ detection of non-zero signal is possible if the BH merger rate today is $\\dot{n...

  10. The effect of empirical potential functions on modeling of amorphous carbon using molecular dynamics method

    Energy Technology Data Exchange (ETDEWEB)

    Li, Longqiu, E-mail: longqiuli@gmail.com [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 (China); Xu, Ming; Song, Wenping [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 (China); Ovcharenko, Andrey [Western Digital Corporation, San Jose, CA (United States); Zhang, Guangyu; Jia, Ding [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 (China)

    2013-12-01

    Empirical potentials have a strong effect on the hybridization and structure of amorphous carbon and are of great importance in molecular dynamics (MD) simulations. In this work, amorphous carbon at densities ranging from 2.0 to 3.2 g/cm{sup 3} was modeled by a liquid quenching method using Tersoff, 2nd REBO, and ReaxFF empirical potentials. The hybridization, structure and radial distribution function G(r) of carbon atoms were analyzed as a function of the three potentials mentioned above. The ReaxFF potential is capable to model the change of the structure of amorphous carbon and MD results are in a good agreement with experimental results and density function theory (DFT) at low density of 2.6 g/cm{sup 3} and below. The 2nd REBO potential can be used when amorphous carbon has a very low density of 2.4 g/cm{sup 3} and below. Considering the computational efficiency, the Tersoff potential is recommended to model amorphous carbon at a high density of 2.6 g/cm{sup 3} and above. In addition, the influence of the quenching time on the hybridization content obtained with the three potentials is discussed.

  11. Electron dynamics in graphene with spin–orbit couplings and periodic potentials

    Science.gov (United States)

    Seshadri, Ranjani; Sen, Diptiman

    2017-04-01

    We use both continuum and lattice models to study the energy-momentum dispersion and the dynamics of a wave packet for an electron moving in graphene in the presence of spin–orbit couplings and either a single potential barrier or a periodic array of potential barriers. Both Kane–Mele and Rashba spin–orbit couplings are considered. A number of special things occur when the Kane–Mele and Rashba couplings are equal in magnitude. In the absence of a potential, the dispersion then consists of both massless Dirac and massive Dirac states. A periodic potential is known to generate additional Dirac points; we show that spin–orbit couplings generally open gaps at all those points, but if the two spin–orbit couplings are equal, some of the Dirac points remain gapless. We show that the massless and massive states respond differently to a potential barrier; the massless states transmit perfectly through the barrier at normal incidence while the massive states reflect from it. In the presence of a single potential barrier, we show that there are states localized along the barrier. Finally, we study the time evolution of a wave packet in the presence of a periodic potential. We discover special points in momentum space where there is almost no spreading of a wave packet; there are six such points in graphene when the spin–orbit couplings are absent.

  12. Efficient molecular dynamics simulations with many-body potentials on graphics processing units

    Science.gov (United States)

    Fan, Zheyong; Chen, Wei; Vierimaa, Ville; Harju, Ari

    2017-09-01

    Graphics processing units have been extensively used to accelerate classical molecular dynamics simulations. However, there is much less progress on the acceleration of force evaluations for many-body potentials compared to pairwise ones. In the conventional force evaluation algorithm for many-body potentials, the force, virial stress, and heat current for a given atom are accumulated within different loops, which could result in write conflict between different threads in a CUDA kernel. In this work, we provide a new force evaluation algorithm, which is based on an explicit pairwise force expression for many-body potentials derived recently (Fan et al., 2015). In our algorithm, the force, virial stress, and heat current for a given atom can be accumulated within a single thread and is free of write conflicts. We discuss the formulations and algorithms and evaluate their performance. A new open-source code, GPUMD, is developed based on the proposed formulations. For the Tersoff many-body potential, the double precision performance of GPUMD using a Tesla K40 card is equivalent to that of the LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) molecular dynamics code running with about 100 CPU cores (Intel Xeon CPU X5670 @ 2.93 GHz).

  13. Creating exotic condensates via quantum-phase-revival dynamics in engineered lattice potentials

    Energy Technology Data Exchange (ETDEWEB)

    Buchhold, Michael; Bissbort, Ulf; Hofstetter, Walter [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, D-60438 Frankfurt/Main (Germany); Will, Sebastian [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet, D-80799 Muenchen (Germany); Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany)

    2011-08-15

    In the field of ultracold atoms in optical lattices a plethora of phenomena governed by the hopping energy J and the interaction energy U have been studied in recent years. However, the trapping potential typically present in these systems sets another energy scale and the effects of the corresponding time scale on the quantum dynamics have rarely been considered. Here we study the quantum collapse and revival of a lattice Bose-Einstein condensate (BEC) in an arbitrary spatial potential, focusing on the special case of harmonic confinement. Analyzing the time evolution of the single-particle density matrix, we show that the physics arising at the (temporally) recurrent quantum phase revivals is essentially captured by an effective single-particle theory. This opens the possibility of preparing exotic nonequilibrium condensate states with a large degree of freedom by engineering the underlying spatial lattice potential.

  14. Membrane Potential Dynamics of Spontaneous and Visually Evoked Gamma Activity in V1 of Awake Mice.

    Directory of Open Access Journals (Sweden)

    Quentin Perrenoud

    2016-02-01

    Full Text Available Cortical gamma activity (30-80 Hz is believed to play important functions in neural computation and arises from the interplay of parvalbumin-expressing interneurons (PV and pyramidal cells (PYRs. However, the subthreshold dynamics underlying its emergence in the cortex of awake animals remain unclear. Here, we characterized the intracellular dynamics of PVs and PYRs during spontaneous and visually evoked gamma activity in layers 2/3 of V1 of awake mice using targeted patch-clamp recordings and synchronous local field potentials (LFPs. Strong gamma activity patterned in short bouts (one to three cycles, occurred when PVs and PYRs were depolarizing and entrained their membrane potential dynamics regardless of the presence of visual stimulation. PV firing phase locked unconditionally to gamma activity. However, PYRs only phase locked to visually evoked gamma bouts. Taken together, our results indicate that gamma activity corresponds to short pulses of correlated background synaptic activity synchronizing the output of cortical neurons depending on external sensory drive.

  15. The potential of observed soil moisture dynamics for predicting summer evapotranspiration in a successional chronosequence

    Directory of Open Access Journals (Sweden)

    J. A. Breña Naranjo

    2011-05-01

    Full Text Available The hydrology of ecosystem succession gives rise to new challenges for the analysis and modeling of water balance components. Recent large-scale alterations of forest cover across the globe suggest that a significant portion of new biophysical environments will influence the long-term dynamics and limits of water fluxes compared to pre-succession conditions. This study explores the potential of modeling actual evapotranspiration (AET in the summer along a successional forest by observed soil moisture dynamics. We applied two parsimonious data-driven soil water balance models to the Canadian FLUXNET sites at Campbell River, British Columbia. Simulated AET was compared to water vapor measurements from 2001 to 2008 and the models' sensitivity to inter-annual climatic variability and computation time step was tested. With the exception of the mature forest during an extremely dry summer, the results confirm the potential of using observed soil moisture dynamics as a method to estimate summer AET within an acceptable error range albeit substantial differences along the successional forested ecosystem. The study suggests that summer AET could be estimated and monitored in many more places than those equipped with eddy-covariance or sap-flow measurements to advance the understanding of the water balance of different successional ecosystems.

  16. Perspective: Insight into reaction coordinates and dynamics from the potential energy landscape

    Science.gov (United States)

    Wales, D. J.

    2015-04-01

    This perspective focuses on conceptual and computational aspects of the potential energy landscape framework. It has two objectives: first to summarise some key developments of the approach and second to illustrate how such techniques can be applied using a specific example that exploits knowledge of pathways. Recent developments in theory and simulation within the landscape framework are first outlined, including methods for structure prediction, analysis of global thermodynamic properties, and treatment of rare event dynamics. We then develop a connection between the kinetic transition network treatment of dynamics and a potential of mean force defined by a reaction coordinate. The effect of projection from the full configuration space to low dimensionality is illustrated for an atomic cluster. In this example, where a relatively successful structural order parameter is available, the principal change in cluster morphology is reproduced, but some details are not faithfully represented. In contrast, a profile based on configurations that correspond to the discrete path defined geometrically retains all the barriers and minima. This comparison provides insight into the physical origins of "friction" effects in low-dimensionality descriptions of dynamics based upon a reaction coordinate.

  17. Dynamics and climate change mitigation potential of soil organic carbon sequestration.

    Science.gov (United States)

    Sommer, Rolf; Bossio, Deborah

    2014-11-01

    When assessing soil organic carbon (SOC) sequestration and its climate change (CC) mitigation potential at global scale, the dynamic nature of soil carbon storage and interventions to foster it should be taken into account. Firstly, adoption of SOC-sequestration measures will take time, and reasonably such schemes could only be implemented gradually at large-scale. Secondly, if soils are managed as carbon sinks, then SOC will increase only over a limited time, up to the point when a new SOC equilibrium is reached. This paper combines these two processes and predicts potential SOC sequestration dynamics in agricultural land at global scale and the corresponding CC mitigation potential. Assuming that global governments would agree on a worldwide effort to gradually change land use practices towards turning agricultural soils into carbon sinks starting 2014, the projected 87-year (2014-2100) global SOC sequestration potential of agricultural land ranged between 31 and 64 Gt. This is equal to 1.9-3.9% of the SRES-A2 projected 87-year anthropogenic emissions. SOC sequestration would peak 2032-33, at that time reaching 4.3-8.9% of the projected annual SRES-A2 emission. About 30 years later the sequestration rate would have reduced by half. Thus, SOC sequestration is not a C wedge that could contribute increasingly to mitigating CC. Rather, the mitigation potential is limited, contributing very little to solving the climate problem of the coming decades. However, we deliberately did not elaborate on the importance of maintaining or increasing SOC for sustaining soil health, agro-ecosystem functioning and productivity; an issue of global significance that deserves proper consideration irrespectively of any potential additional sequestration of SOC.

  18. Quasi-bound state resonances of charged massive scalar fields in the near-extremal Reissner-Nordstroem black-hole spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-05-15

    The quasi-bound states of charged massive scalar fields in the near-extremal charged Reissner-Nordstroem black-hole spacetime are studied analytically. These discrete resonant modes of the composed black-hole-field system are characterized by the physically motivated boundary condition of ingoing waves at the black-hole horizon and exponentially decaying (bounded) radial eigenfunctions at spatial infinity. Solving the Klein-Gordon wave equation for the linearized scalar fields in the black-hole spacetime, we derive a remarkably compact analytical formula for the complex frequency spectrum which characterizes the quasi-bound state resonances of the composed Reissner-Nordstroem-black-hole-charged-massive-scalar-field system. (orig.)

  19. Evaluating dynamic building materials: The potential impact of climatically responsive building enclosures

    Science.gov (United States)

    Kienzl, Nico H.

    Despite the great interest and investment in new material technologies and advanced simulation tools, predictions for the potential impact of dynamic envelope systems so far have been based on simulations of the overall building. However, overall building simulations provide limited insights into the behavior of the building envelope since results of these types of simulations are affected by many factors that are independent of or indirectly influenced by the building envelope. Therefore, it is difficult to isolate the impact of the building envelope on building energy consumption independent of building-specific factors such as building geometry, construction, environmental systems, and building use. In order to understand and quantify the dynamic nature of environmentally responsive envelope systems, designers and engineers necessitate a new method that enables the direct evaluation of only the envelope. This method needs to be able to predict the heat transfer through dynamic building envelopes under variable environmental conditions. Ultimately, this new method should help identify the applicability of new technologies early in the design process when detailed information on a building's design or operation are not yet available. This thesis establishes a new method and a validated reference case for the evaluation of climatically responsive building envelopes with dynamic material properties. The method isolates the performance of the building envelope in a building energy simulation model through transformation of a validated BESTEST model. It allows for parametric evaluation of the thermal performance of dynamic building envelopes under a wide range of environmental boundary conditions in comparison to existing reference technologies. This method can serve as a starting point for the critical evaluation of the impact that dynamic envelope systems have on the heat balance of buildings. The method was applied to the evaluation of electrochromic glazing to

  20. Dissipative particle dynamics with an effective pair potential from integral equation theory of molecular liquids.

    Science.gov (United States)

    Kobryn, Alexander E; Nikolić, Dragan; Lyubimova, Olga; Gusarov, Sergey; Kovalenko, Andriy

    2014-10-16

    We present a method of DPD simulation based on a coarse-grained effective pair potential obtained from the DRISM-KH molecular theory of solvation. The theory is first used to calculate the radial distribution functions of all-atom solute monomers in all-atom solvent and then to invert them into an effective pair potential between coarse-grained beads such that their fluid without solvent accounts for molecular specificities and solvation effects in the all-atom system. Bonded interactions are sampled in relatively short MD of the all-atom system and modeled with best multi-Gaussian fit. Replacing the heuristically defined conservative force potential in DPD, the coarse-grained effective pair potential is free from the artificial restrictions on potential range and shape and on equal volume of solute and solvent blobs inherent in standard DPD. The procedure is flexible in specifying coarse-grained mapping and enormously increases computational efficiency by eliminating solvent. The method is validated on polystyrene chains of various length in toluene at finite concentrations for room and polystyrene glass transition temperature. It yields the chain elastic properties and diffusion coefficient in good agreement with experiment and all-atom MD simulations. DPD with coarse-grained effective pair potential is capable of predicting both structural and dynamic properties of polymer solutions and soft matter with high accuracy and computational efficiency.

  1. D2 dissociative adsorption on and associative desorption from Si(100): Dynamic consequences of an ab initio potential energy surface

    DEFF Research Database (Denmark)

    Luntz, A. C.; Kratzer, Peter

    1996-01-01

    Dynamical calculations are reported for D-2 dissociative chemisorption on and associative desorption from a Si(100) surface. These calculations use the dynamically relevant effective potential which is based on an ab initio potential energy surface for the ''pre-paired'' species. Three coordinates...... experimental findings. We discuss several possibilities for this disagreement, including experimental artifact, limitations in the dynamical model and even the possibility that electronically adiabatic dynamics involving the ''pre-paired'' species is not relevant to experiments on real systems. (C) 1996...

  2. Particle dynamics in a symmetrically driven underdamped inhomogeneous periodic potential system

    Science.gov (United States)

    Kharkongor, D.; Reenbohn, W. L.; Mahato, Mangal C.

    2016-08-01

    We numerically solve the underdamped Langevin equation to obtain the trajectories of a particle in a sinusoidal potential driven by a temporally sinusoidal force in a medium with coefficient of friction periodic in space as the potential but with a phase difference. With the appropriate choice of system parameters, like the mean friction coefficient and the period of the applied field, only two kinds of periodic trajectories are obtained for all possible initial conditions at low noise strengths: one with a large amplitude and a large phase lag with respect to the applied field and the other with a small amplitude and a small phase lag. Thus, the periodic potential system is effectively mapped dynamically into a bistable system. Though the directional asymmetry, brought about only by the frictional inhomogeneity, is weak we find both the phenomena of stochastic resonance, with ready explanation in terms of the two dynamical states of trajectories, and ratchet effect simultaneously in the same parameter space. We analyze the results in detail attempting to find plausible explanations for each.

  3. A general potential for molecular dynamics of ion-sputtered surfaces

    CERN Document Server

    Akande, Raphael O

    2015-01-01

    Erosion of surface atoms of solid materials by ion bombardment (surface-sputtering) causes nano-ripples and quantum dots to self-organise on the surfaces. The self-organisation had been shown, in some sputtering experiments, to be influenced by unexpected contaminants (ions) from vacuum walls. Existing inter-atomic-interaction potentials of Molecular Dynamics (MD) simulations for studying this are unsuitable because they assume two-particle collisions at a time instead of many (including contaminants)-particle collisions (Wider-area Perturbations, (WP)). We designed this study to develop a suitable potential that incorporates WP of the MD. We developed the general potential to account for the possibility of WP due to contaminants (both foreign and local to the material) consequently shifting the eqiulibrium points of the MD the material. For instance, dynamics of Au and Fe were studied with O bombardments/contamination (oxygenated environments), and those of CSiGe were studied with W, Ti, and O. It was found ...

  4. Examining fine potential energy effects in high-energy fission dynamics

    Science.gov (United States)

    Mazurek, K.; Schmitt, C.; Nadtochy, P. N.; Kmiecik, M.; Maj, A.; Wasiak, P.; Wieleczko, J. P.

    2013-11-01

    The potential energy surface plays a decisive role in nuclear fission. Together with inertia and viscosity, it influences the trajectory of the system, and the properties of the fission fragments result from the puzzling interplay between static and dynamical effects. A careful study on the influence of the parametrization of the potential energy landscape in heavy-ion-induced fission is performed. Dynamical calculations are done within the stochastic Langevin approach in a three-dimensional deformation space. Various prescriptions of the potential energy surface are considered, probing two different Liquid Drop models and the deformation dependence of the Wigner/congruence energy. A wide set of observables, including cross sections, particle multiplicities, and integral, as well as isotopic and isobaric, distributions of fission and evaporation products, is analyzed. Nuclei close to the Businaro-Gallone point are confirmed to be well suited for investigating the Liquid Drop parametrization, while the influence of the deformation-dependent Wigner/congruence energy is difficult to demonstrate unambiguously in fission at high excitation energies.

  5. Simulation by two calcium store models of myocardial dynamic properties: potentiation, staircase, and biphasic tension development.

    Science.gov (United States)

    Wussling, M; Szymanski, G

    1986-04-01

    Most considerations and models concerning myocardial dynamic properties e.g. potentiation and staircase, are based upon the existence of storage structures in the heart muscle cell. The phenomenon of biphasic tension development (or two-component contraction) in heart muscle preparations of several mammalian species suggests that the sarcoplasmic reticulum is one, but by no means the major, source of activator calcium for the contractile system. The simulation of dynamic properties including biphasic tension development was performed in two steps by a simple "two-Ca store-model" and by an "expanded two-Ca store-model" with following results: Increasing potentiation indicated a decrease in the degree of coupling between the Ca stores. A shift of the interval strength curve to lower intervals as well as a decrease of the steady state contraction height implies a decrease of both, the coupling and the leakage time constant. There was no standard relation between staircase phenomena and structure parameters. Analog displays showed a late (or second) component at prolongated stimulation intervals, in the transient phase after a rest period, in the case of perfectly coupled or uncoupled stores, and at great time constant tau p (which characterizes the calcium pump activity). It is concluded that the late component of biphasic tension development is due to direct activation by the transsarcolemmal Ca flux of the myofilaments, whereas the early component is caused by the release of stored calcium. In the absence of an early component neither potentiation nor marked treppe may be expected.

  6. Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency

    Institute of Scientific and Technical Information of China (English)

    R David Hawkins; Zhen Ye; Samantha Kuan; Pengzhi Yu; Hui Liu; Xinmin Zhang; Roland D Green; Victor V Lobanenkov; Ron Stewart; James A Thomson; Bing Ren; Gary C Hon; Chuhu Yang; Jessica E Antosiewicz-Bourget; LeonardKLee; Que-Minh Ngo; Sarit Klugman; Keith A Ching; Lee E Edsall

    2011-01-01

    Pluripotency,the ability of a cell to differentiate and give rise to all embryonic lineages,defines a small number of mammalian cell types such as embryonic stem (ES) cells.While it has been generally held that pluripotency is the product of a transcriptional regulatory network that activates and maintains the expression of key stem cell genes,accumulating evidence is pointing to a critical role for epigenetic processes in establishing and safeguarding the pluripotency of ES cells,as well as maintaining the identity of differentiated cell types.In order to better understand the role of epigenetic mechanisms in pluripotency,we have examined the dynamics of chromatin modifications genomewide in human ES cells (hESCs) undergoing differentiation into a mesendodermal lineage.We found that chromatin modifications at promoters remain largely invariant during differentiation,except at a small number of promoters where a dynamic switch between acetylation and methylation at H3K27 marks the transition between activation and silencing of gene expression,suggesting a hierarchy in cell fate commitment over most differentially expressed genes.We also mapped over 50 000 potential enhancers,and observed much greater dynamics in chromatin modifications,especially H3K4mel and H3K27ac,which correlate with expression of their potential target genes.Further analysis of these enhancers revealed potentially key transcriptional regulators of pluripotency and a chromatin signature indicative of a poised state that may confer developmental competence in hESCs.Our results provide new evidence supporting the role of chromatin modifications in defining enhancers and pluripotency.

  7. The bi-potential method applied to the modeling of dynamic problems with friction

    Science.gov (United States)

    Feng, Z.-Q.; Joli, P.; Cros, J.-M.; Magnain, B.

    2005-10-01

    The bi-potential method has been successfully applied to the modeling of frictional contact problems in static cases. This paper presents an extension of this method for dynamic analysis of impact problems with deformable bodies. A first order algorithm is applied to the numerical integration of the time-discretized equation of motion. Using the Object-Oriented Programming (OOP) techniques in C++ and OpenGL graphical support, a finite element code including pre/postprocessor FER/Impact is developed. The numerical results show that, at the present stage of development, this approach is robust and efficient in terms of numerical stability and precision compared with the penalty method.

  8. Thermodynamic Study of Hydrolysis Reactions in Aqueous Solution from Ab Initio Potential and Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    S. Tolosa

    2013-01-01

    Full Text Available A procedure for the theoretical study of chemical reactions in solution by means of molecular dynamics simulations of aqueous solution at infinite dilution is described using ab initio solute-solvent potentials and TIP3P water model to describe the interactions. The procedure is applied to the study of neutral hydrolysis of various molecules (HCONH2, HNCO, HCNHNH2, and HCOOCH3 via concerted and water-assisted mechanisms. We used the solvent as a reaction coordinate and the free energy curves for the calculation of the properties related with the reaction mechanism, namely, reaction and activation energies.

  9. Dynamic Mobile RobotNavigation Using Potential Field Based Immune Network

    Directory of Open Access Journals (Sweden)

    Guan-Chun Luh

    2007-04-01

    Full Text Available This paper proposes a potential filed immune network (PFIN for dynamic navigation of mobile robots in an unknown environment with moving obstacles and fixed/moving targets. The Velocity Obstacle method is utilized to determine imminent obstacle collision of a robot moving in the time-varying environment. The response of the overall immune network is derived by the aid of fuzzy system. Simulation results are presented to verify the effectiveness of the proposed methodology in unknown environments with single and multiple moving obstacles

  10. Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits

    Science.gov (United States)

    Labousse, M.; Oza, A. U.; Perrard, S.; Bush, J. W. M.

    2016-03-01

    We present the results of a theoretical investigation of the dynamics of a droplet walking on a vibrating fluid bath under the influence of a harmonic potential. The walking droplet's horizontal motion is described by an integro-differential trajectory equation, which is found to admit steady orbital solutions. Predictions for the dependence of the orbital radius and frequency on the strength of the radial harmonic force field agree favorably with experimental data. The orbital quantization is rationalized through an analysis of the orbital solutions. The predicted dependence of the orbital stability on system parameters is compared with experimental data and the limitations of the model are discussed.

  11. Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits

    CERN Document Server

    Labousse, Matthieu; Perrard, Stéhane; Bush, John W M

    2016-01-01

    We present the results of a theoretical investigation of the dynamics of a droplet walking on a vibrating fluid bath under the influence of a harmonic potential. The walking droplet's horizontal motion is described by an integro-differential trajectory equation, which is found to admit steady orbital solutions. Predictions for the dependence of the orbital radius and frequency on the strength of the radial harmonic force field agree favorably with experimental data. The orbital quantization is rationalized through an analysis of the orbital solutions. The predicted dependence of the orbital stability on system parameters is compared with experimental data and the limitations of the model are discussed.

  12. ζ-potential determination using a ZetaMeter-Dynamic Speckle assembly

    Science.gov (United States)

    González-Peña, Rolando J.; Sánchez-Muñoz, Orlando L.; Martínez-Celorio, René A.; Cibrián, Rosa M.; Salvador-Palmer, Rosario; Salgado, Jesús

    2012-10-01

    Electrophoretic mobility and ζ-potential are important physical parameters for the characterization of micro- and nanosystems. In this communication we describe a new method for determining the ζ-potential through the assembly of two well known techniques: free electrophoresis and Dynamic Speckle. When coherent light passes through a fluid having scattering centres, the far field interference originates a speckled image. If the scattering centres are contained within the cylindrical electrophoresis cell of a ZetaMeter and are forced to move in an orderly way under the action of an external electric field, the time variation of the light intensity in the far field speckle images follows a temporal autocorrelation function g(τ). The corresponding correlation time can then be obtained and related with the velocity, from which the electrophoretic mobility and the ζ-potential of the scattering centres can be determined. We have applied this method to microparticles, like natural air-floated silica and two classes of bioceramics, hydroxyapatite and biphasic calcium phosphate. For comparison, we analysed the same samples in parallel using a commercial Zetasizer Nano from Malvern Instruments. The values of ζ-potential determined using the two techniques were the same within ~3% error. These results validate our new method as a useful and efficient alternative for ζ-potential determination of particles, at least within the micrometer scale.

  13. GPU-accelerated Tersoff potentials for massively parallel Molecular Dynamics simulations

    Science.gov (United States)

    Nguyen, Trung Dac

    2017-03-01

    The Tersoff potential is one of the empirical many-body potentials that has been widely used in simulation studies at atomic scales. Unlike pair-wise potentials, the Tersoff potential involves three-body terms, which require much more arithmetic operations and data dependency. In this contribution, we have implemented the GPU-accelerated version of several variants of the Tersoff potential for LAMMPS, an open-source massively parallel Molecular Dynamics code. Compared to the existing MPI implementation in LAMMPS, the GPU implementation exhibits a better scalability and offers a speedup of 2.2X when run on 1000 compute nodes on the Titan supercomputer. On a single node, the speedup ranges from 2.0 to 8.0 times, depending on the number of atoms per GPU and hardware configurations. The most notable features of our GPU-accelerated version include its design for MPI/accelerator heterogeneous parallelism, its compatibility with other functionalities in LAMMPS, its ability to give deterministic results and to support both NVIDIA CUDA- and OpenCL-enabled accelerators. Our implementation is now part of the GPU package in LAMMPS and accessible for public use.

  14. A Be-type star with a black-hole companion.

    Science.gov (United States)

    Casares, J; Negueruela, I; Ribó, M; Ribas, I; Paredes, J M; Herrero, A; Simón-Díaz, S

    2014-01-16

    Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the approximately 80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (ref. 5; also known as HD 215227), although that conclusion was based on a single radial velocity curve of the Be star, a mistaken spectral classification and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of MWC 656. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe II profiles from the equatorial disk, and a refined Be classification (to that of a B1.5-B2 III star), indicates that a black hole of 3.8 to 6.9 solar masses orbits MWC 656, the candidate counterpart of the γ-ray source AGL J2241+4454 (refs 5, 6). The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 × 10(-7) times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect in conventional X-ray surveys.

  15. Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni.

    Science.gov (United States)

    Kimura, Mariko; Isogai, Keisuke; Kato, Taichi; Ueda, Yoshihiro; Nakahira, Satoshi; Shidatsu, Megumi; Enoto, Teruaki; Hori, Takafumi; Nogami, Daisaku; Littlefield, Colin; Ishioka, Ryoko; Chen, Ying-Tung; King, Sun-Kun; Wen, Chih-Yi; Wang, Shiang-Yu; Lehner, Matthew J; Schwamb, Megan E; Wang, Jen-Hung; Zhang, Zhi-Wei; Alcock, Charles; Axelrod, Tim; Bianco, Federica B; Byun, Yong-Ik; Chen, Wen-Ping; Cook, Kem H; Kim, Dae-Won; Lee, Typhoon; Marshall, Stuart L; Pavlenko, Elena P; Antonyuk, Oksana I; Antonyuk, Kirill A; Pit, Nikolai V; Sosnovskij, Aleksei A; Babina, Julia V; Baklanov, Aleksei V; Pozanenko, Alexei S; Mazaeva, Elena D; Schmalz, Sergei E; Reva, Inna V; Belan, Sergei P; Inasaridze, Raguli Ya; Tungalag, Namkhai; Volnova, Alina A; Molotov, Igor E; de Miguel, Enrique; Kasai, Kiyoshi; Stein, William L; Dubovsky, Pavol A; Kiyota, Seiichiro; Miller, Ian; Richmond, Michael; Goff, William; Andreev, Maksim V; Takahashi, Hiromitsu; Kojiguchi, Naoto; Sugiura, Yuki; Takeda, Nao; Yamada, Eiji; Matsumoto, Katsura; James, Nick; Pickard, Roger D; Tordai, Tamás; Maeda, Yutaka; Ruiz, Javier; Miyashita, Atsushi; Cook, Lewis M; Imada, Akira; Uemura, Makoto

    2016-01-01

    How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries-for example, XTE J1118+480 (ref. 4) and GX 339-4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hole of nine solar masses (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion--not the actual rate--would then be the critical factor causing large-amplitude oscillations in long-period systems.

  16. Missing Link: Bayesian detection and measurement of intermediate-mass black-hole binaries

    Science.gov (United States)

    Graff, Philip B.; Buonanno, Alessandra; Sathyaprakash, B. S.

    2015-07-01

    We perform Bayesian analysis of gravitational-wave signals from nonspinning, intermediate-mass black-hole binaries (IMBHBs) with observed total mass, Mobs, from 50 M⊙ to 500 M⊙ and mass ratio 1-4 using advanced LIGO and Virgo detectors. We employ inspiral-merger-ringdown waveform models based on the effective-one-body formalism and include subleading modes of radiation beyond the leading (2,2) mode. The presence of subleading modes increases signal power for inclined binaries and allows for improved accuracy and precision in measurements of the masses as well as breaking of degeneracies in distance, orientation and polarization. For low total masses, Mobs≲50 M⊙ , for which the inspiral signal dominates, the observed chirp mass Mobs=Mobsη3 /5 (η being the symmetric mass ratio) is better measured. In contrast, as increasing power comes from merger and ringdown, we find that the total mass Mobs has better relative precision than Mobs. Indeed, at high Mobs (≥300 M⊙ ), the signal resembles a burst and the measurement thus extracts the dominant frequency of the signal that depends on Mobs. Depending on the binary's inclination, at signal-to-noise ratio (SNR) of 12, uncertainties in Mobs can be as large as ˜20 - 25 % while uncertainties in Mobs are ˜50 - 60 % in binaries with unequal masses (those numbers become ˜17 % vs. ˜22 % in more symmetric mass-ratio binaries). Although large, those uncertainties in Mobs will establish the existence of IMBHs. We find that effective-one-body waveforms with subleading modes are essential to confirm a signal's presence in the data, with calculated Bayesian evidences yielding a false alarm probability below 10-5 for SNR ≳9 in Gaussian noise. Our results show that gravitational-wave observations can offer a unique tool to observe and understand the formation, evolution and demographics of IMBHs, which are difficult to observe in the electromagnetic window.

  17. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    Science.gov (United States)

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-02

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.

  18. Membrane Potential Dynamics of CA1 Pyramidal Neurons during Hippocampal Ripples in Awake Mice.

    Science.gov (United States)

    Hulse, Brad K; Moreaux, Laurent C; Lubenov, Evgueniy V; Siapas, Athanassios G

    2016-02-17

    Ripples are high-frequency oscillations associated with population bursts in area CA1 of the hippocampus that play a prominent role in theories of memory consolidation. While spiking during ripples has been extensively studied, our understanding of the subthreshold behavior of hippocampal neurons during these events remains incomplete. Here, we combine in vivo whole-cell and multisite extracellular recordings to characterize the membrane potential dynamics of identified CA1 pyramidal neurons during ripples. We find that the subthreshold depolarization during ripples is uncorrelated with the net excitatory input to CA1, while the post-ripple hyperpolarization varies proportionately. This clarifies the circuit mechanism keeping most neurons silent during ripples. On a finer timescale, the phase delay between intracellular and extracellular ripple oscillations varies systematically with membrane potential. Such smoothly varying delays are inconsistent with models of intracellular ripple generation involving perisomatic inhibition alone. Instead, they suggest that ripple-frequency excitation leading inhibition shapes intracellular ripple oscillations.

  19. Nonlinear wave dynamics near phase transition in PT-symmetric localized potentials

    Science.gov (United States)

    Nixon, Sean; Yang, Jianke

    2016-09-01

    Nonlinear wave propagation in parity-time symmetric localized potentials is investigated analytically near a phase-transition point where a pair of real eigenvalues of the potential coalesce and bifurcate into the complex plane. Necessary conditions for a phase transition to occur are derived based on a generalization of the Krein signature. Using the multi-scale perturbation analysis, a reduced nonlinear ordinary differential equation (ODE) is derived for the amplitude of localized solutions near phase transition. Above the phase transition, this ODE predicts a family of stable solitons not bifurcating from linear (infinitesimal) modes under a certain sign of nonlinearity. In addition, it predicts periodically-oscillating nonlinear modes away from solitons. Under the opposite sign of nonlinearity, it predicts unbounded growth of solutions. Below the phase transition, solution dynamics is predicted as well. All analytical results are compared to direct computations of the full system and good agreement is observed.

  20. Nonlinear wave dynamics near phase transition in $\\mathcal{PT}$-symmetric localized potentials

    CERN Document Server

    Nixon, Sean

    2015-01-01

    Nonlinear wave propagation in parity-time ($\\mathcal{PT}$) symmetric localized potentials is investigated analytically near a phase-transition point where a pair of real eigenvalues of the potential coalesce and bifurcate into the complex plane. Necessary conditions for phase transition to occur are derived based on a generalization of the Krein signature. Using multi-scale perturbation analysis, a reduced nonlinear ODE model is derived for the amplitude of localized solutions near phase transition. Above phase transition, this ODE model predicts a family of stable solitons not bifurcating from linear (infinitesimal) modes under a certain sign of nonlinearity. In addition, it predicts periodically-oscillating nonlinear modes away from solitons. Under the opposite sign of nonlinearity, it predicts unbounded growth of solutions. Below phase transition, solution dynamics is predicted as well. All analytical results are compared to direct computations of the full system and good agreement is observed.

  1. Evidence on dynamic effects in the water content – water potential relation of building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2008-01-01

    the required material functions, i.e. the moisture storage characteristic and the liquid water conductivity, from measured basic properties. The current state of the art in material modelling as well as the corresponding transport theory implies that the moisture transport function is unique...... and that the moisture storage characteristic is process dependent with varying significance for the numerical simulation. On the basis of different building materials, a comprehensive instantaneous profile measurement study has been accomplished. Profiles of water content and relative humidity were obtained during...... a series of adsorption and desorption processes. The data provides clear evidence that the water content – water potential relationship is not only dependent on the process history, but also on the process dynamics. The higher moisture potential gradients were induced, the larger was the deviation between...

  2. Dynamic Potential Intensity: An improved representation of the ocean’s impact on tropical cyclones

    Energy Technology Data Exchange (ETDEWEB)

    Balaguru, Karthik; Foltz, Gregory R.; Leung, Ruby L.; D' Asaro, Eric; Emanuel, Kerry A.; Liu, Hailong; Zedler, Sarah E.

    2015-08-18

    To incorporate the effects of tropical cyclone (TC)-induced upper ocean mixing and sea surface temperature (SST) cooling on TC intensification, a vertical average of temperature down to a fixed depth was proposed as a replacement for SST within the framework of air-sea coupled Potential Intensity (PI). However, the depth to which TC-induced mixing penetrates may vary substantially with ocean stratification and storm state. To account for these effects, here we develop a “Dynamic Potential Intensity” (DPI) based on considerations of stratified fluid turbulence. For the Argo period 2004–2013 and the three major TC basins of the Northern Hemisphere, we show that the DPI explains 11–32% of the variance in TC intensification, compared to 0–16% using previous methods. The improvement obtained using the DPI is particularly large in the eastern Pacific where the thermocline is shallow and ocean stratification effects are strong.

  3. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling

    Science.gov (United States)

    Zhou, Yong; Wong, Ching-On; Cho, Kwang-jin; van der Hoeven, Dharini; Liang, Hong; Thakur, Dhananiay P.; Luo, Jialie; Babic, Milos; Zinsmaier, Konrad E.; Zhu, Michael X.; Hu, Hongzhen; Venkatachalam, Kartik; Hancock, John F.

    2015-01-01

    Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras–dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits. PMID:26293964

  4. Potential impact of harvesting on the population dynamics of two epiphytic bromeliads

    Science.gov (United States)

    Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana; Valverde, Teresa

    2014-08-01

    Large numbers of epiphytes are extracted from cloud forests for ornamental use and illegal trade in Latin America. We examined the potential effects of different harvesting regimes on the population dynamics of the epiphytic bromeliads Tillandsia multicaulis and Tillandsia punctulata. The population dynamics of these species were studied over a 2-year period in a tropical montane cloud forest in Veracruz, Mexico. Prospective and retrospective analyses were used to identify which demographic processes and life-cycle stages make the largest relative contribution to variation in population growth rate (λ). The effect of simulated harvesting levels on population growth rates was analysed for both species. λ of both populations was highly influenced by survival (stasis), to a lesser extent by growth, and only slightly by fecundity. Vegetative growth played a central role in the population dynamics of these organisms. The λ value of the studied populations did not differ significantly from unity: T. multicaulis λ (95% confidence interval) = 0.982 (0.897-1.060) and T. punctulata λ = 0.967 (0.815-1.051), suggesting population stability. However, numerical simulation of different levels of extraction showed that λ would drop substantially even under very low (2%) harvesting levels. Matrix analysis revealed that T. multicaulis and T. punctulata populations are likely to decline and therefore commercial harvesting would be unsustainable. Based on these findings, management recommendations are outlined.

  5. Dynamic recruitment of protein tyrosine phosphatase PTPD1 to EGF stimulation sites potentiates EGFR activation.

    Directory of Open Access Journals (Sweden)

    Pedro Roda-Navarro

    Full Text Available Balanced activity of protein tyrosine kinases and phosphatases (PTPs controls tyrosine phosphorylation levels and, consequently, is needed to prevent pathologies like cancer. Phosphatase activity is tightly regulated in space and time. Thus, in order to understand how phospho-tyrosine signalling is regulated, the intracellular dynamics of PTPs should be investigated. Here, we have studied the intracellular dynamics of PTPD1, a FERM (four-point-one, ezrin, radixin, moesin domain-containing PTP that is over expressed in cancer cells and potentiates EGFR signalling. Whereas PTPD1 was excluded from E-cadherin rich cell-cell adhesions in epithelial cell monolayers, it diffused from the cytoplasm to those membranes in contact with the extracellular medium. Localisation of PTPD1 at the plasma membrane was mediated by its FERM domain and enabled the formation of EGFR/PTPD1-containing signalling complexes that pre-existed at the plasma membrane before EGF stimulation. PTPD1 and EGFR transiently co-localised at EGF stimulation sites until the formation of macropinosomes containing active species of EGFR. Interference of PTPD1 expression caused a decrease in EGFR phosphorylated species at the periphery of the cell. Presented data suggest that the transient formation of dynamic PTPD1/EGFR signalling complexes strengthens EGF signalling by promoting the spatial propagation of EGFR phosphorylated species.

  6. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Posada, Stephany; Mora-Navarro, Camilo; Ortiz-Bermudez, Patricia; Torres-Lugo, Madeline [Department of Chemical Engineering, Call Box 9000, University of Puerto Rico, Mayagüez PR 00681 (Puerto Rico); McElhinny, Kyle M.; Evans, Paul G. [Department of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin-Madison, WI 53706 (United States); Calcagno, Barbara O. [Department of General Engineering, Call Box 9000, University of Puerto Rico, Mayagüez PR 00681 (Puerto Rico); Acevedo, Aldo, E-mail: aldo.acevedo@upr.edu [Department of Chemical Engineering, Call Box 9000, University of Puerto Rico, Mayagüez PR 00681 (Puerto Rico)

    2016-08-01

    Recently, liquid crystalline elastomers (LCEs) have been proposed as active substrates for cell culture due to their potential to attach and orient cells, and impose dynamic mechanical signals through the application of external stimuli. In this report, the preparation of anisotropic and oriented nematic magnetic-sensitized LCEs with iron oxide nanoparticles, and the evaluation of the effect of particle addition at low concentrations on the resultant structural, thermal, thermo-mechanical, and mechanical properties is presented. Phase transformations produced by heating in alternating magnetic fields were investigated in LCEs in contact with air, water, and a common liquid cell culture medium was also evaluated. The inclusion of nanoparticles into the elastomers displaced the nematic-to-isotropic phase transition, without affecting the nematic structure as evidenced by similar values of the order parameter, while reducing the maximum thermomechanical deformations. Remote and reversible deformations of the magnetic LCEs were achieved through the application of alternating magnetic fields, which induces the nematic–isotropic phase transition through nanoparticle heat generation. Formulation parameters can be modified to allow for remote actuation at values closer to the human physiological temperature range and within the range of deformations that can affect the cellular behavior of fibroblasts. Finally, a collagen surface treatment was performed to improve compatibility with NIH-3T3 fibroblast cultures, which enabled the attachment and proliferation of fibroblasts on substrates with and without magnetic particles under quiescent conditions. The LCEs developed in this work, which are able to deform and experience stress changes by remote contact-less magnetic stimulation, may allow for further studies on the effect of substrate morphology changes and dynamic mechanical properties during in vitro cell culture. - Highlights: • Magnetic LCE nanocomposites were

  7. Spectral gap for Glauber type dynamics for a special class of potentials

    CERN Document Server

    Kondratiev, Yuri; Ohlerich, Nataliya

    2011-01-01

    We consider an equilibrium birth and death type process for a particle system in infinite volume, the latter is described by the space of all locally finite point configurations on $\\R^d$. These Glauber type dynamics are Markov processes constructed for pre-given reversible measures. A representation for the "carr\\'e du champ" and "second carr\\'e du champ" for the associate infinitesimal generators $L$ are calculated in infinite volume and a corresponding coercivity identity is derived. The latter is used to give explicit sufficient conditions for the appearance and bounds for the size of the spectral gap of $L$. These techniques are applied to Glauber dynamics associated to Gibbs measure and conditions are derived extending all previous known results. In the high temperature regime now potentials also with a non-trivial negative part can be treated. Furthermore, a special class of potentials is defined for which the size of the spectral gap is as least as large as for the free system and, surprisingly, is in...

  8. Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics.

    Science.gov (United States)

    He, Chunyang; Zhao, Yuanyuan; Huang, Qingxu; Zhang, Qiaofeng; Zhang, Da

    2015-11-01

    Assessing the impact of climate change on urban landscape dynamics (ULD) is the foundation for adapting to climate change and maintaining urban landscape sustainability. This paper demonstrates an alternative future analysis by coupling a system dynamics (SD) and a cellular automata (CA) model. The potential impact of different climate change scenarios on ULD from 2009 to 2030 was simulated and evaluated in the Beijing-Tianjin-Tangshan megalopolis cluster area (BTT-MCA). The results suggested that the integrated model, which combines the advantages of the SD and CA model, has the strengths of spatial quantification and flexibility. Meanwhile, the results showed that the influence of climate change would become more severe over time. In 2030, the potential urban area affected by climate change will be 343.60-1260.66 km(2) (5.55 -20.37 % of the total urban area, projected by the no-climate-change-effect scenario). Therefore, the effects of climate change should not be neglected when designing and managing urban landscape.

  9. Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function.

    Science.gov (United States)

    Kembro, Jackelyn M; Cortassa, Sonia; Aon, Miguel A

    2014-01-01

    The time-keeping properties bestowed by oscillatory behavior on functional rhythms represent an evolutionarily conserved trait in living systems. Mitochondrial networks function as timekeepers maximizing energetic output while tuning reactive oxygen species (ROS) within physiological levels compatible with signaling. In this work, we explore the potential for timekeeping functions dependent on mitochondrial dynamics with the validated two-compartment mitochondrial energetic-redox (ME-R) computational model, that takes into account (a) four main redox couples [NADH, NADPH, GSH, Trx(SH)2], (b) scavenging systems (glutathione, thioredoxin, SOD, catalase) distributed in matrix and extra-matrix compartments, and (c) transport of ROS species between them. Herein, we describe that the ME-R model can exhibit highly complex oscillatory dynamics in energetic/redox variables and ROS species, consisting of at least five frequencies with modulated amplitudes and period according to power spectral analysis. By stability analysis we describe that the extent of steady state-as against complex oscillatory behavior-was dependent upon the abundance of Mn and Cu, Zn SODs, and their interplay with ROS production in the respiratory chain. Large parametric regions corresponding to oscillatory dynamics of increasingly complex waveforms were obtained at low Cu, Zn SOD concentration as a function of Mn SOD. This oscillatory domain was greatly reduced at higher levels of Cu, Zn SOD. Interestingly, the realm of complex oscillations was located at the edge between normal and pathological mitochondrial energetic behavior, and was characterized by oxidative stress. We conclude that complex oscillatory dynamics could represent a frequency- and amplitude-modulated H2O2 signaling mechanism that arises under intense oxidative stress. By modulating SOD, cells could have evolved an adaptive compromise between relative constancy and the flexibility required under stressful redox/energetic conditions.

  10. Periodic, quasiperiodic, and chaotic potentials generated by electrochemical concentration cells: Local and global dynamics

    Science.gov (United States)

    Zeyer, K.-P.; Münster, A. F.; Hauser, M. J. B.; Schneider, F. W.

    1994-09-01

    We extend previous work describing the passive electrical coupling of two periodic chemical states to include quasiperiodic and chaotic states. Our setup resembles an electrochemical concentration cell (a battery) whose half cells [continuous-flow stirred tank reactors (CSTRs)] each contain the Belousov-Zhabotinsky (BZ) reaction. For a closed electrical circuit the two half cells are weakly coupled by an external variable resistance and by a constant low mass flow. This battery may produce either periodic, quasiperiodic, or chaotic alternating current depending on the dynamic BZ states chosen in the half cells. A lower fractal dimensionality is calculated from the electrical potential of a single chaotic CSTR than from the difference potential (relative potential) of the two chaotic half cell potentials. A similar situation is observed in model calculations of a chaotic spatiotemporal system (the driven Brusselator in one space dimension) where the dimensionality derived from a local time series is lower than the dimensionality of the global trajectory calculated from the Karhunen-Loeve coefficients.

  11. Vibrational dynamics of the bifluoride ion. I. Construction of a model potential surface

    Science.gov (United States)

    Epa, V. C.; Choi, J. H.; Klobukowski, M.; Thorson, W. R.

    1990-01-01

    Construction of an extended model potential surface for the bifluoride ion [FHF-] is described, based on ab initio calculations for the free ion at the CID (configuration interaction, double replacement) level with a Huzinaga-Dunning double-zeta basis set. 710 data points were generated, for displacements in the three noncyclic vibrational coordinates exploring the potential surface to a height at least 30 000 cm-1 above its minimum, and giving a realistic account of the dissociation into HF+F-. Analogous calculations were made for HF and F- using the same basis. The predicted hydrogen bond energy (De) is 48.13 kcal/mol, with equilibrium F-F separation Re =4.2905 a.u., in good agreement with other recent calculations. A model potential has been constructed, based on a superposition of Morse potentials associated with each H-F distance plus a fairly structureless correction function expressible as a 36-term least-squares polynomial in the prolate spheroidal coordinates used to describe vibrational displacements. The resulting model surface fits all 710 ab initio data points with an r.m.s. deviation of 65.6 cm-1, and points less than 15 000 cm-1 above the minimum with a deviation of 26.3 cm-1. This surface provides the basis for a series of vibrational dynamics studies on the FHF- system being done in this laboratory.

  12. Potentials for Spatial Geometry Curriculum Development with Three-Dimensional Dynamic Geometry Software in Lower Secondary Mathematics

    Science.gov (United States)

    Miyazaki, Mikio; Kimiho, Chino; Katoh, Ryuhei; Arai, Hitoshi; Ogihara, Fumihiro; Oguchi, Yuichi; Morozumi, Tatsuo; Kon, Mayuko; Komatsu, Kotaro

    2012-01-01

    Three-dimensional dynamic geometry software has the power to enhance students' learning of spatial geometry. The purpose of this research is to clarify what potential using three-dimensional dynamic geometry software can offer us in terms of how to develop the spatial geometry curriculum in lower secondary schools. By focusing on the impacts the…

  13. Potentials for Spatial Geometry Curriculum Development with Three-Dimensional Dynamic Geometry Software in Lower Secondary Mathematics

    Science.gov (United States)

    Miyazaki, Mikio; Kimiho, Chino; Katoh, Ryuhei; Arai, Hitoshi; Ogihara, Fumihiro; Oguchi, Yuichi; Morozumi, Tatsuo; Kon, Mayuko; Komatsu, Kotaro

    2012-01-01

    Three-dimensional dynamic geometry software has the power to enhance students' learning of spatial geometry. The purpose of this research is to clarify what potential using three-dimensional dynamic geometry software can offer us in terms of how to develop the spatial geometry curriculum in lower secondary schools. By focusing on the impacts the…

  14. Nectar secretion dynamics and honey production potentials of some major honey plants in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Nuru Adgaba

    2017-01-01

    Full Text Available The contribution of a bee plant species to honey production depends on the plant’s nectar secretion quality and quantity, which is mainly governed by biotic and abiotic factors. The aim of the current study, was to investigate the nectar secretion dynamics and honey production potential of 14 major bee plant species of the target area. We examined the quantity and dynamics of nectar sugar per flower five times a day using a nectar sugar washing technique and direct measuring of nectar with calibrated capillary tubes. The average nectar sugar amount of the species varied from 0.41 mg/flower to 7.7 mg/flower (P < 0.0001. The honey sugar per flower was used to extrapolate the honey production potential per plant and per hectare of land. Accordingly the honey production potential of the species observed to vary from 14 kg/hectare in Otostegia fruticosa to 829 kg/hectare in Ziziphus spina-christi. The nectar secretion dynamics of the species generally showed an increasing trend early in the morning, peaking toward midday, followed by a decline but different species observed to have different peak nectar secretion times. Generally, the tree species secreted more nectar sugar/flower than the herbs. The nectar secretion amount of the species was positively correlated with the ambient temperature, indicating the adaptation of the species to hot climatic conditions. However, different species were observed to have a different optimum temperature for peak nectar secretion. Despite the limited rainfall and high temperature of the area, many plants were found to have good potential for honey production. The monetary value of honey per hectare of the studied honeybee plant species can be of equal or greater than the per-hectare monetary value of some cultivated crops that require numerous inputs. In addition, the information generated is believed to be useful in apiary site selection and to estimate the honey bee colony carrying capacity of an area.

  15. Dynamic Variation Characteristics of Phosphorus in Paddy Field Runoff in Saline Land and Its Potential Environmental Effect

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the dynamic variation characteristics of phosphorus in paddy field runoff in saline land and its potential environmental effect. [Method] Taking Qianguo irrigation district in soda-saline land in Songnen Plain as study object, the dynamic variation law of phosphorus in paddy field runoff under different irrigation conditions and its potential environmental effect were discussed. [Result] Surface water in paddy field was alkaline, and scattered soil had poor fertilizer conser...

  16. A note on black-hole physics, cosmic censorship, and the charge-mass relation of atomic nuclei

    Science.gov (United States)

    Hod, Shahar

    2016-02-01

    Arguing from the cosmic censorship principle, one of the fundamental cornerstones of black-hole physics, we have recently suggested the existence of a universal upper bound relating the maximal electric charge of a weakly self-gravitating system to its total mass: Z(A)≤slant {Z}*(A)\\equiv {α }-1/3{A}2/3, where Z is the number of protons in the system, A is the total baryon (mass) number, and α ={e}2/{{\\hslash }}c is the dimensionless fine-structure constant. In order to test the validity of this suggested bound, we here explore the Z(A) functional relation of atomic nuclei as deduced from the Weizsäcker semi-empirical mass formula. It is shown that all atomic nuclei, including the meta-stable maximally charged ones, conform to the suggested charge-mass upper bound. Our results support the validity of the cosmic censorship conjecture in black-hole physics.

  17. Efficient molecular dynamics simulations with many-body potentials on graphics processing units

    CERN Document Server

    Fan, Zheyong; Vierimaa, Ville; Harju, Ari

    2016-01-01

    Graphics processing units have been extensively used to accelerate classical molecular dynamics simulations. However, there is much less progress on the acceleration of force evaluations for many-body potentials compared to pairwise ones. In the conventional force evaluation algorithm for many-body potentials, the force, virial stress, and heat current for a given atom are accumulated within different loops, which could result in write conflict between different threads in a CUDA kernel. In this work, we provide a new force evaluation algorithm, which is based on an explicit pairwise force expression for many-body potentials derived recently [Phys. Rev. B 92 (2015) 094301]. In our algorithm, the force, virial stress, and heat current for a given atom can be accumulated within a single thread and is free of write conflicts. We discuss the formulations and algorithms and evaluate their performance. A new open-source code, GPUMD, is developed based on the proposed formulations. For the Tersoff many-body potentia...

  18. Full dynamical analysis of anisotropic scalar-field cosmology with arbitrary potentials

    CERN Document Server

    Fadragas, Carlos R; Saridakis, Emmanuel N

    2013-01-01

    We perform a detailed dynamical analysis of anisotropic scalar-field cosmologies, and in particular of the most significant Kantowski-Sachs, Bianchi I and Bianchi III cases. We follow the new and powerful method of $f$-devisers, which allows us to perform the whole analysis for arbitrary potentials. Thus, one can just substitute the specific potential form in the final results and obtain the corresponding behavior, without the need of new calculations. We find a very rich behavior, and amongst others the universe can result in isotropized solutions with observables in agreement with observations, such as de Sitter, quintessence-like, or stiff-dark energy solutions. Additionally, in the case of Kantowski-Sachs geometry we find that a cosmological bounce and turnaround are realized in a part of the parameter-space. Finally, applying the general results to the well-studied exponential and power-law potentials, we find that some of the general stable solutions disappear. This feature may be an indication that suc...

  19. A numerical investigation of bubble dynamics based on the potential-flow theory

    Institute of Scientific and Technical Information of China (English)

    YAO Xiong-liang; ZHANG A-man

    2006-01-01

    In this paper, the flow field is assumed to be inviscid, irrotational and incompressible,triangular elements are adopted to discretize the boundary of flow field, the boundary integral method is used to solve the flow field and the Mixed-Eulerian-Lagrangian method is applied to simulate the evolution of bubble. Three-dimensional smoothing method is used to smooth the bubble surface and the velocity potential to make the computing process more accurate and stable. In the analysis process,three-dimensional model simulates the dynamics of a bubble in the free field, gravitational field and near the rigid wall respectively, and the calculated results coincide well with the exact results and experimental data, which show that the algorithm and 3D model in this paper are of high accuracy.Calculation process indicates that bubble takes on strong non-linear under the combine effect of gravity and rigid wall.

  20. Modulations of 'late' event-related brain potentials in humans by dynamic audiovisual speech stimuli.

    Science.gov (United States)

    Lebib, Riadh; Papo, David; Douiri, Abdel; de Bode, Stella; Gillon Dowens, Margaret; Baudonnière, Pierre-Marie

    2004-11-30

    Lipreading reliably improve speech perception during face-to-face conversation. Within the range of good dubbing, however, adults tolerate some audiovisual (AV) discrepancies and lipreading, then, can give rise to confusion. We used event-related brain potentials (ERPs) to study the perceptual strategies governing the intermodal processing of dynamic and bimodal speech stimuli, either congruently dubbed or not. Electrophysiological analyses revealed that non-coherent audiovisual dubbings modulated in amplitude an endogenous ERP component, the N300, we compared to a 'N400-like effect' reflecting the difficulty to integrate these conflicting pieces of information. This result adds further support for the existence of a cerebral system underlying 'integrative processes' lato sensu. Further studies should take advantage of this 'N400-like effect' with AV speech stimuli to open new perspectives in the domain of psycholinguistics.

  1. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers

    DEFF Research Database (Denmark)

    Daniels, C.J.; Poulton, A. J.; Esposito, M.;

    2015-01-01

    The spring bloom is a key annual event in the phenology of pelagic ecosystems, making a major contribution to the oceanic biological carbon pump through the production and export of organic carbon. However, there is little consensus as to the main drivers of spring bloom formation, exacerbated...... by a lack of in situ observations of the phytoplankton community composition and its evolution during this critical period. We investigated the dynamics of the phytoplankton community structure at two contrasting sites in the Iceland and Norwegian Basins during the early stage (25 March–25 April...... a biomass. The ICB phytoplankton composition appeared primarily driven by the physicochemical environment, with periodic events of increased mixing restricting further increases in biomass. In contrast, the NWB phytoplankton community was potentially limited by physicochemical and/or biological factors...

  2. Membrane potential dynamics of populations of cortical neurons during auditory streaming.

    Science.gov (United States)

    Farley, Brandon J; Noreña, Arnaud J

    2015-10-01

    How a mixture of acoustic sources is perceptually organized into discrete auditory objects remains unclear. One current hypothesis postulates that perceptual segregation of different sources is related to the spatiotemporal separation of cortical responses induced by each acoustic source or stream. In the present study, the dynamics of subthreshold membrane potential activity were measured across the entire tonotopic axis of the rodent primary auditory cortex during the auditory streaming paradigm using voltage-sensitive dye imaging. Consistent with the proposed hypothesis, we observed enhanced spatiotemporal segregation of cortical responses to alternating tone sequences as their frequency separation or presentation rate was increased, both manipulations known to promote stream segregation. However, across most streaming paradigm conditions tested, a substantial cortical region maintaining a response to both tones coexisted with more peripheral cortical regions responding more selectively to one of them. We propose that these coexisting subthreshold representation types could provide neural substrates to support the flexible switching between the integrated and segregated streaming percepts.

  3. First principles molecular dynamics of metal/water interfaces under bias potential

    Science.gov (United States)

    Pedroza, Luana; Brandimarte, Pedro; Rocha, Alexandre; Fernandez-Serra, Marivi

    2014-03-01

    Understanding the interaction of the water-metal system at an atomic level is extremely important in electrocatalysts for fuel cells, photocatalysis among other systems. The question of the interface energetics involves a detailed study of the nature of the interactions between water-water and water-substrate. A first principles description of all components of the system is the most appropriate methodology in order to advance understanding of electrochemically processes. In this work we describe, using first principles molecular dynamics simulations, the dynamics of a combined surface(Au and Pd)/water system both in the presence and absence of an external bias potential applied to the electrodes, as one would come across in electrochemistry. This is accomplished using a combination of density functional theory (DFT) and non-equilibrium Green's functions methods (NEGF), thus accounting for the fact that one is dealing with an out-of-equilibrium open system, with and without van der Waals interactions. DOE Early Career Award No. DE-SC0003871.

  4. Recognizing dynamic facial expressions of emotion: Specificity and intensity effects in event-related brain potentials.

    Science.gov (United States)

    Recio, Guillermo; Schacht, Annekathrin; Sommer, Werner

    2014-02-01

    Emotional facial expressions usually arise dynamically from a neutral expression. Yet, most previous research focused on static images. The present study investigated basic aspects of processing dynamic facial expressions. In two experiments, we presented short videos of facial expressions of six basic emotions and non-emotional facial movements emerging at variable and fixed rise times, attaining different intensity levels. In event-related brain potentials (ERP), effects of emotion but also for non-emotional movements appeared as early posterior negativity (EPN) between 200 and 350ms, suggesting an overall facilitation of early visual encoding for all facial movements. These EPN effects were emotion-unspecific. In contrast, relative to happiness and neutral expressions, negative emotional expressions elicited larger late positive ERP components (LPCs), indicating a more elaborate processing. Both EPN and LPC amplitudes increased with expression intensity. Effects of emotion and intensity were additive, indicating that intensity (understood as the degree of motion) increases the impact of emotional expressions but not its quality. These processes can be driven by all basic emotions, and there is little emotion-specificity even when statistical power is considerable (N (Experiment 2)=102). Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations.

    Science.gov (United States)

    Castellazzi, Pascal; Martel, Richard; Galloway, Devin L; Longuevergne, Laurent; Rivera, Alfonso

    2016-11-01

    In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km(2) ). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.

  6. Ultrafast exciton migration in an HJ-aggregate: Potential surfaces and quantum dynamics

    Science.gov (United States)

    Binder, Robert; Polkehn, Matthias; Ma, Tianji; Burghardt, Irene

    2017-01-01

    Quantum dynamical and electronic structure calculations are combined to investigate the mechanism of exciton migration in an oligothiophene HJ aggregate, i.e., a combination of oligomer chains (J-type aggregates) and stacked aggregates of such chains (H-type aggregates). To this end, a Frenkel exciton model is parametrized by a recently introduced procedure [Binder et al., J. Chem. Phys. 141, 014101 (2014)] which uses oligomer excited-state calculations to perform an exact, point-wise mapping of coupled potential energy surfaces to an effective Frenkel model. Based upon this parametrization, the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method is employed to investigate ultrafast dynamics of exciton transfer in a small, asymmetric HJ aggregate model composed of 30 sites and 30 active modes. For a partially delocalized initial condition, it is shown that a torsional defect confines the trapped initial exciton, and planarization induces an ultrafast resonant transition between an HJ-aggregated segment and a covalently bound "dangling chain" end. This model is a minimal realization of experimentally investigated mixed systems exhibiting ultrafast exciton transfer between aggregated, highly planarized chains and neighboring disordered segments.

  7. Dynamics based pharmacophore models for screening potential inhibitors of mycobacterial cyclopropane synthase.

    Science.gov (United States)

    Choudhury, Chinmayee; Priyakumar, U Deva; Sastry, G Narahari

    2015-04-27

    The therapeutic challenges in the treatment of tuberculosis demand multidisciplinary approaches for the identification of potential drug targets as well as fast and accurate techniques to screen huge chemical libraries. Mycobacterial cyclopropane synthase (CmaA1) has been shown to be essential for the survival of the bacteria due to its critical role in the synthesis of mycolic acids. The present study proposes pharmacophore models based on the structure of CmaA1 taking into account its various states in the cyclopropanation process, and their dynamic nature as assessed using molecular dynamics (MD) simulations. The qualities of these pharmacophore models were validated by mapping 23 molecules that have been previously reported to exhibit inhibitory activities on CmaA1. Additionally, 1398 compounds that have been shown to be inactive for tuberculosis were collected from the ChEMBL database and were screened against the models for validation. The models were further validated by comparing the results from pharmacophore mapping with the results obtained from docking these molecules with the respective protein structures. The best models are suggested by validating all the models based on their screening abilities and by comparing with docking results. The models generated from the MD trajectories were found to perform better than the one generated based on the crystal structure demonstrating the importance of incorporating receptor flexibility in drug design.

  8. Investigation of the potential causes of partial scan artifacts in dynamic CT myocardial perfusion imaging

    Science.gov (United States)

    Tao, Yinghua; Speidel, Michael; Szczykutowicz, Timothy; Chen, Guang-Hong

    2014-03-01

    In recent years, there have been several findings regarding CT number variations (partial scan artifact or PSA) across time in dynamic myocardial perfusion studies with short scan gated reconstruction. These variations are correlated with the view angle range corresponding to the short scan acquisition for a given cardiac phase, which can vary from one cardiac cycle to another due to the asynchrony between heart rate and gantry rotation speed. In this study, we investigate several potential causes of PSA, including noise, beam hardening and scatter, using numerical simulations. In addition, we investigate partial scan artifact in a single source 64-slice diagnostic CT scanner in vivo data sets, and report its effect on perfusion analysis. Results indicated that among all three factors investigated, scatter can cause obvious partial scan artifact in dynamic myocardial perfusion imaging. Further, scatter is a low frequency phenomenon and is not heavily dependent on the changing contrasts, as both the frequency method and the virtual scan method are effective in reducing partial scan artifact. However, PSA does not necessarily lead to different blood volume maps compared to the full scan, because these maps are usually generated with a curve fitting procedure.

  9. Controllability of wavepacket dynamics in coherently driven double-well potential

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Akira [Graduate School of Science and Technology, Niigata University, Ikarashi 2-Nochou 8050, Niigata 950-2181 (Japan)], E-mail: f99j806b@mail.cc.niigata-u.ac.jp; Yamada, Hiroaki [YPRL, 5-7-14 Aoyama, Niigata 950-2002 (Japan)], E-mail: hyamada@uranus.dti.ne.jp

    2006-09-11

    We numerically study the controllability of quantum dynamics in perturbed one-dimensional double-well potential by using an optimal control theory. As the perturbation strength is small the dynamics of the initially localized Gaussian wavepacket shows coherent oscillation between the wells. It is found that as there is an increase in strength and/or the number of frequency components of perturbation, the coherent motion of the Gaussian wavepacket changes to an irregular one with irreversible delocalization. We investigate the controllability of the system depending on the perturbation parameters and the initial quantum state by focusing mainly on the delocalized state generated by the polychromatical perturbation. In the relatively long-time control for the Gaussian wavepacket and the delocalized state, we show that it is well-controllable via the first excited state doublet in spite of the perturbation parameters. On the other hand, in the relatively short-time control we show the difficulty of the control for the delocalized state because of the numerous local minima. Furthermore, it is demonstrated that the short-time control of the delocalized state can be assisted by chaotic behavior in the controlled-system with the polychromatic perturbation.

  10. Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations

    Science.gov (United States)

    Castellazzi, Pascal; Martel, Richard; Galloway, Devin L.; Longuevergne, Laurent; Rivera, Alfonso

    2016-01-01

    In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.

  11. Dynamics of KdV solitons in the presence of a slowly varying potential

    CERN Document Server

    Holmer, Justin

    2010-01-01

    We study the dynamics of solitons as solutions to the perturbed KdV (pKdV) equation $\\partial_t u = -\\partial_x (\\partial_x^2 u + 3u^2-bu)$, where $b(x,t) = b_0(hx,ht)$, $h\\ll 1$ is a slowly varying, but not small, potential. We option an explicit description of the trajectory of the soliton parameters of scale and position on the dynamically relevant time scale $\\delta h^{-1}\\log h^{-1}$, together with an estimate on the error of size $h^{1/2}$. In addition to the Lyapunov analysis commonly applied to these problems, we use a local virial estimate due to Martel-Merle (2005). The results are supported by numerics. The proof does not rely on the inverse scattering machinery and is expected to carry through for the $L^2$ subcritical gKdV-$p$ equation, $1

  12. Efficient and accurate evaluation of potential energy matrix elements for quantum dynamics using Gaussian process regression

    Science.gov (United States)

    Alborzpour, Jonathan P.; Tew, David P.; Habershon, Scott

    2016-11-01

    Solution of the time-dependent Schrödinger equation using a linear combination of basis functions, such as Gaussian wavepackets (GWPs), requires costly evaluation of integrals over the entire potential energy surface (PES) of the system. The standard approach, motivated by computational tractability for direct dynamics, is to approximate the PES with a second order Taylor expansion, for example centred at each GWP. In this article, we propose an alternative method for approximating PES matrix elements based on PES interpolation using Gaussian process regression (GPR). Our GPR scheme requires only single-point evaluations of the PES at a limited number of configurations in each time-step; the necessity of performing often-expensive evaluations of the Hessian matrix is completely avoided. In applications to 2-, 5-, and 10-dimensional benchmark models describing a tunnelling coordinate coupled non-linearly to a set of harmonic oscillators, we find that our GPR method results in PES matrix elements for which the average error is, in the best case, two orders-of-magnitude smaller and, in the worst case, directly comparable to that determined by any other Taylor expansion method, without requiring additional PES evaluations or Hessian matrices. Given the computational simplicity of GPR, as well as the opportunities for further refinement of the procedure highlighted herein, we argue that our GPR methodology should replace methods for evaluating PES matrix elements using Taylor expansions in quantum dynamics simulations.

  13. The StarDate Black Hole Encyclopedia Website blackholes.stardate.org

    Science.gov (United States)

    Gebhardt, Karl; Benningfield, D.; Preston, S.

    2013-01-01

    The StarDate Black Hole Encyclopedia website was developed over the past seven years to provide an extensive but easy-to-read resource for the public and students. A Spanish-language version, Enciclopedia de agujeros negros, is also available at blackholes.radiouniverso.org. Evaluation shows that the sites are used by the public, students, and astronomy professionals, and the site is among the top references in most web searches for individual black holes. The site comprises seven major subsections: Basics, Directory, Research, History, Pop Culture, News, and Resources. The Basics section introduces black holes, explains how they are discovered and studied, and covers their basis in the theory of gravity. This section also includes a six-minute video introduction, “Black Holes: Stranger than Fiction.” The Directory section contains extensive descriptions of more than 80 well-known stellar, intermediate, and supermassive black holes as well as images and vital statistics of each. The Research section takes a look at three NSF-funded projects, including the work of Andrea Ghez, Karl Gebhardt and Jenny Greene, and the LIGO project. The History section provides a timeline of black holes from Isaac Newton to the present. Some of the best and worst roles played by black holes in films, TV shows, and books are included in the Pop Culture section (and pop culture references and images are sprinkled through the rest of the site). An archive of news reports about black holes is available in the News section, which provides links to the original stories or press releases. And the Resources section offers FAQs, articles from StarDate magazine and radio programs, activities for students that are tied to national standards, a glossary, and a reading list of books and websites. We have conducted both quantitative and qualitative evaluation on the black hole websites. This material is based upon work supported by the National Science Foundation under Grant No. 0935841. Any

  14. Virulence and biodegradation potential of dynamic microbial communities associated with decaying Cladophora in Great Lakes

    Science.gov (United States)

    Chun, Chan Lan; Peller, Julie R.; Shively, Dawn; Byappanahalli, Muruleedhara N.; Whitman, Richard L.; Staley, Christopher; Zhang, Qian; Ishii, Satoshi; Sadowsky, Michael J.

    2017-01-01

    Cladophora mats that accumulate and decompose along shorelines of the Great Lakes create potential threats to the health of humans and wildlife. The decaying algae create a low oxygen and redox potential environment favoring growth and persistence of anaerobic microbial populations, including Clostridium botulinum, the causal agent of botulism in humans, birds, and other wildlife. In addition to the diverse population of microbes, a dynamic chemical environment is generated, which involves production of numerous organic and inorganic substances, many of which are believed to be toxic to the sand and aquatic biotic communities. In this study, we used 16S-rDNA-based-amplicon sequencing and microfluidic-based quantitative PCR approaches to characterize the bacterial community structure and the abundances of human pathogens associated with Cladophora at different stages (up to 90 days) of algal decay in laboratory microcosms. Oxygen levels were largely depleted after a few hours of incubation. As Cladophora decayed, the algal microbial biodiversity decreased within 24 h, and the mat transitioned from an aerobic to anaerobic environment. There were increasing abundances of enteric and pathogenic bacteria during decomposition of Cladophora, including Acinetobacter, Enterobacter, Kluyvera, Cedecea, and others. In contrast, there were no or very few sequences (< 0.07%) assigned to such groups in fresh Cladophora samples. Principal coordinate analysis indicated that the bacterial community structure was dynamic and changed significantly with decay time. Knowledge of microbial communities and chemical composition of decaying algal mats is critical to our further understanding of the role that Cladophora plays in a beach ecosystem's structure and function, including the algal role in trophic interactions. Based on these findings, public and environmental health concerns should be considered when decaying Cladophora mats accumulate Great Lakes shorelines.

  15. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics

    Directory of Open Access Journals (Sweden)

    Fikret Emre eKapucu

    2012-06-01

    Full Text Available In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESC, exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing statistics based on interspike interval (ISI histograms. Moreover, the algorithm calculates interspike interval thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating the cumulative moving average and skewness of the ISI histogram. Because of the adaptive nature of the proposed algorithm, its analysis power is not limited by the type of neuronal cell network at hand. We demonstrate the functionality of our algorithm with two different types of microelectrode array (MEA data recorded from spontaneously active hESC-derived neuronal cell networks. The same data was also analyzed by two commonly employed burst detection algorithms and the differences in burst detection results are illustrated. The results demonstrate that our method is both adaptive to the firing statistics of the network and yields successful burst detection from the data. In conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal cell networks and thus can be utilized in studies aiming to understand the development and functioning of human neuronal networks and as an analysis tool for in vitro drug screening and neurotoxicity assays.

  16. Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics.

    Science.gov (United States)

    Kapucu, Fikret E; Tanskanen, Jarno M A; Mikkonen, Jarno E; Ylä-Outinen, Laura; Narkilahti, Susanna; Hyttinen, Jari A K

    2012-01-01

    In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESCs), exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing statistics based on interspike interval (ISI) histograms. Moreover, the algorithm calculates ISI thresholds for burst spikes as well as for pre-burst spikes and burst tails by evaluating the cumulative moving average (CMA) and skewness of the ISI histogram. Because of the adaptive nature of the proposed algorithm, its analysis power is not limited by the type of neuronal cell network at hand. We demonstrate the functionality of our algorithm with two different types of microelectrode array (MEA) data recorded from spontaneously active hESC-derived neuronal cell networks. The same data was also analyzed by two commonly employed burst detection algorithms and the differences in burst detection results are illustrated. The results demonstrate that our method is both adaptive to the firing statistics of the network and yields successful burst detection from the data. In conclusion, the proposed method is a potential tool for analyzing of hESC-derived neuronal cell networks and thus can be utilized in studies aiming to understand the development and functioning of human neuronal networks and as an analysis tool for in vitro drug screening and neurotoxicity assays.

  17. Colloidal transport and diffusion over a tilted periodic potential: dynamics of individual particles.

    Science.gov (United States)

    Ma, Xiao-guang; Lai, Pik-Yin; Ackerson, Bruce J; Tong, Penger

    2015-02-14

    A tilted two-layer colloidal system is constructed for the study of force-assisted barrier-crossing dynamics over a periodic potential. The periodic potential is provided by the bottom layer colloidal spheres forming a fixed crystalline pattern on a glass substrate. The corrugated surface of the bottom colloidal crystal provides a gravitational potential field for the top layer diffusing particles. By tilting the sample at an angle θ with respect to the vertical (gravity) direction, a tangential component of the gravitational force F is applied to the diffusing particles. The measured mean drift velocity v(F, Eb) and diffusion coefficient D(F, Eb) of the particles as a function of F and energy barrier height Eb agree well with the exact results of the one-dimensional drift velocity (R. L. Stratonovich, Radiotekh. Elektron, 1958, 3, 497) and diffusion coefficient (P. Reimann, et al., Phys. Rev. Lett., 2001, 87, 010602 and P. Reimann, et al., Phys. Rev. E, 2002, 65, 031104). Based on these exact results, we show analytically and verify experimentally that there exists a scaling region, in which v(F, Eb) and D(F, Eb) both scale as ν'(F)exp[-E(F)/kBT], where the Arrhenius pre-factor ν'(F) and effective barrier height E(F) are both modified by F. The experiment demonstrates the applications of this model system in evaluating different scaling forms of ν'(F) and E(F) and their accuracy, in order to extract useful information about the external potential, such as the intrinsic barrier height Eb.

  18. Dynamic testing of learning potential in adults with cognitive impairments: A systematic review of methodology and predictive value.

    Science.gov (United States)

    Boosman, Hileen; Bovend'Eerdt, Thamar J H; Visser-Meily, Johanna M A; Nijboer, Tanja C W; van Heugten, Caroline M

    2016-09-01

    Dynamic testing includes procedures that examine the effects of brief training on test performance where pre- to post-training change reflects patients' learning potential. The objective of this systematic review was to provide clinicians and researchers insight into the concept and methodology of dynamic testing and to explore its predictive validity in adult patients with cognitive impairments. The following electronic databases were searched: PubMed, PsychINFO, and Embase/Medline. Of 1141 potentially relevant articles, 24 studies met the inclusion criteria. The mean methodological quality score was 4.6 of 8. Eleven different dynamic tests were used. The majority of studies used dynamic versions of the Wisconsin Card Sorting Test. The training mostly consisted of a combination of performance feedback, reinforcement, expanded instruction, or strategy training. Learning potential was quantified using numerical (post-test score, difference score, gain score, regression residuals) and categorical (groups) indices. In five of six longitudinal studies, learning potential significantly predicted rehabilitation outcome. Three of four studies supported the added value of dynamic testing over conventional testing in predicting rehabilitation outcome. This review provides preliminary support that dynamic tests can provide a valuable addition to conventional tests to assess patients' abilities. Although promising, there was a large variability in methods used for dynamic testing and, therefore, it remains unclear which dynamic testing methods are most appropriate for patients with cognitive impairments. More research is warranted to further evaluate and refine dynamic testing methodology and to further elucidate its predictive validity concerning rehabilitation outcomes relative to other cognitive and functional status indices.

  19. Virulence and biodegradation potential of dynamic microbial communities associated with decaying Cladophora in Great Lakes.

    Science.gov (United States)

    Chun, Chan Lan; Peller, Julie R; Shively, Dawn; Byappanahalli, Muruleedhara N; Whitman, Richard L; Staley, Christopher; Zhang, Qian; Ishii, Satoshi; Sadowsky, Michael J

    2017-01-01

    Cladophora mats that accumulate and decompose along shorelines of the Great Lakes create potential threats to the health of humans and wildlife. The decaying algae create a low oxygen and redox potential environment favoring growth and persistence of anaerobic microbial populations, including Clostridium botulinum, the causal agent of botulism in humans, birds, and other wildlife. In addition to the diverse population of microbes, a dynamic chemical environment is generated, which involves production of numerous organic and inorganic substances, many of which are believed to be toxic to the sand and aquatic biotic communities. In this study, we used 16S-rDNA-based-amplicon sequencing and microfluidic-based quantitative PCR approaches to characterize the bacterial community structure and the abundances of human pathogens associated with Cladophora at different stages (up to 90days) of algal decay in laboratory microcosms. Oxygen levels were largely depleted after a few hours of incubation. As Cladophora decayed, the algal microbial biodiversity decreased within 24h, and the mat transitioned from an aerobic to anaerobic environment. There were increasing abundances of enteric and pathogenic bacteria during decomposition of Cladophora, including Acinetobacter, Enterobacter, Kluyvera, Cedecea, and others. In contrast, there were no or very few sequences (Great Lakes shorelines. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    CERN Document Server

    Geng, Hua Y

    2014-01-01

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model, the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4 fold for a two-level implementation, and can be increased to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibration...

  1. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Hua Y., E-mail: huay.geng@gmail.com [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, P.O. Box 919-102, Mianyang, Sichuan, 621900 (China); Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853 (United States)

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  2. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    Science.gov (United States)

    Geng, Hua Y.

    2015-02-01

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.

  3. Applications of control theory to the dynamics and propagation of cardiac action potentials.

    Science.gov (United States)

    Muñoz, Laura M; Stockton, Jonathan F; Otani, Niels F

    2010-09-01

    Sudden cardiac arrest is a widespread cause of death in the industrialized world. Most cases of sudden cardiac arrest are due to ventricular fibrillation (VF), a lethal cardiac arrhythmia. Electrophysiological abnormalities such as alternans (a beat-to-beat alternation in action potential duration) and conduction block have been suspected to contribute to the onset of VF. This study focuses on the use of control-systems techniques to analyze and design methods for suppressing these precursor factors. Control-systems tools, specifically controllability analysis and Lyapunov stability methods, were applied to a two-variable Karma model of the action-potential (AP) dynamics of a single cell, to analyze the effectiveness of strategies for suppressing AP abnormalities. State-feedback-integral (SFI) control was then applied to a Purkinje fiber simulated with the Karma model, where only one stimulating electrode was used to affect the system. SFI control converted both discordant alternans and 2:1 conduction block back toward more normal patterns, over a wider range of fiber lengths and pacing intervals compared with a Pyragas-type chaos controller. The advantages conferred by using feedback from multiple locations in the fiber, and using integral (i.e., memory) terms in the controller, are discussed.

  4. Dynamic protoneural networks in plants: a new approach of spontaneous extracellular potential variations.

    Science.gov (United States)

    Debono, Marc-Williams

    2013-06-01

    Taking as a basis of discussion Kalanchoe's spontaneous and evoked extracellular activities recorded at the whole plant level, we put the challenging questions: do these low-voltage variations, together with endocellular events, reflect integrative properties and complex behavior in plants? Does it reflect common perceptive systems in animal and plant species? Is the ability of plants to treat short-term variations and information transfer without nervous system relevant? Is a protoneural construction of the world by lower organisms possible? More generally, the aim of this paper is to reevaluate the probably underestimated role of plant surface potentials in the plant relation life, carefully comparing the biogenesis of both animal and plant organisms in the era of plant neurobiology. Knowing that surface potentials participate at least to morphogenesis, cell to cell coupling, long distance transmission and transduction of stimuli, some hypothesis are given indicating that plants have to be studied as environmental biosensors and non linear dynamic systems able to detect transitional states between perception and response to stimuli. This study is conducted in the frame of the "plasticity paradigm," which gives a theoretical model of evolutionary processes and suggests some hypothesis about the nature of complexity, information and behavior.

  5. Dynamical changes of the polar cap potential structure: an information theory approach

    Directory of Open Access Journals (Sweden)

    I. Coco

    2011-10-01

    Full Text Available Some features, such as vortex structures often observed through a wide spread of spatial scales, suggest that ionospheric convection is turbulent and complex in nature. Here, applying concepts from information theory and complex system physics, we firstly evaluate a pseudo Shannon entropy, H, associated with the polar cap potential obtained from the Super Dual Auroral Radar Network (SuperDARN and, then, estimate the degree of disorder and the degree of complexity of ionospheric convection under different Interplanetary Magnetic Field (IMF conditions. The aforementioned quantities are computed starting from time series of the coefficients of the 4th order spherical harmonics expansion of the polar cap potential for three periods, characterised by: (i steady IMF Bz > 0, (ii steady IMF Bz < 0 and (iii a double rotation from negative to positive and then positive to negative Bz. A neat dynamical topological transition is observed when the IMF Bz turns from negative to positive and vice versa, pointing toward the possible occurrence of an order/disorder phase transition, which is the counterpart of the large scale convection rearrangement and of the increase of the global coherence. This result has been confirmed by applying the same analysis to a larger data base of about twenty days of SuperDARN data, allowing to investigate the role of IMF By too.

  6. Molecular dynamics study on β -phase vanadium monohydride with machine learning potential

    Science.gov (United States)

    Miwa, Kazutoshi; Ohno, Hiroshi

    2016-11-01

    The formalism to construct the machine learning potentials (MLPs) is presented. We introduce the spilling factor for the simultaneous error estimation and the recursive bisection method for the reduction of the computational cost. The formalism is applied for the β -phase vanadium monohydride. The first-principles calculations based on density functional theory (DFT) are used to prepare the sample data set from which the MLP for the vanadium monohydride (VH) system is constructed. In the molecular dynamics simulation with the MLP, the time-averaged structure of β -VH is predicted correctly to be the body-centered tetragonal structure with the octahedral (O ) site occupation of H. The average lattice constants are in good agreement with the experimental data which are not able to be reproduced by the static DFT calculation. The O -site occupation of H observed in the average structure is, however, a saddle point on the potential-energy surface, and the actual hydrogen occupation is found to be the 4 T configuration.

  7. The real-time link between person perception and action: brain potential evidence for dynamic continuity.

    Science.gov (United States)

    Freeman, Jonathan B; Ambady, Nalini; Midgley, Katherine J; Holcomb, Phillip J

    2011-01-01

    Using event-related potentials, we investigated how the brain extracts information from another's face and translates it into relevant action in real time. In Study 1, participants made between-hand sex categorizations of sex-typical and sex-atypical faces. Sex-atypical faces evoked negativity between 250 and 550 ms (N300/N400 effects), reflecting the integration of accumulating sex-category knowledge into a coherent sex-category interpretation. Additionally, the lateralized readiness potential revealed that the motor cortex began preparing for a correct hand response while social category knowledge was still gradually evolving in parallel. In Study 2, participants made between-hand eye-color categorizations as part of go/no-go trials that were contingent on a target's sex. On no-go trials, although the hand did not actually move, information about eye color partially prepared the motor cortex to move the hand before perception of sex had finalized. Together, these findings demonstrate the dynamic continuity between person perception and action, such that ongoing results from face processing are immediately and continuously cascaded into the motor system over time. The preparation of action begins based on tentative perceptions of another's face before perceivers have finished interpreting what they just saw.

  8. Towards an extension of 1905 relativistic dynamics with a variable rest mass measuring potential energy

    CERN Document Server

    Hidalgo-Gato, Rafael A Valls

    2012-01-01

    From a rigorous historic analysis of 1686 I. Newton and 1905 A. Einstein works where the last derived the universal mass-energy relationship, it is concluded that rest mass measures potential energy. From the same formula used to obtain that relation, it is derived the ratio Total Energy/Potential Energy is equal to the gamma relativistic factor. It is derived a formula for the variation of a body rest mass with its position in a gravity field, explaining with it the behavior of an atomic clock. It is revised the bodies free fall in a gravitational field, finding that a constant total mass is equal to the gravitational mass, while the variable rest mass is equal to the inertial mass, maintaining all an identical behavior independent of their masses. A revision of the E\\"otv\\"os experiment concludes that it is unable to detect the found difference between inertial and gravitational mass. Applying the extended 1905 relativistic dynamics to Mercury, its perihelion shift is determined; it is concluded with the co...

  9. A two-stage method to determine optimal product sampling considering dynamic potential market.

    Science.gov (United States)

    Hu, Zhineng; Lu, Wei; Han, Bing

    2015-01-01

    This paper develops an optimization model for the diffusion effects of free samples under dynamic changes in potential market based on the characteristics of independent product and presents a two-stage method to figure out the sampling level. The impact analysis of the key factors on the sampling level shows that the increase of the external coefficient or internal coefficient has a negative influence on the sampling level. And the changing rate of the potential market has no significant influence on the sampling level whereas the repeat purchase has a positive one. Using logistic analysis and regression analysis, the global sensitivity analysis gives a whole analysis of the interaction of all parameters, which provides a two-stage method to estimate the impact of the relevant parameters in the case of inaccuracy of the parameters and to be able to construct a 95% confidence interval for the predicted sampling level. Finally, the paper provides the operational steps to improve the accuracy of the parameter estimation and an innovational way to estimate the sampling level.

  10. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [Department of Physics and Astronomy and Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States); Wang, Jin, E-mail: jin.wang.1@stonybrook.edu [Department of Physics and Astronomy and Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794 (United States); State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China and College of Physics, Jilin University, 130021 Changchun (China)

    2014-09-14

    We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series.

  11. The influence of saltmarsh restoration on sediment dynamics and the potential impact on carbon sequestration

    Science.gov (United States)

    Taylor, Benjamin; Paterson, David

    2017-04-01

    Coastal wetland ecosystems can act as large-capacity carbon sinks, providing a valuable climate change mitigation function. Globally, saltmarshes are estimated to accumulate an average of 244.7g C m-2 yr-1 (Ouyang & Lee 2014). Saltmarsh areas have experienced rapid loss in the recent past of approximately 1-2% per year (Duarte et al. 2008). Efforts to restore these areas could result in additional carbon storage due to extended vegetation cover and altered burial due to changing sediment dynamics. The influence of restoration through transplantation on sediment dynamics within a small estuary on the east coast of Scotland was assessed. Restoration efforts have been implemented since the early 2000s providing examples of old established sites ("old", >10years), young recently planted sites ("young", business-as-usual' mudflats and natural marsh areas. In each of these area types seasonal data of sediment deposition and settlement were collected and sediment accretion rates measured. Deposition and settlement samples were taken four times a season, provided total sediment weight and organic content information. Elevation changes were measured once per season, quantifying sediment accretion rates. All data were collected between summer 2015 and spring 2016. Data suggest a positive correlation between sediment settlement and deposition quantities (dry weight) across the estuary (r2=0.64), with restored areas displaying a slightly stronger relationship (old r2=0.67, young r2=0.68) compared to natural marsh and mudflats (r2=0.54 and 0.59 respectively). Suggesting restored areas which are developing or expanding are retaining more from the potential sediment load in the water column. However average amounts of actual deposited material are significantly greater in mudflat and young areas with old and natural areas significantly lower; potentially as a result of those being of a lower elevation. Nevertheless, percentage organic matter content of deposited material is

  12. Dynamic Features of the Highly Excited Vibrational States of the HOCl Non-Integrable System Based on the Dynamic Potential and Lyapunov Exponent Approaches.

    Science.gov (United States)

    Wang, Aixing; Fang, Chao; Liu, Yibao

    2017-01-07

    In this article the dynamic features of the highly excited vibrational states of the hypochlorous acid (HOCl) non-integrable system are studied using the dynamic potential and Lyapunov exponent approaches. On the condition that the 3:1 resonance between the H-O stretching and H-O-Cl bending modes accompany the 2:1 Fermi resonance between the O-Cl stretching and H-O-Cl bending modes, it is found that the dynamic potentials of the highly excited vibrational states vary regularly with different Polyad numbers (P numbers). As the P number increases, the dynamic potentials of the H-O stretching mode remain the same, but those of the H-O-Cl bending mode gradually become complex. In order to investigate the chaotic and stable features of the highly excited vibrational states of the HOCl non-integrable system, the Lyapunov exponents of different energy levels lying in the dynamic potentials of the H-O-Cl bending mode (P = 4 and 5) are calculated. It is shown that the Lyapunov exponents of the energy levels staying in the junction of Morse potential and inverse Morse potential are relative large, which indicates the degrees of chaos for these energy levels is relatively high, but the stabilities of the corresponding states are good. These results could be interpreted as the intramolecular vibrational relaxation (IVR) acting strongly via the HOCl bending motion and causing energy transfers among different modes. Based on the previous studies, these conclusions seem to be generally valid to some extent for non-integrable triatomic molecules.

  13. Dynamic topography of pattern visual evoked potentials (PVEP) in psychogenic visual loss patients.

    Science.gov (United States)

    Nakamura, A; Tabuchi, A; Matsuda, E; Yamaguchi, W

    2000-09-01

    We investigated to measure the objective visual acuity using pattern visual evoked potentials (PVEP) to help the diagnosis with psychogenic visual loss (PVL) who ranged in age from 7 to 14 years old. Pattern stimuli consisted of black and white checkerboard patterns (39, 26, 15 and 9') with a visual angle of 8 degrees and a contrast level of 15%. The pattern reversal frequency was 0.7 Hz. This resulted in an average of 100 PVEP per session. Visual acuity of 0.1 was consistent with the 39' pattern, 0.2 with the 26' pattern, 0.5 with the 15' pattern, and 1.0 with the 9' pattern. As the results, five PVL patients could measure visual acuity with this method in the present study. The PVEP is useful in evaluating the visual acuity and helped to diagnose the PVL patients. In addition we used the dynamic topography to study the difference in the results of the PVEP. The dynamic topography obtained from the results of the PVEP was analyzed. The flow type of the P100 component diverged into three types (separated type, hollow type and localized type) in the PVL patients and the normal children. The localized type was observed in 59.1% of normal children and in 56.3% of PVL patients. While the separated type was shown in 6.8% of normal children and in 8.3% of PVL patients. There were not significant differences between the PVL patients and the normal children in each type.

  14. Doublet potentiation in the triceps surae is limited by series compliance and dynamic fascicle behavior.

    Science.gov (United States)

    Mayfield, Dean L; Lichtwark, Glen A; Cronin, Neil J; Avela, Janne; Cresswell, Andrew G

    2015-10-01

    Activation of skeletal muscle twice in quick succession results in nonlinear force summation (i.e., doublet potentiation). The force contributed by a second activation is typically of augmented amplitude, longer in duration, and generated at a greater rate. The purpose of this study was to examine force summation in a muscle attached to a compliant tendon, where considerable internal shortening occurs during a fixed-end contraction. The triceps surae of 21 (Experiment 1) and 9 (Experiment 2) young adults were maximally activated with doublet stimulation of different interstimulus intervals (ISIs) (5-100 ms) at several muscle lengths. Ultrasound images acquired from lateral gastrocnemius and soleus muscles allowed quantification of dynamic fascicle behavior. Force summation was muscle length dependent. Force augmentation was limited to a short muscle length. Lateral gastrocnemius and soleus fascicles underwent large amounts of active shortening and achieved high velocities in response to doublet stimulation, dynamics unfavorable for force production. Summation amplitude and the sensitivity of summation to ISI were dramatically depressed in the triceps surae after comparison to muscles with less fixed-end compliance. We propose that the internal shortening permitted by high series compliance limited force augmentation by offsetting and/or interfering with activation and cross-bridge processes driving augmentation. High series compliance may also reduce the sensitivity of the summated response to ISI, an assertion supported by predictions from a Hill-type muscle model. These muscles may exhibit greater force augmentation during more accustomed stretch-shorten tasks (i.e., hopping), where the compliance of the Achilles tendon actually enables near-isometric fascicle behavior.

  15. Transmission dynamics of the four dengue serotypes in southern Vietnam and the potential impact of vaccination.

    Directory of Open Access Journals (Sweden)

    Laurent Coudeville

    Full Text Available BACKGROUND: With approximately 2.5 billion people at risk, dengue is a major international public health concern. Dengue vaccines currently in development should help reduce the burden associated with this disease but the most efficient way of using future dengue vaccines remains to be defined. Mathematical models of transmission can provide insight into the expected impact of different vaccination strategies at a population level and contribute to this definition. METHODS AND FINDINGS: We developed and analyzed an age-structured, host-vector and serotype-specific compartmental model, including seasonality. We first used this transmission model to identify the immunological interactions between serotypes that affect the risks and consequences of secondary infections (cross-protection, increased susceptibility, increased severity, and increased infectiousness and reproduce the observed epidemiology of dengue. For populating this model, we used routine surveillance data from Southern Vietnam and the results of a prospective cohort study conducted in the same area. The model provided a good fit to the observed data for age, severity of cases, serotype distribution, and dynamics over time, using two scenarios of immunological interaction : short term cross-protection alone (6-17 months or a combination of short term cross-protection with cross-enhancement (increased susceptibility, severity and infectiousness in the case of secondary infections. Finally, we explored the potential impact of vaccination for these two scenarios. Both highlighted that vaccination can substantially decrease dengue burden by reducing the magnitude and frequency of outbreaks. CONCLUSION: Our model suggests that seasonality and short term cross-protection are key factors for explaining dengue dynamics in Southern Vietnam. Vaccination was predicted to significantly reduce the disease burden, even in the situation where immunological cross-enhancement affects the risks and

  16. Estuarine Nitrogen Dynamics Along the Alaskan Beaufort Sea Coast: Seasonal Patterns and Potential Climate Change Effects

    Science.gov (United States)

    McClelland, J. W.; Connelly, T. L.; Crump, B. C.; Kellogg, C.; Dunton, K. H.

    2014-12-01

    Seasonal runoff and sea-ice cover create highly dynamic estuarine conditions in the Arctic. Studies focusing on major systems such as the Mackenzie have demonstrated how these variables interact to influence nutrient supply and uptake dynamics. Far less is known about the seasonality of smaller estuarine systems in the Arctic. Data collected from lagoons along the eastern Alaska Beaufort Sea coast show that salinities range from near zero in the spring to as high as 50 in the winter. Runoff and sea-ice thaw in the spring create highly stratified conditions, with hyper-saline bottom waters persisting through the summer in some locations. These variations in physical conditions are accompanied by variations in nitrogen availability within the lagoons. High concentrations of ammonium, and to a lesser extent nitrate, build up under the ice during the winter months. These nutrients are rapidly depleted during the ice break-up period and remain low throughout the summer. Concentrations of organic nitrogen, on the other hand, peak during the ice break-up period. While river inputs contribute directly to this nitrogen peak through the supply of land-derived organic matter, fatty acid markers also show that locally produced organic matter (primarily diatoms) peaks during the ice break-up period. Seasonal changes in nitrogen are accompanied by distinct shifts in microbial community composition as well as changes in stable isotope values of metazoan consumers. Changes in climate that are altering both runoff and sea-ice have the potential to influence the quantity and timing of nutrient availability and associated biological production in arctic coastal waters.

  17. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates.

    Science.gov (United States)

    Herrera-Posada, Stephany; Mora-Navarro, Camilo; Ortiz-Bermudez, Patricia; Torres-Lugo, Madeline; McElhinny, Kyle M; Evans, Paul G; Calcagno, Barbara O; Acevedo, Aldo

    2016-08-01

    Recently, liquid crystalline elastomers (LCEs) have been proposed as active substrates for cell culture due to their potential to attach and orient cells, and impose dynamic mechanical signals through the application of external stimuli. In this report, the preparation of anisotropic and oriented nematic magnetic-sensitized LCEs with iron oxide nanoparticles, and the evaluation of the effect of particle addition at low concentrations on the resultant structural, thermal, thermo-mechanical, and mechanical properties is presented. Phase transformations produced by heating in alternating magnetic fields were investigated in LCEs in contact with air, water, and a common liquid cell culture medium was also evaluated. The inclusion of nanoparticles into the elastomers displaced the nematic-to-isotropic phase transition, without affecting the nematic structure as evidenced by similar values of the order parameter, while reducing the maximum thermomechanical deformations. Remote and reversible deformations of the magnetic LCEs were achieved through the application of alternating magnetic fields, which induces the nematic-isotropic phase transition through nanoparticle heat generation. Formulation parameters can be modified to allow for remote actuation at values closer to the human physiological temperature range and within the range of deformations that can affect the cellular behavior of fibroblasts. Finally, a collagen surface treatment was performed to improve compatibility with NIH-3T3 fibroblast cultures, which enabled the attachment and proliferation of fibroblasts on substrates with and without magnetic particles under quiescent conditions. The LCEs developed in this work, which are able to deform and experience stress changes by remote contact-less magnetic stimulation, may allow for further studies on the effect of substrate morphology changes and dynamic mechanical properties during in vitro cell culture.

  18. Learning Potential Is Related to the Dynamics of Scaffolding: : An Empirical Illustration of the Scaffolding Dynamics of 5-Year-Olds and Their Teacher.

    NARCIS (Netherlands)

    Ensing, A.; van der Aalsvoort, G.M.; van Geert, Paul; Voet, Silke

    2014-01-01

    We propose a new definition of learning potential as an emergent phenomenon. It emerges in the process of creating a unique scaffolding situation through the realtime interaction between teacher and child. We provide a model for analyzing the behavioral sequences within these scaffolding dynamics

  19. Development of EEM based silicon-water and silica-water wall potentials for non-reactive molecular dynamics simulations

    Science.gov (United States)

    Kim, Junghan; Iype, Eldhose; Frijns, Arjan J. H.; Nedea, Silvia V.; van Steenhoven, Anton A.

    2014-07-01

    Molecular dynamics simulations of heat transfer in gases are computationally expensive when the wall molecules are explicitly modeled. To save computational time, an implicit boundary function is often used. Steele's potential has been used in studies of fluid-solid interface for a long time. In this work, the conceptual idea of Steele's potential was extended in order to simulate water-silicon and water-silica interfaces. A new wall potential model is developed by using the electronegativity-equalization method (EEM), a ReaxFF empirical force field and a non-reactive molecular dynamics package PumMa. Contact angle simulations were performed in order to validate the wall potential model. Contact angle simulations with the resulting tabulated wall potentials gave a silicon-water contact angle of 129°, a quartz-water contact angle of 0°, and a cristobalite-water contact angle of 40°, which are in reasonable agreement with experimental values.

  20. Comment on "Crystal Structure and Pair Potentials: A Molecular-Dynamics Study"

    OpenAIRE

    LIU, GANG

    2003-01-01

    The dynamical equations for particles in the Parrinello-Rahman Molecular Dynamics were compared with the Newton's Second Law. The discrepancy is due to using the in-complete particles' kinetic energy in the Lagrangian.

  1. The READY program: Building a global potential energy surface and reactive dynamic simulations for the hydrogen combustion.

    Science.gov (United States)

    Mogo, César; Brandão, João

    2014-06-30

    READY (REActive DYnamics) is a program for studying reactive dynamic systems using a global potential energy surface (PES) built from previously existing PESs corresponding to each of the most important elementary reactions present in the system. We present an application to the combustion dynamics of a mixture of hydrogen and oxygen using accurate PESs for all the systems involving up to four oxygen and hydrogen atoms. Results at the temperature of 4000 K and pressure of 2 atm are presented and compared with model based on rate constants. Drawbacks and advantages of this approach are discussed and future directions of research are pointed out.

  2. Role of Structure and Entropy in Determining Differences in Dynamics for Glass Formers with Different Interaction Potentials

    Science.gov (United States)

    Banerjee, Atreyee; Sengupta, Shiladitya; Sastry, Srikanth; Bhattacharyya, Sarika Maitra

    2014-11-01

    We present a study of two model liquids with different interaction potentials, exhibiting similar structure but significantly different dynamics at low temperatures. By evaluating the configurational entropy, we show that the differences in the dynamics of these systems can be understood in terms of their thermodynamic differences. Analyzing their structure, we demonstrate that differences in pair correlation functions between the two systems, through their contribution to the entropy, dominate the differences in their dynamics, and indeed overestimate the differences. Including the contribution of higher order structural correlations to the entropy leads to smaller estimates for the relaxation times, as well as smaller differences between the two studied systems.

  3. Glacier Dynamics and Outburst Flood Potential from the Imja and Thulagi Glacier-Lake Systems (Nepal)

    Science.gov (United States)

    Kargel, Jeffrey; Leonard, Gregory; Regmi, Dhananjay; Haritashya, Umesh; Chand, Mohan; Pradhan, Suresh; Sapkota, Nawaraj; Byers, Alton; Joshi, Sharad; McKinney, Daene; Mool, Pradeep; Somos-Valenzuela, Marcelo; Huggel, Christian

    2015-04-01

    Thulagi and Imja lakes are, according to ICIMOD, among Nepal's most dangerous glacier lakes, i.e., most likely to cause death and destruction in case of a glacier lake outburst flood (GLOF). Imja Lake and the associated Imja and Lhoste-Shar glaciers have been intensively studied; Thulagi Glacier and its lake are much less studied. Collectively, we have undertaken a series of increasingly thorough bathymetric and land surveys and satellite remote sensing analyses of Imja Lake and its glacier setting. We are analyzing several expeditions' data to build a detailed assessment of the glacier and lake to better establish the dynamical evolution of the system and its future GLOF potential. Our most recent, most complete bathymetric survey of Imja Lake has revealed a much greater volume (75,200,000 cubic meters) and maximum depth (149.8 m) than found before. Our analysis suggests that not all possible Imja GLOF scenarios would result in devastation. Some moraine melt-through or down-cutting mechanisms -- perhaps induced by extreme monsoon precipitation or an earthquake -- could generate outbursts lasting from 10,000-100,000 seconds ("slow GLOFs"), thus limiting peak flows and downstream damage. The potential damage from a slow GLOF from Imja Lake -- even if there is a large total volume -- is lessened by the relatively low peak discharge and because the major villages downstream from Imja Lake are situated just outside of and above a deep, broad outwash and debris-flow channel system. Imja and other glaciers in the area have built a large fan, now deeply trenched, which is able to accommodate the peak discharges of potential slow GLOFs, such that Dingboche and other villages would be spared. However, local geomorphology also bears evidence of "fast GLOFs," such as may be issued by a tsunami, which could be initiated by a large mass movement into Imja Lake and which might override and damage the end moraine in <100 seconds. Dingboche and other villages are vulnerable to

  4. A catalog of 171 high-quality binary black-hole simulations for gravitational-wave astronomy

    CERN Document Server

    Mroue, Abdul H; Szilagyi, Bela; Pfeiffer, Harald P; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Lovelace, Geoffrey; Ossokine, Sergei; Taylor, Nicholas W; Zenginoglu, Anil; Buchman, Luisa T; Chu, Tony; Foley, Evan; Giesler, Matthew; Owen, Robert; Teukolsky, Saul A

    2013-01-01

    Coalescing binary black holes are a primary science target of ground-based gravitational-wave detectors, which require detailed knowledge of the expected waveforms to maximize detections and our understanding of the waves' sources. This paper presents a catalog of numerical binary black- hole simulations that represents a major advance toward the application of numerical relativity to gravitational-wave data analysis. Specifically, the catalog contains 171 numerical simulations that maintain the high accuracy required for matched filtering while following more orbits (up to 33) than previous simulations. A larger number of orbits allows a more reliable connection to approximate analytical waveforms, which are used to extend numerical waveforms to span the entire frequency range of a detector. The catalog contains 91 precessing binaries, providing the most comprehensive survey of precessing systems to date, and includes waveforms with black-hole spins up to 0.97, mass ratios up to 8, and orbital eccentricities...

  5. Exact charged black-hole solutions in D-dimensional f(T) gravity: torsion vs curvature analysis

    CERN Document Server

    Capozziello, Salvatore; Saridakis, Emmanuel N; Vasquez, Yerko

    2012-01-01

    We extract exact charged black-hole solutions with flat transverse sections in the framework of D-dimensional Maxwell-f(T) gravity, and we analyze the singularities and horizons based on both torsion and curvature invariants. Interestingly enough, we find that in some particular solution subclasses there appear more singularities in the curvature scalars than in the torsion ones. This difference disappears in the uncharged case, or in the case where f(T) gravity becomes the usual linear-in-T teleparallel gravity, that is General Relativity. Curvature and torsion invariants behave very differently when matter fields are present, and thus f(R) gravity and f(T) gravity exhibit different features and cannot be directly re-casted each other.

  6. Circular geodesics of Bardeen and Ayon-Beato-Garcia regular black-hole and no-horizon spacetimes

    CERN Document Server

    Stuchlik, Zdenek

    2015-01-01

    We study circular geodesic motion of test particles and photons in the Bardeen and Ayon-Beato-Garcia (ABG) geometry describing spherically symmetric regular black-hole or no-horizon spacetimes. While the Bardeen geometry is not exact solution of Einstein's equations, the ABG spacetime is related to self-gravitating charged sources governed by Einstein's gravity and non-linear electrodynamics. They both are characterized by the mass parameter $m$ and the charge parameter $g$. We demonstrate that in similarity to the Reissner-Nordstrom (RN) naked singularity spacetimes an antigravity static sphere should exist in all the no-horizon Bardeen and ABG solutions that can be sorrounded by a Keplerian accretion disc. However, contrary to the RN naked singularity spacetimes, the ABG no-horizon spacetimes with parameter $g/m > 2$ can contain also an additional inner Keplerian disc hidden under the static antigravity sphere. Properties of the geodesic structure are reflected by simple observationally relevant optical phe...

  7. Temporal dynamics of visual attention measured with event-related potentials.

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Kashiwase

    Full Text Available How attentional modulation on brain activities determines behavioral performance has been one of the most important issues in cognitive neuroscience. This issue has been addressed by comparing the temporal relationship between attentional modulations on neural activities and behavior. Our previous study measured the time course of attention with amplitude and phase coherence of steady-state visual evoked potential (SSVEP and found that the modulation latency of phase coherence rather than that of amplitude was consistent with the latency of behavioral performance. In this study, as a complementary report, we compared the time course of visual attention shift measured by event-related potentials (ERPs with that by target detection task. We developed a novel technique to compare ERPs with behavioral results and analyzed the EEG data in our previous study. Two sets of flickering stimulus at different frequencies were presented in the left and right visual hemifields, and a target or distracter pattern was presented randomly at various moments after an attention-cue presentation. The observers were asked to detect targets on the attended stimulus after the cue. We found that two ERP components, P300 and N2pc, were elicited by the target presented at the attended location. Time-course analyses revealed that attentional modulation of the P300 and N2pc amplitudes increased gradually until reaching a maximum and lasted at least 1.5 s after the cue onset, which is similar to the temporal dynamics of behavioral performance. However, attentional modulation of these ERP components started later than that of behavioral performance. Rather, the time course of attentional modulation of behavioral performance was more closely associated with that of the concurrently recorded SSVEPs analyzed. These results suggest that neural activities reflected not by either the P300 or N2pc, but by the SSVEPs, are the source of attentional modulation of behavioral performance.

  8. Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era

    Science.gov (United States)

    Khan, Sebastian; Husa, Sascha; Hannam, Mark; Ohme, Frank; Pürrer, Michael; Forteza, Xisco Jiménez; Bohé, Alejandro

    2016-02-01

    We present a new frequency-domain phenomenological model of the gravitational-wave signal from the inspiral, merger and ringdown of nonprecessing (aligned-spin) black-hole binaries. The model is calibrated to 19 hybrid effective-one-body-numerical-relativity waveforms up to mass ratios of 1 ∶18 and black-hole spins of |a /m |˜0.85 (0.98 for equal-mass systems). The inspiral part of the model consists of an extension of frequency-domain post-Newtonian expressions, using higher-order terms fit to the hybrids. The merger ringdown is based on a phenomenological ansatz that has been significantly improved over previous models. The model exhibits mismatches of typically less than 1% against all 19 calibration hybrids and an additional 29 verification hybrids, which provide strong evidence that, over the calibration region, the model is sufficiently accurate for all relevant gravitational-wave astronomy applications with the Advanced LIGO and Virgo detectors. Beyond the calibration region the model produces physically reasonable results, although we recommend caution in assuming that any merger-ringdown waveform model is accurate outside its calibration region. As an example, we note that an alternative nonprecessing model, SEOBNRv2 (calibrated up to spins of only 0.5 for unequal-mass systems), exhibits mismatch errors of up to 10% for high spins outside its calibration region. We conclude that waveform models would benefit most from a larger number of numerical-relativity simulations of high-aligned-spin unequal-mass binaries.

  9. PSPs and ERPs: applying the dynamics of post-synaptic potentials to individual units in simulation of temporally extended Event-Related Potential reading data.

    Science.gov (United States)

    Laszlo, Sarah; Armstrong, Blair C

    2014-05-01

    The Parallel Distributed Processing (PDP) framework is built on neural-style computation, and is thus well-suited for simulating the neural implementation of cognition. However, relatively little cognitive modeling work has concerned neural measures, instead focusing on behavior. Here, we extend a PDP model of reading-related components in the Event-Related Potential (ERP) to simulation of the N400 repetition effect. We accomplish this by incorporating the dynamics of cortical post-synaptic potentials--the source of the ERP signal--into the model. Simulations demonstrate that application of these dynamics is critical for model elicitation of repetition effects in the time and frequency domains. We conclude that by advancing a neurocomputational understanding of repetition effects, we are able to posit an interpretation of their source that is both explicitly specified and mechanistically different from the well-accepted cognitive one.

  10. Dynamics of the spatial scale of visual attention revealed by brain event-related potentials

    Science.gov (United States)

    Luo, Y. J.; Greenwood, P. M.; Parasuraman, R.

    2001-01-01

    The temporal dynamics of the spatial scaling of attention during visual search were examined by recording event-related potentials (ERPs). A total of 16 young participants performed a search task in which the search array was preceded by valid cues that varied in size and hence in precision of target localization. The effects of cue size on short-latency (P1 and N1) ERP components, and the time course of these effects with variation in cue-target stimulus onset asynchrony (SOA), were examined. Reaction time (RT) to discriminate a target was prolonged as cue size increased. The amplitudes of the posterior P1 and N1 components of the ERP evoked by the search array were affected in opposite ways by the size of the precue: P1 amplitude increased whereas N1 amplitude decreased as cue size increased, particularly following the shortest SOA. The results show that when top-down information about the region to be searched is less precise (larger cues), RT is slowed and the neural generators of P1 become more active, reflecting the additional computations required in changing the spatial scale of attention to the appropriate element size to facilitate target discrimination. In contrast, the decrease in N1 amplitude with cue size may reflect a broadening of the spatial gradient of attention. The results provide electrophysiological evidence that changes in the spatial scale of attention modulate neural activity in early visual cortical areas and activate at least two temporally overlapping component processes during visual search.

  11. Membrane potential dynamics of populations of cortical neurons during auditory streaming

    Science.gov (United States)

    Farley, Brandon J.

    2015-01-01

    How a mixture of acoustic sources is perceptually organized into discrete auditory objects remains unclear. One current hypothesis postulates that perceptual segregation of different sources is related to the spatiotemporal separation of cortical responses induced by each acoustic source or stream. In the present study, the dynamics of subthreshold membrane potential activity were measured across the entire tonotopic axis of the rodent primary auditory cortex during the auditory streaming paradigm using voltage-sensitive dye imaging. Consistent with the proposed hypothesis, we observed enhanced spatiotemporal segregation of cortical responses to alternating tone sequences as their frequency separation or presentation rate was increased, both manipulations known to promote stream segregation. However, across most streaming paradigm conditions tested, a substantial cortical region maintaining a response to both tones coexisted with more peripheral cortical regions responding more selectively to one of them. We propose that these coexisting subthreshold representation types could provide neural substrates to support the flexible switching between the integrated and segregated streaming percepts. PMID:26269558

  12. Dynamical Tropopause Variability and Potential Vorticity Streamers in the Northern Hemisphere——A Climatological Analysis

    Institute of Scientific and Technical Information of China (English)

    Olivia MARTIUS; Cornelia SCHWIERZ; Michael SPRENGER

    2008-01-01

    This study presents a 44-year climatology of potential vorticity (PV) streamers in the Northern Hemi sphere based upon analyses of the ERA-40 reanalysis data set. A comparison to an existing 15-year clima tology yields very good agreement in the locations of PV streamer frequency maxima, but some differences are found in the amplitude of frequencies. The climatology is assessed with the focus on links between PV streamer frequencies and the synoptic- and planetary-scale variability of the dynamical tropopause. A comprehensive overview is provided on where (zonally) and when (seasonally) short-term variability throughout the extra-tropical and sub-tropical tropopause is enhanced or reduced. Several key processes that influence this variability are discussed. Baroclinic processes, for example, determine the variability in the storm-track areas in winter, whereas the Asian summer monsoon significantly influences the variability over Asia. The paper also describes links between the frequency of PV streamers in the extra-tropical and sub tropical tropopause and three major northern hemisphere teleconnection patterns. The observed changes in the PV streamer frequencies are closely related to concomitant variations of PV and its gradient within the tropopause region. During opposite phases of the North Atlantic Oscillation the location of the streamer frequency maxima shifts significantly in the Atlantic and European region in both the extra-tropics and subtropics. The influence of ENSO on the streamer frequencies is most pronounced in the subtropical Pacific.

  13. The Panel Study of Income Dynamics: Overview, Recent Innovations, and Potential for Life Course Research

    Science.gov (United States)

    McGonagle, Katherine A.; Schoeni, Robert F.; Sastry, Narayan; Freedman, Vicki A.

    2012-01-01

    Spanning over four decades, the Panel Study of Income Dynamics (PSID) is the world's longest running household panel survey. The resulting data archive presents research opportunities for breakthroughs in understanding the connections between economic status, health and well-being across generations and over the life course. The long panel, genealogical design, and broad content of the data represent a unique opportunity for a multi-perspective study of life course evolution and change within families over multiple generations. Based on relational data structures and advanced web-based archiving and delivery tools, the PSID has a publicly available web-based facility for users worldwide to create customized data extracts and codebooks based on nearly 70,000 variables from over 70,000 individuals over 44 years. This paper provides an overview of the PSID and its supplemental studies, the Disability and Use of Time Supplement, the Child Development Supplement, and the Transition into Adulthood study, and describes features and recent enhancements that have increased the potential of the archive for studying life course development. PMID:23482334

  14. Flow dynamics and potential for Biodegradation of Organic Contaminants in Fractured Rock Vadose Zones

    Energy Technology Data Exchange (ETDEWEB)

    Geller, J.T.; Holman, H.-Y.; Su, T.-S.; Liou, M.S.; Conrad, M.S.; Pruess, K.; Hunter-Devera, J.C.

    1998-12-01

    We present an experimental approach for investigating the potential for bioremediation of volatile organic chemicals (VOCs) in fractured-rock vadose zones. This approach is based on the coupling of fluid flow dynamics and biotransformation processes. Fluid flow and distribution within fracture networks may be a significant factor in the ability of microorganisms to degrade VOCs, as they affect the availability of substrate, moisture and nutrients. Biological activity can change liquid surface tension and generate biofilms that may change the nettability of solid surfaces, locally alter fracture permeability and redirect infiltrating liquids. Our approach has four components: (1) establishing a conceptual model for fluid and contaminant distribution in the geologic matrix of interest; (2) physical and numerical experiments of liquid seepage in the fracture plane; (3) non-destructive monitoring of biotransformations on rock surfaces at the micron-scale; and, (4) integration of flow and biological activity in natural rock ''geocosms''. Geocosms are core-scale flow cells that incorporate some aspects of natural conditions, such as liquid seepage in the fracture plane and moisture content. The experimental work was performed with rock samples and indigenous microorganisms from the site of the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL), located in a basalt flow basin where VOC contamination threatens the Snake River Aquifer. The insights gained from this approach should contribute to the design of techniques to monitor and stimulate naturally occurring biological activity and control the spread of organic contaminants.

  15. Persistence, Seasonal Dynamics and Pathogenic Potential of Vibrio Communities from Pacific Oyster Hemolymph

    Science.gov (United States)

    Wendling, Carolin C.; Batista, Frederico M.; Wegner, K. Mathias

    2014-01-01

    Bacteria of the genus Vibrio occur at a continuum from free-living to symbiotic life forms, including opportunists and pathogens, that can contribute to severe diseases, for instance summer mortality events of Pacific oysters Crassostrea gigas. While most studies focused on Vibrio isolated from moribund oysters during mortality outbreaks, investigations of the Vibrio community in healthy oysters are rare. Therefore, we characterized the persistence, diversity, seasonal dynamics, and pathogenicity of the Vibrio community isolated from healthy Pacific oysters. In a reciprocal transplant experiment we repeatedly sampled hemolymph from adult Pacific oysters to differentiate population from site-specific effects during six months of in situ incubation in the field. We characterized virulence phenotypes and genomic diversity based on multilocus sequence typing in a total of 70 Vibrio strains. Based on controlled infection experiments we could show that strains with the ability to colonize healthy adult oysters can also have the potential to induce high mortality rates on larvae. Diversity and abundance of Vibrio varied significantly over time with highest values during and after spawning season. Vibrio communities from transplanted and stationary oysters converged over time, indicating that communities were not population specific, but rather assemble from the surrounding environment forming communities, some of which can persist over longer periods. PMID:24728233

  16. Molecular dynamics simulations with many-body potentials on multiple GPUs - the implementation, package and performance

    CERN Document Server

    Hou, Qing; Zhou, Yulu; Cui, Jiechao; Cui, Zhenguo; Wang, Jun

    2013-01-01

    Molecular dynamics (MD) is an important research tool extensively applied in materials science. Running MD on a graphics processing unit (GPU) is an attractive new approach for accelerating MD simulations. Currently, GPU implementations of MD usually run in a one-host-process-one-GPU (OHPOG) scheme. This scheme may pose a limitation on the system size that an implementation can handle due to the small device memory relative to the host memory. In this paper, we present a one-host-process-multiple-GPU (OHPMG) implementation of MD with embedded-atom-model or semi-empirical tight-binding many-body potentials. Because more device memory is available in an OHPMG process, the system size that can be handled is increased to a few million or more atoms. In comparison with the CPU implementation, in which Newton's third law is applied to improve the computational efficiency, our OHPMG implementation has achieved a 28.9x~86.0x speedup in double precision, depending on the system size, the cut-off ranges and the number ...

  17. Dynamic reponse of a cylindrical shell immersed in a potential fluid

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, G.E.

    1978-04-18

    A numerical solution technique is presented for determining the dynamic response of a thin, elastic, circular, cylindrical shell of constant wall thickness and density, immersed in a potential fluid. The shell may be excited by an arbitrary radial forcing function with a specified time history and spatial distribution. In addition, a pressure history may be specified over a segment of the fluid outer boundary. Any of the natural shell end conditions may be prescribed. A numerical instability prevented direct solutions where the ratio of the hydrodynamic forces to shell inertial forces is greater than two. This instability is believed to be the result of the weak coupling between the equations describing the fluid to those describing the shell. To circumvent this instability, an effective mass was calculated and added to the shell. Comparison of numerical to experimental results are made using a /sup 1///sub 12/ scale model of a nuclear reactor core support barrel. Natural frequencies and modes are determined for this model in air, water, and oil. The computed frequencies compare to experimental results to within 15%. The use of this numerical technique is illustrated by comparing it to an analytical solution for shell beam modes and an uncertainty in the analytical technique concerning the proper effective mass to use, is resolved.

  18. 基于攻击特征的DTN黑洞节点检测机制%Detection Mechanism of Blackhole Nodes Based on Attack Features in DTN

    Institute of Scientific and Technical Information of China (English)

    王群; 赵广松; 许博

    2014-01-01

    The nodes in the delay tolerant networks rely on the cooperation among nodes to forward the messages to destinations. How to effectively enhance the cooperation among nodes in Delay Tolerant Network( DTN) is a challenge, and the Blackhole attack is a typical incorporation behavior. In order to detect and restrain the Blackhole attack, a Blackhole nodes detection mechanism based on attack features is proposed,which extracts three essential features of the Blackhole attack:the forged high relay capacity,the imbalance of the number of messages forwarded between nodes and high message loss rate. The mechanism exploits the local vote and the cooperative detection among nodes to determine the probability that a node is a blackhole node. Simulations results show that the blackhole nodes detection mechanism based on attack features named AFD-Prophet can improve the delivery rate while not increasing the delivery delay in comparison with the reputation-based detection protocol T-Prophet.%物联网中的时延容忍网络( DTN)采用存储-搬运-转发的路由方式,节点之间的合作程度直接影响DTN网络的性能,而DTN节点的恶意行为严重影响了节点间的配合,其中黑洞攻击是典型的一种恶意行为。为有效检测和遏制节点的黑洞攻击,提出一种基于黑洞攻击特征的黑洞节点检测机制AFD-Prophet。该检测机制可提取出黑洞攻击的3个本质性特征:虚假的高转发能力,消息数目的不平衡性和高丢包率。在上述特征的基础上,采用本地投票和节点间联合检测方式确定某个节点为黑洞节点的概率。仿真实验结果表明,与基于信誉的检测机制T-Prophet相比,该检测机制在保证不增加递交时延的前提下,能有效提高消息的递交率。

  19. On the convergence of complex Langevin dynamics: the three-dimensional XY model at finite chemical potential

    CERN Document Server

    Aarts, Gert

    2010-01-01

    The three-dimensional XY model is studied at finite chemical potential using complex Langevin dynamics. The validity of the approach is probed at small chemical potential using imaginary chemical potential and continuity arguments, and at larger chemical potential by comparison with the world line method. While complex Langevin works for larger beta, we find that it fails for smaller beta, in the region of the phase diagram corresponding to the disordered phase. Diagnostic tests are developed to identify symptoms correlated with incorrect convergence. We argue that the erroneous behaviour at smaller beta is not due to the sign problem, but rather resembles dynamics observed in complex Langevin simulations of simple models with complex noise.

  20. Dynamic changes in the subgingival microbiome and their potential for diagnosis and prognosis of periodontitis.

    Science.gov (United States)

    Shi, Baochen; Chang, Michaela; Martin, John; Mitreva, Makedonka; Lux, Renate; Klokkevold, Perry; Sodergren, Erica; Weinstock, George M; Haake, Susan K; Li, Huiying

    2015-02-17

    The human microbiome influences and reflects the health or disease state of the host. Periodontitis, a disease affecting about half of American adults, is associated with alterations in the subgingival microbiome of individual tooth sites. Although it can be treated, the disease can reoccur and may progress without symptoms. Without prognostic markers, follow-up examinations are required to assess reoccurrence and disease progression and to determine the need for additional treatments. To better identify and predict the disease progression, we aim to determine whether the subgingival microbiome can serve as a diagnosis and prognosis indicator. Using metagenomic shotgun sequencing, we characterized the dynamic changes in the subgingival microbiome in periodontitis patients before and after treatment at the same tooth sites. At the taxonomic composition level, the periodontitis-associated microorganisms were significantly shifted from highly correlated in the diseased state to poorly correlated after treatment, suggesting that coordinated interactions among the pathogenic microorganisms are essential to disease pathogenesis. At the functional level, we identified disease-associated pathways that were significantly altered in relative abundance in the two states. Furthermore, using the subgingival microbiome profile, we were able to classify the samples to their clinical states with an accuracy of 81.1%. Follow-up clinical examination of the sampled sites supported the predictive power of the microbiome profile on disease progression. Our study revealed the dynamic changes in the subgingival microbiome contributing to periodontitis and suggested potential clinical applications of monitoring the subgingival microbiome as an indicator in disease diagnosis and prognosis. Periodontitis is a common oral disease. Although it can be treated, the disease may reoccur without obvious symptoms. Current clinical examination parameters are useful in disease diagnosis but cannot

  1. Infinite-Parameter Potential Symmetries and a New Exact Solution for the Particle-Cluster Dynamic Equation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shan-Qing; LI Zhi-Bin

    2004-01-01

    @@ The master equation of a one-dimensional lattice-gas model with order preservation where the occupation probabilities of sites corresponding to Bose statistics as a consequence of the prescribed dynamics is studied with the potential symmetry method. The infinite-parameter potential symmetry and a new exact solution are obtained. The result illustrates that there remains the possibility of the above nonlinear equation to a linear partial differential equation by a non-invertible mapping.

  2. The potential of positron emission tomography for intratreatment dynamic lung tumor tracking: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jaewon [Department of Electrical Engineering, Stanford University, Stanford, California 94305 and Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Yamamoto, Tokihiro [Department of Radiation Oncology, University of California Davis, Sacramento, California 95817 (United States); Mazin, Samuel R. [RefleXion Medical, Inc., Burlingame, California 94010 (United States); Graves, Edward E. [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Keall, Paul J., E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, University of Sydney, Sydney, NSW 2006 (Australia)

    2014-02-15

    Purpose: This study aims to evaluate the potential and feasibility of positron emission tomography for dynamic lung tumor tracking during radiation treatment. The authors propose a center of mass (CoM) tumor tracking algorithm using gated-PET images combined with a respiratory monitor and investigate the geometric accuracy of the proposed algorithm. Methods: The proposed PET dynamic lung tumor tracking algorithm estimated the target position information through the CoM of the segmented target volume on gated PET images reconstructed from accumulated coincidence events. The information was continuously updated throughout a scan based on the assumption that real-time processing was supported (actual processing time at each frame ≈10 s). External respiratory motion and list-mode PET data were acquired from a phantom programmed to move with measured respiratory traces (external respiratory motion and internal target motion) from human subjects, for which the ground truth target position was known as a function of time. The phantom was cylindrical with six hollow sphere targets (10, 13, 17, 22, 28, and 37 mm in diameter). The measured respiratory traces consisted of two sets: (1) 1D-measured motion from ten healthy volunteers and (2) 3D-measured motion from four lung cancer patients. The authors evaluated the geometric accuracy of the proposed algorithm by quantifying estimation errors (Euclidean distance) between the actual motion of targets (1D-motion and 3D-motion traces) and CoM trajectories estimated by the proposed algorithm as a function of time. Results: The time-averaged error of 1D-motion traces over all trajectories of all targets was 1.6 mm. The error trajectories decreased with time as coincidence events were accumulated. The overall error trajectory of 1D-motion traces converged to within 2 mm in approximately 90 s. As expected, more accurate results were obtained for larger targets. For example, for the 37 mm target, the average error over all 1D

  3. A Measurement of the Black-Hole Mass in NGC 1097 using ALMA

    CERN Document Server

    Onishi, Kyoko; Sheth, Kartik; Kohno, Kotaro

    2015-01-01

    We present an estimate of the mass of the supermassive black hole (SMBH) in the nearby type-1 Seyfert galaxy \\object{NGC 1097} using Atacamma Large Millimeter/Submillimeter Array (ALMA) observations of dense gas kinematics. Dense molecular gas dynamics are traced with ${\\rm HCN} (J=1-0)$ and ${\\rm HCO^{+}} (J=1-0)$ emission lines. Assuming a host galaxy inclination of $46^{\\circ}$, we derive a SMBH mass, $M_{\\rm BH}=1.40^{+0.27}_{-0.32} \\times 10^{8}M_{\\odot}$, and an I-band mass to light ratio to be $5.14^{+0.03}_{-0.04}$, using ${\\rm HCN} (J=1-0)$. The estimated parameters are consistent between the two emission lines. The measured SMBH mass is in good agreement with the SMBH mass and bulge velocity dispersion relationship. Our result showcases ALMA's potential for deriving accurate SMBH masses, especially for nearby late-type galaxies. Larger samples and accurate SMBH masses will further elucidate the relationship between the black hole (BH) and host galaxy properties and constrain the coevolutionary growt...

  4. A new hydrocarbon empirical potential in angle bending calculation for the molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Tan Ai; Hoe, Yeak Su [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor Darul Takzim (Malaysia)

    2014-07-10

    Typically, short range potential only depends on neighbouring atoms and its parameters function can be categorized into bond stretching, angle bending and bond rotation potential. In this paper, we present our work called Angle Bending (AB) potential, whereas AB potential is the extension of our previous work namely Bond Stretching (BS) potential. Basically, potential will tend to zero after truncated region, potential in specific region can be represented by different piecewise polynomial. We proposed the AB piecewise potential which is possible to solve a system involving three atoms. AB potential able to handle the potential of covalent bonds for three atoms as well as two atoms cases due to its degeneracy properties. Continuity for the piecewise polynomial has been enforced by coupling with penalty methods. There are still plenty of improvement spaces for this AB potential. The improvement for three atoms AB potential will be studied and further modified into torsional potential which are the ongoing current research.

  5. Dynamic testing of learning potential in adults with cognitive impairments: A systematic review of methodology and predictive value.

    NARCIS (Netherlands)

    Boosman, H.; Bovend'Eerdt, T.J.; Visser-Meily, J.M.; Nijboer, T.C.W.; Van heugten, C.M.

    2016-01-01

    Dynamic testing includes procedures that examine the effects of brief training on test performance where pre- to post-training change reflects patients' learning potential. The objective of this systematic review was to provide clinicians and researchers insight into the concept and methodology of

  6. Dynamics of task sets: evidence from dense-array event-related potentials.

    Science.gov (United States)

    Poulsen, Catherine; Luu, Phan; Davey, Colin; Tucker, Don M

    2005-06-01

    Prior research suggests that task sets facilitate coherent, goal-directed behavior by providing an internal, contextual frame that biases selection toward context-relevant stimulus attributes and responses. Questions about how task sets are engaged, maintained, and shifted have recently become a major focus of research on executive control processes. We employed dense-array (128-channel) event-related potential (ERP) methodology to examine the dynamics of brain systems engaged during the preparation and implementation of task switching. The EEG was recorded while participants performed letter and digit judgments to pseudorandomly-ordered, univalent (#3, A%) and bivalent (G5) stimulus trials, with the appropriate task cued by a colored rectangle presented 450 ms before target onset. Results revealed spatial and temporal variations in brain activity that could be related to preparatory processes common to both switch and repeat trials, switch-specific control processes engaged to reconfigure and maintain task set under conflict, and visual priming benefits of task repetition. Despite extensive practice and improvement, both behavioral and ERP results indicated that subjects maintained high levels of executive control processing with extended task engagement. The patterns of ERP activity obtained in the present study fit well with functional neuroanatomical models of self-regulation of action. The frontopolar and right-lateralized frontal switch effects obtained in the present study are consistent with the role of these regions in adapting to changing contextual contingencies. In contrast, the centroparietal P3b and N384 effects related to the contextual ambiguity of bivalent trials are consistent with the context monitoring and updating functions associated with the posterior cingulate learning circuit.

  7. Molecular dynamics study of the potential of mean force of SDS aggregates

    Science.gov (United States)

    Kawada, Shinji; Fujimoto, Kazushi; Yoshii, Noriyuki; Okazaki, Susumu

    2017-08-01

    In our previous study, all-atomistic molecular dynamics (MD) calculations have been carried out for the aggregation of ionic sodium dodecyl sulfate in water [S. Kawada et al., Chem. Phys. Lett. 646, 36 (2016)]. Aggregates of 20-30 dodecyl sulfate ions were formed within a short MD run for 10 ns. However, further aggregation did not occur despite a long MD calculation for more than 100 ns. This suggests that strong electrostatic repulsive interactions between the aggregates prevent the fusion of the aggregates. In the present study, mean force and potential of mean force acting between two aggregates with aggregation number N = 30 were evaluated as a function of their separation by MD calculations. The repulsive force becomes strong with decreasing distance between the two aggregates before they merge into one. An origin of the repulsive force is an electric double layer formed by the sulfate group and counter sodium ions. Strength of the repulsive force is in good agreement with the theoretical value given by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Once the aggregates establish contact, the force between them turns to be a large attractive force that can be explained by the interfacial tension. In order to form a single micelle from the two aggregates, it is necessary for them to climb over a free energy barrier of 23 kJ/mol. Once, the barrier is overcome, the micelle is stabilized by ˜200 kJ/mol. The time constant of aggregation evaluated from the calculated free energy barrier was about 28 μs at the concentration in our previous study.

  8. Creating a potential $5 million revenue gain from hydropower turbines using computational fluid dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, B.

    2001-07-01

    By modifying the runner at the blade trailing edge in the draft tube elbow Hydro-Quebec was able to improve the efficiency of hydropower turbines and through computational fluid dynamic (CFD) simulations achieve revenue gains of between $200,000 and $500,000 per year for each of twelve turbines at one of its plants. The revenue gains were made possible by these modifications, validated by simulations. Power output was raised by 7.8 MW and weighted turbine efficiency by 1.6 per cent. The FIDAP CFD code from Fluent Incorporated, Lebanon, New Hampshire, was used as one of the modeling and analysis tools. This software package uses the finite element approach, and has the advantage of using non-structured grids which provide greater flexibility in modeling the complex and irregular geometries involved in hydropower turbines. The presence of a large eddy in the draft tube elbow was discovered and considered to be the cause of the less than expected hydraulic efficiency of the twelve identical hydro turbines. Water flow between the runner and the draft tube was improved by modification of the runner outlet and the design of a new trailing edge. Significant increase in efficiency at all operating conditions was the result which was confirmed by parametric study on the draft tube flow. This application of CFD simulations provides an excellent illustration of how CFD can identify hydropower problems and help develop alternatives to improve machine performance. The revenue gains resulting from the modifications to reduce the eddy in the runner and the draft tube elbow have been validated in one turbine and the design changes are in the process of being implemented on the other eleven turbines for a combined potential revenue gain in the order of $5 million per year. 3 figs.

  9. Dynamics of the late Na(+) current during cardiac action potential and its contribution to afterdepolarizations.

    Science.gov (United States)

    Horvath, Balazs; Banyasz, Tamas; Jian, Zhong; Hegyi, Bence; Kistamas, Kornel; Nanasi, Peter P; Izu, Leighton T; Chen-Izu, Ye

    2013-11-01

    The objective of this work is to examine the contribution of late Na(+) current (INa,L) to the cardiac action potential (AP) and arrhythmogenic activities. In spite of the rapidly growing interest toward this current, there is no publication available on experimental recording of the dynamic INa,L current as it flows during AP with Ca(2+) cycling. Also unknown is how the current profile changes when the Ca(2+)-calmodulin dependent protein kinase II (CaMKII) signaling is altered, and how the current contributes to the development of arrhythmias. In this study we use an innovative AP-clamp Sequential Dissection technique to directly record the INa,L current during the AP with Ca(2+) cycling in the guinea pig ventricular myocytes. First, we found that the magnitude of INa,L measured under AP-clamp is substantially larger than earlier studies indicated. CaMKII inhibition using KN-93 significantly reduced the current. Second, we recorded INa,L together with IKs, IKr, and IK1 in the same cell to understand how these currents counterbalance to shape the AP morphology. We found that the amplitude and the total charge carried by INa,L exceed that of IKs. Third, facilitation of INa,L by Anemone toxin II prolonged APD and induced Ca(2+) oscillations that led to early and delayed afterdepolarizations and triggered APs; these arrhythmogenic activities were eliminated by buffering Ca(2+) with BAPTA. In conclusion, INa,L contributes a significantly large inward current that prolongs APD and unbalances the Ca(2+) homeostasis to cause arrhythmogenic APs.

  10. Dynamics of the Late Na+ current during cardiac action potential and its contribution to afterdepolarizations

    Science.gov (United States)

    Horvath, Balazs; Banyasz, Tamas; Jian, Zhong; Hegyi, Bence; Kistamas, Kornel; Nanasi, Peter P.; Izu, Leighton T.; Chen-Izu, Ye

    2013-01-01

    The objective of this work is to examine the contribution of late Na+ current (INa,L) to the cardiac action potential (AP) and arrhythmogenic activities. In spite of the rapidly growing interest toward this current, there is no publication available on experimental recording of the dynamic INa,L current as it flows during AP with Ca2+ cycling. Also unknown is how the current profile changes when the Ca2+-calmodulin dependent protein kinase II (CaMKII) signaling is altered, and how the current contributes to the development of arrhythmias. In this study we use an innovative AP-clamp Sequential Dissection technique to directly record the INa,L current during the AP with Ca2+ cycling in the guinea pig ventricular myocytes. First, we found that the magnitude of INa,L measured under AP-clamp is substantially larger than earlier studies indicated. CaMKII inhibition using KN-93 significantly reduced the current. Second, we recorded INa,L together with IKs, IKr, and IK1 in the same cell to understand how these currents counterbalance to shape the AP morphology. We found that the amplitude and the total charge carried by INa,L exceed that of IKs. Third, facilitation of INa,L by Anemone toxin II prolonged APD and induced Ca2+ oscillations that led to early and delayed afterdepolarizations and triggered APs; these arrhythmogenic activities were eliminated by buffering Ca2+ with BAPTA. In conclusion, INa,L contributes a significantly large inward current that prolongs APD and unbalances the Ca2+ homeostasis to cause arrhythmogenic APs. PMID:24012538

  11. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy

    Science.gov (United States)

    Pergola, Carlo; Schubert, Katrin; Pace, Simona; Ziereisen, Jana; Nikels, Felix; Scherer, Olga; Hüttel, Stephan; Zahler, Stefan; Vollmar, Angelika M.; Weinigel, Christina; Rummler, Silke; Müller, Rolf; Raasch, Martin; Mosig, Alexander; Koeberle, Andreas; Werz, Oliver

    2017-01-01

    Tumour-associated macrophages mainly comprise immunosuppressive M2 phenotypes that promote tumour progression besides anti-tumoural M1 subsets. Selective depletion or reprogramming of M2 may represent an innovative anti-cancer strategy. The actin cytoskeleton is central for cellular homeostasis and is targeted for anti-cancer chemotherapy. Here, we show that targeting G-actin nucleation using chondramide A (ChA) predominantly depletes human M2 while promoting the tumour-suppressive M1 phenotype. ChA reduced the viability of M2, with minor effects on M1, but increased tumour necrosis factor (TNF)α release from M1. Interestingly, ChA caused rapid disruption of dynamic F-actin filaments and polymerization of G-actin, followed by reduction of cell size, binucleation and cell division, without cellular collapse. In M1, but not in M2, ChA caused marked activation of SAPK/JNK and NFκB, with slight or no effects on Akt, STAT-1/-3, ERK-1/2, and p38 MAPK, seemingly accounting for the better survival of M1 and TNFα secretion. In a microfluidically-supported human tumour biochip model, circulating ChA-treated M1 markedly reduced tumour cell viability through enhanced release of TNFα. Together, ChA may cause an anti-tumoural microenvironment by depletion of M2 and activation of M1, suggesting induction of G-actin nucleation as potential strategy to target tumour-associated macrophages in addition to neoplastic cells. PMID:28134280

  12. Analysis of potential dynamic concealed factors in the difficulty of lower third molar extraction

    Science.gov (United States)

    Singh, Pradeep; Ajmera, Deepal-Haresh; Xiao, Shui-Sheng; Liu, Xiong; Peng, Bin

    2016-01-01

    Background The purpose of this study was to identify potential concealed variables associated with the difficulty of lower third molar (M3) extractions. Material and Methods To address the research purpose, we implemented a prospective study and enrolled a sample of subjects presenting for M3 removal. Predictor variables were categorized into Group-I and Group-II, based on predetermined criteria. The primary outcome variable was the difficulty of extraction, measured as extraction time. Appropriate univariate and multivariate statistics were computed using ordinal logistic regression. Results The sample comprised of 1235 subjects with a mean age of 29.49 +/- 8.92 years in Group-I and 26.20 +/- 11.55 years in Group-II subjects. The mean operating time per M3 extraction was 21.24 +/- 12.80 and 20.24 +/- 12.50 minutes for Group-I and Group-II subjects respectively. Three linear parameters including B-M2 height (distance between imaginary point B on the inferior border of mandibular body, and M2), lingual cortical thickness, bone density and one angular parameter including Rc-Cs angle (angle between ramus curvature and curve of spee), in addition to patient’s age, profile type, facial type, cant of occlusal plane, and decreased overbite, were found to be statistically associated (P < or = 0.05) with extraction difficulty under regression models. Conclusions In conclusion, our study indicates that the difficulty of lower M3 extractions is possibly governed by morphological and biomechanical factors with substantial influence of myofunctional factors. Practical Implications: Preoperative evaluation of dynamic concealed factors may not only help in envisaging the difficulty and planning of surgical approach but might also help in better time management in clinical practice. Key words:Third molar, impacted, extraction, mandibular, facial type. PMID:27694781

  13. Molecular dynamics simulation of crystalline UF6 using the pair interaction potentials of the uranium and fluorine particles

    Science.gov (United States)

    Shekunov, G. S.; Nekrasov, K. A.; Boyarchenkov, A. S.; Kupryazhkin, A. Ya.

    2016-09-01

    A model of uranium hexafluoride is suggested that is based on the empirical pair potentials of U-U, F-F, U-F used for both intra- and intermolecular interactions. The potentials for this model are obtained from the lattice parameters and the thermal expansion coefficient of UF6 crystal using the molecular dynamics simulation under the periodic boundary conditions with constant volume and temperature. Within the framework of the model, the thermal expansion and sublimation of crystalline UF6 are investigated. A set of potential parameters is identified that provides satisfactory simulation of both UF6 crystal and the dependence of the UF6 saturated vapor pressure on temperature.

  14. Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226

    Science.gov (United States)

    Yunes, Nicolás; Yagi, Kent; Pretorius, Frans

    2016-10-01

    The gravitational wave observations GW150914 and GW151226 by Advanced LIGO provide the first opportunity to learn about physics in the extreme gravity environment of coalescing binary black holes. The LIGO Scientific Collaboration and the Virgo Collaboration have verified that this observation is consistent with Einstein's theory of general relativity, constraining the presence of certain parametric anomalies in the signal. This paper expands their analysis to a larger class of anomalies, highlighting the inferences that can be drawn on nonstandard theoretical physics mechanisms that could otherwise have affected the observed signals. We find that these gravitational wave events constrain a plethora of mechanisms associated with the generation and propagation of gravitational waves, including the activation of scalar fields, gravitational leakage into large extra dimensions, the variability of Newton's constant, the speed of gravity, a modified dispersion relation, gravitational Lorentz violation and the strong equivalence principle. Though other observations limit many of these mechanisms already, GW150914 and GW151226 are unique in that they are direct probes of dynamical strong-field gravity and of gravitational wave propagation. We also show that GW150914 constrains inferred properties of exotic compact object alternatives to Kerr black holes. We argue, however, that the true potential for GW150914 to both rule out exotic objects and constrain physics beyond general relativity is severely limited by the lack of understanding of the coalescence regime in almost all relevant modified gravity theories. This event thus significantly raises the bar that these theories have to pass, both in terms of having a sound theoretical underpinning and reaching the minimal level of being able to solve the equations of motion for binary merger events. We conclude with a discussion of the additional inferences that can be drawn if the lower-confidence observation of an

  15. Redox potential dynamics in a grassed swale used for storage and treatment

    Science.gov (United States)

    Vorenhout, Michel; Boogaard, Floris Cornelis

    2016-04-01

    Treatment wetlands are used to remove pollutants from water. Most swales are designed to infiltrate stormwater into the subsurface. A combination of both functions can help to enhance water quality and reduce flooding risks in urban areas. The chemical forms and possible removal of pollutants such as nitrate and heavy metals in wetlands are highly dependent on the redox conditions. The redox conditions are expected to be highly dynamic and dependent on water levels and flow. We studied the correlation between these factors in an urban grassed swale system, and show that more factors play a role in these systems than water levels alone. The study system is located in the World Heritage site "Bryggen" in the city of Bergen, Norway. It consists of a series of SUDS, a socalled treatment train. The system is fed by storm water, which is at first stored in a rain garden then led to grassed swales. Water infiltrates into the subsurface in the swales. The reason for implementation of the system at this site is the protection of the highly organic archaeological layers at the site, which requires reduced conditions. Swales 1 and 2 were equipped with pressure loggers and multi-level redox and temperature probes (-2, -5, -10 and -20cm from surface). Redox and temperature probes were connected to a HYPNOS system. Measurements were taken for more than 1 year at 15 minute interval. A weather station supplemented the dataset with precipitation measurements. The redox potential in the swales show a strong correlation with water level. The regularly flooded swale 2 shows frequent anoxic events (Eh < 200mV) where as swale 1 shows oxic conditions (Eh = 650mV) throughout the same measurement period. Swale 1 has fewer flooding events than Swale 2 and a more coarse soil with less organic matter than swale 2. These redox results are as expected given the local conditions, and show that redox conditions are localised phenomena that depend on local soil conditions. Analysis of the redox

  16. Virtual screening for potential inhibitors of Mcl-1 conformations sampled by normal modes, molecular dynamics, and nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    Glantz-Gashai Y

    2017-06-01

    Full Text Available Yitav Glantz-Gashai,* Tomer Meirson,* Eli Reuveni, Abraham O Samson Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel *These authors contributed equally to this work Abstract: Myeloid cell leukemia-1 (Mcl-1 is often overexpressed in human cancer and is an important target for developing antineoplastic drugs. In this study, a data set containing 2.3 million lead-like molecules and a data set of all the US Food and Drug Administration (FDA-approved drugs are virtually screened for potential Mcl-1 ligands using Protein Data Bank (PDB ID 2MHS. The potential Mcl-1 ligands are evaluated and computationally docked on to three conformation ensembles generated by normal mode analysis (NMA, molecular dynamics (MD, and nuclear magnetic resonance (NMR, respectively. The evaluated potential Mcl-1 ligands are then compared with their clinical use. Remarkably, half of the top 30 potential drugs are used clinically to treat cancer, thus partially validating our virtual screen. The partial validation also favors the idea that the other half of the top 30 potential drugs could be used in the treatment of cancer. The normal mode-, MD-, and NMR-based conformation greatly expand the conformational sampling used herein for in silico identification of potential Mcl-1 inhibitors. Keywords: virtual screening, Mcl-1, molecular dynamics, NMR, normal modes

  17. Pseudo hard-sphere potential for use in continuous molecular-dynamics simulation of spherical and chain molecules.

    Science.gov (United States)

    Jover, J; Haslam, A J; Galindo, A; Jackson, G; Müller, E A

    2012-10-14

    We present a continuous pseudo-hard-sphere potential based on a cut-and-shifted Mie (generalized Lennard-Jones) potential with exponents (50, 49). Using this potential one can mimic the volumetric, structural, and dynamic properties of the discontinuous hard-sphere potential over the whole fluid range. The continuous pseudo potential has the advantage that it may be incorporated directly into off-the-shelf molecular-dynamics code, allowing the user to capitalise on existing hardware and software advances. Simulation results for the compressibility factor of the fluid and solid phases of our pseudo hard spheres are presented and compared both to the Carnahan-Starling equation of state of the fluid and published data, the differences being indistinguishable within simulation uncertainty. The specific form of the potential is employed to simulate flexible chains formed from these pseudo hard spheres at contact (pearl-necklace model) for m(c) = 4, 5, 7, 8, 16, 20, 100, 201, and 500 monomer segments. The compressibility factor of the chains per unit of monomer, m(c), approaches a limiting value at reasonably small values, m(c) hard spheres, with diameter ratios of 3:1, 5:1, 20:1 over the whole composition range.

  18. Complex Langevin dynamics for dynamical QCD at nonzero chemical potential: a comparison with multi-parameter reweighting

    CERN Document Server

    Fodor, Z; Sexty, D; Török, C

    2015-01-01

    We study lattice QCD at non-vanishing chemical potential using the complex Langevin equation. We compare the results with multi-parameter reweighting both from $\\mu=0$ and phase quenched ensembles. We find a good agreement for lattice spacings below $\\approx$0.15 fm. On coarser lattices the complex Langevin approach breaks down. Four flavors of staggered fermions are used on $N_t=4, 6$ and 8 lattices. For one ensemble we also use two flavors to investigate the effects of rooting.

  19. Cycle length restitution in sinoatrial node cells: a theory for understanding spontaneous action potential dynamics.

    Directory of Open Access Journals (Sweden)

    Patric Glynn

    Full Text Available Normal heart rhythm (sinus rhythm is governed by the sinoatrial node, a specialized and highly heterogeneous collection of spontaneously active myocytes in the right atrium. Sinoatrial node dysfunction, characterized by slow and/or asynchronous pacemaker activity and even failure, is associated with cardiovascular disease (e.g. heart failure, atrial fibrillation. While tremendous progress has been made in understanding the molecular and ionic basis of automaticity in sinoatrial node cells, the dynamics governing sinoatrial nodel cell synchrony and overall pacemaker function remain unclear. Here, a well-validated computational model of the mouse sinoatrial node cell is used to test the hypothesis that sinoatrial node cell dynamics reflect an inherent restitution property (cycle length restitution that may give rise to a wide range of behavior from regular periodicity to highly complex, irregular activation. Computer simulations are performed to determine the cycle length restitution curve in the computational model using a newly defined voltage pulse protocol. The ability of the restitution curve to predict sinoatrial node cell dynamics (e.g., the emergence of irregular spontaneous activity and susceptibility to termination is evaluated. Finally, ionic and tissue level factors (e.g. ion channel conductances, ion concentrations, cell-to-cell coupling that influence restitution and sinoatrial node cell dynamics are explored. Together, these findings suggest that cycle length restitution may be a useful tool for analyzing cell dynamics and dysfunction in the sinoatrial node.

  20. Cycle length restitution in sinoatrial node cells: a theory for understanding spontaneous action potential dynamics.

    Science.gov (United States)

    Glynn, Patric; Onal, Birce; Hund, Thomas J

    2014-01-01

    Normal heart rhythm (sinus rhythm) is governed by the sinoatrial node, a specialized and highly heterogeneous collection of spontaneously active myocytes in the right atrium. Sinoatrial node dysfunction, characterized by slow and/or asynchronous pacemaker activity and even failure, is associated with cardiovascular disease (e.g. heart failure, atrial fibrillation). While tremendous progress has been made in understanding the molecular and ionic basis of automaticity in sinoatrial node cells, the dynamics governing sinoatrial nodel cell synchrony and overall pacemaker function remain unclear. Here, a well-validated computational model of the mouse sinoatrial node cell is used to test the hypothesis that sinoatrial node cell dynamics reflect an inherent restitution property (cycle length restitution) that may give rise to a wide range of behavior from regular periodicity to highly complex, irregular activation. Computer simulations are performed to determine the cycle length restitution curve in the computational model using a newly defined voltage pulse protocol. The ability of the restitution curve to predict sinoatrial node cell dynamics (e.g., the emergence of irregular spontaneous activity) and susceptibility to termination is evaluated. Finally, ionic and tissue level factors (e.g. ion channel conductances, ion concentrations, cell-to-cell coupling) that influence restitution and sinoatrial node cell dynamics are explored. Together, these findings suggest that cycle length restitution may be a useful tool for analyzing cell dynamics and dysfunction in the sinoatrial node.

  1. {lambda}{sub MS} from the static potential for QCD with n{sub f}=2 dynamical quark flavors

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Roma Univ. ' ' Tor Vergata' ' (Italy). Dipt. di Fisica; INFN, Roma (Italy); Karbstein, Felix [Helmholtz-Institut Jena (Germany); Jena Univ. (Germany). Theoretisch-Physikalisches Inst.; Nagy, Attila [Humboldt Univ. Berlin (Germany); Wagner, Marc [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2011-12-15

    We determine {lambda}{sub MS} for QCD with n{sub f}=2 dynamical quark flavors by fitting the Q anti Q static potential known analytically in the perturbative regime up to terms of O({alpha}{sub s}{sup 4}) and {proportional_to}{alpha}{sub s}{sup 4} ln{alpha}{sub s} to corresponding results obtained from lattice simulations. This has become possible, due to recent advances in both perturbative calculations, namely the determination and publication of the last missing contribution to the Q anti Q static potential at O({alpha}{sub s}{sup 4}), and lattice simulations with n{sub f}=2 dynamical quark flavors performed at the rather fine lattice spacing of a{approx}0.042 fm. Imposing conservative error estimates we obtain {lambda}{sub MS}=315(30) MeV. (orig.)

  2. Ab initio interaction potentials for X and B excited states of He-I{sub 2} for studying dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Prosmiti, Rita; Garcia-Gutierrez, Leonor; Delgado-Tellez, Laura; Valdes, Alvaro; Villarreal, Pablo; Delgado-Barrio, Gerardo, E-mail: rita@imaff.cfmac.csic.e [Instituto de Fisica Fundamental (CSIC), Serrano 123, 28006 Madrid (Spain)

    2009-11-01

    Ab initio CCSD(T) and MRCI approaches were employed to construct potential energy surfaces of the ground and the B electronic excited states of He-I{sub 2} complex, while full quantum mechanical methods were applied to study its spectroscopy and dynamics. A description of the approach adopted, together with the results obtained and their comparison with recent experimental data, as well as further improvements are presented.

  3. Dynamical properties for an ensemble of classical particles moving in a driven potential well with different time perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Diogo Ricardo da, E-mail: drcosta@usp.br [Instituto de Física, Universidade de São Paulo, Rua do Matão, Cidade Universitária, 05314-970 São Paulo, SP (Brazil); School of Mathematics, University of Bristol, Bristol BS8 1TW (United Kingdom); Caldas, I.L. [Instituto de Física, Universidade de São Paulo, Rua do Matão, Cidade Universitária, 05314-970 São Paulo, SP (Brazil); Leonel, Edson D. [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, 13506-900 Rio Claro, SP (Brazil)

    2013-10-30

    We consider dynamical properties for an ensemble of classical particles confined to an infinite box of potential and containing a time-dependent potential well described by different nonlinear functions. For smooth functions, the phase space contains chaotic trajectories, periodic islands and invariant spanning curves preventing the unlimited particle diffusion along the energy axis. Average properties of the chaotic sea are characterised as a function of the control parameters and exponents describing their behaviour show no dependence on the perturbation functions. Given invariant spanning curves are present in the phase space, a sticky region was observed and show to modify locally the diffusion of the particles.

  4. Dynamics of Bright/Dark Solitons in Bose-Einstein Condensates with Time-Dependent Scattering Length and External Potential

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ai-Xia; XUE Ju-Kui

    2008-01-01

    We present an analytical study on the dynamics of bright and dark solitons in Bose-Einstein condensates with time-varying atomic scattering length in a time-varying external parabolic potential.A set of exact soliton solutions of the one-dimensional Gross-Pitaevskii equation are obtained,including fundamental bright solitons,higher-order bright solitons,and dark solitons.The results show that the soliton's parameters(amplitude,width,and period)can be changed in a controllable manner by changing the scattering length and external potential.This may be helpful to design experiments.

  5. Quasi-potential and Two-Scale Large Deviation Theory for Gillespie Dynamics

    KAUST Repository

    Li, Tiejun

    2016-01-07

    The construction of energy landscape for bio-dynamics is attracting more and more attention recent years. In this talk, I will introduce the strategy to construct the landscape from the connection to rare events, which relies on the large deviation theory for Gillespie-type jump dynamics. In the application to a typical genetic switching model, the two-scale large deviation theory is developed to take into account the fast switching of DNA states. The comparison with other proposals are also discussed. We demonstrate different diffusive limits arise when considering different regimes for genetic translation and switching processes.

  6. Engineering Many-Body Dynamics with Quantum Light Potentials and Measurements

    CERN Document Server

    Elliott, Thomas J

    2015-01-01

    Interactions between many-body atomic systems and light in cavities induce new atomic dynamics, which we show can be tailored by projective light measurement backaction, leading to collective effects such as density-density interactions, perfectly-correlated atomic tunneling, superexchange, and effective pair creation and annihilation. These can be long- and short-range, with tunable strengths, based on the optical setup. We show this provides a framework to enhance quantum simulations of novel physical phenomena, including reservoir models and dynamical gauge fields, beyond current methods.

  7. Development of EEM based silicon–water and silica–water wall potentials for non-reactive molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghan; Iype, Eldhose; Frijns, Arjan J.H.; Nedea, Silvia V.; Steenhoven, Anton A. van

    2014-07-01

    Molecular dynamics simulations of heat transfer in gases are computationally expensive when the wall molecules are explicitly modeled. To save computational time, an implicit boundary function is often used. Steele's potential has been used in studies of fluid–solid interface for a long time. In this work, the conceptual idea of Steele's potential was extended in order to simulate water–silicon and water–silica interfaces. A new wall potential model is developed by using the electronegativity-equalization method (EEM), a ReaxFF empirical force field and a non-reactive molecular dynamics package PumMa. Contact angle simulations were performed in order to validate the wall potential model. Contact angle simulations with the resulting tabulated wall potentials gave a silicon–water contact angle of 129°, a quartz–water contact angle of 0°, and a cristobalite–water contact angle of 40°, which are in reasonable agreement with experimental values.

  8. Non-steady state mass action dynamics without rate constants: dynamics of coupled reactions using chemical potentials

    Science.gov (United States)

    Cannon, William R.; Baker, Scott E.

    2017-10-01

    Comprehensive and predictive simulation of coupled reaction networks has long been a goal of biology and other fields. Currently, metabolic network models that utilize enzyme mass action kinetics have predictive power but are limited in scope and application by the fact that the determination of enzyme rate constants is laborious and low throughput. We present a statistical thermodynamic formulation of the law of mass action for coupled reactions at both steady states and non-stationary states. The formulation uses chemical potentials instead of rate constants. When used to model deterministic systems, the method corresponds to a rescaling of the time dependent reactions in such a way that steady states can be reached on the same time scale but with significantly fewer computational steps. The relationships between reaction affinities, free energy changes and generalized detailed balance are central to the discussion. The significance for applications in systems biology are discussed as is the concept and assumption of maximum entropy production rate as a biological principle that links thermodynamics to natural selection.

  9. Effortful Pitch Glide: A Potential New Exercise Evaluated by Dynamic MRI

    Science.gov (United States)

    Miloro, Keri Vasquez; Pearson, William G., Jr.; Langmore, Susan E.

    2014-01-01

    Purpose: The purpose of this study was to compare the biomechanics of the effortful pitch glide (EPG) with swallowing using dynamic MRI. The EPG is a combination of a pitch glide and a pharyngeal squeeze maneuver for targeting laryngeal and pharyngeal muscles. The authors hypothesized that the EPG would elicit significantly greater structural…

  10. Membrane Potential Dynamics of Spontaneous and Visually Evoked Gamma Activity in V1 of Awake Mice

    NARCIS (Netherlands)

    Perrenoud, Q.; Pennartz, C.M.A.; Gentet, L.J.

    2016-01-01

    Cortical gamma activity (30-80 Hz) is believed to play important functions in neural computation and arises from the interplay of parvalbumin-expressing interneurons (PV) and pyramidal cells (PYRs). However, the subthreshold dynamics underlying its emergence in the cortex of awake animals remain unc

  11. Is the Potential for International Diversification Disappearing? A Dynamic Copula Approach

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Errunza, Vihang; Jacobs, Kris

    International equity markets are characterized by nonlinear dependence and asymmetries. We propose a new dynamic asymmetric copula model to capture long-run and short-run dependence, multivariate nonnormality, and asymmetries in large cross-sections. We find that copula correlations have increase...

  12. Dynamic Airline Scheduling: An Analysis of the Potentials of Refleeting and Retiming

    DEFF Research Database (Denmark)

    Warburg, Valdemar; Hansen, Troels G.; Larsen, Allan

    2008-01-01

    We present a Dynamic Airline Scheduling (DAS) technique which is able to change departure times and reassign aircraft types during the booking process to meet fluctuating passenger demands. The procedure is tested on several different days before departure, resulting in a significant profit...

  13. Dynamic Wolbachia prevalence in Acromyrmex leaf‐cutting ants: potential for a nutritional symbiosis

    DEFF Research Database (Denmark)

    Andersen, S. B.; Boye, Mette; Nash, D. R.

    2012-01-01

    Wolbachia are renowned as reproductive parasites, but their phenotypic effects in eusocial insects are not well understood. We used a combination of qrt‐PCR, fluorescence in situ hybridization and laser scanning confocal microscopy to evaluate the dynamics of Wolbachia infections in the leaf...

  14. Complex Dynamic Thresholds and Generation of the Action Potentials in the Neural-Activity Model

    Science.gov (United States)

    Kirillov, S. Yu.; Nekorkin, V. I.

    2016-05-01

    This work is devoted to studying the processes of activation of the neurons whose excitation thresholds are not constant and vary in time (the so-called dynamic thresholds). The neuron dynamics is described by the FitzHugh-Nagumo model with nonlinear behavior of the recovery variable. The neuron response to the external pulsed activating action in the presence of a slowly varying synaptic current is studied within the framework of this model. The structure of the dynamic threshold is studied and its properties depending on the external-action parameters are established. It is found that the formation of the "folds" in the separatrix threshold manifold in the model phase space is a typical feature of the complex dynamic threshold. High neuron sensitivity to the action of the comparatively weak slow control signals is established. This explains the capability of the neurons to perform flexible tuning of their selective properties for detecting various external signals in sufficiently short times (of the order of duration of several spikes).

  15. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    Science.gov (United States)

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-06-02

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  16. Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U 1630-47.

    Science.gov (United States)

    Trigo, María Díaz; Miller-Jones, James C A; Migliari, Simone; Broderick, Jess W; Tzioumis, Tasso

    2013-12-12

    Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and, hence, the feedback they provide to their surroundings, depends strongly on their composition. Jets containing a baryonic component should carry significantly more energy than electron-positron jets. Energetic considerations and circular-polarization measurements have provided conflicting circumstantial evidence for the presence or absence of baryons in jets, and the only system in which they have been unequivocally detected is the peculiar X-ray binary SS 433 (refs 4, 5). Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black-hole candidate X-ray binary, 4U 1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise from baryonic matter in a jet travelling at approximately two-thirds the speed of light, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the accretion disk than by the spin of the black hole, and if the baryons can be accelerated to relativistic speeds, the jets should be strong sources of γ-rays and neutrino emission.

  17. Variability of the X-ray Broad Iron Spectral Features in Active Galactic Nuclei and Black-hole Binaries

    CERN Document Server

    Mizumoto, Misaki; Tsujimoto, Masahiro; Inoue, Hajime

    2015-01-01

    The "broad iron spectral features" are often seen in X-ray spectra of Active Galactic Nuclei (AGN) and black-hole binaries (BHB). These features may be explained either by the "relativistic disc reflection" scenario or the "partial covering" scenario: It is hardly possible to determine which model is valid from time-averaged spectral analysis. Thus, X-ray spectral variability has been investigated to constrain spectral models. To that end, it is crucial to study iron structure of BHBs in detail at short time-scales, which is, for the first time, made possible with the Parallel-sum clocking (P-sum) mode of XIS detectors on board Suzaku. This observational mode has a time-resolution of 7.8~ms as well as a CCD energy-resolution. We have carried out systematic calibration of the P-sum mode, and investigated spectral variability of the BHB GRS 1915+105. Consequently, we found that the spectral variability of GRS 1915+105 does not show iron features at sub-seconds. This is totally different from variability of AGN ...

  18. A General Relativistic Null Hypothesis Test with Event Horizon Telescope Observations of the black-hole shadow in Sgr A*

    CERN Document Server

    Psaltis, Dimitrios; Chan, Chi-Kwan; Marrone, Daniel P

    2014-01-01

    (Abridged) In General Relativity, the shadow cast by a black hole has a size that depends very weakly on its spin or the orientation of the observer. The half opening angle of the shadow is always equal to 5+-0.2 GM/Dc^2, where M is the mass of the black hole and D is its distance from the Earth. Therefore, measuring the size of the shadow of a black hole of known mass-to-distance ratio and verifying whether it is within the 4% predicted range constitutes a null hypothesis test of GR. We show that Sgr A* is the optimal target for performing this test with the Event Horizon Telescope. We use the results of monitoring of stellar orbits to show that the ratio M/D for Sgr A* is already known to an accuracy of ~6%. We investigate our prior knowledge of the scattering screen towards Sgr A, the effects of which will need to be corrected for in order for the black-hole shadow to appear sharp against the background emission. We argue that, even though the properties of the scattering ellipse at longer wavelengths are ...

  19. Potential energy savings using dynamically optimizing control in refrigeration systems under daily variations in ambient temperature

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth; Thybo, Claus; Wisniewski, Rafal;

    2007-01-01

    The objective of this study is to investigate the energy saving potential for refrigeration systems by refrigeration more at the colder night time than at the warmer day time. The potential is evaluated using an optimal control policy and illustrated on a simulation example. The results show that...

  20. Dynamical properties of non-ideal plasma on the basis of effective potentials

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T. S.; Kodanova, S. K.; Moldabekov, Zh. A.; Issanova, M. K. [IETP, Al-Farabi Kazakh National University, 71 Al-Farabi str., Almaty 050040 (Kazakhstan)

    2013-11-15

    In this work, stopping power has been calculated on the basis of the Coulomb logarithm using the effective potentials. Calculations of the Coulomb logarithm and stopping power for different interaction potentials and degrees of ionization are compared. The comparison with the data of other theoretical and experimental works was carried out.

  1. Common Misconceptions about the Dynamical Theory of Crystal Lattices: Cauchy Relations, Lattice Potentials and Infinite Crystals

    Science.gov (United States)

    Elcoro, Luis; Etxebarria, Jesus

    2011-01-01

    The requirement of rotational invariance for lattice potential energies is investigated. Starting from this condition, it is shown that the Cauchy relations for the elastic constants are fulfilled if the lattice potential is built from pair interactions or when the first-neighbour approximation is adopted. This is seldom recognized in widely used…

  2. Reactive Boundary Conditions as Limits of Interaction Potentials for Brownian and Langevin Dynamics

    CERN Document Server

    Chapman, S Jonathan; Isaacson, Samuel A

    2015-01-01

    A popular approach to modeling bimolecular reactions between diffusing molecules is through the use of reactive boundary conditions. One common model is the Smoluchowski partial absorption condition, which uses a Robin boundary condition in the separation coordinate between two possible reactants. This boundary condition can be interpreted as an idealization of a reactive interaction potential model, in which a potential barrier must be surmounted before reactions can occur. In this work we show how the reactive boundary condition arises as the limit of an interaction potential encoding a steep barrier within a shrinking region in the particle separation, where molecules react instantly upon reaching the peak of the barrier. The limiting boundary condition is derived by the method of matched asymptotic expansions, and shown to depend critically on the relative rate of increase of the barrier height as the width of the potential is decreased. Limiting boundary conditions for the same interaction potential in b...

  3. A Bloch decomposition based split-step pseudo spectral method for quantum dynamics with periodic potentials

    CERN Document Server

    Huang, Zhongyi; Markowich, Peter; Sparber, Christof

    2012-01-01

    We present a new numerical method for accurate computations of solutions to (linear) one dimensional Schr\\"odinger equations with periodic potentials. This is a prominent model in solid state physics where we also allow for perturbations by non-periodic potentials describing external electric fields. Our approach is based on the classical Bloch decomposition method which allows to diagonalize the periodic part of the Hamiltonian operator. Hence, the dominant effects from dispersion and periodic lattice potential are computed together, while the non-periodic potential acts only as a perturbation. Because the split-step communicator error between the periodic and non-periodic parts is relatively small, the step size can be chosen substantially larger than for the traditional splitting of the dispersion and potential operators. Indeed it is shown by the given examples, that our method is unconditionally stable and more efficient than the traditional split-step pseudo spectral schemes. To this end a particular fo...

  4. Equilibrium Molecular Dynamics (MD Simulation Study of Thermal Conductivity of Graphene Nanoribbon: A Comparative Study on MD Potentials

    Directory of Open Access Journals (Sweden)

    Asir Intisar Khan

    2015-12-01

    Full Text Available The thermal conductivity of graphene nanoribbons (GNRs has been investigated using equilibrium molecular dynamics (EMD simulation based on Green-Kubo (GK method to compare two interatomic potentials namely optimized Tersoff and 2nd generation Reactive Empirical Bond Order (REBO. Our comparative study includes the estimation of thermal conductivity as a function of temperature, length and width of GNR for both the potentials. The thermal conductivity of graphene nanoribbon decreases with the increase of temperature. Quantum correction has been introduced for thermal conductivity as a function of temperature to include quantum effect below Debye temperature. Our results show that for temperatures up to Debye temperature, thermal conductivity increases, attains its peak and then falls off monotonically. Thermal conductivity is found to decrease with the increasing length for optimized Tersoff potential. However, thermal conductivity has been reported to increase with length using 2nd generation REBO potential for the GNRs of same size. Thermal conductivity, for the specified range of width, demonstrates an increasing trend with the increase of width for both the concerned potentials. In comparison with 2nd generation REBO potential, optimized Tersoff potential demonstrates a better modeling of thermal conductivity as well as provides a more appropriate description of phonon thermal transport in graphene nanoribbon. Such comparative study would provide a good insight for the optimization of the thermal conductivity of graphene nanoribbons under diverse conditions.

  5. Potential negative effects of groundwater dynamics on dry season convection in the Amazon River basin

    Science.gov (United States)

    Lin, Yen-Heng; Lo, Min-Hui; Chou, Chia

    2016-02-01

    Adding a groundwater component to land surface models affects modeled precipitation. The additional water supply from the subsurface contributes to increased water vapor in the atmosphere, resulting in modifications of atmospheric convection. This study focuses on how groundwater dynamics affect atmospheric convection in the Amazon River basin (ARB) during July, typically the driest month. Coupled groundwater-land-atmosphere model simulations show that groundwater storage increases evapotranspiration rates (latent heat fluxes) and lowers surface temperatures, which increases the surface pressure gradient and thus, anomalous surface divergence. Therefore, the convection over the Southern Hemispheric ARB during the dry season becomes weaker when groundwater dynamics are included in the model. Additionally, the changes in atmospheric vertical water vapor advection are associated with decreases in precipitation that results from downwelling transport anomalies. The results of this study highlight the importance of subsurface hydrological processes in the Amazon climate system, with implications for precipitation changes during the dry season, observed in most current climate models.

  6. Potential Negative Effects of Groundwater Dynamics on Dry Season Convection in the Amazon River Basin

    Science.gov (United States)

    Lin, Y. H.; Lo, M. H.; Chou, C.

    2014-12-01

    Adding a groundwater component to land surface models affects modeled precipitation because the additional water supply from the subsurface contributes to increased water vapor in the atmosphere, resulting in modifications of atmospheric convection. This study focused on how groundwater dynamics affect atmospheric convection in the Amazon River Basin (ARB) during July, typically the driest month. Coupled groundwater-land-atmosphere model simulations show that groundwater storage increases evapotranspiration rates (latent heat fluxes) and lowers surface temperatures, which increases the surface pressure gradient and thus, anomalous surface divergence. Therefore, the convection over the Southern Hemispheric ARB during the dry season becomes weaker when groundwater dynamics are included in the model. In addition, the changes in atmospheric vertical water vapor advection are associated with decreases in precipitation resulting from downward transport anomalies. The results of this study highlight the importance of subsurface hydrological processes in the Amazon climate system, which have implications for precipitation changes during the dry season observed in most current climate models.

  7. The Potential of Synergistic Static, Dynamic and Speculative Loop Nest Optimizations for Automatic Parallelization

    CERN Document Server

    Baghdadi, Riyadh; Bastoul, Cedric; Pouchet, Louis-Noel; Rauchwerger, Lawrence

    2011-01-01

    Research in automatic parallelization of loop-centric programs started with static analysis, then broadened its arsenal to include dynamic inspection-execution and speculative execution, the best results involving hybrid static-dynamic schemes. Beyond the detection of parallelism in a sequential program, scalable parallelization on many-core processors involves hard and interesting parallelism adaptation and mapping challenges. These challenges include tailoring data locality to the memory hierarchy, structuring independent tasks hierarchically to exploit multiple levels of parallelism, tuning the synchronization grain, balancing the execution load, decoupling the execution into thread-level pipelines, and leveraging heterogeneous hardware with specialized accelerators. The polyhedral framework allows to model, construct and apply very complex loop nest transformations addressing most of the parallelism adaptation and mapping challenges. But apart from hardware-specific, back-end oriented transformations (if-...

  8. Dynamic/Jitter Assessment of Multiple Potential HabEx Structural Designs

    Science.gov (United States)

    Knight, J. Brent; Stahl, H. Philip; Singleton, Andy; Hunt, Ron; Therrell, Melissa; Caldwell, Kate; Garcia, Jay; Baysinger, Mike

    2017-01-01

    One of the driving structural requirements of the Habitable Exo-Planet (HabEx) telescope is to maintain Line Of Sight (LOS) stability between the Primary Mirror (PM) and Secondary Mirror (SM) of = 5 mas. Dynamic analyses of two configurations of a proposed (HabEx) 4 meter off-axis telescope structure were performed to predict effects of jitter on primary/secondary mirror alignment. The dynamic disturbance used as the forcing function was the James Webb Space Telescope reaction wheel assembly vibration emission specification level. The objective of these analyses was to predict "order-of-magnitude" performance for various structural configurations which will roll into efforts to define the HabEx structural design's global architecture. Two variations of the basic architectural design were analyzed. Relative motion between the PM and the SM for each design configuration are reported.

  9. Dynamic/Jitter Assessment of Multiple Potential HabEx Structural Designs

    Science.gov (United States)

    Knight, J. Brent; Stahl, H. Philip; Singleton, Andrew William; Hunt, Ronald A.; Therrell, Melissa F.; Caldwell, Mary Kathryn; Garcia, Jay Clarke

    2017-01-01

    The 2020 Decadal Survey in Astronomy and Astrophysics will assess candidate large missions to follow James Webb Space Telescope (JWST) and Wide Field Infrared Space Telescope (WFIRST). One candidate mission is the Habitable ExoPlanet Imaging Mission (HabEx). This presentation describes two HabEx structural designs and results from structural dynamic analyses performed to predict Primary Mirror (PM) Secondary Mirror (SM) Line of Site (LOS) stability (jitter) due to Reaction Wheel Assembly (RWA) vibrations.

  10. Analysing animal social network dynamics: the potential of stochastic actor-oriented models.

    Science.gov (United States)

    Fisher, David N; Ilany, Amiyaal; Silk, Matthew J; Tregenza, Tom

    2017-03-01

    Animals are embedded in dynamically changing networks of relationships with conspecifics. These dynamic networks are fundamental aspects of their environment, creating selection on behaviours and other traits. However, most social network-based approaches in ecology are constrained to considering networks as static, despite several calls for such analyses to become more dynamic. There are a number of statistical analyses developed in the social sciences that are increasingly being applied to animal networks, of which stochastic actor-oriented models (SAOMs) are a principal example. SAOMs are a class of individual-based models designed to model transitions in networks between discrete time points, as influenced by network structure and covariates. It is not clear, however, how useful such techniques are to ecologists, and whether they are suited to animal social networks. We review the recent applications of SAOMs to animal networks, outlining findings and assessing the strengths and weaknesses of SAOMs when applied to animal rather than human networks. We go on to highlight the types of ecological and evolutionary processes that SAOMs can be used to study. SAOMs can include effects and covariates for individuals, dyads and populations, which can be constant or variable. This allows for the examination of a wide range of questions of interest to ecologists. However, high-resolution data are required, meaning SAOMs will not be useable in all study systems. It remains unclear how robust SAOMs are to missing data and uncertainty around social relationships. Ultimately, we encourage the careful application of SAOMs in appropriate systems, with dynamic network analyses likely to prove highly informative. Researchers can then extend the basic method to tackle a range of existing questions in ecology and explore novel lines of questioning. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  11. Potential Effects of Heliogeophysical Activity on the Dynamics of Sudden Cardiac Death at Earth Middle Latitudes

    Science.gov (United States)

    Dimitrova, S.; Babayev, E.; Mustafa, F.

    2017-01-01

    Limited studies exist on comparing the possible effects of heliogeophysical activity (solar and geomagnetic) on the dynamics of sudden cardiac death (SCD) as a function of latitude on Earth. In this work we continue our earlier studies concerning the changing space environment and SCD dynamics at middle latitudes. The study covered 25 to 80-year old males and females, and used medical data provided by all emergency and first medical aid stations in the Grand Baku Area, Azerbaijan. Data coverage includedthe second peak of Solar Cycle 23 and its descending activity years followed by its long-lasting minimum. Gradation of geomagnetic activity into six levels was introduced to study the effect of space weather on SCD. The ANalysis Of VAriance (ANOVA) test was applied to study the significance of the geomagnetic activity effect, estimated by different geomagnetic indices, on SCD dynamics. Variations inthe number of SCDs occurring on days preceding and following the development of geomagnetic storms were also studied. Results revealed that the SCD number was largest on days of very low geomagnetic activity and on days proceeding and following geomagnetic storms with different intensities. Vulnerability for males was found to be higher around days of major and severe geomagnetic storms. Females, on the other hand, were more threatened around days of lower intensity storms. It is concluded that heliogeophysical activity could be considered as one of the regulating external/environmental factors in human homeostasis.

  12. Molecular dynamics simulations of fluid cyclopropane with MP2/CBS-fitted intermolecular interaction potentials.

    Science.gov (United States)

    Ho, Yen-Ching; Wang, Yi-Siang; Chao, Sheng D

    2017-08-14

    Modeling fluid cycloalkanes with molecular dynamics simulations has proven to be a very challenging task partly because of lacking a reliable force field based on quantum chemistry calculations. In this paper, we construct an ab initio force field for fluid cyclopropane using the second-order Møller-Plesset perturbation theory. We consider 15 conformers of the cyclopropane dimer for the orientation sampling. Single-point energies at important geometries are calibrated by the coupled cluster with single, double, and perturbative triple excitation method. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) are used in extrapolating the interaction energies at the complete basis set limit. The force field parameters in a 9-site Lennard-Jones model are regressed by the calculated interaction energies without using empirical data. With this ab initio force field, we perform molecular dynamics simulations of fluid cyclopropane and calculate both the structural and dynamical properties. We compare the simulation results with those using an empirical force field and obtain a quantitative agreement for the detailed atom-wise radial distribution functions. The experimentally observed gross radial distribution function (extracted from the neutron scattering measurements) is well reproduced in our simulation. Moreover, the calculated self-diffusion coefficients and shear viscosities are in good agreement with the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with empirical force fields for simulating fluid cyclopropane.

  13. Potential for tunable static and dynamic contact angle anisotropy on gradient microscale patterned topographies.

    Science.gov (United States)

    Long, Christopher J; Schumacher, James F; Brennan, Anthony B

    2009-11-17

    Translationally symmetric topographies can be designed to induce anisotropy of static and dynamic contact angles. The validity of ignoring directionality of topography in contact angle characterization was evaluated using microscale patterned topographies. Seven patterned topographies comprising elongated discontinuous microfeatures oriented along parallel paths and one topography comprising ridges were fabricated in a poly(dimethyl siloxane) elastomer (PDMSe). The static contact angle, advancing contact angle, receding contact angle, contact angle hysteresis, and slip angle were measured using water on each surface at three in-plane perspectives, with respect to the feature orientation. Static and dynamic contact angle anisotropies were investigated on the topographies to evaluate the effect of discontinuities along the feature lengths on the anisotropy that has been shown on channels or ridges in previous reports. Discontinuous feature topographies exhibited a statistically significant anisotropy of 2 degrees-6 degrees between the perpendicular and parallel directions, with respect to the static and dynamic contact angles. The ridges topography exhibited much larger 5 degrees-42 degrees anisotropy in the contact angles. The discontinuities along the feature lengths greatly reduced, but did not eliminate, the anisotropies compared to the ridges. This evidence of contact angle anisotropy indicates a need to identify the orientation of topography, in relation to contact angle measurements. It also implies a need to consider directionality in the design of microfluidic devices and self-cleaning surfaces.

  14. An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements

    Science.gov (United States)

    Kim, Hojeong; Sandercock, Thomas G.; Heckman, C. J.

    2015-08-01

    Objective. The goal of this study was to develop a physiologically plausible, computationally robust model for muscle activation dynamics (A(t)) under physiologically relevant excitation and movement. Approach. The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of three compartments: (1) spikes-to-[Ca2+]; (2) [Ca2+]-to-A; and (3) A-to-force transformation. The individual signal transformations were modeled based on physiological factors so that the parameter values could be separately determined for individual modules directly based on experimental data. Main results. The strong dependency of A(t) on excitation frequency and muscle length was found during both isometric and dynamically-moving contractions. The identified dependencies of A(t) under the static and dynamic conditions could be incorporated in the modular modeling framework by modulating the model parameters as a function of movement input. The new modeling approach was also applicable to cat soleus muscles producing waveforms independent of those used to set the model parameters. Significance. This study provides a modeling framework for spike-driven muscle responses during movement, that is suitable not only for insights into molecular mechanisms underlying muscle behaviors but also for large scale simulations.

  15. Molecular dynamics simulations of fluid cyclopropane with MP2/CBS-fitted intermolecular interaction potentials

    Science.gov (United States)

    Ho, Yen-Ching; Wang, Yi-Siang; Chao, Sheng D.

    2017-08-01

    Modeling fluid cycloalkanes with molecular dynamics simulations has proven to be a very challenging task partly because of lacking a reliable force field based on quantum chemistry calculations. In this paper, we construct an ab initio force field for fluid cyclopropane using the second-order Møller-Plesset perturbation theory. We consider 15 conformers of the cyclopropane dimer for the orientation sampling. Single-point energies at important geometries are calibrated by the coupled cluster with single, double, and perturbative triple excitation method. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) are used in extrapolating the interaction energies at the complete basis set limit. The force field parameters in a 9-site Lennard-Jones model are regressed by the calculated interaction energies without using empirical data. With this ab initio force field, we perform molecular dynamics simulations of fluid cyclopropane and calculate both the structural and dynamical properties. We compare the simulation results with those using an empirical force field and obtain a quantitative agreement for the detailed atom-wise radial distribution functions. The experimentally observed gross radial distribution function (extracted from the neutron scattering measurements) is well reproduced in our simulation. Moreover, the calculated self-diffusion coefficients and shear viscosities are in good agreement with the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with empirical force fields for simulating fluid cyclopropane.

  16. A Relativist's Toolkit, The Mathematics of Black-Hole Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Whiting, B [University of Florida (United States)

    2004-12-07

    careful, well thought out, pedagogical style of the author, and this book certainly lives up to that reputation. It has developed from a course originating from Poisson, but now already given a number of times by several different instructors, so it is well battle-tested. Since Poisson has worked extensively in many of the areas he covers, the book also carries a personal touch, with an emphasis on clarity. As intended, the influence of Werner Israel, to whom the book is dedicated, shows through, implicit in many places, and at times explicit as well. Probably my strongest quibble with the content is the absence of a comprehensive discussion of isolated and dynamical horizons, which Ashtekar and coworkers have done so much to develop recently. Students equipped with the skills Poisson intends to impart would do well to be prepared in this one particular complementary area too. The potential reader should also be cautioned that there is no treatment of black hole perturbations. Though their role in gravitational wave discussions is becoming increasingly significant, their absence from this book is justified on the grounds of space and compatibility with the techniques presented. Typographically, the book uses a clear, adequately sized font, an essentially uniform notation, and includes 40 line drawings which helpfully illustrate the text. It is exceptionally well proofread, as one might expect from the publisher concerned. I believe it will give a thorough, advanced preparation to any suitably prepared student using it, and I will definitely recommend it for students matching its intended audience. (book review)

  17. Rift Valley fever in a zone potentially occupied by Aedes vexans in Senegal: dynamics and risk mapping

    Directory of Open Access Journals (Sweden)

    Cécile Vignolles

    2009-05-01

    Full Text Available This paper presents an analysis of the interaction between the various variables associated with Rift Valley fever (RVF such as the mosquito vector, available hosts and rainfall distribution. To that end, the varying zones potentially occupied by mosquitoes (ZPOM, rainfall events and pond dynamics, and the associated exposure of hosts to the RVF virus by Aedes vexans, were analyzed in the Barkedji area of the Ferlo, Senegal, during the 2003 rainy season. Ponds were identified by remote sensing using a high-resolution SPOT-5 satellite image. Additional data on ponds and rainfall events from the Tropical Rainfall Measuring Mission were combined with in-situ entomological and limnimetric measurements, and the localization of vulnerable ruminant hosts (data derived from QuickBird satellite. Since “Ae. vexans productive events” are dependent on the timing of rainfall for their embryogenesis (six days without rain are necessary to trigger hatching, the dynamic spatio-temporal distribution of Ae. vexans density was based on the total rainfall amount and pond dynamics. Detailed ZPOM mapping was obtained on a daily basis and combined with aggressiveness temporal profiles. Risks zones, i.e. zones where hazards and vulnerability are combined, are expressed by the percentages of parks where animals are potentially exposed to mosquito bites. This new approach, simply relying upon rainfall distribution evaluated from space, is meant to contribute to the implementation of a new, operational early warning system for RVF based on environmental risks linked to climatic and environmental conditions.

  18. NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Toxværd, Søren; Heilmann, Ole

    2011-01-01

    An algorithm is derived for computer simulation of geodesics on the constant-potential-energy hypersurface of a system of N classical particles. First, a basic time-reversible geodesic algorithm is derived by discretizing the geodesic stationarity condition and implementing the constant......-potential-energy constraint via standard Lagrangian multipliers. The basic NVU algorithm is tested by single-precision computer simulations of the Lennard-Jones liquid. Excellent numerical stability is obtained if the force cutoff is smoothed and the two initial configurations have identical potential energy within machine...... that ensures potential-energy and step-length conservation; center-of-mass drift is also eliminated. Analytical arguments confirmed by simulations demonstrate that the modified NVU algorithm is absolutely stable. Finally, we present simulations showing that the NVU algorithm and the standard leap-frog NVE...

  19. Spatially resolved streaming potentials of human intervertebral disk motion segments under dynamic axial compression.

    Science.gov (United States)

    Iatridis, James C; Furukawa, Masaru; Stokes, Ian A F; Gardner-Morse, Mack G; Laible, Jeffrey P

    2009-03-01

    Intervertebral disk degeneration results in alterations in the mechanical, chemical, and electrical properties of the disk tissue. The purpose of this study is to record spatially resolved streaming potential measurements across intervertebral disks exposed to cyclic compressive loading. We hypothesize that the streaming potential profile across the disk will vary with radial position and frequency and is proportional to applied load amplitude, according to the presumed fluid-solid relative velocity and measured glycosaminoglycan content. Needle electrodes were fabricated using a linear array of AgAgCl micro-electrodes and inserted into human motion segments in the midline from anterior to posterior. They were connected to an amplifier to measure electrode potentials relative to the saline bath ground. Motion segments were loaded in axial compression under a preload of 500 N, sinusoidal amplitudes of +/-200 N and +/-400 N, and frequencies of 0.01 Hz, 0.1 Hz, and 1 Hz. Streaming potential data were normalized by applied force amplitude, and also compared with paired experimental measurements of glycosaminoglycans in each disk. Normalized streaming potentials varied significantly with sagittal position and there was a significant location difference at the different frequencies. Normalized streaming potential was largest in the central nucleus region at frequencies of 0.1 Hz and 1.0 Hz with values of approximately 3.5 microVN. Under 0.01 Hz loading, normalized streaming potential was largest in the outer annulus regions with a maximum value of 3.0 microVN. Correlations between streaming potential and glycosaminoglycan content were significant, with R(2) ranging from 0.5 to 0.8. Phasic relationships between applied force and electrical potential did not differ significantly by disk region or frequency, although the largest phase angles were observed at the outermost electrodes. Normalized streaming potentials were associated with glycosaminoglycan content, fluid, and

  20. Dynamics and stability of two-potential flows in the porous media

    Science.gov (United States)

    Markicevic, B.; Bijeljic, B.; Navaz, H. K.

    2011-11-01

    The experimental and numerical results of the capillary-force-driven climb of wetting liquid in porous media, which is opposed by the gravity force, are analyzed with respect to the emergence of a multiphase flow front and flow stability of the climbing liquid. Two dynamic characteristics are used: (i) the multiphase flow front thickness as a function of time, and (ii) the capillary number as a function of Bond number, where both numbers are calculated from the harmonic average of pores radii. Throughout the climb, the influence of capillary, gravity, and viscous force variations on the flow behavior is investigated for different porous media. For a specific porous medium, a unique flow front power law function of time is observed for the capillary flow climbs with or without gravity force. Distinct dynamic flow front power law functions are found for different porous media. However, for capillary climb in different porous media, one is able to predict a unique behavior for the wetting height (the interface between wetted and dry regions of porous medium) using the capillary and Bond number. It is found that these two numbers correlate as a unique exponential function, even for porous media whose permeabilities vary for two orders of magnitude. For climbs without the gravity force (capillary spreads), the initial climb dynamics follows this exponential law, but for later flow times and when a significant flow front is developed, one observes a constant value of the capillary number. Using this approach to describe the capillary climb, only the capillary versus Bond number correlation is needed, which is completely measureable from the experiments.

  1. Disease dynamics and potential mitigation among restored and wild staghorn coral, Acropora cervicornis

    Directory of Open Access Journals (Sweden)

    Margaret W. Miller

    2014-08-01

    Full Text Available The threatened status (both ecologically and legally of Caribbean staghorn coral, Acropora cervicornis, has prompted rapidly expanding efforts in culture and restocking, although tissue loss diseases continue to affect populations. In this study, disease surveillance and histopathological characterization were used to compare disease dynamics and conditions in both restored and extant wild populations. Disease had devastating effects on both wild and restored populations, but dynamics were highly variable and appeared to be site-specific with no significant differences in disease prevalence between wild versus restored sites. A subset of 20 haphazardly selected colonies at each site observed over a four-month period revealed widely varying disease incidence, although not between restored and wild sites, and a case fatality rate of 8%. A tropical storm was the only discernable environmental trigger associated with a consistent spike in incidence across all sites. Lastly, two field mitigation techniques, (1 excision of apparently healthy branch tips from a diseased colony, and (2 placement of a band of epoxy fully enclosing the diseased margin, gave equivocal results with no significant benefit detected for either treatment compared to controls. Tissue condition of associated samples was fair to very poor; unsuccessful mitigation treatment samples had severe degeneration of mesenterial filament cnidoglandular bands. Polyp mucocytes in all samples were infected with suspect rickettsia-like organisms; however, no bacterial aggregates were found. No histological differences were found between disease lesions with gross signs fitting literature descriptions of white-band disease (WBD and rapid tissue loss (RTL. Overall, our results do not support differing disease quality, quantity, dynamics, nor health management strategies between restored and wild colonies of A. cervicornis in the Florida Keys.

  2. Disease dynamics and potential mitigation among restored and wild staghorn coral, Acropora cervicornis.

    Science.gov (United States)

    Miller, Margaret W; Lohr, Kathryn E; Cameron, Caitlin M; Williams, Dana E; Peters, Esther C

    2014-01-01

    The threatened status (both ecologically and legally) of Caribbean staghorn coral, Acropora cervicornis, has prompted rapidly expanding efforts in culture and restocking, although tissue loss diseases continue to affect populations. In this study, disease surveillance and histopathological characterization were used to compare disease dynamics and conditions in both restored and extant wild populations. Disease had devastating effects on both wild and restored populations, but dynamics were highly variable and appeared to be site-specific with no significant differences in disease prevalence between wild versus restored sites. A subset of 20 haphazardly selected colonies at each site observed over a four-month period revealed widely varying disease incidence, although not between restored and wild sites, and a case fatality rate of 8%. A tropical storm was the only discernable environmental trigger associated with a consistent spike in incidence across all sites. Lastly, two field mitigation techniques, (1) excision of apparently healthy branch tips from a diseased colony, and (2) placement of a band of epoxy fully enclosing the diseased margin, gave equivocal results with no significant benefit detected for either treatment compared to controls. Tissue condition of associated samples was fair to very poor; unsuccessful mitigation treatment samples had severe degeneration of mesenterial filament cnidoglandular bands. Polyp mucocytes in all samples were infected with suspect rickettsia-like organisms; however, no bacterial aggregates were found. No histological differences were found between disease lesions with gross signs fitting literature descriptions of white-band disease (WBD) and rapid tissue loss (RTL). Overall, our results do not support differing disease quality, quantity, dynamics, nor health management strategies between restored and wild colonies of A. cervicornis in the Florida Keys.

  3. Models with quartic potential of dynamical SUSY breaking in meta-stable vacua

    Science.gov (United States)

    Hirano, Shinji

    2007-05-01

    We search for models of dynamical SUSY breaking in meta-stable vacua which might have dual string descriptions with a few brane probes. Two models with quartic superpotential are proposed: One of them might be closely related to the dual gauge theory to the flavored Maldacena-Nuñez geometry by Casero, Nuñez, and Paredes with a few additional brane probes corresponding to massive flavors. The other model might be dual to the Klebanov-Strassler geometry with one fractional D3-brane and a few D7-branes as probes.

  4. Models with Quartic Potential of Dynamical SUSY Breaking in Meta-Stable Vacua

    CERN Document Server

    Hirano, Shinji

    2007-01-01

    We search for models of dynamical SUSY breaking in meta-stable vacua which might have dual string descriptions with a few brane probes. Two models with quartic superpotential are proposed: One of them might be closely related to the dual gauge theory to the flavored Maldacena-Nunez geometry by Casero, Nunez, and Paredes with a few additional brane probes corresponding to massive flavors. The other model might be dual to the Klebanov-Strassler geometry with one fractional D3-brane and a few D7-branes as probes.

  5. Dynamic NMR under nonstationary conditions: Theoretical model, numerical calculation, and potential of application.

    Science.gov (United States)

    Babailov, S P; Purtov, P A; Fomin, E S

    2016-08-01

    An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.

  6. Gauge-invariant dynamical quantities of QED with decomposed gauge potentials

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Baohua [Institute of Theoretical Physics, Beijing University of Technology, Beijing 100124 (China); Huang Yongchang [Institute of Theoretical Physics, Beijing University of Technology, Beijing 100124 (China); Kavli Institute for Theoretical Physics China, CAS, Beijing 100080 (China); CCAST (World Lab.), P.O. Box 8730, Beijing 100080 (China)

    2011-09-15

    We discover an inner structure of the QED system; i.e., by decomposing the gauge potential into two orthogonal components, we obtain a new expansion of the Lagrangian for the electron-photon system, from which, we realize the orthogonal decomposition of the canonical momentum conjugate to the gauge potential with the canonical momentum's two components conjugate to the gauge potential's two components, respectively. Using the new expansion of Lagrangian and by the general method of field theory, we naturally derive the gauge invariant separation of the angular momentum of the electron-photon system from Noether theorem, which is the rational one and has the simplest form in mathematics, compared with the other four versions of the angular momentum separation available in literature. We show that it is only the longitudinal component of the gauge potential that is contained in the orbital angular momentum of the electron, as Chen et al. have said. A similar gauge invariant separation of the momentum is given. The decomposed canonical Hamiltonian is derived, from which we construct the gauge invariant energy operator of the electron moving in the external field generated by a proton [Phys. Rev. A 82, 012107 (2010)], where we show that the form of the kinetic energy containing the longitudinal part of the gauge potential is due to the intrinsic requirement of the gauge invariance. Our method provides a new perspective to look on the nucleon spin crisis and indicates that this problem can be solved strictly and systematically.

  7. Phase Diagram of Dynamical Twisted Mass Wilson Fermions at Finite Isospin Chemical Potential

    CERN Document Server

    Janssen, Oliver; Splittorff, K; Verbaarschot, Jacobus J M; Zafeiropoulos, Savvas

    2015-01-01

    We consider the phase diagram of twisted mass Wilson fermions of two-flavor QCD in the parameter space of the quark mass, the isospin chemical potential, the twist angle and the lattice spacing. This work extends earlier studies in the continuum and those at zero chemical potential. We evaluate the phase diagram as well as the spectrum of the (pseudo-)Goldstone bosons using the chiral Lagrangian for twisted mass Wilson fermions at non-zero isospin chemical potential. The phases are obtained from a mean field analysis. At zero twist angle we find that already an infinitesimal isospin chemical potential destroys the Aoki phase. The reason is that in this phase we have massless Goldstone bosons with a non-zero isospin charge. At finite twist angle only two different phases are present, one phase which is continuously connected to the Bose condensed phase at non-zero chemical potential and another phase which is continuously connected to the normal phase. For either zero or maximal twist the phase diagram is more...

  8. Whisking-Related Changes in Neuronal Firing and Membrane Potential Dynamics in the Somatosensory Thalamus of Awake Mice

    Directory of Open Access Journals (Sweden)

    Nadia Urbain

    2015-10-01

    Full Text Available The thalamus transmits sensory information to the neocortex and receives neocortical, subcortical, and neuromodulatory inputs. Despite its obvious importance, surprisingly little is known about thalamic function in awake animals. Here, using intracellular and extracellular recordings in awake head-restrained mice, we investigate membrane potential dynamics and action potential firing in the two major thalamic nuclei related to whisker sensation, the ventral posterior medial nucleus (VPM and the posterior medial group (Pom, which receive distinct inputs from brainstem and neocortex. We find heterogeneous state-dependent dynamics in both nuclei, with an overall increase in action potential firing during active states. Whisking increased putative lemniscal and corticothalamic excitatory inputs onto VPM and Pom neurons, respectively. A subpopulation of VPM cells fired spikes phase-locked to the whisking cycle during free whisking, and these cells may therefore signal whisker position. Our results suggest differential processing of whisking comparing thalamic nuclei at both sub- and supra-threshold levels.

  9. Universal steps in quantum dynamics with time-dependent potential-energy surfaces: Beyond the Born-Oppenheimer picture

    Science.gov (United States)

    Albareda, Guillermo; Abedi, Ali; Tavernelli, Ivano; Rubio, Angel

    2016-12-01

    It was recently shown [G. Albareda et al., Phys. Rev. Lett. 113, 083003 (2014)], 10.1103/PhysRevLett.113.083003 that within the conditional decomposition approach to the coupled electron-nuclear dynamics, the electron-nuclear wave function can be exactly decomposed into an ensemble of nuclear wave packets effectively governed by nuclear conditional time-dependent potential-energy surfaces (C-TDPESs). Employing a one-dimensional model system, we show that for strong nonadiabatic couplings the nuclear C-TDPESs exhibit steps that bridge piecewise adiabatic Born-Oppenheimer potential-energy surfaces. The nature of these steps is identified as an effect of electron-nuclear correlation. Furthermore, a direct comparison with similar discontinuities recently reported in the context of the exact factorization framework allows us to draw conclusions about the universality of these discontinuities, viz., they are inherent to all nonadiabatic nuclear dynamics approaches based on (exact) time-dependent potential-energy surfaces.

  10. Corotation resonance and overstable oscillations in black-hole accretion discs: general-relativistic calculations

    CERN Document Server

    Horak, Jiri

    2013-01-01

    We study the dynamics of spiral waves and oscillation modes in relativistic rotating discs around black holes. Generalizing the Newtonian theory, we show that wave absorption can take place at the corotation resonance, where the pattern frequency of the wave matches the background disc rotation rate. We derive the general relativistic expression for the disc vortensity (vorticity divided by surface density), which governs the behaviour of density perturbation near corotation. Depending on the gradient of the generalized disc vortensity, corotational wave absorption can lead to the amplification or damping of the spiral wave. We apply our general theory of relativistic wave dynamics to calculate the non-axisymmetric inertial-acoustic modes (also called p-modes) trapped in the inner-most region of a black hole accretion disc. Because general relativity changes the profiles of the radial epicyclic frequency and disc vortensity near the inner disc edge close to the black hole, these p-modes can become overstable ...

  11. A Bloch decomposition-based stochastic Galerkin method for quantum dynamics with a random external potential

    Science.gov (United States)

    Wu, Zhizhang; Huang, Zhongyi

    2016-07-01

    In this paper, we consider the numerical solution of the one-dimensional Schrödinger equation with a periodic lattice potential and a random external potential. This is an important model in solid state physics where the randomness results from complicated phenomena that are not exactly known. Here we generalize the Bloch decomposition-based time-splitting pseudospectral method to the stochastic setting using the generalized polynomial chaos with a Galerkin procedure so that the main effects of dispersion and periodic potential are still computed together. We prove that our method is unconditionally stable and numerical examples show that it has other nice properties and is more efficient than the traditional method. Finally, we give some numerical evidence for the well-known phenomenon of Anderson localization.

  12. Dynamical effects of a one-dimensional multibarrier potential of finite range

    CERN Document Server

    Bar, D

    2002-01-01

    We discuss the properties of a large number N of one-dimensional (bounded) locally periodic potential barriers in a finite interval. We show that the transmission coefficient, the scattering cross section $\\sigma$, and the resonances of $\\sigma$ depend sensitively upon the ratio of the total spacing to the total barrier width. We also show that a time dependent wave packet passing through the system of potential barriers rapidly spreads and deforms, a criterion suggested by Zaslavsky for chaotic behaviour. Computing the spectrum by imposing (large) periodic boundary conditions we find a Wigner type distribution. We investigate also the S-matrix poles; many resonances occur for certain values of the relative spacing between the barriers in the potential.

  13. Origin of static and dynamic steps in exact Kohn-Sham potentials

    Science.gov (United States)

    Hodgson, M. J. P.; Ramsden, J. D.; Godby, R. W.

    2016-04-01

    Knowledge of exact properties of the exchange-correlation (xc) functional is important for improving the approximations made within density functional theory. Features such as steps in the exact xc potential are known to be necessary for yielding accurate densities, yet little is understood regarding their shape, magnitude, and location. We use systems of a few electrons, where the exact electron density is known, to demonstrate general properties of steps. We find that steps occur at points in the electron density where there is a change in the `local effective ionization energy' of the electrons. We provide practical arguments, based on the electron density, for determining the position, shape, and height of steps for ground-state systems, and extend the concepts to time-dependent systems. These arguments are intended to inform the development of approximate functionals, such as the mixed localization potential (MLP), which already demonstrate their capability to produce steps in the Kohn-Sham potential.

  14. Non-Gaussian wave packet dynamics in anharmonic potential: Cumulant expansion treatment

    Science.gov (United States)

    Toutounji, Mohamad

    2015-03-01

    This manuscript utilizes cumulant expansion as an alternative algebraic approach to evaluating integrals and solving a system of nonlinear differential equations for probing anharmonic dynamics in condensed phase systems using Morse oscillator. These integrals and differential equations become harder to solve as the anharmonicity of the system goes beyond that of Morse oscillator description. This algebraic approach becomes critically important in case of Morse oscillator as it tends to exhibit divergent dynamics and numerical uncertainties at low temperatures. The autocorrelation function is calculated algebraically and compared to the exact one for they match perfectly. It is also compared to the approximate autocorrelation function using the differential equations technique reported in Toutounji (2014) for weak and strong electron-phonon coupling cases. It is found that the present cumulant method is more efficient, and easier to use, than the exact expression. Deviation between the approximate autocorrelation function and the exact autocorrelation function starts to arise as the electron-phonon coupling strength increases. The autocorrelation function obtained using cumulants identically matches the exact autocorrelation function, thereby surpassing the approach presented in Toutounji (2014). The advantage of the present methodology is its applicability to various types of electron-phonon coupling cases. Additionally, the herein approach only uses algebraic techniques, thereby avoiding both the divergence integral and solving a set of linear first- and second-order partial differential equations as was done in previous work. Model calculations are presented to demonstrate the accuracy of the herein work.

  15. Charge optimized many-body (COMB) potential for dynamical simulation of Ni-Al phases

    Science.gov (United States)

    Kumar, Aakash; Chernatynskiy, Aleksandr; Liang, Tao; Choudhary, Kamal; Noordhoek, Mark J.; Cheng, Yu-Ting; Phillpot, Simon R.; Sinnott, Susan B.

    2015-08-01

    An interatomic potential for the Ni-Al system is presented within the third-generation charge optimized many-body (COMB3) formalism. The potential has been optimized for Ni3Al, or the γ‧ phase in Ni-based superalloys. The formation energies predicted for other Ni-Al phases are in reasonable agreement with first-principles results. The potential further predicts good mechanical properties for Ni3Al, which includes the values of the complex stacking fault (CSF) and the anti-phase boundary (APB) energies for the (1 1 1) and (1 0 0) planes. It is also used to investigate dislocation propagation across the Ni3Al (1 1 0)-Ni (1 1 0) interface, and the results are consistent with simulation results reported in the literature. The potential is further used in combination with a recent COMB3 potential for Al2O3 to investigate the Ni3Al (1 1 1)-Al2O3 (0 0 01) interface, which has not been modeled previously at the classical atomistic level due to the lack of a reactive potential to describe both Ni3Al and Al2O3 as well as interactions between them. The calculated work of adhesion for this interface is predicted to be 1.85 J m-2, which is in agreement with available experimental data. The predicted interlayer distance is further consistent with the available first-principles results for Ni (1 1 1)-Al2O3 (0 0 0 1).

  16. On the role of the Coulomb potential in strong field atomic ionization dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tetchou Nganso, H.M. [Laboratoire de Physique Atomique, Moleculaire et Optique (PAMO), Universite Catholique de Louvain, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium)], E-mail: htetchou@yahoo.com; Giraud, S. [Ecole Normale Superieure de Cachan, Antenne de Bretagne, Avenue Robert Schuman, Campus de Ker Lann, F-35170 Bruz (France); Piraux, B. [Laboratoire de Physique Atomique, Moleculaire et Optique (PAMO), Universite Catholique de Louvain, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Popov, Yu.V. [Nuclear Physics Institute, Moscow State University, Moscow 119992 (Russian Federation); Kwato Njock, M.G. [Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), Faculty of Science, University of Douala, P.O. Box 8580 Douala (Cameroon)

    2007-10-15

    In this paper, we present a model aimed at exploring the role of the Coulomb potential in the mechanism of ionization of atomic hydrogen exposed to a strong low frequency pulsed laser field. Our approach is based on the solution of the time-dependent Schroedinger equation in momentum space. Although we are in a frequency and intensity regime where tunnelling is expected to dominate, our results indicate that the atomic structure associated to the Coulomb potential plays a significant role for low energy ejected electrons.

  17. Potential energy surfaces and approximate kinetic model for the excited state dynamics of Pigment Yellow 101

    NARCIS (Netherlands)

    Fletcher, Katharyn; Dreuw, Andreas; Faraji, Shirin

    2014-01-01

    Pigment Yellow 101 (PY101) exhibits a rich photochemistry in its S-1 state as it undergoes excited state intramolecular proton transfer and trans-cis isomerizations upon photoexcitation. Relaxed scans of its potential energy surface are thus computed along the reaction paths connecting the six most

  18. Path integral molecular dynamics calculations of the H6+ and D6+ clusters on an ab initio potential energy surface

    Science.gov (United States)

    Kakizaki, Akira; Takayanagi, Toshiyuki; Shiga, Motoyuki

    2007-11-01

    Path integral molecular dynamics simulations for the H6+ and D6+ cluster cations have been carried out in order to understand the floppy nature of their molecular structure due to quantum-mechanical fluctuation. A full-dimensional analytical potential energy surface for the ground electronic state of H6+ has been developed on the basis of accurate ab initio electronic structure calculations at the CCSD(T)/cc-pVTZ level. It is found that the outer H 2(D 2) nuclei rotate almost freely and that the probability density distributions of the central H 2(D 2) nuclei show strong spatial delocalization.

  19. Calculation of Elastic Constants of Ag/Pd Superlattice Thin Films by Molecular Dynamics with Many-Body Potentials

    Institute of Scientific and Technical Information of China (English)

    GAO Ning; LAI Wen-Sheng

    2006-01-01

    @@ The calculation of elastic constants of Ag/Pd superlattice thin films by molecular dynamics simulations with many-body potentials is presented. It reveals that the elastic constants C11 and C55 increase with decreasing modulation wavelength A of the films, which is consistent with experiments. However, the change of C11 and C55 with A is found to be around the values determined by a rule of mixture using bulk elastic constants of metals.No supermodulus effect is observed and it is due to cancellation between enhanced and reduced contributions to elastic constants from Ag and Pd layers subjected to compressive and tensile strains, respectively.

  20. High throughput static and dynamic small animal imaging using clinical PET/CT: potential preclinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Aide, Nicolas [Francois Baclesse Cancer Centre and Caen University, Bioticla Team, EA1792, IFR 146 ICORE, GRECAN, Caen (France); Caen University Hospital and Francois Baclesse Cancer Centre, PET Unit, Caen (France); Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne (Australia); Centre Francois Baclesse, Nuclear Medicine Department, Caen cedex 5 (France); Desmonts, Cedric; Agostini, Denis; Bardet, Stephane; Bouvard, Gerard [Caen University Hospital and Francois Baclesse Cancer Centre, PET Unit, Caen (France); Beauregard, Jean-Mathieu; Roselt, Peter; Neels, Oliver [Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne (Australia); Beyer, Thomas [cmi-experts GmbH, Zurich (Switzerland); University Hospital Essen, Department of Nuclear Medicine, Essen (Germany); University Hospital Bern, Institute of Nuclear Medicine, Bern (Switzerland); Kinross, Kathryn [Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne (Australia); Peter MacCallum Cancer Centre, Sir Donald and Lady Trescowthick Laboratories, East Melbourne (Australia); Hicks, Rodney J. [Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne (Australia); University of Melbourne, The Department of Medicine, Parkville (Australia)

    2010-05-15

    The objective of the study was to evaluate state-of-the-art clinical PET/CT technology in performing static and dynamic imaging of several mice simultaneously. A mouse-sized phantom was imaged mimicking simultaneous imaging of three mice with computation of recovery coefficients (RCs) and spillover ratios (SORs). Fifteen mice harbouring abdominal or subcutaneous tumours were imaged on clinical PET/CT with point spread function (PSF) reconstruction after injection of [18F]fluorodeoxyglucose or [18F]fluorothymidine. Three of these mice were imaged alone and simultaneously at radial positions -5, 0 and 5 cm. The remaining 12 tumour-bearing mice were imaged in groups of 3 to establish the quantitative accuracy of PET data using ex vivo gamma counting as the reference. Finally, a dynamic scan was performed in three mice simultaneously after the injection of {sup 68}Ga-ethylenediaminetetraacetic acid (EDTA). For typical lesion sizes of 7-8 mm phantom experiments indicated RCs of 0.42 and 0.76 for ordered subsets expectation maximization (OSEM) and PSF reconstruction, respectively. For PSF reconstruction, SOR{sub air} and SOR{sub water} were 5.3 and 7.5%, respectively. A strong correlation (r {sup 2} = 0.97, p < 0.0001) between quantitative data obtained in mice imaged alone and simultaneously in a group of three was found following PSF reconstruction. The correlation between ex vivo counting and PET/CT data was better with PSF reconstruction (r {sup 2} = 0.98; slope = 0.89, p < 0.0001) than without (r {sup 2} = 0.96; slope = 0.62, p < 0.001). Valid time-activity curves of the blood pool, kidneys and bladder could be derived from {sup 68}Ga-EDTA dynamic acquisition. New generation clinical PET/CT can be used for simultaneous imaging of multiple small animals in experiments requiring high throughput and where a dedicated small animal PET system is not available. (orig.)