WorldWideScience

Sample records for black-hole powered sources

  1. Bifurcation timescales in power spectra of black hole binaries and ultraluminous X-ray sources

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    For black hole binaries(BHBs) and active galactic nuclei(AGNs),bifurcation timescales(BTs) Δtb exist,below which time-domain power is significantly higher than the corresponding Fourier power.Quasi-periodic oscillations(QPOs) are removed from the Fourier spectra of BHBs.A relationship between BT,black hole mass and bolometric luminosity is derived.Strong anti-correlation between BT and luminosity of Cyg X-1 is found.After removing the QPOs,BTs are also obtained for two ultraluminous X-ray sources(ULXs),M82 X-1 and NGC5408 X-1.The results support that they harbor intermediate mass black holes(IMBHs).

  2. Boosting jet power in black hole spacetimes

    OpenAIRE

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M; Garrett, Travis

    2011-01-01

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet tha...

  3. Boosting jet power in black hole spacetimes

    CERN Document Server

    Neilsen, David; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garret, T

    2010-01-01

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  4. Boosting jet power in black hole spacetimes

    Science.gov (United States)

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M.; Garrett, Travis

    2011-01-01

    The extraction of rotational energy from a spinning black hole via the Blandford–Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux. PMID:21768341

  5. Black holes sourced by a massless scalar

    CERN Document Server

    Cadoni, Mariano

    2015-01-01

    We construct asymptotically flat black hole solutions of Einstein-scalar gravity sourced by a nontrivial scalar field with 1/r asymptotic behaviour. Near the singularity the black hole behaves as the Janis-Newmann-Winicour-Wyman solution. The hairy black hole solutions allow for a consistent thermodynamical description. At large mass they have the same thermodynamical behaviour of the Schwarzschild black hole, whereas for small masses they differ substantially from the latter.

  6. Implementing black hole as efficient power plant

    CERN Document Server

    Wei, Shao-Wen

    2016-01-01

    Treating the black hole molecules as working substance and considering its phase structure, we study the black hole heat engine by a charged anti-de Sitter black hole. In the reduced temperature-entropy chart, it is found that the work, heat, and efficiency of the engine are independent of the black hole charge. Applying the Rankine cycle with or without a back pressure mechanism to the black hole heat engine, the efficiency is numerically solved. The result shows that the black hole engine working along the Rankine cycle with a back pressure mechanism has a higher efficiency. This provides a novel and efficient mechanism to produce the useful mechanical work with black hole, and such heat engine may act as a possible energy source for the high energy astrophysical phenomena near the black hole.

  7. Supernovae powered by magnetars that transform into black holes

    CERN Document Server

    Moriya, Takashi J; Blinnikov, Sergei I

    2016-01-01

    Rapidly rotating, strongly magnetized neutron stars (magnetars) can release their enormous rotational energy via magnetic spin-down, providing a power source for bright transients such as superluminous supernovae. On the other hand, particularly massive (so-called supramassive) neutron stars require a minimum rotation rate to support their mass against gravitational collapse, below which the neutron star collapses to a black hole. We model the light curves of supernovae powered by magnetars which transform into black holes. Although the peak luminosities can reach high values in the range of superluminous supernovae, their post maximum light curves can decline very rapidly because of the sudden loss of the central energy input. Early black hole transformation also enhances the shock breakout signal from the magnetar-driven bubble relative to the main supernova peak. Our synthetic light curves of supernovae powered by magnetars transforming to black holes are consistent with those of some rapidly evolving brig...

  8. Implementing black hole as efficient power plant

    OpenAIRE

    Wei, Shao-Wen; Liu, Yu-Xiao

    2016-01-01

    Treating the black hole molecules as working substance and considering its phase structure, we study the black hole heat engine by a charged anti-de Sitter black hole. In the reduced temperature-entropy chart, it is found that the work, heat, and efficiency of the engine are independent of the black hole charge. Applying the Rankine cycle with or without a back pressure mechanism to the black hole heat engine, the efficiency is numerically solved. The result shows that the black hole engine w...

  9. Binary black holes in nuclei of extragalactic radio sources

    CERN Document Server

    Roland, J; Caproni, A; Fromm, C; Glück, C; Zensus, A

    2013-01-01

    If we assume that nuclei of extragalactic radio sources contain binary black hole systems, the two black holes can eject VLBI components in which case two families of different VLBI trajectories will be observed. Another important consequence of a binary black hole system is that the VLBI core is associated with one black hole, and if a VLBI component is ejected by the second black hole, one expects to be able to detect the offset of the origin of the VLBI component ejected by the black hole that is not associated with the VLBI core. The ejection of VLBI components is perturbed by the precession of the accretion disk and the motion of the black holes around the center of gravity of the binary black hole system. We modeled the ejection of the component taking into account the two pertubations and present a method to fit the coordinates of a VLBI component and to deduce the characteristics of the binary black hole system. Specifically, this is the ratio Tp/Tb where Tp is the precession period of the accretion d...

  10. Regular black holes and noncommutative geometry inspired fuzzy sources

    Science.gov (United States)

    Kobayashi, Shinpei

    2016-05-01

    We investigated regular black holes with fuzzy sources in three and four dimensions. The density distributions of such fuzzy sources are inspired by noncommutative geometry and given by Gaussian or generalized Gaussian functions. We utilized mass functions to give a physical interpretation of the horizon formation condition for the black holes. In particular, we investigated three-dimensional BTZ-like black holes and four-dimensional Schwarzschild-like black holes in detail, and found that the number of horizons is related to the space-time dimensions, and the existence of a void in the vicinity of the center of the space-time is significant, rather than noncommutativity. As an application, we considered a three-dimensional black hole with the fuzzy disc which is a disc-shaped region known in the context of noncommutative geometry as a source. We also analyzed a four-dimensional black hole with a source whose density distribution is an extension of the fuzzy disc, and investigated the horizon formation condition for it.

  11. Regular Black Holes and Noncommutative Geometry Inspired Fuzzy Sources

    CERN Document Server

    Kobayashi, Shinpei

    2016-01-01

    We investigated regular black holes with fuzzy sources in three and four dimensions. The density distributions of such fuzzy sources are inspired by noncommutative geometry and given by Gaussian or generalized Gaussian functions. We utilized mass functions to give a physical interpretation of the horizon formation condition for the black holes. In particular, we investigated three-dimensional BTZ-like black holes and four-dimensional Schwarzschild-like black holes in detail, and found that the number of horizons is related to the spacetime dimensions, and the existence of a void in the vicinity of the center of the spacetime is significant, rather than noncommutativity. As an application, we considered a three-dimensional black hole with the fuzzy disc which is a disc-shaped region known in the context of noncommutative geometry as a source. We also analyzed a four-dimensional black hole with a source whose density distribution is an extension of the fuzzy disc, and investigated the horizon formation conditio...

  12. On the source of the Kehagias-Sfetsos black hole

    CERN Document Server

    Culetu, Hristu

    2015-01-01

    Assuming that the Kehagias-Sfetsos black hole is an exact solution of the standard Einstein equations, we investigate the properties of its source that generates the curvature. The anisotropic fluid has $p_{r} = - \\rho$ as equation of state and fulfills the WEC and NEC. The gravitational field is repulsive inside the horizon and attractive outside, becoming of Schwarzschild type at large distances. The Misner-Sharp energy equals the black hole mass asymptotically.

  13. Black holes as possible sources of closed and semiclosed worlds

    International Nuclear Information System (INIS)

    The internal structure of spacetime inside a black hole is investigated on the assumption that some limiting curvature exists. It is shown that the Schwarzschild metric inside a black hole can be attached to the de Sitter one at some spacelike junction hypersurface which represents a short transition layer. After passing the deflation stage the de Sitter space inside the black hole begins to inflate and may become a source of a new macroscopic Universe. The corresponding conformal Penrose diagrams are given. The described model may be considered as an example of ''a creation of a closed or semiclosed world in laboratory''. The fate of an evaporating black hole is also briefly discussed. (author). 21 refs, 12 figs

  14. The Fundamental Plane of Black Hole Activity Represented in Terms of Dimensionless Beam Power and Bolometric Luminosity

    OpenAIRE

    Daly, Ruth A.; Stout, Douglas A.; Mysliwiec, Jeremy N.

    2016-01-01

    The fundamental plane of black hole activity indicates a relationship between compact radio emission, X-ray luminosity, and black hole mass of black hole systems. The compact radio source is likely a tracer of jet power and the X-ray luminosity is likely a tracer of the bolometric luminosity of an accretion disk. To study the relationship between beam power, $L_j$, accretion disk bolometric luminosity, $L_{bol}$, and black hole mass or Eddington luminosity, $L_{EDD}$, for sources with various...

  15. Observing Galactic Black Hole Sources in Hard X-rays

    CERN Document Server

    Rao, A R

    2013-01-01

    Observations of Galactic black hole sources are traditionally done in the classical X-ray range (2 -- 10 keV) due to sensitivity constraints. Most of the accretion power, however, is radiated above 10 keV and the study of these sources in hard X-rays has the potential to unravel the radiation mechanisms operating at the inner region of the accretion disk, which is believed to be the seat of a myriad of fascinating features like jet emission, high frequency QPO emission etc. I will briefly summarise the long term hard X-ray observational features like spectral state identification, state transitions and hints of polarised emission, and describe the new insights that would be provided by the forthcoming Astrosat satellite, particularly emphasising the contributions expected from the CZT-Imager payload.

  16. Chandra Observes Cloud Powered by Black Hole in Distant Galaxy

    Science.gov (United States)

    2000-06-01

    nebula surrounding the black hole into emission from its constituent elements. It was found that the gas cloud contains nitrogen, oxygen, neon, magnesium, aluminum, silicon, and iron. However, the atoms of these elements have been stripped of most of their electrons by energetic X rays coming from the center of NGC 4151. This provides direct evidence that the cloud is powered by the giant black hole which resides there. "The cloud is being thoroughly cooked by the powerful beam from the black hole," said Ogle. In addition, the Chandra HETG spectrum reveals that portions of the cloud are moving away from us at a velocity of 800,000 mph. "We're probably seeing gas that is being blown away from the far side of the black hole by the pressure of the radiation from the black hole," Ogle said. Chandra data were taken with the HETG in conjunction with the Advanced CCD Imaging Spectrometer (ACIS) on March 5-6, 2000. HETG was built by MIT and ACIS was built by Pennsylvania State University, University Park, and MIT. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF ) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu AND http://chandra.nasa.gov

  17. The Efficiency of Using Accretion Power of Kerr Black Holes

    OpenAIRE

    Dutan, Ioana; Biermann, Peter

    2004-01-01

    The efficiency of a rapidly spinning Kerr black hole to turn accretion power into observable power can attain 32 percent for the photon emission from the disk, as is well known, following the work of Novikov-Page-Thorne. But many accretion disks are now understood to be underluminous ($L

  18. Intermediate-mass black holes and ultraluminous X-ray sources in the Cartwheel ring galaxy

    NARCIS (Netherlands)

    Mapelli, M.; Moore, B.; Giordano, L.; Mayer, L.; Colpi, M.; Ripamonti, E.; Callegari, S.

    2008-01-01

    Chandra and XMM-Newton observations of the Cartwheel galaxy show similar to 17 bright X-ray sources (greater than or similar to 5 x 10(38) erg s(-1)), all within the gas-rich outer ring. We explore the hypothesis that these X-ray sources are powered by intermediate-mass black holes (IMBHs) accreting

  19. The Correlations of Jet Power with Black Hole Mass and Spin in Radio Loud Quasars

    Science.gov (United States)

    Xu, Zhang; Hao-jing, Zhang; Xiong, Zhang

    2016-04-01

    The formation of jets is closely related with the black hole mass and black hole spin, to study the correlations of jet power with the black hole mass and black hole spin is of significant importance for understanding the jet formation and structure. We have collected 65 radio loud quasars from the literature. The sample includes 35 Steep Spectrum Radio Quasars (SSRQs) and 30 Flat Spectrum Radio Quasars (FSRQs) with the redshifts ranging from about zero to two. We present here the correlation analysis of jet power with the black hole mass and back hole spin based on the sample data. Our conclusions are as follows: (1) The black hole mass has a strong correlation with the jet power; (2) The black hole spin is also strongly correlated with the jet power, especially for the magnetic field strength B = BEDD, where BEDD is the Eddington magnetic field strength, and the correlation coefficient is higher than that between black hole mass and jet power; (3) There are certain differences between the distributions of spin data of SSRQs and FSRQs; (4) This study has further confirmed that the jet energy is related not only with the black hole mass, but also with the spin energy of the black hole. The formation of black hole jet may be very possibly resulted by the joint effect of black hole mass and black hole spin. These results are consistent with the previous results obtained by other methods.

  20. Spin properties of supermassive black holes with powerful outflows

    Science.gov (United States)

    Daly, Ruth. A.

    2016-05-01

    Relationships between beam power and accretion disc luminosity are studied for a sample of 55 high excitation radio galaxies (HERG), 13 low excitation radio galaxies (LERG), and 29 radio loud quasars (RLQ) with powerful outflows. The ratio of beam power to disc luminosity tends to be high for LERG, low for RLQ, and spans the full range of values for HERG. Writing general expressions for the disc luminosity and beam power and applying the empirically determined relationships allows a function that parametrizes the spins of the holes to be estimated. Interestingly, one of the solutions that is consistent with the data has a functional form that is remarkably similar to that expected in the generalized Blandford-Znajek model with a magnetic field that is similar in form to that expected in magnetically arrested disk (MAD) and advection-dominated accretion flow (ADAF) models. Values of the spin function, obtained independent of specific outflow models, suggest that spin and active galactic nucleus type are not related for these types of sources. The spin function can be used to solve for black hole spin in the context of particular outflow models, and one example is provided.

  1. Powerful jets from accreting black holes: evidence from the optical and infrared

    NARCIS (Netherlands)

    D.M. Russell; R.P. Fender

    2010-01-01

    A common consequence of accretion onto black holes is the formation of powerful, relativistic jets that escape the system. In the case of supermassive black holes at the centres of galaxies this has been known for decades, but for stellar-mass black holes residing within galaxies like our own, it ha

  2. Jet Power and Black Hole Assortment Revealed in New Chandra Image

    Science.gov (United States)

    2008-01-01

    A dramatic new Chandra image of the nearby galaxy Centaurus A provides one of the best views to date of the effects of an active supermassive black hole. Opposing jets of high-energy particles can be seen extending to the outer reaches of the galaxy, and numerous smaller black holes in binary star systems are also visible. The image was made from an ultra-deep look at the galaxy Centaurus A, equivalent to more than seven days of continuous observations. Centaurus A is the nearest galaxy to Earth that contains a supermassive black hole actively powering a jet. X-ray Image of Centaurus A, Labeled X-ray Image of Centaurus A, Labeled A prominent X-ray jet extending for 13,000 light years points to the upper left in the image, with a shorter "counterjet" aimed in the opposite direction. Astronomers think that such jets are important vehicles for transporting energy from the black hole to the much larger dimensions of a galaxy, and affecting the rate at which stars form there. High-energy electrons spiraling around magnetic field lines produce the X-ray emission from the jet and counterjet. This emission quickly saps the energy from the electrons, so they must be continually reaccelerated or the X-rays will fade out. Knot-like features in the jets detected in the Chandra image show where the acceleration of particles to high energies is currently occurring, and provides important clues to understanding the process that accelerates the electrons to near-light speeds. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Chandra Data Reveal Rapidly Whirling Black Holes Erratic Black Hole Regulates Itself The inner part of the X-ray jet close to the black hole is dominated by these knots of X-ray emission, which probably come from shock waves -- akin to sonic booms -- caused by the jet. Farther from the black hole there is more diffuse X-ray emission in the jet. The cause of particle

  3. Powerful, Rotating Disk Winds from Stellar-mass Black Holes

    CERN Document Server

    Miller, J M; Kaastra, J; Kallman, T; King, A L; Proga, D; Raymond, J; Reynolds, C S

    2015-01-01

    We present an analysis of ionized X-ray disk winds observed in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe XXV line is found to be shaped by contributions from the intercombination line (in absorption), and the Fe XXVI line is detected as a spin-orbit doublet. The data require 2-3 absorption zones, depending on the source. The fastest components have velocities approaching or exceeding 0.01c, increasing mass outflow rates and wind kinetic power by orders of magnitude over prior single-zone models. The first-order spectra require re-emission from the wind, broadened by a degree that is loosely consistent with Keplerian orbital velocities at the photoionization radius. This suggests that disk winds are ro...

  4. Clusters of Black Holes as Point-Like Gamma-ray Sources

    OpenAIRE

    Belotsky, K. M.; Berkov, A. V.; Kirillov, A. A.; Rubin, S. G.

    2012-01-01

    The possibility of identifying some of Galactic gamma-ray sources as clusters of primordial black holes is discussed. The known scenarios of supermassive black hole formation indicate the multiple formation of lower-mass black holes. Our analysis demonstrates that due to Hawking evaporation the cluster of black holes with masses about $10^{15}$ g could be observed as a gamma-ray source. The total mass of typical cluster is $\\sim 10 M_\\odot$. Detailed calculations have been performed on the ba...

  5. Stellar-mass black holes and ultraluminous x-ray sources.

    Science.gov (United States)

    Fender, Rob; Belloni, Tomaso

    2012-08-01

    We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales. PMID:22859481

  6. Primordial Black Holes as Dark Matter: The Power Spectrum and Evaporation of Early Structures

    OpenAIRE

    Afshordi, N; McDonald, P; Spergel, D. N.

    2003-01-01

    We consider the possibility that massive primordial black holes are the dominant form of dark matter. Black hole formation generates entropy fluctuations that adds a Poisson noise to the matter power spectrum. We use Lyman-alpha forest observations to constrain this Poisson term in matter power spectrum, then we constrain the mass of black holes to be less than few times 10^4 solar mass. We also find that structures with less than ~ 10^3 primordial black holes evaporate by now.

  7. Thermodynamics of Phantom Energy Accreting onto a Black Hole in Einstein-Power-Maxwell Gravity

    OpenAIRE

    Abbas, G.

    2013-01-01

    In this paper, we investigate the phantom energy accretion onto 3D black hole formulated in Einstein-Power-Maxwell theory. We have presented the conditions for critical accretion of phantom energy onto black hole. Further, we discuss the thermodynamics of phantom energy accreting onto black hole and found that first law of thermodynamics is easily satisfied while second law and generalized second law of thermodynamics remain invalid and conditionally valid, respectively. The results for BTZ b...

  8. Fast spectral source integration in black hole perturbation calculations

    CERN Document Server

    Hopper, Seth; Osburn, Thomas; Evans, Charles R

    2015-01-01

    This paper presents a new technique for achieving spectral accuracy and fast computational performance in a class of black hole perturbation and gravitational self-force calculations involving extreme mass ratios and generic orbits. Called \\emph{spectral source integration} (SSI), this method should see widespread future use in problems that entail (i) point-particle description of the small compact object, (ii) frequency domain decomposition, and (iii) use of the background eccentric geodesic motion. Frequency domain approaches are widely used in both perturbation theory flux-balance calculations and in local gravitational self-force calculations. Recent self-force calculations in Lorenz gauge, using the frequency domain and method of extended homogeneous solutions, have been able to accurately reach eccentricities as high as $e \\simeq 0.7$. We show here SSI successfully applied to Lorenz gauge. In a double precision Lorenz gauge code, SSI enhances the accuracy of results and makes a factor of three improvem...

  9. Powerful jets from accreting black holes: evidence from the optical and infrared

    OpenAIRE

    Russell, D. M.; Fender, R. P.

    2010-01-01

    A common consequence of accretion onto black holes is the formation of powerful, relativistic jets that escape the system. In the case of supermassive black holes at the centres of galaxies this has been known for decades, but for stellar-mass black holes residing within galaxies like our own, it has taken recent advances to arrive at this conclusion. Here, a review is given of the evidence that supports the existence of jets from accreting stellar-mass black holes, from observations made at ...

  10. A RAPIDLY SPINNING BLACK HOLE POWERS THE EINSTEIN CROSS

    International Nuclear Information System (INIS)

    Observations over the past 20 yr have revealed a strong relationship between the properties of the supermassive black hole lying at the center of a galaxy and the host galaxy itself. The magnitude of the spin of the black hole will play a key role in determining the nature of this relationship. To date, direct estimates of black hole spin have been restricted to the local universe. Herein, we present the results of an analysis of ∼0.5 Ms of archival Chandra observations of the gravitationally lensed quasar Q 2237+305 (aka the Einstein-cross), lying at a redshift of z = 1.695. The boost in flux provided by the gravitational lens allows constraints to be placed on the spin of a black hole at such high redshift for the first time. Utilizing state of the art relativistic disk reflection models, the black hole is found to have a spin of a∗=0.74−0.03+0.06 at the 90% confidence level. Placing a lower limit on the spin, we find a * ≥ 0.65 (4σ). The high value of the spin for the ∼109 M ☉ black hole in Q 2237+305 lends further support to the coherent accretion scenario for black hole growth. This is the most distant black hole for which the spin has been directly constrained to date

  11. Super-Eddington Mechanical Power of an Accreting Black Hole in M83

    Science.gov (United States)

    Soria, R.; Long, K. S.; Blair, W. P.; Godfrey, L.; Kuntz, K. D.; Lenc, E.; Stockdale, C.; Winkler, P. F.

    2014-01-01

    Mass accretion onto black holes releases energy in the form of radiation and outflows. Although the radiative flux cannot substantially exceed the Eddington limit, at which the outgoing radiation pressure impedes the inflow of matter, it remains unclear whether the kinetic energy flux is bounded by this same limit. Here, we present the detection of a radio-optical structure, powered by outflows from a non-nuclear black hole. Its accretion disk properties indicate that this black hole is less than 100 solar masses. The optical-infrared line emission implies an average kinetic power of 3 × 10(exp 40) erg second(exp -1), higher than the Eddington luminosity of the black hole. These results demonstrate kinetic power exceeding the Eddington limit over a sustained period, which implies greater ability to influence the evolution of the black hole's environment.

  12. Black Holes in Ultra-Luminous X-ray sources: X-ray timing versus spectroscopy

    CERN Document Server

    Caballero-Garcia, M D; Belloni, T M; Wolter, A

    2012-01-01

    Ultra-Luminous X-ray sources are accreting black holes that might represent strong evidence of the Intermediate Mass Black Holes (IMBH), proposed to exist by theoretical studies but with no firm detection (as a class) so far. We analyze the best X-ray timing and spectral data from the ULX in NGC 5408 provided by XMM-Newton. The main goal is to study the broad-band noise variability of the source. We found an anti-correlation of the fractional root-mean square variability versus the intensity of the source, similar to black-hole binaries during hard states.

  13. A relation of jet power to the central black hole and its accretion

    Directory of Open Access Journals (Sweden)

    Liu Xiang

    2013-12-01

    Full Text Available We have developed an integrated jet power formula in the context of the Blandford-Znajek and Blandford-Payne models, and applied this model to the Foschini sample. The result suggests that there is a positive correlation of the jet power versus the product of the disk luminosity and black hole mass within each type of source, and the di↵erent linear correlation slopes imply that the disk emissivity efficiency and/or the SMBH spin are quite di↵erent for FSRQs, BL Lacs and γ – NLS 1s.

  14. Primordial Black Holes as Heat Sources for Living Systems with Longest Possible Lifetimes

    CERN Document Server

    Sivaram, C; O, Kiren

    2014-01-01

    Just forty years ago, Hawking wrote his famous paper on primordial black holes (PBH). There have been since innumerable discussions on the consequences of the existence of such exotic objects and ramifications of their properties. Here we suggest that PBH's in an ever expanding universe (as implied by dark energy domination, especially of a cosmological constant) could be the ultimate repository for long lived living systems. PBH's having solar surface temperatures would last 10^32 years as a steady power source and should be considered in any discussion on exobiological life.

  15. The Fundamental Plane of Black Hole Activity Represented in Terms of Dimensionless Beam Power and Bolometric Luminosity

    CERN Document Server

    Daly, Ruth A; Mysliwiec, Jeremy N

    2016-01-01

    The fundamental plane of black hole activity indicates a relationship between compact radio emission, X-ray luminosity, and black hole mass of black hole systems. The compact radio source is likely a tracer of jet power and the X-ray luminosity is likely a tracer of the bolometric luminosity of an accretion disk. To study the relationship between beam power, $L_j$, accretion disk bolometric luminosity, $L_{bol}$, and black hole mass or Eddington luminosity, $L_{EDD}$, for sources with various tracers of beam power and disk luminosity, it is shown that fundamental plane parameters allow the plane to be recast in the form $\\rm{log} (L_j/L_{EDD}) = A ~\\rm{log}(L_{bol}/L_{EDD}) +B$, where $A$ can be expressed in terms of best fit fundamental plane parameters. Consistent values of $A$ are obtained for nine samples of sources. Samples of LINERS, AGN, and GBH that lie on the fundamental plane are converted to dimensionless luminosities and studied, and a sample of powerful radio sources is included. The different ca...

  16. Fast spectral source integration in black hole perturbation calculations

    Science.gov (United States)

    Hopper, Seth; Forseth, Erik; Osburn, Thomas; Evans, Charles R.

    2015-08-01

    This paper presents a new technique for achieving spectral accuracy and fast computational performance in a class of black hole perturbation and gravitational self-force calculations involving extreme mass ratios and generic orbits. Called spectral source integration (SSI), this method should see widespread future use in problems that entail (i) a point-particle description of the small compact object, (ii) frequency domain decomposition, and (iii) the use of the background eccentric geodesic motion. Frequency domain approaches are widely used in both perturbation theory flux-balance calculations and in local gravitational self-force calculations. Recent self-force calculations in Lorenz gauge, using the frequency domain and method of extended homogeneous solutions, have been able to accurately reach eccentricities as high as e ≃0.7 . We show here SSI successfully applied to Lorenz gauge. In a double precision Lorenz gauge code, SSI enhances the accuracy of results and makes a factor of 3 improvement in the overall speed. The primary initial application of SSI—for us its the raison d'être—is in an arbitrary precision mathematica code that computes perturbations of eccentric orbits in the Regge-Wheeler gauge to extraordinarily high accuracy (e.g., 200 decimal places). These high-accuracy eccentric orbit calculations would not be possible without the exponential convergence of SSI. We believe the method will extend to work for inspirals on Kerr and will be the subject of a later publication. SSI borrows concepts from discrete-time signal processing and is used to calculate the mode normalization coefficients in perturbation theory via sums over modest numbers of points around an orbit. A variant of the idea is used to obtain spectral accuracy in a solution of the geodesic orbital motion.

  17. Powerful flares from recoiling black holes in quasars

    CERN Document Server

    Shields, G A

    2008-01-01

    Mergers of spinning black holes can give recoil velocities from gravitational radiation up to several thousand km/s. A recoiling supermassive black hole in an AGN retains the inner part of its accretion disk. Marginally bound material rejoining the disk around the moving black hole releases a large amount of energy in shocks in a short time, leading to a flare in thermal soft X-rays with a luminosity approaching the Eddington limit. Reprocessing of the X-rays by the infalling material gives strong optical and ultraviolet emission lines with a distinctive spectrum. Despite the short lifetime of the flare (~10^4 yr), as many as 100 flares may be in play at the present time in QSOs at redshifts ~ 1 to 3. These flares provide a means to identify high velocity recoils.

  18. Black Hole Battery

    Science.gov (United States)

    Levin, Janna; D'Orazio, Daniel

    2016-03-01

    Black holes are dark dead stars. Neutron stars are giant magnets. As the neutron star orbits the black hole, an electronic circuit forms that generates a blast of power just before the black hole absorbs the neutron star whole. The black hole battery conceivably would be observable at cosmological distances. Possible channels for luminosity include synchro-curvature radiation, a blazing fireball, or even an unstable, short-lived black hole pulsar. As suggested by Mingarelli, Levin, and Lazio, some fraction of the battery power could also be reprocessed into coherent radio emission to populate a subclass of fast radio bursts.

  19. Growth of supermassive black holes, galaxy mergers and supermassive binary black holes

    OpenAIRE

    Komossa, S.; Baker, J G; Liu, F. K.

    2016-01-01

    The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the universe, and...

  20. Powerful, Rotating Disk Winds from Stellar-mass Black Holes

    OpenAIRE

    Miller, J. M.; Fabian, A. C.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Raymond, J.; Reynolds, C. S.

    2015-01-01

    We present an analysis of ionized X-ray disk winds observed in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe XXV line is found to be shaped by contributions from the intercombination line...

  1. Thermodynamic instability of topological black holes with nonlinear source

    International Nuclear Information System (INIS)

    In this paper, we obtain higher dimensional topological black hole solutions of Einstein-Λ gravity in the presence of a class of nonlinear electrodynamics. First, we calculate the conserved and thermodynamic quantities of (n + 1)-dimensional asymptotically flat solutions and show that they satisfy the first law of thermodynamics. Also, we investigate the stability of these solutions in the (grand) canonical ensemble. Second, we endow a global rotation to the static Ricci-flat solutions and calculate the conserved quantities of solutions by using the counterterm method. We obtain a Smarr-type formula for the mass as a function of the entropy, the angular momenta and the electric charge, and show that these quantities satisfy the first law of thermodynamics. Then, we perform a stability analysis of the rotating solutions both in the canonical and the grand canonical ensembles. (orig.)

  2. BLACK HOLE MASS LIMITS FOR OPTICALLY DARK X-RAY BRIGHT SOURCES IN ELLIPTICAL GALAXIES

    International Nuclear Information System (INIS)

    Estimation of the black hole mass in bright X-ray sources of nearby galaxies is crucial to the understanding of these systems and their formation. However, the present allowed black hole mass range spans five orders of magnitude (10 Msun 5 Msun) with the upper limit obtained from dynamical friction arguments. We show that the absence of a detectable optical counterpart for some of these sources can provide a much more stringent upper limit. The argument is based only on the assumption that the outer regions of their accretion disks are a standard one. Moreover, such optically dark X-ray sources cannot be foreground stars or background active galactic nuclei, and hence must be accreting systems residing within their host galaxies. As a demonstration we search for candidates among the point-like X-ray sources detected with Chandra in 13 nearby elliptical galaxies. We use a novel technique to search for faint optical counterparts in the Hubble Space Telescope images whereby we subtract the bright galaxy light based on isophotal modeling of the surface brightness. We show that for six sources with no detectable optical emission at the 3σ level, their black hole masses MBH sun. In particular, an ultra-luminous X-ray source in NGC 4486 has MBH sun. We discuss the potential of this method to provide stringent constraints on the black hole masses, and the implications on the physical nature of these sources.

  3. Thermodynamics of topological black holes in Brans-Dicke gravity with a power-law Maxwell field

    CERN Document Server

    Zangeneh, M Kord; Sheykhi, A

    2015-01-01

    In this paper, we present a new class of higher dimensional exact topological black hole solutions of the Brans-Dicke theory in the presence of a power-law Maxwell field as the matter source. For this aim, we introduce a conformal transformation which transforms the Einstein-dilaton-power-law Maxwell gravity Lagrangian to the Brans-Dicke-power-law Maxwell theory one. Then, by using this conformal transformation, we obtain the desired solutions. Next, we study the properties of the solutions and conditions under which we have black holes. Interestingly enough, we show that there is a cosmological horizon in the presence of a negative cosmological constant. Finally, we calculate the temperature and charge and then by calculating the Euclidean action, we obtain the mass, the entropy and the electromagnetic potential energy. We find that the entropy does not respect the area law, and also the conserved and thermodynamic quantities are invariant under conformal transformation. Using these thermodynamic and conserv...

  4. Stimulated Black Hole Evaporation

    CERN Document Server

    Spaans, Marco

    2016-01-01

    Black holes are extreme expressions of gravity. Their existence is predicted by Einstein's theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_f\\sim 3\\times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $\\sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f \\sim 3\\times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P \\sim 2\\times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $\\lambda \\sim 3\\times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.

  5. Interpreting the radio/X-ray correlation of black hole sources based on the accretion-jet model

    OpenAIRE

    Xie, Fu-Guo; Yuan, Feng(Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA)

    2015-01-01

    Two types of correlations between the radio and X-ray luminosities ($L_R$ and $L_X$) have been found in black hole X-ray binaries. For some sources, they follow the `original' type of correlation which is described by a single power-law. Later it was found that some other sources follow a different correlation consisting of three power-law branches, with each branch having different power-law indexes. In this work, we explain these two types of correlation under the coupled accretion--jet mod...

  6. Black Holes

    Science.gov (United States)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  7. Thermodynamics of topological black holes in Brans-Dicke gravity with a power-law Maxwell field

    Science.gov (United States)

    Zangeneh, M. Kord; Dehghani, M. H.; Sheykhi, A.

    2015-11-01

    In this paper, we present a new class of higher-dimensional exact topological black hole solutions of the Brans-Dicke theory in the presence of a power-law Maxwell field as the matter source. For this aim, we introduce a conformal transformation which transforms the Einstein-dilaton-power-law Maxwell gravity Lagrangian to the Brans-Dicke-power-law Maxwell theory one. Then, by using this conformal transformation, we obtain the desired solutions. Next, we study the properties of the solutions and conditions under which we have black holes. Interestingly enough, we show that there is a cosmological horizon in the presence of a negative cosmological constant. Finally, we calculate the temperature and charge and then by calculating the Euclidean action, we obtain the mass, the entropy and the electromagnetic potential energy. We find that the entropy does not respect the area law, and also the conserved and thermodynamic quantities are invariant under conformal transformation. Using these thermodynamic and conserved quantities, we show that the first law of black hole thermodynamics is satisfied on the horizon.

  8. NASA Observatory Confirms Black Hole Limits

    Science.gov (United States)

    2005-02-01

    time, the ones in between have been counted properly. Growth of the Biggest Black Holes Illustrated Growth of the Biggest Black Holes Illustrated "We need to have an accurate head count over time of all growing black holes if we ever hope to understand their habits, so to speak," co-author Richard Mushotzky of NASA's Goddard Space Flight Center in Greenbelt, Md. Supermassive black holes themselves are invisible, but heated gas around them -- some of which will eventually fall into the black hole - produces copious amounts of radiation in the centers of galaxies as the black holes grow. Growth of the Biggest Black Holes Illustrated Growth of Smaller Black Holes Illustrated This study relied on the deepest X-ray images ever obtained, the Chandra Deep Fields North and South, plus a key wider-area survey of an area called the "Lockman Hole". The distances to the X-ray sources were determined by optical spectroscopic follow-up at the Keck 10-meter telescope on Mauna Kea in Hawaii, and show the black holes range from less than a billion to 12 billion light years away. Since X-rays can penetrate the gas and dust that block optical and ultraviolet emission, the very long-exposure X-ray images are crucial to find black holes that otherwise would go unnoticed. Black Hole Animation Black Hole Animation Chandra found that many of the black holes smaller than about 100 million Suns are buried under large amounts of dust and gas, which prevents detection of the optical light from the heated material near the black hole. The X-rays are more energetic and are able to burrow through this dust and gas. However, the largest of the black holes show little sign of obscuration by dust or gas. In a form of weight self-control, powerful winds generated by the black hole's feeding frenzy may have cleared out the remaining dust and gas. Other aspects of black hole growth were uncovered. For example, the typical size of the galaxies undergoing supermassive black hole formation reduces with

  9. Discovery of the correlation between peak episodic jet power and X-ray peak luminosity of the soft state in black hole transients

    CERN Document Server

    Zhang, Hui

    2015-01-01

    Episodic jets are usually observed in the intermediate state of black hole transients during their X-ray outbursts. Here we report the discovery of a strong positive correlation between the peak radio power of the episodic jet $P_{\\rm jet}$ and the corresponding peak X-ray luminosity $L_{\\rm x}$ of the soft state (in Eddington units) in a complete sample of the outbursts of black hole transients observed during the RXTE era of which data are available, which follows the relation $\\log P_{\\rm jet}=(2.17\\pm{0.32})+(1.63\\pm0.24)\\times \\log {L_{\\rm x}}$. The transient ultra-luminous X-ray source in M31 and HLX-1 in EXO 243-49 fall on the relation if they contain stellar mass black hole and either stellar mass black hole or intermediate mass black hole, respectively. Besides, a significant correlation between the peak power of the episodic jet and the rate-of-increase of the X-ray luminosity $\\rm dL_{x}/dt$ during the rising phase of those outbursts is also found, following $\\log P_{\\rm jet}=(1.97\\pm{0.42})+(0.69\\...

  10. Discovery and Monitoring of a New Black Hole Candidate XTE J1752-223 with RXTE: Rms Spectrum Evolution, Black Hole Mass, and the Source Distance

    Science.gov (United States)

    Shaposhnikov, Nikolai; Markwardt, Craig; Swank, Jean; Krimm, Hans

    2010-11-01

    We report on the discovery and monitoring observations of a new galactic black hole (BH) candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on 2009 October 21 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/high-soft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass BH binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a blackbody spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (rms) variability in the RXTE/PCA energy band with the source spectral state and conclude that broadband variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition, and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hard-to-soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source of about 3.5 kpc.

  11. DISCOVERY AND MONITORING OF A NEW BLACK HOLE CANDIDATE XTE J1752-223 WITH RXTE: RMS SPECTRUM EVOLUTION, BLACK HOLE MASS, AND THE SOURCE DISTANCE

    International Nuclear Information System (INIS)

    We report on the discovery and monitoring observations of a new galactic black hole (BH) candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on 2009 October 21 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/high-soft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass BH binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a blackbody spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (rms) variability in the RXTE/PCA energy band with the source spectral state and conclude that broadband variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition, and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hard-to-soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source of about 3.5 kpc.

  12. Solar neutrinos and the influences of opacity, thermal instability, additional neutrino sources, and a central black hole on solar models

    Science.gov (United States)

    Stothers, R. B.; Ezer, D.

    1972-01-01

    Significant quantities that affect the internal structure of the sun are examined for factors that reduce the temperature near the sun's center. The four factors discussed are: opacity, central black hole, thermal instability, and additional neutrino sources.

  13. The Innermost Extremes of Black Hole Accretion

    CERN Document Server

    Fabian, A C

    2015-01-01

    The inner 20 gravitational radii around the black hole at the centre of luminous Active Galactic Nuclei and stellar mass Black Hole Binaries are now being routinely mapped by X-ray spectral-timing techniques. Spectral blurring and reverberation of the reflection spectrum are key tools in this work. In the most extreme AGN cases with high black hole spin, when the source appears in a low state, observations probe the region within 1 gravitational radius of the event horizon. The location, size and operation of the corona, which generates the power-law X-ray continuum, are also being revealed.

  14. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  15. A high-frequency Doppler feature in the power spectra of simulated GRMHD black hole accretion disks

    International Nuclear Information System (INIS)

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole

  16. A High-Frequency Doppler Feature in the Power Spectra of Simulated GRMHD Black Hole Accretion Disks

    CERN Document Server

    Wellons, Sarah; Psaltis, Dimitrios; Narayan, Ramesh; McClintock, Jeffrey E

    2013-01-01

    Black hole binaries exhibit a wide range of variability phenomena, from large-scale state changes to broadband noise and quasi-periodic oscillations, but the physical nature of much of this variability is poorly understood. We examine the variability properties of three GRMHD simulations of thin accretion disks around black holes of varying spin, producing light curves and power spectra as would be seen by observers. We find that the simulated power spectra show a broad feature at high frequency, which increases in amplitude with the inclination of the observer. We show that this high-frequency feature is a product of the Doppler effect and that its location is a function of the mass and spin of the black hole. This Doppler feature demonstrates that power spectral properties of the accretion disk can be tied to, and potentially used to determine, physical properties of the black hole.

  17. Towards a Theory of Quantum Black Hole

    OpenAIRE

    Berezin, V.

    2001-01-01

    We describe some specific quantum black hole model. It is pointed out that the origin of a black hole entropy is the very process of quantum gravitational collapse. The quantum black hole mass spectrum is extracted from the mass spectrum of the gravitating source. The classical analog of quantum black hole is constructed.

  18. Black Holes Have Simple Feeding Habits

    Science.gov (United States)

    2008-06-01

    . "We thought this was the case, but up until now we haven't been able to nail it." People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Jet Power and Black Hole Assortment Revealed in New Chandra Image Chandra Data Reveal Rapidly Whirling Black Holes Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters The model that Markoff and her colleagues used to study the black holes includes a faint disk of material spinning around the black hole. This structure would mainly produce X-rays and optical light. A region of hot gas around the black hole would be seen largely in ultraviolet and X-ray light. A large contribution to both the radio and X-ray light comes from jets generated by the black hole. Multi-wavelength data is needed to disentangle these overlapping sources of light. "When we look at the data, it turns out that our model works just as well for the giant black hole in M81 as it does for the smaller guys," said Michael Nowak, a coauthor from the Massachusetts Institute of Technology. "Everything around this huge black hole looks just the same except it's almost 10 million times bigger." Among actively feeding black holes the one in M81 is one of the dimmest, presumably because it is "underfed". It is, however, one of the brightest as seen from Earth because of its relative proximity, allowing high quality observations to be made. "It seems like the underfed black holes are the simplest in practice, perhaps because we can see closer to the black hole," said Andrew Young of the University of Bristol in England. "They don't seem to care too much where they get their food from." This work should be useful for predicting the properties of a third, unconfirmed class called intermediate mass black holes, with masses lying between those of stellar and supermassive black holes. Some possible members of this class have been identified, but the evidence is controversial, so specific predictions for the

  19. Black Hole Boldly Goes Where No Black Hole Has Gone Before

    Science.gov (United States)

    2007-01-01

    contains millions of these black holes. Black holes are, by definition, invisible. But the region around them can flare up periodically when the black hole feeds. As gas falls into a black hole, it will heat to high temperatures and radiate brightly, particularly in X-rays. Maccarone's team found one such stellar-mass black hole by chance feeding in a globular cluster in a galaxy named NGC 4472, about fifty million light-years away in the Virgo Cluster. XMM-Newton is extremely sensitive to variable X-ray sources and can efficiently search across large patches of the sky. The team also used NASA's Chandra X-ray Observatory, which has superb angular resolution to pinpoint the X-ray source's location. This allowed them to match up the position of the X-ray source with optical images to prove that the black hole was indeed in a globular cluster. Globular clusters are some of the oldest structures in the universe, containing stars over 12 thousand million years old. Black holes in a cluster would likely have formed many thousand millions of years ago, which is why astronomers have assumed they would have been kicked out a long time ago. Details in the X-ray light detected by XMM-Newton leave little doubt that this is a black hole - the object is too bright, and varies by too much to be anything else. In fact, the source is 'extra bright', - an Ultraluminous X-ray object, or ULX. ULXs are brighter than the 'Eddington limit' for stellar mass black holes, the brightness level at which the outward force from X-rays is expected balance the powerful gravitational forces from the black hole. Thus it is often suggested that the ULXs might be intermediate mass black holes - black holes of thousands of solar masses, heavier than the 10-solar-mass stellar black holes, and lighter than the million to thousand million solar mass black holes in quasars. These black holes might then be the missing links between the black holes formed in the death throes of massive stars and the ones in the

  20. Intermediate mass black holes and nearby dark matter point sources: a critical reassessment.

    Science.gov (United States)

    Bringmann, Torsten; Lavalle, Julien; Salati, Pierre

    2009-10-16

    Dark matter (DM) "minispikes" around intermediate mass black holes are sometimes quoted as one of the most promising targets for indirect DM searches. Here, we stress that existing cosmic ray data place severe constraints on the possibility to detect DM annihilation signals from these objects in gamma rays; observational prospects for neutrinos or charged cosmic rays seem even worse. Similar bounds severely constrain the possibility that the excess in the cosmic ray positron or electron flux recently reported by PAMELA/ATIC could be due to a nearby point source like a DM clump or minispike. PMID:19905686

  1. ENERGY-DEPENDENT POWER SPECTRAL STATES AND ORIGIN OF APERIODIC VARIABILITY IN BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    We found that the black hole candidate MAXI J1659–152 showed distinct power spectra, i.e., power-law noise (PLN) versus band-limited noise (BLN) plus quasi-periodic oscillations (QPOs) below and above about 2 keV, respectively, in observations with Swift and the Rossi X-ray Timing Explorer during the 2010 outburst, indicating a high energy cutoff of the PLN and a low energy cutoff of the BLN and QPOs around 2 keV. The emergence of the PLN and the fading of the BLN and QPOs initially took place below 2 keV when the source entered the hard intermediate state and settled in the soft state three weeks later. The evolution was accompanied by the emergence of the disk spectral component and decreases in the amplitudes of variability in the soft and hard X-ray bands. Our results indicate that the PLN is associated with an optically thick disk in both hard and intermediate states, and the power spectral state is independent of the X-ray energy spectral state in a broadband view. We suggest that in the hard or intermediate state, the BLN and QPOs emerge from the innermost hot flow subjected to Comptonization, while the PLN originates from the optically thick disk farther out. The energy cutoffs of the PLN and the BLN or QPOs then follow the temperature of the seed photons from the inner edge of the optically thick disk, while the high frequency cutoff of the PLN follows the orbital frequency of the inner edge of the optically thick disk as well.

  2. Evidence for a direct collapse black hole in the Lyman α source CR7

    Science.gov (United States)

    Smith, Aaron; Bromm, Volker; Loeb, Abraham

    2016-08-01

    Throughout the epoch of reionization, the most luminous Lyα emitters are capable of ionizing their own local bubbles. The CR7 galaxy at z ≈ 6.6 stands out for its combination of exceptionally bright Lyα and He II 1640 Å line emission but absence of metal lines. As a result CR7 may be the first viable candidate host of a young primordial starburst or direct collapse black hole. High-resolution spectroscopy reveals a +160 km s-1 velocity offset between the Lyα and He II line peaks while the spatial extent of the Lyα emitting region is ˜16 kpc. The observables are indicative of an outflow signature produced by a strong central source. We present one-dimensional radiation-hydrodynamics simulations incorporating accurate Lyα feedback and ionizing radiation to investigate the nature of the CR7 source. We find that a Population III star cluster with 105 K blackbody emission ionizes its environment too efficiently to generate a significant velocity offset. However, a massive black hole with a non-thermal Compton-thick spectrum is able to reproduce the Lyα signatures as a result of higher photon trapping and longer potential lifetime. For both sources, Lyα radiation pressure turns out to be dynamically important.

  3. Chandra Data Reveal Rapidly Whirling Black Holes

    Science.gov (United States)

    2008-01-01

    black holes," said co-investigator Richard Bower of Durham University. "This might help us explain the source of these incredible jets that we see stretching for enormous distances across space." One significant connection consequence of powerful, black-hole jets in galaxies in the centers of galaxy clusters is that they can pump enormous amounts of energy into their environments, and heat the gas around them. This heating prevents the gas from cooling, and affects the rate at which new stars form, thereby limiting the size of the central galaxy. Understanding the details of this fundamental feedback loop between supermassive black holes and the formation of the most massive galaxies remains an important goal in astrophysics. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

  4. Nova Sco and coalescing low mass black hole binaries as LIGO sources

    CERN Document Server

    Sipior, M S; Sipior, Michael S.; Sigurdsson, Steinn

    2002-01-01

    Double neutron star binaries, analogous to the well known Hulse--Taylor pulsar PSR 1913+16, are guaranteed-to-exist sources of high frequency gravitational radiation detectable by LIGO. There is considerable uncertainty in the estimated rate of coalescence of such systems, with conservative estimates of ~1 per million years per galaxy, and optimistic theoretical estimates one or more magnitude larger. Formation rates of low-mass black hole-neutron star binaries may be higher than those of NS-NS binaries, and may dominate the detectable LIGO signal rate. We estimate the enhanced coalescence rate for BH-BH binaries due to weak asymmetric kicks during the formation of low mass black holes like Nova Sco, and find they may contribute significantly to the LIGO signal rate, possibly dominating the phase I detectable signals if the range of BH masses for which there is significant kick is broad enough. For a standard Salpeter IMF, assuming mild natal kicks, we project that the R6 merger rate of BH-BH systems is ~0.5,...

  5. Effects of power-law Maxwell field on the critical phenomena of higher dimensional dilaton black holes

    Science.gov (United States)

    Mo, Jie-Xiong; Li, Gu-Qiang; Xu, Xiao-Bao

    2016-04-01

    The effects of a power-law Maxwell field on the critical phenomena of higher dimensional dilaton black holes are probed in detail. We successfully derive the analytic solutions of the critical point and carry out some checks to ensure that these critical quantities are positive. It is shown that the constraint on the parameter α describing the strength of the coupling of the electromagnetic field and the scalar field turns out to be 0 affected by the power-law Maxwell field. Moreover, critical exponents are found to coincide with those of other anti-de Sitter black holes, showing the powerful influence of mean field theory.

  6. Interpreting the radio/X-ray correlation of black hole sources based on the accretion-jet model

    CERN Document Server

    Xie, Fu-Guo

    2015-01-01

    Two types of correlations between the radio and X-ray luminosities ($L_R$ and $L_X$) of black hole sources has been found. For the traditional type of sources, the correlation can be described by a single power-law. For the other type of sources, while the correlation can still be described by power-law forms, it consists three branches according to the X-ray luminosity, with different power-law indexes. In this paper, we try to explain these correlations in the framework of the coupled accretion-jet model. We attribute the difference between these two types of sources to the difference in the value of viscous parameter $\\alpha$. For the "single power-law" sources, their $\\alpha$ is high; so their accretion is always in the mode of ADAF (advection-dominated accretion flow) for the whole range of X-ray luminosity. For those "hybrid power-law" sources, the value of $\\alpha$ is small so their accretion modes change from ADAF to LHAF (luminous hot accretion flow) to two-phase accretion as the accretion rate incre...

  7. AODV Improvement by Modification at Source Node and Securing It from Black Hole Attack.

    Directory of Open Access Journals (Sweden)

    Debarati Roy Choudhury

    2014-08-01

    Full Text Available MANETS suffer from constraints in power, storage and computational resources ,as a result, they are more vulnerable to various communications security related attacks. therefore we attempt to focus on analyzing and improving the security of routing protocol for MANETS viz. the Ad hoc On Demand Distance Vector (AODVrouting protocol. We propose modifications to the AODV we propose an algorithm to counter the Black hole attack on the routing protocols in MANETs. All the routes has unique sequence number and the malicious node has the highest Destination Sequence number and it is the first RREP to arrive. So the comparison is made only to the first entry in the table without checking other entries in the table

  8. Resource Letter BH-2: Black Holes

    CERN Document Server

    Gallo, Elena

    2008-01-01

    This resource letter is designed to guide students, educators, and researchers through (some of) the literature on black holes. Both the physics and astrophysics of black holes are discussed. Breadth has been emphasized over depth, and review articles over primary sources. We include resources ranging from non-technical discussions appropriate for broad audiences to technical reviews of current research. Topics addressed include classification of stationary solutions, perturbations and stability of black holes, numerical simulations, collisions, the production of gravity waves, black hole thermodynamics and Hawking radiation, quantum treatments of black holes, black holes in both higher and lower dimensions, and connections to nuclear and condensed matter physics. On the astronomical end, we also cover the physics of gas accretion onto black holes, relativistic jets, gravitationally red-shifted emission lines, evidence for stellar-mass black holes in binary systems and super-massive black holes at the centers...

  9. Supermassive Black Hole Binaries: Environment and Galaxy Host Properties of PTA and eLISA sources

    CERN Document Server

    Palafox, Eva Martínez; Colín, Pedro; Gottlöber, Stefan

    2014-01-01

    Supermassive black hole (BH) binaries would comprise the strongest sources of gravitational waves (GW) once they reach <<1 pc separations, for both pulsar timing arrays (PTAs) and space based (SB) detectors. While BH binaries coalescences constitute a natural outcome of the cosmological standard model and galaxy mergers, their dynamical evolution is still poorly understood and therefore their abundances at different stages. We use a dynamical model for the decay of BH binaries coupled with a cosmological simulation and semi-empirical approaches to the occupation of haloes by galaxies and BHs, in order to follow the evolution of the properties distribution of galaxies hosting BH binaries candidates to decay due to GWs emission. Our models allow us to relax simplifying hypothesis about the binaries occupation in galaxies and their mass, as well as redshift evolution. Following previously proposed electromagnetic (EM) signatures of binaries in the subpc regime, that include spectral features and variabilit...

  10. Roche-lobe overflow systems powered by black holes in young star clusters: the importance of dynamical exchanges

    International Nuclear Information System (INIS)

    We have run 600 N-body simulations of intermediate-mass (∼3500 M ☉) young star clusters (SCs; with three different metallicities (Z = 0.01, 0.1, and 1 Z ☉). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 M ☉ are allowed to form through direct collapse of very massive metal-poor stars (Z < 0.3 Z ☉). We focus on the demographics of black hole (BH) binaries that undergo mass transfer via Roche lobe overflow (RLO). We find that 44% of all binaries that undergo an RLO phase (RLO binaries) formed through dynamical exchange. RLO binaries that formed via exchange (RLO-EBs) are powered by more massive BHs than RLO primordial binaries (RLO-PBs). Furthermore, the RLO-EBs tend to start the RLO phase later than the RLO-PBs. In metal-poor SCs (0.01-0.1 Z ☉), >20% of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2, and NGC 5204 X-1 are powered by an MSBH.

  11. Detection of beta-class variability in Black Hole source GRS 1915+105 by Astrosat Scanning Sky Monitor

    Science.gov (United States)

    Ramadevi, M. C.; Ravishankar, B. T.; Nandi, Anuj; Girish, V.; Singh, Brajpal; Jain, Anand; Agrawal, Vivek Kumar; Agarwal, Anil; Bhattacharya, Dipankar; Seetha, S.; Sharma, M. Ramakrishna; Sharan, Vaishali; Babu, V. C.; Yadav, Reena; Meena, G.; Murthy, N. Sitarama; Kumar; Ashoka, B. N.; Kulkarni, Ravi; Iyer, Nirmal; Radhika, D.; Kushwaha, Ankur; Balaji, K.; Nagesh, G.; Kumar, Manoj; Gaan, Dhruti Ranjan; Kulshresta, Prashanth; Agarwal, Pankaj; Sebastin, Matthew; Rajarajan, A.; Rao, S. V. S. Subba; Pandiyan; R.; Rao, K. Subba; Rao, Chaitra; Sarma, K. Suryanarayana

    2015-10-01

    The Scanning Sky Monitor (SSM) on board ASTROSAT was made operational on October 12th, 2015, the 15th day after launch (September 28th, 2015). After initial observations of the Crab Nebula, on October 14th 2015, the SSM was maneuvered for a stare at the galactic Black Hole source GRS 1915+105.

  12. Characterizing Black Hole Mergers

    Science.gov (United States)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  13. A Stellar-mass Black Hole in the Ultra-luminous X-ray Source M82 X-1

    Science.gov (United States)

    Okajima, Takashi; Ebisawa, Ken; Kawaguchi, Toshihiro

    2007-01-01

    We have analyzed the archival XMM-Newton data of the archetypal Ultra-Luminous X-ray Source (ULX) M82 X-1 with an LO5 ksec exposure when the source was in the steady state. Thanks to the high photon statistics from the large effective area and long exposure, we were able to discriminate different X-ray continuum spectral models. Neither the standard accretion disk model (where the radial dependency of the disk effective temperature is T(r) proportional to r(sup -3/4)) nor a power-law model gives a satisfactory fit. In fact, observed curvature of the M82 X-1 spectrum was just between those of the two models. When the exponent of the radial dependence (p in T(r) proportional to r(sup -P)) of the disk temperature is allowed to be free, we obtained p = 0.61 (sup +0.03)(sub -0.02). Such a reduction of p from the standard value 3/4 under extremely high mass accretion rates is predicted from the accretion disk theory as a consequence of the radial energy advection. Thus, the accretion disk in M82 X-1 is considered to be in the Slim disk state, where an optically thick Advection Dominant Accretion Flow (ADAF) is taking place. We have applied a theoretical slim disk spectral model to M82 X-1, and estimated the black hole mass approximately equal to 19 - 32 solar mass. We conclude that M82 X-1 is a stellar black hole which has been produced through evolution of an extremely massive star, shining at a several times the super-Eddington luminosity.

  14. Scattering by regular black holes: Planar massless scalar waves impinging upon a Bardeen black hole

    CERN Document Server

    Macedo, Caio F B; Crispino, Luís C B

    2015-01-01

    Singularities are common features of general relativity black holes. However, within general relativity, one can construct black holes that present no singularities. These regular black hole solutions can be achieved by, for instance, relaxing one of the energy conditions on the stress energy tensor sourcing the black hole. Some regular black hole solutions were found in the context of non-linear electrodynamics, the Bardeen black hole being the first one proposed. In this paper, we consider a planar massless scalar wave scattered by a Bardeen black hole. We compare the scattering cross section computed using a partial-wave description with the classical geodesic scattering of a stream of null geodesics, as well as with the semi-classical glory approximation. We obtain that, for some values of the corresponding black hole charge, the scattering cross section of a Bardeen black hole has a similar interference pattern of a Reissner-Nordstr\\"om black hole.

  15. SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA

    Energy Technology Data Exchange (ETDEWEB)

    Antonini, Fabio [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 George St., Toronto, Ontario M5S 3H8 (Canada); Perets, Hagai B. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2012-09-20

    The environment near supermassive black holes (SMBHs) in galactic nuclei contains a large number of stars and compact objects. A fraction of these are likely to be members of binaries. Here we discuss the binary population of stellar black holes and neutron stars near SMBHs and focus on the secular evolution of such binaries, due to the perturbation by the SMBH. Binaries with highly inclined orbits with respect to their orbit around the SMBH are strongly affected by secular Kozai processes, which periodically change their eccentricities and inclinations (Kozai cycles). During periapsis approach, at the highest eccentricities during the Kozai cycles, gravitational wave (GW) emission becomes highly efficient. Some binaries in this environment can inspiral and coalesce at timescales much shorter than a Hubble time and much shorter than similar binaries that do not reside near an SMBH. The close environment of SMBHs could therefore serve as a catalyst for the inspiral and coalescence of binaries and strongly affect their orbital properties. Such compact binaries would be detectable as GW sources by the next generation of GW detectors (e.g., advanced-LIGO). Our analysis shows that {approx}0.5% of such nuclear merging binaries will enter the LIGO observational window while on orbits that are still very eccentric (e {approx}> 0.5). The efficient GW analysis for such systems would therefore require the use of eccentric templates. We also find that binaries very close to the SMBH could evolve through a complex dynamical (non-secular) evolution, leading to emission of several GW pulses during only a few years (though these are likely to be rare). Finally, we note that the formation of close stellar binaries, X-ray binaries, and their merger products could be induced by similar secular processes, combined with tidal friction rather than GW emission as in the case of compact object binaries.

  16. Can black-hole neutrino-cooled disks power short gamma-ray bursts?

    CERN Document Server

    Liu, Tong; Hou, Shu-Jin; Gu, Wei-Min

    2015-01-01

    Stellar-mass black holes (BHs) surrounded by neutrino-dominated accretion flows (NDAFs) are the plausible candidates to power gamma-ray bursts (GRBs) via neutrinos emission and their annihilation. The progenitors of short-duration GRBs (SGRBs) are generally considered to be compact binaries mergers. According to the simulation results, the disk mass of the NDAF has been limited after merger events. We can estimate such disk mass by using the current SGRB observational data and fireball model. The results show that the disk mass of a certain SGRB mainly depends on its output energy, jet opening angle, and central BH characteristics. Even for the extreme BH parameters, some SGRBs require massive disks, which approach or exceed the limits in simulations. We suggest that there may exist alternative magnetohydrodynamic processes or some mechanisms increasing the neutrino emission to produce SGRBs with the reasonable BH parameters and disk mass.

  17. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    Steven L Liebling

    2000-10-01

    Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.

  18. Binary Systems with a Black Hole Component as Sources of Gravitational Waves

    CERN Document Server

    Koçak, D

    2016-01-01

    Discovery of gravitational waves by LIGO team (Abbott et al. 2016) bring a new era for observation of black hole systems. These new observations will improve our knowledge on black holes and gravitational physics. In this study, we present angular momentum loss mechanism through gravitational radiation for selected X-ray binary systems. The angular momentum loss in X-ray binary systems with a black hole companion due to gravitational radiation and mass loss time-scales are estimated for each selected system. In addition, their gravitational wave amplitudes are also estimated and their detectability with gravitational wave detectors has been discussed.

  19. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  20. Acoustic black holes

    CERN Document Server

    Visser, M

    1999-01-01

    Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.

  1. Nonthermal WIMPs and primordial black holes

    Science.gov (United States)

    Georg, Julian; Şengör, Gizem; Watson, Scott

    2016-06-01

    Nonthermal histories for the early universe have received notable attention as they are a rich source of phenomenology, while also being well motivated by top-down approaches to beyond the Standard Model physics. The early (pre-big bang nucleosynthesis) matter phase in these models leads to enhanced growth of density perturbations on sub-Hubble scales. Here, we consider whether primordial black hole formation associated with the enhanced growth is in conflict with existing observations. Such constraints depend on the tilt of the primordial power spectrum, and we find that nonthermal histories are tightly constrained in the case of a significantly blue spectrum. Alternatively, if dark matter is taken to be of nonthermal origin, we can restrict the primordial power spectrum on scales inaccessible to cosmic microwave background and large scale structure observations. We establish constraints for a wide range of scalar masses (reheat temperatures) with the most stringent bounds resulting from the formation of 1015 g black holes. These black holes would be evaporating today and are constrained by FERMI observations. We also consider whether the breakdown of the coherence of the scalar oscillations on subhorizon scales can lead to a Jean's pressure preventing black hole formation and relaxing our constraints. Our main conclusion is that primordial black hole constraints, combined with existing constraints on nonthermal weakly interacting massive particles, favor a primordial spectrum closer to scale invariance or a red tilted spectrum.

  2. Stability of mass transfer from massive giants: double black-hole binary formation and ultra-luminous X-ray sources

    CERN Document Server

    Pavlovskii, K; Belczynski, K; Van, K X

    2016-01-01

    The mass transfer in binaries with massive donors and compact companions, when the donors rapidly evolve after their main sequence, is one of the dominant formation channels of merging double stellar-mass black hole binaries. This mass transfer was previously postulated to be unstable and was expected to lead to a common envelope event. The common envelope event then would end with either double black hole formation, or with the merger of the two stars. We re-visit the stability of this mass transfer, and find that for a large range of the binary orbital separations this mass transfer is stable. This newly found stability allows us to reconcile the theoretical rate for double black hole binary mergers predicted by population synthesis studies, and the empirical rate obtained by LIGO. Futhermore, the stability of the mass transfer leads to the formation of ultra-luminous X-ray sources. The theoretically predicted formation rates of ultra-luminous X-ray sources powered by a stellar-mass BH, as well as the range...

  3. Merging galaxies and black hole ejections

    Science.gov (United States)

    Valtonen, M. J.

    1990-01-01

    In mergers of galaxies their central black holes are accumulated together. Researchers show that few black hole systems arise which decay through black hole collisions and black hole ejections. The ejection statistics are calculated and compared with two observed systems where ejections have been previously suggested: double radio sources and high redshift quasars near low redshift galaxies. In both cases certain aspects of the associations are explained by the merger hypothesis.

  4. Black Holes and Galaxy Metamorphosis

    CERN Document Server

    Holley-Bockelmann, K

    2001-01-01

    Supermassive black holes can be seen as an agent of galaxy transformation. In particular, a supermassive black hole can cause a triaxial galaxy to evolve toward axisymmetry by inducing chaos in centrophilic orbit families. This is one way in which a single supermassive black hole can induce large-scale changes in the structure of its host galaxy -- changes on scales far larger than the Schwarzschild radius ($O(10^{-5}) \\rm{pc}$) and the radius of influence of the black hole ($O(1)-O(100) \\rm{pc}$). We will discuss the transformative power of supermassive black holes in light of recent high resolution N-body realizations of cuspy triaxial galaxies.

  5. Evidence for a direct collapse black hole in the Lyman-alpha source CR7

    CERN Document Server

    Smith, Aaron; Loeb, Abraham

    2016-01-01

    Throughout the epoch of reionization the most luminous Ly{\\alpha} emitters are capable of ionizing their own local bubbles. The CR7 galaxy at $z \\approx 6.6$ stands out for its combination of exceptionally bright Ly{\\alpha} and HeII 1640 Angstrom line emission but absence of metal lines. As a result CR7 may be the first viable candidate host of a young primordial starburst or direct collapse black hole. High-resolution spectroscopy reveals a +160 km s$^{-1}$ velocity offset between the Ly{\\alpha} and HeII line peaks while the spatial extent of the Ly{\\alpha} emitting region is $\\sim 16$ kpc. The observables are indicative of an outflow signature produced by a strong central source. We present one-dimensional radiation-hydrodynamics simulations incorporating accurate Ly{\\alpha} feedback and ionizing radiation to investigate the nature of the CR7 source. We find that a Population III star cluster with $10^5$ K blackbody emission ionizes its environment too efficiently to generate a significant velocity offset. ...

  6. Luminosity distribution in the central regions of Messier 87: Isothermal core, point source, or black hole

    International Nuclear Information System (INIS)

    A combination of photographic and photoelectric photometry with the McDonald 2 m reflector is used to derive a precise mean luminosity profile μ/sub B/(r*) of M87 (jet excluded) at approx.0''.6 resolution out to r*=70''. Within 8'' from the center the luminosity is less than predicted by extrapolation of the r/sup 1/4/ law defined by the main body of the galaxy (8''0=30.5) the structural length of the underlying isothermal is α=2''.78=170 pc, the mass of the ''black hole'' M0 =1.7.109M/sub sun/ and the luminosity of the point source (B0 =16.95, M0=-13.55) equals 4.2% of the integrated luminosity B (6'') =13.52 of the galaxy within r*=6''. These results agree closely with and confirm the work of the Hale team. Comparison of the McDonald and Hale data suggests that the central source may have been slightly brighter (approx.0.5 mag) in 1964 than in 1975--1977

  7. A Connection between Plasma Conditions near Black Hole Event Horizons and Outflow Properties

    Science.gov (United States)

    Koljonen, K. I. I.; Russell, D. M.; Fernández-Ontiveros, J. A.; Markoff, Sera; Russell, T. D.; Miller-Jones, J. C. A.; van der Horst, A. J.; Bernardini, F.; Casella, P.; Curran, P. A.; Gandhi, P.; Soria, R.

    2015-12-01

    Accreting black holes are responsible for producing the fastest, most powerful outflows of matter in the universe. The formation process of powerful jets close to black holes is poorly understood, and the conditions leading to jet formation are currently hotly debated. In this paper, we report an unambiguous empirical correlation between the properties of the plasma close to the black hole and the particle acceleration properties within jets launched from the central regions of accreting stellar-mass and supermassive black holes. In these sources the emission of the plasma near the black hole is characterized by a power law at X-ray energies during times when the jets are produced. We find that the photon index of this power law, which gives information on the underlying particle distribution, correlates with the characteristic break frequency in the jet spectrum, which is dependent on magnetohydrodynamical processes in the outflow. The observed range in break frequencies varies by five orders of magnitude in sources that span nine orders of magnitude in black hole mass, revealing a similarity of jet properties over a large range of black hole masses powering these jets. This correlation demonstrates that the internal properties of the jet rely most critically on the conditions of the plasma close to the black hole, rather than other parameters such as the black hole mass or spin, and will provide a benchmark that should be reproduced by the jet formation models.

  8. Detecting Eccentric Supermassive Black Hole Binaries with Pulsar Timing Arrays: Resolvable Source Strategies

    Science.gov (United States)

    Taylor, S. R.; Huerta, E. A.; Gair, J. R.; McWilliams, S. T.

    2016-01-01

    The couplings between supermassive black hole binaries (SMBHBs) and their environments within galactic nuclei have been well studied as part of the search for solutions to the final parsec problem. The scattering of stars by the binary or the interaction with a circumbinary disk may efficiently drive the system to sub-parsec separations, allowing the binary to enter a regime where the emission of gravitational waves can drive it to merger within a Hubble time. However, these interactions can also affect the orbital parameters of the binary. In particular, they may drive an increase in binary eccentricity which survives until the system’s gravitational-wave (GW) signal enters the pulsar-timing array (PTA) band. Therefore, if we can measure the eccentricity from observed signals, we can potentially deduce some of the properties of the binary environment. To this end, we build on previous techniques to present a general Bayesian pipeline with which we can detect and estimate the parameters of an eccentric SMBHB system with PTAs. Additionally, we generalize the PTA {{ F }}{{e}}-statistic to eccentric systems, and show that both this statistic and the Bayesian pipeline are robust when studying circular or arbitrarily eccentric systems. We explore how eccentricity influences the detection prospects of single GW sources, as well as the detection penalty incurred by employing a circular waveform template to search for eccentric signals, and conclude by identifying important avenues for future study.

  9. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  10. Primordial black holes as a source of extremely high energy cosmic rays

    OpenAIRE

    Barrau, Aurelien

    1999-01-01

    The origin of observed extremely high energy cosmic rays remains an astrophysical enigma. We show that a single evaporating primordial black hole should produce 8.5*10^14 particles over a 10^20 eV threshold. This emission results from direct production of fundamental constituants and from hadronization of quarks and gluons. The induced flux on the Earth is studied as a function of the local density of exploding black holes and compared with experimental data. The discovery potential of future...

  11. Thermodynamic analysis of topological black holes in Gauss-Bonnet gravity with nonlinear source

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Panahiyan, S.; Mahmoudi, E. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2014-10-15

    Employing two classes of nonlinear electrodynamics, we obtain topological black hole solutions of Gauss-Bonnet gravity. We investigate geometric properties of the solutions and find that there is an intrinsic singularity at the origin. We investigate the thermodynamic properties of the asymptotically flat black holes and also asymptotically adS solutions. Using a suitable local transformation, we generalize static horizon-flat solutions to rotating ones. We discuss their conserved and thermodynamic quantities as well as the first law of thermodynamics. Finally, we calculate the heat capacity of the solutions to obtain a constraint on the horizon radius of stable solutions. (orig.)

  12. Higher dimensional Robinson-Trautman spacetimes sourced by p-forms: static and radiating black holes

    OpenAIRE

    Ortaggio, Marcello; Podolsky, Jiri; Zofka, Martin

    2016-01-01

    We summarize results about Robinson-Trautman spacetimes in the presence of an aligned $p$-form Maxwell field and an arbitrary cosmological constant in $n\\ge 4$ dimensions. While in odd dimensions the solutions reduce to static black holes dressed with an electric and a magnetic field (with an Einstein space horizon), in even dimensions $2p=n$ they may also describe black holes gaining (or losing) mass by receiving (or emitting) electromagnetic radiation. The Weyl type of the spacetimes is als...

  13. Tidal Disruption and Magnetic Flux Capture: Powering a Jet from a Quiescent Black Hole

    CERN Document Server

    Kelley, Luke Zoltan; Narayan, Ramesh

    2014-01-01

    The transient Swift J1644+57 is believed to have been produced by an unlucky star wandering too close to a supermassive black hole (BH) leading to a tidal disruption event. This unusual flare displayed highly super-Eddington X-ray emission which likely originated in a relativistic, collimated jet. This presents challenges to modern accretion and jet theory as upper limits of prior BH activity, which we obtain from the radio afterglow of this event, imply that both the pre-disruption BH and stellar magnetic fluxes fall many orders of magnitude short of what is required to power the observed X-ray luminosity. We argue that a pre-existing, "fossil" accretion disc can contain a sufficient reservoir of magnetic flux and that the stellar debris stream is capable of dragging this flux into the BH. To demonstrate this, we perform local, 3D magnetohydrodynamic simulations of the disc--stream interaction and demonstrate that the interface between the two is unstable to mixing. This mixing entrains a sufficient amount o...

  14. The ultraluminous X-ray source NGC 5643 ULX1 : a large stellar mass black hole accreting at super-Eddington rates?

    OpenAIRE

    Pintore, F.; Zampieri, L.; Sutton, A. D.; Roberts, T. P.; Middleton, M. J.; Gladstone, J. C.

    2016-01-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 1040 erg s−1, typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of ∼10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we...

  15. Roche-lobe overflow systems powered by black holes in young star clusters: the importance of dynamical exchanges

    CERN Document Server

    Mapelli, Michela

    2014-01-01

    We have run 600 N-body simulations of intermediate-mass (~3500 Msun) young star clusters (SCs) with three different metallicities (Z=0.01, 0.1 and 1 Zsun). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 Msun are allowed to form through direct collapse of very massive metal-poor stars (Z20 per cent of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2 and NGC 5204 X-1 are powered by a MSBH.

  16. Black Hole Hunters Set New Distance Record

    Science.gov (United States)

    2010-01-01

    Astronomers using ESO's Very Large Telescope have detected, in another galaxy, a stellar-mass black hole much farther away than any other previously known. With a mass above fifteen times that of the Sun, this is also the second most massive stellar-mass black hole ever found. It is entwined with a star that will soon become a black hole itself. The stellar-mass black holes [1] found in the Milky Way weigh up to ten times the mass of the Sun and are certainly not be taken lightly, but, outside our own galaxy, they may just be minor-league players, since astronomers have found another black hole with a mass over fifteen times the mass of the Sun. This is one of only three such objects found so far. The newly announced black hole lies in a spiral galaxy called NGC 300, six million light-years from Earth. "This is the most distant stellar-mass black hole ever weighed, and it's the first one we've seen outside our own galactic neighbourhood, the Local Group," says Paul Crowther, Professor of Astrophysics at the University of Sheffield and lead author of the paper reporting the study. The black hole's curious partner is a Wolf-Rayet star, which also has a mass of about twenty times as much as the Sun. Wolf-Rayet stars are near the end of their lives and expel most of their outer layers into their surroundings before exploding as supernovae, with their cores imploding to form black holes. In 2007, an X-ray instrument aboard NASA's Swift observatory scrutinised the surroundings of the brightest X-ray source in NGC 300 discovered earlier with the European Space Agency's XMM-Newton X-ray observatory. "We recorded periodic, extremely intense X-ray emission, a clue that a black hole might be lurking in the area," explains team member Stefania Carpano from ESA. Thanks to new observations performed with the FORS2 instrument mounted on ESO's Very Large Telescope, astronomers have confirmed their earlier hunch. The new data show that the black hole and the Wolf-Rayet star dance

  17. Noncommutative black holes

    International Nuclear Information System (INIS)

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole

  18. A jet model for Galactic black-hole X-ray sources: The correlation between cutoff energy and phase lag

    Science.gov (United States)

    Reig, P.; Kylafis, N. D.

    2015-12-01

    Context. Galactic black-hole X-ray binaries emit a compact, optically thick, mildy relativistic radio jet when they are in the hard and hard-intermediate states, that is, typically at the beginning and the end of an X-ray outburst. In a series of papers, we have developed a jet model and have shown through Monte Carlo simulations that our model can explain many observational results. Aims: In this work, we investigate one more constraining relationship between the cutoff energy and the phase lag during the early stages of an X-ray outburst of the black-hole X-ray binary GX 339-4: the cutoff energy decreases while the phase lag increases during the brightening of the hard state. Methods: We performed Monte Carlo simulations of the Compton upscattering of soft accretion-disk photons in the jet and computed the phase lag between soft and hard photons and the cutoff energy of the resulting high-energy power law. Results: We demonstrate that our jet model naturally explains the above correlation, with a minor modification consisting of introducing an acceleration zone at the base of the jet. Conclusions: The observed correlation between the cutoff energy and the phase lag in the black-hole binary GX 339-4 suggests that the lags are produced by the hard component. Here we show that this correlation arises naturally if Comptonization in the jet produces these two quantities.

  19. A new open-source code for spherically symmetric stellar collapse to neutron stars and black holes

    International Nuclear Information System (INIS)

    We present the new open-source spherically symmetric general-relativistic (GR) hydrodynamics code GR1D. It is based on the Eulerian formulation of GR hydrodynamics (GRHD) put forth by Romero-Ibanez-Gourgoulhon and employs radial-gauge, polar-slicing coordinates in which the 3+1 equations simplify substantially. We discretize the GRHD equations with a finite-volume scheme, employing piecewise-parabolic reconstruction and an approximate Riemann solver. GR1D is intended for the simulation of stellar collapse to neutron stars and black holes and will also serve as a testbed for modeling technology to be incorporated in multi-D GR codes. Its GRHD part is coupled to various finite-temperature microphysical equations of state in tabulated form that we make available with GR1D. An approximate deleptonization scheme for the collapse phase and a neutrino-leakage/heating scheme for the postbounce epoch are included and described. We also derive the equations for effective rotation in 1D and implement them in GR1D. We present an array of standard test calculations and also show how simple analytic equations of state in combination with presupernova models from stellar evolutionary calculations can be used to study qualitative aspects of black hole formation in failing rotating core-collapse supernovae. In addition, we present a simulation with microphysical equations of state and neutrino leakage/heating of a failing core-collapse supernova and black hole formation in a presupernova model of a 40 Mo-dot zero-age main-sequence star. We find good agreement on the time of black hole formation (within 20%) and last stable protoneutron star mass (within 10%) with predictions from simulations with full Boltzmann neutrino radiation hydrodynamics.

  20. Thermal BEC Black Holes

    OpenAIRE

    Roberto Casadio(INFN, Bologna); Andrea Giugno; Octavian Micu; Alessio Orlandi

    2015-01-01

    We review some features of Bose–Einstein condensate (BEC) models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractiv...

  1. Formation of the compact jets in the black hole GX 339-4

    NARCIS (Netherlands)

    S. Corbel; . et al; S. Markoff

    2013-01-01

    Galactic black hole binaries produce powerful outflows which emit over almost the entire electromagnetic spectrum. Here, we report the first detection with the Herschel observatory of a variable far-infrared source associated with the compact jets of the black hole transient GX 339−4 during the deca

  2. Growth of supermassive black holes, galaxy mergers and supermassive binary black holes

    CERN Document Server

    Komossa, S; Liu, F K

    2016-01-01

    The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the universe, and the subsequent GW recoil has a variety of potential astrophysical implications which are still under exploration. Future GW astronomy will open a completely new window on structure formation and galaxy mergers, including the direct detection of coalescing SMBBHs, high-precision measurements of their masses and spins, and constraints on BH formation and evolution in the high-redshift universe.

  3. Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: explaining the IceCube TeV-PeV neutrinos

    CERN Document Server

    Wang, Xiang-Yu

    2015-01-01

    Cosmic ray interactions that produce high-energy neutrinos also inevitably generate high-energy gamma rays, which finally contribute to the diffuse high-energy gamma-ray background after they escape the sources. It was recently found that, the high flux of neutrinos at $\\sim30$ TeV detected by IceCube lead to a cumulative gamma-ray flux exceeding the Fermi isotropic gamma-ray background at 10-100 GeV, implying that the neutrinos are produced by hidden sources of cosmic rays, where GeV-TeV gamma-rays are not transparent. Here we suggest that relativistic jets in tidal disruption events (TDEs) of supermassive black holes are such hidden sources. We consider the jet propagation in an extended,optically thick envelope around the black hole, which is resulted from the ejected material during the disruption. While powerful jets can break free from the envelope, less powerful jets would be choked inside the envelope. The jets accelerate cosmic rays through internal shocks or reverse shocks and further produce neutri...

  4. X-ray time lags from a pivoting power law in black holes

    NARCIS (Netherlands)

    Körding, E.; Falcke, H.D.E.

    2004-01-01

    Most black hole candidate X-ray binaries show Fourier time lags between softer and harder X-rays. The hard photons seem to arrive up to a few ms after the soft for a given Fourier frequency of the perturbation. The energy dependence of the time lags has a roughly logarithmic behavior. Up to now most

  5. The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates?

    Science.gov (United States)

    Pintore, Fabio; Zampieri, Luca; Sutton, Andrew D.; Roberts, Timothy P.; Middleton, Matthew J.; Gladstone, Jeanette C.

    2016-06-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above 1040 erg s-1, typically have energy spectra which can be well described as hard power laws, and short-term variability in excess of ˜10 per cent. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate-mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1-440939, located in NGC 5643. We report that its high-quality EPIC spectra can be better described by a broad, thermal component, such as an advection-dominated disc or an optically thick Comptonizing corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We discuss the implications of these results, excluding the possibility that the source may be host an IMBH in a low state, and favouring an interpretation in terms of super-Eddington accretion on to a black hole of stellar origin. The properties of NGC 5643 ULX1 allow us to associate this source to the population of the hard/ultraluminous ULX class.

  6. Erratic Black Hole Regulates Itself

    Science.gov (United States)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  7. An XSPEC model to explore spectral fetures from black-hole sources

    Czech Academy of Sciences Publication Activity Database

    Dovčiak, Michal; Karas, Vladimír; Martocchia, A.; Matt, G.; Yaqoob, T.

    Opava: Silesian University, 2004 - (Hledík, S.; Stuchlík, Z.), s. 33-73. (Publications of the Institute of Physics. 3). ISBN 80-7248-242-4. [RAGtime /4/5/. Opava (CZ), 14.10.2002-16.10.2002, 13.10.2003-15.10.2003] Institutional research plan: CEZ:AV0Z1003909 Keywords : black holes * accretion * relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  8. On Quantum Nature of Black-Hole Spacetime A Possible New Source of Intense Radiation

    CERN Document Server

    Ahluwalia, D V

    1999-01-01

    Atoms and the planets acquire their stability from the quantum mechanical incompatibility of the position and momentum measurements. This incompatibility is expressed by the fundamental commutator [x, p_x]=i hbar, or equivalently, via the Heisenberg's uncertainty principle Delta x Delta p_x sim hbar. A further stability-related phenomenon where the quantum realm plays a dramatic role is the collapse of certain stars into white dwarfs and neutron stars. Here, an intervention of the Pauli exclusion principle, via the fermionic degenerate pressure, stops the gravitational collapse. However, by the neutron-star stage the standard quantum realm runs dry. One is left with the problematic collapse of a black hole. This essay is devoted to a concrete argument on why the black-hole spacetime itself should exhibit a quantum nature. The proposed quantum aspect of spacetime is shown to prevent the general-relativistic dictated problematic collapse. The quantum nature of black-hole spacetime is deciphered from a recent re...

  9. Sowing Black Hole Seeds: Forming Direct Collapse Black Holes With Realistic Lyman-Werner Radiation Fields in Cosmological Simulations

    Science.gov (United States)

    Holley-Bockelmann, Kelly; Dunn, Glenna; Bellovary, Jillian M.; Christensen, Charlotte

    2016-01-01

    Luminous quasars detected at redshifts z > 6 require that the first black holes form early and grow to ~109 solar masses within one Gyr. Our work uses cosmological simulations to study the formation and early growth of direct collapse black holes. In the pre-reionization epoch, molecular hydrogen (H2) causes gas to fragment and form Population III stars, but Lyman-Werner radiation can suppress H2 formation and allow gas to collapse directly into a massive black hole. The critical flux required to inhibit H2 formation, Jcrit, is hotly debated, largely due to the uncertainties in the source radiation spectrum, H2 self-shielding, and collisional dissociation rates. Here, we test the power of the direct collapse model in a non-uniform Lyman-Werner radiation field, using an updated version of the SPH+N-body tree code Gasoline with H2 non-equilibrium abundance tracking, H2 cooling, and a modern SPH implementation. We vary Jcrit from 30 to 104 J21 to study the effect on seed black holes, focusing on black hole formation as a function of environment, halo mass, metallicity, and proximity of the Lyman-Werner source. We discuss the constraints on massive black hole occupation fraction in the quasar epoch, and implications for reionization, high-redshift X-ray background radiation, and gravitational waves.

  10. Higher dimensional charged $f(R)$ black holes

    CERN Document Server

    Sheykhi, Ahmad

    2012-01-01

    We construct a new class of higher dimensional black hole solutions of $f(R)$ theory coupled to a nonlinear Maxwell field. In deriving these solutions the traceless property of the energy-momentum tensor of the matter filed plays a crucial role. In $n$-dimensional spacetime the energy-momentum tensor of conformally invariant Maxwell field is traceless provided we take $n=4p$, where $p$ is the power of conformally invariant Maxwell lagrangian. These black hole solutions are similar to higher dimensional Reissner-Nordstrom AdS black holes but only exist for dimensions which are multiples of four. We calculate the conserved and thermodynamic quantities of these black holes and check the validity of the first law of black hole thermodynamics by computing a Smarr-type formula for the total mass of the solutions. Finally, we study the local stability of the solutions and find that there is indeed a phase transition for higher dimensional $f(R)$ black holes with conformally invariant Maxwell source.

  11. Higher-dimensional charged f(R) black holes

    Science.gov (United States)

    Sheykhi, Ahmad

    2012-07-01

    We construct a new class of higher-dimensional black hole solutions of f(R) theory coupled to a nonlinear Maxwell field. In deriving these solutions the traceless property of the energy-momentum tensor of the matter filed plays a crucial role. In n-dimensional spacetime the energy-momentum tensor of conformally invariant Maxwell field is traceless provided we take n=4p, where p is the power of conformally invariant Maxwell Lagrangian. These black hole solutions are similar to higher-dimensional Reissner-Nordstrom anti-de Sitter black holes but only exist for dimensions which are multiples of four. We calculate the conserved and thermodynamic quantities of these black holes and check the validity of the first law of black hole thermodynamics by computing a Smarr-type formula for the total mass of the solutions. Finally, we study the local stability of the solutions and find that there is indeed a phase transition for higher-dimensional f(R) black holes with conformally invariant Maxwell source.

  12. X-ray and Radio Constraints on the Mass of the Black Hole in Swift J164449.3+573451

    OpenAIRE

    Miller, J.M.; Gultekin, K.

    2011-01-01

    Swift J164449.3+573451 is an exciting transient event, likely powered by the tidal disruption of a star by a massive black hole. The distance to the source, its transient nature, and high internal column density serve to complicate several means of estimating the mass of the black hole. Utilizing newly-refined relationships between black hole mass, radio luminosity, and X-ray luminosity, and de-beaming the source flux, a weak constraint on the black hole mass is obtained: log(M/Msun) = 5.5 +/...

  13. Dynamics of black holes

    OpenAIRE

    Hayward, Sean A.

    2008-01-01

    This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...

  14. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  15. Black Hole Statistics

    OpenAIRE

    Strominger, Andrew

    1993-01-01

    The quantum statistics of charged, extremal black holes is investigated beginning with the hypothesis that the quantum state is a functional on the space of closed three-geometries, with each black hole connected to an oppositely charged black hole through a spatial wormhole. From this starting point a simple argument is given that a collection of extremal black holes obeys neither Bose nor Fermi statistics. Rather they obey an exotic variety of particle statistics known as ``infinite statist...

  16. Phantom Black Holes

    OpenAIRE

    Gao, C. J.; Zhang, S. N.

    2006-01-01

    The exact solutions of electrically charged phantom black holes with the cosmological constant are constructed. They are labelled by the mass, the electrical charge, the cosmological constant and the coupling constant between the phantom and the Maxwell field. It is found that the phantom has important consequences on the properties of black holes. In particular, the extremal charged phantom black holes can never be achieved and so the third law of thermodynamics for black holes still holds. ...

  17. Black Holes in the Early Universe

    OpenAIRE

    Volonteri, Marta; Bellovary, Jillian

    2012-01-01

    The existence of massive black holes was postulated in the sixties, when the first quasars were discovered. In the late nineties their reality was proven beyond doubt, in the Milky way and a handful nearby galaxies. Since then, enormous theoretical and observational efforts have been made to understand the astrophysics of massive black holes. We have discovered that some of the most massive black holes known, weighing billions of solar masses, powered luminous quasars within the first billion...

  18. On minor black holes in galactic nuclei

    OpenAIRE

    McKernan, Barry; Ford, K. E. Saavik; Yaqoob, Tahir; Winter, Lisa M.

    2011-01-01

    Small and intermediate mass black holes should be expected in galactic nuclei as a result of stellar evolution, minor mergers and gravitational dynamical friction. If these minor black holes accrete as X-ray binaries or ultra-luminous X-ray sources, and are associated with star formation, they could account for observations of many low luminosity AGN or LINERs. Accreting and inspiralling intermediate mass black holes could provide a crucial electromagnetic counterpart to strong gravitational ...

  19. Powerful jets from black hole X-ray binaries in Low/Hard X-ray states

    OpenAIRE

    Fender, R. P.

    2000-01-01

    Four persistent (Cygnus X-1, GX 339-4, GRS 1758-258 and 1E 1740.7-2942) and three transient (GS 2023+38, GRO J0422+32 and GS 1354-64) black hole X-ray binary systems have been extensively observed at radio wavelengths during extended periods in the Low/Hard X-ray state, which is characterised in X-rays by a hard power-law spectrum and strong variability. All seven systems show a persistent flat or inverted (in the sense that spectral index alpha >= 0) radio spectrum in this state, markedly di...

  20. Detecting eccentric supermassive black hole binaries with pulsar timing arrays: Resolvable source strategies

    CERN Document Server

    Taylor, S R; Gair, J R; McWilliams, S T

    2015-01-01

    The couplings between supermassive black-hole binaries and their environments within galactic nuclei have been well studied as part of the search for solutions to the final parsec problem. The scattering of stars by the binary or the interaction with a circumbinary disk may efficiently drive the system to sub-parsec separations, allowing the binary to enter a regime where the emission of gravitational-waves can drive it to merger within a Hubble time. However, these interactions can also affect the orbital parameters of the binary. In particular, they may drive an increase in binary eccentricity which survives until the system's gravitational-wave signal enters the pulsar-timing array band. Therefore, if we can measure the eccentricity from observed signals, we can potentially deduce some of the properties of the binary environment. To this end, we build on previous techniques to present a general Bayesian pipeline with which we can detect and estimate the parameters of an eccentric supermassive black-hole bi...

  1. On the seed photon source for Comptonisation in the black hole binary SWIFT J1753.5-0127

    CERN Document Server

    Kajava, J J E; Tsygankov, S; Neustroev, V

    2016-01-01

    Aims. The black hole binary SWIFT J1753.5-0127 is providing a unique data-set to study accretion flows. Various investigations of this system and of other black holes have not, however, led to an agreement on the accretion flow geometry nor on the seed photon source for Comptonisation during different stages of X-ray outbursts. We aim to place constraints on these accretion flow properties by studying long term spectral variations of this source. Methods. We performed phenomenological and self-consistent broad band spectral modeling of SWIFT J1753.5-0127 using quasi-simultaneous archived data from INTEGRAL/ISGRI, Swift/UVOT/XRT/BAT, RXTE/PCA/HEXTE and Maxi/GSC instruments. Results. 1. We identify a critical flux limit, F \\sim 1.5 \\times 10^{-8} erg/cm^2/s, and show that the spectral properties of SWIFT J1753.5-0127 are markedly different above and below that. Above the limit, during the outburst peak, the hot medium seems to intercept roughly 50 per cent of the disc emission. Below it, in the outburst tail, t...

  2. Mass of intermediate black hole in the source M82 X-1 restricted by models of twin high-frequency quasi-periodic oscillations

    CERN Document Server

    Stuchlík, Zdeněk

    2016-01-01

    We apply the relativistic precession (RP) model with its variants and the resonance epicyclic model with its variants, based on the frequencies of the geodesic epicyclic motion in the field of a Kerr black hole, to put limits on the mass of the black hole in the ultraluminous X-ray source M82 X-1 demonstrating twin high-frequency quasi-periodic oscillations (HF QPOs) with the frequency ratio near 3:2. The mass limits implied by the geodesic HF QPO models are compared to those obtained due to the model of string loop oscillations around a stable equilibrium position. Assuming the whole range of the black hole dimensionless spin, 0 130 M_{sun} confirming existence of an intermediate black hole in the M82 X-1 source. The upper limit given by one of the variants of the geodesic twin HF QPO models goes up to M_{M82 X-1}<1500 M_{sun}. The range 37-210 mHz of the low-frequency QPOs observed in the M82 X-1 source introduces additional restrictive limits on the black hole mass, if we model the low-frequency QPOs b...

  3. The odd couple: quasars and black holes

    OpenAIRE

    Tremaine, Scott

    2014-01-01

    Quasars emit more energy than any other objects in the universe, yet are not much bigger than the solar system. We are almost certain that quasars are powered by giant black holes of up to $10^{10}$ times the mass of the Sun, and that black holes of between $10^6$ and $10^{10}$ solar masses---dead quasars---are present at the centers of most galaxies. Our own galaxy contains a black hole of $4.3\\times10^6$ solar masses. The mass of the central black hole appears to be closely related to other...

  4. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  5. Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: Explaining the IceCube TeV-PeV neutrinos

    Science.gov (United States)

    Wang, Xiang-Yu; Liu, Ruo-Yu

    2016-04-01

    Cosmic ray interactions that produce high-energy neutrinos also inevitably generate high-energy gamma rays, which finally contribute to the diffuse high-energy gamma-ray background after they escape the sources. It was recently found that the high flux of neutrinos at ˜30 TeV detected by IceCube lead to a cumulative gamma-ray flux exceeding the Fermi isotropic gamma-ray background at 10-100 GeV, implying that the neutrinos are produced by hidden sources of cosmic rays, where GeV-TeV gamma rays are not transparent. Here we suggest that relativistic jets in tidal disruption events (TDEs) of supermassive black holes are such hidden sources. We consider the jet propagation in an extended, optically thick envelope around the black hole, which results from the ejected material during the disruption. While powerful jets can break free from the envelope, less powerful jets would be choked inside the envelope. The jets accelerate cosmic rays through internal shocks or reverse shocks and further produce neutrinos via interaction with the surrounding dense photons. All three TDE jets discovered so far are not detected by Fermi/LAT, suggesting that GeV-TeV gamma rays are absorbed in these jets. The cumulative neutrino flux from TDE jets can account for the neutrino flux observed by IceCube at PeV energies and may also account for the higher flux at ˜30 TeV if less powerful, choked jets are present in the majority of TDEs.

  6. New Limits on Primordial Black Hole Dark Matter from an Analysis of Kepler Source Microlensing Data

    Science.gov (United States)

    Griest, Kim; Cieplak, Agnieszka M.; Lehner, Matthew J.

    2013-11-01

    We present new limits on the allowed masses of a dark matter (DM) halo consisting of primordial black holes (PBH) (or any other massive compact halo object). We analyze two years of data from the Kepler satellite, searching for short-duration bumps caused by gravitational microlensing. After removing background events consisting of variable stars, flare events, and comets or asteroids moving through the Kepler field, we find no microlensing candidates. We measure the efficiency of our selection criteria by adding millions of simulated microlensing lensing events into the Kepler light curves. We find that PBH DM with masses in the range 2×10-9M⊙ to 10-7M⊙ cannot make up the entirety of the DM in the Milky Way. At the low-mass end, this decreases the allowed mass range by more than an order of magnititude.

  7. New limits on primordial black hole dark matter from an analysis of Kepler source microlensing data.

    Science.gov (United States)

    Griest, Kim; Cieplak, Agnieszka M; Lehner, Matthew J

    2013-11-01

    We present new limits on the allowed masses of a dark matter (DM) halo consisting of primordial black holes (PBH) (or any other massive compact halo object). We analyze two years of data from the Kepler satellite, searching for short-duration bumps caused by gravitational microlensing. After removing background events consisting of variable stars, flare events, and comets or asteroids moving through the Kepler field, we find no microlensing candidates. We measure the efficiency of our selection criteria by adding millions of simulated microlensing lensing events into the Kepler light curves. We find that PBH DM with masses in the range 2 × 10(-9) M[Symbol: see text] to 10(-7)M[Symbol: see text] cannot make up the entirety of the DM in the Milky Way. At the low-mass end, this decreases the allowed mass range by more than an order of magnititude. PMID:24237504

  8. Discovery and Monitoring of a new Black Hole Candidate XTE J1752-223 with RXTE: RMS spectrum evolution, BH mass and the source distance

    Science.gov (United States)

    Shaposhnikov, Nikolai; Markwardt, Craig; Swank, Jean; Krimm, Hans

    2010-12-01

    I will report on the discovery and monitoring observations of a new galactic black hole candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on October 21 2009 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/high-soft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass black hole binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a black body spectrum gets reprocessed in the Compromising medium. We follow the evolution of fractional root-mean-square (RMS) variability in the RXTE/PCA energy band with the source spectral state and conclude that broad band variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observation during the hard-to-soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source about 3.5 kiloparsec.

  9. Discovery and Monitoring of a New Black Hole Candidate XTE J1752-223 with RXTE: RMS Spectrum Evolution, BH Mass and the Source Distance

    Science.gov (United States)

    Shaposhinikov, Nikolai; Markwardt, Craig; Swank, Jean; Krimm, Hans

    2010-01-01

    We report on the discovery and monitoring observations of a new galactic black hole candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on October 21 2009 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/highsoft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass black hole binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a black body spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (RMS) variability in the RXTE/PCA energy band with the source spectral state and conclude that broad band variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hardto- soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source about 3.5 kiloparsec.

  10. Are ultralong gamma-ray bursts powered by black holes spinning down?

    Science.gov (United States)

    Nathanail, Antonios; Contopoulos, Ioannis

    2015-10-01

    Gamma-ray bursts (GRBs) are violent explosions, coming from cosmological distances. They are detected in gamma-rays (also X-rays, UV, optical, radio) almost every day, and have typical durations of a few seconds to a few minutes. Some GRBs have been reported with extraordinary durations of 104 s, the so-called ultralong GRBs. It has been debated whether these form a new distinct class of events or whether they are similar to long GRBs. According to Blandford & Znajek, the spin energy of a rotating black hole can be extracted electromagnetically, should the hole be endowed with a magnetic field supported by electric currents in a surrounding disc. We argue that this can be the case for the central engines of GRBs and we show that the duration of the burst depends on the magnetic flux accumulated on the event horizon of the black hole. We thus estimate the surface magnetic field of a possible progenitor star, and we conclude that an ultralong GRB may originate from a progenitor star with a relatively low magnetic field.

  11. Thermal BEC Black Holes

    Science.gov (United States)

    Casadio, Roberto; Giugno, Andrea; Micu, Octavian; Orlandi, Alessio

    2015-10-01

    We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a discrete ground state of energy $m$ (the bosons forming the black hole), and a continuous spectrum with energy $\\omega > m$ (representing the Hawking radiation and modelled with a Planckian distribution at the expected Hawking temperature). The $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M = N m$ and a Planckian distribution for $E > M$ at the same Hawking temperature. The partition function is then found to yield the usual area law for the entropy, with a logarithmic correction related with the Hawking component. The backreaction of modes with $\\omega > m$ is also shown to reduce the Hawking flux and the evaporation properly stops for vanishing mass.

  12. Thermal BEC Black Holes

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-10-01

    Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce

  13. Einstein and M{\\o}ller energy-momentum complexes for a new regular black hole solution with a nonlinear electrodynamics source

    CERN Document Server

    Radinschi, I; Grammenos, Th; Islam, Sayeedul

    2016-01-01

    A study about the energy and momentum distributions of a new charged regular black hole solution with a nonlinear electrodynamics source is presented. The energy and momentum are calculated using the Einstein and M{\\o}ller energy-momentum complexes. The results show that in both pseudotensorial prescriptions the expressions for the energy of the gravitational background depend on the mass $M$ and the charge $q$ of the black hole, an additional factor $\\beta $ coming from the spacetime metric considered, and the radial coordinate $r$, while in both prescriptions all the momenta vanish. Further, it is pointed out that in some limiting and particular cases the two complexes yield the same expression for the energy distribution as that obtained in the relevant literature for the Schwarzschild black hole solution.

  14. Gravitational waves from inspiralling binary black holes

    International Nuclear Information System (INIS)

    Binary black holes are the most promising candidate sources for the first generation of earth-based interferometric gravitational-wave detectors. We summarize and discuss the state-of-the-art analytical techniques developed during the last few years to better describe the late dynamical evolution of binary black holes of comparable masses

  15. Surfing a Black Hole

    Science.gov (United States)

    2002-10-01

    Star Orbiting Massive Milky Way Centre Approaches to within 17 Light-Hours [1] Summary An international team of astronomers [2], lead by researchers at the Max-Planck Institute for Extraterrestrial Physics (MPE) , has directly observed an otherwise normal star orbiting the supermassive black hole at the center of the Milky Way Galaxy. Ten years of painstaking measurements have been crowned by a series of unique images obtained by the Adaptive Optics (AO) NAOS-CONICA (NACO) instrument [3] on the 8.2-m VLT YEPUN telescope at the ESO Paranal Observatory. It turns out that earlier this year the star approached the central Black Hole to within 17 light-hours - only three times the distance between the Sun and planet Pluto - while travelling at no less than 5000 km/sec . Previous measurements of the velocities of stars near the center of the Milky Way and variable X-ray emission from this area have provided the strongest evidence so far of the existence of a central Black Hole in our home galaxy and, implicitly, that the dark mass concentrations seen in many nuclei of other galaxies probably are also supermassive black holes. However, it has not yet been possible to exclude several alternative configurations. In a break-through paper appearing in the research journal Nature on October 17th, 2002, the present team reports their exciting results, including high-resolution images that allow tracing two-thirds of the orbit of a star designated "S2" . It is currently the closest observable star to the compact radio source and massive black hole candidate "SgrA*" ("Sagittarius A") at the very center of the Milky Way. The orbital period is just over 15 years. The new measurements exclude with high confidence that the central dark mass consists of a cluster of unusual stars or elementary particles, and leave little doubt of the presence of a supermassive black hole at the centre of the galaxy in which we live . PR Photo 23a/02 : NACO image of the central region of the Milky Way

  16. Black Hole Statistics from Holography

    OpenAIRE

    Shepard, Peter G.

    2005-01-01

    We study the microstates of the ``small'' black hole in the $\\half$-BPS sector of AdS$_5\\times S^5$, the superstar of Myers and Tafjord, using the powerful holographic description provided by LLM. The system demonstrates the inherently statistical nature of black holes, with the geometry of Myer and Tafjord emerging only after averaging over an ensemble of geometries. The individual microstate geometries differ in the highly non-trivial topology of a quantum foam at their core, and the entrop...

  17. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  18. Thermal BEC black holes

    CERN Document Server

    Casadio, Roberto; Micu, Octavian; Orlandi, Alessio

    2015-01-01

    We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a...

  19. Evidence for black holes.

    Science.gov (United States)

    Begelman, Mitchell C

    2003-06-20

    Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity. PMID:12817138

  20. Black hole statistics

    International Nuclear Information System (INIS)

    The quantum statistics of charged, extremal black holes is investigated beginning with the hypothesis that the quantum state is a functional on the space of closed three-geometries, with each black hole connected to an oppositely charged black hole through a spatial wormhole. From this starting point a simple argument is given that a collection of extremal black holes obeys neither Bose nor Fermi statistics. Rather, they obey an exotic variety of particle statistics known as ''infinite statistics'' which resembles that of distinguishable particles and is realized by a q deformation of the quantum commutation relations

  1. Deforming regular black holes

    CERN Document Server

    Neves, J C S

    2015-01-01

    In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass terms. Using linear constraints in the energy-momentum tensor, the solutions are either regular or singular. That is, with this approach, it is possible to generate singular black holes from regular black holes and vice versa. Moreover, contrary to the Bardeen and Hayward regular solutions, the regular deformed metrics may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.

  2. The first massive black holes

    OpenAIRE

    Volonteri, Marta

    2012-01-01

    I briefly outline recent theoretical developments on the formation of the first massive black holes (MBHs) that may grow into the population of MBHs powering quasars and inhabiting galactic centers today. I also touch upon possible observational tests that may give insights on what the properties of the first MBHs were.

  3. Possible Evolution of Supermassive Black Holes from FRI quasars

    OpenAIRE

    Kim, Matthew I; Christian, Damian J.; Garofalo, David; D'Avanzo, Jaclyn

    2016-01-01

    We explore the question of the rapid buildup of black hole mass in the early universe employing a growing black hole mass-based determination of both jet and disk powers predicted in recent theoretical work on black hole accretion and jet formation. Despite simplified, even artificial assumptions about accretion and mergers, we identify an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the Big Bang without appea...

  4. Black holes and beyond

    International Nuclear Information System (INIS)

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for instance, the UK

  5. Massive Binary Black Holes in the Cosmic Landscape

    OpenAIRE

    Colpi, M.; Dotti, M.

    2009-01-01

    Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly. But, if the black holes reach coalescence, then they become the loudest sources of gravitational waves ever in the universe. Nature seems to provide a pathway for the formation of these ex...

  6. Low-frequency gravitational waves from supermassive black holes

    OpenAIRE

    Haehnelt, M. G.

    1994-01-01

    Supermassive black holes are investigated as possible sources for low-frequency bursts of gravity waves. The event rate for `known' supermassive black holes at intermediate and high redshifts, inferred from the quasar luminosity function, is low $\\sim 0.1 \\yr^{-1}$. A space-based interferometer could therefore only see several events per year from supermassive black holes if an additional population of supermassive black holes existed and emitted gravitational waves efficiently. These might r...

  7. Force-Free Electrodynamics around Extreme Kerr Black Holes

    CERN Document Server

    Lupsasca, Alexandru; Strominger, Andrew

    2014-01-01

    Plasma-filled magnetospheres can extract energy from a spinning black hole and provide the power source for a variety of observed astrophysical phenomena. These magnetospheres are described by the highly nonlinear equations of force-free electrodynamics, or FFE. Typically these equations can only be solved numerically. In this paper we consider the FFE equations very near the horizon of a maximally spinning black hole, where the energy extraction takes place. Thanks to an enhanced conformal symmetry which appears in this near-horizon region, we are able to analytically obtain several infinite families of exact solutions of the full nonlinear equations.

  8. Three Dimensional Charged Black Hole Inspired by Noncommutative Geometry

    CERN Document Server

    Larranaga, Alexis

    2010-01-01

    We find a new charged black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole as the source of matter and a gaussian distribution of electric charge. We deduce the thermodynamical quantities of this black hole and compare them with those of a charged BTZ solution.

  9. Retrograde versus Prograde Models of Accreting Black Holes

    Directory of Open Access Journals (Sweden)

    David Garofalo

    2013-01-01

    Full Text Available There is a general consensus that magnetic fields, accretion disks, and rotating black holes are instrumental in the generation of the most powerful sources of energy in the known universe. Nonetheless, because magnetized accretion onto rotating black holes involves both the complications of nonlinear magnetohydrodynamics that currently cannot fully be treated numerically, and uncertainties about the origin of magnetic fields that at present are part of the input, the space of possible solutions remains less constrained. Consequently, the literature still bears witness to the proliferation of rather different black hole engine models. But the accumulated wealth of observational data is now sufficient to meaningfully distinguish between them. It is in this light that this critical paper compares the recent retrograde framework with standard “spin paradigm” prograde models.

  10. A truncated accretion disk in the galactic black hole candidate source H1743-322

    Institute of Scientific and Technical Information of China (English)

    Kandulapati Sriram; Vivek Kumar Agrawal; Arikkala Raghurama Rao

    2009-01-01

    To investigate the geometry of the accretion disk in the source H1743-322, we have carded out a detailed X-ray temporal and spectral study using RXTE pointed observations. We have selected all data pertaining to the Steep Power Law (SPL) state during the 2003 outburst of this source. We find anti-correlated hard X-ray lags in three of the observations and the changes in the spectral and timing parameters (like the QPO fre-quency) confirm the idea of a truncated accretion disk in this source. Compiling data from similar observations of other sources, we find a correlation between the fractional change in the QPO frequency and the observed delay. We suggest that these observations indicate a definite size scale in the inner accretion disk (the radius of the truncated disk) and we explain the observed correlation using various disk parameters like Compton cooling time scale, viscous time scale etc..

  11. Noncommutative Singular Black Holes

    International Nuclear Information System (INIS)

    In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t - r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.

  12. Noncommutative Singular Black Holes

    Science.gov (United States)

    Hamid Mehdipour, S.

    2010-11-01

    In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t — r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.

  13. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  14. Black holes in inflation

    Science.gov (United States)

    Bousso, R.; Hawking, S. W.

    1997-08-01

    We summarise recent work on the quantum production of black holes in the inflationary era. We describe, in simple terms, the Euclidean approach used, and the results obtained both for the pair creation rate and for the evolution of the black holes.

  15. Scattering by Black Holes

    CERN Document Server

    Andersson, N

    2000-01-01

    This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.

  16. Black Hole Dynamic Potentials

    Indian Academy of Sciences (India)

    Koustubh Ajit Kabe

    2012-09-01

    In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.

  17. Evolution of massive black holes

    OpenAIRE

    Volonteri, Marta

    2007-01-01

    Supermassive black holes are nowadays believed to reside in most local galaxies. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I'll discuss black hole formation processes that are likely to place at early cosmic epochs, and how massive black hole evolve in a hierarchical Universe...

  18. Fluctuating Black Hole Horizons

    CERN Document Server

    Mei, Jianwei

    2013-01-01

    In this paper we treat the black hole horizon as a physical boundary to the spacetime and study its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as an example we derive an effective action that describes, in the large wave number limit, a massless Klein-Gordon field living on the average location of the boundary. Complete solutions can be found in the small rotation limit of the black hole. The formulation suggests that the boundary can be treated in the same way as any other matter contributions. In particular, the angular momentum of the boundary matches exactly with that of the black hole, suggesting an interesting possibility that all charges (including the entropy) of the black hole are carried by the boundary. Using this as input, we derive predictions on the Planck scale properties of the boundary.

  19. Information retrieval from black holes

    CERN Document Server

    Lochan, Kinjalk; Padmanabhan, T

    2016-01-01

    It is generally believed that, when matter collapses to form a black hole, the complete information about the initial state of the matter cannot be retrieved by future asymptotic observers, through local measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge and angular momentum is expected to be revealed to such asymptotic observers after the formation of a black hole. Semi-classically, black holes evaporate after their formation through the Hawking radiation. The dominant part of the radiation is expected to be thermal and hence one cannot know anything about the initial data from the resultant radiation. However, there can be sources of distortions which make the radiation non-thermal. Although the distortions are not strong enough to make the evolution unitary, these distortions carry some part of information regarding the in-state. In this work, we show ...

  20. Black Holes as Dark Matter Annihilation 'Boosters'

    International Nuclear Information System (INIS)

    The presence and growth of Intermediate and Supermassive Black Holes modify the surrounding distribution of stars and Dark Matter, and inevitably affect the prospects for indirectly detecting Dark Matter through its annihilation products. We show here that under specific circumstances, Black Holes can act as Dark Matter annihilation 'boosters'. In particular, we show that mini-spikes, i.e. Dark Matter overdensities around Intermediate-Mass Black Holes, would be bright sources of gamma-rays, well within the reach of the space telescope GLAST, that can be discriminated from ordinary astrophysical sources thanks to their peculiar energy spectrum and spatial distribution

  1. A Variable Ultraluminous Supersoft X-ray Source in "The Antennae": Stellar-Mass Black Hole or White Dwarf?

    CERN Document Server

    Fabbiano, G; Zezas, A L; Ponman, T J; Rots, A; Schweizer, F; Schweizer, Francois

    2003-01-01

    The chandra monitoring observations of The Antennae (NGC 4038/39) have led to the discovery of a variable, luminous, supersoft source (SSS). This source is only detected at energies below 2 keV and, in 2002 May, reached count rates comparable to those of the nine ultraluminous X-ray sources (ULXs) detected in these galaxies. Spectral fits of the SSS data give acceptable results only for a $\\sim$100--90 eV blackbody spectrum with an intrinsic absorption column of $N_{\\rm H} \\sim 2-3 \\times 10^{21} \\rm cm^{-2}$. For a distance of 19 Mpc, the best-fit observed luminosity increases from 1.7$\\times 10^{38}$\\ergs in 1999 December to 8.0$\\times 10^{38}$\\ergs in 2002 May. The intrinsic, absorption-corrected best-fit luminosity reaches 1.4$\\times 10^{40}$ \\ergs in 2002 May. The assumption of unbeamed emission would suggest a black hole of $\\ga$100\\msun. However, if the emission is blackbody at all times, as suggested by the steep soft spectrum, the radiating area would have to vary by a factor of $\\sim10^3$, inconsist...

  2. Dynamical formation signatures of black hole binaries in the first detected mergers by LIGO

    CERN Document Server

    O'Leary, Ryan M; Kocsis, Bence

    2016-01-01

    The dynamical formation of stellar-mass black hole-black hole binaries has long been a promising source of gravitational waves for the Laser Interferometer Gravitational-Wave Observatory (LIGO). Mass segregation, gravitational focusing, and multibody dynamical interactions naturally increase the interaction rate between the most massive black holes in dense stellar systems, eventually leading them to merge. We find that dynamical interactions enhance the merger rate of black hole binaries with total mass M_tot roughly as ~M_tot^beta, with beta >~ 4. We find that this relation holds mostly independently of the initial mass function, but the exact value depends on the degree of mass segregation. The detection rate of such massive black hole binaries is only further enhanced by LIGO's greater sensitivity to massive black hole binaries with M_tot <~ 80 solar masses. We find that for power-law BH mass functions dN/dM ~ M^-alpha with alpha <~ 2, LIGO is most likely to detect black hole binaries with a mass tw...

  3. The Formation and Growth of Black Holes in the Universe: New cosmological clues

    CERN Document Server

    CERN. Geneva

    2004-01-01

    In the last few years a change of paradigm occurred in the field of black hole research. We now believe, that stellar mass black holes are created in powerful gamma ray bursts. Stellar remnants of the first generation of stars have very likely been the seeds of supermassive black holes, which we find dormant in the centers of most nearby galaxies - including our own Milky Way. A tight correlation between black hole mass and the global properties of their host galaxies indicates a co-formation and evolution of black holes and galaxies. The X-ray sky is dominated by a diffuse extragalactic background radiation, which our team, together with others, was able to resolve almost completely into discrete sources using the X-ray satellites ROSAT, Chandra and XMM-Newton. Optical and NIR follow-up identifications showed, that we observe the growth phase of the population of supermassive black holes throughout the history of the Universe. The accretion history derived from X-ray observations shows, that the black holes ...

  4. The Formation and Growth of Black Holes in the Universe New cosmological clues

    CERN Document Server

    CERN. Geneva; Landua, Rolf

    2004-01-01

    In the last few years a change of paradigm occurred in the field of black hole research. We now believe, that stellar mass black holes are created in powerful gamma ray bursts. Stellar remnants of the first generation of stars have very likely been the seeds of supermassive black holes, which we find dormant in the centers of most nearby galaxies - including our own Milky Way. A tight correlation between black hole mass and the global properties of their host galaxies indicates a co-formation and evolution of black holes and galaxies. The X-ray sky is dominated by a diffuse extragalactic background radiation, which our team, together with others, was able to resolve almost completely into discrete sources using the X-ray satellites ROSAT, Chandra and XMM-Newton. Optical and NIR follow-up identifications showed, that we observe the growth phase of the population of supermassive black holes throughout the history of the Universe. The accretion history derived from X-ray observations shows, that the black holes ...

  5. Formation of the compact jets in the black hole GX 339-4

    OpenAIRE

    Corbel, S.; Aussel, H; Broderick, J. W.; Chanial, P.; Coriat, M.; Maury, A. J.; Buxton, M.; Tzioumis, J. A. Tomsick A.; Markoff, S.; Rodriguez, J.; Bailyn, C.; Brocksopp, C.; Fender, R.; Petrucci, P. O.; Cadolle-Bel, M.

    2013-01-01

    Galactic black hole binaries produce powerful outflows with emit over almost the entire electromagnetic spectrum. Here, we report the first detection with the Herschel observatory of a variable far-infrared source associated with the compact jets of the black hole transient GX 339-4 during the decay of its recent 2010-2011 outburst, after the transition to the hard state. We also outline the results of very sensitive radio observations conducted with the Australia Telescope Compact Array, alo...

  6. ULTRAMASSIVE BLACK HOLE COALESCENCE

    International Nuclear Information System (INIS)

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production

  7. CALIBRATING THE CORRELATION BETWEEN BLACK HOLE MASS AND X-RAY VARIABILITY AMPLITUDE: X-RAY ONLY BLACK HOLE MASS ESTIMATES FOR ACTIVE GALACTIC NUCLEI AND ULTRA-LUMINOUS X-RAY SOURCES

    International Nuclear Information System (INIS)

    A calibration is made for the correlation between the X-ray Variability Amplitude (XVA) and black hole (BH) mass. The correlation for 21 reverberation-mapped Active Galactic Nuclei (AGNs) appears very tight, with an intrinsic dispersion of 0.20 dex. The intrinsic dispersion of 0.27 dex can be obtained if BH masses are estimated from the stellar velocity dispersions. We further test the uncertainties of mass estimates from XVAs for objects that have been observed multiple times with good enough data quality. The results show that the XVAs derived from multiple observations change by a factor of 3. This means that BH mass uncertainty from a single observation is slightly worse than either reverberation-mapping or stellar velocity dispersion measurements; however, BH mass estimates with X-ray data only can be more accurate if the mean XVA value from more observations is used. With this calibrated relation, the BH mass and accretion rate may be determined for a large sample of AGNs with the planned International X-ray Observatory mission. Proper interpretation of the first AGN X-ray quasi-periodic oscillation (QPO), seen in the Seyfert galaxy RE J1034+396, depends on its BH mass, which is not currently known very well. Applying this relation, the BH mass of RE J1034+396 is found to be 4+3-2 x 106 Msun. The high end of the mass range follows the relationship between the 2f0 frequencies of high-frequency QPO and the BH masses derived from the Galactic X-ray binaries. We also calculate the high-frequency constant C = 2.37 Msun Hz-1 from 21 reverberation-mapped AGNs. As suggested by Gierlinski et al., MBH = C/CM, where CM is the high-frequency variability derived from XVA. Given the similar shape of power-law dominated X-ray spectra in ultra-luminous X-ray sources (ULXs) and AGNs, this can be applied to BH mass estimates of ULXs. We discuss the observed QPO frequencies and BH mass estimates in the ULXs M82 X-1 and NGC 5408 X-1 and favor ULXs as intermediate mass BH systems.

  8. Black hole evaporation in an expanding universe

    International Nuclear Information System (INIS)

    We calculate the quantum radiation power of black holes which are asymptotic to the Einstein-de Sitter universe at spatial and null infinities. We consider two limiting mass accretion scenarios, no accretion and significant accretion. We find that the radiation power strongly depends on not only the asymptotic condition but also the mass accretion scenario. For the no accretion case, we consider the Einstein-Straus solution, where a black hole of constant mass resides in the dust Friedmann universe. We find negative cosmological correction besides the expected redshift factor. This is given in terms of the cubic root of ratio in size of the black hole to the cosmological horizon, so that it is currently of order 10-5(M/106Mo-dot)1/3(t/14Gyr)-1/3 but could have been significant at the formation epoch of primordial black holes. Due to the cosmological effects, this black hole has not settled down to an equilibrium state. This cosmological correction may be interpreted in an analogy with the radiation from a moving mirror in a flat spacetime. For the significant accretion case, we consider the Sultana-Dyer solution, where a black hole tends to increase its mass in proportion to the cosmological scale factor. In this model, we find that the radiation power is apparently the same as the Hawking radiation from the Schwarzschild black hole of which mass is that of the growing mass at each moment. Hence, the energy loss rate decreases and tends to vanish as time proceeds. Consequently, the energy loss due to evaporation is insignificant compared to huge mass accretion onto the black hole. Based on this model, we propose a definition of quasi-equilibrium temperature for general conformal stationary black holes

  9. Noncommutative Solitonic Black Hole

    CERN Document Server

    Chang-Young, Ee; Lee, Daeho; Lee, Youngone

    2012-01-01

    We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field using the Moyal product expanded up to first order in the noncommutativity parameter in the two noncommutative spatial directions. By numerical simulation we look for black hole solutions by increasing the non- commutativity parameter value starting from regular solutions with vanishing noncommutativity. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.

  10. Reflection from black holes

    CERN Document Server

    Kuchiev, M Yu

    2003-01-01

    Black holes are presumed to have an ideal ability to absorb and keep matter. Whatever comes close to the event horizon, a boundary separating the inside region of a black hole from the outside world, inevitably goes in and remains inside forever. This work shows, however, that quantum corrections make possible a surprising process, reflection: a particle can bounce back from the event horizon. For low energy particles this process is efficient, black holes behave not as holes, but as mirrors, which changes our perception of their physical nature. Possible ways for observations of the reflection and its relation to the Hawking radiation process are outlined.

  11. Antigravity and black holes

    CERN Document Server

    Hajdukovic, D

    2006-01-01

    We speculate about impact of antigravity (i.e. gravitational repulsion between matter and antimatter) on the creation and emission of particles by a black hole. If antigravity is present a black hole made of matter may radiate particles as a black body, but this shouldn't be true for antiparticles. It may lead to radical change of radiation process predicted by Hawking and should be taken into account in preparation of the attempt to create and study mini black holes at CERN. Gravity, including antigravity is more than ever similar to electrodynamics and such similarity with a successfully quantized interaction may help in quantization of gravity.

  12. Scalarized hairy black holes

    International Nuclear Information System (INIS)

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn

  13. Nonstationary analogue black holes

    International Nuclear Information System (INIS)

    We study the existence of analogue nonstationary spherically symmetric black holes. The prime example is the acoustic model see Unruh (1981 Phys. Rev. Lett. 46 1351). We consider also a more general class of metrics that could be useful in other physical models of analogue black and white holes. We give examples of the appearance of black holes and of disappearance of white holes. We also discuss the relation between the apparent and the event horizons for the case of analogue black holes. In the end we study the inverse problem of determination of black or white holes by boundary measurements for the spherically symmetric nonstationary metrics. (paper)

  14. Scalarized hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)

    2015-05-11

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  15. Scalarized Hairy Black Holes

    CERN Document Server

    Kleihaus, Burkhard; Yazadjiev, Stoytcho

    2015-01-01

    In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  16. Forming Super-Massive Black Hole Seeds under the Influence of a Nearby Anisotropic Multi-Frequency Source

    CERN Document Server

    Regan, John; Wise, John

    2015-01-01

    The photo-dissociation of H$_2$ by a nearby anisotropic source of radiation is seen as a critical component in creating an environment in which a direct collapse black hole may form. Employing radiative transfer we model the effect of multi-frequency (0.76 eV - 60 eV) radiation on a collapsing halo at high redshift. We vary both the shape of the spectrum which emits the radiation and the distance to the emitting galaxy. We use blackbody spectra with temperatures of $\\rm{T = 10^4\\ K}$ and $\\rm{T = 10^5\\ K}$ and a realistic stellar spectrum. We find that an optimal zone exists between 1 kpc and 4 kpc from the emitting galaxy. If the halo resides too close to the emitting galaxy the photo-ionising radiation creates a large HII region which effectively disrupts the collapsing halo, too far from the source and the radiation flux drops below the level of the expected background and the H$_2$ fraction remains too high. When the emitting galaxy is initially placed between 1 kpc and 2 kpc from the collapsing halo, wit...

  17. Black hole particle emission in higher-dimensional spacetimes.

    Science.gov (United States)

    Cardoso, Vitor; Cavaglià, Marco; Gualtieri, Leonardo

    2006-02-24

    In models with extra dimensions, a black hole evaporates both in the bulk and on the visible brane, where standard model fields live. The exact emissivities of each particle species are needed to determine how the black hole decay proceeds. We compute and discuss the absorption cross sections, the relative emissivities, and the total power output of all known fields in the evaporation phase. Graviton emissivity is highly enhanced as the spacetime dimensionality increases. Therefore, a black hole loses a significant fraction of its mass in the bulk. This result has important consequences for the phenomenology of black holes in models with extra dimensions and black hole detection in particle colliders. PMID:16606074

  18. Evaporation of a black hole off of a tense brane

    International Nuclear Information System (INIS)

    We calculate the greybody factors for scalar, vector and graviton fields in the background of an exact black hole localized on a tensional 3-brane in a world with two large extra dimensions. Finite brane tension modifies the standard results for the case with of a black hole on a brane with negligible tension. For a black hole of a fixed mass, the power carried away into the bulk diminishes as the tension increases, because the effective Planck constant, and therefore entropy of a fixed mass black hole, increase. In this limit, the semiclassical description of black hole decay becomes more reliable

  19. Formation of the Black Holes in the Highest Redshift Quasars

    OpenAIRE

    Yoo, Jaiyul; Miralda-Escude, Jordi

    2004-01-01

    The recent discovery of luminous quasars up to a redshift z=6.43 has renewed interest in the formation of black holes massive enough to power quasars. If black holes grow by Eddington-limited gas accretion with a radiative efficiency of at least 10%, the time required to grow from a stellar black hole to ~10^9 msun is ~10^9 years, close to the age of the universe at z=6. Black hole mergers may accelerate the rate of mass growth, but can also completely eject black holes from halo centers owin...

  20. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    Science.gov (United States)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  1. Black hole dynamics at large D

    CERN Document Server

    CERN. Geneva

    2016-01-01

    We demonstrate that the classical dynamics of black holes can be reformulated as a dynamical problem of a codimension one membrane moving in flat space. This membrane - roughly the black hole event horizon - carries a conserved charge current and stress tensor which source radiation. This `membrane paradigm' may be viewed as a simplification of the equations of general relativity at large D, and suggests the possibility of using 1/D as a useful expansion parameter in the analysis of complicated four dimensional solutions of general relativity, for instance the collision between two black holes.

  2. Missing Black Holes Driven Out

    Science.gov (United States)

    2004-05-01

    Active galaxies Active galaxies are breathtaking objects. Their compact nuclei (AGN = Active Galaxy Nuclei) are so luminous that they can outshine the entire galaxy; "quasars" constitute extreme cases of this phenomenon, their powerful engine making them visible over a very large fraction of the observable Universe. It is now widely accepted that the ultimate power station of these activities originates in supermassive black holes with masses up to thousands of millions times the mass of our Sun, cf. e.g., ESO PR 04/01. For comparison, the one in the Milky Way galaxy has only about 3 million solar masses, cf. ESO PR 17/02. The central black hole is believed to be fed from a tightly wound accretion disc of gas and dust encircling it, in a donuts-shaped torus (cf. ESO PR 10/04). Material that falls towards these gigantic "vacuum cleaners" will be compressed and heated up to enormous temperatures. This hot gas radiates an incredible amount of light, causing the active galaxy nucleus to shine so brightly. Because of this obscuring dust torus, the aspect of the AGN or the quasar may greatly vary. Sometimes, astronomers can look along the axis of the dust torus from above or from below and thus have a clear view of the black hole. Such objects are called "Type-1 sources". "Type-2 sources", however, are oriented such that the dust torus is seen edge-on from Earth, and our view of the black hole is therefore totally blocked by the dust over a large range of wavelengths from the near-infrared to soft X-rays. Type-2 quasars - where are they? While many examples of rather close-by Type-2 AGNs are known (so-called Seyfert 2 galaxies), it is still a matter of debate whether their larger luminosity quasar counterparts exist. Until very recently, very few examples of this class were known. One of them is the Type-2 Quasar CXOCDFS J033229.9-275106, discovered by combining observations taken in X-rays with spectra obtained by the Very Large Telescope (ESO PR 05/01). It is indeed a

  3. On Noncommutative Black Holes Thermodynamics

    CERN Document Server

    Faizal, Mir; Ulhoa, S C

    2015-01-01

    In this paper, we will analyze noncommutative deformation of the Schwarzschild black holes and Kerr black holes. We will perform our analysis by relating the commutative and the noncommutative metrics using an Moyal product. We will also analyze the thermodynamics of these noncommutative black hole solutions. We will explicitly derive expression for the corrected entropy and temperature of these black hole solutions.

  4. The Thermodynamics of Black Holes

    Directory of Open Access Journals (Sweden)

    Wald Robert M.

    2001-01-01

    Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

  5. The Thermodynamics of Black Holes

    OpenAIRE

    Wald Robert M.

    1999-01-01

    We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

  6. Introducing the Black Hole

    Science.gov (United States)

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  7. Black holes in astrophysics

    International Nuclear Information System (INIS)

    In this review we shall concentrate on the application of the concept of black hole to different areas in astrophysics. Models in which this idea is involved are connected with basically two areas in astrophysics: a) The death of massive stars due to gravitational collapse. This process would lead to the formation of black holes with stellar masses (10-20 M sun). The detection of these kind of - objects is in principle possible, by means of studying the so-called X-ray binary system. b) Active nuclei of galaxies, including quasars as an extreme case. In this case, the best model available to explain the generation of the enormous amounts of energy observed as well as several other properties, is accretion into a supermassive black hole (106-1010 M sun) in the center. The problem of the origin of such black holes is related to cosmology. (author)

  8. Topics in black hole evaporation

    International Nuclear Information System (INIS)

    Two major aspects of particle creation by gravitational fields of black holes are studied: the neutrino emission from rotating black holes; and interactions between scalar particles emitted by a black hole. Neutrino emission is investigated under three topics: The asymmetry of the angular dependence of neutrino emission from rotating black holes; the production of a local matter excess by rotating black holes in a baryon symmetric universe; and cosmological magnetic field generation by neutrinos from evaporating black holes. Finally the author studies the effects of interactions on the black hole evaporation process

  9. Cosmological Black Holes

    OpenAIRE

    Stornaiolo, Cosimo

    2001-01-01

    In this paper we propose a model for the formation of the cosmological voids. We show that cosmological voids can form directly after the collapse of extremely large wavelength perturbations into low-density black holes or cosmological black holes (CBH). Consequently the voids are formed by the comoving expansion of the matter that surrounds the collapsed perturbation. It follows that the universe evolves, in first approximation, according to the Einstein-Straus cosmological model. We discuss...

  10. Cosmic Black Holes

    OpenAIRE

    Ahn, Eun-Joo; Cavaglia, Marco

    2003-01-01

    Production of high-energy gravitational objects is a common feature of gravitational theories. The primordial universe is a natural setting for the creation of black holes and other nonperturbative gravitational entities. Cosmic black holes can be used to probe physical properties of the very early universe which would usually require the knowledge of the theory of quantum gravity. They may be the only tool to explore thermalisation of the early universe. Whereas the creation of cosmic black ...

  11. Quantum black holes

    International Nuclear Information System (INIS)

    No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references

  12. Thermal corpuscular black holes

    OpenAIRE

    Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio

    2015-01-01

    We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number $N$ of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy $m$ (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy $\\omega>m$). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temp...

  13. A model of the steep power law spectra and high-frequency quasi-periodic oscillations in luminous black hole X-ray binaries

    OpenAIRE

    Dexter, Jason; Blaes, Omer

    2013-01-01

    We propose a new model of the steep power law state of luminous black hole X-ray binaries. The model uses the fact that at high luminosities, the inner radii of radiation pressure dominated accretion discs are expected to i) become effectively optically thin and ii) produce significant luminosities. The gas temperature therefore rises sharply inwards, producing local saturated Compton spectra with rapidly increasing peak energy. These spectra sum together to form a steep power law tail to the...

  14. Ghost Remains After Black Hole Eruption

    Science.gov (United States)

    2009-05-01

    NASA's Chandra X-ray Observatory has found a cosmic "ghost" lurking around a distant supermassive black hole. This is the first detection of such a high-energy apparition, and scientists think it is evidence of a huge eruption produced by the black hole. This discovery presents astronomers with a valuable opportunity to observe phenomena that occurred when the Universe was very young. The X-ray ghost, so-called because a diffuse X-ray source has remained after other radiation from the outburst has died away, is in the Chandra Deep Field-North, one of the deepest X-ray images ever taken. The source, a.k.a. HDF 130, is over 10 billion light years away and existed at a time 3 billion years after the Big Bang, when galaxies and black holes were forming at a high rate. "We'd seen this fuzzy object a few years ago, but didn't realize until now that we were seeing a ghost", said Andy Fabian of the Cambridge University in the United Kingdom. "It's not out there to haunt us, rather it's telling us something - in this case what was happening in this galaxy billions of year ago." Fabian and colleagues think the X-ray glow from HDF 130 is evidence for a powerful outburst from its central black hole in the form of jets of energetic particles traveling at almost the speed of light. When the eruption was ongoing, it produced prodigious amounts of radio and X-radiation, but after several million years, the radio signal faded from view as the electrons radiated away their energy. HDF 130 Chandra X-ray Image of HDF 130 However, less energetic electrons can still produce X-rays by interacting with the pervasive sea of photons remaining from the Big Bang - the cosmic background radiation. Collisions between these electrons and the background photons can impart enough energy to the photons to boost them into the X-ray energy band. This process produces an extended X-ray source that lasts for another 30 million years or so. "This ghost tells us about the black hole's eruption long after

  15. Black Holes In Distant Galaxies Point To Wild Youth

    Science.gov (United States)

    2002-06-01

    Like 'flower power' tattoos on aging ex-hippy baby boomers, unexpectedly large numbers of neutron stars and black holes in elliptical galaxies suggest some of these galaxies lived through a much wilder youth. The discovery by NASA's Chandra X-ray Observatory may require a revision of how elliptical galaxies evolved. "For the first time, Chandra has allowed us to distinguish hundreds of star-like sources that are black holes and neutron stars in distant elliptical galaxies," said Craig Sarazin of the University of Virginia who presented his team's findings on three elliptical galaxies, known as NGC 4697, NGC 4649, and NGC 1553, today at the American Astronomical Society meeting in Albuquerque, NM. "The black holes and neutron stars we now see in these elliptical galaxies are reminders of their very active past." Black holes and neutron stars are the "stellar corpses" of the brightest, most massive and short-lived stars. The presence of numerous neutron stars and black holes shows that these galaxies once contained many very bright, massive stars. This is in marked contrast to the present populations of lower-mass, faint, old stars that now dominate elliptical galaxies. NGC 1553 Press Image and Caption The black holes and neutron stars found by Chandra in these galaxies appear to be members of binary star systems. The strong pull of gravity from the collapsed star pulls material off the normal star. This material emits large amounts of X-rays as it falls into the black hole or neutron star. The Chandra observations also show that most of the binary star systems that contain black holes are not scattered randomly among the stars in the elliptical galaxies. Instead, most of the X-ray binaries are located in "globular star clusters," round balls of stars, containing about one million stars in a region of the galaxy where typically only one would be found. The high fraction of black hole binaries found in globular star clusters suggests that the black holes captured a

  16. Charged Galileon black holes

    Science.gov (United States)

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar

    2015-05-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.

  17. Cosmic censorship inside black holes

    CERN Document Server

    Thorlacius, L

    2006-01-01

    A simple argument is given that a traversable Cauchy horizon inside a black hole is incompatible with unitary black hole evolution. The argument assumes the validity of black hole complementarity and applies to a generic black hole carrying angular momentum and/or charge. In the second part of the paper we review recent work on the semiclassical geometry of two-dimensional charged black holes.

  18. Quantum Black Holes as Atoms

    OpenAIRE

    Bekenstein, Jacob D.

    1997-01-01

    In some respects the black hole plays the same role in gravitation that the atom played in the nascent quantum mechanics. This analogy suggests that black hole mass $M$ might have a discrete spectrum. I review the physical arguments for the expectation that black hole horizon area eigenvalues are uniformly spaced, or equivalently, that the spacing between stationary black hole mass levels behaves like 1/M. This sort of spectrum has also emerged in a variety of formal approaches to black hole ...

  19. Hawking radiation and the Stefan-Boltzmann law: The effective radius of the black-hole quantum atmosphere

    Science.gov (United States)

    Hod, Shahar

    2016-06-01

    It has recently been suggested (S.B. Giddings (2016) [2]) that the Hawking black-hole radiation spectrum originates from an effective quantum "atmosphere' which extends well outside the black-hole horizon. In particular, comparing the Hawking radiation power of a (3 + 1)-dimensional Schwarzschild black hole of horizon radius rH with the familiar Stefan-Boltzmann radiation power of a (3 + 1)-dimensional flat space perfect blackbody emitter, Giddings concluded that the source of the Hawking semi-classical black-hole radiation is a quantum region outside the Schwarzschild black-hole horizon whose effective radius rA is characterized by the relation Δr ≡rA -rH ∼rH. It is of considerable physical interest to test the general validity of Giddings's intriguing conclusion. To this end, we study the Hawking radiation of (D + 1)-dimensional Schwarzschild black holes. We find that the dimensionless radii rA /rH which characterize the black-hole quantum atmospheres, as determined from the Hawking black-hole radiation power and the (D + 1)-dimensional Stefan-Boltzmann radiation law, are a decreasing function of the number D + 1 of spacetime dimensions. In particular, it is shown that radiating (D + 1)-dimensional Schwarzschild black holes are characterized by the relation (rA -rH) /rH ≪ 1 in the large D ≫ 1 regime. Our results therefore suggest that, at least in some physical cases, the Hawking emission spectrum originates from quantum excitations very near the black-hole horizon.

  20. Black holes and the Universe

    International Nuclear Information System (INIS)

    The superstrong gravitational field is the protagonist of this book. This gravitation is the power that warps space and time into a funnel and generates a black hole when a cosmic body undergoes catastrophic collapse. This superstrong gravitation reigns in the Universe, controlling the motion of infinitely large masses. The book describes natural phenomena caused by superstrong gravitation but perceived as nothing short of miracles, but it also explains how these miracles are studied and understood. (author)

  1. Chandra Catches "Piranha" Black Holes

    Science.gov (United States)

    2007-07-01

    had good evidence until now," said co-author Paul Martini, also of OSU. "This can help solve a couple of mysteries about galaxy clusters." One mystery is why there are so many blue, star-forming galaxies in young, distant clusters and fewer in nearby, older clusters. AGN are believed to expel or destroy cool gas in their host galaxy through powerful eruptions from the black hole. This may stifle star formation and the blue, massive stars will then gradually die off, leaving behind only the old, redder stars. This process takes about a billion years or more to take place, so a dearth of star-forming galaxies is only noticeable for older clusters. The process that sets the temperature of the hot gas in clusters when they form is also an open question. These new results suggest that even more AGN may have been present when most clusters were forming about ten billion years ago. Early heating of a cluster by large numbers of AGN can have a significant, long-lasting effect on the structure of a cluster by "puffing up" the gas. "In a few nearby clusters we've seen evidence for huge eruptions generated by supermassive black holes. But this is sedate compared to what might be going on in younger clusters," said Eastman. These results appeared in the July 20th issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  2. Possible Short Gamma-Ray Bursts Associated with Black Hole - Black Hole Mergers

    CERN Document Server

    Zhang, Bing

    2016-01-01

    The discovery of GW 150914 suggests that double black hole (BH-BH) mergers are common in the universe. If at least one of the two merging black holes carries a small amount of charge, the inspiral of the BH-BH system would drive a magnetic dipole normal to the orbital plane. A magnetosphere would be developed, and the system would behave like a giant pulsar with increasing wind power. If the BH charge can be as large as a factor of $\\hat q \\sim 10^{-15}$ of the critical charge $Q_c$ of the BH, a detectable short-duration GRB would be generated right before the final coalescence. The GRB is supposed to have a short duration, nearly isotropic emission, and a delay with respect to the gravitational wave chirp signal. The putative short GRB coincident with GW 150914 detected with {\\em Fermi} GBM can be interpreted with this model. The detections or non-detections of such GRBs associated with future BH-BH merger gravitational wave sources would lead to constraints on the charges carried by isolate black holes.

  3. The ultraluminous X-ray source NGC 5643 ULX1: a large stellar mass black hole accreting at super-Eddington rates?

    CERN Document Server

    Pintore, F; Sutton, A D; Roberts, T P; Middleton, M J; Gladstone, J C

    2016-01-01

    A sub-set of the brightest ultraluminous X-ray sources (ULXs), with X-ray luminosities well above $10^{40}$ erg s$^{-1}$, typically have energy spectra which can be well described as hard power-laws, and short-term variability in excess of $\\sim10\\%$. This combination of properties suggests that these ULXs may be some of the best candidates to host intermediate mass black holes (IMBHs), which would be accreting at sub-Eddington rates in the hard state seen in Galactic X-ray binaries. In this work, we present a temporal and spectral analysis of all of the available XMM-Newton data from one such ULX, the previously poorly studied 2XMM J143242.1$-$440939, located in NGC 5643. We report that its high quality EPIC spectra can be better described by a broad, thermal component, such as an advection dominated disc or an optically thick Comptonising corona. In addition, we find a hint of a marginal change in the short-term variability which does not appear to be clearly related to the source unabsorbed luminosity. We ...

  4. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  5. Black hole statistics from holography

    International Nuclear Information System (INIS)

    We study the microstates of the 'small' black hole in the 1/2-BPS sector of AdS5 x S5, the superstar, using the powerful holographic description provided by LLM. The system demonstrates the inherently statistical nature of black holes, with the geometry presented elsewhere emerging only after averaging over an ensemble of geometries. The individual microstate geometries differ in the highly non-trivial topology of a quantum foam at their core, and the entropy can be understood as a partition of N units of flux among 5-cycles, as required by flux quantization. While the system offers confirmation of the most controversial aspect of Mathur and Lunin's recent 'fuzzball' proposal, we see signs of a discrepancy in interpreting its details

  6. Effects of power-law Maxwell field on the Van der Waals like phase transition of higher dimensional dilaton black holes

    CERN Document Server

    Mo, Jie-Xiong; Xu, Xiao-Bao

    2016-01-01

    The effects of power-law Maxwell field on the Van der Waals like phase transition of higher-dimensional dilaton black holes are probed in detail. It is shown that the Smarr relation gains corrections due to the effects of both the power-law Maxwell field and the dilaton field while thermodynamic volume is exactly the same as that of Einstein-Maxwell-dilaton black holes. We successfully derive the analytic solutions of critical point and carry out some check to ensure that these critical quantities are positive. It is shown that the constraint on the parameters turns out to be $0<\\alpha^2<1$, which is more tighter than that in the non-extended phase space. It is also shown that these critical quantities and the ratio $P_cv_c/T_c$ are affected by the power-law Maxwell field. Moreover, critical exponents are found to coincide with those of other AdS black holes, showing the powerful influence of mean field theory.

  7. Hawking radiation and the Stefan–Boltzmann law: The effective radius of the black-hole quantum atmosphere

    OpenAIRE

    Hod, Shahar

    2016-01-01

    It has recently been suggested (S.B. Giddings (2016) [2] ) that the Hawking black-hole radiation spectrum originates from an effective quantum “atmosphere' which extends well outside the black-hole horizon. In particular, comparing the Hawking radiation power of a (3+1) -dimensional Schwarzschild black hole of horizon radius rH with the familiar Stefan–Boltzmann radiation power of a (3+1) -dimensional flat space perfect blackbody emitter, Giddings concluded that the source of the Hawking semi...

  8. The relationship between radio power at 22 and 43 GHz and black hole properties of AGN in elliptical galaxies

    Science.gov (United States)

    Park, Songyoun; Sohn, Bong Won; Yi, Sukyoung K.

    2013-12-01

    We investigate the relationship between radio power and properties related to active galactic nuclei (AGNs). Radio power at 1.4 or 5 GHz, which has been used in many studies, can be affected by synchrotron self-absorption and free-free absorption in a dense region. On the other hand, these absorption effects get smaller at higher frequencies. Thus, we performed simultaneous observations at 22 and 43 GHz using the Korean VLBI Network (KVN) radio telescope based on a sample of 305 AGN candidates residing in elliptical galaxies from the overlap between the Sloan Digital Sky Survey (SDSS) Data Release 7 and Faint Images of the Radio Sky at Twenty-Centimeters (FIRST). About 37% and 22% of the galaxies are detected at 22 and 43 GHz, respectively. Assuming no flux variability between the FIRST and KVN observations, spectral indices were derived from FIRST and KVN data and we found that over 70% of the detected galaxies have flat or inverted spectra, implying the presence of optically thick compact regions near the centres of the galaxies. Core radio power does not show a clear dependence on black hole mass at either low (1.4 GHz) or high (22 and 43 GHz) frequencies. However, we found that the luminosity of the [OIII] λ5007 emission line and the Eddington ratio correlate with radio power more closely at high frequencies than at low frequencies. This suggests that radio observation at high frequencies can be an appropriate tool for unveiling the innermost region. In addition, the luminosity of the [OIII] λ5007 emission line and the Eddington ratio can be used as a tracer of AGN activity. Our study suggests a causal connection between high frequency radio power and optical properties of AGNs. Table 5 is available in electronic form at http://www.aanda.org

  9. Black holes in binary stellar systems and galactic nuclei

    Science.gov (United States)

    Cherepashchuk, A. M.

    2014-04-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).

  10. The lamppost model of accreting black holes

    Science.gov (United States)

    Zdziarski, A.

    2016-06-01

    Niedzwiecki, Zdziarski & Szanecki (2016, ApJL, submitted) have studied the lamppost model, in which the X-ray source in accreting black-hole systems is located on the rotation axis close to the horizon. We point out a number of inconsistencies in the widely used lamppost model relxilllp. They appear to invalidate those model fitting results for which the source distances from the horizon are within several gravitational radii. Furthermore, we note that if those results were correct, most of the photons produced in the lamppost would be trapped by the black hole, and the source luminosity as measured at infinity would be much larger than that observed. This appears to be in conflict with the observed smooth state transitions between the hard and soft states of X-ray binaries. The required increase of the accretion rate and the associated efficiency reduction present also a problem for AGNs. Then, those models imply the luminosity measured in the local frame much higher than the dissipated power due to time dilation and redshift, and the electron temperature significantly higher than that observed. We show that these conditions imply that the fitted sources would be out of the pair equilibrium.

  11. Neutrinos from active black holes, sources of ultra high energy cosmic rays

    CERN Document Server

    Becker, Julia K

    2008-01-01

    A correlation between the highest energy Cosmic Rays (above ~60 EeV) and the distribution of Active Galactic Nuclei (AGN) gives rise to a prediction of neutrino production in the same sources. In this paper, we present a detailed AGN model, predicting neutrino production near the foot of the jet, where the photon field from the disk creates a high optical depth for proton-photon interactions. The protons escape from later shocks where the emission region is optically thin for proton-photon interactions. Consequently, Cosmic Rays are predicted to come from FR-I galaxies, independent of the orientation of the source. Neutrinos, on the other hand, are only observable from sources directing their jet towards Earth, i.e. flat spectrum radio quasars, due to the strongly beamed neutrino emission.

  12. Virtual black holes

    Science.gov (United States)

    Hawking, S. W.

    1996-03-01

    One would expect spacetime to have a foamlike structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the nontrivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S2×S2 and K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S2×S2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix S/ that does not factorize into an S matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the θ angle of QCD is zero without having to invoke the problematical existence of a light axion. The picture of virtual black holes given here also suggests that macroscopic black holes will evaporate down to the Planck size and then disappear in the sea of virtual black holes.

  13. Charged Galileon black holes

    CERN Document Server

    Babichev, Eugeny; Hassaine, Mokhtar

    2015-01-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematic...

  14. Binary Black Hole Merger Rates Inferred from Luminosity Function of Ultra-Luminous X-ray Sources: Implications to the Origin of GW150914

    CERN Document Server

    Inoue, Yoshiyuki; Isobe, Naoki

    2016-01-01

    The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) has detected direct signals of gravitational waves (GWs) from GW150914. The event was a merger of a binary black holes whose masses are $36^{+5}_{-4}M_{\\odot}$ and $29^{+4}_{-4}M_{\\odot}$. Such binary systems are expected to be formed in either isolated binary systems or dense stellar environments. Here we derived the binary black hole merger rate for isolated binary systems based on the nearby ultra-luminous X-ray source (ULX) luminosity function (LF). We obtained the binary black hole merger rate as $1.9 ({t}_{\\rm ULX}/{1 \\ \\rm Myr})^{-1} \\lambda^{-0.6} \\exp{(-0.30\\lambda)} \\ {\\rm Gpc^{-3}\\ yr^{-1}}$, where $t_{\\rm ULX}$ is the typical duration of the ULX phase and $\\lambda$ is the Eddington ratio. This is comparable to the event rate inferred from the detection of GW150914 as well as the predictions based on binary population synthesis models. Although we are currently unable to constrain $\\lambda$ due to the uncertainties of our mode...

  15. Jets from Tidal Disruptions of Stars by Black Holes

    CERN Document Server

    Krolik, Julian H

    2011-01-01

    Tidal disruption of main sequence stars by black holes has generally been thought to lead to a signal dominated by UV emission. If, however, the black hole spins rapidly and the poloidal magnetic field intensity on the black hole horizon is comparable to the inner accretion disk pressure, a powerful jet may form whose luminosity can easily exceed the thermal UV luminosity. When the jet beam points at Earth, its non-thermal luminosity can dominate the emitted spectrum. The thermal and non-thermal components decay differently with time. In particular, the thermal emission should remain roughly constant for a significant time after the period of maximum accretion, beginning to diminish only after a delay, whereas after the peak accretion rate, the non-thermal jet emission decays, but then reaches a plateau. When the newly-found flare source Swift J2058 is analyzed in terms of this model, it is found to be consistent with an event in which a main sequence solar-type star is disrupted by a black hole of mass at le...

  16. OBSERVATIONAL SIGNATURES OF TILTED BLACK HOLE ACCRETION DISKS FROM SIMULATIONS

    International Nuclear Information System (INIS)

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15 deg., in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth and exhibit unique features such as broad 'blue wings'. Coupled with precession, the azimuthal variation could generate time fluctuations in observed emission lines, which would be a clear 'signature' of a tilted accretion flow. Finally, we evaluate the possibility that the observed low- and high-frequency quasi-periodic oscillations (QPOs) from black hole binaries could be produced by misaligned accretion flows. Although low-frequency QPOs from precessing, tilted disks remains a viable option, we find little evidence for significant power in our light curves in the frequency range of high-frequency QPOs.

  17. Observational Signatures of Tilted Black Hole Accretion Disks from Simulations

    Science.gov (United States)

    Dexter, Jason; Fragile, P. Chris

    2011-03-01

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15°, in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth and exhibit unique features such as broad "blue wings." Coupled with precession, the azimuthal variation could generate time fluctuations in observed emission lines, which would be a clear "signature" of a tilted accretion flow. Finally, we evaluate the possibility that the observed low- and high-frequency quasi-periodic oscillations (QPOs) from black hole binaries could be produced by misaligned accretion flows. Although low-frequency QPOs from precessing, tilted disks remains a viable option, we find little evidence for significant power in our light curves in the frequency range of high-frequency QPOs.

  18. Cross-correlating Cosmic IR and X-ray Background Fluctuations: Evidence of Significant Black Hole Populations Among the CIB Sources

    Science.gov (United States)

    Cappelluti, N.; Kashlinsky, A.; Arendt, R. G.; Comastri, A.; Fazio, G. G.; Finoguenov, A.; Hasinger, G.; Mather, J. C.; Miyaji, T; Moseley, S. H.

    2013-01-01

    In order to understand the nature of the sources producing the recently uncovered cosmic infrared background (CIB) fluctuations, we study cross-correlations between the fluctuations in the source-subtracted CIB from Spitzer/IRAC data and the unresolved cosmic X-ray background from deep Chandra observations. Our study uses data from the EGS/AEGIS field, where both data sets cover an approx = 8' x 45' region of the sky. Our measurement is the cross-power spectrum between the IR and X-ray data. The cross-power signal between the IRAC maps at 3.6 micron and 4.5 micron and the Chandra [0.5-2] keV data has been detected, at angular scales approx >20'', with an overall significance of approx = 3.8 sigma and approx. = 5.6 sigma, respectively. At the same time we find no evidence of significant cross-correlations at the harder Chandra bands. The cross-correlation signal is produced by individual IR sources with 3.6 micron and 4.5 micron magnitudes m(sub AB) approx. > 25-26 and [0.5-2] keV X-ray fluxes black holes than among the known populations. We discuss the various possible origins for the cross-power signal and show that neither local foregrounds nor the known remaining normal galaxies and active galactic nuclei can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations. local foregrounds, nor the known remaining normal galaxies and active galactic nuclei (AGN) can reproduce the measurements. These observational results are an important new constraint on theoretical modeling of the near-IR CIB fluctuations

  19. Noncommutative black hole thermodynamics

    International Nuclear Information System (INIS)

    We give a general derivation, for any static spherically symmetric metric, of the relation Th=(K/2π) connecting the black hole temperature (Th) with the surface gravity (K), following the tunneling interpretation of Hawking radiation. This derivation is valid even beyond the semi-classical regime, i.e. when quantum effects are not negligible. The formalism is then applied to a spherically symmetric, stationary noncommutative Schwarzschild space-time. The effects of backreaction are also included. For such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals interesting features regarding the variation of the Hawking temperature (including corrections due to noncommutativity and backreaction) with the small radius of the black hole. The entropy and tunneling rate valid for the leading order in the noncommutative parameter are calculated. We also show that the noncommutative Bekenstein-Hawking area law has the same functional form as the usual one

  20. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids. PMID:25768746

  1. Black Hole Bose Condensation

    International Nuclear Information System (INIS)

    General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a cold, stable remnant

  2. Black Hole Bose Condensation

    Science.gov (United States)

    Vaz, Cenalo; Wijewardhana, L. C. R.

    2013-12-01

    General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a "cold", stable remnant.

  3. Turbulent Black Holes

    CERN Document Server

    Yang, Huan; Lehner, Luis

    2014-01-01

    We show that rapidly-spinning black holes can display turbulent gravitational behavior which is mediated by a new type of parametric instability. This instability transfers energy from higher temporal and azimuthal spatial frequencies to lower frequencies--- a phenomenon reminiscent of the inverse energy cascade displayed by 2+1-dimensional turbulent fluids. Our finding reveals a path towards gravitational turbulence for perturbations of rapidly-spinning black holes, and provides the first evidence for gravitational turbulence in an asymptotically flat spacetime. Interestingly, this finding predicts observable gravitational wave signatures from such phenomena in black hole binaries with high spins and gives a gravitational description of turbulence relevant to the fluid-gravity duality.

  4. Turbulent Black Holes

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-01

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability—which is triggered above a certain perturbation amplitude threshold—akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies—a phenomenon reminiscent of the inverse cascade displayed by (2 +1 )-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  5. Detection of black holes from optical phenomena

    International Nuclear Information System (INIS)

    The way by which the bending of light rays around black holes could give rise to optical phenomena, other than the lens effect, leading to the detection of them, is examined. One such phenomenon is the fact that we will see a ring of brightness around the black hole when we flash light on it. Another phenomenon is the appearance of a nebulosity around the black hole coming from the scattering of light from all discrete sources of the sky when it passes near the black hole. We examine the surface brightness of the phenomena seen and calculate the maximum distance of the black hole in order for the associated phenomena to appear on photographs. We find that primordial black holes of mass M ≅ 1016 Msolarmasses would be detectable by the first phenomenon if they existed within 5 Mpc distance from us, while they would be detectable by the second phenomenon if they existed within 200-300 Mpc distance from us. (author)

  6. Slowly balding black holes

    International Nuclear Information System (INIS)

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πc(ℎ/2π)), where Φ∞≅2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  7. Black holes and beyond

    International Nuclear Information System (INIS)

    The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome ‘remnants’. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a ‘fuzzball’ structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates together with ideas about entangled states leads to a natural set of conjectures on many long-standing questions in gravity: the significance of Rindler and de Sitter entropies, the notion of black hole complementarity, and the fate of an observer falling into a black hole. - Highlights: ► The information paradox is a serious problem. ► To solve it we need to find ‘hair’ on black holes. ► In string theory we find ‘hair’ by the fuzzball construction. ► Fuzzballs help to resolve many other issues in gravity.

  8. Noncommutative solitonic black hole

    International Nuclear Information System (INIS)

    We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value. (paper)

  9. Noncommutative solitonic black hole

    Science.gov (United States)

    Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone

    2012-05-01

    We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.

  10. Superfluid Black Holes

    CERN Document Server

    Hennigar, Robie A; Tjoa, Erickson

    2016-01-01

    We present what we believe is the first example of a "$\\lambda$-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid $^4$He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  11. Virtual Black Holes

    OpenAIRE

    Hawking, Stephen W.

    1995-01-01

    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of $S^2\\times S^2$ and $K3$ bubbles. Comparison with the instantons for pair creation of black holes shows that the $S^2\\times S^2$ bubbles can be interpreted as closed loops of virtual black holes. It is ...

  12. Dancing with black holes

    CERN Document Server

    Aarseth, Sverre J

    2007-01-01

    We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.

  13. Scattering from black holes

    Energy Technology Data Exchange (ETDEWEB)

    Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.

    1987-01-01

    This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging.

  14. Scattering from black holes

    International Nuclear Information System (INIS)

    This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging

  15. Are Black Holes Springy?

    CERN Document Server

    Good, Michael R R

    2014-01-01

    A $(3+1)$-dimensional asymptotically flat Kerr black hole angular speed $\\Omega_+$ can be used to define an effective spring constant, $k=m\\Omega_+^2$. Its maximum value is the Schwarzschild surface gravity, $k = \\kappa $, which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: $2\\pi T = \\kappa - k$. Hooke's law, in the extremal limit, provides the force $F = 1/4$, which is consistent with the conjecture of maximum force in general relativity.

  16. Horndeski black hole geodesics

    CERN Document Server

    Tretyakova, D A

    2016-01-01

    We examine geodesics for the scalar-tensor black holes in the Horndeski-Galileon framework. Our analysis shows that first kind relativistic orbits may not be present within some model parameters range. This is a highly pathological behavior contradicting to the black hole accretion and Solar System observations. We also present a new (although very similar to those previously known) solution, which contains the orbits we expect from a compact object, admits regular scalar field at the horizon and and can fit into the known stability criteria.

  17. Computations of Photon Orbits Emitted by Flares at the ISCO of Accretion Disks Around Rotating Black Holes

    Science.gov (United States)

    Kazanas, Demosthenes; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\

  18. Gravitational Tension, Spacetime Pressure and Black Hole Volume

    CERN Document Server

    Armas, Jay; Sanchioni, Marco

    2015-01-01

    We study the first law of black hole thermodynamics in the presence of surrounding gravitational fields and argue that variations of these fields are naturally incorporated in the first law by defining gravitational tension or gravitational binding energy. We demonstrate that this notion can also be applied in Anti-de Sitter spacetime, in which the surrounding gravitational field is sourced by a cosmological fluid, therefore showing that spacetime volume and gravitational tension encode the same physics as spacetime pressure and black hole volume. We furthermore show that it is possible to introduce a definition of spacetime pressure and black hole volume for any spacetime with characteristic length scales which does not necessarily require a cosmological constant sourcing Einstein equations. However, we show that black hole volume is non-universal in the flat spacetime limit, questioning its significance. We illustrate these ideas by studying the resulting black hole volume of Kaluza-Klein black holes and of...

  19. The black hole final state

    OpenAIRE

    Horowitz, Gary T.; Maldacena, Juan

    2003-01-01

    We propose that in quantum gravity one needs to impose a final state boundary condition at black hole singularities. This resolves the apparent contradiction between string theory and semiclassical arguments over whether black hole evaporation is unitary.

  20. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  1. Exact solutions of higher dimensional black holes

    CERN Document Server

    Tomizawa, Shinya

    2011-01-01

    We review exact solutions of black holes in higher dimensions, focusing on asymptotically flat black hole solutions and Kaluza-Klein type black hole solutions. We also summarize some properties which such black hole solutions reveal.

  2. Black Hole Evaporation. A Survey

    OpenAIRE

    Benachenhou, Farid

    1994-01-01

    This thesis is a review of black hole evaporation with emphasis on recent results obtained for two dimensional black holes. First, the geometry of the most general stationary black hole in four dimensions is described and some classical quantities are defined. Then, a derivation of the spectrum of the radiation emitted during the evaporation is presented. In section four, a two dimensional model which has black hole solutions is introduced, the so-called CGHS model. These two dimensional blac...

  3. Towards noncommutative quantum black holes

    International Nuclear Information System (INIS)

    In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole

  4. Towards Noncommutative Quantum Black Holes

    OpenAIRE

    Lopez-Dominguez, J. C.; Obregon, O.; Ramirez, C.; Sabido, M.

    2006-01-01

    In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole.

  5. Black Hole: The Interior Spacetime

    CERN Document Server

    Ong, Yen Chin

    2016-01-01

    The information loss paradox is often discussed from the perspective of the observers who stay outside of a black hole. However, the interior spacetime of a black hole can be rather nontrivial. We discuss the open problems regarding the volume of a black hole, and whether it plays any role in information storage. We also emphasize the importance of resolving the black hole singularity, if one were to resolve the information loss paradox.

  6. Gravitational wave production by rotating primordial black holes

    OpenAIRE

    Dong, Ruifeng; Kinney, William H.; Stojkovic, Dejan

    2015-01-01

    In this paper we analyze in detail a rarely discussed question of gravity waves production from evaporating black holes. Evaporating black holes emit gravitons which are at classical level registered as gravity waves. We use the latest constraints on the primordial black hole abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during t...

  7. Quantum-gravity phenomenology with primordial black holes

    CERN Document Server

    Vidotto, Francesca; Bolliet, Boris; Shutten, Marrit; Weimer, Celine

    2016-01-01

    Quantum gravity may allow black holes to tunnel into white holes. If so, the lifetime of a black hole could be shorter than the one given by Hawking evaporation, solving the information paradox. More interestingly, this could open to a new window for quantum-gravity phenomenology, in connection with the existence of primordial black holes. We discuss in particular the power of the associated explosion and the possibility to observe an astrophysical signal in the radio and in the gamma wavelengths.

  8. Black hole feedback in the luminous quasar PDS 456

    DEFF Research Database (Denmark)

    Nardini, E.; Reeves, J. N.; Gofford, J.;

    2015-01-01

    The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different...... gas. The outflow’s kinetic power larger than 1046 ergs per second is enough to provide the feedback required by models of black hole and host galaxy coevolution....

  9. Ultrahigh Energy Cosmic Rays and Black Hole Mergers

    CERN Document Server

    Kotera, Kumiko

    2016-01-01

    The recent detection of the gravitational wave source GW150914 by the LIGO collaboration motivates a speculative source for the origin of ultrahigh energy cosmic rays as a possible byproduct of the immense energies achieved in black hole mergers, provided that the black holes have spin as seems inevitable and there are relic magnetic fields and disk debris remaining from the formation of the black holes or from their accretion history. We argue that given the modest efficiency $< 0.01$ required per event per unit of gravitational wave energy release, merging black holes potentially provide an environment for accelerating cosmic rays to ultrahigh energies.

  10. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  11. Black hole magnetospheres

    International Nuclear Information System (INIS)

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  12. Warped products and black holes

    International Nuclear Information System (INIS)

    We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes

  13. Warped products and black holes

    CERN Document Server

    Hong, S T

    2005-01-01

    We apply the warped product spacetime scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstr\\"om-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes.

  14. Slowly balding black holes

    Science.gov (United States)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-10-01

    The “no-hair” theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively “frozen in” the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πcℏ), where Φ∞≈2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole’s magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  15. A Nearly Naked Supermassive Black Hole

    CERN Document Server

    Condon, J J; Kovalev, Y Y; Petrov, L

    2016-01-01

    During a systematic search for supermassive black holes (SMBHs) not in galactic nuclei, we identified the compact symmetric radio source B3 1715+425 with an emission-line galaxy offset ~ 8.5 kpc from the nucleus of the brightest cluster galaxy (BCG) in the redshift $z = 0.1754$ cluster ZwCl 8193. B3 1715+425 is too bright (brightness temperature $\\sim 3 \\times 10^{10}$ K at observing frequency 7.6 GHz) and too luminous (1.4 GHz luminosity $\\sim 10^{25}$ W/Hz) to be powered by anything but a SMBH, but its host galaxy is much smaller ($\\sim 0.9$ kpc $\\times$ 0.6 kpc full width between half-maximum points) and optically fainter (R-band absolute magnitude $\\sim -18.2$) than any other radio galaxy. Its high radial velocity $\\sim 1860$ km/s relative to the BCG, continuous ionized wake extending back to the BCG nucleus, and surrounding debris indicate that the radio galaxy was tidally shredded passing through the BCG core, leaving a nearly naked supermassive black hole fleeing from the BCG with space velocity $> 200...

  16. Chaotic and stochastic processes in the accretion flows of the black hole X-ray binaries revealed by recurrence analysis

    OpenAIRE

    Suková, Petra; Grzedzielski, Mikolaj; Janiuk, Agnieszka

    2015-01-01

    The black hole candidates exhibit fast variability of their X-ray emission on a wide range of timescales. The short, coherent variations, with frequencies above 1 Hz, are referred to as quasi-periodic oscillations, and are generally explained by resonant effects in the black hole accretion flow. The purely stochastic variability that occurs due to turbulent conditions in the plasma, is quantified by the power density spectra and appears practically in all types of sources and their spectral s...

  17. Accretion flows govern black hole jet properties

    Science.gov (United States)

    Koljonen, K.; Russell, D.; Fernández Ontiveros, J.; Miller-Jones, J.; Russell, T.; Curran, P.; Soria, R.; Markoff, S.; van der Horst, A.; Casella, P.

    2015-07-01

    The process of jet formation in accreting black holes, and the conditions under which it occurs is currently hotly debated, with competing models predicting the jet power to be governed by black hole spin, the magnetic field strength, the location of the jet base, the mass accretion rate and/or the properties of the inner accretion flow. We present new results that show empirical correlations between the accretion flow properties and the spectral energy distribution of the jets launched from accreting black holes. The X-ray power law is directly related to the particle energy distribution in the hot accretion flow. We find that the photon index of this power law correlates with the characteristic break frequency in the jet spectrum emitted near the jet base, and the jet luminosity up to the break frequency. The observed correlations can be explained by the energy distribution of electrons in the hot accretion flow being subsequently channeled into the jet. These correlations represent a new inflow--outflow connection in accreting black holes, and demonstrate that the spectral properties of the jet rely most critically on the conditions in the inner accretion flow, rather than other parameters such as the black hole mass or spin.

  18. Deep radio imaging of 47 Tuc identifies the peculiar X-ray source X9 as a new black hole candidate

    Science.gov (United States)

    Miller-Jones, J. C. A.; Strader, J.; Heinke, C. O.; Maccarone, T. J.; van den Berg, M.; Knigge, C.; Chomiuk, L.; Noyola, E.; Russell, T. D.; Seth, A. C.; Sivakoff, G. R.

    2015-11-01

    We report the detection of steady radio emission from the known X-ray source X9 in the globular cluster 47 Tuc. With a double-peaked C IV emission line in its ultraviolet spectrum providing a clear signature of accretion, this source had been previously classified as a cataclysmic variable. In deep ATCA (Australia Telescope Compact Array) imaging from 2010 and 2013, we identified a steady radio source at both 5.5 and 9.0 GHz, with a radio spectral index (defined as Sν ∝ να) of α = -0.4 ± 0.4. Our measured flux density of 42 ± 4 μJy beam-1 at 5.5 GHz implies a radio luminosity (νLν) of 5.8 × 1027 erg s-1, significantly higher than any previous radio detection of an accreting white dwarf. Transitional millisecond pulsars, which have the highest radio-to-X-ray flux ratios among accreting neutron stars (still a factor of a few below accreting black holes at the same LX), show distinctly different patterns of X-ray and radio variability than X9. When combined with archival X-ray measurements, our radio detection places 47 Tuc X9 very close to the radio/X-ray correlation for accreting black holes, and we explore the possibility that this source is instead a quiescent stellar-mass black hole X-ray binary. The nature of the donor star is uncertain; although the luminosity of the optical counterpart is consistent with a low-mass main-sequence donor star, the mass transfer rate required to produce the high quiescent X-ray luminosity of 1033 erg s-1 suggests the system may instead be ultracompact, with an orbital period of order 25 min. This is the fourth quiescent black hole candidate discovered to date in a Galactic globular cluster, and the only one with a confirmed accretion signature from its optical/ultraviolet spectrum.

  19. Observational Evidence for Black Holes

    OpenAIRE

    Narayan, Ramesh; McClintock, Jeffrey E.

    2013-01-01

    Astronomers have discovered two populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range 10^6 to 10^{10} solar masses, one each in the nucleus of every galaxy. There is strong circumstantial evidence that all these objects are true black holes with event horizons. The measured masses of supermassive black hole are strongly corr...

  20. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  1. Statistical mechanics of black holes

    International Nuclear Information System (INIS)

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed

  2. Grumblings from an Awakening Black Hole

    Science.gov (United States)

    Kohler, Susanna

    2015-11-01

    In June of this year, after nearly three decades of sleep, the black hole V404 Cygni woke up and began grumbling. Scientists across the globe scrambled to observe the sudden flaring activity coming from this previously peaceful black hole. And now were getting the first descriptions of what weve learned from V404 Cygs awakening!Sudden OutburstV404 Cyg is a black hole of roughly nine solar masses, and its in a binary system with a low-mass star. The black hole pulls a stream of gas from the star, which then spirals in around the black hole, forming an accretion disk. Sometimes the material simply accumulates in the disk but every two or three decades, the build-up of gas suddenly rushes toward the black hole as if a dam were bursting.The sudden accretion in these events causes outbursts of activity from the black hole, its flaring easily visible to us. The last time V404 Cyg exhibited such activity was in 1989, and its been rather quiet since then. Our telescopes are of course much more powerful and sensitive now, nearly three decades later so when the black hole woke up and began flaring in June, scientists were delighted at the chance to observe it.The high variability of V404 Cyg is evident in this example set of spectra, where time increases from the bottom panel to the top. [King et al. 2015]Led by Ashley King (Einstein Fellow at Stanford University), a team of scientists observed V404 Cyg with the Chandra X-ray Observatory, obtaining spectra of the black hole during its outbursts. The black hole flared so brightly during its activity that the team had to take precautions to protect the CCDs in their detector from radiation damage! Now the group has released the first results from their analysis.Windy DiskThe primary surprise from V404 Cyg is its winds. Many stellar-mass black holes have outflows of mass, either in the form of directed jets emitted from their centers, or in the form of high-energy winds isotropically emitted from their accretion disks. But V404

  3. Prisons of light : black holes

    Science.gov (United States)

    Ferguson, Kitty

    What is a black hole? Could we survive a visit to one -- perhaps even venture inside? Have we yet discovered any real black holes? And what do black holes teach us about the mysteries of our Universe? These are just a few of the tantalizing questions examined in this tour-de-force, jargon-free review of one of the most fascinating topics in modern science. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light - Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.

  4. Point mass Cosmological Black Holes

    CERN Document Server

    Firouzjaee, Javad T

    2016-01-01

    Real black holes in the universe are located in the expanding accelerating background which are called the cosmological black holes. Hence, it is necessary to model these black holes in the cosmological background where the dark energy is the dominant energy. In this paper, we argue that most of the dynamical cosmological black holes can be modeled by point mass cosmological black holes. Considering the de Sitter background for the accelerating universe, we present the point mass cosmological background in the cosmological de Sitter space time. Our work also includes the point mass black holes which have charge and angular momentum. We study the mass, horizons, redshift structure and geodesics properties for these black holes.

  5. Discovery and Monitoring of a new Black Hole Candidate XTE J1752-223 with RXTE: RMS spectrum evolution, BH mass and the source distance

    CERN Document Server

    Shaposhnikov, Nikolai; Swank, Jean; Krimm, Hans

    2010-01-01

    We report on the discovery and monitoring observations of a new galactic black hole candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on October 21 2009 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/high-soft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass black hole binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a black body spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (RMS) variability in the RXTE/PCA energy band with the source spectral state and conclude that broad band variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard st...

  6. The Galactic Center Black Hole Laboratory

    CERN Document Server

    Eckart, A; Valencia-S., M; Straubmeier, C; Zensus, J A; Karas, V; Kunneriath, D; Alberdi, A; Sabha, N; Schödel, R; Puetzfeld, D

    2015-01-01

    The super-massive 4 million solar mass black hole Sagittarius~A* (SgrA*) shows flare emission from the millimeter to the X-ray domain. A detailed analysis of the infrared light curves allows us to address the accretion phenomenon in a statistical way. The analysis shows that the near-infrared flare amplitudes are dominated by a single state power law, with the low states in SgrA* limited by confusion through the unresolved stellar background. There are several dusty objects in the immediate vicinity of SgrA*. The source G2/DSO is one of them. Its nature is unclear. It may be comparable to similar stellar dusty sources in the region or may consist predominantly of gas and dust. In this case a particularly enhanced accretion activity onto SgrA* may be expected in the near future. Here the interpretation of recent data and ongoing observations are discussed.

  7. Black Holes and Fourfolds

    CERN Document Server

    Bena, Iosif; Vercnocke, Bert

    2012-01-01

    We establish the relation between the structure governing supersymmetric and non-supersymmetric four- and five-dimensional black holes and multicenter solutions and Calabi-Yau flux compactifications of M-theory and type IIB string theory. We find that the known BPS and almost-BPS multicenter black hole solutions can be interpreted as GKP compactifications with (2,1) and (0,3) imaginary self-dual flux. We also show that the most general GKP compactification leads to new classes of BPS and non-BPS multicenter solutions. We explore how these solutions fit into N=2 truncations, and elucidate how supersymmetry becomes camouflaged. As a necessary tool in our exploration we show how the fields in the largest N=2 truncation fit inside the six-torus compactification of eleven-dimensional supergravity.

  8. Shape of black holes

    CERN Document Server

    Clement, María E Gabach

    2015-01-01

    It is well known that celestial bodies tend to be spherical due to gravity and that rotation produces deviations from this sphericity. We discuss what is known and expected about the shape of black holes' horizons from their formation to their final, stationary state. We present some recent results showing that black hole rotation indeed manifests in the widening of their central regions, limits their global shapes and enforces their whole geometry to be close to the extreme Kerr horizon geometry at almost maximal rotation speed. The results depend only on the horizon area and angular momentum. In particular they are entirely independent of the surrounding geometry of the spacetime and of the presence of matter satisfying the strong energy condition. We also discuss the the relation of this result with the Hoop conjecture.

  9. Black-hole astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  10. Noncommutative Black Holes

    CERN Document Server

    Bastos, C; Dias, N C; Prata, J N

    2010-01-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity regime and it is shown that the wave function vanishes in this limit.

  11. Noncommutative Solitonic Black Hole

    OpenAIRE

    Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone

    2011-01-01

    We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find t...

  12. Infinitely Coloured Black Holes

    OpenAIRE

    Mavromatos, Nick E.; Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom)

    1999-01-01

    We formulate the field equations for $SU(\\infty)$ Einstein-Yang-Mills theory, and find spherically symmetric black-hole solutions. This model may be motivated by string theory considerations, given the enormous gauge symmetries which characterize string theory. The solutions simplify considerably in the presence of a negative cosmological constant, particularly for the limiting cases of a very large cosmological constant or very small gauge field. The situation of an arbitrarily small gauge f...

  13. Beyond the black hole

    International Nuclear Information System (INIS)

    This book is about the life and work of Stephen Hawking. It traces the development of his theories about the universe and particularly black holes, in a biographical context. Hawking's lecture 'Is the end in sight for theoretical physics' is presented as an appendix. In this, he discusses the possibility of achieving a complete, consistent and unified theory of the physical interactions which would describe all possible observations. (U.K.)

  14. Black holes reconsidered

    CERN Document Server

    Helfer, Adam D

    2011-01-01

    I review elements of the foundations of black-hole theory with attention to problematic issues, and describe some techniques which either seem to help with the difficulties or at least investigate their scope. The definition of black holes via event horizons has been problematic because it depends on knowing the global structure of space-time; often attempts to avoid this (e.g. apparent horizons) require knowledge of the interior geometry. I suggest studying instead the holonomy relating the exterior neighborhood of the incipient horizon to the regime of distant observers; at least in the spherically symmetric case, this holonomy will develop certain universal features, in principle observable from signals emitted from infalling objects. I discuss the theory of quantum fields in curved space-time, and the difficulties with Hawking's prediction of black-hole radiation. I then show that the usual, very natural, theory of quantum fields in curved space-time runs into difficulties when applied to measurement prob...

  15. Slowly balding black holes

    CERN Document Server

    Lyutikov, Maxim

    2011-01-01

    The "no hair" theorem, a key result in General Relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the "no hair" theorem is not formally applicable for black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes $N_B = e \\Phi_\\infty /(\\pi c \\hbar)$, where $\\Phi_\\infty \\approx 2 \\pi^2 B_{NS} R_{NS}^3 /(P_{\\rm NS} c)$ is the initial magnetic flux through the hemisphere...

  16. Thermal corpuscular black holes

    Science.gov (United States)

    Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio

    2015-06-01

    We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number N of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy m (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy ω >m ). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding N -particle state can be collectively described by a single-particle wave function given by a superposition of a total ground state with energy M =N m and a Planckian distribution for E >M at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction precisely related with the Hawking component. By means of the horizon wave function for the system, we finally show the backreaction of modes with ω >m reduces the Hawking flux. Both corrections, to the entropy and to the Hawking flux, suggest the evaporation properly stops for vanishing mass, if the black hole is in this particular quantum state.

  17. Black holes in the early Universe.

    Science.gov (United States)

    Volonteri, Marta; Bellovary, Jillian

    2012-12-01

    The existence of massive black holes (MBHs) was postulated in the 1960s, when the first quasars were discovered. In the late 1990s their reality was proven beyond doubt in the Milky way and a handful nearby galaxies. Since then, enormous theoretical and observational efforts have been made to understand the astrophysics of MBHs. We have discovered that some of the most massive black holes known, weighing billions of solar masses, powered luminous quasars within the first billion years of the Universe. The first MBHs must therefore have formed around the time the first stars and galaxies formed. Dynamical evidence also indicates that black holes with masses of millions to billions of solar masses ordinarily dwell in the centers of today's galaxies. MBHs populate galaxy centers today, and shone as quasars in the past; the quiescent black holes that we detect now in nearby bulges are the dormant remnants of this fiery past. In this review we report on basic, but critical, questions regarding the cosmological significance of MBHs. What physical mechanisms led to the formation of the first MBHs? How massive were the initial MBH seeds? When and where did they form? How is the growth of black holes linked to that of their host galaxy? The answers to most of these questions are works in progress, in the spirit of these reports on progress in physics. PMID:23099537

  18. Spectral Index and Quasi-Periodic Oscillation Frequency Correlation in Black Hole (BH) Sources: Observational Evidence of Two Phases and Phase Transition in BHs

    Science.gov (United States)

    Titarchuk, Lev; Fiorito, Ralph

    2004-01-01

    Recent studies have shown that strong correlations are observed between the low frequencies (1-10 Hz) of quasiperiodic oscillations (QPOs) and the spectral power law index of several Black Hole (BH) candidate sources, in low hard states, steep power-law (soft) states and in transition between these states. The observations indicate that the X-ray spectrum of such state (phases) show the presence of a power-law component and are sometimes related to simultaneous radio emission indicated the probable presence of a jet. Strong QPOs (less than 20% rms) are present in the power density spectrum in the spectral range where the power-law component is dominant ( i.e. 60-90% ). This evidence contradicts the dominant long standing interpretation of QPOs as a signature of the thermal accretion disk. We present the data from the literature and our own data to illustrate the dominance of power-law index-QPO frequency correlations. We provide a model, that identifies and explains the origin of the QPOs and how they are imprinted on the properties of power-law flux component. We argue the existence of a bounded compact coronal region which is a natural consequence of the adjustment of Keplerian disk flow to the innermost sub-Keplerian boundary conditions near the central object and that ultimately leads to the formation of a transition layer (TL) between the adjustment radius and the innermost boundary. The model predicts two phases or states dictated by the photon upscattering produced in the TL: (1) hard state, in which the TL is optically thin and very hot (kT approx. greater than 50 keV) producing photon upscattering via thermal Componization; the photon spectrum index Gamma appprox.1.5 for this state is dictated by gravitational energy release and Compton cooling in an optically thin shock near the adjustment radius; (2) a soft state which is optically thick and relatively cold (approx. less than 5 keV); the index for this state, Gamma approx. 2.8 is determined by soft

  19. A Compact Supermassive Binary Black Hole System

    CERN Document Server

    Rodríguez, C; Zavala, R T; Peck, A B; Pollack, L K; Romani, R W

    2006-01-01

    We report on the discovery of a supermassive binary black hole system in the radio galaxy 0402+379, with a projected separation between the two black holes of just 7.3 pc. This is the closest black hole pair yet found by more than two orders of magnitude. These results are based upon recent multi-frequency observations using the Very Long Baseline Array (VLBA) which reveal two compact, variable, flat-spectrum, active nuclei within the elliptical host galaxy of 0402+379. Multi-epoch observations from the VLBA also provide constraints on the total mass and dynamics of the system. Low spectral resolution spectroscopy using the Hobby-Eberly Telescope indicates two velocity systems with a combined mass of the two black holes of ~1.5 x 10^8 solar masses. The two nuclei appear stationary while the jets emanating from the weaker of the two nuclei appear to move out and terminate in bright hot spots. The discovery of this system has implications for the number of close binary black holes that might be sources of gravi...

  20. Jets, black holes and disks in blazars

    Directory of Open Access Journals (Sweden)

    Ghisellini Gabriele

    2013-12-01

    Full Text Available The Fermi and Swift satellites, together with ground based Cherenkov telescopes, has greatly improved our knowledge of blazars, namely Flat Spectrum Radio Quasars and BL Lac objects, since all but the most powerful emit most of their electro–magnetic output at γ–ray energies, while the very powerful blazars emit mostly in the hard X–ray region of the spectrum. Often they show coordinated variability at different frequencies, suggesting that in these cases the same population of electrons is at work, in a single zone of the jet. The location of this region along the jet is a matter of debate. The jet power correlates with the mass accretion rate, with jets existing at all values of disk luminosities, measured in Eddington units, sampled so far. The most powerful blazars show clear evidence of the emission from their disks, and this has revived methods of finding the black hole mass and accretion rate by modelling a disk spectrum to the data. Being so luminous, blazars can be detected also at very high redshift, and therefore are a useful tool to explore the far universe. One interesting line of research concerns how heavy are their black holes at high redshifts. If we associate the presence of a relativistic jets with a fastly spinning black hole, then we naively expect that the accretion efficiency is larger than for non–spinning holes. As a consequence, the black hole mass in jetted systems should grow at a slower rate. In turn, this would imply that, at high redshifts, the heaviest black holes should be in radio–quiet quasars. We instead have evidences of the opposite, challenging our simple ideas of how a black hole grows.

  1. The formation and gravitational-wave detection of massive stellar black hole binaries

    International Nuclear Information System (INIS)

    If binaries consisting of two ∼100 M☉ black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several ≳ 150 M☉ stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  2. The formation and gravitational-wave detection of massive stellar black hole binaries

    Energy Technology Data Exchange (ETDEWEB)

    Belczynski, Krzysztof; Walczak, Marek [Astronomical Observatory, Warsaw University, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Buonanno, Alessandra [Maryland Center for Fundamental Physics and Joint Space-Science Institute, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Cantiello, Matteo [Kavli Institute for Theoretical Physics, University of California, Kohn Hall, Santa Barbara, CA 93106 (United States); Fryer, Chris L. [Computational Computer Science Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Holz, Daniel E. [Enrico Fermi Institute, Department of Physics, and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Mandel, Ilya [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Miller, M. Coleman, E-mail: kbelczyn@astrouw.edu.pl [Department of Astronomy and Joint Space-Science Institute University of Maryland, College Park, MD 20742-2421 (United States)

    2014-07-10

    If binaries consisting of two ∼100 M{sub ☉} black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several ≳ 150 M{sub ☉} stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  3. Spectral fits with TCAF model : A global understanding of both temporal and spectral properties of black hole sources

    Science.gov (United States)

    Debnath, Dipak; Sarathi Pal, Partha; Chakrabarti, Sandip Kumar; Mondal, Santanu; Jana, Arghajit; Chatterjee, Debjit; Molla, Aslam Ali

    2016-07-01

    There are many theoretical and phenomenological models in the literature which explain physics of accretion around black holes (BHs). Some of these models assume ad hoc components to explain different timing and spectral aspects of black hole candidates (BHCs) which no necessarily follow from physical equations. Chakrabarti and his collaborators, on the other hand claim in the last two decades that the spectral and timing properties of BHCs must not be treated separately since variation of these properties happens due to variation of two component (Keplerian and sub-Keplerian) accretion flow rates, and the Compton cloud parameters only. Recently after the inclusion of Two-component advective flow (TCAF) model in to HEASARC's spectral analysis software package XSPEC as an additive local model, we found that TCAF is quite capable to describe the underlying accretion flow dynamics around BHs with spectral fitted physical parameters. Properties of different spectral states and their transitions during an outburst of a transient BHC are more clear. A strong correlation between spectral and timing properties could also be seen in Accretion Rate Ratio Intensity Diagram (ARRID), where transitions between different spectral states are prominent. One can also predict frequency of the dominating quasi-periodic oscillation (QPO) from TCAF model fitted shock parameters and even predict the most probable mass range of an unknown BHC from TCAF fits. This gives us a confidence that the description of accretion process is more clear than ever before.

  4. A jet model for Galactic black-hole X-ray sources: the cutoff energy-phase-lag correlation

    CERN Document Server

    Reig, P

    2015-01-01

    Galactic black-hole X-ray binaries emit a compact, optically thick, mildy relativistic radio jet when they are in the hard and hard-intermediate states. In a series of papers, we have developed a jet model and have shown, through Monte Carlo simulations, that our model can explain many observational results. In this work, we investigate one more constraining relationship between the cutoff energy and the phase lag during the early stages of an X-ray outburst of the black-hole X-ray binary GX 339-4: the cutoff energy decreases while the phase lag increases during the brightening of the hard state. We demonstrate that our jet model naturally explains the above correlation, with a minor modification consisting of introducing an acceleration zone at the base of the jet. The observed correlation between the cutoff energy and the phase lag suggests that the lags are produced by the hard component. Here we show that this correlation arises naturally if Comptonization in the jet produces these two quantities.

  5. An intermediate-mass black hole candidate in M51?

    Science.gov (United States)

    Earnshaw, H. M.

    2016-05-01

    We present the current results of an investigation into M51 ULX-7, using archival data from XMM-Newton, Chandra and NuSTAR, and optical and radio data from HST and VLA. The source has a consistently hard power-law X-ray spectrum and high short-term variability. This is unusual variability behaviour for a ULX, as we would expect highly variable ULXs to have soft energy spectra. The power spectrum features a break at ˜ 10-3 Hz, from low frequency spectral index α=0.1 to high frequency spectral index α=0.8, analogous to the low frequency break found in power spectra of black holes accreting in the low/hard state. We do not observe a corresponding high frequency break, however taking the white noise level as a frequency lower limit of the break, we can calculate a black hole mass upper limit of 9.12×104 M⊙, assuming that the ULX is in the low/hard state. While there is no radio detection, we find a flux density upper limit of 87 μJy/beam. Using the X-ray/radio fundamental plane, we calculate a black hole mass upper limit of 1.95×105 M⊙. Therefore, this ULX is consistent with being an IMBH accreting in the low/hard state.

  6. Vacuum and nonvacuum black holes in a uniform magnetic field

    CERN Document Server

    Azreg-Aïnou, Mustapha

    2016-01-01

    We generalize the known solution for the electromagnetic field when a vacuum, stationary, axisymmetric black hole is immersed in a uniform magnetic field to the case of nonvacuum black holes and determine all linear terms of the vector potential in powers of the magnetic field and the rotation parameter.

  7. Supersymmetry versus black holes at the LHC

    CERN Document Server

    Roy, Arunava

    2007-01-01

    Supersymmetry and extra dimensions are the two most promising candidates for new physics at the TeV scale. Supersymmetric particles or extra-dimensional effects could soon be observed at the Large Hadron Collider. We propose a simple but powerful method to discriminate the two models: the analysis of isolated leptons with high transverse momentum. Black hole events are simulated with the CATFISH black hole generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET, the latter providing the mass spectrum. Our results show the measure of the dilepton invariant mass provides a strong signature to differentiate supersymmetry and black hole events at the Large Hadron Collider. Analysis of event-shape variables and multilepton events complement and strengthen this conclusion.

  8. Twisting of light around rotating black holes

    CERN Document Server

    Tamburini, Fabrizio; Molina-Terriza, Gabriel; Anzolin, Gabriele; 10.1038/nphys1907

    2011-01-01

    Kerr black holes are among the most intriguing predictions of Einstein's general relativity theory. These rotating massive astrophysical objects drag and intermix their surrounding space and time, deflecting and phase-modifying light emitted nearby them. We have found that this leads to a new relativistic effect that imposes orbital angular momentum onto such light. Numerical experiments, based on the integration of the null geodesic equations of light from orbiting point-like sources in the Kerr black hole equatorial plane to an asymptotic observer, indeed identify the phase change and wavefront warping and predict the associated light-beam orbital angular momentum spectra. Setting up the best existing telescopes properly, it should be possible to detect and measure this twisted light, thus allowing a direct observational demonstration of the existence of rotating black holes. Since non-rotating objects are more an exception than a rule in the Universe, our findings are of fundamental importance.

  9. Twisting of light around rotating black holes

    Science.gov (United States)

    Tamburini, Fabrizio; Thidé, Bo; Molina-Terriza, Gabriel; Anzolin, Gabriele

    2011-03-01

    Kerr black holes are among the most intriguing predictions of Einstein's general relativity theory. These rotating massive astrophysical objects drag and intermix their surrounding space and time, deflecting and phase-modifying light emitted near them. We have found that this leads to a new relativistic effect that imprints orbital angular momentum on such light. Numerical experiments, based on the integration of the null geodesic equations of light from orbiting point-like sources in the Kerr black hole equatorial plane to an asymptotic observer, indeed identify the phase change and wavefront warping and predict the associated light-beam orbital angular momentum spectra. Setting up the best existing telescopes properly, it should be possible to detect and measure this twisted light, thus allowing a direct observational demonstration of the existence of rotating black holes. As non-rotating objects are more an exception than a rule in the Universe, our findings are of fundamental importance.

  10. Hadrons As Kerr-Newman Black Holes

    OpenAIRE

    Oldershaw, R. L.

    2006-01-01

    The scale invariance of the source-free Einstein field equations suggests that one might be able to model hadrons as "strong gravity" black holes, if one uses an appropriate rescaling of units or a revised gravitational coupling factor. The inner consistency of this hypothesis is tested by retrodicting a close approximation to the mass of the proton from an equation that relates the angular momentum and mass of a Kerr black hole. More accurate mass and radius values for the proton are then re...

  11. Quasi periodic oscillations in black hole binaries

    CERN Document Server

    Motta, S E

    2016-01-01

    Fast time variability is the most prominent characteristic of accreting systems and the presence of quasi periodic oscillations (QPOs) is a constant in all accreting systems, from cataclysmic variables to AGNs, passing through black hole and neutron star X-ray binaries and through the enigmatic ultra-luminous X-ray sources. In this paper I will briefly review the current knowledge of QPOs in black hole X-ray binaries, mainly focussing on their observed properties, but also mentioning the most important models that have been proposed to explain the origin of QPOs over the last decades.

  12. Stimulated emission and black holes

    International Nuclear Information System (INIS)

    The probability of a black hole emitting m particles when n particles are incident on the black hole was first derived by Bekenstein and Meisels, and later, using a different method, by Panangaden and Wald. In another paper by Bekenstein, it was argued that black holes should have stimulated emission in all modes including the nonsuperradiant ones. In this paper, we use a model based on quantum field theory. We show that Bose-Einstein statistics enhances the probability for particles to scatter in the same direction. We also prove that a black hole is equivalent to a perfect blackbody surrounded by a mirror. In our model, the black hole does not exhibit stimulated emission in nonsuperradiant modes. We also compare the black hole to a gray body

  13. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  14. Black Hole Masses are Quantized

    CERN Document Server

    Dvali, Gia; Mukhanov, Slava

    2011-01-01

    We give a simple argument showing that in any sensible quantum field theory the masses of black holes cannot assume continuous values and must be quantized. Our proof solely relies on Poincare-invariance of the asymptotic background, and is insensitive to geometric characteristics of black holes or other peculiarities of the short distance physics. Therefore, our results are equally-applicable to any other localized objects on asymptotically Poincare-invariant space, such as classicalons. By adding a requirement that in large mass limit the quantization must approximately account for classical results, we derive an universal quantization rule applicable to all classicalons (including black holes) in arbitrary number of dimensions. In particular, this implies, that black holes cannot emit/absorb arbitrarily soft quanta. The effect has phenomenological model-independent implications for black holes and other classicalons that may be created at LHC. We predict, that contrary to naive intuition, the black holes a...

  15. Black hole's 1/N hair

    International Nuclear Information System (INIS)

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers

  16. Small black holes on cylinders

    International Nuclear Information System (INIS)

    We find the metric of small black holes on cylinders, i.e. neutral and static black holes with a small mass in d-dimensional Minkowski space times a circle. The metric is found using an ansatz for black holes on cylinders proposed in J. High Energy Phys. 05, 032 (2002). We use the new metric to compute corrections to the thermodynamics which is seen to deviate from that of the (d+1)-dimensional Schwarzschild black hole. Moreover, we compute the leading correction to the relative binding energy which is found to be non-zero. We discuss the consequences of these results for the general understanding of black holes and we connect the results to the phase structure of black holes and strings on cylinders

  17. The disk wind in the rapidly spinning stellar-mass black hole 4U 1630-472 observed with NuSTAR

    DEFF Research Database (Denmark)

    King, Ashley L.; Walton, Dominic J.; Miller, Jon M.;

    2014-01-01

    We present an analysis of a short NuSTAR observation of the stellar-mass black hole and low-mass X-ray binary 4U 1630-472. Reflection from the inner accretion disk is clearly detected for the first time in this source, owing to the sensitivity of NuSTAR. With fits to the reflection spectrum, we...... find evidence for a rapidly spinning black hole, (1σ statistical errors). However, archival data show that the source has relatively low radio luminosity. Recently claimed relationships between jet power and black hole spin would predict either a lower spin or a higher peak radio luminosity. We also...

  18. Episodic jet power extracted from a spinning black hole surrounded by a neutrino-dominated accretion flow in gamma-ray bursts

    International Nuclear Information System (INIS)

    It was suggested that the relativistic jets in gamma-ray bursts (GRBs) are powered via the Blandford-Znajek (BZ) mechanism or the annihilation of neutrinos and anti-neutrinos from a neutrino cooling-dominated accretion flow (NDAF). The advection and diffusion of the large-scale magnetic field of an NDAF is calculated, and the external magnetic field is found to be dragged inward efficiently by the accretion flow for a typical magnetic Prandtl number Pm=η/ν∼1. The maximal BZ jet power can be ∼1053-1054 erg s–1 for an extreme Kerr black hole, if an external magnetic field with 1014 Gauss is advected by the NDAF. This is roughly consistent with the field strength of the disk formed after a tidal disrupted magnetar. The accretion flow near the black hole horizon is arrested by the magnetic field if the accretion rate is below than a critical value for a given external field. The arrested accretion flow fails to drag the field inward and the field strength decays, and then the accretion re-starts, which leads to oscillating accretion. The typical timescale of such episodic accretion is of an order of one second. This can qualitatively explain the observed oscillation in the soft extended emission of short-type GRBs.

  19. Non-thermal WIMPs and Primordial Black Holes

    CERN Document Server

    Georg, Julian; Watson, Scott

    2016-01-01

    Non-thermal histories for the early universe have received notable attention as they are a rich source of phenomenology, while also being well motivated by top-down approaches to beyond the Standard Model physics. The early (pre-BBN) matter phase in these models leads to enhanced growth of density perturbations on sub-Hubble scales. Here we consider whether primordial black hole formation associated with the enhanced growth is in conflict with existing observations. Such constraints depend on the tilt of the primordial power spectrum, and we find that non-thermal histories are tightly constrained in the case of a significantly blue spectrum. Alternatively, if dark matter is taken to be of non-thermal origin we can restrict the primordial power spectrum on scales inaccessible to CMB and LSS observations. We establish constraints for a wide range of scalar masses (reheat temperatures) with the most stringent bounds resulting from the formation of $10^{15}$ g black holes. These black holes would be evaporating t...

  20. Information Storage in Black Holes

    OpenAIRE

    Maia, M. D.

    2005-01-01

    The information loss paradox for Schwarzschild black holes is examined, using the ADS/CFT correspondence extended to the $M_6 (4,2)$ bulk. It is found that the only option compatible with the preservation of the quantum unitarity is when a regular remnant region of the black hole survives to the black hole evaporation process, where information can be stored and eventually retrieved.

  1. Origin of supermassive black holes

    OpenAIRE

    Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S. G.

    2007-01-01

    The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...

  2. Brane-World Black Holes

    CERN Document Server

    Chamblin, A; Reall, H S

    2000-01-01

    Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.

  3. Brane-world black holes

    Science.gov (United States)

    Chamblin, A.; Hawking, S. W.; Reall, H. S.

    2000-03-01

    Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five-dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.

  4. Brane-world black holes

    International Nuclear Information System (INIS)

    In this talk, I present and discuss a number of attempts to construct black hole solutions in models with Warped Extra Dimensions. Then, a contact is made with models with Large Extra Dimensions, where black-hole solutions are easily constructed - here the focus will be on the properties of microscopic black holes and the possibility of using phenomena associated with them, such as the emission of Hawking radiation, to discover fundamental properties of our spacetime.

  5. Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Reall Harvey S.

    2008-09-01

    Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.

  6. Lyman Alpha Signatures from Direct Collapse Black Holes

    CERN Document Server

    Dijkstra, Mark; Sobral, David

    2016-01-01

    `Direct collapse black holes' (DCBHs) provide possible seeds for supermassive black holes that exist at redshifts as high as z~7. We study Lyman Alpha (Lya) radiative transfer through simplified representations of the DCBH-scenario. We find that gravitational heating of the collapsing cloud gives rise to a Lya cooling luminosity of up to ~ 1e38(M_gas/1e6 Msun)^2 erg/s. The Lya production rate can be significantly larger during the final stages of collapse, but collisional deexcitation efficiently suppresses the emerging Lya flux. Photoionization by a central source boosts the Lya luminosity to L~1e43(M_BH/1e6 M_sun) erg/s during specific evolutionary stages of the cloud, where M_BH denotes the mass of the black hole powering this source. We predict that the width and velocity off-set of the Lya spectral line range from a few tens to few thousands km/s, depending sensitively on the evolutionary state of the cloud. We also compare our predictions to observations of CR7 (Sobral et al. 2015), a luminous Lya emitt...

  7. Emission Signatures from Sub-parsec Binary Supermassive Black Holes I: Diagnostic Power of Broad Emission Lines

    CERN Document Server

    Nguyen, Khai

    2016-01-01

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years we develop a semi-analytic model to describe spectral emission line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as...

  8. Oscillating shocks in the low angular momentum flows as a source of variability of accreting black holes

    CERN Document Server

    ,

    2014-01-01

    We derive the conditions for shock formation in a quasi-spherical, slightly rotating flows. We verify the results of semi-analytical, stationary calculations with the time evolution studied by numerical hydro-simulations, and we study the oscillations of the shock position. We also study the behaviour of flows with varying specific angular momentum, where the 'hysteresis' type of loop is found when passing through the multiple sonic points region. Our results are in agreement with the timescales and shapes of the luminosity flares observed in Sgr A*. These models may also be applicable for the Galactic stellar mass black holes, like GX 339-4 or GRS 1915+105, where periodic oscillations of X-ray luminosity are detected.

  9. Quasar Formation and Energy Emission in Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2012-07-01

    Full Text Available Formation and energy emission of quasars are investigated in accord with the black hole universe, a new cosmological model recently developed by Zhang. According to this new cosmological model, the universe originated from a star-like black hole and grew through a supermassive black hole to the present universe by accreting ambient matter and merging with other black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe have been fully ex- plained in Paper I and II. This study as Paper III explains how a quasar forms, ignites and releases energy as an amount of that emitted by dozens of galaxies. A main sequence star, after its fuel supply runs out, will, in terms of its mass, form a dwarf, a neutron star, or a black hole. A normal galaxy, after its most stars have run out of their fuels and formed dwarfs, neutron stars, and black holes, will eventually shrink its size and collapse towards the center by gravity to form a supermassive black hole with billions of solar masses. This collapse leads to that extremely hot stellar black holes merge each other and further into the massive black hole at the center and meantime release a huge amount of radiation energy that can be as great as that of a quasar. Therefore, when the stellar black holes of a galaxy collapse and merge into a supermassive black hole, the galaxy is activated and a quasar is born. In the black hole universe, the observed dis- tant quasars powered by supermassive black holes can be understood as donuts from the mother universe. They were actually formed in the mother universe and then swallowed into our universe. The nearby galaxies are still very young and thus quiet at the present time. They will be activated and further evolve into quasars after billions of years. At that time, they will enter the universe formed by the currently observed distant quasars as similar to the distant quasars entered our universe

  10. Black Holes in Higher Dimensions

    International Nuclear Information System (INIS)

    In four space-time dimensions black holes of Einstein-Maxwell theory satisfy a number of theorems. In more than four space-time dimensions, however, some of the properties of black holes can change. In particular, uniqueness of black holes no longer holds. In five and more dimensions black rings arise. Thus in a certain region of the phase diagram there are three black objects with the same global charges present. Here we discuss properties of higher-dimensional vacuum and charged black holes, which possess a spherical horizon topology, and of vacuum and charged black rings, which have a ringlike horizon topology

  11. Black holes and the multiverse

    Science.gov (United States)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  12. Statistical Hair on Black Holes

    International Nuclear Information System (INIS)

    The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society

  13. How black holes saved relativity

    Science.gov (United States)

    Prescod-Weinstein, Chanda

    2016-02-01

    While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.

  14. Thermodynamics of Accelerating Black Holes

    CERN Document Server

    Appels, Michael; Kubiznak, David

    2016-01-01

    We address a long-standing problem of describing the thermodynamics of a charged accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon -- even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability and phase structure of these black holes.

  15. Are black holes totally black?

    CERN Document Server

    Grib, A A

    2014-01-01

    Geodesic completeness needs existence near the horizon of the black hole of "white hole" geodesics coming from the region inside of the horizon. Here we give the classification of all such geodesics with the energies $E/m \\le 1$ for the Schwarzschild and Kerr's black hole. The collisions of particles moving along the "white hole" geodesics with those moving along "black hole" geodesics are considered. Formulas for the increase of the energy of collision in the centre of mass frame are obtained and the possibility of observation of high energy particles arriving from the black hole to the Earth is discussed.

  16. stu Black Holes Unveiled

    Directory of Open Access Journals (Sweden)

    Armen Yeranyan

    2008-10-01

    Full Text Available The general solutions of the radial attractor flow equations for extremal black holes, both for non-BPS with non-vanishing central charge Z and for Z = 0, are obtained for the so-called stu model, the minimal rank-3 N = 2 symmetric supergravity in d = 4 space-time dimensions. Comparisons with previous partial results, as well as the fake supergravity (first order formalism and an analysis of the marginal stability of corresponding D-brane configurations, are given.

  17. Noncommutative black holes

    Science.gov (United States)

    Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N.

    2010-04-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.

  18. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C; Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)

    2010-04-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, {eta}. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.

  19. Noncommutative black holes

    International Nuclear Information System (INIS)

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.

  20. Holographic Black Hole Chemistry

    CERN Document Server

    Karch, Andreas

    2015-01-01

    Thermodynamic quantities associated with black holes in Anti-de Sitter space obey an interesting identity when the cosmological constant is included as one of the dynamical variables, the generalized Smarr relation. We show that this relation can easily be understood from the point of view of the dual holographic field theory. It amounts to the simple statement that the extensive thermodynamic quantities of a large $N$ gauge theory only depend on the number of colors, $N$, via an overall factor of $N^2$.

  1. Hawking radiation and the Stefan-Boltzmann law: The effective radius of the black-hole quantum atmosphere

    CERN Document Server

    Hod, Shahar

    2016-01-01

    It has recently been suggested [S. B. Giddings, Phys. Lett. B {\\bf 754}, 39 (2016)] that the Hawking black-hole radiation spectrum originates from an effective quantum "atmosphere" which extends well outside the black-hole horizon. In particular, comparing the Hawking radiation power of a $(3+1)$-dimensional Schwarzschild black hole of horizon radius $r_{\\text{H}}$ with the familiar Stefan-Boltzmann radiation power of a $(3+1)$-dimensional flat space perfect blackbody emitter, Giddings concluded that the source of the Hawking semi-classical black-hole radiation is a quantum region outside the Schwarzschild black-hole horizon whose effective radius $r_{\\text{A}}$ is characterized by the relation $\\Delta r\\equiv r_{\\text{A}}-r_{\\text{H}}\\sim r_{\\text{H}}$. It is of considerable physical interest to test the general validity of Giddings's intriguing conclusion. To this end, we study the Hawking radiation of $(D+1)$-dimensional Schwarzschild black holes. We find that the dimensionless radii $r_{\\text{A}}/r_{\\text...

  2. Physicists: despite fears, black-hole factory will not destroy earth

    CERN Multimedia

    Choi, Charles Q

    2006-01-01

    "Scientists may be able to generate a black hole as often as every second when the world's most powerful particle accelerator comes online in 2007. This potential "black hole factory" has raised fears that a stray black hole could evour our planet whole." (2 pages)

  3. ALMA Reveals a Galaxy-Scale Fountain of Cold Molecular Gas Pumped by a Black Hole

    Science.gov (United States)

    Tremblay, Grant

    2016-01-01

    A new ALMA observation of the cool core brightest cluster galaxy in Abell 2597 reveals that a supermassive black hole can act much like a mechanical pump in a water fountain, driving a convective flow of molecular gas that drains into the black hole accretion reservoir, only to be pushed outward again in a jet-driven outflow that then rains back toward the galaxy center from which it came. The ALMA data reveal "shadows" cast by giant molecular clouds falling on ballistic trajectories towards the black hole in the innermost 500 parsecs of the galaxy, manifesting as deep redshifted continuum absorption features. The black hole accretion reservoir, fueled by these infalling cold clouds, powers an AGN that drives a jet-driven molecular outflow in the form of a 10 kpc-scale, billion solar mass expanding molecular bubble or plume. The molecular shell is permeated with young stars, perhaps triggered in situ by the jet. Buoyant X-ray cavities excavated by the propagating radio source may further uplift the molecular filaments, which are observed to fall inward toward the center of the galaxy from which they came, presumably keeping the fountain long-lived. The results show that cold molecular gas can couple to black hole growth via both feedback and feeding, in alignment with "cold chaotic accretion" models for the regulation of star formation in galaxies.

  4. Models of Kilonova/macronova emission from black hole-neutron star mergers

    CERN Document Server

    Kawaguchi, Kyohei; Shibata, Masaru; Tanaka, Masaomi

    2016-01-01

    Black hole-neutron star mergers are among the promising gravitational-wave sources for ground-based detectors, and gravitational waves from black hole-neutron mergers are expected to be detected in the next few years. Simultaneous detection of electromagnetic counterparts with gravitational-wave detection provides rich information about the merger events. Among the possible electromagnetic counterparts from the black hole-neutron merger, the emission powered by the decay of radioactive r-process nuclei, so called kilonova/macronova, is one of the best targets for follow-up observation. We derive fitting formulas for the mass and the velocity of ejecta from a generic black hole-neutron merger based on recently performed numerical relativity simulations. We combined these fitting formulas with a new semi-analytic model for a black hole-neutron kilonova/macronova lightcurve which reproduces the results of radiation-transfer simulations. Specifically, the semi-analytic model reproduces the result of each band mag...

  5. Thermodynamics of noncommutative geometry inspired BTZ black hole based on Lorentzian smeared mass distribution

    Science.gov (United States)

    Liang, Jun; Liu, Bo

    2012-11-01

    A noncommutative BTZ black hole is constructed in three-dimensional anti-de Sitter space. In this black-hole model, the noncommutative smearing is obtained by replacing the point-like source term with a Lorentzian distribution. We mainly investigate the thermodynamical properties of this black hole, including Hawking temperature, entropy, heat capacity and free energy.

  6. Constraints on the Generalized Uncertainty Principle from Black Hole Thermodynamics

    CERN Document Server

    Gangopadhyay, Sunandan; Faizal, Mir

    2015-01-01

    In this paper, we calculate the modification to the thermodynamics of a Schwarzschild black hole in higher dimensions because of Generalized Uncertainty Principle (GUP). We use the fact that the leading order corrections to the entropy of a black hole has to be logarithmic in nature to restrict the form of GUP. We observe that in six dimensions, the usual GUP produces the correct form for the leading order corrections to the entropy of a black hole. However, in five and seven dimensions a linear GUP, which is obtained by a combination of DSR with the usual GUP, is needed to produce the correct form of the corrections to the entropy of a black hole. Finally, we demonstrate that in five dimensions, a new form of GUP containing quadratic and cubic powers of the momentum also produces the correct form for the leading order corrections to the entropy of a black hole.

  7. The Early Growth of the First Black Holes

    Science.gov (United States)

    Johnson, Jarrett L.; Haardt, Francesco

    2016-03-01

    With detections of quasars powered by increasingly massive black holes at increasingly early times in cosmic history over the past decade, there has been correspondingly rapid progress made on the theory of early black hole formation and growth. Here, we review the emerging picture of how the first massive black holes formed from the primordial gas and then grew to supermassive scales. We discuss the initial conditions for the formation of the progenitors of these seed black holes, the factors dictating the initial masses with which they form, and their initial stages of growth via accretion, which may occur at super-Eddington rates. Finally, we briefly discuss how these results connect to large-scale simulations of the growth of supermassive black holes in the first billion years after the Big Bang.

  8. Massive Binary Black Holes in the Cosmic Landscape

    CERN Document Server

    Colpi, M

    2009-01-01

    Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly. But, if the black holes reach coalescence, then they become the loudest sources of gravitational waves ever in the universe. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coales...

  9. Thermal corpuscular black holes

    CERN Document Server

    Casadio, Roberto; Orlandi, Alessio

    2015-01-01

    We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number $N$ of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy $m$ (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy $\\omega>m$). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M=N\\,m$ and a Planckian distribution for $E>M$ at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction preci...

  10. Virtual Black Holes

    CERN Document Server

    Hawking, Stephen William

    1996-01-01

    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S^2\\times S^2 and K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S^2\\times S^2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix \\ that does not factorise into an S matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the \\theta angle of QCD is zero without having to invoke the problematical existence of a light axion. The pic...

  11. Black hole thermodynamical entropy

    Energy Technology Data Exchange (ETDEWEB)

    Tsallis, Constantino [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil); Santa Fe Institute, Santa Fe, NM (United States); Cirto, Leonardo J.L. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil)

    2013-07-15

    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S{sub BG} of a (3+1) black hole is proportional to its area L{sup 2} (L being a characteristic linear length), and not to its volume L{sup 3}. Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S{sub BG} is proportional to lnL if d=1, and to L{sup d-1} if d>1, instead of being proportional to L{sup d} (d {>=} 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)

  12. Transient Black Hole Binaries

    CERN Document Server

    Belloni, T M

    2016-01-01

    The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...

  13. Quantum black hole evaporation

    CERN Document Server

    Schoutens, K; Verlinde, Erik; Schoutens, Kareljan; Verlinde, Erik; Verlinde, Herman

    1993-01-01

    We investigate a recently proposed model for a full quantum description of two-dimensional black hole evaporation, in which a reflecting boundary condition is imposed in the strong coupling region. It is shown that in this model each initial state is mapped to a well-defined asymptotic out-state, provided one performs a certain projection in the gravitational zero mode sector. We find that for an incoming localized energy pulse, the corresponding out-going state contains approximately thermal radiation, in accordance with semi-classical predictions. In addition, our model allows for certain acausal strong coupling effects near the singularity, that give rise to corrections to the Hawking spectrum and restore the coherence of the out-state. To an asymptotic observer these corrections appear to originate from behind the receding apparent horizon and start to influence the out-going state long before the black hole has emitted most of its mass. Finally, by putting the system in a finite box, we are able to deriv...

  14. Supermassive Black Holes and Their Relationships with Their Host Galaxies

    International Nuclear Information System (INIS)

    We review how the masses of black holes in active galactic nuclei are measured and outline the current limitations and uncertainties. Masses have been measured directly by emission-line reverberation for nearly 50 relatively nearby AGNs, but uncertainties due to the unknown geometry and projection effects limit the accuracy of these masses to ∼ 0.3 dex. Reverberation studies show that there is a very tight relationship between the broad-line region radius and the AGN luminosity, with an intrinsic scatter of ∼ 0.1 dex, which shows (1) that the largest source of systematic uncertainty in the black hole mass determinations is how the velocity field of the broad-line region is characterized, not the size of the broad-line region, and (2) that the size of the broad-line region can be estimated to fairly high accuracy from the AGN luminosity alone, thus providing a powerful indirect method of estimating black hole masses in even distant AGNs.

  15. Statistical mechanics of D0-branes and black hole thermodynamics

    International Nuclear Information System (INIS)

    We consider a system of D0-branes in toroidally compactified space with interactions described by a Born-Infeld-type generalisation of the leading v2+v4/r{D-4} terms (D is the number of non-compact directions in M-theory, including the longitudinal one). This non-linear action can be interpreted as an all-loop large N super Yang-Mills effective action and has a remarkable scaling property. We first study the classical dynamics of a brane probe in the field of a central brane source and observe the interesting difference between the D=5 and D>5 cases: for D>5 the center acts as a completely absorbing black hole of effective size proportional to a power of the probe energy, while for D=5 there is no absorption for any impact parameter. A similar dependence on D is found in the behaviour of the Boltzmann partition function Z of an ensemble of D0-branes. For D=5 (i.e. for compactification on 6-torus) Z is convergent at short distances and is analogous to the ideal gas one. For D>5 the system has short-distance instability. For sufficiently low temperature Z is shown to describe the thermodynamics of a Schwarzschild black hole in D>5 dimensions, supporting recent discussions of black holes in Matrix theory. (author)

  16. Prospects for experimental research on black holes in binary systems

    Science.gov (United States)

    Long, K. S.

    1979-01-01

    Cygnus X-1, the single widely accepted example of a black hole in a binary system, is characterized by unusual X-ray properties. The X-ray spectrum of Cygnus X-1 is not cut off above 20 keV, as in most strong X-ray sources. Recent scintillation counter measurements reveal a power law spectrum extending from 40 to 200 keV with a photon spectral index of approximately 2.2. However, it is not clear that these and other X-ray properties of the system are related to the black-hole nature of Cygnus X-1. It is suggested that without a direct test to show that the mass of the compact object in other systems similar to Cygnus X-1 (Circinus X-1 and GX339-4) exceeds the limit of the neutron star mass, a better understanding of the accretion disk phenomenon must be achieved to demonstrate how the properties peculiar to these systems are related to the black hole nature of the compact object. Current accretion disk models are examined, including the alpha-accretion disk and two-temperature accretion disk models.

  17. Emission Signatures from Sub-parsec Binary Supermassive Black Holes. I. Diagnostic Power of Broad Emission Lines

    Science.gov (United States)

    Nguyen, Khai; Bogdanović, Tamara

    2016-09-01

    Motivated by advances in observational searches for sub-parsec supermassive black hole binaries (SBHBs) made in the past few years, we develop a semi-analytic model to describe spectral emission-line signatures of these systems. The goal of this study is to aid the interpretation of spectroscopic searches for binaries and to help test one of the leading models of binary accretion flows in the literature: SBHB in a circumbinary disk. In this work, we present the methodology and a comparison of the preliminary model with the data. We model SBHB accretion flows as a set of three accretion disks: two mini-disks that are gravitationally bound to the individual black holes and a circumbinary disk. Given a physically motivated parameter space occupied by sub-parsec SBHBs, we calculate a synthetic database of nearly 15 million broad optical emission-line profiles and explore the dependence of the profile shapes on characteristic properties of SBHBs. We find that the modeled profiles show distinct statistical properties as a function of the semimajor axis, mass ratio, eccentricity of the binary, and the degree of alignment of the triple disk system. This suggests that the broad emission-line profiles from SBHB systems can in principle be used to infer the distribution of these parameters and as such merit further investigation. Calculated profiles are more morphologically heterogeneous than the broad emission lines in observed SBHB candidates and we discuss improved treatment of radiative transfer effects, which will allow a direct statistical comparison of the two groups.

  18. Area spectrum of slowly rotating black holes

    OpenAIRE

    Myung, Yun Soo

    2010-01-01

    We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.

  19. Spacetime Duality of BTZ Black Hole

    OpenAIRE

    Ho, Jeongwon; Kim, Won T.; Park, Young-Jai

    1999-01-01

    We consider the duality of the quasilocal black hole thermodynamics, explicitly the quasilocal black hole thermodynamic first law, in BTZ black hole solution as a special one of the three-dimensional low energy effective string theory.

  20. What, no black hole evaporation

    International Nuclear Information System (INIS)

    Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)

  1. Nonlinear Electrodynamics and black holes

    CERN Document Server

    Breton, N; Breton, Nora; Garcia-Salcedo, Ricardo

    2007-01-01

    It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.

  2. Black-Hole Mass Measurements

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2004-01-01

    The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....

  3. ULXs: Neutron Stars vs Black Holes

    CERN Document Server

    King, Andrew

    2016-01-01

    We consider ultraluminous X-ray sources (ULXs) where the accretor is a neutron star rather than a black hole. We show that the recently-discovered example (M82 X-2) fits naturally into the simple picture of ULXs as beamed X-ray sources fed at super-Eddington rates, provided that its magnetic field is weaker ($\\simeq 10^{11}{\\rm G}$) than a new-born X-ray pulsar, as expected if there has been mass gain. Continuing accretion is likely to weaken the field to the point that pulsing stops, and make the system indistinguishable from a ULX containing a black hole. Accordingly we suggest that a significant fraction of all ULXs may actually contain neutron star accretors rather than black holes, reflecting the neutron-star fraction among their X-ray binary progenitors. We emphasize that neutron-star ULXs are likely to have {\\it higher} apparent luminosities than black hole ULXs for a given mass transfer rate, as their tighter beaming outweighs their lower Eddington luminosities. This further increases the likely propo...

  4. A model of the steep power-law spectra and high-frequency quasi-periodic oscillations in luminous black hole X-ray binaries

    Science.gov (United States)

    Dexter, Jason; Blaes, Omer

    2014-03-01

    We propose a new model of the steep power-law state of luminous black hole X-ray binaries. The model uses the fact that at high luminosities, the inner radii of radiation pressure dominated accretion discs are expected to (i) become effectively optically thin and (ii) produce significant luminosities. The gas temperature therefore rises sharply inwards, producing local saturated Compton spectra with rapidly increasing peak energies. These spectra sum together to form a steep power-law tail to the spectrum. A given photon energy on this tail corresponds to a narrow range in radius, so that local vertical oscillations of the disc naturally produce high-quality high-frequency quasi-periodic oscillations (HFQPOs) in the hard X-ray band. The two lowest order modes have a robust frequency ratio of sqrt{7/3}˜eq 1.53. This model explains the appearance of steep power-law spectra and HFQPOs at high luminosity, the 3:2 HFQPO frequency ratios, and their association with the power-law spectral component. We predict an increase in QPO quality factor when the power spectrum is restricted to a narrower photon energy band, and an increase in HFQPO frequency at higher X-ray energies or lower luminosities. Future X-ray telescopes could detect additional HFQPOs from higher order modes. We demonstrate how this model could be used to measure black hole spin from HFQPOs, and qualitatively estimate the spin of GRO J1655-40 as a/M ˜ 0.4-0.7.

  5. Supersymmetric black holes in string theory

    OpenAIRE

    Mohaupt, T.

    2007-01-01

    We review recent developments concerning supersymmetric black holes in string theory. After a general introduction to the laws of black hole mechanics and to black hole entropy in string theory, we discuss black hole solutions in N=2 supergravity, special geometry, the black hole attractor equations and the underlying variational principle. Special attention is payed to the crucial role of higher derivative corrections. Finally we discuss black hole partition functions and their relation to t...

  6. Prisons of Light - Black Holes

    Science.gov (United States)

    Ferguson, Kitty

    1998-05-01

    In this jargon-free review of one of the most fascinating topics in modern science, acclaimed science writer Kitty Ferguson examines the discovery of black holes, their nature, and what they can teach us about the mysteries of the universe. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light--Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.

  7. Black holes and the multiverse

    CERN Document Server

    Garriga, Jaume; Zhang, Jun

    2015-01-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive blac...

  8. Quantum strings and black holes

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume

    2001-01-01

    The transition between (non supersymmetric) quantum string states and Schwarzschild black holes is discussed. This transition occurs when the string coupling $g^2$ (which determines Newton's constant) increases beyond a certain critical value $g_c^2$. We review a calculation showing that self-gravity causes a typical string state of mass $M$ to shrink, as the string coupling $g^2$ increases, down to a compact string state whose mass, size, entropy and luminosity match (for the critical value $g_c^2 \\sim (M \\sqrt{\\alpha'})^{-1}$) those of a Schwarzschild black hole. This confirms the idea (proposed by several authors) that the entropy of black holes can be accounted for by counting string states. The level spacing of the quantum states of Schwarzschild black holes is expected to be exponentially smaller than their radiative width. This makes it very difficult to conceive (even Gedanken) experiments probing the discreteness of the quantum energy levels of black holes.

  9. FEASTING BLACK HOLE BLOWS BUBBLES

    Science.gov (United States)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  10. Caged black holes: Black holes in compactified spacetimes. I. Theory

    International Nuclear Information System (INIS)

    In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes

  11. Black Hole Spills Kaleidoscope of Color

    Science.gov (United States)

    2006-01-01

    This new false-colored image from NASA's Hubble, Chandra and Spitzer space telescopes shows a giant jet of particles that has been shot out from the vicinity of a type of supermassive black hole called a quasar. The jet is enormous, stretching across more than 100,000 light-years of space -- a size comparable to our own Milky Way galaxy! Quasars are among the brightest objects in the universe. They consist of supermassive black holes surrounded by turbulent material, which is being heated up as it is dragged toward the black hole. This hot material glows brilliantly, and some of it gets blown off into space in the form of powerful jets. The jet pictured here is streaming out from the first known quasar, called 3C273, discovered in 1963. A kaleidoscope of colors represents the jet's assorted light waves. X-rays, the highest-energy light in the image, are shown at the far left in blue (the black hole itself is well to the left of the image). The X-rays were captured by Chandra. As you move from left to right, the light diminishes in energy, and wavelengths increase in size. Visible light recorded by Hubble is displayed in green, while infrared light caught by Spitzer is red. Areas where visible and infrared light overlap appear yellow.

  12. Black hole hunting in the Andromeda Galaxy

    CERN Document Server

    Barnard, R; Kolb, U C; Haswell, C A

    2004-01-01

    We present a new technique for identifying stellar mass black holes in low mass X-ray binaries (LMXBs), and apply it to XMM-Newton observations of M31. We examine X-ray time series variability seeking power density spectra (PDS) typical of LMXBs accreting at a low accretion rate (which we refer to as Type A PDS); these are very similar for black hole and neutron star LMXBs. Galactic neutron star LMXBs exhibit Type A PDS at low luminosities (~10^36--10^37 erg/s) while black hole LMXBs can exhibit them at luminosities >10^38 erg/s. We propose that Type A PDS are confined to luminosities below a critical fraction of the Eddington limit, $l_c$ that is constant for all LMXBs; we have examined asample of black hole and neutron star LMXBs and find they are all consistent with $l_c$ = 0.10+/-0.04 in the 0.3--10 keV band. We present luminosity and PDS data from 167 observations of X-ray binaries in M31 that provide strong support for our hypothesis. Since the theoretical maximum mass for a neutron star is \\~3.1 M_Sun,...

  13. Slicing black hole spacetimes

    Science.gov (United States)

    Bini, Donato; Bittencourt, Eduardo; Geralico, Andrea; Jantzen, Robert T.

    2015-04-01

    A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand, properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.

  14. Slicing black hole spacetimes

    CERN Document Server

    Bini, Donato; Geralico, Andrea; Jantzen, Robert T

    2015-01-01

    A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.

  15. ULXs: Neutron stars versus black holes

    Science.gov (United States)

    King, Andrew; Lasota, Jean-Pierre

    2016-05-01

    We consider ultraluminous X-ray systems (ULXs) where the accretor is a neutron star rather than a black hole. We show that the recently discovered example (M82 X-2) fits naturally into the simple picture of ULXs as beamed X-ray sources fed at super-Eddington rates, provided that its magnetic field is weaker (≃1011G) than a new-born X-ray pulsar, as expected if there has been mass gain. Continuing accretion is likely to weaken the field to the point that pulsing stops, and make the system indistinguishable from a ULX containing a black hole. Accordingly we suggest that a significant fraction of all ULXs may actually contain neutron star accretors rather than black holes, reflecting the neutron-star fraction among their X-ray binary progenitors. We emphasize that neutron-star ULXs are likely to have higher apparent luminosities than black hole ULXs for a given mass transfer rate, as their tighter beaming outweighs their lower Eddington luminosities. This further increases the likely proportion of neutron-star accretors among all ULXs. Cygnus X-2 is probably a typical descendant of neutron-star ULXs, which may therefore ultimately end as millisecond pulsar binaries with massive white dwarf companions.

  16. IMAGING THE BLACK HOLE SILHOUETTE OF M87: IMPLICATIONS FOR JET FORMATION AND BLACK HOLE SPIN

    International Nuclear Information System (INIS)

    The silhouette cast by the horizon of the supermassive black hole in M87 can now be resolved with the emerging millimeter very long baseline interferometry (VLBI) capability. Despite being ∼2 x 103 times farther away than Sagittarius A* (Sgr A*; the supermassive black hole at the center of the Milky Way and the primary target for horizon-scale imaging), M87's much larger black hole mass results in a horizon angular scale roughly half that of Sgr A*'s, providing another practical target for direct imaging. However, unlike Sgr A*, M87 exhibits a powerful radio jet, providing an opportunity to study jet-formation physics on horizon scales. We employ a simple, qualitatively correct force-free jet model to explore the expected high-resolution images of M87 at wavelengths of 1.3 mm and 0.87 mm (230 GHz and 345 GHz), for a variety of jet parameters. We show that future VLBI data will be able to constrain the size of the jet footprint, the jet collimation rate, and the black hole spin. Polarization will further probe the structure of the jet's magnetic field and its effect on the emitting gas. Horizon-scale imaging of M87 and Sgr A* will enable for the first time the empirical exploration of the relationship between the mass and spin of a black hole and the characteristics of the gas inflow/outflow around it.

  17. Black Hole Solutions and Pair Creation of Black Holes in Three, Four and Higher Dimensional Spacetimes

    CERN Document Server

    Dias, O J C

    2004-01-01

    Black holes, first found as solutions of Einstein's General Relativity, are important in astrophysics, since they result from the gravitational collapse of a massive star or a cluster of stars, and in physics since they reveal properties of the fundamental physics, such as thermodynamic and quantum properties of gravitation. In order to better understand the black hole physics we need exact solutions that describe one or more black holes. In this thesis we study exact solutions in three, four and higher dimensional spacetimes. The study in 3-dimensions is important due to the simplification of the problem, while the discussion in higher dimensions is essential due to the fact that many theories indicate that extra dimensions exist in our universe. In this thesis, in any of the dimensions mentioned above, we study exact solutions with a single black hole and exact solutions that describe a pair of uniformly accelerated black holes (C-metric), with the acceleration source being well identified. This later solut...

  18. Rotating black hole and quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)

    2016-04-15

    We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω) due to the quintessential matter, apart from the mass (M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α = -e{sup 2} ≠ 0 and ω = 1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α = 0. Interestingly, for a given value of parameter ω, there exists a critical rotation parameter (a = a{sub E}), which corresponds to an extremal black hole with degenerate horizons, while for a < a{sub E}, it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for a > a{sub E}. We find that the extremal value a{sub E} is also influenced by the parameter ω and so is the ergoregion. (orig.)

  19. Phase transition in black holes

    CERN Document Server

    Roychowdhury, Dibakar

    2014-01-01

    The present thesis is devoted towards the study of various aspects of the phase transition phenomena occurring in black holes defined in an Anti-de-Sitter (AdS) space. Based on the fundamental principles of thermodynamics and considering a grand canonical framework we examine various aspects of the phase transition phenomena occurring in AdS black holes. We analytically check that this phase transition between the smaller and larger mass black holes obey Ehrenfest relations defined at the critical point and hence confirm a second order phase transition. This include both the rotating and charged black holes in Einstein gravity. Apart from studying these issues, based on a canonical framework, we also investigate the critical behavior in charged AdS black holes. The scaling laws for these black holes are found to be compatible with the static scaling hypothesis. Finally, based on the usual framework of AdS/CFT duality, we investigate the phase transition phenomena occurring in charged hairy black holes defined...

  20. A nonsingular rotating black hole

    International Nuclear Information System (INIS)

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  1. Acceleration of Black Hole Universe

    Science.gov (United States)

    Zhang, Tianxi

    2012-05-01

    An alternative cosmological model called black hole universe has been recently proposed by the author. According to this model, the universe originated from a hot star-like black hole, and gradually grew up through a supermassive black hole to the present state by accreting ambient materials and merging with other black holes. The entire space is structured with an infinite number of layers hierarchically. The innermost three layers are the universe that we live, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and limits to zero for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general theory of relativity with the Robertson-Walker metric of space-time, and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. In this study. we will analyze the acceleration of black hole universe that accretes its ambient matter in an increasing rate. We will also compare the result obtained from the black hole universe model with the measurement of type Ia supernova and the result from the big bang cosmology.

  2. Black Hole Grabs Starry Snack

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end. The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light. The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.

  3. A nonsingular rotating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Durban (South Africa)

    2015-11-15

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  4. The physics of black hole x ray novae

    Science.gov (United States)

    Wheeler, J. C.; Kim, S.-W.; Moscoso, M. D.; Mineshige, S.

    1994-01-01

    X-ray transients that are established or plausible black hole candidates have been discovered at a rate of about one per year in the galaxy for the last five years. There are now well over a dozen black hole candidates, most being in the category of X-ray novae with low-mass companions. There may be hundreds of such transient systems in the galaxy yet to be discovered. Classic black hole candidates like Cygnus X-1 with massive companions are in the minority, and their census in the galaxy and magellanic clouds is likely to be complete. The black hole X-ray novae (BHXN) do not represent only the most common environment in which to discover black holes. Their time dependence gives a major new probe with which to study the physics of accretion into black holes. The BHXN show both a soft X-ray flux from an optically thick disk and a hard power law tail that is reminiscent of AGN spectra. The result may be new insight into the classical systems like Cyg X-1 and LMC X-1 that show similar power law tails, but also to accretion into supermassive black holes and AGN.

  5. Possible evolution of supermassive black holes from FRI quasars

    Science.gov (United States)

    Kim, Matthew I.; Christian, Damian J.; Garofalo, David; D'Avanzo, Jaclyn

    2016-08-01

    We explore the question of the rapid buildup of black hole mass in the early universe employing a growing black hole mass-based determination of both jet and disk powers predicted in recent theoretical work on black hole accretion and jet formation. Despite simplified, even artificial assumptions about accretion and mergers, we identify an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the Big Bang without appealing to super Eddington accretion. This result is made more compelling by the recognition of a connection between this channel and an end product involving active galaxies with FRI radio morphology but weaker jet powers in mildly sub-Eddington accretion regimes. While FRI quasars have already been shown to occupy a small region of the available parameter space for black hole feedback in the paradigm, we further suggest that the observational dearth of FRI quasars is also related to their connection to the most massive black hole growth due to both these FRIs high redshifts and relative weakness. Our results also allow us to construct the AGN luminosity function at high redshift, that agree with recent studies. In short, we produce a connection between the unexplained paucity of a given family of active galactic nuclei and the rapid growth of supermassive black holes, two heretofore seemingly unrelated aspects of the physics of active galactic nuclei.

  6. No-hair theorem for black holes in astrophysical environments.

    Science.gov (United States)

    Gürlebeck, Norman

    2015-04-17

    According to the no-hair theorem, static black holes are described by a Schwarzschild spacetime provided there are no other sources of the gravitational field. This requirement, however, is in astrophysical realistic scenarios often violated, e.g., if the black hole is part of a binary system or if it is surrounded by an accretion disk. In these cases, the black hole is distorted due to tidal forces. Nonetheless, the subsequent formulation of the no-hair theorem holds: The contribution of the distorted black hole to the multipole moments that describe the gravitational field close to infinity and, thus, all sources is that of a Schwarzschild black hole. It still has no hair. This implies that there is no multipole moment induced in the black hole and that its second Love numbers, which measure some aspects of the distortion, vanish as was already shown in approximations to general relativity. But here we prove this property for astrophysical relevant black holes in full general relativity. PMID:25933302

  7. Black holes and Higgs stability

    CERN Document Server

    Tetradis, Nikolaos

    2016-01-01

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  8. Black Hole Bound State Metamorphosis

    CERN Document Server

    Chowdhury, Abhishek; Saha, Arunabha; Sen, Ashoke

    2012-01-01

    N=4 supersymmetric string theories contain negative discriminant states whose numbers are known precisely from microscopic counting formulae. On the macroscopic side, these results can be reproduced by regarding these states as multi-centered black hole configurations provided we make certain identification of apparently distinct multi-centered black hole configurations according to a precise set of rules. In this paper we provide a physical explanation of such identifications, thereby establishing that multi-centered black hole configurations reproduce correctly the microscopic results for the number of negative discriminant states without any ad hoc assumption.

  9. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747

  10. The Black Hole Information Problem

    CERN Document Server

    Polchinski, Joseph

    2016-01-01

    The black hole information problem has been a challenge since Hawking's original 1975 paper. It led to the discovery of AdS/CFT, which gave a partial resolution of the paradox. However, recent developments, in particular the firewall puzzle, show that there is much that we do not understand. I review the black hole, Hawking radiation, and the Page curve, and the classic form of the paradox. I discuss AdS/CFT as a partial resolution. I then discuss black hole complementarity and its limitations, leading to many proposals for different kinds of `drama.' I conclude with some recent ideas.

  11. Evaporation of primordial black holes

    Science.gov (United States)

    Hawking, S. W.

    The usual explanation of the isotropy of the universe is that inflation would have smoothed out any inhomogeneities. However, if the universe was initially fractal or in a foam like state, an overall inflation would have left it in the same state. I suggest that the universe did indeed begin with a tangled web of wormholes connecting pairs of black holes but that the inflationary expansion was unstable: wormholes that are slightly smaller correspond to black holes that are hotter than the cosmological background and evaporate away. This picture is supported by calculations with Raphael Bousso of the evaporation of primordial black holes in the s-wave and large N approximations.

  12. Thermodynamics of Lifshitz black holes

    Science.gov (United States)

    Devecioǧlu, Deniz Olgu; Sarıoǧlu, Özgür

    2011-06-01

    We apply the recently extended conserved Killing charge definition of Abbott-Deser-Tekin formalism to compute, for the first time, the energies of analytic Lifshitz black holes in higher dimensions. We then calculate the temperature and the entropy of this large family of solutions, and study and discuss the first law of black hole thermodynamics. Along the way we also identify the possible critical points of the relevant quadratic curvature gravity theories. Separately, we also apply the generalized Killing charge definition to compute the energy and the angular momentum of the warped AdS3 black hole solution of the three-dimensional new massive gravity theory.

  13. Can Black Hole Relax Unitarily?

    CERN Document Server

    Solodukhin, S N

    2004-01-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  14. Quantum black hole without singularity

    CERN Document Server

    Kiefer, Claus

    2015-01-01

    We discuss the quantization of a spherical dust shell in a rigorous manner. Classically, the shell can collapse to form a black hole with a singularity. In the quantum theory, we construct a well-defined self-adjoint extension for the Hamilton operator. As a result, the evolution is unitary and the singularity is avoided. If we represent the shell initially by a narrow wave packet, it will first contract until it reaches the region where classically a black hole would form, but then re-expands to infinity. In a way, the state can be interpreted as a superposition of a black hole with a white hole.

  15. Are black holes big enough to quench cooling in cluster cool cores?

    OpenAIRE

    Ruszkowski, M.

    2009-01-01

    Total energy arguments (e.g., Fabian et al. 2002) suggest that black holes need to have masses significantly in excess of the prediction from the classic black hole mass - velocity dispersion relation (M-sigma) in order to offset the cooling losses in massive cool core clusters. This suggests that the black holes may be too small to power such clusters. However, Lauer et al. (2007) argue that the black hole mass - bulge luminosity relationship is a better predictor of black hole masses in hig...

  16. Supermassive Black Holes at the Center of Galaxies

    OpenAIRE

    Greenwood, Christopher J.

    2005-01-01

    This was my final paper for the AST 308 Galaxies class at Michigan State University. Using many sources I was able to compile a moderate amount of information concerning the evidence for, and the formation of Supermassive Black Holes.

  17. Lightlike Membranes in Black Hole and Wormhole Physics, and Cosmology

    CERN Document Server

    Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana

    2013-01-01

    We shortly outline the principal results concerning the reparametrization-invariant world-volume Lagrangian formulation of lightlike brane dynamics and its impact as a source for gravity and (nonlinear) electromagnetism in black hole and wormhole physics.

  18. Effects of nonzero neutrino masses on black hole evaporation

    International Nuclear Information System (INIS)

    We study the consequences of nonzero neutrino masses for black holes evaporating by the emission of Hawking radiation. We find that the evolution of small, hot, black holes may be unaffected (if neutrinos are Majorana particles) or may show an increase in neutrino luminosity and a decrease in lifetime by up to a factor of 1.85 (if neutrinos are Dirac particles). However, for sufficiently large (e.g., stellar mass) black holes, neutrino emission is largely or entirely suppressed, resulting in a decrease in emitted power and an increase in lifetime by up to a factor of 7.5

  19. Jets from Tidal Disruptions of Stars by Black Holes

    OpenAIRE

    Krolik, Julian H.; Piran, Tsvi

    2012-01-01

    Tidal disruption of main sequence stars by black holes has generally been thought to lead to a signal dominated by UV emission. If, however, the black hole spins rapidly and the poloidal magnetic field intensity on the black hole horizon is comparable to the inner accretion disk pressure, a powerful jet may form whose luminosity can easily exceed the thermal UV luminosity. When the jet beam points at Earth, its non-thermal luminosity can dominate the emitted spectrum. The thermal and non-ther...

  20. Gravitational wave production by rotating primordial black holes

    CERN Document Server

    Dong, Ruifeng; Stojkovic, Dejan

    2015-01-01

    In this paper we analyze in detail a rarely discussed question of gravity waves production from evaporating black holes. Evaporating black holes emit gravitons which are at classical level registered as gravity waves. We use the latest constraints on the primordial black hole abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the total energy density which was occupied by black holes, the epoch in which the black holes are formed, and quantities like mass and angular momentum of evaporating black holes. We conclude that very small primordial black holes which evaporate before the nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as $10^{-5}$. On the other hand, primordial black ...

  1. Estimates of AGN Black Hole Mass and Minimum Variability Timescale

    Institute of Scientific and Technical Information of China (English)

    Guang-Zhong Xie; Luo-En Chen; Huai-Zhen Li; Li-Sheng Mao; Hong Dai; Zhao-Hua Xie; Li Ma; Shu-Bai Zhou

    2005-01-01

    Black hole mass is one of the fundamental physical parameters of active galactic nuclei (AGNs), for which many methods of estimation have been proposed.One set of methods assumes that the broad-line region (BLR) is gravitationally bound by the central black hole potential, so the black hole mass can be estimated from the orbital radius and the Doppler velocity. Another set of methods assumes the observed variability timescale is determined by the orbital timescale near the innermost stable orbit around the Schwarzschild black hole or the Kerr black hole,or by the characteristic timescale of the accretion disk. We collect a sample of 21AGNs, for which the minimum variability timescales have been obtained and their black hole masses (Mσ) have been well estimated from the stellar velocity dispersion or the BLR size-luminosity relation. Using the minimum variability timescales we estimated the black hole masses for 21 objects by the three different methods,the results are denoted by Ms, Mk and Md, respectively. We compared each of them with Mσ individually and found that: (1) using the minimum variability timescale with the Kerr black hole theory leads to small differences between Mσand Mk, none exceeding one order of magnitude, and the mean difference between them is about 0.53 dex; (2) using the minimum variability timescale with the Schwarzschild black hole theory leads to somewhat larger difference between Mσ and Ms: larger than one order of magnitude for 6 of the 21 sources, and the mean difference is 0.74 dex; (3) using the minimum variability timescale with the accretion disk theory leads to much larger differences between Mσ and Md, for 13of the 21 sources the differences are larger than two orders of magnitude; and the mean difference is as high as about 2.01 dex.

  2. ASTRONOMICAL PLATE ARCHIVES AND SUPERMASSIVE BLACK HOLE BINARIES

    Directory of Open Access Journals (Sweden)

    René Hudec

    2013-12-01

    Full Text Available The recent extensive digitisation of astronomical photographic plate archives, the development of new dedicated software and the use of powerful computers have for the first time enabled effective data mining in extensive plate databases, with wide applications in various fields of recent astrophysics. As an example, analyses of supermassive binary black holes (binary blazars require very long time intervals (50 years and more, which cannot be provided by other data sources. Examples of data obtained from data mining in plate archives are presented and briefly discussed.

  3. Accretion, Primordial Black Holes and Standard Cosmology

    OpenAIRE

    Nayak, Bibekananda; Singh, Lambodar Prasad

    2009-01-01

    Primordial Black Holes evaporate due to Hawking radiation. We find that the evaporation time of primordial black holes increase when accretion of radiation is included.Thus depending on accretion efficiency more and more number of primordial black holes are existing today, which strengthens the idea that the primordial black holes are the proper candidate for dark matter.

  4. Black Hole Complementary Principle and Noncommutative Membrane

    International Nuclear Information System (INIS)

    In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.

  5. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    B Nayak; P Singh

    2011-01-01

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes are the proper candidates for dark matter.

  6. Spin Measurements of Accreting Black Holes: A Foundation for X-ray Continuum Fitting

    Science.gov (United States)

    Steiner, James Francis

    Remarkably, an astrophysical black hole has only two attributes: its mass and its spin angular momentum. Spin is often associated with the exotic behavior that black holes manifest such as the production of relativistic and energetic jets. In this thesis, we advance one of the two primary methods of measuring black hole spin, namely, the continuum-fitting method by (1) improving the methodology; (2) testing two foundational assumptions; and (3) measuring the spins of two stellar-mass black holes in X-ray binary systems. Methodology: We present an empirical model of Comptonization that self-consistently generates a hard power-law component by upscattering thermal accretion disk photons as they traverse a hot corona. We show that this model enables reliable measurements of spin for far more X-ray spectral data and for more sources than previously thought possible. Testing the foundations: First, by an exhaustive study of the X-ray spectra of LMC X-3, we show that the inner radius of its accretion disk is constant over decades and unaffected by source variability. Identifying this fixed inner radius with the radius of the innermost stable circular orbit in general relativity, our findings establish a firm foundation for the measurement of black hole spin. Secondly, we test the customary assumption that the inclination angles of the black-hole's spin axis and the binary's orbital axis are the same; for XTE J1550-564 we show that they are aligned to within 12 degrees by modeling the kinematics of the large-scale jets of this microquasar. Measuring spins: We have made the first accurate continuum-fitting spin measurements of the black hole primaries in H1743-322 and XTE J1550-564. For this latter black hole, we have also measured its spin using the other leading method, namely, modeling the broad red wing of the Fe K-alpha; line. As we show, these two independent measurements of spin are in agreement.

  7. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  8. Switching off black hole evaporation

    International Nuclear Information System (INIS)

    The inclusion of the back-reaction in the Hawking effect leads to the result that, if vector boson fields predominate in nature, then black holes stop evaporating when their mass reaches a non-vanishing limiting value. (author)

  9. Formation of Supermassive Black Holes

    CERN Document Server

    Volonteri, Marta

    2010-01-01

    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.

  10. Rotating Brane World Black Holes

    OpenAIRE

    Modgil, Moninder Singh; Panda, Sukanta; Sengupta, Gautam

    2001-01-01

    A five dimensional rotating black string in a Randall-Sundrum brane world is considered. The black string intercepts the three brane in a four dimensional rotating black hole. The geodesic equations and the asymptotics in this background are discussed.

  11. Black hole thermodynamics from decoherence

    CERN Document Server

    Guo, Xiao-Kan

    2015-01-01

    We present an approach to the four laws of black hole thermodynamics by utilizing the thermodynamics of quantum coherence. Firstly, Hawking effect is attributed to the decoherence of the two-mode squeezed state in a black hole spacetime. Then use is made of the relative entropy between undecohered and decohered squeezed states whose monotonicity gives the zeroth and the second law, while the first law can be obtained either by the vanishing of the first derivative of relative entropy or by studying the effective thermal model generated by the modular Hamiltonian. Futhermore, information-theoretic arguments give a Planck's form of the third law of black hole thermodynamics. With this approach we can understand the laboratory analogues of black holes solely by quantum theory. This approach also opens a way to reconstruct classical geometry from quantum gravity.

  12. Black hole accretion disc impacts

    Science.gov (United States)

    Pihajoki, P.

    2016-04-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength λ = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  13. Black hole accretion disc impacts

    CERN Document Server

    Pihajoki, Pauli

    2015-01-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength {\\lambda} = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  14. Black hole interior mass formula

    International Nuclear Information System (INIS)

    We argue by explicit computations that, although the area product, horizon radii product, entropy product, and irreducible mass product of the event horizon and Cauchy horizon are universal, the surface gravity product, the surface temperature product and the Komar energy product of the said horizons do not seem to be universal for Kerr-Newman black hole spacetimes. We show the black hole mass formula on the Cauchy horizon following the seminal work by Smarr [Phys Rev Lett 30:71 (1973), Phys Rev D 7:289 (1973)] for the outer horizon. We also prescribe the four laws of black hole mechanics for the inner horizon. A new definition of the extremal limit of a black hole is discussed. (orig.)

  15. Probing the Active Massive Black Hole Candidate in the Center of NGC 404 with VLBI

    CERN Document Server

    Paragi, Z; Kaaret, P; Cseh, D; Overzier, R; Kharb, P

    2014-01-01

    Recently Nyland et al. (2012) argued that the radio emission observed in the center of the dwarf galaxy NGC 404 originates in a low-luminosity active galactic nucleus (LLAGN) powered by a massive black hole ($M\\sim<10^6$ M$_{\\odot}$). High-resolution radio detections of MBHs are rare. Here we present sensitive, contemporaneous Chandra X-ray, and very long baseline interferometry (VLBI) radio observations with the European VLBI Network (EVN). The source is detected in the X-rays, and shows no long-term variability. If the hard X-ray source is powered by accretion, the apparent low accretion efficiency would be consistent with a black hole in the hard state. Hard state black holes are known to show radio emission compact on the milliarcsecond scales. However, the central region of NGC 404 is resolved out on 10 milliarcsecond (0.15-1.5 pc) scales. Our VLBI non-detection of a compact, partially self-absorbed radio core in NGC 404 implies that either the black hole mass is smaller than $3^{+5}_{-2}\\times10^5$ M...

  16. The Black Hole Universe Model

    Science.gov (United States)

    Zhang, Tianxi

    2014-06-01

    The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin

  17. Black Hole Meiosis

    CERN Document Server

    Van Herck, Walter

    2009-01-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, arXiv:0810.4301. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the `chromosomes' of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as `crossing-over in the meiosis of a D-particle'. Our results improve on hep-th/0702012, provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity...

  18. Black hole meiosis

    Science.gov (United States)

    van Herck, Walter; Wyder, Thomas

    2010-04-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.

  19. QCD against black holes?

    CERN Document Server

    Royzen, Ilya I

    2009-01-01

    Along with compacting baryon (neutron) spacing, two very important factors come into play at once: the lack of self-stabilization within a compact neutron star (NS) associated with possible black hole (BH) horizon appearance and the phase transition - color deconfinement and QCD-vacuum reconstruction - within the nuclear matter. That is why both phenomena should be taken into account side by side, as the gravitational collapse is considered. Since, under the above transition, the hadronic-phase vacuum (filled up with gluon and chiral $q\\bar q$-condensates) turns into the "empty" (perturbation) subhadronic-phase one and, thus, the corresponding (very high) pressure falls down rather abruptly, the formerly cold (degenerated) nuclear medium starts to implode into the new vacuum. If the mass of a star is sufficiently large, then this implosion produces an enormous heating, which stops only after quark-gluon plasma of a temperature about 100 MeV (or even higher) is formed to withstand the gravitational compression...

  20. Vacuum metastability with black holes.

    OpenAIRE

    Burda, Philipp; Gregory, Ruth; Moss, Ian

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evapor...

  1. Energy Extraction from Black Holes

    OpenAIRE

    Straumann, Norbert

    2007-01-01

    In this lecture I give an introduction to the rotational energy extraction of black holes by the electromagnetic Blandford-Znajek process and the generation of relativistic jets. After some basic material on the electrodynamics of black hole magnetospheres, we derive the most important results of Blandford and Znajek by making use of Kerr-Schild coordinates, which are regular on the horizon. In a final part we briefly describe results of recent numerical simulations of accretion flows on rota...

  2. Black Holes and String Theory

    CERN Document Server

    Myers, R C

    2001-01-01

    This is a short summary of my lectures given at the Fourth Mexican School on Gravitation and Mathematical Physics. These lectures gave a brief introduction to black holes in string theory, in which I primarily focussed on describing some of the recent calculations of black hole entropy using the statistical mechanics of D-brane states. The following overview will also provide the interested students with an introduction to the relevant literature.

  3. Charged rotating noncommutative black holes

    International Nuclear Information System (INIS)

    In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.

  4. Charged rotating noncommutative black holes

    Science.gov (United States)

    Modesto, Leonardo; Nicolini, Piero

    2010-11-01

    In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.

  5. Charged rotating noncommutative black holes

    CERN Document Server

    Modesto, Leonardo

    2010-01-01

    In this paper we complete the program of the Noncomutative Geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newmann-Janis algorithm in case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.

  6. Geometric inequalities for black holes

    CERN Document Server

    Dain, Sergio

    2014-01-01

    It is well known that the three parameters that characterize the Kerr black hole (mass, angular momentum and horizon area) satisfy several important inequalities. Remarkably, some of these inequalities remain valid also for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this article recent results in this subject are reviewed.

  7. Black holes and cosmic censorship

    International Nuclear Information System (INIS)

    It is widely accepted that the complete gravitational collapse of a body always yields a black hole, and that naked singularities are never produced (the cosmic censorship hypothesis). The local (or strong) cosmic censorship hypothesis states that singularities which are even locally naked (e.g., to an observer inside a black hole) are never produced. This dissertation studies the validity of these two conjectures. The Kerr-Newman metrics describes the black holes only when M2 greater than or equal to Q2 + P2, where M is the mass of the black hole, a = J/M its specific angular momentum, Q its electric charge, and P its magnetic charge. In the first part of this dissertation, the possibility of converting an extreme Kerr-Newman black hole (M2 = a2 + Q2 + P2) into a naked singularity by the accretion of test particles is considered. The motion of test particles is studied with a large angular momentum to energy ratio, and also test particles with a large charge to energy ratio. The final state is always found to be a black hole if the angular momentum, electric charge, and magnetic charge of the black hole are all much greater than the corresponding angular momentum, electric charge, and magnetic charge of the test particle. In Part II of this dissertation possible black hole interior solutions are studied. The Cauchy horizons and locally naked timelike singularities of the charged (and/or rotating) solutions are contrasted with the spacelike all-encompassing singularity of the Schwarzschild solution. It is determined which portions of the analytic extension of the Reissner-Nordstroem solution are relevant to realistic gravitational collapse

  8. Dynamic black-hole entropy

    OpenAIRE

    Hayward, Sean A.; Mukohyama, Shinji; Ashworth, M. C.

    1998-01-01

    We consider two non-statistical definitions of entropy for dynamic (non-stationary) black holes in spherical symmetry. The first is analogous to the original Clausius definition of thermodynamic entropy: there is a first law containing an energy-supply term which equals surface gravity times a total differential. The second is Wald's Noether-charge method, adapted to dynamic black holes by using the Kodama flow. Both definitions give the same answer for Einstein gravity: one-quarter the area ...

  9. Soft Hair on Black Holes

    OpenAIRE

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-01-01

    It has recently been shown that BMS supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft ($i.e.$ zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This paper gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that com...

  10. Probability for primordial black holes

    Science.gov (United States)

    Bousso, R.; Hawking, S. W.

    1995-11-01

    We consider two quantum cosmological models with a massive scalar field: an ordinary Friedmann universe and a universe containing primordial black holes. For both models we discuss the complex solutions to the Euclidean Einstein equations. Using the probability measure obtained from the Hartle-Hawking no-boundary proposal we find that the only unsuppressed black holes start at the Planck size but can grow with the horizon scale during the roll down of the scalar field to the minimum.

  11. Constraints on Black Hole Remnants

    OpenAIRE

    Giddings, S. B.

    1993-01-01

    One possible fate of information lost to black holes is its preservation in black hole remnants. It is argued that a type of effective field theory describes such remnants (generically referred to as informons). The general structure of such a theory is investigated and the infinite pair production problem is revisited. A toy model for remnants clarifies some of the basic issues; in particular, infinite remnant production is not suppressed simply by the large internal volumes as proposed in c...

  12. Information retrieval from black holes

    OpenAIRE

    Lochan, Kinjalk; Chakraborty, Sumanta; Padmanabhan, T.

    2016-01-01

    It is generally believed that, when matter collapses to form a black hole, the complete information about the initial state of the matter cannot be retrieved by future asymptotic observers, through local measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge and angular momentum is expected to be revealed to such asymptotic observers after th...

  13. Black hole thermodynamics from decoherence

    OpenAIRE

    Guo, Xiao-Kan

    2015-01-01

    We present an approach to the four laws of black hole thermodynamics by utilizing the thermodynamics of quantum coherence. Firstly, Hawking effect is attributed to the decoherence of the two-mode squeezed state in a black hole spacetime. Then use is made of the relative entropy between undecohered and decohered squeezed states whose monotonicity gives the zeroth and the second law, while the first law can be obtained either by the vanishing of the first derivative of relative entropy or by st...

  14. New regular black hole solutions

    International Nuclear Information System (INIS)

    In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordstroem and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.

  15. Black Holes as Dark Matter

    OpenAIRE

    Frampton, Paul H.

    2009-01-01

    While the energy of the universe has been established to be about 0.04 baryons, 0.24 dark matter and 0.72 dark energy, the cosmological entropy is almost entirely, about $(1 - 10^{-15})$, from black holes and only $10^{-15}$ from everything else. This identification of all dark matter as black holes is natural in statistical mechanics. Cosmological history of dark matter is discussed.

  16. Are Black Holes Elementary Particles?

    OpenAIRE

    Ha, Yuan K.

    2009-01-01

    Quantum black holes are the smallest and heaviest conceivable elementary particles. They have a microscopic size but a macroscopic mass. Several fundamental types have been constructed with some remarkable properties. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox of ultra-high energy cosmic rays detected in Earth's atmosphere. They may also play a role as dark matter in cosmology.

  17. Properties of the distorted Kerr black hole

    CERN Document Server

    Abdolrahimi, Shohreh; Nedkova, Petya; Tzounis, Christos

    2015-01-01

    We investigate the properties of the ergoregion and the location of the curvature singularities for the Kerr black hole distorted by the gravitational field of external sources. The particular cases of quadrupole and octupole distortion are studied in detail. We also investigate the scalar curvature invariants of the horizon and compare their behaviour with the case of the isolated Kerr black hole. In a certain region of the parameter space the ergoregion consists of a compact region encompassing the horizon and a disconnected part extending to infinity. The curvature singularities in the domain of outer communication, when they exist, are always located on the boundary of the ergoregion. We present arguments that they do not lie on the compact ergosurface. For quadrupole distortion the compact ergoregion size is negatively correlated with the horizon angular momentum when the external sources are varied. For octupole distortion infinitely many ergoregion configurations can exist for a certain horizon angular...

  18. Massive Black Holes: formation and evolution

    OpenAIRE

    Rees, Martin J.; Volonteri, Marta

    2007-01-01

    Supermassive black holes are nowadays believed to reside in most local galaxies. Observations have revealed us vast information on the population of local and distant black holes, but the detailed physical properties of these dark massive objects are still to be proven. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. We briefly review here the basic properties of the population of supermassive black holes,...

  19. Regular black hole in three dimensions

    OpenAIRE

    Myung, Yun Soo; Yoon, Myungseok

    2008-01-01

    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.

  20. Regular black hole in three dimensions

    International Nuclear Information System (INIS)

    We find a new black hole in three-dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare the thermodynamics of this black hole with that of a non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy. (orig.)

  1. Regular black hole in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Myung, Yun Soo [Inje University, Institute of Basic Science and School of Computer Aided Science, Gimhae (Korea); Yoon, Myungseok [Sogang University, Center for Quantum Spacetime, Seoul (Korea)

    2009-07-15

    We find a new black hole in three-dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare the thermodynamics of this black hole with that of a non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy. (orig.)

  2. A FOURIER-TRANSFORMED BREMSSTRAHLUNG FLASH MODEL FOR THE PRODUCTION OF X-RAY TIME LAGS IN ACCRETING BLACK HOLE SOURCES

    International Nuclear Information System (INIS)

    Accreting black hole sources show a wide variety of rapid time variability, including the manifestation of time lags during X-ray transients, in which a delay (phase shift) is observed between the Fourier components of the hard and soft spectra. Despite a large body of observational evidence for time lags, no fundamental physical explanation for the origin of this phenomenon has been presented. We develop a new theoretical model for the production of X-ray time lags based on an exact analytical solution for the Fourier transform describing the diffusion and Comptonization of seed photons propagating through a spherical corona. The resulting Green's function can be convolved with any source distribution to compute the associated Fourier transform and time lags, hence allowing us to explore a wide variety of injection scenarios. We show that thermal Comptonization is able to self-consistently explain both the X-ray time lags and the steady-state (quiescent) X-ray spectrum observed in the low-hard state of Cyg X-1. The reprocessing of bremsstrahlung seed photons produces X-ray time lags that diminish with increasing Fourier frequency, in agreement with the observations for a wide range of sources

  3. A FOURIER-TRANSFORMED BREMSSTRAHLUNG FLASH MODEL FOR THE PRODUCTION OF X-RAY TIME LAGS IN ACCRETING BLACK HOLE SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, John J.; Becker, Peter A., E-mail: jkroon@gmu.edu, E-mail: pbecker@gmu.edu [School of Physics, Astronomy, and Computational Sciences, George Mason University, Fairfax, VA 22030-4444 (United States)

    2014-04-20

    Accreting black hole sources show a wide variety of rapid time variability, including the manifestation of time lags during X-ray transients, in which a delay (phase shift) is observed between the Fourier components of the hard and soft spectra. Despite a large body of observational evidence for time lags, no fundamental physical explanation for the origin of this phenomenon has been presented. We develop a new theoretical model for the production of X-ray time lags based on an exact analytical solution for the Fourier transform describing the diffusion and Comptonization of seed photons propagating through a spherical corona. The resulting Green's function can be convolved with any source distribution to compute the associated Fourier transform and time lags, hence allowing us to explore a wide variety of injection scenarios. We show that thermal Comptonization is able to self-consistently explain both the X-ray time lags and the steady-state (quiescent) X-ray spectrum observed in the low-hard state of Cyg X-1. The reprocessing of bremsstrahlung seed photons produces X-ray time lags that diminish with increasing Fourier frequency, in agreement with the observations for a wide range of sources.

  4. Noncommutative corrections to classical black holes

    International Nuclear Information System (INIS)

    We calculate leading long-distance noncommutative corrections to the classical Schwarzschild black hole sourced by a massive noncommutative scalar field. The energy-momentum tensor is taken O(l4) in the noncommutative parameter l and is treated in the semiclassical (tree-level) approximation. These noncommutative corrections dominate classical post-post-Newtonian corrections if l>1/MP. However, they are still very small to be observable in present-day experiments.

  5. Noncommutative corrections to classical black holes

    OpenAIRE

    Kobakhidze, Archil(ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Sydney, NSW, 2006, Australia)

    2007-01-01

    We calculate leading long-distance noncommutative corrections to the classical Schwarzschild black hole which is sourced by a massive noncommutative scalar field. The energy-momentum tensor is taken up to ${\\cal O}(\\ell^4)$ in noncommutative parameter, and is treated in semiclassical (tree level) approximation. These noncommutative corrections can dominate classical post-post-Newtonian corrections providing $\\ell > 1/M_P$, however, they are still too small to be observable in present-day expe...

  6. Gravitational waves from black-hole mergers

    OpenAIRE

    Baker, John G.; Boggs, William D.; Centrella, Joan M.; Kelly, Bernard J.; McWilliams, Sean T.; van Meter, James R.

    2007-01-01

    Coalescing black-hole binaries are expected to be the strongest sources of gravitational waves for ground-based interferometers as well as the space-based interferometer LISA. Recent progress in numerical relativity now makes it possible to calculate the waveforms from the strong-field dynamical merger and is revolutionizing our understanding of these systems. We review these dramatic developments, emphasizing applications to issues in gravitational wave observations. These new capabilities a...

  7. Primordial Black Holes: sirens of the early Universe

    OpenAIRE

    Green, Anne M.

    2014-01-01

    Primordial Black Holes (PBHs) are, typically light, black holes which can form in the early Universe. There are a number of formation mechanisms, including the collapse of large density perturbations, cosmic string loops and bubble collisions. The number of PBHs formed is tightly constrained by the consequences of their evaporation and their lensing and dynamical effects. Therefore PBHs are a powerful probe of the physics of the early Universe, in particular models of inflation. They are also...

  8. On the nature of the "radio quiet" black hole binaries

    OpenAIRE

    Soleri, Paolo; Fender, Rob

    2011-01-01

    The coupling between accretion processes and ejection mechanisms in accreting black holes in binary systems can be investigated by empirical relations between the X-ray/radio and X-ray/optical-infrared luminosities. These correlations are valid over several orders of magnitude and were initially thought to be universal. However, recently, many black hole binaries have been found to produce jets that, given certain accretion-powered luminosities, are fainter than expected from the earlier corr...

  9. Cold, clumpy accretion onto an active supermassive black hole

    OpenAIRE

    Tremblay, Grant R.; Oonk, J. B. Raymond; Combes, Françoise; Salomé, Philippe; O'Dea, Christopher P.; Baum, Stefi A.; Voit, G. Mark; Donahue, Megan; McNamara, Brian R.; Davis, Timothy A.; McDonald, Michael A.; Edge, Alastair C.; Clarke, Tracy E.; Galván-Madrid, Roberto; Bremer, Malcolm N.

    2016-01-01

    Supermassive black holes in galaxy centres can grow by the accretion of gas, liberating energy that might regulate star formation on galaxy-wide scales. The nature of the gaseous fuel reservoirs that power black hole growth is nevertheless largely unconstrained by observations, and is instead routinely simplified as a smooth, spherical inflow of very hot gas. Recent theory and simulations instead predict that accretion can be dominated by a stochastic, clumpy distribution of very cold molecul...

  10. Black hole quantum spectrum

    International Nuclear Information System (INIS)

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum ''overtone'' number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the ''hydrogen atom'' and the ''quasi-thermal emission'' in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox. (orig.)

  11. Black hole quantum spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Corda, Christian [Institute for Theoretical Physics and Advanced Mathematics (IFM) Einstein-Galilei, Prato (Italy); Istituto Universitario di Ricerca ' ' Santa Rita' ' , Prato (Italy); International Institute for Applicable Mathematics and Information Sciences (IIAMIS), Hyderabad (India)

    2013-12-15

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum ''overtone'' number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the ''hydrogen atom'' and the ''quasi-thermal emission'' in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox. (orig.)

  12. Matter flows around black holes and gravitational radiation

    OpenAIRE

    Papadopoulos, Philippos; Font, Jose A.

    1998-01-01

    We develop and calibrate a new method for estimating the gravitational radiation emitted by complex motions of matter sources in the vicinity of black holes. We compute numerically the linearized curvature perturbations induced by matter fields evolving in fixed black hole backgrounds, whose evolution we obtain using the equations of relativistic hydrodynamics. The current implementation of the proposal concerns non-rotating holes and axisymmetric hydrodynamical motions. As first applications...

  13. PRECESSION. Dynamics of spinning black-hole binaries with python

    OpenAIRE

    Gerosa, Davide; Kesden, Michael

    2016-01-01

    We present the numerical code PRECESSION: a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulae obtained from...

  14. Observational Signatures of Tilted Black Hole Accretion Disks from Simulations

    OpenAIRE

    Dexter, Jason; Fragile, P. Chris

    2011-01-01

    Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer, and compare the estimated locatio...

  15. A rotating charged black hole solution in () gravity

    Indian Academy of Sciences (India)

    Alexis Larrañaga

    2012-05-01

    In the context of () theories of gravity, we address the problem of finding a rotating charged black hole solution in the case of constant curvature. A new metric is obtained by solving the field equations and we show that its behaviour is typical of a rotating charged source. In addition, we analyse the thermodynamics of the new black hole. The results ensure that the thermodynamical properties in () gravities are qualitatively similar to those of standard General Relativity.

  16. Measuring Massive Black Hole Binaries with LISA

    Science.gov (United States)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2009-01-01

    The coalescence of two massive black holes produces gravitational waves (GWs) which can be detected by the space-based detector LISA. By measuring these waves, LISA can determine the various parameters which characterize the source. Measurements of the black hole masses and spins will provide information about the growth of black holes and their host galaxies over time. Measurements of a source's sky position and distance may help astronomers identify an electromagnetic counterpart to the GW event. The counterpart's redshift, combined with the GW-measured luminosity distance, can then be used to measure the Hubble constant and the dark energy parameter $w$. Because the potential science output is so high, it is useful to know in advance how well LISA can measure source parameters for a wide range of binaries. We calculate expected parameter estimation errors using the well-known Fisher matrix method. Our waveform model includes the physics of spin precession, as well as subleading harmonics. When these higher-order effects are not included, strong degeneracies between some parameters cause them to be poorly determined by a GW measurement. When precession and subleading harmonics are properly included, the degeneracies are broken, reducing parameter errors by one to several orders of magnitude.

  17. A model of the steep power law spectra and high-frequency quasi-periodic oscillations in luminous black hole X-ray binaries

    CERN Document Server

    Dexter, Jason

    2013-01-01

    We propose a new model of the steep power law state of luminous black hole X-ray binaries. The model uses the fact that at high luminosities, the inner radii of radiation pressure dominated accretion discs are expected to i) become effectively optically thin and ii) produce significant luminosities. The gas temperature therefore rises sharply inwards, producing local saturated Compton spectra with rapidly increasing peak energy. These spectra sum together to form a steep power law tail to the spectrum. A given photon energy on this tail corresponds to a narrow range in radius, so that local vertical oscillations of the disc naturally produce high quality high-frequency quasi-periodic oscillations (HFQPOs) in the hard X-ray band. The two lowest order modes have a robust frequency ratio of ~1.53. This model explains the appearance of steep power law spectra and HFQPOs at high luminosity, the 3:2 HFQPO frequency ratios, and their association with the power law spectral component. We predict an increase in QPO qu...

  18. Unveiling a population of galaxies harboring low-mass black holes with X-rays

    CERN Document Server

    Schramm, M; Greene, J E; Brandt, W N; Luo, B; Xue, Y Q; Capak, P; Kakazu, Y; Kartaltepe, J; Mainieri, V

    2013-01-01

    We report the discovery of three low-mass black hole candidates residing in the centers of low-mass galaxies at z<0.3 in the Chandra Deep Field - South Survey. These black holes are initially identified as candidate active galactic nuclei based on their X-ray emission in deep Chandra observations. Multi-wavelength observations are used to strengthen our claim that such emission is powered by an accreting supermassive black hole. While the X-ray luminosities are low at L_X ~ 10^40 erg s^-1 (and variable in one case), we argue that they are unlikely to be attributed to star formation based on H\\alpha or UV-fluxes. Optical spectroscopy with Keck/DEIMOS and VLT/FORS allows us to (1) measure accurate redshifts, (2) confirm their low stellar host mass, (3) investigate the source(s) of photo-ionization, and (4) estimate extinction. With stellar masses of M* < 3*10^9 M_\\sun determined from HST/ACS imaging, the host galaxies are among the lowest mass systems known to host actively accreting black holes. We estim...

  19. A deep XMM-Newton observation of the ultraluminous X-ray source HoII X-1 the case against a 1000 solar mass black hole

    CERN Document Server

    Goad, M R; Reeves, J N; Uttley, P

    2006-01-01

    We present results from a 112 ks long look by XMM-Newton at the ultraluminous X-ray source (ULX) Holmberg II X-1, long thought to be the one of best candidates for the missing class of intermediate mass black holes (IMBHs). Our data comprises the first high quality XMM-Newton/RGS spectrum of an ULX, and an XMM-Newton/EPIC spectrum with unprecedented signal-to-noise. A detailed timing analysis shows that any variability on time-scales of minutes to hours is very weak (< few per cent fractional rms), though larger amplitude variations on much shorter time-scales could be hidden by photon counting statistics. This result suggests that if Ho II X-1 harbours an IMBH, then we are observing this source in a highly unusual and atypical state when compared with the known variability behaviour of other accreting systems of large mass. Moreover unlike Galactic X-ray binaries, our spectral analysis indicates the possible presence of an optically-thick low temperature corona. Taken together our timing and spectral anal...

  20. QPOs from Random X-ray Bursts around Rotating Black Holes

    Science.gov (United States)

    Kukumura, Keigo; Kazanas, Demosthenes; Stephenson, Gordon

    2009-01-01

    We continue our earlier studies of quasi-periodic oscillations (QPOs) in the power spectra of accreting, rapidly-rotating black holes that originate from the geometric 'light echoes' of X-ray flares occurring within the black hole ergosphere. Our present work extends our previous treatment to three-dimensional photon emission and orbits to allow for arbitrary latitudes in the positions of the distant observers and the X-ray sources in place of the mainly equatorial positions and photon orbits of the earlier consideration. Following the trajectories of a large number of photons we calculate the response functions of a given geometry and use them to produce model light curves which we subsequently analyze to compute their power spectra and autocorrelation functions. In the case of an optically-thin environment, relevant to advection-dominated accretion flows, we consistently find QPOs at frequencies of order of approximately kHz for stellar-mass black hole candidates while order of approximately mHz for typical active galactic nuclei (approximately equal to 10(exp 7) solar mass) for a wide range of viewing angles (30 degrees to 80 degrees) from X-ray sources predominantly concentrated toward the equator within the ergosphere. As in out previous treatment, here too, the QPO signal is produced by the frame-dragging of the photons by the rapidly-rotating black hole, which results in photon 'bunches' separated by constant time-lags, the result of multiple photon orbits around the hole. Our model predicts for various source/observer configurations the robust presence of a new class of QPOs, which is inevitably generic to curved spacetime structure in rotating black hole systems.

  1. Gravitational waves from black-hole mergers

    CERN Document Server

    Baker, John G; Centrella, Joan M; Kelly, Bernard J; McWilliams, Sean T; van Meter, James R

    2007-01-01

    Coalescing black-hole binaries are expected to be the strongest sources of gravitational waves for ground-based interferometers as well as the space-based interferometer LISA. Recent progress in numerical relativity now makes it possible to calculate the waveforms from the strong-field dynamical merger and is revolutionizing our understanding of these systems. We review these dramatic developments, emphasizing applications to issues in gravitational wave observations. These new capabilities also make possible accurate calculations of the recoil or kick imparted to the final remnant black hole when the merging components have unequal masses, or unequal or unaligned spins. We highlight recent work in this area, focusing on results of interest to astrophysics.

  2. High Frequency QPOs due to Black Hole Spin

    Science.gov (United States)

    Kazanas, Demos; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.

  3. Global Structure of Exact Scalar Hairy Dynamical Black Holes

    CERN Document Server

    Fan, Zhong-Ying; Lu, Hong

    2016-01-01

    We study the global structure of some exact scalar hairy dynamical black holes which were constructed in Einstein gravity either minimally or non-minimally coupled to a scalar field. We find that both the apparent horizon and the local event horizon (measured in luminosity coordinate) monotonically increase with the advanced time as well as the Vaidya mass. At late advanced times, the apparent horizon approaches the event horizon and gradually becomes future outer. Correspondingly, the space-time arrives at stationary black hole states with the relaxation time inversely proportional to the $1/(n-1)$ power of the final black hole mass. These results strongly support the solutions describing the formation of black holes with scalar hair. We also obtain new charged dynamical solutions in the non-minimal theory by introducing an Maxwell field which is non-minimally coupled to the scalar. The presence of the electric charge strongly modifies the dynamical evolution of the space-time.

  4. Dark Spinors Hawking Radiation in String Theory Black Holes

    Directory of Open Access Journals (Sweden)

    R. T. Cavalcanti

    2016-01-01

    Full Text Available The Hawking radiation spectrum of Kerr-Sen axion-dilaton black holes is derived, in the context of dark spinors tunnelling across the horizon. Since a black hole has a well defined temperature, it should radiate in principle all the standard model particles, similar to a black body at that temperature. We investigate the tunnelling of mass dimension one spin-1/2 dark fermions, which are beyond the standard model and are prime candidates to the dark matter. Their interactions with the standard model matter and gauge fields are suppressed by at least one power of unification scale, being restricted just to the Higgs field and to the graviton likewise. The tunnelling method for the emission and absorption of mass dimension one particles across the event horizon of Kerr-Sen axion-dilaton black holes is shown here to provide further evidence for the universality of black hole radiation, further encompassing particles beyond the standard model.

  5. Energetic Gamma Radiation from Rapidly Rotating Black Holes

    CERN Document Server

    Hirotani, Kouichi

    2015-01-01

    Supermassive black holes are believed to be the central power house of active galactic nuclei. Applying the pulsar outer-magnetospheric particle accelerator theory to black-hole magnetospheres, we demonstrate that an electric field is exerted along the magnetic field lines near the event horizon of a rotating black hole. In this particle accelerator (or a gap), electrons and positrons are created by photon-photon collisions and accelerated in the opposite directions by this electric field, efficiently emitting gamma-rays via curvature and inverse-Compton processes. It is shown that a gap arises around the null charge surface formed by the frame-dragging effect, provided that there is no current injection across the gap boundaries. The gap is dissipating a part of the hole's rotational energy, and the resultant gamma-ray luminosity increases with decreasing plasma accretion from the surroundings. Considering an extremely rotating supermassive black hole, we show that such a gap reproduces the significant very-...

  6. Black-hole Merger Simulations for LISA Science

    Science.gov (United States)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; Centrella, Joan M.; McWilliams, Sean T.

    2009-01-01

    The strongest expected sources of gravitational waves in the LISA band are the mergers of massive black holes. LISA may observe these systems to high redshift, z>10, to uncover details of the origin of massive black holes, and of the relationship between black holes and their host structures, and structure formation itself. These signals arise from the final stage in the development of a massive black-hole binary emitting strong gravitational radiation that accelerates the system's inspiral toward merger. The strongest part of the signal, at the point of merger, carries much information about the system and provides a probe of extreme gravitational physics. Theoretical predictions for these merger signals rely on supercomputer simulations to solve Einstein's equations. We discuss recent numerical results and their impact on LISA science expectations.

  7. Black holes and branes in string theory

    CERN Document Server

    Skenderis, K

    1999-01-01

    This is a set of introductory lecture notes on black holes in string theory. After reviewing some aspects of string theory such as dualities, brane solutions, supersymmetric and non-extremal intersection rules, we analyze in detail extremal and non-extremal 5d black holes. We first present the D-brane counting for extremal black holes. Then we show that 4d and 5d non-extremal black holes can be mapped to the BTZ black hole (times a compact manifold) by means of dualities. The validity of these dualities is analyzed in detail. We present an analysis of the same system in the spirit of the adS/CFT correspondence. In the ``near-horizon'' limit (which is actually a near inner-horizon limit for non-extremal black holes) the black hole reduces again to the BTZ black hole. A state counting is presented in terms of the BTZ black hole.

  8. Interpretations for Low- and High-Frequency QPO Correlations of X-Ray Sources among White Dwarfs, Neutron Stars, and Black Holes

    Science.gov (United States)

    Zhang, C. M.; Yin, H. X.; Zhao, Y. H.

    2007-04-01

    An empirical linear relation is found to exist between the high and low frequencies (νhigh, νlow) of quasi-periodic oscillations (QPOs) for black hole candidates (BHCs), neutron stars (NSs), and white dwarfs (WDs) in binary systems, spanning 5 orders of magnitude in frequency. For the NS Z (atoll) sources, νhigh and νlow are identified as the lower kHz QPO frequency and horizontal-branch oscillation (HBO) frequency νHBO (broad noise components); for the BHCs and low-luminosity NSs, they are the QPOs and broad noise components at frequencies between 1 and 10 Hz; for WDs, they are the ``dwarf nova oscillations'' (DNOs) and QPOs of cataclysmic variables (CVs). To interpret this relation, our model ascribes νhigh to the Alfvén wave oscillation frequency at a preferred radius, and νlow to the same mechanism at another radius. We can then obtain νlow=0.08νhigh and the relation between the upper kHz QPO frequency ν2 and the HBO frequency, νHBO~=(56 Hz)(ν2/kHz)2, which are in accordance with the observed empirical relations. Furthermore, some implications of the model are discussed, including why QPO frequencies of WDs and NSs span 5 orders of magnitude.

  9. Black holes: the membrane paradigm

    International Nuclear Information System (INIS)

    The physics of black holes is explored in terms of a membrane paradigm which treats the event horizon as a two-dimensional membrane embedded in three-dimensional space. A 3+1 formalism is used to split Schwarzschild space-time and the laws of physics outside a nonrotating hole, which permits treatment of the atmosphere in terms of the physical properties of thin slices. The model is applied to perturbed slowly or rapidly rotating and nonrotating holes, and to quantify the electric and magnetic fields and eddy currents passing through a membrane surface which represents a stretched horizon. Features of tidal gravitational fields in the vicinity of the horizon, quasars and active galalctic nuclei, the alignment of jets perpendicular to accretion disks, and the effects of black holes at the center of ellipsoidal star clusters are investigated. Attention is also given to a black hole in a binary system and the interactions of black holes with matter that is either near or very far from the event horizon. Finally, a statistical mechanics treatment is used to derive a second law of thermodynamics for a perfectly thermal atmosphere of a black hole

  10. Black holes: a slanted overview

    International Nuclear Information System (INIS)

    The black hole saga spanning some seventy years may be broadly divided into four phases, namely, (a) the dark ages when little was known about black holes even though they had come into existence quite early through the Schwarzschild solution, (b) the age of enlightenment bringing in deep and prolific discoveries, (c) the age of fantasy that cast black holes in all sorts of extraordinary roles, and (d) the golden age of relativistic astrophysics - to some extent similar to Dirac's characterisation of the development of quantum theory - in which black holes have been extensively used to elucidate a number of astrophysical phenomena. It is impossible to give here even the briefest outline of the major developments in this vast area. We shall only attempt to present a few aspects of black hole physics which have been actively pursued in the recent past. Some details are given in the case of those topics that have not found their way into text books or review articles. (author)

  11. Observation of Gravitational Waves from a Binary Black Hole Merger.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-02-12

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger. PMID:26918975

  12. Macroscopic black holes, microscopic black holes and noncommutative membrane

    Energy Technology Data Exchange (ETDEWEB)

    Li Miao [Institute of Theoretical Physics, Academia Sinica, PO Box 2735, Beijing 100080 (China)

    2004-07-21

    We study the stretched membrane of a black hole as consisting of a perfect fluid. We find that the pressure of this fluid is negative and the specific heat is also negative. A surprising result is that if we are to assume the fluid to be composed of some quanta, then the dispersion relation of the fundamental quantum is E = m{sup 2}/k, with m at the scale of the Planck mass. There are two possible interpretations of this dispersion relation. One is the noncommutative spacetime on the stretched membrane and the other is that the fundamental quanta are microscopic black holes.

  13. Macroscopic black holes, microscopic black holes and noncommutative membrane

    International Nuclear Information System (INIS)

    We study the stretched membrane of a black hole as consisting of a perfect fluid. We find that the pressure of this fluid is negative and the specific heat is also negative. A surprising result is that if we are to assume the fluid to be composed of some quanta, then the dispersion relation of the fundamental quantum is E = m2/k, with m at the scale of the Planck mass. There are two possible interpretations of this dispersion relation. One is the noncommutative spacetime on the stretched membrane and the other is that the fundamental quanta are microscopic black holes

  14. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    Science.gov (United States)

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies. PMID:26601307

  15. Accretion-induced variability links young stellar objects, white dwarfs, and black holes

    CERN Document Server

    Scaringi, S; Koerding, E; Knigge, C; Vaughan, S; Marsh, T R; Aranzana, E; Dhillon, V; Barros, S C C

    2015-01-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  16. The Formation and Gravitational-Wave Detection of Massive Stellar Black-Hole Binaries

    CERN Document Server

    Belczynski, Krzysztof; Cantiello, Matteo; Holz, Daniel E; Fryer, Chris L; Mandel, Ilya; Miller, M Coleman; Walczak, Marek

    2014-01-01

    If binaries consisting of two 100 Msun black holes exist they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z=2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several stars with mass greater than 150 Msun in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black-hole--black-hole binary remains too wide to be able to coalesce wi...

  17. Magnetically controlled accretion onto a black hole

    CERN Document Server

    Ikhsanov, N R; Beskrovnaya, N G; 10.1088/1742-6596/372/1/012062

    2012-01-01

    An accretion scenario in which the material captured by a black hole from its environment is assumed to be magnetized (\\beta ~ 1) is discussed. We show that the accretion picture in this case is strongly affected by the magnetic field of the flow itself. The accretion power within this Magnetically Controlled Accretion (MCA) scenario is converted predominantly into the magnetic energy of the accretion flow. The rapidly amplified field prevents the accretion flow from forming a homogeneous Keplerian disk. Instead, the flow is decelerated by its own magnetic field at a large distance (Shvartsman radius) from the black hole and switches into a non-Keplerian dense magnetized slab. The material in the slab is confined by the magnetic field and moves towards the black hole on the time scale of the magnetic field annihilation. The basic parameters of the slab are evaluated. Interchange instabilities in the slab may lead to a formation of Z-pinch type configuration of the magnetic field over the slab in which the acc...

  18. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni

    OpenAIRE

    Muñoz-Darias, T.; Casares, J.; Sánchez, D. Mata; Fender, R. P.; Padilla, M. Armas; Linares, M.; Ponti, G.; Charles, P. A.; Mooley, K. P.; RODRIGUEZ,J

    2016-01-01

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black hole transients show outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disc encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient black hole transient V404 Cyg, and i...

  19. An Intermediate-Mass Black Hole Candidate in M51?

    CERN Document Server

    Earnshaw, H M

    2015-01-01

    We present the current results of an investigation into M51 ULX-7, using archival data from XMM-Newton, Chandra and NuSTAR, and optical and radio data from HST and VLA. The source has a consistently hard power-law X-ray spectrum and high short-term variability. This is unusual variability behaviour for a ULX, as we would expect highly variable ULXs to have soft energy spectra. The power spectrum features a break at ~1e-3 Hz, from low frequency spectral index alpha=0.1 to high frequency spectral index alpha=0.8, analogous to the low frequency break found in power spectra of black holes accreting in the low/hard state. We do not observe a corresponding high frequency break, however taking the white noise level as a frequency lower limit of the break, we can calculate a black hole mass upper limit of 9.12e4 solar masses, assuming that the ULX is in the low/hard state. While there is no radio detection, we find a flux density upper limit of 87 micro-Jy/beam. Using the X-ray/radio fundamental plane, we calculate a...

  20. Time dependent black holes and scalar hair

    International Nuclear Information System (INIS)

    We show how to correctly account for scalar accretion onto black holes in scalar field models of dark energy by a consistent expansion in terms of a slow roll parameter. At leading order, we find an analytic solution for the scalar field within our Hubble volume, which is regular on both black hole and cosmological event horizons, and compute the back reaction of the scalar on the black hole, calculating the resulting expansion of the black hole. Our results are independent of the relative size of black hole and cosmological event horizons. We comment on the implications for more general black hole accretion, and the no hair theorems. (paper)

  1. Big Game Hunting in the Andromeda Galaxy: identifiying and weighing black holes in low mass X-ray Binaries

    Science.gov (United States)

    Barnard, R.

    2004-07-01

    We have devised a new technique for identifying stellar mass black holes in low mass X-ray binaries, and have applied it to XMM-Newton observations of two X-ray sources in M31. In particular we search for low accretion rate power density spectra; these are very similar for all LMXB, whether the primary is a black hole or a neutron star. Galactic neutron star LMXB exhibit these distinctive PDS at very low luminosities ( ˜ 1036 erg s-1) while black hole LMXB can exhibit them at luminosities > 1038 erg s-1! Following the work of van der Klis (1994), we assume a maximum accretion rate (as a fraction of the Eddington limit) for low accretion rate PDS that is constant for all LMXB, and obtain an empirical value of ˜ 10% Eddington. We have so far discovered two candidate black hole binaries in M31, exhibiting low accretion rate PDS at up to 3×1038 and 5×1037 erg s-1. If we assume that they are at 5×1037 erg s-1 is likely to have a black hole primary.

  2. Effect of quintessence on the energy of the Reissner-Nordstrom black hole

    OpenAIRE

    Hussain, Ibrar; Ali, Sajid

    2014-01-01

    The energy content of the Reissner-Nordstrom black hole surrounded by quintessence is investigated using approximate Lie symmetry methods. It is mainly done by assuming mass and charge of the black hole as small quantities ($\\epsilon$), and by retaining its second power in the perturbed geodesic equations for such black hole while neglecting its higher powers. Due to the presence of trivial second-order approximate Lie symmetries of these perturbed geodesic equations, a rescaling of the geode...

  3. Black Holes Traveling Exhibition: This Time, It's Personal.

    Science.gov (United States)

    Dussault, Mary E.; Braswell, E. L.; Sunbury, S.; Wasser, M.; Gould, R. R.

    2012-01-01

    How can you make a topic as abstract as black holes seem relevant to the life of the average museum visitor? In 2009, the Harvard-Smithsonian Center for Astrophysics developed a 2500 square foot interactive museum exhibition, "Black Holes: Space Warps & Time Twists,” with funding from the National Science Foundation and NASA. The exhibition has been visited by more than a quarter million museum-goers, and is about to open in its sixth venue at the Reuben H. Fleet Science Center in San Diego, California. We have found that encouraging visitors to adopt a custom black hole explorer's identity can help to make the science of black holes more accessible and meaningful. The Black Holes exhibition uses networked exhibit technology that serves to personalize the visitor experience, to support learning over time including beyond the gallery, and to provide a rich quantitative source of embedded evaluation data. Visitors entering the exhibition create their own bar-coded "Black Holes Explorer's Card” which they use throughout the exhibition to collect and record images, movies, their own predictions and conclusions, and other black hole artifacts. This digital database of personal discoveries grows as visitors navigate through the gallery, and an automated web-content authoring system creates a personalized online journal of their experience that they can access once they get home. We report here on new intriguing results gathered from data generated by 112,000 visitors across five different venues. For example, an initial review of the data reveals correlations between visitors’ black hole explorer identity choices and their engagement with the exhibition. We will also discuss correlations between learning gains and personalization.

  4. Energy on black hole spacetimes

    CERN Document Server

    Corichi, Alejandro

    2012-01-01

    We consider the issue of defining energy for test particles on a background black hole spacetime. We revisit the different notions of energy as defined by different observers. The existence of a time-like isometry allows for the notion of a total conserved energy to be well defined, and subsequently the notion of a gravitational potential energy is also meaningful. We then consider the situation in which the test particle is adsorbed by the black hole, and analyze the energetics in detail. In particular, we show that the notion of horizon energy es defined by the isolated horizons formalism provides a satisfactory notion of energy compatible with the particle's conserved energy. As another example, we comment a recent proposal to define energy of the black hole as seen by an observer at rest. This account is intended to be pedagogical and is aimed at the level of and as a complement to the standard textbooks on the subject.

  5. Black-hole eddy currents

    International Nuclear Information System (INIS)

    We study dissipative test electromagnetic fields in a black-hole background. Quantities such as surface velocity, tangential electric field, normal magnetic induction, total surface current, and conduction surface current are introduced and are shown to satisfy Ohm's law with a surface resistivity of 4π approx. = 377 ohms. Associated with these currents there exists a ''Joule heating''. These currents can exist when the black hole is inserted in an external electric circuit, but they can exist even in the absence of external currents. In particular, we study the eddy currents induced by the rotation of a black hole in an oblique uniform magnetic field, and we show how the computation of the ohmic losses allows a very simple derivation of the torque exerted on the hole

  6. Scrambling with matrix black holes

    Science.gov (United States)

    Brady, Lucas; Sahakian, Vatche

    2013-08-01

    If black holes are not to be dreaded sinks of information but rather fully described by unitary evolution, they must scramble in-falling data and eventually leak it through Hawking radiation. Sekino and Susskind have conjectured that black holes are fast scramblers; they generate entanglement at a remarkably efficient rate, with the characteristic time scaling logarithmically with the entropy. In this work, we focus on Matrix theory—M-theory in the light-cone frame—and directly probe the conjecture. We develop a concrete test bed for quantum gravity using the fermionic variables of Matrix theory and show that the problem becomes that of chains of qubits with an intricate network of interactions. We demonstrate that the black hole system evolves much like a Brownian quantum circuit, with strong indications that it is indeed a fast scrambler. We also analyze the Berenstein-Maldacena-Nastase model and reach the same tentative conclusion.

  7. Liouvillian perturbations of black holes

    Science.gov (United States)

    Couch, W. E.; Holder, C. L.

    2007-10-01

    We apply the well-known Kovacic algorithm to find closed form, i.e., Liouvillian solutions, to the differential equations governing perturbations of black holes. Our analysis includes the full gravitational perturbations of Schwarzschild and Kerr, the full gravitational and electromagnetic perturbations of Reissner-Nordstrom, and specialized perturbations of the Kerr-Newman geometry. We also include the extreme geometries. We find all frequencies ω, in terms of black hole parameters and an integer n, which allow Liouvillian perturbations. We display many classes of black hole parameter values and their corresponding Liouvillian perturbations, including new closed-form perturbations of Kerr and Reissner-Nordstrom. We also prove that the only type 1 Liouvillian perturbations of Schwarzschild are the known algebraically special ones and that type 2 Liouvillian solutions do not exist for extreme geometries. In cases where we do not prove the existence or nonexistence of Liouvillian perturbations we obtain sequences of Diophantine equations on which decidability rests.

  8. Massive Black Holes and Galaxies

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Evidence has been accumulating for several decades that many galaxies harbor central mass concentrations that may be in the form of black holes with masses between a few million to a few billion time the mass of the Sun. I will discuss measurements over the last two decades, employing adaptive optics imaging and spectroscopy on large ground-based telescopes that prove the existence of such a massive black hole in the Center of our Milky Way, beyond any reasonable doubt. These data also provide key insights into its properties and environment. Most recently, a tidally disrupting cloud of gas has been discovered on an almost radial orbit that reached its peri-distance of ~2000 Schwarzschild radii in 2014, promising to be a valuable tool for exploring the innermost accretion zone. Future interferometric studies of the Galactic Center Black hole promise to be able to test gravity in its strong field limit.

  9. Disrupting Entanglement of Black Holes

    CERN Document Server

    Leichenauer, Stefan

    2014-01-01

    We study entanglement in thermofield double states of strongly coupled CFTs by analyzing two-sided Reissner-Nordstrom solutions in AdS. The central object of study is the mutual information between a pair of regions, one on each asymptotic boundary of the black hole. For large regions the mutual information is positive and for small ones it vanishes; we compute the critical length scale, which goes to infinity for extremal black holes, of the transition. We also generalize the butterfly effect of Shenker and Stanford to a wide class of charged black holes, showing that mutual information is disrupted upon perturbing the system and waiting for a time of order $\\log E/\\delta E$ in units of the temperature. We conjecture that the parametric form of this timescale is universal.

  10. The Radio/X-Ray Correlation and Black Hole Fundamental Plane for Young Radio Sources: Implications for X-Ray Origin and Accretion Mode

    Science.gov (United States)

    Fan, Xu-Liang; Bai, Jin-Ming

    2016-02-01

    We find that the young radio sources (gigahertz-peaked spectrum and compact steep spectrum radio sources) follow in the radio/X-ray correlation with b=0.61+/- 0.07 ({L}R\\propto {L}Xb), and the fundamental plane of black hole activity with the form {log}{L}R={0.58}-0.03+0.03{log}{L}X+{0.42}-0.07+0.09{log}{M}{BH}+{13.83}-0.97+0.91 and the intrinsic scatter σ =0.29. The flatter coefficient between radio and X-ray bands denies the jet origin of the X-ray emission in these types of sources. Meanwhile, the higher ratio of X-ray luminosity to Eddington luminosity ({L}X/{L}{Edd}) suggests that the X-ray emission is produced by the hot corona coupling with the standard thin disk. The deviation with the radiative efficient fundamental plane proposed by Dong et al. is mainly due to the extended radio emission in young radio sources. This fundamental plane manifests that even the kiloparsec-scaled radio emission has a tight connection with the accretion process, and could be suitable for the radio-loud active galactic nuclei whose radio and X-ray emission are dominated by the extended jets and the radiative efficient accretion flow, respectively. Otherwise, the high-excitation galaxies and low-excitation galaxies do not have obvious distinctions in the radio/X-ray correlation and the fundamental plane.

  11. The brief era of direct collapse black hole formation

    Science.gov (United States)

    Yue, Bin; Ferrara, Andrea; Salvaterra, Ruben; Xu, Yidong; Chen, Xuelei

    2014-05-01

    It has been proposed that the first, intermediate-mass ( ≈ 105-6 M⊙) black holes might form through direct collapse of unpolluted gas in atomic-cooling haloes exposed to a strong Lyman-Werner (LW) or near-infrared (NIR) radiation. As these systems are expected to be Compton thick, photons above 13.6 eV are largely absorbed and reprocessed into lower energy bands. It follows that direct collapse black holes (DCBHs) are very bright in the LW/NIR bands, typically outshining small high-redshift galaxies by more than 10 times. Once the first DCBHs form, they then trigger a runaway process of further DCBH formation, producing a sudden rise in their cosmic mass density. The universe enters the `DCBH era' at z ≈ 20 when a large fraction of atomic-cooling haloes are experiencing DCBH formation. By combining the clustering properties of the radiation sources with Monte Carlo simulations, we show that in this scenario the DCBH mass density rises from ˜5 M⊙ Mpc-3 at z ˜ 30 to the peak value ˜5 × 105 M⊙ Mpc-3 at z ˜ 14 in our fiducial model. However, the abundance of active (accreting) DCBHs drops after z ˜ 14, as gas in the potential formation sites (unpolluted haloes with virial temperature slightly above 104 K) is photoevaporated. This effect almost completely suppresses DCBH formation after z ˜ 13. The DCBH formation era lasts only ≈150 Myr, but it might crucially provide the seeds of the supermassive black holes powering z ˜ 6 quasars.

  12. Horizon of quantum black holes in various dimensions

    Science.gov (United States)

    Casadio, Roberto; Cavalcanti, Rogerio T.; Giugno, Andrea; Mureika, Jonas

    2016-09-01

    We adapt the horizon wave-function formalism to describe massive static spherically symmetric sources in a general (1 + D)-dimensional space-time, for D > 3 and including the D = 1 case. We find that the probability PBH that such objects are (quantum) black holes behaves similarly to the probability in the (3 + 1) framework for D > 3. In fact, for D ≥ 3, the probability increases towards unity as the mass grows above the relevant D-dimensional Planck scale mD. At fixed mass, however, PBH decreases with increasing D, so that a particle with mass m ≃mD has just about 10% probability to be a black hole in D = 5, and smaller for larger D. This result has a potentially strong impact on estimates of black hole production in colliders. In contrast, for D = 1, we find the probability is comparably larger for smaller masses, but PBH black holes are purely quantum and not classical objects. This result is consistent with recent observations that sub-Planckian black holes are governed by an effective two-dimensional gravitation theory. Lastly, we derive Generalised Uncertainty Principle relations for the black holes under consideration, and find a minimum length corresponding to a characteristic energy scale of the order of the fundamental gravitational mass mD in D > 3. For D = 1 we instead find the uncertainty due to the horizon fluctuations has the same form as the usual Heisenberg contribution, and therefore no fundamental scale exists.

  13. Control of black hole evaporation?

    International Nuclear Information System (INIS)

    Contradiction between Hawking's semi-classical arguments and the string theory on the evaporation of a black hole has been one of the most intriguing problems in fundamental physics. A final-state boundary condition inside the black hole was proposed by Horowitz and Maldacena to resolve this contradiction. We point out that the original Hawking effect can also be regarded as a separate boundary condition at the event horizon for this scenario. Here, we found that the change of the Hawking boundary condition may affect the information transfer from the initial collapsing matter to the outgoing Hawking radiation during the evaporation process and as a result the evaporation process itself, significantly

  14. Asymptotic black hole quasinormal frequencies

    OpenAIRE

    Motl, Lubos; Neitzke, Andrew

    2003-01-01

    We give a new derivation of the quasinormal frequencies of Schwarzschild black holes in d greater than or equal to 4 and Reissner-Nordstrom black holes in d = 4, in the limit of infinite damping. For Schwarzschild in d greater than or equal to 4 we find that the asymptotic real part is THawkinglog(3) for scalar perturbations and for some gravitational perturbations; this confirms a result previously obtained by other means in the case d = 4. For Reissner-Nordstrom in d = 4 w...

  15. Geometric inequalities for black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dain, Sergio [Universidad Nacional de Cordoba (Argentina)

    2013-07-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  16. Information Loss in Black Holes

    CERN Document Server

    Hawking, Stephen William

    2005-01-01

    The question of whether information is lost in black holes is investigated using Euclidean path integrals. The formation and evaporation of black holes is regarded as a scattering problem with all measurements being made at infinity. This seems to be well formulated only in asymptotically AdS spacetimes. The path integral over metrics with trivial topology is unitary and information preserving. On the other hand, the path integral over metrics with non-trivial topologies leads to correlation functions that decay to zero. Thus at late times only the unitary information preserving path integrals over trivial topologies will contribute. Elementary quantum gravity interactions do not lose information or quantum coherence.

  17. Information loss in black holes

    Science.gov (United States)

    Hawking, S. W.

    2005-10-01

    The question of whether information is lost in black holes is investigated using Euclidean path integrals. The formation and evaporation of black holes is regarded as a scattering problem with all measurements being made at infinity. This seems to be well formulated only in asymptotically AdS spacetimes. The path integral over metrics with trivial topology is unitary and information preserving. On the other hand, the path integral over metrics with nontrivial topologies leads to correlation functions that decay to zero. Thus at late times only the unitary information preserving path integrals over trivial topologies will contribute. Elementary quantum gravity interactions do not lose information or quantum coherence.

  18. Black holes and warped spacetime

    International Nuclear Information System (INIS)

    Black holes (BHs) and their warping effect on spacetime are described, beginning with a discussion on stellar evolution that includes white dwarfs, supernovas and neutron stars. The structure of static, rotating, and electrically charged BHs are considered, as well as the general theory of relativity, quantum mechanics, the Einstein-Rosen bridge, and wormholes in spacetime. Attention is also given to gravitational lenses, various space geometries, quasars, Seyfert galaxies, supermassive black holes, the evaporation and particle emission of BHs, and primordial BHs, including their temperature and lifetime

  19. Introduction to Black Hole Evaporation

    CERN Document Server

    Lambert, Pierre-Henry

    2013-01-01

    These lecture notes are an elementary and pedagogical introduction to the black hole evaporation, based on a lecture given by the author at the Ninth Modave Summer School in Mathematical Physics and are intended for PhD students. First, quantum field theory in curved spacetime is studied and tools needed for the remaining of the course are introduced. Then quantum field theory in Rindler spacetime in 1+1 dimensions and in the spacetime of a spherically collapsing star are considered, leading to Unruh and Hawking effects, respectively. Finally some consequences such as thermodynamics of black holes and information loss paradox are discussed.

  20. The Euclidean gravitational action as black hole entropy, singularities, and spacetime voids

    International Nuclear Information System (INIS)

    We argue why the static spherically symmetric vacuum solutions of Einstein's equations described by the textbook Hilbert metric gμν(r) is not diffeomorphic to the metric gμν(|r|) corresponding to the gravitational field of a point mass delta function source at r=0. By choosing a judicious radial function R(r)=r+2G|M|Θ(r) involving the Heaviside step function, one has the correct boundary condition R(r=0)=0, while displacing the horizon from r=2G|M| to a location arbitrarily close to r=0 as one desires, rh→0, where stringy geometry and quantum gravitational effects begin to take place. We solve the field equations due to a delta function point mass source at r=0, and show that the Euclidean gravitational action (in (ℎ/2π) units) is precisely equal to the black hole entropy (in Planck area units). This result holds in any dimensions D≥3. In the Reissner-Nordstrom (massive charged) and Kerr-Newman black hole case (massive rotating charged) we show that the Euclidean action in a bulk domain bounded by the inner and outer horizons is the same as the black hole entropy. When one smears out the point-mass and point-charge delta function distributions by a Gaussian distribution, the area-entropy relation is modified. We postulate why these modifications should furnish the logarithmic corrections (and higher inverse powers of the area) to the entropy of these smeared black holes. To finalize, we analyze the Bars-Witten stringy black hole in 1+1 dimension and its relation to the maximal acceleration principle in phase spaces and Finsler geometries

  1. Optical properties of black holes in the presence of a plasma: The shadow

    Science.gov (United States)

    Abdujabbarov, Ahmadjon

    2016-07-01

    We have studied photon motion around axially symmetric rotating Kerr black holes in the presence of a plasma with radial power-law density. It is shown that in the presence of a plasma, the observed shape and size of the shadow changes depending on the (i) plasma parameters, (ii) black hole spin, and (iii) inclination angle between the observer plane and the axis of rotation of the black hole. In order to extract the pure effect of the plasma influence on the black hole image, the particular case of the Schwarzschild black hole has also been investigated and it has been shown that the photon sphere around the spherically symmetric black hole is left unchanged under the plasma influence; however, the Schwarzschild black hole shadow size in the plasma is reduced due to the refraction of the electromagnetic radiation in the plasma environment of the black hole. The study of the energy emission from the black hole in plasma environment shows that in the presence of the plasma the maximal energy emission rate from the black hole decreases.

  2. Jets Spout Far Closer to Black Hole Than Thought, Scientists Say

    Science.gov (United States)

    2004-01-01

    Scientists at the Massachusetts Institute of Technology, taking advantage of multiple unique views of black hole particle jets over the course of a year with NASA's Chandra X-ray Observatory, have assembled a "picture" of the region that has revealed several key discoveries. They have found that the jets may be originating five times closer to the black hole than previously thought; they see in better detail how these jets change with time and distance from the black hole; and they could use this information as a new technique to measure black hole mass. Presented today in a press conference at the meeting of the American Astronomical Society in Atlanta, the observation will ultimately help solve the mystery of the great cosmic contradiction, in which black holes, notorious for pulling matter in, somehow manage to also shoot matter away in particle jets moving close to the speed of light. The observation is of a familiar source named SS 433 -- a binary star system within our Galaxy in the constellation Aquila, the Eagle, about 16,000 light years away. The black hole and its companion are about two-thirds closer to each other than the planet Mercury is to the Sun. The jets shoot off at 175 million miles per hour, 26 percent of light speed. "The high-speed jets in nearby SS 433 may be caused by the same mechanisms as the powerful outflows in the most distant and much more massive black holes, such as quasars," said Laura Lopez, an undergraduate student at MIT and lead author on a paper about the result. "SS 433 provides a nice local laboratory to study the formation of and conditions in relativistic jets." Dr. Herman Marshall, Ms. Lopez's research supervisor, led the investigation. Matter from the companion star pours into the black hole via a swirling accretion disk, much like water down a drain. Black hole particles jets are thought to be produced as some of the matter encounters strong magnetic fields close to the black hole. SS 433 is angled in such a way that

  3. Regular Black Holes with Cosmological Constant

    Institute of Scientific and Technical Information of China (English)

    MO Wen-Juan; CAI Rong-Gen; SU Ru-Keng

    2006-01-01

    We present a class of regular black holes with cosmological constant Λ in nonlinear electrodynamics. Instead of usual singularity behind black hole horizon, all fields and curvature invariants are regular everywhere for the regular black holes. Through gauge invariant approach, the linearly dynamical stability of the regular black hole is studied. In odd-parity sector, we find that the Λ term does not appear in the master equations of perturbations, which shows that the regular black hole is stable under odd-parity perturbations. On the other hand, for the even-parity sector, the master equations are more complicated than the case without the cosmological constant. We obtain the sufficient conditions for stability of the regular black hole. We also investigate the thermodynamic properties of the regular black hole, and find that those thermodynamic quantities do not satisfy the differential form of first law of black hole thermodynamics. The reason for violating the first law is revealed.

  4. Black Holes Admitting Strong Resonant Phenomena

    Science.gov (United States)

    Stuchlík, Z.; Kotrlová, A.; G. Török

    2008-12-01

    High-frequency twin peak quasiperiodic oscillations (QPOs) are observed in four microquasars, i.e., Galactic black hole binary systems, with frequency ratio very close to 3:2. In the microquasar GRS 1915+105 the structure of QPOs exhibits additional frequencies and more than two frequencies are observed in the Galaxy nuclei Sgr A* or in some extragalactic sources (NGC 4051, MCG-6-30-15 and NGC 5408 X-1). The observed QPOs can be explained by a variety of the orbital resonance model versions assuming resonance of oscillations with the Keplerian frequency νK or the vertical epicyclic frequency νθ, and the radial epicyclic frequency νr, or some combinations of these frequencies. Generally, different resonances could arise at different radii of an accretion disk. However, we have shown that for special values of dimensionless black hole spin a strong resonant phenomena could occur when different resonances can be excited at the same radius, as cooperative phenomena between the resonances may work in such situations. The special values of a are determined for triple frequency ratio sets νK:νθ:νr=s:t:u with s,t,u being small integers. The most promising example of such a special situation arises for black holes with extraordinary resonant spin a=0.983 at the radius r=2.395 M, where νK:νθ:νr=3:2:1. We also predict that when combinations of the orbital frequencies are allowed, QPOs with four frequency ratio set 4:3:2:1 could be observed in the field of black holes with a=0.866,0.882 and 0.962. Assuming the extraordinary resonant spin a=0.983 in Sgr A*, its QPOs with observed frequency ratio ≍3:2:1 imply the black hole mass in the interval 4.3×106 Msolar< M< 5.4×106 Msolar, in agreement with estimates given by other, independent, observations.

  5. Modified dispersion relations and black hole physics

    OpenAIRE

    Ling, Yi; Hu, Bo; Li, Xiang

    2005-01-01

    A modified formulation of energy-momentum relation is proposed in the context of doubly special relativity. We investigate its impact on black hole physics. It turns out that such modification will give corrections to both the temperature and the entropy of black holes. In particular this modified dispersion relation also changes the picture of Hawking radiation greatly when the size of black holes approaching the Planck scale. It can prevent black holes from total evaporation, as a result pr...

  6. Black-hole formation from stellar collapse

    International Nuclear Information System (INIS)

    I review the end-state of massive stellar evolution, following the evolution of these massive stars from the onset of collapse through the formation of a compact remnant and the possible supernova or hypernova explosion. In particular, I concentrate on the formation of black holes from stellar collapse: the fraction of stars that form black holes, the black-hole mass distribution and the velocities these black-hole remnants may receive during their formation process

  7. Noncommutative geometry inspired Schwarzschild black hole

    OpenAIRE

    Nicolini, Piero; Smailagic, Anais; Spallucci, Euro

    2005-01-01

    We investigate the behavior of a noncommutative radiating Schwarzschild black hole. It is shown that coordinate noncommutativity cures usual problems encountered in the description of the terminal phase of black hole evaporation. More in detail, we find that: the evaporation end-point is a zero temperature extremal black hole even in the case of electrically neutral, non-rotating, objects; there exists a finite maximum temperature that the black hole can reach before cooling down to absolute ...

  8. Energy conservation for dynamical black holes

    OpenAIRE

    Hayward, Sean A.

    2004-01-01

    An energy conservation law is described, expressing the increase in mass-energy of a general black hole in terms of the energy densities of the infalling matter and gravitational radiation. For a growing black hole, this first law of black-hole dynamics is equivalent to an equation of Ashtekar & Krishnan, but the new integral and differential forms are regular in the limit where the black hole ceases to grow. An effective gravitational-radiation energy tensor is obtained, providing measures o...

  9. Supermassive Black Holes and Their Environments

    OpenAIRE

    Colberg, Joerg M.; Di Matteo, Tiziana

    2008-01-01

    We make use of the first high--resolution hydrodynamic simulations of structure formation which self-consistently follows the build up of supermassive black holes introduced in Di Matteo et al. (2007) to investigate the relation between black holes (BH), host halo and large--scale environment. There are well--defined relations between halo and black hole masses and between the activities of galactic nuclei and halo masses at low redshifts. A large fraction of black holes forms anti--hierarchi...

  10. Black hole growth in hierarchical galaxy formation.

    OpenAIRE

    Malbon, R. K.; Baugh, C M; Frenk, C. S.; Lacey, C. G.

    2007-01-01

    We incorporate a model for black hole growth during galaxy mergers into the semi-analytical galaxy formation model based on Lambda-CDM proposed by Baugh et al. (2005). Our black hole model has one free parameter, which we set by matching the observed zeropoint of the local correlation between black hole mass and bulge luminosity. We present predictions for the evolution with redshift of the relationships between black hole mass and bulge properties. Our simulations reproduce the evolution of ...

  11. Will black holes eventually engulf the universe?

    OpenAIRE

    Martin-Moruno, Prado; Madrid, Jose A. Jimenez; Gonzalez-Diaz, Pedro F.

    2006-01-01

    The Babichev-Dokuchaev-Eroshenko model for the accretion of dark energy onto black holes has been extended to deal with black holes with non-static metrics. The possibility that for an asymptotic observer a black hole with large mass will rapidly increase and eventually engulf the Universe at a finite time in the future has been studied by using reasonable values for astronomical parameters. It is concluded that such a phenomenon is forbidden for all black holes in quintessential cosmological...

  12. Quantum Black Holes As Elementary Particles

    OpenAIRE

    Ha, Yuan K.

    2008-01-01

    Are black holes elementary particles? Are they fermions or bosons? We investigate the remarkable possibility that quantum black holes are the smallest and heaviest elementary particles. We are able to construct various fundamental quantum black holes: the spin-0, spin 1/2, spin-1, and the Planck-charge cases, using the results in general relativity. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox posed by the Greisen-Zatsepin-Kuzmin limit on the energy of cosmi...

  13. Stationary Scalar Clouds Around Rotating Black Holes

    OpenAIRE

    Hod, Shahar

    2012-01-01

    Motivated by novel results in the theory of wave dynamics in black-hole spacetimes, we analyze the dynamics of a massive scalar field surrounding a rapidly rotating Kerr black hole. In particular, we report on the existence of stationary (infinitely long-lived) regular field configurations in the background of maximally rotating black holes. The effective height of these scalar "clouds" above the central black hole is determined analytically. Our results support the possible existence of stat...

  14. Milky Way's Giant Black Hole Awoke from Slumber 300 Years Ago

    Science.gov (United States)

    2008-04-01

    collide with iron atoms, kicking out electrons that are close to the atomic nucleus. When electrons from farther out fill in these gaps, the iron atoms emit X-rays. But after the X-ray pulse passes through, the cloud fades to its normal brightness. Amazingly, a region in Sagittarius B2 only 10 light-years across varied considerably in brightness in just 5 years. These brightenings are known as light echoes. By resolving the X-ray spectral line from iron, Suzaku’s observations were crucial for eliminating the possibility that subatomic particles caused the light echoes. "By observing how this cloud lit up and faded over 10 years, we could trace back the black hole’s activity 300 years ago," says team member Katsuji Koyama of Kyoto University. "The black hole was a million times brighter three centuries ago. It must have unleashed an incredibly powerful flare." This new study builds upon research by several groups who pioneered the light-echo technique. Last year, a team led by Michael Muno, who now works at the California Institute of Technology in Pasadena, Calif., used Chandra observations of X-ray light echoes to show that Sagittarius A* generated a powerful burst of X-rays about 50 years ago -- about a dozen years before astronomers had satellites that could detect X-rays from outer space. "The outburst three centuries ago was 10 times brighter than the one we detected," says Muno. The galactic center is about 26,000 light-years from Earth, meaning we see events as they occurred 26,000 years ago. Astronomers still lack a detailed understanding of why Sagittarius A* varies so much in its activity. One possibility, says Koyama, is that a supernova a few centuries ago plowed up gas and swept it into the black hole, leading to a temporary feeding frenzy that awoke the black hole from its slumber and produced the giant flare. Launched in 2005, Suzaku is the fifth in a series of Japanese satellites devoted to studying celestial X-ray sources and is managed by the Japan

  15. Close encounters of black holes

    CERN Document Server

    Giulini, D

    2003-01-01

    This is an introduction into the problem of how to set up black hole initial-data for the matter-free field equations of General Relativity. The approach is semi-pedagogical and addresses a more general audience of astrophysicists and students with no specialized training in General Relativity beyond that of an introductory lecture.

  16. Black Holes and Exotic Spinors

    Directory of Open Access Journals (Sweden)

    J. M. Hoff da Silva

    2016-05-01

    Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.

  17. Extremal Higher Spin Black Holes

    CERN Document Server

    Bañados, Máximo; Faraggi, Alberto; Jottar, Juan I

    2015-01-01

    The gauge sector of three-dimensional higher spin gravities can be formulated as a Chern-Simons theory. In this context, a higher spin black hole corresponds to a flat connection with suitable holonomy (smoothness) conditions which are consistent with the properties of a generalized thermal ensemble. Building on these ideas, we discuss a definition of black hole extremality which is appropriate to the topological character of 3d higher spin theories. Our definition can be phrased in terms of the Jordan class of the holonomy around a non-contractible (angular) cycle, and we show that it is compatible with the zero-temperature limit of smooth black hole solutions. While this notion of extremality does not require nor implies the existence of supersymmetry, we exemplify its consequences in the context of sl(3|2) + sl(3|2) Chern-Simons theory. Remarkably, while as usual not all extremal solutions preserve supersymmetries, we find that the higher spin setup allows for non-extremal supersymmetric black hole solutio...

  18. Force-feeding Black Holes

    CERN Document Server

    Begelman, Mitchell C

    2012-01-01

    We propose that the growth of supermassive black holes is associated mainly with brief episodes of highly super-Eddington infall of gas ("hyperaccretion"). This gas is not swallowed in real time, but forms an envelope of matter around the black hole that can be swallowed gradually, over a much longer timescale. However, only a small fraction of the black hole mass can be stored in the envelope at any one time. We argue that any infalling matter above a few per cent of the hole's mass is ejected as a result of the plunge in opacity at temperatures below a few thousand degrees K, corresponding to the Hayashi track. The speed of ejection of this matter, compared to the velocity dispersion (sigma) of the host galaxy's core, determines whether the ejected matter is lost forever or returns eventually to rejoin the envelope, from which it can be ultimately accreted. The threshold between matter recycling and permanent loss defines a relationship between the maximum black hole mass and sigma that resembles the empiri...

  19. Gravitating Disks Around Black Holes

    Czech Academy of Sciences Publication Activity Database

    Karas, Vladimír; Šubr, Ladislav

    Cambridge : Cambridge University Press, 2010 - (Peterson, B.), s. 332-332 ISBN 978-0-521-76502-2. - (IAU Symposium Proceedings Series. 267). [Symposium of the International Astronomical Union /267./. Rio de Janeiro (BR), 10.08.2009-14.08.2009] Institutional research plan: CEZ:AV0Z10030501 Keywords : accretion disks * gravitation * black hole physics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  20. From Pinholes to Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.