WorldWideScience

Sample records for black solid materials

  1. Distilling solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H; Laing, B

    1926-12-04

    In a process of distilling solid carbonaceous materials with by-product recovery, the time factor and the temperature gradient during the distillation period are so controlled that a temperature difference exceeding 150/sup 0/C is avoided between the temperatures at the center and periphery of any suitable size of material or thickness of fuel bed. The material is heated by direct contact with an inert gas, such as water gas, producer gas, or combustion gases, which is passed in counterflow to the material and whose volume is such as to lower the vapor tension or partial pressure of the volatilizable oils and to withdraw the oils without cracking of the oil vapors. The material may be subjected to a preliminary heat treatment by gases containing 2 to 3 percent of free oxygen to reduce its coking properties, and free oxygen may be added either to the heating gases during the heat treatment, or to the retort and heating gases and vapors to polymerize resinous bodies prior to condensation or during condensation and while the oils are still wholly or partially in the vapor state.

  2. Effect of Acetylene Black Content in Li4Ti5O12 Xerogel Solid-State Anode Materials on Half-Cell Li-ion Batteries Performance

    Science.gov (United States)

    Abdurrahman, N. M.; Priyono, B.; Syahrial, A. Z.; Subhan, A.

    2017-07-01

    The effect of Acetylene Black (AB) additive contents in lithium titanate/Li4Ti5O12 (LTO) anode on Li-ion Batteries performance is studied in this work. The LTO active material for Li-ion batteries anode was successfully synthesized using sol-gel method to form TiO2 xerogel continued by mixing process with LiOH in ball-mill and then sintered to obtain spinel LTO. The LTO powder is characterized by X-Ray Diffraction (XRD), scanning electron microscopy-Energy Dispersive Spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET). The spinel LTO and TiO2 rutile were detected by XRD diffractogram. The LTO powder is in the form of agglomerates structure. This powder then was mixed with PVDF binder (10%wt) and AB additives with various amount from 10%wt (LTO2 Ac-1), 12%wt (LTO2 Ac-2), and 15%wt (LTO2 Ac-3) of total weight solid content to form electrode sheet. Half-cell coin battery was made with lithium metal foil as a counter electrode. Cyclic voltammetry (CV), Electrochemical-impedance spectroscopy (EIS), and charge discharge (CD) test used to examine the battery performance. The highest resistance value is obtained in LTO2 Ac-3 sample with 15%wt of AB. It might be caused by the formation of side reaction product on electrode surface at initial cycle due to high reactivity of LTO2 Ac-3 electrode. The highest initial capacity at CV test and CD test was obtained in LTO2 Ac-1 (10%wt AB) sample, due to the best proportion of active material content in the compound. While, in the charge-discharge test at high current rate, the best sample rate-capability performance belongs to LTO2 Ac-3 sample (15%wt AB), which still have 24.12 mAh/g of discharge capacity at 10 C with 71.34% capacity loss.

  3. Distilling solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H; Laing, B

    1926-12-04

    In the distillation of solid carbonaceous materials with by-product recovery by direct heating with a gas such as water gas, producer gas, or combustion gas which is passed in counter-flow to the materials, the volume of the gas used is such as to lower the vapor tension of the volatiles to enable the oil vapor to be liberated at temperatures not exceeding 450 to 500/sup 0/C and so that the gaseous mixture may be cooled to from 80 to 100/sup 0/C without causing the highest boiling oil fraction to condense. Coking coals may be subjected to a preliminary heat treatment with gases containing an oxygen content of from 2 to 8 percent to reduce their coking properties, and oxygen may be added to the heating gases to assist the polymerization of resinous bodies. Lubricating oil may be obtained by treating the primary oil with caustic soda to remove tar acids, refining the residue with sulfuric acid, distilling off 25 percent of the refined oil and passing the remainder through a filter press at -5/sup 0/C to extract the paraffin wax. The residue of wax-free oil is distilled to yield a lubricating oil which at normal temperatures has a static coefficient of friction of from .1 to .185. Other specifications are referred to.

  4. Sheared solid materials

    Indian Academy of Sciences (India)

    ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic ... We expect that m is a key order parameter for amorphous solids or glasses. .... It satisfies the mechanical equilibrium condition and can be calculated ...

  5. New materials for solid state electrochemistry

    International Nuclear Information System (INIS)

    Ferloni, P.; Consiglio Nazionale delle Ricerche, Pavia; Magistris, A.; Consiglio Nazionale delle Ricerche, Pavia

    1994-01-01

    Solid state electrochemistry is an interdisciplinary area, undergoing nowadays a fast development. It is related on the one hand to chemistry, and on the other hand to crystallography, solid state physics and materials science. In this paper structural and electrical properties of some families of new materials interesting for solid state electrochemistry are reviewed. Attention is focused essentially on ceramic and crystalline materials, glasses and polymers, displaying high ionic conductivity and potentially suitable for various applications in solid state electrochemical devices. (orig.)

  6. Advanced infrared optically black baffle materials

    International Nuclear Information System (INIS)

    Seals, R.D.; Egert, C.M.; Allred, D.D.

    1990-01-01

    Infrared optically black baffle surfaces are an essential component of many advanced optical systems. All internal surfaces in advanced infrared optical sensors that require stray light management to achieve resolution are of primary concern in baffle design. Current industrial materials need improvements to meet advanced optical sensor systems requirements for optical, survivability, and endurability. Baffles are required to survive and operate in potentially severe environments. Robust diffuse-absorptive black surfaces, which are thermally and mechanically stable to threats of x-ray, launch, and in-flight maneuver conditions, with specific densities to allow an acceptable weight load, handleable during assembly, cleanable, and adaptive to affordable manufacturing, are required as optical baffle materials. In this paper an overview of recently developed advanced infrared optical baffle materials, requirements, manufacturing strategies, and the Optics MODIL (Manufacturing Operations Development and Integration Laboratory) Advanced Baffle Program are discussed

  7. Surface mobilities on solid materials

    International Nuclear Information System (INIS)

    Binh, V.T.

    1983-01-01

    This book constitutes the proceedings of the NATO Advanced Study Institute on Surface Mobilities on Solid Materials held in France in 1981. The goal of the two-week meeting was to review up-to-date knowledge on surface diffusion, both theoretical and experimental, and to highlight those areas in which much more knowledge needs to be accumulated. Topics include theoretical aspects of surface diffusion (e.g., microscopic theories of D at zero coverage; statistical mechanical models and surface diffusion); surface diffusion at the atomic level (e.g., FIM studies of surface migration of single adatoms and diatomic clusters; field emission studies of surface diffusion of adsorbates); foreign adsorbate mass transport; self-diffusion mass transport (e.g., different driving forces for the matter transport along surfaces; measurements of the morphological evolution of tips); the role of surface diffusion in some fundamental and applied sciences (e.g. adatomadatom pair interactions and adlayer superstructure formation; surface mobility in chemical reactions and catalysis); and recent works on surface diffusion (e.g., preliminary results on surface self-diffusion measurements on nickel and chromium tips)

  8. Solid electrolytes general principles, characterization, materials, applications

    CERN Document Server

    Hagenmuller, Paul

    1978-01-01

    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  9. Solid freeform fabrication of biological materials

    Science.gov (United States)

    Wang, Jiwen

    This thesis investigates solid freeform fabrication of biological materials for dental restoration and orthopedic implant applications. The basic approach in this study for solid freeform fabrication of biological materials is micro-extrusion of single or multiple slurries for 3D components and inkjet color printing of multiple suspensions for functionally graded materials (FGMs). Common issues associated with micro-extrusion and inkjet color printing are investigated. These common issues include (i) formulation of stable slurries with a pseudoplastic property, (ii) cross-sectional geometry of the extrudate as a function of the extrusion parameters, (iii) fabrication path optimization for extrusion process, (iv) extrusion optimization for multi-layer components, (v) composition control in functionally graded materials, and (vi) sintering optimization to convert the freeform fabricated powder compact to a dense body for biological applications. The present study clearly shows that the rheological and extrusion behavior of dental porcelain slurries depend strongly on the pH value of the slurry and extrusion conditions. A slurry with pseudoplastic properties is a basic requirement for obtaining extruded lines with rectangular cross-sections. The cross-sectional geometry of the extrudate is also strongly affected by extrusion parameters including the extrusion nozzle height, nozzle moving speed, extrusion rate, and critical nozzle height. Proper combinations of these extrusion parameters are necessary in order to obtain single line extrudates with near rectangular cross-sections and 3D objects with dimensional accuracy, uniform wall thickness, good wall uprightness, and no wall slumping. Based on these understandings, single-wall, multi-wall, and solid teeth have been fabricated via micro-extrusion of the dental slurry directly from a CAD digital model in 30 min. Inkjet color printing using stable Al2O3 and ZrO 2 aqueous suspensions has been developed to fabricate

  10. Dry pulverized solid material pump

    Science.gov (United States)

    Meyer, John W.; Bonin, John H.; Daniel, Jr., Arnold D.

    1984-07-31

    Apparatus is shown for substantially increasing the feed rate of pulverized material into a pressurized container. The apparatus includes a rotor that is mounted internal to the pressurized container. The pulverized material is fed into an annular chamber defined by the center of the rotor. A plurality of impellers are mounted within the annular chamber for imparting torque to the pulverized material.

  11. Solid state and materials research

    International Nuclear Information System (INIS)

    1988-01-01

    Surface and sub-surface regions of solids are modified by rapid melting and quenching, using a high-powered, pulsed (30 ns) ruby laser. The main emphasis of this work is on laser annealing, epitaxy and doping of silicon. Computer programs have been developed to calculate the heat-flow which takes place during pulsed laser irradiation. From such calculations, information can be obtained about temperature profiles, melt depths, recrystallization velocities and quench rates. 13 figs., 9 refs., 1 tab

  12. Distillation of solid carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Burney, C D

    1918-08-31

    A method of distilling carbonaceous material at low or moderate temperatures is described in which the main supply of gases for heating the material under treatment is generated in a combustion chamber located externally of the retort chamber from which combustion chamber the gases are withdrawn and passed under control through hollow elements located within the retort chamber in such manner as to insure the production of the desired temperature gradient along the length of the retort, the said elements being so constructed that they serve to bring the heating gases into indirect contact with the material undergoing treatment while also moving the material progressively through the retort in the opposite direction to that in which the heating gases flow.

  13. Anaerobic digestion of solid material

    DEFF Research Database (Denmark)

    Vavilin, V.A.; Lokshina, L.Y.; Flotats, X.

    2007-01-01

    A new multidimensional (3 and 2D) anaerobic digestion model for cylindrical reactor with non-uniform influent concentration distributions was developed to study the way in which mixing intensity affects the efficiency of continuous-flow anaerobic digestion. Batch experiments reported and simulated...... earlier by Vavilin and Angelidaki (2005) were used to modernize a kinetic scheme and to obtain the corresponding kinetic coefficients. In the new models, hydrolytic microorganisms were included using Contois kinetics for the hydrolysis/acidogenesis degradation of municipal solid waste (MSW). Monod...... kinetics was applied for description of methanogenesis. Both hydrolytic and methanogenic microorganisms were assumed to be inhibited by high volatile fatty acids (VFA) concentration. According to the new distributed models, the mixing level reduction expressed by increasing dimensionless Peclet number may...

  14. Distillation apparatus for solid materials

    Energy Technology Data Exchange (ETDEWEB)

    Lurmann, F

    1860-06-26

    The distillation room is continuously charged by the charging mechanism with the material to be distilled. The distillation products pass into the chamber, where they are drawn out through the tube for purifying. The distillation residue is finally pushed out by the fresh material from the room and falls in the common room, from which it is removed through the air-tight door. In the canals enclosing the room heating gas circulates, which carries to the room the heat necessary for the distillation.

  15. Thermal conductivity of fusion solid breeder materials

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Tam, S.W.

    1986-06-01

    Several simple and useful formulae for estimating the thermal conductivity of lithium-containing ceramic tritium breeder materials for fusion reactor blankets are given. These formulae account for the effects of irradiation, as well as solid breeder configuration, i.e., monolith or a packed bed. In the latter case, a coated-sphere concept is found more attractive in incorporating beryllia (a neutron multiplier) into the blanket than a random mixture of solid breeder and beryllia spheres

  16. Stability of solid oxide fuel cell materials

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.R.; Bates, J.L.; Chick, L.A. [Pacific Northwest Lab., Richland, WA (United States)

    1996-04-01

    Interconnection materials in a solid oxide fuel cell are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. The thermal expansion characteristics of substituted lanthanum and yttrium chromite interconnect materials were evaluated by dilatometry as a function of oxygen partial pressures from 1 atm to 10{sup -18} atm, controlled using a carbon dioxide/hydrogen buffer.

  17. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1992-09-01

    Two legal-weight truck casks the GA-4 and GA-9, will carry four PWR and nine BWR spent fuel assemblies, respectively. Each cask has a solid neutron shielding material separating the steel body and the outer steel skin. In the thermal accident specified by NRC regulations in 10CFR Part 71, the cask is subjected to an 800 degree C environment for 30 minutes. The neutron shield need not perform any shielding function during or after the thermal accident, but its behavior must not compromise the ability of the cask to contain the radioactive contents. In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-AL 9897, R. H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series, a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280 degree F. The neutron shield materials tested were boronated (0.8--4.5%) polymers (polypropylene, HDPE, NS-4). The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found

  18. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1990-03-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing, These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale of neutron shield from the cask. The test article was heated in an environmental prescribed by NRC regulations. Results of this second testing phase showed that all three materials are thermally acceptable

  19. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.N.

    1990-01-01

    The GA-4 and GA-9 spent fuel shipping casks employ a solid neutron shielding material. During a hypothetical thermal accident, any combustion of the neutron shield must not compromise the ability of the cask to contain the radioactive contents. A two-phase thermal testing program was carried out to assist in selecting satisfactory shielding materials. In the first phase, small-scale screening tests were performed on nine candidate materials using ASTM procedures. From these initial results, three of the nine candidates were chosen for inclusion in the second phase of testing. These materials were Bisco Products NS-4-FR, Reactor Experiments 201-1, and Reactor Experiments 207. In the second phase, each selected material was fabricated into a test article which simulated a full-scale section of neutron shield from the cask. The test article was heated in an environment prescribed by NRC regulations. Results of this second testing phase show that all three materials are thermally acceptable

  20. ITER solid breeder blanket materials database

    International Nuclear Information System (INIS)

    Billone, M.C.; Dienst, W.; Noda, K.; Roux, N.

    1993-11-01

    The databases for solid breeder ceramics (Li 2 ,O, Li 4 SiO 4 , Li 2 ZrO 3 and LiAlO 2 ) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized

  1. Thermal testing of solid neutron shielding materials

    International Nuclear Information System (INIS)

    Boonstra, R.H.

    1993-01-01

    In May-June 1989 the first series of full-scale thermal tests was performed on three shielding materials: Bisco Products NS-4-FR, and Reactor Experiments RX-201 and RX-207. The tests are described in Thermal Testing of Solid Neutron Shielding Materials, GA-A19897, R.H. Boonstra, General Atomics (1990), and demonstrated the acceptability of these materials in a thermal accident. Subsequent design changes to the cask rendered these materials unattractive in terms of weight or adequate service temperature margin. For the second test series a material specification was developed for a polypropylene based neutron shield with a softening point of at least 280degF. Table 1 lists the neutron shield materials tested. The Envirotech and Bisco materials are not polypropylene, but were tested as potential backup materials in the event that a satisfactory polypropylene could not be found. The Bisco modified NS-4 and Reactor Experiments HMPP are both acceptable materials from a thermal accident standpoint for use in the shipping cask. Tests of the Kobe PP-R01 and Envirotech HDPE were stopped for safety reasons, due to inability to deal with the heavy smoke, before completion of the 30-minute heating phase. However these materials may prove satisfactory if they could undergo the complete heating. (J.P.N.)

  2. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions

    International Nuclear Information System (INIS)

    Long, Christopher M.; Nascarella, Marc A.; Valberg, Peter A.

    2013-01-01

    Airborne particles containing elemental carbon (EC) are currently at the forefront of scientific and regulatory scrutiny, including black carbon, carbon black, and engineered carbon-based nanomaterials, e.g., carbon nanotubes, fullerenes, and graphene. Scientists and regulators sometimes group these EC-containing particles together, for example, interchangeably using the terms carbon black and black carbon despite one being a manufactured product with well-controlled properties and the other being an undesired, incomplete-combustion byproduct with diverse properties. In this critical review, we synthesize information on the contrasting properties of EC-containing particles in order to highlight significant differences that can affect hazard potential. We demonstrate why carbon black should not be considered a model particle representative of either combustion soots or engineered carbon-based nanomaterials. Overall, scientific studies need to distinguish these highly different EC-containing particles with care and precision so as to forestall unwarranted extrapolation of properties, hazard potential, and study conclusions from one material to another. -- Highlights: •Major classes of elemental carbon-containing particles have distinct properties. •Despite similar names, carbon black should not be confused with black carbon. •Carbon black is distinguished by a high EC content and well-controlled properties. •Black carbon particles are characterized by their heterogenous properties. •Carbon black is not a model particle representative of engineered nanomaterials. -- This review demonstrates the significant physical and chemical distinctions between elemental carbon-containing particles e.g., carbon black, black carbon, and engineered nanomaterials

  3. Pressure hydrogenation of solid carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M; Kroenig, W

    1942-09-28

    A process is described for the continuous pressure hydrogenation of solid, nonfusible carbonaceous material, such as coal, oil shale, or peat, in a pasted condition, characterized in that the charge is heated in a known way under pressure, together with water, nearly to the reaction temperature, then it is led into a pressure vessel, whose volume amounts to 20 to 40% of the usual reaction space without any change at the same temperature, and the charge then goes through the reaction vessel, after which its temperature is raised to the reaction height.

  4. Extraction products of solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    1937-11-04

    A method is described for the manufacture of liquid products from pressure extracts of solid carbon-containing material by destructive hydrogenation, characterized in that the pressure extracts are hydrogenated in admixture with products of high-molecular weight formed during a previous destructive hydrogenation of another part of the same or other pressure extract and which has been collected as liquid without extensive cooling of the hot products of the reaction, which came from the reaction chamber where the previous destructive hydrogenation took place.

  5. Nonmetallic and composite materials as solid superleaks

    International Nuclear Information System (INIS)

    Goldschvartz, J.M.

    1982-01-01

    This chapter discusses the devices in general solid porous materials in which the so-called diameter of the pores, gaps, inter-crystalline spaces, or small channels, etc, are equal or smaller than 100 0 A. Examines silicon carbide, wonderstone, talc-stone, rocks as superleaks, magnetic superleaks, the onset point of a superleak, determination of the onset point, and some applications of superleaks (as a filter, as an isotope separator, as a separator in the 3 He- 4 He dilution refrigerator, in a vortex refrigerator, in a servo-valve for liquid helium two (the cocatron), method of measuring the size of sub-microscopic pores, ultra cold neutrons, superconductors pressed into porous materials)

  6. Storage of solid and liquid radioactive material

    International Nuclear Information System (INIS)

    Matijasic, A.; Gacinovic, O.

    1961-01-01

    Solid radioactive waste collected during 1961 from the laboratories of the Institute amounted to 22.5 m 3 . This report contains data about activity of the waste collected from january to November 1961. About 70% of the waste are short lived radioactive material. Material was packed in metal barrels and stored in the radioactive storage in the Institute. There was no contamination of the personnel involved in these actions. Liquid radioactive wastes come from the Isotope production laboratory, laboratories using tracer techniques, reactor cooling; decontamination of the equipment. Liquid wastes from isotope production were collected in plastic bottles and stored. Waste water from the RA reactor were collected in special containers. After activity measurements this water was released into the sewage system since no activity was found. Table containing data on quantities and activity of radioactive effluents is included in this report

  7. Status of the solid breeder materials database

    International Nuclear Information System (INIS)

    Billone, M.C.; Dienst, W.; Lorenzetto, P.; Noda, K.; Roux, N.

    1995-01-01

    The databases for solid breeder ceramics (Li 2 O, Li 4 SiO 4 , Li 2 ZrO 3 , and LiAlO 2 ) and beryllium multiplier material were critically reviewed and evaluated as part of the ITER/CDA design effort (1988-1990). The results have been documented in a detailed technical report. Emphasis was placed on the physical, thermal, mechanical, chemical stability/compatibility, tritium retention/release, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Materials properties correlations were selected for use in design analysis, and ranges for input parameters (e.g., temperature, porosity, etc.) were established. Also, areas for future research and development in blanket materials technology were highlighted and prioritized. For Li 2 O, the most significant increase in the database has come in the area of tritium retention as a function of operating temperature and purge flow composition. The database for postirradiation inventory from purged in-reactor samples has increased from four points to 20 points. These new data have allowed an improvement in understanding and modeling, as well as better interpretation of the results of laboratory annealing studies on unirradiated and irradiated material. In the case of Li 2 ZrO 3 , relatively little data were available on the sensitivity of the mechanical properties of this ternary ceramic to microstructure and moisture content. The increase in the database for this material has allowed not only better characterization of its properties, but also optimization of fabrication parameters to improve its performance. Some additional data are also available for the other two ternary ceramics to aid in the characterization of their performance. In particular, the thermal performance of these materials, as well as beryllium, in packed-bed form has been measured and characterized

  8. Black liquor-derived carbonaceous solid acid catalyst for the hydrolysis of pretreated rice straw in ionic liquid.

    Science.gov (United States)

    Bai, Chenxi; Zhu, Linfeng; Shen, Feng; Qi, Xinhua

    2016-11-01

    Lignin-containing black liquor from pretreatment of rice straw by KOH aqueous solution was applied to prepare a carbonaceous solid acid catalyst, in which KOH played dual roles of extracting lignin from rice straw and developing porosity of the carbon material as an activation agent. The synthesized black liquor-derived carbon material was applied in catalytic hydrolysis of the residue solid from the pretreatment of rice straw, which was mainly composed of cellulose and hemicellulose, and showed excellent activity for the production of total reducing sugars (TRS) in ionic liquid, 1-butyl-3-methyl imidazolium chloride. The highest TRS yield of 63.4% was achieved at 140°C for 120min, which was much higher than that obtained from crude rice straw under the same reaction conditions (36.6% TRS yield). Overall, this study provides a renewable strategy for the utilization of all components of lignocellulosic biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Method and apparatus for semi-solid material processing

    Science.gov (United States)

    Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN

    2009-02-24

    A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.

  10. Sealing materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, P.H.

    1999-02-01

    A major obstacle in the achievement of high electrical efficiency for planar solid oxide fuel cell stacks (SOFC) is the need for long term stable seals at the operational temperature between 850 and 1000 deg. C. In the present work the formation and properties of sealing materials for SOFC stacks that fulfil the necessary requirements were investigated. The work comprises analysis of sealing material properties independently, in simple systems as well as tests in real SOFC stacks. The analysed sealing materials were based on pure glasses or glass-ceramic composites having B{sub 2}O{sub 3}, P{sub 2}O{sub 5} or siO{sub 2} as glass formers, and the following four glass systems were investigated: MgO/caO/Cr{sub 2}O{sub 3}-Al{sub 2}O{sub 3}B{sub 2}O{sub 3}-P{sub 2}O{sub 5}, MgO-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}, MgO-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}-SiO{sub 2} and BaO/Na{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2}. (au) 32 tabs., 106 ills., 107 refs.

  11. Extracting solid carbonaceous materials with solvents

    Energy Technology Data Exchange (ETDEWEB)

    1936-02-08

    Solvent extraction of solid carbonaceous materials is performed in the presence of powdered catalysts together with alkaline substances. Oxides of nickel or iron or nickel nitrate have been used together with caustic soda or potash solutions or milk of lime. Solvents used include benzenes, middle oils, tars, tetrahydronaphthalene. The extraction is performed at 200 to 500/sup 0/C under pressures of 20 to 200 atm. Finely ground peat was dried and mixed with milk of lime and nickel nitrate and an equal quantity of middle oil. The mixture was heated for 3 h at 380/sup 0/C at 90 atm. 88.5% of the peat was extracted. In a similar treatment brown coal was impregnated with solutions of caustic soda and ferric chloride.

  12. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 4 covers articles on single crystal compound semiconductors and complex polycrystalline materials. The book discusses narrow gap semiconductors and solid state batteries. The text then describes the advantages of hot-pressed microcrystalline compacts of oxygen-octahedra ferroelectrics over single crystal materials, as well as heterostructure junction lasers. Solid state physicists, materials scientists, electrical engineers, and graduate students studying the subjects being discussed will find the book invaluable.

  13. Obtaining cementitious material from municipal solid waste

    Directory of Open Access Journals (Sweden)

    Macías, A.

    2007-06-01

    Full Text Available The primary purpose of the present study was to determine the viability of using incinerator ash and slag from municipal solid waste as a secondary source of cementitious materials. The combustion products used were taken from two types of Spanish MSW incinerators, one located at Valdemingómez, in Madrid, and the other in Melilla, with different incineration systems: one with fluidised bed combustion and other with mass burn waterwall. The effect of temperature (from 800 to 1,200 ºC on washed and unwashed incinerator residue was studied, in particular with regard to phase formation in washed products with a high NaCl and KCl content. The solid phases obtained were characterized by X-ray diffraction and BET-N2 specific surface procedures.El principal objetivo del trabajo ha sido determinar la viabilidad del uso de las cenizas y escorias procedentes de la incineración de residuos sólidos urbanos, como materia prima secundaria para la obtención de fases cementantes. Para ello se han empleado los residuos generados en dos tipos de incineradoras españolas de residuos sólidos urbanos: la incineradora de Valdemingómez y la incineradora de Melilla. Se ha estudiado la transformación de los residuos, sin tratamiento previo, en función de la temperatura de calentamiento (desde 800 ºC hasta 1.200 ºC, así como la influencia del lavado de los residuos con alto contenido en NaCl y KCl en la formación de fases obtenidas a las diferentes temperaturas de calcinación. Las fases obtenidas fueron caracterizadas por difracción de rayos X y área superficial por el método BET-N2.

  14. Development of solid water-equivalent radioactive certified reference materials

    International Nuclear Information System (INIS)

    Finke, E.; Greupner, H.; Groche, K.; Rittwag, R.; Geske, G.

    1991-01-01

    This paper presents a brief description of the development of solid water-equivalent beta volume radioactive certified reference materials. These certified reference materials were prepared for the beta fission nuclides 90 Sr/ 90 Y, 137 Cs, 147 Pm and 204 Tl. Comparative measurements of liquid and solid water-equivalent beta volume radioactive certified reference materials are discussed. (author)

  15. Preparation and characterization of a novel polymeric based solid-solid phase change heat storage material

    International Nuclear Information System (INIS)

    Xi Peng; Gu Xiaohua; Cheng Bowen; Wang Yufei

    2009-01-01

    Here we reported a two-step procedure for preparing a novel polymeric based solid-solid phase change heat storage material. Firstly, a copolymer monomer containing a polyethylene glycol monomethyl ether (MPEG) phase change unit and a vinyl unit was synthesized via the modification of hydrogen group of MPEG. Secondly, by copolymerization of the copolymer monomer and phenyl ethylene, a novel polymeric based solid-solid phase change heat storage material was prepared. The composition, structure and properties of the novel polymeric based solid-solid phase change material were characterized by IR, 1 H NMR, DSC, WAXD, and POM, respectively. The results show that the novel polymeric based solid-solid phase change material possesses of excellent crystal properties and high phase change enthalpy.

  16. Stability of solid oxide fuel cell materials

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, T.R.; Bates, J.L.; Coffey, G.W.; Pederson, L.R. [Pacific Northwest National Lab., Richland, WA (United States)] [and others

    1996-08-01

    Chromite interconnection materials in an SOFC are exposed to both highly oxidizing conditions at the cathode and to highly reducing conditions at the anode. Because such conditions could lead to component failure, the authors have evaluated thermal, electrical, chemical, and structural stabilities of these materials as a function of temperature and oxygen partial pressure. The crystal lattice of the chromites was shown to expand for oxygen partial pressures smaller than 10{sup {minus}10} atm, which could lead to cracking and debonding in an SOFC. Highly substituted lanthanum chromite compositions were the most susceptible to lattice expansion; yttrium chromites showed better dimensional stability by more than a factor of two. New chromite compositions were developed that showed little tendency for lattice expansion under strongly reducing conditions, yet provided a good thermal expansion match to other fuel cell components. Use of these new chromite interconnect compositions should improve long-term SOFC performance, particularly for planar cell configurations. Thermodynamic properties of substituted lanthanum manganite cathode compositions have been determined through measurement of electromotive force as a function of temperature. Critical oxygen decomposition pressures for Sr and Ca-substituted lanthanum manganites were established using cells based on a zirconia electrolyte. Strontium oxide and calcium oxide activities in a lanthanum manganite matrix were determined using cells based on strontium fluoride and calcium fluoride electrolytes, respectively. The compositional range of single-phase behavior of these ABO{sub 3}-type perovskites was established as a function of A/B cation ratios and the extent of acceptor doping. Before this work, very little thermodynamic information was in existence for substituted manganite compositions. Such information is needed to predict the long-term stability of solid oxide fuel cell assemblies.

  17. Diffusion in Solids Fundamentals, Methods, Materials, Diffusion-Controlled Processes

    CERN Document Server

    Mehrer, Helmut

    2007-01-01

    Diffusion is a vital topic in solid-state physics and chemistry, physical metallurgy and materials science. Diffusion processes are ubiquitous in solids at elevated temperatures. A thorough understanding of diffusion in materials is crucial for materials development and engineering. This book first gives an account of the central aspects of diffusion in solids, for which the necessary background is a course in solid state physics. It then provides easy access to important information about diffuson in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Several diffusion-controlled phenomena, including ionic conduction, grain-boundary and dislocation pipe diffusion, are considered as well. Graduate students in solid-state physics, physical metallurgy, materials science, physical and inorganic chemistry or geophysics will benefit from this book as will physicists, chemists, metallurgists, materials engineers in academic and industrial research laboratories.

  18. Combustion Stability Assessments of the Black Brant Solid Rocket Motor

    Science.gov (United States)

    Fischbach, Sean

    2014-01-01

    The Black Brant variation of the Standard Brant developed in the 1960's has been a workhorse motor of the NASA Sounding Rocket Project Office (SRPO) since the 1970's. In March 2012, the Black Brant Mk1 used on mission 36.277 experienced combustion instability during a flight at White Sands Missile Range, the third event in the last four years, the first occurring in November, 2009, the second in April 2010. After the 2010 event the program has been increasing the motor's throat diameter post-delivery with the goal of lowering the chamber pressure and increasing the margin against combustion instability. During the most recent combustion instability event, the vibrations exceeded the qualification levels for the Flight Termination System. The present study utilizes data generated from T-burner testing of multiple Black Brant propellants at the Naval Air Warfare Center at China Lake, to improve the combustion stability predictions for the Black Brant Mk1 and to generate new predictions for the Mk2. Three unique one dimensional (1-D) stability models were generated, representing distinct Black Brant flights, two of which experienced instabilities. The individual models allowed for comparison of stability characteristics between various nozzle configurations. A long standing "rule of thumb" states that increased stability margin is gained by increasing the throat diameter. In contradiction to this experience based rule, the analysis shows that little or no margin is gained from a larger throat diameter. The present analysis demonstrates competing effects resulting from an increased throat diameter accompanying a large response function. As is expected, more acoustic energy was expelled through the nozzle, but conversely more acoustic energy was generated due to larger gas velocities near the propellant surfaces.

  19. Youth Solid Waste Educational Materials List, November 1991.

    Science.gov (United States)

    Cornell Univ., Ithaca, NY. Cooperative Extension Service.

    This guide provides a brief description and ordering information for approximately 300 educational materials for grades K-12 on the subject of solid waste. The materials cover a variety of environmental issues and actions related to solid waste management. Entries are divided into five sections including audiovisual programs, books, magazines,…

  20. Atomistic Simulation of Interfaces in Materials of Solid State Ionics

    Science.gov (United States)

    Ivanov-Schitz, A. K.; Mazo, G. N.

    2018-01-01

    The possibilities of describing correctly interfaces of different types in solids within a computer experiment using molecular statics simulation, molecular dynamics simulation, and quantum chemical calculations are discussed. Heterophase boundaries of various types, including grain boundaries and solid electrolyte‒solid electrolyte and ionic conductor‒electrode material interfaces, are considered. Specific microstructural features and mechanisms of the ion transport in real heterophase structures (cationic conductor‒metal anode and anionic conductor‒cathode) existing in solid state ionics devices (such as solid-state batteries and fuel cells) are discussed.

  1. Development of solid water-equivalent radioactive certified reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Finke, E.; Greupner, H.; Groche, K.; Rittwag, R. (Office for Standardization, Metrology and Quality Control (ASMW), Berlin (Germany, F.R.)); Geske, G. (Jena Univ. (Germany, F.R.))

    1991-01-01

    This paper presents a brief description of the development of solid water-equivalent beta volume radioactive certified reference materials. These certified reference materials were prepared for the beta fission nuclides {sup 90}Sr/{sup 90}Y, {sup 137}Cs, {sup 147}Pm and {sup 204}Tl. Comparative measurements of liquid and solid water-equivalent beta volume radioactive certified reference materials are discussed. (author).

  2. Electromagnetic properties of carbon black and barium titanate composite materials

    International Nuclear Information System (INIS)

    Wang Guiqin; Chen Xiaodong; Duan Yuping; Liu Shunhua

    2008-01-01

    Nanocrystalline carbon black/barium titanate compound particle (CP) was synthesized by sol-gel method. The phase structure and morphology of compound particle were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM) and Raman spectrum measurements, the electroconductivity was test by trielectrode arrangement and the precursor powder was followed by differential scanning calorimetric measurements (DSC) and thermal gravimetric analysis (TGA). In addition, the complex relative permittivity and permeability of compound particle were investigated by reflection method. The compound particle/epoxide resin composite (CP/EP) with different contents of CP were measured. The results show barium titanate crystal is tetragonal phase and its grain is oval shape with 80-100 nm which was coated by carbon black film. As electromagnetic (EM) complex permittivity, permeability and reflection loss (RL) shown that the compound particle is mainly a kind of electric and dielectric lossy materials and exhibits excellent microwave absorption performance in the X- and Ku-bands

  3. Particle-solid interactions and 21st century materials science

    International Nuclear Information System (INIS)

    Feldman, L.C.; Lupke, G.; Tolk, N.H.; Lopez, R.; Haglund, R.F.; Haynes, T.E.; Boatner, L.A.

    2003-01-01

    The basic physics that governs the interaction of energetic ion beams with solids has its roots in the atomic and nuclear physics of the last century. The central formalism of Jens Lindhard, describing the 'particle-solid interaction', provides a valuable quantitative guide to statistically meaningful quantities such as energy loss, ranges, range straggling, channeling effects, sputtering coefficients, and damage intensity and profiles. Modern materials modification (nanoscience, solid state dynamics) requires atomic scale control of the particle-solid interaction. Two recent experimental examples are discussed: (1) the control of the size distribution of nanocrystals formed in implanted materials and (2) the investigation of the site-specific implantation of hydrogen into silicon. Both cases illustrate unique solid-state configurations, created by ion implantation, that address issues of current materials science interest

  4. Ultrafast laser spectroscopy in complex solid state materials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianqi [Iowa State Univ., Ames, IA (United States)

    2014-12-01

    This thesis summarizes my work on applying the ultrafast laser spectroscopy to the complex solid state materials. It shows that the ultrafast laser pulse can coherently control the material properties in the femtosecond time scale. And the ultrafast laser spectroscopy can be employed as a dynamical method for revealing the fundamental physical problems in the complex material systems.

  5. Isotope exchange reaction on solid breeder materials

    International Nuclear Information System (INIS)

    Baba, A.; Nishikawa, M.; Eguchi, T.; Kawagoe, T.

    2000-01-01

    Lithium ceramic materials such as Li 2 O, LiAlO 2 , Li 2 ZrO 3 , Li 2 TiO 3 and Li 4 SiO 4 are considered to be as candidate for the tritium breeding material in a deuterium-tritium (D-T) fusion reactor. In the recent blanket designs, helium gas with hydrogen or deuterium is planned to be used as the blanket purge gas to reduce tritium inventory and promote tritium release from the breeding material. In addition, the rate of isotope exchange reaction between hydrogen isotopes in the purge gas and tritium on the surface of the breeding material is necessary to analyze the tritium release behavior from the breeding materials. However, the rate of isotope exchange reactions between hydrogen isotopes in the purge gas and tritium on the surface of those materials has not been quantified until recently. Recently, the present authors quantified the rate of isotope exchange reaction on Li 2 O and Li 2 ZrO 3 . The overall mass transfer coefficients representing the isotope exchange reaction between H 2 and D 2 O on breeding materials or the same between D 2 and H 2 O are experimentally obtained in this study. Comparison to isotope exchange reaction rates on various breeding materials is also performed in this study. Discussions about the effects of temperature, concentration of hydrogen in the purge gas or flow rate of the purge gas on the conversion of tritiated water to tritium gas are also performed

  6. Solid oxide fuel cell (SOFC) materials

    CERN Document Server

    Saravanan, R

    2018-01-01

    Developing materials for SOFC applications is one of the key topics in energy research. The book focuses on manganite structured materials, such as doped lanthanum chromites and lanthanum manganites, which have interesting properties: thermal and chemical stability, mixed ionic and electrical conductivity, electrocatalytic activity, magnetocaloric property and colossal magnetoresistance (CMR).

  7. Chemical digestion of low level nuclear solid waste material

    International Nuclear Information System (INIS)

    Cooley, C.R.; Lerch, R.E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230 0 --300 0 C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue. 6 claims, no drawings

  8. Electrical conduction in solid materials physicochemical bases and possible applications

    CERN Document Server

    Suchet, J P

    2013-01-01

    Electrical Conduction in Solid Materials (Physicochemical Bases and Possible Applications) investigates the physicochemical bases and possible applications of electrical conduction in solid materials, with emphasis on conductors, semiconductors, and insulators. Topics range from the interatomic bonds of conductors to the effective atomic charge in conventional semiconductors and magnetic transitions in switching semiconductors. Comprised of 10 chapters, this volume begins with a description of electrical conduction in conductors and semiconductors, metals and alloys, as well as interatomic bon

  9. Sulfur Release from Cement Raw Materials during Solid Fuel Combustion

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Larsen, Morten B.; Glarborg, Peter

    2011-01-01

    During combustion of solid fuels in the material inlet end of cement rotary kilns, local reducing conditions can occur and cause decomposition of sulfates from cement raw materials. Decomposition of sulfates is problematic because it increases the gas-phase SO2 concentration, which may cause...... deposit formation in the kiln system. SO2 release from cement raw materials during combustion of solid fuels has been studied experimentally in a high temperature rotary drum. The fuels were tire rubber, pine wood, petcoke, sewage sludge, and polypropylene. The SO2 release from the raw materials...

  10. Disposal of solid waste in Istanbul and along the Black Sea coast of Turkey

    International Nuclear Information System (INIS)

    Berkun, Mehmet; Aras, Egemen; Nemlioglu, Semih

    2005-01-01

    The increasing amount of solid waste arising from municipalities and other sources and its consequent disposal has been one of the major environmental problems in Turkey. Istanbul is a metropolitan city with a current population of around 14 million, and produces about 9000 ton of solid waste every day. The waste composition for Istanbul has changed markedly from 1981 to 1996 with large decreases in waste density, much of which is related to decreased amounts of ash collected in winter. In recent years, the Istanbul region has implemented a new solid waste management system with transfer stations, sanitary landfills, and methane recovery, which has led to major improvements. In the Black Sea region of Turkey, most of the municipal and industrial solid wastes, mixed with hospital and hazardous wastes, are dumped on the nearest lowlands and river valleys or into the sea. The impact of riverside and seashore dumping of solid wastes adds significantly to problems arising from sewage and industry on the Black Sea coast. Appropriate integrated solid waste management systems are needed here as well; however, they have been more difficult to implement than in Istanbul because of more difficult topography, weaker administrative structures, and the lower incomes of the inhabitants

  11. Solid electrolyte material manufacturable by polymer processing methods

    Science.gov (United States)

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  12. Understanding solids: the science of materials

    CERN Document Server

    Tilley, Richard J. D.

    2013-01-01

    This edition contains new sections on the use of computing methods to solve materials problems and has been thoroughly updated to include the many developments and advances made in the past 10 years, e.g.  batteries, solar cells, lighting technology, laser...

  13. Solid State Ionics Advanced Materials for Emerging Technologies

    Science.gov (United States)

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.

    2006-06-01

    . Invited papers. Cathodic properties of Al-doped LiCoO[symbol] prepared by molten salt method Li-Ion batteries / M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari. Layered ion-electron conducting materials / M. A. Santa Ana, E. Benavente, G. González. LiNi[symbol]Co[symbol]O[symbol] cathode thin-film prepared by RF sputtering for all-solid-state rechargeable microbatteries / X. J. Zhu ... [et al.] -- Contributed papers. Contributed papers. Nanocomposite cathode for SOFCs prepared by electrostatic spray deposition / A. Princivalle, E. Djurado. Effect of the addition of nanoporous carbon black on the cycling characteristics of Li[symbol]Co[symbol](MoO[symbol])[symbol] for lithium batteries / K. M. Begam, S. R. S. Prabaharan. Protonic conduction in TiP[symbol]O[symbol] / V. Nalini, T. Norby, A. M. Anuradha. Preparation and electrochemical LiMn[symbol]O[symbol] thin film by a solution deposition method / X. Y. Gan ... [et al.]. Synthesis and characterization LiMPO[symbol] (M = Ni, Co) / T. Savitha, S. Selvasekarapandian, C. S. Ramya. Synthesis and electrical characterization of LiCoO[symbol] LiFeO[symbol] and NiO compositions / A. Wijayasinghe, B. Bergman. Natural Sri Lanka graphite as conducting enhancer in manganese dioxide (Emd type) cathode of alkaline batteries / N. W. B. Balasooriya ... [et al.]. Electrochemical properties of LiNi[symbol]Al[symbol]Zn[symbol]O[symbol] cathode material synthesized by emulsion method / B.-H. Kim ... [et al.]. LiNi[symbol]Co[symbol]O[symbol] cathode materials synthesized by particulate sol-gel method for lithium ion batteries / X. J. Zhu ... [et al.]. Pulsed laser deposition of highly oriented LiCoO[symbol] and LiMn[symbol]O[symbol] thin films for microbattery applications / O. M. Hussain ... [et al.]. Preparation of LiNi[symbol]Co[symbol]O[symbol] thin films by a sol-gel method / X. J. Zhu ... [et al.]. Electrochemical lithium insertion into a manganese dioxide electrode in aqueous solutions / M. Minakshi ... [et al.]. AC impedance

  14. X-ray characterization of solid small molecule organic materials

    Science.gov (United States)

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  15. Separation of volatile products from solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    White, W W

    1915-10-19

    A process is set forth for the separation of volatile products from solid carbonaceous materials, in which the vapors produced from the carbonaceous material at higher temperatures and withdrawn into the separate vapor chamber are led in succession through the lower temperature vapors as continuously to deposit their condensible ingredients in the chamber by the action of the successive cooler vapors.

  16. Fundamental Material Properties Underlying Solid Oxide Electrochemistry

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels; Holtappels, Peter

    2012-01-01

    , and the electrochemical reactions take place at elevated temperatures from 300 and up to 1000 C. This has as consequence that the region around the threephase- boundary (TPB), where the electron conducting electrode, the electrolyte and the gas phase reactants meet, is the region where the electrochemical processes take...... place. The length of the TPB is a key factor even though the width and depth of the zone, in which the rate limiting reactions take place, may vary depending of the degree of the electrode materials ability to conduct both electrons and ions, i.e. the TPB zone volume depends on how good a mixed ionic...... in the TPB region. Also, segregations to the surfaces and interfaces of the electrode materials, which may affect the electrode reaction mechanism, are very dependent on the exact history of fabrication and operation. The positive effects of even small concentrations of nanoparticles in the electrodes may...

  17. Semiconductor properties of solid combustible materials

    Energy Technology Data Exchange (ETDEWEB)

    Patrushev, S G; Kamneva, A I; Galaktionov, S S; Aleksandrov, I V

    1980-01-01

    The photoelectric e.m.f. with p-type conductivity and the photodielectric effect were examined in specimens of a number of coals and coal microcomponents. These effects are largest in hard coal fusinite. Photosensitive materials show increased dielectric losses in the dark. The authors determined charge carrier mobility, and showed that the charge carriers are injected by oxygen in the presence of an electrolyte, and that the coals oxidise as in electrochemical corrosion.

  18. Applied solid state science advances in materials and device research

    CERN Document Server

    Wolfe, Raymond

    2013-01-01

    Applied Solid State Science: Advances in Materials and Device Research, Volume 1 presents articles about junction electroluminescence; metal-insulator-semiconductor (MIS) physics; ion implantation in semiconductors; and electron transport through insulating thin films. The book describes the basic physics of carrier injection; energy transfer and recombination mechanisms; state of the art efficiencies; and future prospects for light emitting diodes. The text then discusses solid state spectroscopy, which is the pair spectra observed in gallium phosphide photoluminescence. The extensive studies

  19. Photonic devices based on black phosphorus and related hybrid materials

    International Nuclear Information System (INIS)

    Vitiello, M.S.; Viti, L.

    2016-01-01

    Artificial semiconductor heterostructures played a pivotal role in modern electronic and photonic technologies, providing a highly effective means for the manipulation and control of carriers, from the visible to the far-infrared, leading to the development of highly efficient devices like sources, detectors and modulators. The discovery of graphene and the related fascinating capabilities have triggered an unprecedented interest in devices based on inorganic two-dimensional (2D) materials. Amongst them, black phosphorus (BP) recently showed an extraordinary potential in a variety of applications across micro-electronics and photonics. With an energy gap between the gapless graphene and the larger gap transition metal dichalcogenides, BP can form the basis for a new generation of high-performance photonic devices that could be specifically engineered to comply with different applications, like transparent saturable absorbers, fast photocounductive switches and low noise photodetectors, exploiting its peculiar electrical, thermal and optical anisotropy. This paper will review the latest achievements in black-phosphorus–based THz photonics and discuss future perspectives of this rapidly developing research field.

  20. Production of gaseous or vaporous fuels from solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    1951-05-16

    A process for the production of gaseous or vaporous fuels from solid carbonaceous materials consists of subjecting the materials in separate zones to at least three successive thermal treatments at least two of which are carried out at different temperature levels. The materials being maintained in zones in the form of beds of finely divided particles fluidized by the passage of gases or vapors upwardly there-through, and recovering product vapors or gases overhead. The total hot gaseous or vaporous effluent and entrained solids from one of the zones is passed directly without separation to another of the zones situated closely adjacent to and vertically above the first named zone in the same vessel, and the heat required in at least one of the thermal treatment zones is supplied at least in part as the sensible heat of residual solids transferred from a thermal treatment zone operated at a higher temperature.

  1. Modified carbon black materials for lithium-ion batteries

    Science.gov (United States)

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  2. Materials research for passive solar systems: Solid-state phase-change materials

    Science.gov (United States)

    Benson, D. K.; Webb, J. D.; Burrows, R. W.; McFadden, J. D. O.; Christensen, C.

    1985-03-01

    A set of solid-state phase-change materials is being evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol (C5H12O4), pentaglycerinve (C5H12O3), and neopentyl glycol (C5H12O2). Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature between 25 C and 188 C, and have latent heats of transformation etween 20 and 70 cal/g. Transformation temperatures, specific heats, and latent heats of transformation have been measured for a number of these materials. Limited cyclic experiments suggest that the solid solutions are stable. These phase-change materials exhibit large amounts of undercooling; however, the addition of certain nucleating agents as particulate dispersions in the solid phase-change material greatly reduces this effect. Computer simulations suggest that the use of an optimized solid-state phase-change material in a Trombe wall could provide better performance than a concrete Trombe wall four times thicker and nine times heavier.

  3. Determination of carbon-14 in environmental level, solid reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Blowers, Paul, E-mail: paul.blowers@cefas.co.uk [Cefas Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk, NR33 0HT (United Kingdom); Caborn, Jane, E-mail: jane.a.caborn@nnl.co.uk [NNL, Springfields, Salwick, Preston, Lancashire, PR4 0XJ (United Kingdom); Dell, Tony [Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB (United Kingdom); Gingell, Terry [DSTL, Radiation Protection Services, Crescent Road, Alverstoke, Gosport, Hants, PO12 2DL (United Kingdom); Harms, Arvic [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom); Long, Stephanie [Radiological Protection Institute of Ireland, 3 Clonskeagh Square, Clonskeagh Road, Dublin 14, Ireland (United Kingdom); Sleep, Darren [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP (United Kingdom); Stewart, Charlie [UKAEA (Waste Management Group), Chemical Support Services, D1310/14, Dounreay, Thurso, Caithness, KW14 7TZ (United Kingdom); Walker, Jill [Radiocarbon Dating, The Old Stables, East Lockinge, Wantage, Oxon OX12 8QY (United Kingdom); Warwick, Phil E. [GAU-Radioanalytical, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH (United Kingdom)

    2011-10-15

    An intercomparison exercise to determine the {sup 14}C activity concentrations in a range of solid, environmental level materials was conducted between laboratories in the UK. IAEA reference materials, C2, C6 and C7, and an in-house laboratory QA material were dispatched in 2006 to ten laboratories comprising of members of the Analyst Informal Working Group (AIWG) and one other invited party. The laboratories performed the determinations using a number of techniques, and using the results each one was evaluated in terms of levels of precision, sensitivity and limits of detection. The results of the study show that all techniques are capable of successfully analysing {sup 14}C in environmental level materials, however, a shortage of certified environmental reference materials exists. The suitability of the IAEA reference materials and other material for use as reference materials was also assessed.

  4. Determination of carbon-14 in environmental level, solid reference materials

    International Nuclear Information System (INIS)

    Blowers, Paul; Caborn, Jane; Dell, Tony; Gingell, Terry; Harms, Arvic; Long, Stephanie; Sleep, Darren; Stewart, Charlie; Walker, Jill; Warwick, Phil E.

    2011-01-01

    An intercomparison exercise to determine the 14 C activity concentrations in a range of solid, environmental level materials was conducted between laboratories in the UK. IAEA reference materials, C2, C6 and C7, and an in-house laboratory QA material were dispatched in 2006 to ten laboratories comprising of members of the Analyst Informal Working Group (AIWG) and one other invited party. The laboratories performed the determinations using a number of techniques, and using the results each one was evaluated in terms of levels of precision, sensitivity and limits of detection. The results of the study show that all techniques are capable of successfully analysing 14 C in environmental level materials, however, a shortage of certified environmental reference materials exists. The suitability of the IAEA reference materials and other material for use as reference materials was also assessed.

  5. Some issues for blast from a structural reactive material solid

    Science.gov (United States)

    Zhang, F.

    2018-03-01

    Structural reactive material (SRM) is consolidated from a mixture of micro- or nanometric reactive metals and metal compounds to the mixture theoretical maximum density. An SRM can thus possess a higher energy density, relying on various exothermic reactions, and higher mechanical strength and heat resistance than that of conventional CHNO explosives. Progress in SRM solid studies is reviewed specifically as an energy source for air blast through the reaction of fine SRM fragments under explosive loading. This includes a baseline SRM solid explosion characterization, material properties of an SRM solid, and its dynamic fine fragmentation mechanisms and fragment reaction mechanisms. The overview is portrayed mainly from the author's own experimental studies combined with theoretical and numerical explanation. These advances have laid down some fundamentals for the next stage of developments.

  6. Ion-solid interactions for materials modification and processing

    International Nuclear Information System (INIS)

    Poker, D.B.; Ila, D.; Cheng, Y.T.; Harriott, L.R.; Sigmon, T.W.

    1996-01-01

    Topics ranged from the very fundamental ion-solid interactions to the highly device-oriented semiconductor applications. Highlights of the symposium featured in this volume include: nanocrystals in insulators, plasma immersion ion implantation. Focused ion beams, molecular dynamics simulations of ion-surface interactions, ion-beam mixing of insulators, GeV ion irradiation, electro-optical materials, polymers, tribological materials, and semiconductor processing. Separate abstracts were prepared for most papers in this volume

  7. Optical techniques for solid-state materials characterization

    CERN Document Server

    Prasankumar, Rohit P

    2016-01-01

    This book has comprehensively covered the essential optical approaches needed for solid-state materials characterization. Written by experts in the field, this will be a great reference for students, engineers, and scientists.-Professor Yoke Khin Yap, Michigan Technical University.

  8. Hybrid Composite Material and Solid Particle Erosion Studies

    Science.gov (United States)

    Chellaganesh, D.; Khan, M. Adam; Ashif, A. Mohamed; Ragul Selvan, T.; Nachiappan, S.; Winowlin Jappes, J. T.

    2018-04-01

    Composite is one of the predominant material for most challenging engineering components. Most of the components are in the place of automobile structure, aircraft structures, and wind turbine blade and so on. At the same all the components are indulged to mechanical loading. Recent research on composite material are machinability, wear, tear and corrosion studies. One of the major issue on recent research was solid particle air jet erosion. In this paper hybrid composite material with and without filler. The fibre are in the combination of hemp – kevlar (60:40 wt.%) as reinforcement using epoxy as a matrix. The natural material palm and coconut shell are used as filler materials in the form of crushed powder. The process parameter involved are air jet velocity, volume of erodent and angle of impingement. Experiment performed are in eight different combinations followed from 2k (k = 3) factorial design. From the investigation surface morphology was studied using electron microscope. Mass change with respect to time are used to calculate wear rate and the influence of the process parameters. While solid particle erosion the hard particle impregnates in soft matrix material. Influence of filler material has reduced the wear and compared to plain natural composite material.

  9. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  10. Solid waste and materials systems alternatives study summary

    International Nuclear Information System (INIS)

    Kasper, J.R.; Smith, S.T.

    1996-01-01

    The Hanford Site is a 560-sq.-mi. area in southeastern Washington State owned and operated by the U.S. Department of Energy (DOE). Previous weapons program activities and recent environmental cleanup activities at the Hanford Site have resulted in an accumulation of large quantities of solid wastes and materials. Future Decontamination and Decommissioning (D ampersand D) and Environmental Remediation activities will generate additional wastes. This paper provides a summary of a recently completed analysis of the Hanford Site Solid Wastes and Materials. The analysis involved development and compilation of waste stream and material information including type, classification. location current and project volumes, and curie content. Current program plans for treatment, storage, and disposal/disposition (TSD) have also been included in this analysis

  11. Solid material evaporation into an ECR source by laser ablation

    International Nuclear Information System (INIS)

    Harkewicz, R.; Stacy, J.; Greene, J.; Pardo, R.C.

    1993-01-01

    In an effort to explore new methods of producing ion beams from solid materials, we are attempting to develop a laser-ablation technique for evaporating materials directly into an ECR ion source plasma. A pulsed NdYaG laser with approximately 25 watts average power and peak power density on the order of 10 7 W/cm 2 has been used off-line to measure ablation rates of various materials as a function of peak laser power. The benefits anticipated from the successful demonstration of this technique include the ability to use very small quantities of materials efficiently, improved material efficiency of incorporation into the ECR plasma, and decoupling of the material evaporation process from the ECR source tuning operation. Here we report on the results of these tests and describe the design for incorporating such a system directly with the ATLAS PII-ECR ion source

  12. Handbook of solid waste disposal: materials and energy recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pavoni, J L; Heer, Jr, J E; Hagerty, D J

    1975-01-01

    Traditional and innovative solid waste disposal techniques and new developments in materials and energy recovery systems are analyzed. Each method is evaluated in terms of system methodology, controlling process parameters, and process requirements, by-products, economics, and case histories. Medium and high temperature incineration; wet pulping; landfill with leachate recirculation; the Hercules, Inc., system; USBM front-end and back-end systems; pyrolysis; waste heat utilization, the Combustion Power Unit-400; use of refuse as a supplementary fuel; and methane production from anaerobic fermentation systems are considered, as well as sanitary landfilling, incineration, and composting. European solid waste management techniques are evaluated for their applicability to the US.

  13. Lime-Stabilized Black Cotton Soil and Brick Powder Mixture as Subbase Material

    Directory of Open Access Journals (Sweden)

    S. Srikanth Reddy

    2018-01-01

    Full Text Available Various researchers, for the past few decades, had tried to stabilize black cotton soil using lime for improving its shrinkage and swelling characteristics. But these days, the cost of lime has increased resulting in increase in need for alternative and cost effective waste materials such as fly ash and rice husk ash. Brick powder, one among the alternative materials, is a fine powdered waste that contains higher proportions of silica and is found near brick kilns in rural areas. The objective of the study is to investigate the use of lime-stabilized black cotton soil and brick powder mixture as subbase material in flexible pavements. Black cotton soil procured from the local area, tested for suitability as subbase material, turned out to be unsuitable as it resulted in very less CBR value. Even lime stabilization of black cotton soil under study has not showed up the required CBR value specified for the subbase material of flexible pavement by MORTH. Hence the lime-stabilized black cotton soil is proportioned with brick powder to obtain optimum mixture that yields a better CBR value. The mixture of 20% brick powder and 80% lime-stabilized black cotton soil under study resulted in increase in the CBR value by about 135% in comparison with lime-stabilized black cotton soil. Thus it is promising to use the mixture of brick powder and lime-stabilized black cotton soil as subbase material in flexible pavements.

  14. Improvements in or relating to a fluidizing process and apparatus for treating comminuted solid materials

    Energy Technology Data Exchange (ETDEWEB)

    1949-02-15

    A fluidizing process of treating comminuted solid materials cyclically with different gaseous materials in different treatment zones, which comprises fluidizing comminuted solid material in contiguous treatment zones with different gaseous materials, and establishing unequal fluid-static heads in said zones to effect cyclic flow of said solid material through said zones which are in communication adjacent their respective top and bottom portions and permit the overflow of said solid material from one of said zones to another.

  15. Lithium ceramics as the solid breeder material in fusion reactors

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Reuther, T.C.; Johnson, C.E.

    1982-03-01

    Fusion blanket designs have for almost a decade considered the use of a solid breeder relying on available data and assumed performance. The conclusion from these studies is that acceptable neutronic and thermal hydraulic performance can be achieved. In the future, it will be necessary to establish that a particular material can tolerate the thermal and irradiation environment of the fusion blanket while still providing the required functions of tritium recovery, power production and neutron shielding

  16. Method of encapsulating solid radioactive waste material for storage

    International Nuclear Information System (INIS)

    Bunnell, L.R.; Bates, J.L.

    1976-01-01

    High-level radioactive wastes are encapsulated in vitreous carbon for long-term storage by mixing the wastes as finely divided solids with a suitable resin, formed into an appropriate shape and cured. The cured resin is carbonized by heating under a vacuum to form vitreous carbon. The vitreous carbon shapes may be further protected for storage by encasement in a canister containing a low melting temperature matrix material such as aluminum to increase impact resistance and improve heat dissipation. 8 claims

  17. Transport phenomena and drying of solids and particulate materials

    CERN Document Server

    Lima, AG

    2014-01-01

    The purpose of this book, Transport Phenomena and Drying of Solids and Particulate Materials, is to provide a collection of recent contributions in the field of heat and mass transfer, transport phenomena, drying and wetting of solids and particulate materials. The main benefit of the book is that it discusses some of the most important topics related to the heat and mass transfer in solids and particulate materials. It includes a set of new developments in the field of basic and applied research work on the physical and chemical aspects of heat and mass transfer phenomena, drying and wetting processes, namely, innovations and trends in drying science and technology, drying mechanism and theory, equipment, advanced modelling, complex simulation and experimentation. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional c...

  18. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  19. A survey on multiproperty measurement techniques of solid materials

    International Nuclear Information System (INIS)

    Matsumoto, Tsuyoshi

    1989-01-01

    The term 'multiproperty measurement' has not as yet been widely used. It is defined as the simultaneous (or continuous) measurement of several properties of material using one sample and one set of equipment. It is highly advantageous to measure several properties of a sample simultaneously. Various aspects of the nature of a substance can be clarified by evaluating its nature in terms of many properties. In particular, advanced techniques for measuring thermal properties of material are needed in the fields of atomic energy industry, aerospace industry, energy industry, electronics industry and academic community. Conventional thermal property measurement techniques which can be applied to multiproperty measurement or minute test sample measurement are outlined focusing on measurement of the thermal conductivity (axial flow method, radial flow method, plate method, unsteady state heating coil method, direct current heating method), specific heat (adiabatic method, drop calorimetry, differential scanning calorimetry, AC calorimetric method, pulse heating method, and laser heating method), thermal diffusivity (laser-flash method), and emissivity (separated black body method, incorporated black body method). (N,K.)

  20. Regulation Concepts for Clearance Level of Radionuclide in Solid Materials

    International Nuclear Information System (INIS)

    Nanang Triagung Edi Hermawan

    2008-01-01

    Practices of nuclear energy have expanded in some fields such as researches and development, educations, agricultures, medicines and industries. Every practice beside give much benefit, could generate residue or waste. Radioactive waste needs management to ensure the safety of workers, member of the public, and for the eternal of environment. The product of radioactive waste management, in generally, is some containment of radionuclide concentration in solid matrix material after immobilization or conditioning process. Some kind of processed radioactive wastes with short half live then decay faster to stabile condition. The decay will reach clearance level in sometimes, so from the radiation protection views is harmless. This materials above didn’t need control and must be cleared from all determinate and regulation aspects of radioactive material practices. There is clearance for harmless material off course will be simplify management task and efficiency of money. So the regulation about clearance levels will be important as law basic for technical practices in field. (author)

  1. Novel solidsolid phase change material based on polyethylene glycol and cellulose used for temperature stabilisation

    Directory of Open Access Journals (Sweden)

    Wojda Marta

    2014-01-01

    Full Text Available Thermal management is one of crucial issues in the development of modern electronic devices. In the recent years interest in phase change materials (PCMs as alternative cooling possibility has increased significantly. Preliminary results concerning the research into possibility of the use of solid-solid phase change materials (S-S PCMs for stabilisation temperature of electronic devices has been presented in the paper. Novel solid-solid phase change material based on polyethylene glycol and cellulose has been synthesized. Attempt to improve its thermal conductivity has been taken. Material has been synthesized for the purpose of stabilisation of temperature of electronic devices.

  2. Materials for high temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Singhal, S.C.

    1987-01-01

    High temperature solid oxide fuel cells show great promise for economical production of electricity. These cells are based upon the ability of stabilized zirconia to operate as an oxygen ion conductor at elevated temperatures. The design of the tubular solid oxide fuel cell being pursued at Westinghouse is illustrated. The cell uses a calcia-stabilized zironcia porous support tube, which acts both as a structural member onto which the other cell components are fabricated in the form of thin layers, and as a functional member to allow the passage, via its porosity, of air (or oxygen) to the air electrode. This paper summarizes the materials and fabrication processes for the various cell components

  3. Multinuclear solid-state nuclear magnetic resonance of inorganic materials

    CERN Document Server

    MacKenzie, Kenneth J D

    2002-01-01

    Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.

  4. Solid-state quantum chemistry and materials science: Solid compounds of the d and f elements

    International Nuclear Information System (INIS)

    Gubanov, V.A.

    1989-01-01

    Methods have been developed for calculating electron structures for solid compounds of d and f elements and for simulating physicochemical properties of materials based on them. Cluster and band calculations are considered for refractory compounds of d metals formed with light elements. There are bond and property regularities in doping by meals and metalloids, and defects and impurities have certain effects, where studies have been made on the electron structures for disordered phases and solid solutions in relation to sublattice compositions. Quantum-chemical simulation methods have been developed for optically active and fluorescent materials based on d and f metal oxides, fluorides, and chalcogenides, and compositions have been proposed for new optically active composites and protective coatings. New approaches have been defined to the magnetic parameters of metals, alloys, and compounds; these can be applied in simulating new magnetic materials. Calculations are given on energy spectra for high-temperature oxide superconductors. There is interesting scope for quantum-chemical methods in application to many topics in materials science

  5. Production behavior of irradiation defects in solid breeder materials

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Hirotake; Moritani, Kimikazu [Kyoto Univ. (Japan)

    1998-03-01

    The irradiation effects in solid breeder materials are important for the performance assessment of fusion reactor blanket systems. For a clearer understanding of such effects, we have studied the production behavior of irradiation defects in some lithium ceramics by an in-situ luminescence measurement technique under ion beam irradiation. The luminescence spectra were measured at different temperatures, and the temperature-transient behaviors of luminescence intensity were also measured. The production mechanisms of irradiation defects were discussed on the basis of the observations. (author)

  6. Converters and electric machines. Solid insulating materials. Electrical characteristics; Convertisseurs et machines electriques. Materiaux isolants solides. Caracteristiques electriques

    Energy Technology Data Exchange (ETDEWEB)

    Anton, A. [Institut National Superieur de Chimie Industrielle, 76 - Rouen (France)

    2003-08-01

    The aim of this article is to allow a preselection of a solid insulating material using the most common electrical characteristics: tangent of the loss angle, relative permittivity, dielectric rigidity, superficial resistivity, transverse resistivity, resistance to high voltage creeping spark currents, index of creeping resistance. The characteristics of the main solid insulating materials are presented in tables for: thermoplastics, thermosetting materials, natural insulating materials, mineral insulating materials, rubber and synthetic elastomers, stratified insulating materials, thermoplastic films, composite synthetic papers. A comparison is made between the different materials using the three properties: tangent of the loss angle, relative permittivity and resistance to HV spark creeping currents. (J.S.)

  7. Simulated study of solid materials used as phantoms

    International Nuclear Information System (INIS)

    Belmonte, Eduardo P.; Pinheiro, Christiano J.G.; Pinto, Nivia G.Villela; Braz, Delson; Pereira Junior, Sielso B.; Lima, Gilberto S.

    2005-01-01

    The aim of this study is to analyze the behavior of electrons in water and compares them with the behavior in the materials you want to analyze. It were simulated, using Monte Carlo code EGS4 (MC), 24 irradiation with electrons of 6 and 20 MeV in different materials (polyethylene C 2 H 4 ) n , polystyrene (C 8 H 8 ) n , lucite (C 5 H 8 O 2 ), nylon (C 6 H 11 NO), water (H 2 O) and solid water (55% polyethylene, polystyrene and 5% 40% calcium oxide). The data show that for the two energies most of radiation does not interact with the first 20 mm materials. However, when analyzed plates of 1 cm, most of the energy is deposited in the first 4 plates in case 6 MeV and in the first ten to 20 MeV electrons, for all materials. In case of similarity in behavior of radiation in water and other materials, it is observed that is in polyethylene and polystyrene that the behaviour of electrons more resembles the behavior in water

  8. Pulsed laser photoacoustic spectrometer for study of solid materials

    International Nuclear Information System (INIS)

    Patel, N.D.; Kartha, V.B.

    1991-01-01

    The technique of photoacoustic spectroscopy has wide applications bacause it is extremely sensitive, and can be used to obtain spectra in wide spectral range for solids, liquids, gases, solutions, crystals etc. which may be usually difficult by conventional methods. For studying a variety of materials, a pulsed laser photoacoustic spectrometer has been set up in the laboratory. The report discusses the design and performance of the instrument. Some of the spectra of materials like Nd 2 O 9 powder, Nd-YAG crystal, CoCl 2 6H 2 O etc. are shown. A detailed discussion on assignment of the spectra of Nd-YAG is also presented. (author). 4 refs., 5 figs., 1 tab

  9. Materials Development for All-Solid-State Battery Electrolytes

    Science.gov (United States)

    Wang, Weimin

    Solid electrolytes in all solid-state batteries, provide higher attainable energy density and improved safety. Ideal solid electrolytes require high ionic conductivity, a high elastic modulus to prevent dendrite growth, chemical compatibility with electrodes, and ease of fabrication into thin films. Although various materials types, including polymers, ceramics, and composites, are under intense investigation, unifying design principles have not been identified. In this thesis, we study the key ion transport mechanisms in relation to the structural characteristics of polymers and glassy solids, and apply derived material design strategies to develop polymer-silica hybrid materials with improved electrolyte performance characteristics. Poly(ethylene) oxide-based solid electrolytes containing ceramic nanoparticles are attractive alternatives to liquid electrolytes for high-energy density Li batteries. We compare the effect of Li1.3Al0.3Ti 1.7(PO4)3 active nanoparticles, passive TiO 2 nanoparticles and fumed silica. Up to two orders of magnitude enhancement in ionic conductivity is observed for composites with active nanoparticles, attributed to cation migration through a percolating interphase region that develops around the active nanoparticles, even at low nanoparticle loading. We investigate the structural origin of elastic properties and ionic migration mechanisms in sodium borosilicate and sodium borogermanate glass electrolyte system. A new statistical thermodynamic reaction equilibrium model is used in combination with data from nuclear magnetic resonance and Brillouin light scattering measurements to determine network structural unit fractions. The highly coordinated structural units are found to be predominantly responsible for effective mechanical load transmission, by establishing three-dimensional covalent connectivity. A strong correlation exists between bulk modulus and the activation energy for ion conduction. We describe the activated process in

  10. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.

    1994-07-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2

  11. Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-02-01

    Full Text Available To enhance the thermal stability and permeability resistance, a comb-like polymer with crystallizable side chains was fabricated as solid-solid phase change materials (PCMs inside the cores of microcapsules and nanocapsules prepared via in-situ polymerization. In this study, the effects on the surface morphology and microstructure of micro/nanocapsules caused by microencapsulating different types of core materials (i.e., n-hexadecane, ethyl hexadecanoate, hexadecyl acrylate and poly(hexadecyl acrylate were systematically studied via field emission scanning electron microscope (FE-SEM and transmission electron microscope (TEM. The confined crystallization behavior of comb-like polymer PCMs cores was investigated via differential scanning calorimeter (DSC. Comparing with low molecular organic PCMs cores, the thermal stability of PCMs microencapsulated comb-like polymer enhanced significantly, and the permeability resistance improved obviously as well. Based on these resultant analysis, the microencapsulated comb-like polymeric PCMs with excellent thermal stability and permeability resistance showed promising foreground in the field of organic solution spun, melt processing and organic coating.

  12. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.

    Science.gov (United States)

    Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier

    2018-04-17

    The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational

  13. Solid state nuclear magnetic resonance investigations of advanced energy materials

    Science.gov (United States)

    Bennett, George D.

    In order to better understand the physical electrochemical changes that take place in lithium ion batteries and asymmetric hybrid supercapacitors solid state nuclear magnetic resonance (NMR) spectroscopy has been useful to probe and identify changes on the atomic and molecular level. NMR is used to characterize the local environment and investigate the dynamical properties of materials used in electrochemical storage devices (ESD). NMR investigations was used to better understand the chemical composition of the solid electrolyte interphase which form on the negative and positive electrodes of lithium batteries as well as identify the breakdown products that occur in the operation of the asymmetric hybrid supercapacitors. The use of nano-structured particles in the development of new materials causes changes in the electrical, structural and other material properties. NMR was used to investigate the affects of fluorinated and non fluorinated single wall nanotubes (SWNT). In this thesis three experiments were performed using solid state NMR samples to better characterize them. The electrochemical reactions of a lithium ion battery determine its operational profile. Numerous means have been employed to enhance battery cycle life and operating temperature range. One primary means is the choice and makeup of the electrolyte. This study focuses on the characteristics of the solid electrolyte interphase (SEI) that is formed on the electrodes surface during the charge discharge cycle. The electrolyte in this study was altered with several additives in order to determine the influence of the additives on SEI formation as well as the intercalation and de-intercalation of lithium ions in the electrodes. 7Li NMR studies where used to characterize the SEI and its composition. Solid state NMR studies of the carbon enriched acetonitrile electrolyte in a nonaqueous asymmetric hybrid supercapacitor were performed. Magic angle spinning (MAS) coupled with cross polarization NMR

  14. Nanocarbon materials obtained of coniferous trees in the composition of black powder

    Directory of Open Access Journals (Sweden)

    Zulkhair Mansurov

    2012-03-01

    Full Text Available Obtained black powders from coniferous wood. The carbon content of up to 90% can be used in warfare, pyrotechnics and industries. In the Republic of Kazakhstan does not produce gunpowder. In the energy-intensive materials laboratory, developed industrial black powders (ordinary, composed of components produced in the republic of Kazakhstan. Sulfur, activated carbon, based on apricot seeds and rice husks, softwood sawdust, which have lower costs than their foreign counterparts.

  15. Development of LIBS for online analysis of solid nuclear materials

    International Nuclear Information System (INIS)

    Picard, Jessica

    2015-01-01

    With the objective to implement a fast, online analysis technique for control of solid metal nuclear materials, laser-induced breakdown spectroscopy (LIBS) technique is developed for quantitative analysis in uranium and plutonium. Since these matrices have a very dense emission spectrum in the UV-Visible range, the Vacuum Ultra-Violet (VUV) spectral range, less rich in lines, is explored. The aim of this thesis is to perform the analytical development of VUV-LIBS for quantitative analysis between 500 and 5000 ppm with an uncertainty of 3%. For that purpose, four steps were defined. First, for practical and safety reasons, it is generally better to perform experiments on surrogate materials. LIBS based on laser-material interaction, it is relevant to seek a surrogate of material of interest from the viewpoint of the ablated mass. Thus, a complete study of laser ablation of several metals was enabled to build a predictive model of the ablation efficiency. Titanium and stainless steel were defined as surrogate materials of plutonium and uranium for laser ablation. Secondly, the VUV-LIBS setup analytical performances were optimized for several elements of interest in four metals. Then, two calibration methods are used to determine the analytical performances. The limits of quantification are of the order of a few hundreds of ppm for all studied matrices, which validates the objective of impurities quantitation in the 500-5000 ppm range. Uncertainty is lower than 3% in the best cases. Finally, the calibration transfer between the four matrices was studied. A normalization of the nickel net signal measured in three matrices was presented. (author) [fr

  16. New decontamination processes for liquid effluents and solid materials

    International Nuclear Information System (INIS)

    Faure, S.

    2008-01-01

    New decontamination processes are being studied in order to protect workers and to reduce strongly the quantity of secondary wastes produced. 2 decontamination processes for liquid nuclear wastes are under studies. First, the coprecipitation process whose improvement is based on a better control of the 2 coupled mechanisms involved in the process: the formation of adsorbent particles and the uptake of radionuclides. Secondly, the column process whose development focuses on new materials that can be used to absorb cesium in a reversible way. 3 new decontamination processes for solid materials are being developed. First, processes using drying gels are under investigation in order to treat materials like lead, aluminium, iron and stainless steel. Real decontamination of hot cells by drying gel process has been performed and a decontamination factor between 16 and 25 has been obtained on stainless steels. Secondly, new foam decontamination processes have been developed, they are based on the use of new foams stabilized by biodegradable non-ionic surfactants: alkyl-poly-glucosides and viscofiers or nano-particles. The aim is to increase the foam lifetime. Thirdly, new surfactants in solution decontamination processes have been studied, the aim is to decontaminate through degreasing by using acidic surfactants. The idea is to combine emulsification and wetting power. (A.C.)

  17. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    Science.gov (United States)

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  18. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials.

    Science.gov (United States)

    Funari, Valerio; Braga, Roberto; Bokhari, Syed Nadeem Hussain; Dinelli, Enrico; Meisel, Thomas

    2015-11-01

    The incineration of municipal solid wastes is an important part of the waste management system along with recycling and waste disposal, and the solid residues produced after the thermal process have received attention for environmental concerns and the recovery of valuable metals. This study focuses on the Critical Raw Materials (CRM) content in solid residues from two Italian municipal waste incinerator (MSWI) plants. We sampled untreated bottom ash and fly ash residues, i.e. the two main outputs of common grate-furnace incinerators, and determined their total elemental composition with sensitive analytical techniques such as XRF and ICP-MS. After the removal of a few coarse metallic objects from bottom ashes, the corresponding ICP solutions were obtained using strong digestion methods, to ensure the dissolution of the most refractory components that could host significant amounts of precious metals and CRM. The integration of accurate chemical data with a substance flow analysis, which takes into account the mass balance and uncertainties assessment, indicates that bottom and fly ashes can be considered as a low concentration stream of precious and high-tech metals. The magnesium, copper, antimony and zinc contents are close to the corresponding values of a low-grade ore. The distribution of the elements flow between bottom and fly ash, and within different grain size fractions of bottom ash, is appraised. Most elements are enriched in the bottom ash flow, especially in the fine grained fractions. However, the calculated transfer coefficients indicate that Sb and Zn strongly partition into the fly ashes. The comparison with available studies indicates that the CRM concentrations in the untreated solid residues are comparable with those residues that undergo post-treatment beneficiations, e.g. separation between ferrous and non-ferrous fractions. The suggested separate collection of "fresh" bottom ash, which could be processed for further mineral upgrading, can

  19. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    Science.gov (United States)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  20. New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Allan J. Jacobson

    2006-09-30

    the perovskite compositions that were being investigated at PNNL, in order to assess the relative importance of the intrinsic properties such as oxygen ion diffusion and surface exchange rates as predictors of performance in cell tests. We then used these measurements to select new materials for scaled up synthesis and performance evaluation in single cell tests. The results of the single cell tests than provided feedback to the materials synthesis and selection steps. In this summary, the following studies are reported: (1) Synthesis, characterization, and DC conductivity measurements of the P1 compositions La{sub 0.8}Sr{sub 0.2}FeO{sub 3-x} and La{sub 0.7}Sr{sub 0.3}FeO{sub 3-x} were completed. A combinational approach for preparing a range P1 (La,Sr)FeO{sub 3} compositions as thin films was investigated. Synthesis and heat treatment of amorphous SrFeO{sub 3-x} and LaFeO{sub 3-x} films prepared by pulsed laser deposition are described. (2) Oxygen transport properties of K1 compositions La{sub x}Pr{sub 2-x}NiO{sub 4+d} (x =2.0, 1.9, 1.2, 1.0 and 0) measured by electrical conductivity relaxation are presented in this report. Area specific resistances determined by ac impedance measurements for La{sub 2}NiO{sub 4+{delta}} and Pr{sub 2}NiO{sub 4+{delta}} on CGO are encouraging and suggest that further optimization of the electrode microstructure will enable the target to be reached. (3) The oxygen exchange kinetics of the oxygen deficient double perovskite LnBaCo{sub 2}O{sub 5.5+{delta}} (Ln=Pr and Nd) were determined by electrical conductivity relaxation. The high electronic conductivity and rapid diffusion and surface exchange kinetics of PBCO suggest its application as cathode material in intermediate temperature solid oxide fuel cells. The first complete cell measurements were performed on Ni/CGO/CGO/PBCO/CGO cells. (4) The oxygen exchange kinetics of highly epitaxial thin films of PrBaCo{sub 2}O{sub 5.5+{delta}} (PBCO) has been determined by electrical conductivity

  1. New infrared solid state laser materials for CALIOPE

    International Nuclear Information System (INIS)

    DeLoach, L.D.; Page, R.H.; Wilke, G.D.

    1994-01-01

    Tunable infrared laser light may serve as a useful means by which to detect the presence of the targeted effluents. Since optical parametric oscillators (OPOs) have proven to be a versatile method of generating coherent light from the ultraviolet to the mid-infrared, this technology is a promising choice by which to service the CALIOPE applications. In addition, since some uncertainty remains regarding the precise wavelengths and molecules that will be targeted, the deployment of OPOs retains the greatest amount of wavelength flexibility. Another approach that the authors are considering is that of generating tunable infrared radiation directly with a diode-pumped solid state laser (DPSSL). One important advantage of a DPSSL is that it offers flexible pulse format modes that can be tailored to meet the needs of a particular application and target molecule. On the other hand, direct generation by a tunable DPSSL will generally be able to cover a more limited wavelength range than is possible with OPO technology. In support of the CALIOPE objectives the authors are exploring the potential for laser action among a class of materials comprised of transition metal-doped zinc chalcogenide crystals (i.e., ZnS, ZnSe and ZnTe). The Cr 2+ , Co 2+ and Ni 2+ dopants were selected as the most favorable candidates, on the basis of their documented spectral properties in the scientific literature. Thus far, the authors have characterized the absorption and emission properties of these ions in the ZnS and ZnSe crystals. The absorption spectra are used to determine the preferred wavelength at which the crystal should be pumped, while the emission spectra reveal the extent of the tuning range potentially offered by the material. In addition, measurements of the emission lifetime as a function of temperature turn out to be quite useful, since this data is suggestive of the room temperature emission yield

  2. Effect of radioactive radiation on catalytic properties of solid materials

    Energy Technology Data Exchange (ETDEWEB)

    Sokol' skii, D V; Kuzembaev, K K; Kel' man, I V [AN Kazakhskoj SSR, Alma-Ata. Inst. Organicheskogo Kataliza i Ehlektrokhimii

    1977-05-01

    General survey is made of the problem of radiation modification of the action of solid catalysts with respect to the various types of heterogeneous catalytic reactions. Consideration is given to the key mechanisms responsible for radiation damage in the interaction of high-energy radiation with a solid body. The effect of ionizing radiation on the adsorption capacity and catalytic activity of solid bodies is discussed.

  3. Physicochemical characterization of some solid materials by inverse gas chromatography

    International Nuclear Information System (INIS)

    Hamieh, T.; Abdessater, S.

    2004-01-01

    Full text.New equations and models on two-dimensional state of solid surfaces were previously elaborated in many other studies. results obtained were used in this paper to the determination and the quantification of some physicochemical properties of some solid surfaces, and especially, to study the acid-base superficial characteristics of some solid substrates like oxides and/or polymer adsorbed on oxides, carbon fibers, cements, etc. The technique used was the inverse gas chromatography (CGI) at infinite dilution. The acid-base constants were calculated for many solid surfaces: Al 2 O 3 , SiO 2 , MgO, ZnO, some cements, textiles and carbon fibers

  4. Thermomechanics of solid materials with application to the Gurson-Tvergaard material model

    Energy Technology Data Exchange (ETDEWEB)

    Santaoja, K. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1997-12-31

    The elastic-plastic material model for porous material proposed by Gurson and Tvergaard is evaluated. First a general description is given of constitutive equations for solid materials by thermomechanics with internal variables. The role and definition of internal variables are briefly discussed and the following definition is given: The independent variables present (possibly hidden) in the basic laws for thermomechanics are called controllable variables. The other independent variables are called internal variables. An internal variable is shown always to be a state variable. This work shows that if the specific dissipation function is a homogeneous function of degree one in the fluxes, a description for a time-independent process is obtained. When damage to materials is evaluated, usually a scalar-valued or tensorial variable called damage is introduced in the set of internal variables. A problem arises when determining the relationship between physically observable weakening of the material and the value for damage. Here a more feasible approach is used. Instead of damage, the void volume fraction is inserted into the set of internal variables. This allows use of an analytical equation for description of the mechanical weakening of the material. An extension to the material model proposed by Gurson and modified by Tvergaard is derived. The derivation is based on results obtained by thermomechanics and damage mechanics. The main difference between the original Gurson-Tvergaard material model and the extended one lies in the definition of the internal variable `equivalent tensile flow stress in the matrix material` denoted by {sigma}{sup M}. Using classical plasticity theory, Tvergaard elegantly derived an evolution equation for {sigma}{sup M}. This is not necessary in the present model, since damage mechanics gives an analytical equation between the stress tensor {sigma} and {sigma}M. Investigation of the Clausius-Duhem inequality shows that in compression

  5. Thermomechanics of solid materials with application to the Gurson-Tvergaard material model

    International Nuclear Information System (INIS)

    Santaoja, K.

    1997-01-01

    The elastic-plastic material model for porous material proposed by Gurson and Tvergaard is evaluated. First a general description is given of constitutive equations for solid materials by thermomechanics with internal variables. The role and definition of internal variables are briefly discussed and the following definition is given: The independent variables present (possibly hidden) in the basic laws for thermomechanics are called controllable variables. The other independent variables are called internal variables. An internal variable is shown always to be a state variable. This work shows that if the specific dissipation function is a homogeneous function of degree one in the fluxes, a description for a time-independent process is obtained. When damage to materials is evaluated, usually a scalar-valued or tensorial variable called damage is introduced in the set of internal variables. A problem arises when determining the relationship between physically observable weakening of the material and the value for damage. Here a more feasible approach is used. Instead of damage, the void volume fraction is inserted into the set of internal variables. This allows use of an analytical equation for description of the mechanical weakening of the material. An extension to the material model proposed by Gurson and modified by Tvergaard is derived. The derivation is based on results obtained by thermomechanics and damage mechanics. The main difference between the original Gurson-Tvergaard material model and the extended one lies in the definition of the internal variable 'equivalent tensile flow stress in the matrix material' denoted by σ M . Using classical plasticity theory, Tvergaard elegantly derived an evolution equation for σ M . This is not necessary in the present model, since damage mechanics gives an analytical equation between the stress tensor σ and σM. Investigation of the Clausius-Duhem inequality shows that in compression, states occur which are not

  6. Solid state double layer capacitor based on a polyether polymer electrolyte blend and nanostructured carbon black electrode composites

    Energy Technology Data Exchange (ETDEWEB)

    Lavall, Rodrigo L.; Borges, Raquel S.; Calado, Hallen D.R.; Welter, Cezar; Trigueiro, Joao P.C.; Silva, Glaura G. [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Rieumont, Jacques [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Facultad de Quimica, Universidad de La Habana, Habana 10400 (Cuba); Neves, Bernardo R.A. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil)

    2008-03-01

    An all solid double layer capacitor was assembled by using poly(ethylene oxide)/poly(propylene glycol)-b-poly(ethylene glycol)-b-poly(propylene glycol)-bis(2-aminopropyl ether) blend (PEO-NPPP) and LiClO{sub 4} as polymer electrolyte layer and PEO-NPPP-carbon black (CB) as electrode film. High molecular weight PEO and the block copolymer NPPP with molecular mass of 2000 Da were employed, which means that the design is safe from the point of view of solvent or plasticizer leakage and thus, a separator is not necessary. Highly conductive with large surface area nanostructured carbon black was dispersed in the polymer blend to produce the electrode composite. The electrolyte and electrode multilayers prepared by spray were studied by differential scanning calorimetry, atomic force microscopy (AFM) and impedance spectroscopy. The ionic conductivity as a function of temperature was fitted with the Williams-Landel-Ferry equation, which indicates a conductivity mechanism typical of solid polymer electrolyte. AFM images of the nanocomposite electrode showed carbon black particles of approximately 60 nm in size well distributed in a semicrystalline and porous polymer blend coating. The solid double layer capacitor with 10 wt.% CB was designed with final thickness of approximately 130 {mu}m and delivered a capacitance of 17 F g{sup -1} with a cyclability of more than 1000 cycles. These characteristics make possible the construction of a miniature device in complete solid state which will avoid electrolyte leakage and present a performance superior to other similar electric double layer capacitors (EDLCs) presented in literature, as assessed in specific capacitance by total carbon mass. (author)

  7. Potential electrode materials for symmetrical Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Ruiz Morales, J. C.

    2008-08-01

    Full Text Available Chromites, titanates and Pt-YSZ-CeO2 cermets have been investigated as potential electrode materials for an alternative concept of Solid Oxide Fuel Cell (SOFC, the symmetrical SOFCs (SFC. In this configuration, the same electrode material is used simultaneously as anode and cathode. Interconnector materials, such as chromites, could be considered as potential SFC electrodes, at least under pure hydrogen-fed at relatively high temperatures, as they do not exhibit significant catalytic activity towards hydrocarbon oxidation. This may be overcome by partially substituting Cr in the perovskite B-sites by other transition metal cations such as Mn. La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM is a good candidate for such SFCs, rendering fuel cell performances in excess of 500 and 300mW/cm2 using pure H2 and CH4 as fuel, at 950 oC. Similarly, typical n-type electronic conductors traditionally regarded as anode materials, such as strontium titanates, may also operate under oxidising conditions as cathodes by substituting some Ti content for Fe to introduce p-type conductivity. Preliminary electrochemical experiments on La4Sr8Ti12-xFexO38-δ-based SFCs show that they perform reasonably well under humidified H2, at high temperatures. A third group of materials is the support material of any typical cermet anode, i.e. YSZ, CeO2 plus a current collector. It has been found that this combination could be optimised to operate as SFC electrodes, rendering performances of 400mW/cm2 under humidified pure H2 at 950oC.

    Cromitas, titanatos y cermets de Pt-YSZ-CeO2 han sido investigados como potenciales materiales de electrodo para un concepto alternativo de Pilas de Combustible de Óxidos Sólidos (SOFC, las pilas SOFC simétricas (SFC. En

  8. Characterizing the Secondary Protein Structure of Black Widow Dragline Silk Using Solid-State NMR & X-ray Diffraction

    Science.gov (United States)

    Jenkins, Janelle E.; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W.; Holland, Gregory P.; Yarger, Jeffery L.

    2013-01-01

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) 13C-13C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and hence to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 31-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 31-helical (poly(Gly-Gly-Xaa)) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 31-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617

  9. Optimization of Solid-Liquid Extraction of Antioxidants from Black Mulberry Leaves by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Zoran Zeković

    2012-01-01

    Full Text Available The extraction of active components from natural sources depends on different factors. The knowledge of the effects of different extraction parameters is useful for the optimization of the process, as well for the ability to predict the extraction yield. The aim of this study is to examine the influence of solvent concentration (ethanol/water 40–80 %, by volume, temperature (40–80 °C and solvent/raw material ratio (10–30 mL/g on the extraction yield of phenolic compounds, flavonoids and antioxidant activity from black mulberry (Morus nigra L. leaves. Experimental values of total phenolic content were in the range from 18.6 to 48.7 mg of chlorogenic acid equivalents per g of dried leaves and total flavonoids in the range from 6.0 to 21.4 mg of rutin eqivalents per g of dried leaves. Antioxidant activity expressed as the inhibition concentration at 50 % (IC50 value was in the range from 0.019 to 0.078 mg of mulberry extract per mL. Response surface methodology (RSM was used to determine the optimum extraction conditions and to investigate the effect of different variables on the observed properties of mulberry leaf extracts. The results show a good fit to the proposed model (R˄2>0.90. The optimal conditions for obtaining the highest extraction yield of phenolics and flavonoids were within the experimental range. The experimental values agreed with those predicted, thus indicating suitability of the used model and the success of RSM in optimizing the investigated extraction conditions.

  10. Carbon black as an alternative cathode material for electrical energy recovery and transfer in a microbial battery.

    Science.gov (United States)

    Zhang, Xueqin; Guo, Kun; Shen, Dongsheng; Feng, Huajun; Wang, Meizhen; Zhou, Yuyang; Jia, Yufeng; Liang, Yuxiang; Zhou, Mengjiao

    2017-08-01

    Rather than the conventional concept of viewing conductive carbon black (CB) to be chemically inert in microbial electrochemical cells (MECs), here we confirmed the redox activity of CB for its feasibility as an electron sink in the microbial battery (MB). Acting as the cathode of a MB, the solid-state CB electrode showed the highest electron capacity equivalent of 18.58 ± 0.46 C/g for the unsintered one and the lowest capacity of 2.29 ± 0.48 C/g for the one sintered under 100% N 2 atmosphere. The capacity vibrations of CBs were strongly in coincidence with the abundances of C=O moiety caused by different pretreatments and it implied one plausible mechanism based on CB's surface functionality for its electron capturing. Once subjected to electron saturation, CB could be completely regenerated by different strategies in terms of electrochemical discharging or donating electrons to biologically-catalyzed nitrate reduction. Surface characterization also revealed that CB's regeneration fully depended on the reversible shift of C=O moiety, further confirming the functionality-based mechanism for CB's feasibility as the role of MB's cathode. Moreover, resilience tests demonstrated that CB cathode was robust for the multi-cycles charging-discharging operations. These results imply that CB is a promising alternative material for the solid-state cathode in MBs.

  11. Development of сertified reference materials set for opened porosity of solid substances and materials (imitators

    Directory of Open Access Journals (Sweden)

    E. P. Sobina

    2016-01-01

    Full Text Available The article deals with data of research for development of certified reference materials set for opened porosity of solid substances and materials (imitators (OPTB SO UNIIM Set Certified Reference Materials GSO 10583-2015. The certified values of opened porosity of metal cylinders were established by the method of hydrostatic weighing before and after boring of holes in. The certified reference materials are intended for calibration and verification of measuring instruments of opened porosity, based on the Boyle - Mariotte's law.

  12. Development of Candidate Reference Materials of Endosulfan Sulfate and Bifenthrin in Black Tea

    Directory of Open Access Journals (Sweden)

    Nurhani Aryana

    2016-03-01

    Full Text Available The candidate reference materials of endosulfan sulfate and bifenthrin in black tea have been developed according to the requirements of ISO Guide 34 and 35. Preparation of candidate material includes grinding and sieving of the black tea leaves, spiking the black tea powder by both analytes, homogenization, and bottling. Homogeneity and short-term stability test were performed using a GC-µECD instrument. Meanwhile, the characterization was carried out by a collaborative study using both of GC-µECD and GC-MS instruments. The uncertainty budget was evaluated from sample inhomogeneity, short-term instability and variability in the characterization procedure. In a dry mass fraction, endosulfan sulfate was assigned to be 491 µg kg-1 with a relative expanded uncertainty of ± 33.2%, and bifenthrin was assigned to be 937 µg kg-1 with a relative expanded uncertainty of ± 18.5%. The candidate reference materials are aimed to support the need of matrix CRM especially for the measurement of pesticide residue for quality assurance work done by laboratories in Indonesia.

  13. Modelling the Solid Waste Flow into Sungai Ikan Landfill Sites by Material Flow Analysis Method

    Science.gov (United States)

    Ghani, Latifah A.; Ali, Nora'aini; Hassan, Nur Syafiqah A.

    2017-12-01

    The purpose of this paper is to model the material flow of solid waste flows at Kuala Terengganu by using Material Flow Analysis (MFA) method, generated by STAN Software Analysis. Sungai Ikan Landfill has been operated for about 10 years. Average, Sungai Ikan Landfill receive an amount around 260 tons per day of solid waste. As for the variety source of the solid waste coming from, leachates that accumulated has been tested and measured. Highest reading of pH of the leachate is 8.29 which is still in the standard level before discharging the leachate to open water which pH in between 8.0-9.0. The percentages of the solid waste has been calculated and seven different types of solid waste has been segregated. That is, plastics, organic waste, paper, polystyrene, wood, fabric and can. The estimation of the solid waste that will be end as a residue are around 244 tons per day.

  14. Abstracts of 12. Conference on Solid State Crystals Materials Science and Applications

    International Nuclear Information System (INIS)

    1996-01-01

    The solid state crystals are the modern materials being very interesting from the view point of actual and possible applications in microelectronics, optics, laser materials, detectors etc. 12. Conference on Solid State Crystals, Materials Science and Applications, Zakopane'99 created the review forum for broad range of investigations on topics related to; crystal growth and doping, new materials preparation, thin layer structure, physical properties and special methods for electrical, magnetic, optical and mechanical properties measurements of obtained materials. The insulating, semiconducting and superconducting monocrystals, polycrystals and also amorphous glasses have been investigated and their possible applications discussed. 52 oral lectures and 128 posters have been presented in the course of the conference

  15. Solid ionic: these unusual materials applications in high-energy-density

    International Nuclear Information System (INIS)

    Shriver, D.F.; Farrington, G.C.

    1985-01-01

    The idea that ions can diffuse as rapidly in a solid as in an aqueous salt solution may seem strange to many chemists. But a variety of solids with high ionic conductivities are known. Compounds have been discovered that conduct anions (including F - and O 2- ) and cations (including monovalent, divalent, and trivalent cations). These substances range from hard, refractory materials, such as sodium β-alumina, through softer compounds, such as silver iodide (AgI) to the very soft polymer electrolytes. They include compounds that are stoichiometric (AgI), nonstoichiometric (sodium β-alumina), or doped (calcia-stabilized zirconia). A variety of names have been applied to these materials: among them, solid electrolytes, superionic conductors, and fast-ion conductors. Fast-ion transport in solids is a lively area of study in solid-state chemistry and physics. High-conductivity solid electrolytes have revolutionized conventional concepts of ionic compounds, and their potential uses range from high-energy-density battery and fuel-cell electrolytes to chemical sensors and from lasers to phosphors. Devices using solid electrolytes are already available commercially-oxygen detectors for automotive pollution-control systems employ solid O 2- electrolytes, and solid-state batteries using solid electrolytes are employed in heart pacemakers

  16. Microstructural evolution of nanograin nickel-zirconia cermet anode materials for solid oxide fuel cell applications

    International Nuclear Information System (INIS)

    Nayak, Bibhuti Bhusan

    2012-01-01

    The aim of the study is to study the structure, microstructure, porosity, thermal expansion, electrical conductivity and electrochemical behavior of the anode material thus synthesized in order to find its suitability for solid oxide fuel cell (SOFC) anode application

  17. VOLATILE ORGANO-METALLOIDS IN BIO-SOLID MATERIALS: ANALYSIS BY VACUUM DISTILLATION-GC/MS

    Science.gov (United States)

    An analytical method based on vacuum distillation-gas chromatography-mass spectrometry (VD-GC-MS)was developed for determining volatile organo-metalloid contaminants in bio-solid materials. Methodperformance was evaluated for dimethylselenide (DMSe), dimethyldisel...

  18. Primary aromatic amines (PAAs) in black nylon and other food-contact materials, 2004-2009

    DEFF Research Database (Denmark)

    Trier, Xenia Thorsager; Okholm, B.; Foverskov, Annie

    2010-01-01

    Primary aromatic amines (PAAs) were analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in migrates from 234 samples of food-contact materials, including black nylon (polyamide) kitchen utensils (n = 136), coloured plastics (28), and clear/printed multilayer film/laminates (41......), from retailers, importers, and food producers. A further 29 utensils in use were obtained from colleagues. Very high PAA migration was found from black nylon kitchen utensils to the food simulant 3% acetic acid: the 'non-detectable' limit (20 mu g aniline equivalents kg-1 food) was exceeded by up...... migration test conditions influenced the final test results. Long-term release of PAAs was fitted by diffusion modelling experiments and long-term release was also seen as expected from used utensils. Toxicologists consider these migration levels of the suspected carcinogenic PAAs as a problem of major...

  19. Liquefaction of solid carbonaceous material with catalyst recycle

    Science.gov (United States)

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In the two stage liquefaction of a carbonaceous solid such as coal wherein coal is liquefied in a first stage in the presence of a liquefaction solvent and the first stage effluent is hydrogenated in the presence of a supported hydrogenation catalyst in a second stage, catalyst which has been previously employed in the second stage and comminuted to a particle size distribution equivalent to 100% passing through U.S. 100 Mesh, is passed to the first stage to improve the overall operation.

  20. The Role of Solid Lubricants for Brake Friction Materials

    Directory of Open Access Journals (Sweden)

    Werner Österle

    2016-02-01

    Full Text Available This review article comprises of three parts. Firstly, reports of brake manufacturers on the beneficial impact of solid lubricants for pad formulations are surveyed. Secondly, since tribofilms were identified to play a crucial role in friction stabilization and wear reduction, the knowledge about tribofilm structures formed during automotive braking was reviewed comprehensively. Finally, a model for simulating the sliding behavior of tribofilms is suggested and a review on modelling efforts with different model structures related to real tribofilms will be presented. Although the variety of friction composites involved in commercial brake systems is very broad, striking similarities were observed in respect to tribofilm nanostructures. Thus, a generalization of the tribofilm nanostructure is suggested and prerequisites for smooth sliding performance and minimal wear rates have been identified. A minimum of 13 vol % of soft inclusions embedded in an iron oxide based tribofilm is crucial for obtaining the desired properties. As long as the solid lubricants or their reaction products are softer than magnetite, the main constituent of the tribofilm, the model predicts smooth sliding and minimum wear.

  1. Thermodynamics phase transition and Hawking radiation of the Schwarzschild black hole with quintessence-like matter and a deficit solid angle

    Science.gov (United States)

    Rodrigue, Kamiko Kouemeni Jean; Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin

    2018-05-01

    In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh-Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein-Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter (ρ 0) were explicitly plotted. The results show that, when the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter at r=1 (ρ 0) vanish (ρ 0=ɛ =0), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing ρ 0, the transition points are shifted to lower entropies. The same thing is observed when increasing ɛ 2. In the absence of quintessence-like matter (ρ 0=0), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing ρ 0 or (ɛ ^2).

  2. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    Charpentier, Th.

    2007-10-01

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  3. Improved Materials for Use as Components in Kraft Black Liquor Recovery Boilers; TOPICAL

    International Nuclear Information System (INIS)

    Keiser, J.R.

    2001-01-01

    This Cooperative Research and Development Agreement (CRADA) was undertaken to evaluate current and improved materials and materials processing conditions for use as components in kraft black liquor recovery boilers and other unit processes. The main areas addressed were: (1) Improved Black Liquor Nozzles, (2) Weld Overlay of Composite Floor Tubes, and (3) Materials for Lime Kilns. Iron aluminide was evaluated as an alternate material for the nozzles used to inject an aqueous solution known as black liquor into recovery boilers as well for the uncooled lining in the ports used for the nozzles. Although iron aluminide is known to have much better sulfidation resistance in gases than low alloy and stainless steels, it did not perform adequately in the environment where it came into contact with molten carbonate, sulfide and sulfate salts. Weld overlaying carbon steel tubes with a layer of stainless weld metal was a proposed method of extending the life of recovery boiler floor tubes that have experienced considerable fireside corrosion. After exposure under service conditions, sections of weld overlaid floor tubes were removed from a boiler floor and examined metallographically. Examination results indicated satisfactory performance of the tubes. Refractory-lined lime kilns are a critical component of the recovery process in kraft pulp mills, and the integrity of the lining is essential to the successful operation of the kiln. A modeling study was performed to determine the cause of, and possible solutions for, the repeated loss of the refractory lining from the cooled end of a particular kiln. The evaluation showed that the temperature, the brick shape and the coefficient of friction between the bricks were the most important parameters influencing the behavior of the refractory lining

  4. Method of distilling solid materials, such as shale

    Energy Technology Data Exchange (ETDEWEB)

    Ramen, A

    1917-09-04

    A method of distilling compact materials, such as shales, containing volatile matter, is characterized by heating the material in an oven or other apparatus or in a section or zone of same in the presence of some condensable gas (such as steam) which is indifferent to the vapors distillated during the heating of the material. The gas together with these products is conducted through a condensation apparatus, containing water or some other liquid, where the volatile matters are condensed. The steam which is produced in the gas regenerator is, after preheating, forced through the hot remaining residue from the distillation either in the same retort or in another retort in order to heat further this residue for the purpose of making it possible for the steam, by being forced through freshly charged material in the first oven or apparatus to bring about its distillation. The patent contains ten additional claims.

  5. Femtosecond laser induced phenomena in transparent solid materials

    DEFF Research Database (Denmark)

    Tan, D.Z.; Sharafudeen, K.N.; Yue, Yuanzheng

    2016-01-01

    solved, especially concerning the interaction of strong, ultra-short electromagnetic pulses with matter, and also because potential advanced technologies will emerge due to the impressive capability of the intense femtosecond laser to create new material structures and hence functionalities. When......The interaction of intense femtosecond laser pulses with transparent materials is a topic that has caused great interest of scientists over the past two decades. It will continue to be a fascinating field in the coming years. This is because many challenging fundamental problems have not been......–matter interaction, and fabricate various integrated micro-devices. In recent years we have witnessed exciting development in understanding and applying femtosecond laser induced phenomena in transparent materials. The interaction of femtosecond laser pulses with transparent materials relies on non...

  6. Kinetic extruder - a dry pulverized solid material pump

    Science.gov (United States)

    Meyer, J. W.; Bonin, J. H.; Daniel, A. D. Jr.

    1983-03-15

    Method and apparatus are shown for the continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up chamber to a plurality of two-stage sprues mounted in the rotor. Control nozzles downstream from the sprues meter the flow of coal through the sprues. 19 figs.

  7. Pressure effect on hysteresis in spin-crossover solid materials

    Energy Technology Data Exchange (ETDEWEB)

    Gudyma, Iurii, E-mail: yugudyma@gmail.com [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Ivashko, Victor [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Dimian, Mihai [Department of Electrical and Computer Engineering, Howard University, Washington DC 20059 (United States); Faculty of Electrical Engineering and Computer Science & Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for fabrication and control, Stefan cel Mare University, Suceava 720229 (Romania)

    2016-04-01

    A generalized microscopic Ising-like model is proposed to describe behavior of compressible spin-crossover solids with two states: low-spin and high-spin. The model was solved in mean-field approximation and shows hysteretic behavior at low energy difference between the states. We study the thermal transition between states under external hydrostatic pressure taking into account the changes in the volume of spin-crossover molecules in different states. Depending on the applied pressure, a spin-crossover system can have three types of behavior of molecular fraction in the high-spin state: hysteretic, second-order phase transition and no-phase transition. For the hysteretic regime, it is shown that the transition temperature under pressure is increased while the width of the hysteresis reduced.

  8. Effects of irradiation on four solid breeder materials

    International Nuclear Information System (INIS)

    Hollenberg, G.W.

    1984-01-01

    The tritium breeding material with the highest lithium atom density, Li 2 O has been observed to incur significant swelling (>4%) under fast reactor irradiation. Such swelling, if unrestrained leads to either unacceptable, induced-strains in adjacent structural material or undesirable design compromises. Fortunately, however, Li 2 O deforms at low temperatures so that swelling strains may be internally accommodated. Laboratory dilational creep experiments were conducted on unirraciated Li 2 O between 500 and 700 0 C in order to provide data for structural analysis of in-reactor experiments and blanket design studies. A densification model agreed with most of the available data. 15 refs

  9. High Reversibility of Soft Electrode Materials in All-solid-state Batteries

    Directory of Open Access Journals (Sweden)

    Atsushi eSakuda

    2016-05-01

    Full Text Available All-solid-state batteries using inorganic solid electrolytes (SEs are considered to be ideal batteries for electric vehicles (EVs and plug-in hybrid electric vehicles (PHEVs because they are potentially safer than conventional lithium-ion batteries (LIBs. In addition, all-solid-state batteries are expected to have long battery lives owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy (more than 300 Wh kg-1 secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li3NbS4, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric energy density of conventional LIBs.Favorable solid-solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to be given rise to cracks during fabrication and/or charge-discharge processes. Here we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid-solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approx. 400 mAh g-1, suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  10. Alternative anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B.; Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, 1 University Station, C2200, The University of Texas at Austin, Austin, TX 78712 (United States)

    2007-11-08

    The electrolyte of a solid oxide fuel cell (SOFC) is an O{sup 2-}-ion conductor. The anode must oxidize the fuel with O{sup 2-} ions received from the electrolyte and it must deliver electrons of the fuel chemisorption reaction to a current collector. Cells operating on H{sub 2} and CO generally use a porous Ni/electrolyte cermet that supports a thin, dense electrolyte. Ni acts as both the electronic conductor and the catalyst for splitting the H{sub 2} bond; the oxidation of H{sub 2} to H{sub 2}O occurs at the Ni/electrolyte/H{sub 2} triple-phase boundary (TPB). The CO is oxidized at the oxide component of the cermet, which may be the electrolyte, yttria-stabilized zirconia, or a mixed oxide-ion/electron conductor (MIEC). The MIEC is commonly a Gd-doped ceria. The design and fabrication of these anodes are evaluated. Use of natural gas as the fuel requires another strategy, and MIECs are being explored for this application. The several constraints on these MIECs are outlined, and preliminary results of this on-going investigation are reviewed. (author)

  11. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  12. Compression Characteristics of Solid Wastes as Backfill Materials

    OpenAIRE

    Meng Li; Jixiong Zhang; Rui Gao

    2016-01-01

    A self-made large-diameter compression steel chamber and a SANS material testing machine were chosen to perform a series of compression tests in order to fully understand the compression characteristics of differently graded filling gangue samples. The relationship between the stress-deformation modulus and stress-compression degree was analyzed comparatively. The results showed that, during compression, the deformation modulus of gangue grew linearly with stress, the overall relationship bet...

  13. Cluster model calculations of the solid state materials electron structure

    International Nuclear Information System (INIS)

    Pelikan, P.; Biskupic, S.; Banacky, P.; Zajac, A.; Svrcek, A.; Noga, J.

    1997-01-01

    Materials of the general composition ACuO 2 are the parent compounds of so called infinite layer superconductors. In the paper presented the electron structure of the compounds CaCuO 2 , SrCuO2, Ca 0.86 Sr 0.14 CuO2 and Ca 0.26 Sr 0.74 CuO 2 were calculated. The cluster models consisting of 192 atoms were computed using quasi relativistic version of semiempirical INDO method. The obtained results indicate the strong ionicity of Ca/Sr-O bonds and high covalency of Cu-bonds. The width of energy gap at the Fermi level increases as follows: Ca 0.26 Sr 0.74 CuO 2 0.86 Sr 0.14 CuO2 2 . This order correlates with the fact that materials of the composition Ca x Sr 1-x CuO 2 have have the high temperatures of the superconductive transition (up to 110 K). Materials partially substituted by Sr 2+ have also the higher density of states in the close vicinity at the Fermi level that ai the additional condition for the possibility of superconductive transition. It was calculated the strong influence of the vibration motions to the energy gap at the Fermi level. (authors). 1 tabs., 2 figs., 10 refs

  14. Influence of Handling Practices on Material Recovery from Residential Solid Waste

    Directory of Open Access Journals (Sweden)

    Jairo F. Pereira

    2010-07-01

    Full Text Available Material recovery from municipal solid waste (MSW is becoming widely adopted in several developing countries. Residential solid waste is one of the most important components of MSW and the handling practices of the MSW by the generators have a major impact on the quality and quantity of the materials for recovery. This article analyzes the generation and composition of residential solid waste and the handling practices by users in three municipalities in Colombia that have a solid waste management plant (SWMP. The findings show that, although there are significant amounts of useful materials, their handling of the materials as “garbage”, the low recognition of recovery work, and the inadequate storage and source management practices, affect material recovery and the operation of SWMPs. These results may be taken as a reference for this type of municipality, because the solid waste management system and the type of operation of the SWMPs analyzed is similar to all of the SWMPs in the country as well as in other countries in the region.

  15. Thermodynamics of water-solid interactions in crystalline and amorphous pharmaceutical materials.

    Science.gov (United States)

    Sacchetti, Mark

    2014-09-01

    Pharmaceutical materials, crystalline and amorphous, sorb water from the atmosphere, which affects critical factors in the development of drugs, such as the selection of drug substance crystal form, compatibility with excipients, dosage form selection, packaging, and product shelf-life. It is common practice to quantify the amount of water that a material sorbs at a given relative humidity (RH), but the results alone provide minimal to no physicochemical insight into water-solid interactions, without which pharmaceutical scientists cannot develop an understanding of their materials, so as to anticipate and circumvent potential problems. This research was conducted to advance the science of pharmaceutical materials by examining the thermodynamics of solids with sorbed water. The compounds studied include nonhygroscopic drugs, a channel hydrate drug, a stoichiometric hydrate excipient, and an amorphous excipient. The water sorption isotherms were measured over a range of temperature to extract the partial molar enthalpy and entropy of sorbed water as well as the same quantities for some of the solids. It was found that water-solid interactions spanned a range of energy and entropy as a function of RH, which was unique to the solid, and which could be valuable in identifying batch-to-batch differences and effects of processing in material performance. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Alternative materials for solid oxide fuel cells: Factors affecting air-sintering of chromite interconnections

    International Nuclear Information System (INIS)

    Chick, L.A.; Bates, J.L.

    1992-01-01

    The purpose of this research is to develop alternative materials for solid oxide fuel cell (SOFC) interconnections and electrodes with improved electrical, thermal and electrochemical properties. Another objective is to develop synthesis and fabrication processes for these materials whereby they can be consolidated in air into SOFC's. The approach is to (1) develop modifications of the current, state-of-the-art materials used in SOFC's, (2) minimize the number of cations used in the SOFC materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabrication and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component compositions and processing on those reactions

  17. Determination of element concentrations in biological reference materials by solid sampling and other analytical methods

    International Nuclear Information System (INIS)

    Schauenburg, H.; Weigert, P.

    1992-01-01

    Using solid sampling with graphite furnace atomic absorption spectrometry (GFAAS), values for cadmium, copper, lead and zinc in six biological reference materials were obtained from up to four laboratories participating in three collaborative studies. These results are compared with those obtained with other methods used in routine analysis from laboratories of official food control. Under certain conditions solid sampling with GFAAS seems to be suitable for routine analysis as well as conventional methods. (orig.)

  18. Simple material physics experiment for studying phase diagrams and solid state transformations in alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, S; Kamal, R [Punjabi Univ., Patiala (India). Dept. of Physics

    1977-09-01

    Study of phase diagram and accompanying solid state transformations is essential to determine the best possible composition, manufacturing techniques and physical properties of an alloy. A simple technique having wide applications in metallurgical industry is to study the temperature--time curve of the alloy undergoing cooling with an uniform rate. An experiment which uses this technique is described. It is widely applicable in the fields of materials science, applied solid state physics, physical metallurgy and physical chemistry.

  19. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sakuda, Atsushi, E-mail: a.sakuda@aist.go.jp; Takeuchi, Tomonari, E-mail: a.sakuda@aist.go.jp; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori [Department of Energy and Environment, Research Institute for Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda (Japan)

    2016-05-10

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg{sup −1}) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li{sub 3}NbS{sub 4}, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g{sup −1} suggesting that the lithium niobium sulfide electrode charged and discharged without

  20. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    International Nuclear Information System (INIS)

    Sakuda, Atsushi; Takeuchi, Tomonari; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori

    2016-01-01

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg −1 ) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li 3 NbS 4 , have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g −1 suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  1. Material Considerations for Fused-Filament Fabrication of Solid Dosage Forms

    Directory of Open Access Journals (Sweden)

    Evert Fuenmayor

    2018-04-01

    Full Text Available Material choice is a fundamental consideration when it comes to designing a solid dosage form. The matrix material will ultimately determine the rate of drug release since the physical properties (solubility, viscosity, and more of the material control both fluid ingress and disintegration of the dosage form. The bulk properties (powder flow, concentration, and more of the material should also be considered since these properties will influence the ability of the material to be successfully manufactured. Furthermore, there is a limited number of approved materials for the production of solid dosage forms. The present study details the complications that can arise when adopting pharmaceutical grade polymers for fused-filament fabrication in the production of oral tablets. The paper also presents ways to overcome each issue. Fused-filament fabrication is a hot-melt extrusion-based 3D printing process. The paper describes the problems encountered in fused-filament fabrication with Kollidon® VA64, which is a material that has previously been utilized in direct compression and hot-melt extrusion processes. Formulation and melt-blending strategies were employed to increase the printability of the material. The paper defines for the first time the essential parameter profile required for successful 3D printing and lists several pre-screening tools that should be employed to guide future material formulation for the fused-filament fabrication of solid dosage forms.

  2. Preparation of cathode materials for solid oxide solid fuel (SOFC) using gelatin

    International Nuclear Information System (INIS)

    Silva, R.M.; Aquino, F. de M.; Macedo, D.A. de; Sa, A.M.; Galvao, G.O.

    2016-01-01

    Fuel cells are electrochemical devices that convert chemical energy into electrical energy. These devices are basically divided into interconnectors, electrolyte, anode, and cathode. Recently, studies of improvements in microstructural and morphological properties of calcium cobaltate (Ca_3Co_4O_9, C349) has been made regarding its potential use as SOFC cathode for intermediate temperature. Gelatin has proven to be effective as a polymerizing agent in the synthesis of nanocrystalline materials. This work reports the synthesis and characterization of the C349 cathode using commercial gelatin. The structural properties of the material were determined by X-ray diffraction (XRD). Morphological characterization was performed by scanning electron microscopy (SEM). The results showed the formation of the crystalline phase at 900 °C, indicating the effectiveness of the gelatin in the preparation of cathodes for SOFC. (author)

  3. Radiation Damage in Reactor Materials. Part of the Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-08-15

    Radiation damage has presented a new design parameter for the selection of materials to be used in fuel and cladding elements, moderators, structural components and pressure vessels in nuclear reactors. The severe and novel requirements for certain optimum combinations of physical and nuclear properties have emphasized the need for a better understanding of the basic mechanisms of radiation damage. This knowledge is not only essential for progress in the field of nuclear energy, but has direct applications to space technology and semi-conductor research as well. The IAEA, as part of its programme of promoting nuclear technology, therefore convened the Symposium on Radiation Damage in Solids and Reactor Materials, 7-11 May 1962. At the invitation of, and with generous material assistance from, the Government of Italy, the Symposium was held at Venice. The Symposium was primarily concerned with the investigation of the fundamental processes of radiation that underlie the behaviour of metals, alloys and ceramics that are actually useful or potentially useful reactor materials. Two sessions were devoted to studies of irradiation effects on simple metals, as these effects are easiest to interpret. Other topics included general theory, alloys, fissionable and moderator materials and special experimental techniques for radiation damage studies. The properties influenced by irradiation which were of main concern were those of primary importance to the behaviour of solids as reactor materials (e. g. dimensional stability, phase transformation, radiation hardening, fracture, fission-gas escape from uranium and its compounds). Other properties, such as optical, electrical and magnetic properties, and effects on semiconductors, ionic and other non-metallic crystals are also of interest in that these studies can increase our knowledge of the mechanism of radiation damage in solids and provide a tool for investigation into the physics of the solid state by offering a means of

  4. Radiation Damage in Reactor Materials. Part of the Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials

    International Nuclear Information System (INIS)

    1963-01-01

    Radiation damage has presented a new design parameter for the selection of materials to be used in fuel and cladding elements, moderators, structural components and pressure vessels in nuclear reactors. The severe and novel requirements for certain optimum combinations of physical and nuclear properties have emphasized the need for a better understanding of the basic mechanisms of radiation damage. This knowledge is not only essential for progress in the field of nuclear energy, but has direct applications to space technology and semi-conductor research as well. The IAEA, as part of its programme of promoting nuclear technology, therefore convened the Symposium on Radiation Damage in Solids and Reactor Materials, 7-11 May 1962. At the invitation of, and with generous material assistance from, the Government of Italy, the Symposium was held at Venice. The Symposium was primarily concerned with the investigation of the fundamental processes of radiation that underlie the behaviour of metals, alloys and ceramics that are actually useful or potentially useful reactor materials. Two sessions were devoted to studies of irradiation effects on simple metals, as these effects are easiest to interpret. Other topics included general theory, alloys, fissionable and moderator materials and special experimental techniques for radiation damage studies. The properties influenced by irradiation which were of main concern were those of primary importance to the behaviour of solids as reactor materials (e. g. dimensional stability, phase transformation, radiation hardening, fracture, fission-gas escape from uranium and its compounds). Other properties, such as optical, electrical and magnetic properties, and effects on semiconductors, ionic and other non-metallic crystals are also of interest in that these studies can increase our knowledge of the mechanism of radiation damage in solids and provide a tool for investigation into the physics of the solid state by offering a means of

  5. 75 FR 34573 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Science.gov (United States)

    2010-06-17

    ... reduced iron (DRI) as briquettes molded at a temperature of 650 [deg]C or higher that have a density of 5... temperature of 650 [deg]C or higher or had a density of 5.0 g/cm[sup3] or greater. In this proposed rule, we... bulk materials of Hazard Classes 4 through 9. c. One comment recommended that a DCM be required for...

  6. Finite element modeling for integrated solid-solid PCM-building material with varying phase change temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.; Fung, A.S.; Siddiqui, O. [Ryerson Polytechnic Univ., Toronto, ON (Canada). Dept. of Mechanical and Industrial Engineering

    2008-08-15

    Solid-solid phase change materials (SSPCMs) are used to enhance thermal storage performance and reduce indoor temperature fluctuations in buildings. In this study, a finite element model (FEM) was used to investigate the thermal properties of different types of SSPCMs. An effective heat capacity method was used to develop the model. An integrated PCM-building material was analyzed in relation to temperature and heat flux profiles. Governing equations for the heat transfer process were composed of Navier-Stokes momentum equations; a mass conservation equation; and an energy conservation equation. Effective heat capacity was described as a linear function of the latent heat of fusion on both the heating and cooling processes. Data from the simulation were then compared with an experiment suing drywall, concrete and gypcrete samples. Heat flux across the surfaces and temperatures on the surfaces of the materials were measured. Data were used to validate the finite element model (FEM). Results of the study suggested that heat flux profiles are an effective means of understanding phase change processes. It was concluded that PCMs with lower phase change temperatures lengthened energy releases and improved thermal comfort in the building. 12 refs., 2 tabs., 14 figs.

  7. Materials modeling by design: applications to amorphous solids

    International Nuclear Information System (INIS)

    Biswas, Parthapratim; Tafen, D N; Inam, F; Cai Bin; Drabold, D A

    2009-01-01

    In this paper, we review a host of methods used to model amorphous materials. We particularly describe methods which impose constraints on the models to ensure that the final model meets a priori requirements (on structure, topology, chemical order, etc). In particular, we review work based on quench from the melt simulations, the 'decorate and relax' method, which is shown to be a reliable scheme for forming models of certain binary glasses. A 'building block' approach is also suggested and yields a pleading model for GeSe 1.5 . We also report on the nature of vulcanization in an Se network cross-linked by As, and indicate how introducing H into an a-Si network develops into a-Si:H. We also discuss explicitly constrained methods including reverse Monte Carlo (RMC) and a novel method called 'Experimentally Constrained Molecular Relaxation'. The latter merges the power of ab initio simulation with the ability to impose external information associated with RMC.

  8. Scaling similarities of multiple fracturing of solid materials

    Directory of Open Access Journals (Sweden)

    P. G. Kapiris

    2004-01-01

    Full Text Available It has recently reported that electromagnetic flashes of low-energy -rays emitted during multi-fracturing on a neutron star, and electromagnetic pulses emitted in the laboratory by a disordered material subjected to an increasing external load, share distinctive statistical properties with earthquakes, such as power-law energy distributions (Cheng et al., 1996; Kossobokov et al., 2000; Rabinovitch et al., 2001; Sornette and Helmstetter, 2002. The neutron starquakes may release strain energies up to erg, while, the fractures in laboratory samples release strain energies approximately a fraction of an erg. An earthquake fault region can build up strain energy up to approximately erg for the strongest earthquakes. Clear sequences of kilohertz-megahertz electromagnetic avalanches have been detected from a few days up to a few hours prior to recent destructive earthquakes in Greece. A question that arises effortlessly is if the pre-seismic electromagnetic fluctuations also share the same statistical properties. Our study justifies a positive answer. Our analysis also reveals 'symptoms' of a transition to the main rupture common with earthquake sequences and acoustic emission pulses observed during laboratory experiments (Maes et al., 1998.

  9. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  10. Quantum chemistry of solids and materials technology: solid-phase compounds of d- and f-elements

    International Nuclear Information System (INIS)

    Gubanov, V.A.

    1988-01-01

    The results of studies aimed at the development of methods of theoretical calculations of the electronic structure of solid phase compounds of α- and f-elements and the modelling of physicochemical properties of materials developed on their basis, are presented. The possibilities of cluster and zone calculations of the electronic structure of refractory compounds of d-metals with light elements are considered. The regularities of changes in the chemical bond and properties during crystal lattice alloying with metals, metalloids are found. The methods of quantum chemical modeling of optically active and luminescent materials on the base of oxides, fluorides, chalcogenides of d- and f-metals are developed. The compositions of new optically active compositions and protective coatings are suggested. New approaches to the study of magnetic properties of metals, alloys and compounds are developed. The results of calculations of the energy spectra of high-temperature oxide superconductors are given

  11. Active Galactic Nuclei: the Shape of Material Around Black Holes and the Witch of Agnesi Function. Asymmetry of Neutrino Particle Density

    Directory of Open Access Journals (Sweden)

    Vezzoli G. C.

    2009-10-01

    Full Text Available A mathematical representation is given and physically described for the shape of the very hot material that immediately surrounds a black hole and the warm material located at a greater distance from the black hole, as related to active galactic nuclei. The shape of the material surrounding the black hole is interpreted in terms of asymmetry of the neutrino flux. Detailed experimental measurements on radioactive decay influenced by astrophysical events are given to support this interpretation.

  12. Quantifying the risks of solid aerosol geoengineering: the role of fundamental material properties

    Science.gov (United States)

    Dykema, J. A.; Keutsch, F. N.; Keith, D.

    2017-12-01

    Solid aerosols have been considered as an alternative to sulfate aerosols for solar geoengineering due to their optical and chemical properties, which lead to different and possibly more attractive risk profiles. Solid aerosols can achieve higher solar scattering efficiency due to their higher refractive index, and in some cases may also be less effective absorbers of thermal infrared radiation. The optical properties of solid aerosols are however sensitive functions of the detailed physical properties of solid materials in question. The relevant details include the exact crystalline structure of the aerosols, the physical size of the particles, and interactions with background stratospheric molecular and particulate constituents. In this work, we examine the impact of these detailed physical properties on the radiative properties of calcite (CaCO3) solid aerosols. We examine how crystal morphology, size, chemical reactions, and interaction with background stratospheric aerosol may alter the scattering and absorption properties of calcite aerosols for solar and thermal infrared radiation. For example, in small particles, crystal lattice vibrations associated with the particle surface may lead to substantially different infrared absorption properties than bulk materials. We examine the wavelength dependence of absorption by the particles, which may lead to altered patterns of stratospheric radiative heating and equilibrium temperatures. Such temperature changes can lead to dynamical changes, with consequences for both stratospheric composition and tropospheric climate. We identify important uncertainties in the current state of understanding, investigate risks associated with these uncertainties, and survey potential approaches to quantitatively improving our knowledge of the relevant material properties.

  13. Process of super-black shading material applied to the star sensor based on Ni-P alloys

    Science.gov (United States)

    Liu, Fengdeng; Xing, Fei; Wu, Yuelong; You, Zheng

    2014-12-01

    Super-black materials based on Nanotechnology have very important applications in many science fields. Super-black materials which have been reported currently, although have excellent light-trapping properties, most of them need the use of sophisticated equipment , the long-time synthesis , high temperature environment and release flammable, explosive and other dangerous gases. So many kinds of problems have hindered the application of such super-black material in practice. This project had nano super-black material developed with simple equipment and process, instead of complicated and dangerous process steps in high temperature and high pressure. On the basis of literature research, we successfully worked out a set of large-area Ni-P alloy plating method through a series of experiments exploring and analyze the experimental results. In the condition of the above Ni-P alloy, we took the solution, which anodized the Ni-P alloy immersed in the non-oxidizing acid, instead of conventional blackening process. It`s a big break for changing the situation in which oxidation, corrosion, vigorous evolution of hydrogen gas in the process are performed at the same location. As a result, not only the reaction process decreased sensitivity to time error, but also the position of the bubble layer no longer located in the surface of the workpiece which may impede observing the process of reaction. Consequently, the solution improved the controllability of the blackening process. In addition, we conducted the research of nano super-black material, exploring nano-super-black material in terms of space optical sensor.

  14. Residual thermal stresses in a solid sphere cast from a thermosetting material

    Science.gov (United States)

    Levitsky, M.; Shaffer, B. W.

    1975-01-01

    Expressions are developed for the residual thermal stresses in a solid sphere cast from a chemically hardening thermosetting material in a rigid spherical mold. The description of the heat generation rate and temperature variation is derived from a first-order chemical reaction. Solidification is described by the continuous transformation of the material from an inviscid liquidlike state into an elastic solid, with intermediate properties determined by the degree of chemical reaction. Residual stress components are obtained as functions of the parameters of the hardening process and the properties of the hardening material. Variation of the residual stresses with a nondimensionalized reaction rate parameter and the relative compressibility of the hardened material is discussed in detail.

  15. Solid triphenylmethanol: A molecular material that undergoes multiple internal reorientational processes on different timescales

    International Nuclear Information System (INIS)

    Kitchin, Simon J.; Xu Mingcan; Serrano-Gonzalez, Heliodoro; Coates, Laura J.; Zaka Ahmed, S.; Glidewell, Christopher; Harris, Kenneth D.M.

    2006-01-01

    In solid triphenylmethanol, the molecules are arranged in hydrogen-bonded tetramers, and it is already well established that the hydrogen bonding in this material undergoes a dynamic switching process between different hydrogen bonding arrangements. In addition to this motion, we show here, from solid-state 2 H NMR studies of the deuterated material (C 6 D 5 ) 3 COH, that each phenyl ring in this material undergoes a 180 deg.-jump reorientation about the C 6 D 5 -C(OH) bond, with an activation energy of ca. 50 kJ mol -1 . The timescale for the phenyl ring dynamics is several orders of magnitude longer than the timescale for the hydrogen bond dynamics in this material, and is uncorrelated with the dynamics of the hydrogen bonding arrangement

  16. Characterization of solid wastes from kraft pulp industry for ceramic materials development purposes

    International Nuclear Information System (INIS)

    Rodrigues, L.R.; Francisco, M.A.C.O.; Sagrillo, V.P.D.; Louzada, D.M.; Entringer, J.M.S.

    2016-01-01

    The Kraft pulp industry generates a large amount of solid wastes. Due this large quantity, the target of this study is characterize inorganic solid wastes, dregs, grits and lime mud, from the step of reagents recovery of Kraft process, aiming evaluate the potentiality of their use as alternative raw material on development of ceramic materials. Initially, the wastes were dried and ground, then they were subjected to the following characterization techniques: pH analysis, particle size analysis, X ray fluorescence, X ray diffraction, differential thermal analysis and thermogravimetric analysis and scanning electron microscopy. According to the results, it may be concluded that these wastes could be used as raw material in production of red ceramic and luting materials. (author)

  17. An automatic granular structure generation and finite element analysis of heterogeneous semi-solid materials

    International Nuclear Information System (INIS)

    Sharifi, Hamid; Larouche, Daniel

    2015-01-01

    The quality of cast metal products depends on the capacity of the semi-solid metal to sustain the stresses generated during the casting. Predicting the evolution of these stresses with accuracy in the solidification interval should be highly helpful to avoid the formation of defects like hot tearing. This task is however very difficult because of the heterogeneous nature of the material. In this paper, we propose to evaluate the mechanical behaviour of a metal during solidification using a mesh generation technique of the heterogeneous semi-solid material for a finite element analysis at the microscopic level. This task is done on a two-dimensional (2D) domain in which the granular structure of the solid phase is generated surrounded by an intergranular and interdendritc liquid phase. Some basic solid grains are first constructed and projected in the 2D domain with random orientations and scale factors. Depending on their orientation, the basic grains are combined to produce larger grains or separated by a liquid film. Different basic grain shapes can produce different granular structures of the mushy zone. As a result, using this automatic grain generation procedure, we can investigate the effect of grain shapes and sizes on the thermo-mechanical behaviour of the semi-solid material. The granular models are automatically converted to the finite element meshes. The solid grains and the liquid phase are meshed properly using quadrilateral elements. This method has been used to simulate the microstructure of a binary aluminium–copper alloy (Al–5.8 wt% Cu) when the fraction solid is 0.92. Using the finite element method and the Mie–Grüneisen equation of state for the liquid phase, the transient mechanical behaviour of the mushy zone under tensile loading has been investigated. The stress distribution and the bridges, which are formed during the tensile loading, have been detected. (paper)

  18. Past, present and future of materials, methodology and instrumentation in particle tracks in solids

    International Nuclear Information System (INIS)

    Espinosa, G.

    1991-01-01

    In this presentation I would like to give a brief review of the development of materials, methods and instrumentation in Solid State Nuclear Track Detection, nowadays referred to by the more general term of Particle Tracks in Solids (PTS). We all are convinced of the advantages, good characteristics and qualities of this method which has served to establish a number of procedures in several areas such as Environmental and Personal Dosimetry, Radon Research, Geology, Nuclear Physics, etc. Nevertheless, we have to be conscious of its disadvantages and limitations and above all, the future developments, taking into account all aspects, ranging from track formation models to etching and reading procedures. Above all, I want to emphasize the importance of doing research in new materials with improved properties. The other important challenge refers to instrumentation development, mainly that concerned with reading systems, which is necessary if standard procedures for the measurement and evaluation of particle tracks in solids are to be established. (author)

  19. Fluid-mechanic/thermal interaction of a molten material and a decomposing solid

    International Nuclear Information System (INIS)

    Larson, D.W.; Lee, D.O.

    1976-12-01

    Bench-scale experiments of a molten material in contact with a decomposing solid were conducted to gain insight into the expected interaction of a hot, molten reactor core with a concrete base. The results indicate that either of two regimes can occur: violent agitation and splattering of the melt or a very quiescent settling of the melt when placed in contact with the solid. The two regimes appear to be governed by the interface temperature condition. A conduction heat transfer model predicts the critical interface temperature with reasonable accuracy. In addition, a film thermal resistance model correlates well with the data in predicting the time for a solid skin to form on the molten material

  20. Solid thin film materials for use in thin film charge-coupled devices

    International Nuclear Information System (INIS)

    Lynch, S.J.

    1983-01-01

    Solid thin films deposited by vacuum deposition were evaluated to ascertain their effectiveness for use in the manufacturing of charge-coupled devices (CCDs). Optical and electrical characteristics of tellurium and Bi 2 Te 3 solid thin films were obtained in order to design and to simulate successfully the operation of thin film (TF) CCDs. In this article some of the material differences between single-crystal material and the island-structured thin film used in TFCCDs are discussed. The electrical parameters were obtained and tabulated, e.g. the mobility, conductivity, dielectric constants, permittivity, lifetime of holes and electrons in the thin films and drift diffusion constants. The optical parameters were also measured and analyzed. After the design was complete, experimental TFCCDs were manufactured and were successfully operated utilizing the aforementioned solid thin films. (Auth.)

  1. A study on synthetic method and material characteristics of magnesium ammine chloride as ammonia transport materials for solid SCR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong Kook; Yoon, Cheon Seog [Dept. of Mechanical Engineering, Hannam University, Daejeon (Korea, Republic of); Kim, Hong Suk [Engine Research Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    Among various ammonium salts and metal ammine chlorides used as solid materials for the sources of ammonia with solid SCR for lean NOx reduction, magnesium ammine chloride was taken up for study in this paper because of its ease of handling and safety. Lab-scale synthetic method of magnesium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%). To understand material characteristics for lab-made magnesium ammine chloride, DA, IC, FT-IR, XRD and SDT analyses were performed using the published data available in literature. From the analytical results, the water content in the lab-made magnesium ammine chloride can be determined. A new test procedure for water removal was proposed, by which the adsorption rate of lab-made sample was found to be approximately 100%.

  2. A study on synthetic method and material characteristics of magnesium ammine chloride as ammonia transport materials for solid SCR

    International Nuclear Information System (INIS)

    Shin, Jong Kook; Yoon, Cheon Seog; Kim, Hong Suk

    2015-01-01

    Among various ammonium salts and metal ammine chlorides used as solid materials for the sources of ammonia with solid SCR for lean NOx reduction, magnesium ammine chloride was taken up for study in this paper because of its ease of handling and safety. Lab-scale synthetic method of magnesium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%). To understand material characteristics for lab-made magnesium ammine chloride, DA, IC, FT-IR, XRD and SDT analyses were performed using the published data available in literature. From the analytical results, the water content in the lab-made magnesium ammine chloride can be determined. A new test procedure for water removal was proposed, by which the adsorption rate of lab-made sample was found to be approximately 100%

  3. Evaluation of solid particle number and black carbon for very low particulate matter emissions standards in light-duty vehicles.

    Science.gov (United States)

    Chang, M-C Oliver; Shields, J Erin

    2017-06-01

    To reliably measure at the low particulate matter (PM) levels needed to meet California's Low Emission Vehicle (LEV III) 3- and 1-mg/mile particulate matter (PM) standards, various approaches other than gravimetric measurement have been suggested for testing purposes. In this work, a feasibility study of solid particle number (SPN, d50 = 23 nm) and black carbon (BC) as alternatives to gravimetric PM mass was conducted, based on the relationship of these two metrics to gravimetric PM mass, as well as the variability of each of these metrics. More than 150 Federal Test Procedure (FTP-75) or Supplemental Federal Test Procedure (US06) tests were conducted on 46 light-duty vehicles, including port-fuel-injected and direct-injected gasoline vehicles, as well as several light-duty diesel vehicles equipped with diesel particle filters (LDD/DPF). For FTP tests, emission variability of gravimetric PM mass was found to be slightly less than that of either SPN or BC, whereas the opposite was observed for US06 tests. Emission variability of PM mass for LDD/DPF was higher than that of both SPN and BC, primarily because of higher PM mass measurement uncertainties (background and precision) near or below 0.1 mg/mile. While strong correlations were observed from both SPN and BC to PM mass, the slopes are dependent on engine technologies and driving cycles, and the proportionality between the metrics can vary over the course of the test. Replacement of the LEV III PM mass emission standard with one other measurement metric may imperil the effectiveness of emission reduction, as a correlation-based relationship may evolve over future technologies for meeting stringent greenhouse standards. Solid particle number and black carbon were suggested in place of PM mass for the California LEV III 1-mg/mile FTP standard. Their equivalence, proportionality, and emission variability in comparison to PM mass, based on a large light-duty vehicle fleet examined, are dependent on engine

  4. Practical application of solid phase spectrophotometry in analysis of materials and goods of mining and metallurgy

    International Nuclear Information System (INIS)

    Duan Qunzhang

    1999-01-01

    The author reviewed recent development and practical application of solid phase spectrophotometry in analysis of materials and goods of mining-metallurgy. Separation and preconcentration and conditions of coloring determination, sensitivity and range of detection, as well as interference of corresponding method are discussed

  5. Ab initio Defect Energetics in LaBO3 Perovskite Solid Oxide Fuel Cell Materials

    DEFF Research Database (Denmark)

    Lee, Yueh-Lin; Morgan, Dane; Kleis, Jesper

    2009-01-01

    Perovskite materials of the form ABO3 are a promising family of compounds for use in solid oxide fuel cell (SOFC) cathodes. Study of the physics of these compounds under SOFC conditions with ab initio methods is particularly challenging due to high temperatures, exchange of oxygen with O2 gas...

  6. Production and characterization of distilled alcoholic beverages obtained by solid-state fermentation of black mulberry (Morus nigra L.) and black currant (Ribes nigrum L.).

    Science.gov (United States)

    Alonso González, Elisa; Torrado Agrasar, Ana; Pastrana Castro, Lorenzo M; Orriols Fernández, Ignacio; Pérez Guerra, Nelson

    2010-02-24

    The present study was conducted to appraise the potential of black mulberry and black currant to be used as fermentation substrates for producing alcoholic beverages obtained by distillation of the fruits previously fermented with Sacchromyces cerevisiae IFI83. In the two distillates obtained, the volatile compounds that can pose health hazards are within the limits of acceptability fixed by the European Council (Regulation 110/2008) for fruit spirits. However, the amount of volatile substances in the black currant distillate (121.1 g/hL absolute alcohol (aa)) was lower than the minimum limit (200 g/hL aa) fixed by the aforementioned regulation. The mean volatile composition of both distillates was different from other alcoholic beverages such as four commercial Galician orujo spirits, Portuguese bagaceiras, and two distillates obtained from fermented whey and blackberry. The results obtained showed the feasibility for obtaining distillates from fermented black mulberry and black currant, which have their own distinctive characteristics.

  7. Electrochemical properties of Super P carbon black as an anode active material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Gnanamuthu, RM.; Lee, Chang Woo

    2011-01-01

    Highlights: → A novel attempt of Super P carbon black as an anode active material for lithium-ion batteries. → The first discharge capacity was approximately 1256 mAh g -1 and at the end of 20th cycling the capacity was 610 mAh g -1 at 0.1 C rate. → Coulombic efficiency of Super P carbon black electrode was maintained about 84% at the end of cycling. - Abstract: A new approach to investigate upon the electrochemical properties of Super P carbon black anode material is attempted and compared with conventional mesophase pitch-based carbon fibers (MPCFs) anode material for lithium-ion batteries. The prepared Super P carbon black electrodes are characterized using transmission electron microscope (TEM). The assembled 2032-type coin cells are electrochemically characterized by ac impedance spectroscopic and cyclic voltammetric methods. The electrochemical performance of charge and discharge was analyzed using a battery cycler at 0.1 C rate and cut-off potentials of 1.20 and 0.01 V vs. Li/Li + . The electrochemical test illustrates that the discharge capacity corresponding to Li intercalation into the Super P carbon black electrode is higher and coulombic efficiency is maintained approximately 84% at the end of the 20th cycling at room temperature.

  8. Black Holes

    OpenAIRE

    Townsend, P. K.

    1997-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usu...

  9. Eriochrome Blue Black modified activated carbon as solid phase extractor for removal of Pb(II ions from water samples

    Directory of Open Access Journals (Sweden)

    Hassan M. Albishri

    2017-05-01

    Full Text Available In the current study, a sensitive and simple method for the removal of lead Pb(II, from water samples prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES, was investigated. The method utilized activated carbon (AC physically modified with Eriochrome Blue Black (EBB as a solid-phase extractant. Surface properties of the AC-EBB phase were characterized by FT-IR and SEM. The separation parameters for effective adsorption of lead Pb(II, including effects of pH, initial concentration of Pb(II, coexisting ions and shaking time using batch method were studied. The optimum pH value for the separation of Pb(II on the new sorbent was 7.0, and the maximum static adsorption capacity of Pb(II onto the AC-EBB was 127.896 mg/g at this pH and after 1 h contact time. The Pb(II adsorption data were modeled using Langmuir adsorption isotherms. Results demonstrated that the adsorption of Pb(II onto activated carbon followed pseudo second-order kinetic model.

  10. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    Science.gov (United States)

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-01-01

    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  11. Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials

    Directory of Open Access Journals (Sweden)

    Renju Zacharia

    2015-01-01

    Full Text Available Overview of advances in the technology of solid state hydrogen storage methods applying different kinds of novel materials is provided. Metallic and intermetallic hydrides, complex chemical hydride, nanostructured carbon materials, metal-doped carbon nanotubes, metal-organic frameworks (MOFs, metal-doped metal organic frameworks, covalent organic frameworks (COFs, and clathrates solid state hydrogen storage techniques are discussed. The studies on their hydrogen storage properties are in progress towards positive direction. Nevertheless, it is believed that these novel materials will offer far-reaching solutions to the onboard hydrogen storage problems in near future. The review begins with the deficiencies of current energy economy and discusses the various aspects of implementation of hydrogen energy based economy.

  12. Advanced materials for solid state hydrogen storage: “Thermal engineering issues”

    International Nuclear Information System (INIS)

    Srinivasa Murthy, S.; Anil Kumar, E.

    2014-01-01

    Hydrogen has been widely recognized as the “Energy Carrier” of the future. Efficient, reliable, economical and safe storage and delivery of hydrogen form important aspects in achieving success of the “Hydrogen Economy”. Gravimetric and volumetric storage capacities become important when one considers portable and mobile applications of hydrogen. In the case of solid state hydrogen storage, the gas is reversibly embedded (by physisorption and/or chemisorption) in a solid matrix. A wide variety of materials such as intermetallics, physisorbents, complex hydrides/alanates, metal organic frameworks, etc. have been investigated as possible storage media. This paper discusses the feasibility of lithium– and sodium–aluminum hydrides with emphasis on their thermodynamic and thermo-physical properties. Drawbacks such as poor heat transfer characteristics and poor kinetics demand special attention to the thermal design of solid state storage devices. - Highlights: • Advanced materials suitable for solid state hydrogen storage are discussed. • Issues related to thermodynamic and thermo-physical properties of hydriding materials are brought out. • Hydriding and dehydriding behavior including sorption kinetics of complex hydrides with emphasis on alanates are explained

  13. Materials and Components for Low Temperature Solid Oxide Fuel Cells – an Overview

    Directory of Open Access Journals (Sweden)

    D. Radhika

    2013-06-01

    Full Text Available This article summarizes the recent advancements made in the area of materials and components for low temperature solid oxide fuel cells (LT-SOFCs. LT-SOFC is a new trend in SOFCtechnology since high temperature SOFC puts very high demands on the materials and too expensive to match marketability. The current status of the electrolyte and electrode materials used in SOFCs, their specific features and the need for utilizing them for LT-SOFC are presented precisely in this review article. The section on electrolytes gives an overview of zirconia, lanthanum gallate and ceria based materials. Also, this review article explains the application of different anode, cathode and interconnect materials used for SOFC systems. SOFC can result in better performance with the application of liquid fuels such methanol and ethanol. As a whole, this review article discusses the novel materials suitable for operation of SOFC systems especially for low temperature operation.

  14. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1999-01-01

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials in a generic way allowing in-situ measurement and verification. Depending on a material''s classification, disposal costs can vary by a hundred-fold. With these large costs at risk, the issues involved in making defensible decisions are ripe for closer scrutiny. In many cases, key issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding. The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Ultimate responsibility for this, of course, rests with radiological control or health physics organization of the individual site, but there are many measurements which can be performed by operations and generation organizations to simplify the process and virtually guarantee acceptance. Although this is not possible for all potential solid wastes, there are many that do lend themselves to such measures, particularly some of large volumes and realizable cost savings. Mostly what is needed for this to happen are a few guiding rules, measurement procedures, and cross checks for potential pitfalls. Several examples are presented here and discussed that demonstrate the possibilities, including one which was successfully applied to bulk contamination

  15. Synthesis and characterization of novel electrolyte materials for intermediate temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Chaubey, Nityanand; Chattopadhyaya, M.C.; Wani, B.N.; Bharadwaj, S.R.

    2008-01-01

    The high operating temperature of SOFCs using zirconia based electrolyte have several restrictions on materials used as interconnect and sealing and also requires use of expensive ceramics. Lowering the operating temperature of SOFCs to 600-800 deg C will enable to use cheaper materials and reduce the cost of fabrication while keeping the high power density. Lanthanide gallates are considered to be very promising solid electrolytes for intermediate temperature (600-800 deg C) solid oxide fuel cells (IT-SOFCs) due to their high ionic conductivity at lower temperatures. Phase purity of this material is a concern for the researchers for a long time. These materials are prepared at very high temperature (∼1400 deg C), since it is known that at around 1100 deg C, solubilities of Sr and Mg in LaGaO 3 were close to zero. Hence in the present work perovskite oxides of Ln 1-x Sr x Ga 1-y Mg y O 3-δ (Ln= Sm, Gd and x = 0.10, y=0.20) have been prepared by different methods i.e. solid state reaction, gel combustion and co-precipitation methods

  16. Utilization of sepiolite materials as a bottom liner material in solid waste landfills.

    Science.gov (United States)

    Guney, Yucel; Cetin, Bora; Aydilek, Ahmet H; Tanyu, Burak F; Koparal, Savas

    2014-01-01

    Landfill bottom liners are generally constructed with natural clay soils due to their high strength and low hydraulic conductivity characteristics. However, in recent years it is increasingly difficult to find locally available clay soils that satisfy the required engineering properties. Fine grained soils such as sepiolite and zeolite may be used as alternative materials in the constructions of landfill bottom liners. A study was conducted to investigate the feasibility of using natural clay rich in kaolinite, sepiolite, zeolite, and their mixtures as a bottom liner material. Unconfined compression tests, swell tests, hydraulic conductivity tests, batch and column adsorption tests were performed on each type of soil and sepiolite-zeolite mixtures. The results of the current study indicate that sepiolite is the dominant material that affects both the geomechanical and geoenvironmental properties of these alternative liners. An increase in sepiolite content in the sepiolite-zeolite mixtures increased the strength, swelling potential and metal adsorption capacities of the soil mixtures. Moreover, hydraulic conductivity of the mixtures decreased significantly with the addition of sepiolite. The utilization of sepiolite-zeolite materials as a bottom liner material allowed for thinner liners with some reduction in construction costs compared to use of a kaolinite-rich clay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Ionic liquid-modified materials for solid-phase extraction and separation: a review.

    Science.gov (United States)

    Vidal, Lorena; Riekkola, Marja-Liisa; Canals, Antonio

    2012-02-17

    In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. A mucosa-mimetic material for the mucoadhesion testing of thermogelling semi-solids.

    Science.gov (United States)

    da Silva, Jéssica Bassi; Khutoryanskiy, Vitaliy V; Bruschi, Marcos L; Cook, Michael T

    2017-08-07

    Mucosa-mimetic materials are synthetic substrates which aim to replace animal tissue in mucoadhesion experiments. One potential mucosa-mimetic material is a hydrogel comprised of N-acryloyl-d-glucosamine and 2-hydroxyethylmethacrylate, which has been investigated as a surrogate for animal mucosae in the mucoadhesion testing of tablets and solution formulations. This study aims to investigate the efficacy of this mucosa-mimetic material in the testing of thermogelling semi-solid formulations, which transition from solution to gel upon warming. Two methods for assessing mucoadhesion have been used; tensile testing and a flow-through system, which allow for investigation under dramatically different conditions. It was found that the mucosa-mimetic material was a good surrogate for buccal mucosa using both testing methods. This material may be used to replace animal tissue in these experiments, potentially reducing the number of laboratory animals used in studies of this type. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Electron spin resonance and its implication on the maximum nuclear polarization of deuterated solid target materials

    International Nuclear Information System (INIS)

    Heckmann, J.; Meyer, W.; Radtke, E.; Reicherz, G.; Goertz, S.

    2006-01-01

    ESR spectroscopy is an important tool in polarized solid target material research, since it allows us to study the paramagnetic centers, which are used for the dynamic nuclear polarization (DNP). The polarization behavior of the different target materials is strongly affected by the properties of these centers, which are added to the diamagnetic materials by chemical doping or irradiation. In particular, the ESR linewidth of the paramagnetic centers is a very important parameter, especially concerning the deuterated target materials. In this paper, the results of the first precise ESR measurements of the deuterated target materials at a DNP-relevant magnetic field of 2.5 T are presented. Moreover, these results allowed us to experimentally study the correlation between ESR linewidth and maximum deuteron polarization, as given by the spin-temperature theory

  20. Laser Spectroscopy Characterization of Materials for Frequency Agile Solid State Laser Systems

    Science.gov (United States)

    1991-03-15

    Received 30 November 1987; revised manuscript received 29 January 1988) Single crystals of lanthanum lutetium gallium garnet (LaLuGaG) were grown by...group may be realized it gar- dleternte itf other materials can be found with spectral nets formed with lanthanum occupying tile dodecaliedrial ,1nl...array-pumped Nd: YAG and Nd: Lu: YAG lasers," Opt. inates and gallates with the malilite structure," in Tunable Lett. 14, 116-118 (1989). Solid State

  1. Materials for the pulp and paper industry. Section 1: Development of materials for black liquor recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J.R.; Hubbard, C.R.; Payzant, E.A. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01

    Black liquor recovery boilers are essential components of kraft pulp and paper mills because they are a critical element of the system used to recover the pulping chemicals required in the kraft pulping process. In addition, the steam produced in these boilers is used to generate a significant portion of the electrical power used in the mill. Recovery boilers require the largest capital investment of any individual component of a paper mill, and these boilers are a major source of material problems in a mill. The walls and floors of these boilers are constructed of tube panels that circulate high pressure water. Molten salts (smelt) accumulate on the floor of recovery boilers, and leakage of water into the boiler can result in a violent explosion when the leaked water instantly vaporizes upon contacting the molten smelt. Because corrosion of the conventionally-used carbon steel tubing was found to be excessive in the lower section of recovery boilers, use of stainless steel/carbon steel co-extruded tubing was adopted for boiler walls to lessen corrosion and reduce the likelihood of smelt/water explosions. Eventually, this co-extruded or composite (as it is known in the industry) tubing was selected for use as a portion or all of the floor of recovery boilers, particularly those operating at pressures > 6.2 MPa (900 psi), because of the corrosion problems encountered in carbon steel floor tubes. Since neither the cause of the cracking nor an effective solution has been identified, this program was established to develop a thorough understanding of the degradation that occurs in the composite tubing used for walls and floors. This is being accomplished through a program that includes collection and review of technical reports, examination of unexposed and cracked tubes from boiler floors, computer modeling to predict residual stresses under operating conditions, and operation of laboratory tests to study corrosion, stress corrosion cracking, and thermal fatigue.

  2. Decontamination of materials contaminated with Bacillus anthracis and Bacillus thuringiensis Al Hakam spores using PES-Solid, a solid source of peracetic acid.

    Science.gov (United States)

    Buhr, T L; Wells, C M; Young, A A; Minter, Z A; Johnson, C A; Payne, A N; McPherson, D C

    2013-08-01

    To develop test methods and evaluate survival of Bacillus anthracis Ames, B. anthracis ∆Sterne and B. thuringiensis Al Hakam spores after exposure to PES-Solid (a solid source of peracetic acid), including PES-Solid formulations with bacteriostatic surfactants. Spores (≥ 7 logs) were dried on seven different test materials and treated with three different PES-Solid formulations (or preneutralized controls) at room temperature for 15 min. There was either no spore survival or less than 1 log (<10 spores) of spore survival in 56 of 63 test combinations (strain, formulation and substrate). Less than 2.7 logs (<180 spores) survived in the remaining seven test combinations. The highest spore survival rates were seen on water-dispersible chemical agent resistant coating (CARC-W) and Naval ship topcoat (NTC). Electron microscopy and Coulter analysis showed that all spore structures were intact after spore inactivation with PES-Solid. Three PES-Solid formulations inactivated Bacillus spores that were dried on seven different materials. A test method was developed to show that PES-Solid formulations effectively inactivate Bacillus spores on different materials. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  3. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hochel, R.C.

    1999-06-14

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials. Depending on the classification, disposal costs can vary by a hundred-fold. But in many cases, the issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding.The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Although this is not possible for all solid wastes, there are many that do lend themselves to such measures. Several examples are discussed which demonstrate the possibilities, including one which was successfully applied to bulk contamination.The only barriers to such broader uses are the slow-to-change institutional perceptions and procedures. For many issues and materials, the measurement tools are available; they need only be applied.

  4. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    International Nuclear Information System (INIS)

    Hochel, R.C.

    1999-01-01

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials. Depending on the classification, disposal costs can vary by a hundred-fold. But in many cases, the issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding.The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Although this is not possible for all solid wastes, there are many that do lend themselves to such measures. Several examples are discussed which demonstrate the possibilities, including one which was successfully applied to bulk contamination.The only barriers to such broader uses are the slow-to-change institutional perceptions and procedures. For many issues and materials, the measurement tools are available; they need only be applied

  5. Hybrid Nanocomposites of 2D Black Phosphorous Nanosheets Encapsulated in PMMA Polymer Material: New Platforms for Advanced Device Fabrication.

    Science.gov (United States)

    Telesio, Francesca; Passaglia, Elisa; Cicogna, Francesca; Costantino, Federica; Serrano-Ruiz, Manuel; Peruzzini, Maurizio; Heun, Stefan

    2018-04-12

    Hybrid materials, containing a 2D filler embedded in a polymeric matrix, are an interesting platform for several applications, because of the variety of properties that the filler can impart to the polymer matrix when dispersed at the nanoscale. Moreover, novel properties could arise from the interaction between the two. Mostly the bulk properties of these materials have been studied so far, especially focusing on how the filler changes the polymeric matrix properties. Here we propose a complete change of perspective by using the hybrid nanocomposite material as a platform suitable to engineer the properties of the filler and to exploit its potential in the fabrication of devices. As a proof of concept of the versatility and potentiality of the new method, we applied this approach to prepare black phosphorus nanocomposites through its dispersion in poly (methyl methacrylate). Black phosphorus is a very interesting 2D material, whose application have so far been limited by its very high reactivity to oxygen and water. In this respect, we show that electronic-grade black phosphorus flakes, already embedded in a protecting matrix since their exfoliation from the bulk material, are endowed with significant increased stability, and can be further processed into devices without degrading their properties. Creative Commons Attribution license.

  6. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  7. A new method to study complex materials in solid state chemistry: application to chalcogenide materials

    International Nuclear Information System (INIS)

    Lippens, P.E.; Olivier-Fourcade, J.; Jumas, J.C.

    1998-01-01

    We show that a combined application of Moessbauer spectroscopy and other experimental tools such as X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and nuclear magnetic resonance provides a coherent picture of the local electronic structure in chalcogenide materials. In order to develop this idea we propose an analysis of the Sn, Sb and Te local electronic structures for three different systems of materials. The first example concerns the In-Sn-S system. We show that Li insertion in In 16 Sn 4 S 32 leads to changes of the Sn oxidation states from Sn(IV) to Sn(II). The second example concerns materials of the Tl-Sb-S system. We show that variations of the 121 Sb Moessbauer isomer shift and surface of the first peak of the X-ray absorption spectra at the Sb L III edge can be linearly correlated because of the main influence of the Sb 5s electrons. This is explained by changes in the local environment of the Sb atoms. The last example concerns the crystalline phases of the Tl-Sn-Te system. The formal oxidation numbers of the Te atoms are determined from 125 Te Moessbauer spectroscopy and X-ray photoelectron spectroscopy. They are related to the different types of bonds involving the Te atoms in the Tl-Sn-Te compounds

  8. High reliability solid refractive index matching materials for field installable connections in FTTH network

    Science.gov (United States)

    Saito, Kotaro; Kihara, Mitsuru; Shimizu, Tomoya; Yoneda, Keisuke; Kurashima, Toshio

    2015-06-01

    We performed environmental and accelerated aging tests to ensure the long-term reliability of solid type refractive index matching material at a splice point. Stable optical characteristics were confirmed in environmental tests based on an IEC standard. In an accelerated aging test at 140 °C, which is very much higher than the specification test temperature, the index matching material itself and spliced fibers passing through it had steady optical characteristics. Then we performed an accelerated aging test on an index matching material attached to a built-in fiber before splicing it in the worst condition, which is different from the normal use configuration. As a result, we confirmed that the repeated insertion and removal of fiber for splicing resulted in failure. We consider that the repetition of adhesion between index matching material and fibers causes the splice to degrade. With this result, we used the Arrhenius model to estimate a median lifetime of about 68 years in a high temperature environment of 60 °C. Thus solid type index matching material at a splice point is highly reliable over long periods under normal conditions of use.

  9. Application progress of solid 29Si, 27Al NMR in the research of cement-based materials

    International Nuclear Information System (INIS)

    Feng Chunhua; Wang Xijian; Li Dongxu

    2014-01-01

    Background: The solid-state Nuclear Magnetic Resonance (NMR) is an effective method for the research of cement-based materials. Now it focuses on using solid 29 Si and 27 Al NMR to research the hydration structure of the cement-based materials in cement chemistry. Purpose: A theoretical guidance is proposed for solid 29 Si and 27 Al NMR technology used in cement chemistry research. Methods: We reviewed the application of solid 29 Si and 27 Al NMR in the cement-based materials and analyzed the problem among the researches. Results: This paper introduced an fundamental, relevant-conditions and basic parameters of NMR, and studied the technical parameters of solid 29 Si and 27 Ai NMR together with the relationship among the hydration structure of cement based material. Moreover, this paper reviewed the related domestic and overseas achievements in the research of hydration structure of the cement-based materials using solid 29 Si and 27 Al NMR. Conclusion: There were some problems in the research on cement-based materials by technology of solid 29 Si and 27 Al NMR. NMR will promote the Hydration theory of cement-based material greatly. (authors)

  10. Measurement of electromagnetic properties of powder and solid metal materials for additive manufacturing

    Science.gov (United States)

    Todorov, Evgueni Iordanov

    2017-04-01

    The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.

  11. Solid-state resistance upset welding: A process with unique advantages for advanced materials

    International Nuclear Information System (INIS)

    Kanne, W.R. Jr.

    1993-01-01

    Solid-state resistance upset welding is suitable for joining many alloys that are difficult to weld using fusion processes. Since no melting takes place, the weld metal retains many of the characteristics of the base metal. Resulting welds have a hot worked structure, and thereby have higher strength than fusion welds in the same mate. Since the material being joined is not melted, compositional gradients are not introduced, second phase materials are minimally disrupted, and minor alloying elements, do not affect weldability. Solid-state upset welding has been adapted for fabrication of structures considered very large compared to typical resistance welding applications. The process has been used for closure of capsules, small vessels, and large containers. Welding emphasis has been on 304L stainless steel, the material for current applications. Other materials have, however, received enough attention to have demonstrated capability for joining alloys that are not readily weldable using fusion welding methods. A variety of other stainless steels (including A-286), superalloys (including TD nickel), refractory metals (including tungsten), and aluminum alloys (including 2024) have been successfully upset welded

  12. Laser-solid interaction and dynamics of the laser-ablated materials

    International Nuclear Information System (INIS)

    Chen, K.R.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-01-01

    Rapid transformations through the liquid and vapor phases induced by laser-solid interactions are described by the authors' thermal model with the Clausius-Clapeyron equation to determine the vaporization temperature under different surface pressure condition. Hydrodynamic behavior of the vapor during and after ablation is described by gas dynamic equations. These two models are coupled. Modeling results show that lower background pressure results lower laser energy density threshold for vaporization. The ablation rate and the amount of materials removed are proportional to the laser energy density above its threshold. The authors also demonstrate a dynamic source effect that accelerates the unsteady expansion of laser-ablated material in the direction perpendicular to the solid. A dynamic partial ionization effect is studied as well. A self-similar theory shows that the maximum expansion velocity is proportional to c s α, where 1 - α is the slope of the velocity profile. Numerical hydrodynamic modeling is in good agreement with the theory. With these effects, α is reduced. Therefore, the expansion front velocity is significantly higher than that from conventional models. The results are consistent with experiments. They further study how the plume propagates in high background gas condition. Under appropriate conditions, the plume is slowed down, separates with the background, is backward moving, and hits the solid surface. Then, it splits into two parts when it rebounds from the surface. The results from the modeling will be compared with experimental observations where possible

  13. Development of an instrument for measuring moisture deep into solid materials

    International Nuclear Information System (INIS)

    Westin, R.; Walletun, H.

    1993-01-01

    It is of value in some applications to be able to detect humidity rather deep into a solid material, for example when determining the moisture content in the frame of buildings, in insulation or in biofuels. Common to these measurement problems is that it is difficult to measure moisture in the bulk of a solid, in contrast to the surface layers. In this report is described the principle and the functioning of an instrument to measure moisture at larger depths than other instruments that are available today. It is intended for use primarily on solid materials, not on gases or liquids. Field experience is also reported here. The principle of the measuring technique is nuclear: we have utilized the ability of hydrogen atoms to moderate (or brake) high energy neutrons. If there is hydrogen in the sample, fast neutrons will interact with the hydrogen atoms and one may detect and count low energy, so called thermal neutrons. The intensity of the slow neutron flux is proportional to the water content, if one assumes that hydrogen atoms are water, i.e. moisture

  14. Microwavable thermal energy storage material

    Science.gov (United States)

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  15. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  16. Analysis of hazardous organic residues from sodium hydrosulfite industry and utilization as raw materials in a novel solid lubricant production

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Jiwu [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Zhang, Yihe, E-mail: zyh@cugb.edu.cn [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Zhou, Fengshan; Lv, Fengzhu; Han, Feng; Lu, Jinbo; Meng, Xianghai [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Ye, Zhengfang [Department of Environmental Engineering, Key Laboratory of Water and Sediment Sciences of the Ministry of Education, Peking University, Beijing 100871 (China); Xing, Jing [State Key Laboratory of Geological Processes and Mineral Resources, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer The hazardous organic residual wastes produced by the sodium hydrosulfite industry are analyzed and the main compounds are found to be thiodiglycol and 2,2 Prime -dithiodiethanol. Black-Right-Pointing-Pointer The lubricity of the organic residues is subsequently studied and the homemade solid lubricant is observed to have good lubricity. Black-Right-Pointing-Pointer The clean process is expected to not only have commercial impact but also help to reduce environmental pollution. - Abstract: The hazardous organic residual wastes produced by the sodium hydrosulfite industry are demonstrated to be convertible into a novel solid lubricant. Identification and isolation of the organic residues are achieved by Fourier transform infrared (FTIR) spectroscopy, gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR). FTIR and GC-MS provide important information about the residues and the two main components obtained by column chromatography are further analyzed by NMR. The main organic residues are found to be thiodiglycol and 2,2 Prime -dithiodiethanol which have potential applications in petroleum drilling because of their S-S and/or C-S functional groups. The lubricity of the organic residues is subsequently studied and the influence of different adsorbents on the lubricity is investigated and discussed. This homemade lubricant is observed to have good lubricity and by increasing the concentration of the commercial solid lubricant M, the lubricity diminishes. The process is expected to not only have commercial impact but also help to reduce environmental pollution.

  17. Inverse problems in complex material design: Applications to non-crystalline solids

    Science.gov (United States)

    Biswas, Parthapratim; Drabold, David; Elliott, Stephen

    The design of complex amorphous materials is one of the fundamental problems in disordered condensed-matter science. While impressive developments of ab-initio simulation methods during the past several decades have brought tremendous success in understanding materials property from micro- to mesoscopic length scales, a major drawback is that they fail to incorporate existing knowledge of the materials in simulation methodologies. Since an essential feature of materials design is the synergy between experiment and theory, a properly developed approach to design materials should be able to exploit all available knowledge of the materials from measured experimental data. In this talk, we will address the design of complex disordered materials as an inverse problem involving experimental data and available empirical information. We show that the problem can be posed as a multi-objective non-convex optimization program, which can be addressed using a number of recently-developed bio-inspired global optimization techniques. In particular, we will discuss how a population-based stochastic search procedure can be used to determine the structure of non-crystalline solids (e.g. a-SiH, a-SiO2, amorphous graphene, and Fe and Ni clusters). The work is partially supported by NSF under Grant Nos. DMR 1507166 and 1507670.

  18. Solid-State Physics An Introduction to Principles of Materials Science

    CERN Document Server

    Ibach, Harald

    2009-01-01

    This new edition of the popular introduction to solid-state physics provides a comprehensive overview on basic theoretical and experimental concepts of material science. Additional sections emphasize current topics in solid-state physics. Notably, sections on important devices, aspects of non-periodic structures of matter, phase transitions, defects, superconductors and nanostructures have been added, the chapters presenting semi- and superconductivity had been completly updated. Students will benefit significantly from solving the exercises given at the end of each chapter. This book is intended for university students in physics, engineering and electrical engineering. This edition has been carefully revised, updated, and enlarged. Among the key recent developments incorporated throughout GMR (giant magneto resistance), thin-film magnetic properties, magnetic hysteresis and domain walls, quantum transport, metamaterials, and preparation techniques for nanostructures. From a review of the original edition �...

  19. Interaction between cobalt-containing materials and solid electrolyte on the basis of lanthanum gallate

    International Nuclear Information System (INIS)

    Bronin, D.I.; Kuzin, B.L.; Sokolova, Yu.V.; Polyakova, N.V.

    2000-01-01

    High-temperature interaction of solid electrolyte La 0.88 Sr 0.12 Mg 0.18 Ga 0.82 O 3-α with material of oxygen electrode La 0.7 Sr 0.3 CoO 3-δ (LSC) and with Co 3 O 4 and its influence on electrochemical activity of oxygen electrodes made of LSO and Pt were studied using the methods of X-ray microanalysis, conductometry and impedance-spectroscopy. It was ascertained that the surface of the solid electrolyte contacting LSC or Co 3 O 4 at a temperature of 1100 Deg C and higher is enriched by cobalt. Electric conductivity of the electrolyte layer modified by cobalt is noticeably higher than that of the initial one. Electrochemical activity of oxygen electrodes made of LSC is 1-2 ordered higher than the one characteristic of platinum electrode [ru

  20. Technical meeting on 'Review of solid and mobile fuels for partitioning and transmutation systems'. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The topics covered during the Meeting were divided into two Sessions. Session 1 - Qualification of Solid and Mobile Fuels delt with: Neutronic, fuel and material properties of a molten salt transmuter; and Preliminary analysis of transmutation fuels for KALIMER. Session 2 - Reactor Physics and Safety Characteristics of Transmutation Systems based on Solid and Mobile Fuel Types included the following: Activity in NEA for P and T area; IAEA activities in the area of partitioning and transmutation; The R and D activity in Brazil: A conceptual fast energy amplifier ADS cooled by helium double stata Th/U fuel cycle; Closed fuel cycle and contemporary tendencies of the nuclear facilities development; Current Russian activities in P and T area; Pyrochemical reprocessing and nuclear spent fuel disposal project; Fuel selection criteria specific for double stratum minor actinide burners.

  1. 15 years investigation of solids and materials by positrons at the Martin-Luther-University

    International Nuclear Information System (INIS)

    Dlubek, G.; Bruemmer, O.

    1985-01-01

    In reviewing 15 years of application at the Halle university, the positron annihilation is presented as important method for the investigation of electronic structure and crystal defects in solids and materials. The fundamentals of the measuring method positron annihilation and of the three measuring techniques positron lifetime spectra, angular correlation curves and Doppler broadening lines are discussed. For electronic structure studies the Fermi surface and pulse density are investigated in metals, alloys and semiconductor materials. The main part of research lies in the field of crystal defect investigations (formation and annealing mechanisms) in pure metals and nickel materials as well as of segregation processes in aluminium alloys. The method is important because of the possibility to get direct information about vacancy-like defects

  2. Molybdate Based Ceramic Negative-Electrode Materials for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Reddy Sudireddy, Bhaskar; Mogensen, Mogens Bjerg

    2010-01-01

    Novel molybdate materials with varying Mo valence were synthesized as possible negative-electrode materials for solid oxide cells. The phase, stability, microstructure and electrical conductivity were characterized. The electrochemical activity for H2O and CO2 reduction and H2 and CO oxidation...... enhanced the electrocatalytic activity and electronic conductivity. The polarization resistances of the best molybdates were two orders of magnitude lower than that of donor-doped strontium titanates. Many of the molybdate materials were significantly activated by cathodic polarization, and they exhibited...... higher performance for cathodic (electrolysis) polarization than for anodic (fuel cell) polarization, which makes them especially interesting for use in electrolysis electrodes. ©2010 COPYRIGHT ECS - The Electrochemical Society...

  3. Potential for efficient frequency conversion at high average power using solid state nonlinear optical materials

    International Nuclear Information System (INIS)

    Eimerl, D.

    1985-01-01

    High-average-power frequency conversion using solid state nonlinear materials is discussed. Recent laboratory experience and new developments in design concepts show that current technology, a few tens of watts, may be extended by several orders of magnitude. For example, using KD*P, efficient doubling (>70%) of Nd:YAG at average powers approaching 100 KW is possible; and for doubling to the blue or ultraviolet regions, the average power may approach 1 MW. Configurations using segmented apertures permit essentially unlimited scaling of average power. High average power is achieved by configuring the nonlinear material as a set of thin plates with a large ratio of surface area to volume and by cooling the exposed surfaces with a flowing gas. The design and material fabrication of such a harmonic generator are well within current technology

  4. Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials.

    Science.gov (United States)

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Huang, Kevin

    2014-01-18

    The recently developed solid oxide metal-air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron-air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.

  5. Flexible Black-Phosphorus Nanoflake/Carbon Nanotube Composite Paper for High-Performance All-Solid-State Supercapacitors.

    Science.gov (United States)

    Yang, Bingchao; Hao, Chunxue; Wen, Fusheng; Wang, Bochong; Mu, Congpu; Xiang, Jianyong; Li, Lei; Xu, Bo; Zhao, Zhisheng; Liu, Zhongyuan; Tian, Yongjun

    2017-12-27

    We proposed a simple route for fabrication of the flexible BP nanoflake/carbon nanotube (CNT) composite paper as flexible electrodes in all-solid-state supercapacitors. The highly conductive CNTs not only play a role as active materials but also increase conductivity of the hybrid electrode, enhance electrolyte shuttling and prevent the restacking between BP nanoflakes. The fabricated flexible all-solid-state supercapacitor (ASSP) device at the mass proportion of BP/CNTs 1:4 was found to deliver the highest volumetric capacitance of up to 41.1 F/cm 3 at 0.005 V/s, superior to the ASSP based on the bare graphene or BP. The BP/CNTs (1:4) device delivers a rapid charging/discharging up to 500 V/s, which exhibits the characteristic of a high power density of 821.62 W/cm 3 , while having outstanding mechanical flexibility and high cycling stability over 10 000 cycles (91.5% capacitance retained). Moreover the BP/CNTs (1:4) ASSP device still retains large volumetric capacitance (35.7 F/cm 3 at the scan rate of 0.005 V/s) even after 11 months. In addition, the ASSP of BP/CNTs (1:4) exhibits high energy density of 5.71 mWh/cm 3 and high power density of 821.62 W/cm 3 . As indicated in our work, the strategy of assembling stacked-layer composites films will open up novel possibility for realizing BP and CNTs in new-concept thin-film energy storage devices.

  6. Recycling of hazardous solid waste material using high-temperature solar process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Meier, A.; Wuillemin, D.; Hoffelner, W.; Steinfeld, A.

    2003-03-01

    A novel high-temperature solar chemical reactor is proposed for the thermal recycling of hazardous solid waste material using concentrated solar power. A 10 kW solar reactor prototype was designed and tested for the carbothermic reduction of electric arc furnace dusts (EAFD). The reactor was subjected to mean solar flux intensities of 2000 kW/m2 and operated in both batch and continuous mode within the temperature range 1120-1400 K. Extraction of up to 99% and 90% of the Zn originally contained in the EAFD was achieved in the residue for the batch and continuous solar experiments, respectively. The condensed off-gas products consisted mainly of Zn, Pb, and Cl. No ZnO was detected when the O{sub 2} concentration remained below 2 vol.-%. The use of concentrated solar energy as the source of process heat offers the possibility of converting hazardous solid waste material into valuable commodities for processes in closed and sustainable material cycles. (author)

  7. Cell viability of mycorrhiza helper bacteria solid inoculant in different carrier material

    Science.gov (United States)

    Asyiah, Iis Nur; Hindersah, Reginawanti; Harni, Rita

    2018-02-01

    Roots of food crops are colonized by nonpathogenic mycorrhizal fungi which show natural ability to control plant pathogen. Mycorrhizal establishment in plant roots is affected by rhizobacteria, known as mycorrhiza helper bacteria (MHB), which has synergetic effects on mycorrhizal associations. Laboratory experiment has been conducted to assess the best carrier material to develop well-qualified MHB of Pseudomonas diminuta and Bacillus subtilis solid inoculant. Carrier materials were 100 mesh organic matter of agricultural waste. Different spore concentration of both bacterial liquid inoculants were grown on three kinds of 100-mesh organic matter and stored at room temperature up to 90 days. Cell viability of both MHB were counted by serial dilution plate method by using specific medium. The results showed that sugar cane baggase ash was the best carrier material to maintain cell viability for both MHB. However, the population of Pseudomonas diminuta and Bacillus subtilis in sugar cane baggase ash were slightly decreased after 90 days. The use of sugarcane baggase ash for solid MHB inoculant development could be suggested.

  8. The Effect of Text Materials with Relevant Language, Illustrations and Content Upon the Reading Achievement and Reading Preference (Attitude) of Black Primary and Intermediate Inner-City Students.

    Science.gov (United States)

    Grant, Gloria W.

    The purpose of this study was to examine the effect of text materials with relevant language, illustrations, and content upon the reading achievement and reading preference (attitude) of black primary and intermediate grade inner-city students. The subjects for the study were 330 black students enrolled in three schools in a large urban area. A…

  9. Materials flow through the household and reduction in domestic solid waste

    Energy Technology Data Exchange (ETDEWEB)

    1975-05-01

    Energy conservation programs are usually designed to reduce the waste associated with direct energy use for example, heating and lighting levels, and use of appliances. But householders can also influence energy consumption in other sectors. Their buying and consuming habits will affect the energy involved in extraction, production, transportation, use and disposal of commodities. Their attitudes and behavior will affect their neighbours' efforts at reducing materials throughput. Therefore, the household must be an important target in any effort to alter energy use patterns throughout society. The purpose of this study was to determine whether practical programs could be developed to reduce materials flows through the hosuehold. Since solid waste output is a very reliable measure of these flows, the question was posed from the perspective of reducing the generation of residential solid waste. In this context particular attention was given to the range of possible actions open to the householder himself. It would have been unrealistic, however, to ignore environmental design and other legislative options. The study is divided into three parts. The first attempts to identify those actions by the householder which will have the greatest effect in reducing the total environmental impact (including energy use) of the materials moving through the household. The second deals with the problem of persuading people to engage in these actions. The final part combines promising strategies with significant actions. The result is a series of program options which are assessed with respect to four criteria: potential significance for residential solid waste reduction, chances of success, ease of implementation, and costs. 15 refs., 7 figs., 3 tabs.

  10. Laser-material interactions: A study of laser energy coupling with solids

    Energy Technology Data Exchange (ETDEWEB)

    Shannon, Mark Alan [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding.

  11. Evaluation of Solid Geologic Reference Materials for Uranium-Series Measurements via LA-ICPMS

    Science.gov (United States)

    Matthews, K. A.; Goldstein, S. J.; Norman, D. E.; Nunn, A. J.; Murrell, M. T.

    2008-12-01

    Uranium-series geochemistry and geochronology have a wide range of applications in paleoclimatology, volcanology and other disciplines. To further explore these fields, the geoanalytical community has now begun to exploit recent advances in in situ, micron-scale sampling via laser ablation-ICPMS. Unfortunately, improvements in instrumentation have generally outpaced development of the appropriate geologic reference materials required for in situ U-series work. We will report results for uranium and thorium isotopic ratios and elemental concentrations measured in a suite of solid standards from the USGS (e.g., BCR-2G, BHVO-2G, GSD-1G, MACS-1, NKT-2G), as well as those from the MPI-DING series (e.g., ATHO-G, T1-G, StHs6/80-G). Specifically created for microanalysis, two of these standards are synthetic (GSD-1G, MACS-1) and the remainder are naturally-sourced glasses. They cover a range of compositions, ages (± secular equilibrium), elemental concentrations and expected isotopic ratios. The U-series isotopics of some powdered source materials have been characterized (e.g., BCR-2, BHVO-2), although there is no confirmation of the same ratios in the glass. Bulk measurement of these solid standards via TIMS and solution multicollector-ICPMS can then be used to assess the performance of LA-ICPMS techniques which require matrix-matched solid standards for correction of U-series elemental and isotopic ratios. These results from existing, widely-available reference materials will also facilitate quantification and comparison of U-series data among laboratories in the broader geoscience community.

  12. Resolving Radiological Classification and Release Issues for Many DOE Solid Wastes and Salvageable Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hochel, R.C.

    1999-11-19

    The cost effective radiological classification and disposal of solid materials with potential volume contamination, in accordance with applicable U.S. Department of Energy (DOE) Orders, suffers from an inability to unambiguously distinguish among transuranic waste, low-level waste, and unconditional-release materials in a generic way allowing in-situ measurement and verification. Depending on a material''s classification, disposal costs can vary by a hundred-fold. With these large costs at risk, the issues involved in making defensible decisions are ripe for closer scrutiny. In many cases, key issues can be easily resolved by a combination of process information, some simple measurements, and calculational predictions from a computer model for radiation shielding. The proper classification and disposal of many solid wastes requires a measurement regime that is able to show compliance with a variety of institutional and regulatory contamination limits. Ultimate responsibility for this, of course, rests with radiological control or health physics organization of the individual site, but there are many measurements which can be performed by operations and generation organizations to simplify the process and virtually guarantee acceptance. Although this is not possible for all potential solid wastes, there are many that do lend themselves to such measures, particularly some of large volumes and realizable cost savings. Mostly what is needed for this to happen are a few guiding rules, measurement procedures, and cross checks for potential pitfalls. Several examples are presented here and discussed that demonstrate the possibilities, including one which was successfully applied to bulk contamination.

  13. Laser-material interactions: A study of laser energy coupling with solids

    International Nuclear Information System (INIS)

    Shannon, M.A.; California Univ., Berkeley, CA

    1993-11-01

    This study of laser-light interactions with solid materials ranges from low-temperature heating to explosive, plasma-forming reactions. Contained are four works concerning laser-energy coupling: laser (i) heating and (ii) melting monitored using a mirage effect technique, (iii) the mechanical stress-power generated during high-powered laser ablation, and (iv) plasma-shielding. First, a photothermal deflection (PTD) technique is presented for monitoring heat transfer during modulated laser heating of opaque solids that have not undergone phase-change. Of main interest is the physical significance of the shape, magnitude, and phase for the temporal profile of the deflection signal. Considered are the effects that thermophysical properties, boundary conditions, and geometry of the target and optical probe-beam have on the deflection response. PTD is shown to monitor spatial and temporal changes in heat flux leaving the surface due to changes in laser energy coupling. The PTD technique is then extended to detect phase-change at the surface of a solid target. Experimental data shows the onset of melt for indium and tin targets. The conditions for which melt can be detected by PTD is analyzed in terms of geometry, incident power and pulse length, and thermophysical properties of the target and surroundings. Next, monitoring high-powered laser ablation of materials with stress-power is introduced. The motivation for considering stress-power is given, followed by a theoretical discussion of stress-power and how it is determined experimentally. Experiments are presented for the ablation of aluminum targets as a function of energy and intensity. The stress-power response is analyzed for its physical significance. Lastly, the influence of plasma-shielding during high-powered pulsed laser-material interactions is considered. Crater size, emission, and stress-power are measured to determine the role that the gas medium and laser pulse length have on plasma shielding

  14. Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons

    NARCIS (Netherlands)

    Atashgahi, S.; Maphosa, F.; Vrieze, de J.; Haest, P.J.; Boon, N.; Smidt, H.; Springael, D.; Dejonghe, W.

    2014-01-01

    In situ bioreactive capping is a promising technology for mitigation of surface water contamination by discharging polluted groundwater. Organohalide respiration (OHR) of chlorinated ethenes in bioreactive caps can be stimulated through incorporation of solid polymeric organic materials (SPOMs) that

  15. Problems in the measurement of electron-dose distribution with film dosimeters inserted into solid materials

    International Nuclear Information System (INIS)

    Okuda, Shuichi; Fukuda, Kyue; Tabata, Tatsuo; Okabe, Shigeru

    1981-01-01

    On the insertion of film dosimeters into solid materials, thin air gaps are formed. The influence of such gaps on measured profiles of depth-dose distributions was investigated for aluminum irradiated with collimated beams of 15-MeV electrons. Measurements were made by changing the gap width or the incidence angle of the electrons. The present results showed that streaming of incident electrons through the gaps resulted in the appearance of a peak and a minimum in a depth-dose curve measured. This effect was suppressed by the increase of the angle between the film and the electron-beam axis. (author)

  16. Developments of solid materials for UF6 sampling

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hebden, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Savina, Joseph [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-11-15

    This project demonstrated that a device using majority Commercial Off the Shelf (COTS) components could be used to collect uranium hexafluoride samples safely from gaseous or solid sources. The device was based on the successful Cristallini method developed by ABACC over the past 10 years. The system was designed to capture and store the UF6 as an inert fluoride salt to ease transportation regulations. In addition, the method was considerably faster than traditional cryogenic methods, collected enough material to perform analyses without undue waste, and could be used either inside a facility or in the storage yard.

  17. U.S. Nuclear Regulatory Commission bases for control of solid materials

    International Nuclear Information System (INIS)

    Meck, R.A.; Cardille, F.P.; Feldman, C.; Gnugnoli, G.N.; Huffert, A.M.; Klementowicz, S.P.

    2002-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is considering whether to proceed with rulemaking on the control of solid materials with very low levels of associated radioactivity. The current implementation of clearance by NRC licensees is the context for the decision. Inputs to the decision include information gathering efforts of the Commission in the areas of public workshops, dose assessments and inventories, the recommendations of the National Academies' National Research Council (NAs) on regulatory alternatives, and participation in international efforts by the International Atomic Energy Agency (IAEA). (author)

  18. Assessing raw materials for carbon black production using 1H- and 13C-nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bekarek, V.; Meic, Z.

    1980-01-01

    1 H and 13 C NMR spectroscopy in combination with elemental analysis and/or infrared spetroscopy were used in evaluating raw materials for the preparation of carbon black. Three models and seven industrial mixtures were analysed. The evaluation of experimental results by the Brown-Ladner method yielded information on the basic chemical characteristics of the raw material, ie., the contents of carbon and other elements, the contents of aromatic and aliphatic components and the nature of the aromatic compounds present. The obtained results are in good agreement with theoretical results for the model mixtures and with results of gas chromatography for the industrial mixtures

  19. Evaluation of water-mimicking solid phantom materials for use in HDR and LDR brachytherapy dosimetry

    Science.gov (United States)

    Schoenfeld, Andreas A.; Thieben, Maike; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2017-12-01

    In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w, have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR (60Co), Eckert und Ziegler BEBIG GmbH CSM-11 (137Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 (169Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 (131Cs), IsoAid Advantage I-125 IAI-125A (125I), and IsoAid Advantage Pd-103 IAPd-103A (103Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192Ir, 137Cs and 60Co most phantom materials can be regarded as water equivalent, for 169Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106Pd, 131Cs and 125I, only Plastic Water LR can be classified as water equivalent.

  20. The water equivalence of solid materials used for dosimetry with small proton beams

    International Nuclear Information System (INIS)

    Schneider, Uwe; Pemler, Peter; Besserer, Juergen; Dellert, Matthias; Moosburger, Martin; Boer, Jorrit de; Pedroni, Eros; Boehringer, Terence

    2002-01-01

    Various solid materials are used instead of water for absolute dosimetry with small proton beams. This may result in a dose measurement different to that in water, even when the range of protons in the phantom material is considered correctly. This dose difference is caused by the diverse cross sections for inelastic nuclear scattering in water and in the phantom materials respectively. To estimate the magnitude of this effect, flux and dose measurements with a 177 MeV proton pencil beam having a width of 0.6 cm (FWHM) were performed. The proton flux and the deposited dose in the beam path were determined behind water, lucite, polyethylene, teflon, and aluminum of diverse thicknesses. The number of out-scattered protons due to inelastic nuclear scattering was determined for water and the different materials. The ratios of the number of scattered protons in the materials relative to that in water were found to be 1.20 for lucite, 1.16 for polyethylene, 1.22 for teflon, and 1.03 for aluminum. The difference between the deposited dose in water and in the phantom materials taken in the center of the proton pencil beam, was estimated from the flux measurements, always taking the different ranges of protons in the materials into account. The estimated dose difference relative to water in 15 cm water equivalent thickness was -2.3% for lucite, -1.7% for polyethylene, -2.5% for teflon, and -0.4% for aluminum. The dose deviation was verified by a measurement using an ionization chamber. It should be noted that the dose error is larger when the effective point of measurement in the material is deeper or when the energy is higher

  1. Decontamination of materials contaminated with Francisella philomiragia or MS2 bacteriophage using PES-Solid, a solid source of peracetic acid.

    Science.gov (United States)

    Buhr, T L; Young, A A; Johnson, C A; Minter, Z A; Wells, C M

    2014-08-01

    The aim of the study was to develop test methods and evaluate survival of Francisella philomiragia cells and MS2 bacteriophage after exposure to PES-Solid (a solid source of peracetic acid) formulations with or without surfactants. Francisella philomiragia cells (≥7·6 log10 CFU) or MS2 bacteriophage (≥6·8 log10 PFU) were deposited on seven different test materials and treated with three different PES-Solid formulations, three different preneutralized samples and filter controls at room temperature for 15 min. There were 0-1·3 log10 CFU (6 log10 CFU/PFU F. philomiragia cells and/or MS2 bacteriophage on different materials. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  2. Method for measurement of radon diffusion and solubility in solid materials

    Science.gov (United States)

    Maier, Andreas; Weber, Uli; Dickmann, Jannis; Breckow, Joachim; van Beek, Patrick; Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia

    2018-02-01

    In order to study the permeation i.e. the diffusion and solubility of radon gas in biological material, a new setup was constructed and a novel analysis was applied to obtain diffusion and solubility coefficients. Thin slabs of solid materials were installed between detector housing and the surrounding radon exposure chamber of 50 Ls volume. In this setup radon can diffuse through thin test samples into a cylindrical volume of 5 mm height and 20 mm diameter and reach an α-particle detector. There the 5.49 MeV α-decay of the penetrating radon atoms is measured by a silicon surface barrier detector. The time dependent activities inside the small detector volume are recorded after injection of a known radon activity concentration into the outer chamber. Analyzing the time behavior of the integral α-activity from radon in the small vessel, both, the diffusion coefficient and solubility of the test material can be determined, based on a new mathematical model of the diffusion process concerning the special boundary conditions given by the experimental setup. These first measurements were intended as proof of concept for the detection system and the data analysis. Thin polyethylene foils (LDPE) were selected as material for the diffusion measurements and the results were in agreement with data from literature. In further measurements, we will concentrate on biological material like bone, fat and other tissues.

  3. Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells

    Science.gov (United States)

    Zhang, Xiaoqiang; Yu, Guangsen; Zeng, Shumao; Parbey, Joseph; Xiao, Shuhao; Li, Baihai; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Chromium poisoning the La0.875Sr0.125MnO3 (LSM) cathode for solid oxide fuel cells is a critical issue that can strongly affect the stability. In this study, we evaluate the temperature distribution in a SOFC based on a 3D model and then combine conductivity test and material computation to reveal the effects of chromium in SUS430 stainless steels on LSM conductivities. The starch concentration in LSM pellets and the applied pressure on the contact with interconnect materials show close relationships with the chromium poisoning behavior. The density functional theory (DFT) computing results indicate that chromium atoms preferably adsorb on the MnO2-terminated and La (Sr)-O-terminated (001) surfaces. The resulting conclusions are expected to deeply understand mechanism of chromium deactivating conventional cathodes at some typical operational conditions, and offer crucial information to optimize the structure to avoid the poisoning effect.

  4. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Emiliana Fabbri, Daniele Pergolesi and Enrico Traversa

    2010-01-01

    Full Text Available High temperature proton conductor (HTPC oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs operating at intermediate temperatures (400–700 °C. The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs.

  5. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells

    International Nuclear Information System (INIS)

    Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico

    2010-01-01

    High temperature proton conductor (HTPC) oxides are attracting extensive attention as electrolyte materials alternative to oxygen-ion conductors for use in solid oxide fuel cells (SOFCs) operating at intermediate temperatures (400-700 0 C). The need to lower the operating temperature is dictated by cost reduction for SOFC pervasive use. The major stake for the deployment of this technology is the availability of electrodes able to limit polarization losses at the reduced operation temperature. This review aims to comprehensively describe the state-of-the-art anode and cathode materials that have so far been tested with HTPC oxide electrolytes, offering guidelines and possible strategies to speed up the development of protonic SOFCs. (topical review)

  6. The Role of Sexually Explicit Material (SEM) in the Sexual Development of Black Young Same-Sex-Attracted Men

    Science.gov (United States)

    Morgan, Anthony; Ogunbajo, Adedotun; Trent, Maria; Harper, Gary W.; Fortenberry, J. Dennis

    2015-01-01

    Sexually explicit material (SEM) (including Internet, video, and print) may play a key role in the lives of Black same-sex sexually active youth by providing the only information to learn about sexual development. There is limited school-and/or family-based sex education to serve as models for sexual behaviors for Black youth. We describe the role SEM plays in the sexual development of a sample of Black same-sex attracted (SSA) young adolescent men ages 15–19. Adolescents recruited from clinics, social networking sites, and through snowball sampling were invited to participate in a 90-min, semi-structured qualitative interview. Most participants described using SEM prior to their first same-sex sexual experience. Participants described using SEM primarily for sexual development, including learning about sexual organs and function, the mechanics of same-gender sex, and to negotiate one’s sexual identity. Secondary functions were to determine readiness for sex; to learn about sexual performance, including understanding sexual roles and responsibilities (e.g., “top” or “bottom”); to introduce sexual performance scripts; and to develop models for how sex should feel (e.g., pleasure and pain). Youth also described engaging in sexual behaviors (including condom non-use and/or swallowing ejaculate) that were modeled on SEM. Comprehensive sexuality education programs should be designed to address the unmet needs of young, Black SSA young men, with explicit focus on sexual roles and behaviors that may be inaccurately portrayed and/or involve sexual risk-taking (such as unprotected anal intercourse and swallowing ejaculate) in SEM. This work also calls for development of Internet-based HIV/STI prevention strategies targeting young Black SSA men who maybe accessing SEM. PMID:25677334

  7. Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Lv, Tian; Liu, Mingxian; Zhu, Dazhang; Gan, Lihua; Chen, Tao

    2018-04-01

    Because of the rapid development of flexible electronics, it is important to develop high-performance flexible energy-storage devices, such as supercapacitors and metal-ion batteries. Compared with metal-ion batteries, supercapacitors exhibit higher power density, longer cycling life, and excellent safety, and they can be easily fabricated into all-solid-state devices by using polymer gel electrolytes. All-solid-state supercapacitors (ASSSCs) have the advantages of being lightweight and flexible, thus showing great potential to be used as power sources for flexible portable electronics. Because of their high specific surface area and excellent electrical and mechanical properties, nanocarbon materials (such as carbon nanotubes, graphene, carbon nanofibers, and so on) have been widely used as efficient electrode materials for flexible ASSSCs, and great achievements have been obtained. Here, the recent advances in flexible ASSSCs are summarized, from design strategies to fabrication techniques for nanocarbon electrodes and devices. Current challenges and future perspectives are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of a feeding device for solid material; Kiinteaen materiaalin syoettoelaitteen kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, O.; Tiihonen, J [Imatran Voima Oy, Vantaa (Finland). R and D Section

    1996-12-31

    Feeding of solid fuel into high pressure is an essential part of the pressurized power plant processes. A pilot scale fuel feeder meeting the requirements of these processes has been designed and built by Imatran Voima Oy (IVO). The fuel feeder is capable of feeding both relatively dry and wet solid material into high pressure. The object of this project was to develop the pilot scale fuel feeder to commercial level. The project was financed by IVO and Bioenergia -research programme. The project included testing of the previously built pilot-feeder at real operating conditions using peat and wood biomass as feedstocks. The testing consisted of short term and long term runs, which provided information about the operation and durability of the feeder with different materials. The tests were carried out partly in IVO`s laboratory, and partly in Jyvaeskylae at the pressurized steam drying pilot plant owned by IVO and VTT. The pilot-feeder operated well and reliably during the feeding tests. The feeder was dissembled and the parts were inspected between and after the test periods. No sign of excessive wear of the parts was noticed. Based on the good experiences from the pilot scale testing a commercial feeder with the capacity of 50 m{sup 3}/h was designed

  9. Development of a feeding device for solid material; Kiinteaen materiaalin syoettoelaitteen kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, O.; Tiihonen, J. [Imatran Voima Oy, Vantaa (Finland). R and D Section

    1995-12-31

    Feeding of solid fuel into high pressure is an essential part of the pressurized power plant processes. A pilot scale fuel feeder meeting the requirements of these processes has been designed and built by Imatran Voima Oy (IVO). The fuel feeder is capable of feeding both relatively dry and wet solid material into high pressure. The object of this project was to develop the pilot scale fuel feeder to commercial level. The project was financed by IVO and Bioenergia -research programme. The project included testing of the previously built pilot-feeder at real operating conditions using peat and wood biomass as feedstocks. The testing consisted of short term and long term runs, which provided information about the operation and durability of the feeder with different materials. The tests were carried out partly in IVO`s laboratory, and partly in Jyvaeskylae at the pressurized steam drying pilot plant owned by IVO and VTT. The pilot-feeder operated well and reliably during the feeding tests. The feeder was dissembled and the parts were inspected between and after the test periods. No sign of excessive wear of the parts was noticed. Based on the good experiences from the pilot scale testing a commercial feeder with the capacity of 50 m{sup 3}/h was designed

  10. Evaluation of the measurement uncertainty when measuring the resistance of solid isolating materials to tracking

    Science.gov (United States)

    Stare, E.; Beges, G.; Drnovsek, J.

    2006-07-01

    This paper presents the results of research into the measurement of the resistance of solid isolating materials to tracking. Two types of tracking were investigated: the proof tracking index (PTI) and the comparative tracking index (CTI). Evaluation of the measurement uncertainty in a case study was performed using a test method in accordance with the IEC 60112 standard. In the scope of the tests performed here, this particular test method was used to ensure the safety of electrical appliances. According to the EN ISO/IEC 17025 standard (EN ISO/IEC 17025), in the process of conformity assessment, the evaluation of the measurement uncertainty of the test method should be carried out. In the present article, possible influential parameters that are in accordance with the third and fourth editions of the standard IEC 60112 are discussed. The differences, ambiguities or lack of guidance referring to both editions of the standard are described in the article 'Ambiguities in technical standards—case study IEC 60112—measuring the resistance of solid isolating materials to tracking' (submitted for publication). Several hundred measurements were taken in the present experiments in order to form the basis for the results and conclusions presented. A specific problem of the test (according to the IEC 60112 standard) is the great variety of influential physical parameters (mechanical, electrical, chemical, etc) that can affect the results. At the end of the present article therefore, there is a histogram containing information on the contributions to the measurement uncertainty.

  11. Recent progress in the development of anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cowin, Peter I.; Petit, Christophe T.G.; Lan, Rong; Tao, Shanwen [Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Irvine, John T.S. [School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST (United Kingdom)

    2011-05-15

    The field of research into solid oxide fuel cell (SOFC) anode materials has been rapidly moving forward. In the four years since the last in-depth review significant advancements have been made in the reduction of the operating temperature and improvement of the performance of SOFCs. This progress report examines the developments in the field and looks to draw conclusions and inspiration from this research. A brief introduction is given to the field, followed by an overview of the principal previous materials. A detailed analysis of the developments of the last 4 years is given using a selection of the available literature, concentrating on metal-fluorite cermets and perovskite-based materials. This is followed by a consideration of alternate fuels for use in SOFCs and their associated problems and a short discussion on the effect of synthesis method on anode performance. The concluding remarks compile the significant developments in the field along with a consideration of the promise of future research. The recent progress in the development of anode materials for SOFCs based on oxygen ion conducting electrolytes is reviewed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Solid-state (49/47)Ti NMR of titanium-based MCM-41 hybrid materials.

    Science.gov (United States)

    Ballesteros, Ruth; Fajardo, Mariano; Sierra, Isabel; Force, Carmen; del Hierro, Isabel

    2009-11-03

    Titanium solid-state NMR spectroscopy data for a series of organic-inorganic titanium MCM-41 based materials have been collected. These materials have been synthesized by first modifying the mesoporous silica MCM-41 in one step with a mixture of silanes: a triazine propyl triethoxysilane acting as functional linker and methyltrimethoxysilane or hexamethyldisilizane as capped agents to mask the remaining silanol groups. Second, the appropiate titanium precursor Ti(OPr(i))(4), [{Ti(OPr(i))(3)(OMent)}(2)] (OMent = 1R,2S,5R-(-)-menthoxo), Ti(OPr(i))(4), or [Ti(eta(5)-C(5)HMe(4))Cl(3)], has been immobilized by reaction with the modified MCM-41. Finally, after Ti(OPr(i))(4) immobilization onto the organomodified support the reaction with the chiral (+)-diethyl-l-tartrate was accomplished. The materials without functional linker have been also prepared by reaction in one step of the capped agent and the titanium precursor with the mesoporous silica. Relevant correlations of titanium NMR resonance chemical shifts and line widths can be inferred depending on different factors. The immobilization procedure used to prepare titanium-based MCM-41 hybrid materials and the choice of the silylating reagents employed to mask the silanol groups present on the silica surfaces produce significant differences in the Ti NMR spectra. Furthermore, depending on the electronic and sterical influence of the substituents directly attached to the titanium center, chemical shifts and line widths are modified providing novel information about titanium structure.

  13. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    Science.gov (United States)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  14. Development of advanced blanket materials for solid breeder blanket of fusion reactor

    International Nuclear Information System (INIS)

    Ishitsuka, E.

    2002-01-01

    Advanced solid breeding blanket design in the DEMO reactor requires the tritium breeder and neutron multiplier that can withstand the high temperature and high dose of neutron irradiation. Therefore, the development of such advanced blanket materials is indispensable. In this paper, the cooperation activities among JAERI, universities and industries in Japan on the development of these advanced materials are reported. Advanced tritium breeding material to prevent the grain growth in high temperature had to be developed because the tritium release behavior degraded by the grain growth. As one of such materials, TiO 2 -doped Li 2 TiO 3 has been studied, and TiO 2 -doped Li 2 TiO 3 pebbles was successfully fabricated. For the advanced neutron multiplier, the beryllium intermetallic compounds that have high melting point and good chemical stability have been studied. Some characterization of Be 12 Ti was studied. The pebble fabrication study for Be 12 Ti was also performed and Be 12 Ti pebbles were successfully fabricated. From these activities, the bright prospect to realize the DEMO blanket by the application of TiO 2 -doped Li 2 TiO 3 and beryllium intermetallic compounds was obtained. (author)

  15. Biomonitoring of organochlorine compounds (PCDDs, PCDFs, PCBs and DDTs) near a municipal solid waste incinerator using black kites (Milvus migrans) as sentinel organism

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, B.; Merino, R. [CSIC, Inst. of Organic Chemistry, Madrid (Spain); Olie, K. [Univ. of Amterdam (Netherlands); Blanco, G.; Frias, O. [CSIC, IREC, Ciudad Real (Spain)

    2004-09-15

    Wildlife has received much attention during last decades as an indicator of ecosystems health. Kubiak at al. (1989) showed that there are significant effect on reproductive success due to organochlorines, not only in hatching success, but also in chick health. Due to the widespread distribution of these xenoestrogens, there is a need for screening and risk evaluation of these endocrine disrupters in living organisms from the global point of view of ecosystems health. Aspects of the life history of the black kites (Milvus migrans) make them a useful species for contaminants monitoring. They are long-lived birds, adapt well to human areas and many feeds at dumps, garbage tips, etc. where a wide range of contaminants can be found3. Effects of chlorinated pollutants have not been widely studied in this species. In 2001, a monitoring program was initiated in order to evaluate the health of a population of black kites nesting in the Regional Park of the Southeastern of Madrid (RPSM), Spain. This study is part of a larger research investigation of the influence of a Municipal Solid Waste Incinerator (MSWI) on the kites'surroundings. Since Municipal Solid Waste Incinerators (MSWI) are suspected to produce some highly toxic POPs (Persistent Organic Pollutants) such as polychlorinated dibenzo-pdioxins (PCDDs) and polychlorinated dibenzo-furans (PCDFs) as well as other short of toxic chemicals (e.g. PCBs and heavy metals) this study was initiated with the aim of investigating the potential toxicity of these compounds on the kites population. The purpose of this study was to conduct the evaluation in a non-destructive way. Since eggs are known to reflect the accumulation of lipophilic contaminants in birds, the study was based on the use of unhatched eggs obtained from black kites.

  16. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  17. Torque measurements reveal large process differences between materials during high solid enzymatic hydrolysis of pretreated lignocellulose

    Directory of Open Access Journals (Sweden)

    Palmqvist Benny

    2012-08-01

    Full Text Available Abstract Background A common trend in the research on 2nd generation bioethanol is the focus on intensifying the process and increasing the concentration of water insoluble solids (WIS throughout the process. However, increasing the WIS content is not without problems. For example, the viscosity of pretreated lignocellulosic materials is known to increase drastically with increasing WIS content. Further, at elevated viscosities, problems arise related to poor mixing of the material, such as poor distribution of the enzymes and/or difficulties with temperature and pH control, which results in possible yield reduction. Achieving good mixing is unfortunately not without cost, since the power requirements needed to operate the impeller at high viscosities can be substantial. This highly important scale-up problem can easily be overlooked. Results In this work, we monitor the impeller torque (and hence power input in a stirred tank reactor throughout high solid enzymatic hydrolysis (Arundo donax and spruce. Two different process modes were evaluated, where either the impeller speed or the impeller power input was kept constant. Results from hydrolysis experiments at a fixed impeller speed of 10 rpm show that a very rapid decrease in impeller torque is experienced during hydrolysis of pretreated arundo (i.e. it loses its fiber network strength, whereas the fiber strength is retained for a longer time within the spruce material. This translates into a relatively low, rather WIS independent, energy input for arundo whereas the stirring power demand for spruce is substantially larger and quite WIS dependent. By operating the impeller at a constant power input (instead of a constant impeller speed it is shown that power input greatly affects the glucose yield of pretreated spruce whereas the hydrolysis of arundo seems unaffected. Conclusions The results clearly highlight the large differences between the arundo and spruce materials, both in terms of

  18. Process for forming a homogeneous oxide solid phase of catalytically active material

    Science.gov (United States)

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  19. MINIMUM SOLID AREA MODELS FOR THE EFFECTIVE PROPERTIES OF POROUS MATERIALS - A REFUTATION

    Directory of Open Access Journals (Sweden)

    Willi Pabst

    2015-09-01

    Full Text Available Minimum solid area (MSA models are popular models for the calculation of the effective properties of porous materials and are frequently used to justify the use of a simple exponential relation for fitting purposes. In this contribution it is shown that MSA models, and the simple exponentials they support, are misleading and should be avoided. In particular, taking Young modulus and conductivity (thermal or electrical as examples, it is shown that MSA models are based on the unjustified (and unjustifiable hypothesis that the relative Young modulus and relative conductivity are identical, and moreover equal to the MSA fraction itself. This claim is generally false for isotropic materials, both random or periodic. Although indeed a very specific case exists in which this claim is true for the properties in one specific direction (viz., extremely anisotropic materials with translational invariance, in this specific case MSA models are redundant, because the relative properties are given exactly by the volume- or area-weighted arithmetic mean. It is shown that the mere existence of non-trivial cross-property relations is incompatible with the existence of MSA models. Finally, it is shown by numerical (finite-element modeling that MSA models provide incorrect results even in the simplest of the cases for which they were originally designed, i.e. for simple cubic packings of partially sintered isometric (initially spherical grains. Therefore, paraphrasing Box, MSA models are not only wrong, but also useless, and should be abandoned.

  20. Formation of solid materials in the preplanetary nebula and the composition of chondrites

    Energy Technology Data Exchange (ETDEWEB)

    Izakov, M.N.

    1986-07-01

    On the basis of the model of the formation of the preplanetary nebula as an accretion disk during the formation of the sun, the hypothesis is proposed that a significant fraction of the solid materials of the preplanetary nebula was formed by the successive condensation of the components of the gas of solar composition during its motion from the hot, dense region near the protosun to the periphery of the nebula into regions of ever decreasing values of temperature and pressure. The hypothesis removes the contradiction materials and the presence of traces of high-temperature phenomena in chondrite materials and the conclusion that there were never high temperature in the preplanetary nebula at distances of 2-4 AU from the sun, where meteorites encountering the earth originate, and also explains a number of properties of chondrites. It follows from this hypothesis that the mass and angular momentum of the nebula were close to their minimum possible values and that the loss of the nebular gas had already begun at the final stage of its formation.

  1. Formation of solid materials in the preplanetary nebula and the composition of chondrites

    International Nuclear Information System (INIS)

    Izakov, M.N.

    1986-01-01

    On the basis of the model of the formation of the preplanetary nebula as an accretion disk during the formation of the sun, the hypothesis is proposed that a significant fraction of the solid materials of the preplanetary nebula was formed by the successive condensation of the components of the gas of solar composition during its motion from the hot, dense region near the protosun to the periphery of the nebula into regions of ever decreasing values of temperature and pressure. The hypothesis removes the contradiction materials and the presence of traces of high-temperature phenomena in chondrite materials and the conclusion that there were never high temperature in the preplanetary nebula at distances of 2-4 AU from the sun, where meteorites encountering the earth originate, and also explains a number of properties of chondrites. It follows from this hypothesis that the mass and angular momentum of the nebula were close to their minimum possible values and that the loss of the nebular gas had already begun at the final stage of its formation

  2. Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells

    Science.gov (United States)

    Harris, J.; Kesler, O.

    2010-01-01

    Atmospheric plasma spraying (APS) is attractive for manufacturing solid oxide fuel cells (SOFCs) because it allows functional layers to be built rapidly with controlled microstructures. The technique allows SOFCs that operate at low temperatures (500-700 °C) to be fabricated by spraying directly onto robust and inexpensive metallic supports. However, standard cathode materials used in commercial SOFCs exhibit high polarization resistances at low operating temperatures. Therefore, alternative cathode materials with high performance at low temperatures are essential to facilitate the use of metallic supports. Coatings of lanthanum strontium cobalt ferrite (LSCF) were fabricated on steel substrates using axial-injection APS. The thickness and microstructure of the coating layers were evaluated, and x-ray diffraction analysis was performed on the coatings to detect material decomposition and the formation of undesired phases in the plasma. These results determined the envelope of plasma spray parameters in which coatings of LSCF can be manufactured, and the range of conditions in which composite cathode coatings could potentially be manufactured.

  3. Radiation durability of polymeric materials in solid polymer electrolyzer for fusion tritium plant

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Yamanishi, Toshihiko; Hiroki, Akihiro; Tamada, Masao

    2009-02-01

    This document presents the radiation durability of various polymeric materials applicable to a solid-polymer-electrolyte (SPE) water electrolyzer to be used in the tritium facility of fusion reactor. The SPE water electrolyzers are applied to the water detritiation system (WDS) of the ITER. In the ITER, an electrolyzer should keep its performance during two years operation in the tritiated water of 9TBq/kg, the design tritium concentration of the ITER. The tritium exposure of 9TBq/kg for two years is corresponding to the irradiation of no less than 530 kGy. In this study, the polymeric materials were irradiated with γ-rays or with electron beams at various conditions up to 1600 kGy at room temperature or at 343 K. The change in mechanical and functional properties were investigated by stress-strain measurement, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray photoelectron spectra (XPS), and so on. Our selection of polymeric materials for a SPE water electrolyzer used in a radiation environment was Pt + Ir applied Nafion N117 ion exchange membrane, VITON O-ring seal and polyimide insulator. (author)

  4. High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes.

    Science.gov (United States)

    Pomfret, Michael B; Owrutsky, Jeffrey C; Walker, Robert A

    2006-09-07

    Chemical and material processes occurring in high temperature environments are difficult to quantify due to a lack of experimental methods that can probe directly the species present. In this letter, Raman spectroscopy is shown to be capable of identifying in-situ and noninvasively changes in material properties as well as the formation and disappearance of molecular species on surfaces at temperatures of 715 degrees C. The material, yttria-stabilized zirconia or YSZ, and the molecular species, Ni/NiO and nanocrystalline graphite, factor prominently in the chemistry of solid oxide fuel cells (SOFCs). Experiments demonstrate the ability of Raman spectroscopy to follow reversible oxidation/reduction kinetics of Ni/NiO as well as the rate of carbon disappearance when graphite, formed in-situ, is exposed to a weakly oxidizing atmosphere. In addition, the Raman active phonon mode of YSZ shows a temperature dependent shift that correlates closely with the expansion of the lattice parameter, thus providing a convenient internal diagnostic for identifying thermal gradients in high temperature systems. These findings provide direct insight into processes likely to occur in operational SOFCs and motivate the use of in-situ Raman spectroscopy to follow chemical processes in these high-temperature, electrochemically active environments.

  5. Construction material properties of slag from the high temperature arc gasification of municipal solid waste.

    Science.gov (United States)

    Roessler, Justin G; Olivera, Fernando D; Wasman, Scott J; Townsend, Timothy G; McVay, Michael C; Ferraro, Christopher C; Blaisi, Nawaf I

    2016-06-01

    Slag from the high temperature arc gasification (HTAG) of municipal solid waste (MSW) was tested to evaluate its material properties with respect to use as a construction aggregate. These data were compared to previously compiled values for waste to energy bottom ash, the most commonly produced and beneficially used thermal treatment residue. The slag was tested using gradations representative of a base course and a course aggregate. Los Angeles (LA) abrasion testing demonstrated that the HTAG slag had a high resistance to fracture with a measured LA loss of 24%. Soundness testing indicated a low potential for reactivity and good weathering resistance with a mean soundness loss of 3.14%. The modified Proctor compaction testing found the slag to possess a maximum dry density (24.04kN/m(3)) greater than conventionally used aggregates and WTE BA. The LBR tests demonstrated a substantial bearing capacity (>200). Mineralogical analysis of the HTAG suggested the potential for self cementing character which supports the elevated LBR results. Preliminary material characterization of the HTAG slag establishes potential for beneficial use; larger and longer term studies focusing on the material's possibility for swelling and performance at the field scale level are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A new carbon-based magnetic material for the dispersive solid-phase extraction of UV filters from water samples before liquid chromatography-tandem mass spectrometry analysis.

    Science.gov (United States)

    Piovesana, Susy; Capriotti, Anna Laura; Cavaliere, Chiara; La Barbera, Giorgia; Samperi, Roberto; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2017-07-01

    Magnetic solid-phase extraction is one of the most promising new extraction methods for liquid samples before ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. Several types of materials, including carbonaceous ones, have been prepared for this purpose. In this paper, for the first time, the preparation, characterization, and sorption capability of Fe 3 O 4 -graphitized carbon black (mGCB) composite toward some compounds of environmental interest were investigated. The synthesized mGCB consisted of micrometric GCB particles with 55 m 2  g -1 surface area bearing some carbonyl and hydroxyl functionalities and the surface partially decorated by Fe 3 O 4 microparticles. The prepared mGCB was firstly tested as an adsorbent for the extraction from surface water of 50 pollutants, including estrogens, perfluoroalkyl compounds, UV filters, and quinolones. The material showed good affinity to many of the tested compounds, except carboxylates and glucoronates; however, some compounds were difficult to desorb. Ten UV filters belonging to the chemical classes of benzophenones and p-aminobenzoates were selected, and parameters were optimized for the extraction of these compounds from surface water before UHPLC-MS/MS determination. Then, the method was validated in terms of linearity, trueness, intra-laboratory precision, and detection and quantification limits. In summary, the method performance (trueness, expressed as analytical recovery, 85-114%; RSD 5-15%) appears suitable for the determination of the selected compounds at the level of 10-100 ng L -1 , with detection limits in the range of 1-5 ng L -1 . Finally, the new method was compared with a published one, based on conventional solid-phase extraction with GCB, showing similar performance in real sample analysis. Graphical Abstract Workflow of the analytical method based on magnetic solid-phase extraction followed by LC-MS/MS determination.

  7. Multi-material classification of dry recyclables from municipal solid waste based on thermal imaging.

    Science.gov (United States)

    Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul

    2017-12-01

    There has been a significant rise in municipal solid waste (MSW) generation in the last few decades due to rapid urbanization and industrialization. Due to the lack of source segregation practice, a need for automated segregation of recyclables from MSW exists in the developing countries. This paper reports a thermal imaging based system for classifying useful recyclables from simulated MSW sample. Experimental results have demonstrated the possibility to use thermal imaging technique for classification and a robotic system for sorting of recyclables in a single process step. The reported classification system yields an accuracy in the range of 85-96% and is comparable with the existing single-material recyclable classification techniques. We believe that the reported thermal imaging based system can emerge as a viable and inexpensive large-scale classification-cum-sorting technology in recycling plants for processing MSW in developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Supercritical fluid extraction of lanthanides and actinides from solid materials with a fluorinated β-diketone

    International Nuclear Information System (INIS)

    Lin, Y.; Brauer, R.D.; Laintz, K.E.; Wai, C.M.

    1993-01-01

    Direct extraction of metal ions by supercritical carbon dioxide is highly inefficient because of the charge neutralization requirement and the weak solute-solvent interactions. One suggested approach of extracting metal ions by supercritical carbon dioxide is to convert the charged species into metal chelates using a chelating agent in the fluid phase. This paper describes a method of extracting lanthanide and uranyl ions from a solid material by supercritical carbon dioxide containing a fluorinated beta-diketone, 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedione(FOD). Potential applications of this SFE method for separating the f-block elements from environmental samples are discussed. 13 refs., 2 tabs

  9. Atomistic modeling of the solid-state chemistry of actinide materials

    Science.gov (United States)

    Shuller, Lindsay C.

    Materials that incorporate actinides are critical to the nuclear fuel cycle, either as nuclear fuels or nuclear waste forms. In this thesis, I examine four materials: i) ThO2-UO2 solid solutions, ii) binary ThO2-CeO2-ZrO2 solid solutions, iii) Np-doped studtite, iv) Np-doped boltwoodite. Computational methods, particularly density functional theory (DFT) calculations and Monte-Carlo (MC) simulations, are used to determine the energetics and structures of these actinide-bearing materials. The solid-solution behavior of nuclear fuels and nuclear waste forms indicate the thermodynamic stability of the material, which is important for understanding the in-reactor fuel properties and long-term stability of used fuel. The ThxU1-xO2 and ThxCe 1-xO2 binaries are almost completely miscible; however, DeltaGmix reveals a small tendency for the systems to exsolve (e.g., DeltaEexsoln(Th xU1-xO2) = 0.13 kJ/(mol cations) at 750 K). Kinetic hindrances (e.g., interfacial energy) may inhibit exsolution, especially at the low temperatures necessary to stabilize the nanoscale exsolution lamellae observed in the ThxU1-xO2 and Ce xZr1-xO2 binaries. Miscibility in the Zr-bearing binaries is limited. At 1400 °C, only 3.6 and 0.09 mol% ZrO2 is miscible in CeO2 and ThO2, respectively. The incorporation of minor amounts of Np5+,6+ into uranium alteration phases, e.g., studtite [UO2O2 (H2O)4] or boltwoodite [K(UO2)(SiO 3OH)(H2O)1.5] , may limit the mobility of aqueous neptunyl complexes released from oxidized nuclear fuels. Np6+-incorporation into studtite requires less energy than Np5+-incorporation (e.g., with source/sink = Np2O5/UO 3 DeltaEincorp(Np6+) = 0.42 eV and DeltaEincorp(Np5+) = 1.12 eV). In addition, Np6+ is completely miscible in studtite at room temperature with respect to a hypothetical Np6+-studtite. Electronic structure calculations provide insight into Np-bonding in studtite. The Np 5f orbitals are within the band gap of studtite, resulting in the narrowing of the band gap

  10. Leaching behaviour of municipal solid waste incineration bottom ash: From granular material to monolithic concrete.

    Science.gov (United States)

    Sorlini, Sabrina; Collivignarelli, Maria Cristina; Abbà, Alessandro

    2017-09-01

    The aim of this work was to assess the leaching behaviour of the bottom ash derived from municipal solid waste incineration (MSWI) used in concrete production. In particular, the release of pollutants was evaluated by the application of different leaching tests, both on granular materials and monolithic samples (concrete mixtures cast with bottom ash). The results confirmed that, according to Italian regulations, unwashed bottom ashes present critical issues for the use as alternative aggregates in the construction sector due to the excessive release of pollutants; instead, the leachate from washed bottom ashes was similar to natural aggregates. The concentration of pollutants in the leachate from concrete mixtures was lower than regulation limits for reuse. The crushing process significantly influenced the release of pollutants: this behaviour was due both to the increase in surface area and the release of contaminants from cement. Moreover, the increase in contact time (up to 64 days) involved more heavy metals to be released.

  11. Headspace solid-phase microextraction procedures for gas chromatographic analysis of biological fluids and materials.

    Science.gov (United States)

    Mills, G A; Walker, V

    2000-12-01

    Solid-phase microextraction (SPME) is a new solventless sample preparation technique that is finding wide usage. This review provides updated information on headspace SPME with gas chromatographic separation for the extraction and measurement of volatile and semivolatile analytes in biological fluids and materials. Firstly the background to the technique is given in terms of apparatus, fibres used, extraction conditions and derivatisation procedures. Then the different matrices, urine, blood, faeces, breast milk, hair, breath and saliva are considered separately. For each, methods appropriate for the analysis of drugs and metabolites, solvents and chemicals, anaesthetics, pesticides, organometallics and endogenous compounds are reviewed and the main experimental conditions outlined with specific examples. Then finally, the future potential of SPME for the analysis of biological samples in terms of the development of new devices and fibre chemistries and its coupling with high-performance liquid chromatography is discussed.

  12. Two and three dimensional electron backscattered diffraction analysis of solid oxide cells materials

    DEFF Research Database (Denmark)

    Saowadee, Nath

    in solid oxide fuel cell and electrolysis cell. Conductivity of STN is one of the important properties that researchers desire to improve. Grin boundary conductivity contributes to the overall conductivity of the STN. Grain boundary density controlled by mainly grain growth in material processing. Grain......There are two main technique were developed in this work: a technique to calculate grain boundary energy and pressure and a technique to measure lattice constant from EBSD. The techniques were applied to Nb-doped Strontium titanate (STN) and yttria stabilized zirconia (YSZ) which are commonly used...... boundary migration in grain growth involves grain boundary mobility and net pressure on it. Thus grain boundary energy and pressure of STN were calculated in this work. Secondary phase is undesired in STN and YSZ synthesis. The secondary phase in ceramics with the same compounds can have different lattice...

  13. Silica nanoparticles produced by DC arc plasma from a solid raw materials

    Science.gov (United States)

    Kosmachev, P. V.; Vlasov, V. A.; Skripnikova, N. K.

    2017-05-01

    Plasma synthesis of SiO2 nanoparticles in experimental atmospheric pressure plasma reactor on the basis of DC arc plasma generator was presented in this paper. Solid high-silica raw materials such as diatomite from Kamyshlovskoye deposit in Russia, quartzite from Chupinskoye deposit in Russia and milled window glass were used. The obtained nanoparticles were characterized based on their morphology, chemical composition and size distribution. Scanning electron microscopy, laser diffractometry, nitrogen absorption (Brunauer-Emmett-Teller method), X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy were used to characterize the synthesized products. The obtained silica nanoparticles are agglomerated, have spherical shape and primary diameters between 10-300 nm. All samples of synthesized nanopowders were compared with commercial nanopowders.

  14. A Quantitative Property-Property Relationship for the Internal Diffusion Coefficients of Organic Compounds in Solid Materials

    DEFF Research Database (Denmark)

    Huang, Lei; Fantke, Peter; Jolliet, Olivier

    2017-01-01

    of chemical-material combinations. This paper develops and evaluates a quantitative property-property relationship (QPPR) to predict diffusion coefficients for a wide range of organic chemicals and materials. We first compiled a training dataset of 1103 measured diffusion coefficients for 158 chemicals in 32......Indoor releases of organic chemicals encapsulated in solid materials are major contributors to human exposures and are directly related to the internal diffusion coefficient in solid materials. Existing correlations to estimate the diffusion coefficient are only valid for a limited number...... consolidated material types. Following a detailed analysis of the temperature influence, we developed a multiple linear regression model to predict diffusion coefficients as a function of chemical molecular weight (MW), temperature, and material type (adjusted R2 of 0.93). The internal validations showed...

  15. Extracting material response from simple mechanical tests on hardening-softening-hardening viscoplastic solids

    Science.gov (United States)

    Mohan, Nisha

    Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of

  16. Compatibility analysis of material and energy recovery in a regional solid waste management system.

    Science.gov (United States)

    Chang, Ying-Hsi; Chang, Ni-Bin

    2003-01-01

    The rising prices of raw materials and concerns about energy conservation have resulted in an increasing interest in the simultaneous recovery of materials and energy from waste streams. Compatibility exists for several economic, environmental, and managerial reasons. Installing an on-site or off-site presorting facility before an incinerator could be a feasible alternative to achieve both goals if household recycling programs cannot succeed in local communities. However, the regional impacts of presorting solid waste on a waste-to-energy facility remain unclear because of the inherent complexity of solid waste compositions and properties over different areas. This paper applies a system-based approach to assess the impact of installing a refuse-derived fuel (RDF) process before an incinerator. Such an RDF process, consisting of standard unit operations of shredding, magnetic separation, trommel screening, and air classification, might be useful for integrating the recycling and presorting efforts for a large-scale municipal incinerator from a regional sense. An optimization modeling analysis is performed to characterize such integration potential so that the optimal size of the RDF process and associated shipping patterns for flow control can be foreseen. It aims at exploring how the waste inflows with different rates of generation, physical and chemical compositions, and heating values collected from differing administrative districts can be processed by either a centralized presorting facility or an incinerator to meet both the energy recovery and throughput requirements. A case study conducted in Taipei County, which is one of the most densely populated metropolitan areas in Taiwan, further confirms the application potential of such a cost-benefit analysis.

  17. New problems in solid-state chemistry solved by high pressure conditions: an exciting perspective for preparing new materials

    OpenAIRE

    Demazeau , Gérard

    1988-01-01

    International audience; The high-pressure technique is an efficient tool in solid-state chemistry for preparing new materials of low stability or metastable character. During the last 20 years, this technique has been used and developed especially in three principal areas : synthesis of new materials, either for a better basic approach of scientific problems or for industrial applications studies of structural transformations in situ evolution of some physical properties of materials under pr...

  18. Solid nanofoams based on cellulose nanofibers and indomethacin-the effect of processing parameters and drug content on material structure

    DEFF Research Database (Denmark)

    Bannow, J; Benjamins, J-W; Wohlert, J

    2017-01-01

    to verify the wet-foam stability at different pHs. The pH influenced the amount of solubilized drug and the processing-window was very narrow at high drug loadings. The results were compared to real foaming-experiments and solid state analysis of the final cellular solids. The parameters were assembled...... into a processing chart, highlighting the importance of the right combination of processing parameters (pH and time-point of pH adjustment) in order to successfully prepare cellular solid materials with up to 46 wt% drug loading....

  19. Roles of black carbon on the fate of heavy metals and agrochemicals in soil

    Science.gov (United States)

    Char(coal) and other black carbon materials can comprise up to 35% of total organic carbon in US agricultural soils, and are known to strongly and often irreversibly bind contaminants including heavy metals. Black carbon has received renewed interests in recent years as a solid co-product formed du...

  20. "Intelligent" design of molecular materials: Understanding the concepts of design in supramolecular synthesis of network solids

    Science.gov (United States)

    Moulton, Brian D.

    This work endeavors to delineate modern paradigms for crystal engineering, i.e. the design and supramolecular synthesis of functional molecular materials. Paradigms predicated on an understanding of the geometry of polygons and polyhedra are developed. The primary focus is on structural determination by single crystal X-ray crystallography, structural interpretation using a suite of graphical visualization and molecular modeling software, and on the importance of proper graphical representation in the presentation and explanation of crystal structures. A detailed analysis of a selected series of crystal structures is presented. The reduction of these molecular networks to schematic representations that illustrate their fundamental connectivity facilitates the understanding of otherwise complex supramolecular solids. Circuit symbols and Schlafli notation are used to describe the network topologies, which enables networks of different composition and metrics to be easily compared. This reveals that molecular orientations in the crystals and networks are commensurate with networks that can be derived from spherical close packed lattices. The development of a logical design strategy for a new class of materials based on our understanding of the chemical composition and topology of these networks is described. The synthesis and crystal structure of a series of new materials generated by exploitation of this design strategy is presented, in addition to a detailed analysis of the topology of these materials and their relationship to a 'parent' structure. In summary, this dissertation demonstrates that molecular polygons can self-assemble at their vertexes to produce molecular architectures and crystal structures that are consistent with long established geometric dogma. The design strategy represents a potentially broad ranging approach to the design of nanoporous structures from a wide range of chemical components that are based on molecular shape rather than chemical

  1. Lanthanum chromite materials as potential symmetrical electrodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Ruiz-Morales, J. C.

    2007-08-01

    Full Text Available A commonly used interconnector material has been tested as electrode for a new concept of Solid Oxide Fuel Cell, where the same material could be used, simultaneously, as interconnector, anode and cathode. We have found that a typical substituted chromite, such as La0.7Ca0.3CrO3-δ (LCC can be considered a good candidate for such configuration, due to its high electronic conductivity in both reducing and oxidising conditions, and moderate catalytic properties for oxygen reduction and hydrogen oxidation. The symmetrical design renders performances of 100 mWcm-2 at 950ºC, using O2 and H2 as oxidant and fuel respectively. Performances exceeding 300 mWcm-2 can be predicted for a 100μm-thick YSZ electrolyte.

    Un material comúnmente utilizado como interconector ha sido probado como electrodo para un nuevo concepto de Pila de Combustible de Óxidos Sólido, en el cual el mismo material se utiliza, simultáneamente, como interconector, ánodo y cátodo. Hemos encontrado que una cromita típica como La0.7Ca0.3CrO3-δ (LCC puede ser considerada una buena candidata para dicha configuración, debido a sus altas conductividades eléctricas tanto en condiciones reductoras como oxidantes y una aceptable actividad catalítica para la reducción del oxígeno y la oxidación del hidrógeno. El diseño simétrico permite obtener rendimientos del orden de 100mWcm-2 a 950ºC, utilizando O2 e H2 como oxidante y combustible, respectivamente. Rendimientos que superan los 300mWcm-2 pueden predecirse para pilas con electrolitos de YSZ de 100 μm de grosor.

  2. Elaboration of building materials from industrial waste from solid granular diatomaceous earth

    International Nuclear Information System (INIS)

    Del Angel S, A.

    2015-01-01

    In this work the initial characterization of granular solid industrial waste from diatomaceous earth was carried out using techniques of Scanning Electron Microscopy and X-ray Diffraction. In a second stage leaching of the material was undertaken to the US Patent Number 5, 376,000 and 5, 356,601 obtaining the samples M1-S ph 2, M1-L ph, M1-S ph 10 and M1-L ph 10. In the third stage a new characterization of the samples obtained with the techniques of Scanning Electron Microscopy, X-ray Diffraction and Atomic Absorption Spectrometry was performed, the latter in order to determine the efficiency percentage of the leaching process. In the fourth stage the specimens for performing mechanical, physical and chemical tests were manufactured, using molds as PVC pipes of 1 inch in diameter and 2 inches in length, with a composition of 50% of diatomaceous earth and 50% of cement produced in each. Finally, in the fifth stage mechanical testing (compression resistance), physical (moisture absorption rate) and chemical (composition and structure of the material) are performed. In the last stage, when conducting mechanical testing with the test specimens, the presence of bubbles enclosed in each obtaining erroneous results noted, so it was necessary to develop the specimens again, obtaining in this occasion concentrations of 20:80, 40:60, 60:40 and 80:20 of diatomaceous earth with the cement. These results were analyzed to determine if the used material is suitable for the production of building materials such as bricks or partitions, being demonstrated by the tests carried out if they are eligible. (Author)

  3. Uranium analysis in water flowing by the nuclear track detection method on solid dielectric materials

    International Nuclear Information System (INIS)

    Arambula, H.

    1981-01-01

    The objective of this experiment was threefold: to study the content of uranium in tap and spring water, to establish a technique for the quantitative analysis for the presence of uranium in liquids, and to test the qualities as detector fission fragments of three solid insulator materials using the nuclear tracks register method. The latter allows for the measurement of concentrations of fissile elements up to 10 -12 gr/gm employing (n, f.f.) reactions. The test samples were of tap water and of water from six fresh water springs located in San Luis Potosi and Guanajuato. Glass, lexan polycarbonate and muscovite mica were the detector materials used. The technique consisted in evaporating the water from the test samples, which had been previously placed upon the detector materials, and in doing the same for the standard control sample solutions having known concentrations of uranium. All the samples were then irradiated with thermal neutrons, and the 235 U, present in the samples, fissioned. The fission fragments produced permanent damage on the detectors, known as latent tracks. A specific corroding chemical was then applied to each detector which caused the latent tracks to dissolve into grooves. Known as etching tracks, these grooves were microscopically visible and could be measured for track density (tracks/mm 2 ). The concentrations of uranium present in the test samples were measured by comparing the track densities of the test samples with those of the standard control samples. The concentration of uranium found in the spring water samples ranged from 0.09 to 0.89 μqr.U/1, and those of tap water, from 0.18 to 0.19 μqr U/1. Lexan polycarbonate and muscovite mica proved to be better, as detectors, than glass. Glass for quantitative analysis, we found not recommendable as a detector material because of its alterable composition in the presence of uranium. (author)

  4. Monte Carlo modeling of 60 Co HDR brachytherapy source in water and in different solid water phantom materials

    Directory of Open Access Journals (Sweden)

    Sahoo S

    2010-01-01

    Full Text Available The reference medium for brachytherapy dose measurements is water. Accuracy of dose measurements of brachytherapy sources is critically dependent on precise measurement of the source-detector distance. A solid phantom can be precisely machined and hence source-detector distances can be accurately determined. In the present study, four different solid phantom materials such as polymethylmethacrylate (PMMA, polystyrene, Solid Water, and RW1 are modeled using the Monte Carlo methods to investigate the influence of phantom material on dose rate distributions of the new model of BEBIG 60 Co brachytherapy source. The calculated dose rate constant is 1.086 ± 0.06% cGy h−1 U−1 for water, PMMA, polystyrene, Solid Water, and RW1. The investigation suggests that the phantom materials RW1 and Solid Water represent water-equivalent up to 20 cm from the source. PMMA and polystyrene are water-equivalent up to 10 cm and 15 cm from the source, respectively, as the differences in the dose data obtained in these phantom materials are not significantly different from the corresponding data obtained in liquid water phantom. At a radial distance of 20 cm from the source, polystyrene overestimates the dose by 3% and PMMA underestimates it by about 8% when compared to the corresponding data obtained in water phantom.

  5. The physics of solid-state neutron detector materials and geometries.

    Science.gov (United States)

    Caruso, A N

    2010-11-10

    Detection of neutrons, at high total efficiency, with greater resolution in kinetic energy, time and/or real-space position, is fundamental to the advance of subfields within nuclear medicine, high-energy physics, non-proliferation of special nuclear materials, astrophysics, structural biology and chemistry, magnetism and nuclear energy. Clever indirect-conversion geometries, interaction/transport calculations and modern processing methods for silicon and gallium arsenide allow for the realization of moderate- to high-efficiency neutron detectors as a result of low defect concentrations, tuned reaction product ranges, enhanced effective omnidirectional cross sections and reduced electron-hole pair recombination from more physically abrupt and electronically engineered interfaces. Conversely, semiconductors with high neutron cross sections and unique transduction mechanisms capable of achieving very high total efficiency are gaining greater recognition despite the relative immaturity of their growth, lithographic processing and electronic structure understanding. This review focuses on advances and challenges in charged-particle-based device geometries, materials and associated mechanisms for direct and indirect transduction of thermal to fast neutrons within the context of application. Calorimetry- and radioluminescence-based intermediate processes in the solid state are not included.

  6. Crack nucleation in solid materials under external load - simulations with the Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Klejment Piotr

    2018-01-01

    Full Text Available Numerical analysis of cracking processes require an appropriate numerical technique. Classical engineering approach to the problem has its roots in the continuum mechanics and is based mainly on the Finite Element Method. This technique allows simulations of both elastic and large deformation processes, so it is very popular in the engineering applications. However, a final effect of cracking - fragmentation of an object at hand can hardly be described by this approach in a numerically efficient way since it requires a solution of a problem of nontrivial evolving in time boundary conditions. We focused our attention on the Discrete Element Method (DEM, which by definition implies “molecular” construction of the matter. The basic idea behind DEM is to represent an investigated body as an assemblage of discrete particles interacting with each other. Breaking interaction bonds between particles induced by external forces imeditelly implies creation/evolution of boundary conditions. In this study we used the DEM approach to simulate cracking process in the three dimensional solid material under external tension. The used numerical model, although higly simplified, can be used to describe behaviour of such materials like thin films, biological tissues, metal coatings, to name a few.

  7. Materials system for intermediate temperature solid oxide fuel cells based on doped lanthanum-gallate electrolyte

    Science.gov (United States)

    Gong, Wenquan

    2005-07-01

    The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization

  8. Process and apparatus for pyrolytic decomposition and coking of mixtures of finely divided solid carbonaceous material and hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A

    1933-09-18

    A process is described for pyrolytic decomposition and coking of mixtures of finely divided solid and semi-solid carbonaceous material and hydrocarbon oils, whereby the mixture is first heated to a high temperature; the heated products are introduced into a coking zone, where vapors are separated from nonvaporous residue afterwards to be cracked and condensed, characterized in that the mixture is heated to a high temperature under substantially noncoking conditions and that nonvaporous residue obtained in the coking zone is coked as a relatively thin layer on an externally intensely heated surface, preferably of heat-conducting, fireproof material, such as carborundum, fused-aluminum oxide, or clay.

  9. Alternative comparison, analysis, and evaluation of solid waste and materials system alternatives

    International Nuclear Information System (INIS)

    Brothers, A.J.

    1995-09-01

    This paper presents a comprehensive analysis of the impact of solid waste technical options on values and objectives that are important to the public. It is written in support of the Solid Waste and Materials Systems Alternatives Study (WHC, 1995). Described are the values that were identified, the major programmatic risks, how the impacts were measured, the performance of alternatives, the methodology used for the analysis, and the implications of the results. Decision analysis was used to guide the collection and analysis of data and the logic of the evaluation. Decision analysis is a structured process for the analysis and evaluation of alternatives. It is theoretically grounded in a set of axioms that capture the basic principles of decision making (von Neuman and Morgenstern 1947). Decision analysis objectively specifies what factors are to be considered, how they are to be measured and evaluated, and heir relative importance. The result is an analysis in which the underlying rationale or logic upon which the decision is based is made explicit. This makes possible open discussion of the decision basis in which facts and values are clearly distinguished, resulting in a well- documented decision that can be clearly explained and justified. The strategy of decision analysis is to analyze the various components relevant to the decision separately and then integrate the individual judgments to arrive at an overall decision. This assures that all the relevant factors are identified and their relative importance is considered. The procedure for obtaining the individual judgments, and the decision rules, for combining them and evaluating alternatives, have both theoretical and empirical foundation in mathematics, economics, and psychology

  10. McPhy-Energy’s proposal for solid state hydrogen storage materials and systems

    Energy Technology Data Exchange (ETDEWEB)

    Jehan, Michel, E-mail: michel.jehan@mcphy.com [McPhy Energy SA, ZA Retière, 26190 La Motte-Fanjas (France); Fruchart, Daniel, E-mail: daniel.fruchart@grenoble.cnrs.fr [McPhy Energy SA, ZA Retière, 26190 La Motte-Fanjas (France); Institut Néel and CRETA, CNRS, 25 Avenue des Martyrs, BP 166, 38042 Grenoble Cedex 9 (France)

    2013-12-15

    Highlights: •Mechanical alloying with nano-structurizing highly reactive magnesium metal hydrides particles. •Solid reversible hydrogen storage at scale of kg to tons of hydrogen using MgH{sub 2} composite discs. •Natural Expanded Graphite draining heat of reaction during sorption. •Change Phase Material storing reversibly heat of reaction within tank storage as adiabatic system. •Technology fully adapted for renewable energy storage and network energy peak shavings through H{sub 2}. -- Abstract: The renewable resources related, for instance, to solar energies exhibit two main characteristics. They have no practical limits in regards to the efficiency and their various capture methods. However, their intermittence prevents any direct and immediate use of the resulting power. McPhy-Energy proposes solutions based on water electrolysis for hydrogen generation and storage on reversible metal hydrides to efficiently cover various energy generation ranges from MW h to GW h. Large stationary storage units, based on MgH{sub 2}, are presently developed, including both the advanced materials and systems for a total energy storage from ∼70 to more than 90% efficient. Various designs of MgH{sub 2}-based tanks are proposed, allowing the optional storage of the heat of the Mg–MgH{sub 2} reaction in an adjacent phase changing material. The combination of these operations leads to the storage of huge amounts of hydrogen and heat in our so-called adiabatic-tanks. Adapted to intermittent energy production and consumption from renewable sources (wind, sun, tide, etc.), nuclear over-production at night, or others, tanks distribute energy on demand for local applications (on-site domestic needs, refueling stations, etc.) via turbine or fuel cell electricity production.

  11. Co-free, iron perovskites as cathode materials for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Shu-en [Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan, 430074 (China); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Alonso, Jose Antonio [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain); Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States); Goodenough, John B. [Texas Materials Institute, ETC 9.102, The University of Texas at Austin, Austin, TX 78712 (United States)

    2010-01-01

    We have developed a Co-free solid oxide fuel cell (SOFC) based upon Fe mixed oxides that gives an extraordinary performance in test-cells with H{sub 2} as fuel. As cathode material, the perovskite Sr{sub 0.9}K{sub 0.1}FeO{sub 3-{delta}} (SKFO) has been selected since it has an excellent ionic and electronic conductivity and long-term stability under oxidizing conditions; the characterization of this material included X-ray diffraction (XRD), thermal analysis, scanning microscopy and conductivity measurements. The electrodes were supported on a 300-{mu}m thick pellet of the electrolyte La{sub 0.8}Sr{sub 0.2}Ga{sub 0.83}Mg{sub 0.17}O{sub 3-{delta}} (LSGM) with Sr{sub 2}MgMoO{sub 6} as the anode and SKFO as the cathode. The test cells gave a maximum power density of 680 mW cm{sup -2} at 800 C and 850 mW cm{sup -2} at 850 C, with pure H{sub 2} as fuel. The electronic conductivity shows a change of regime at T {approx} 350 C that could correspond to the phase transition from tetragonal to cubic symmetry. The high-temperature regime is characterized by a metallic-like behavior. At 800 C the crystal structure contains 0.20(1) oxygen vacancies per formula unit randomly distributed over the oxygen sites (if a cubic symmetry is assumed). The presence of disordered vacancies could account, by itself, for the oxide-ion conductivity that is required for the mass transport across the cathode. The result is a competitive cathode material containing no cobalt that meets the target for the intermediate-temperature SOFC. (author)

  12. Method of altering the effective bulk density of solid material and the resulting product: hollow polymeric particles

    International Nuclear Information System (INIS)

    Kool, L.B.; Nolen, R.L.; Solomon, D.E.

    1981-01-01

    Hollow spherical particles are made by spraying a mixture of powdered solid material with a solution of a film-forming polymer in a solvent therefor into a heated chamber where the solvent evaporates. The powder is thereby captured in the wall of the hollow polymer particles formed. Such particles are used to form a suspension in a fluid material. The hollow particles are of such size and wall thickness, in relation to the bulk density of the powdered solid material, that the bulk density of each hollow spherical particle is commensurate with the density of the fluid material. The particles thereby remain in suspension over a substantial period of time with little or no agitation of the fluid. (author)

  13. Synthesis and Self-Assembly of Chiral Cylindrical Molecular Complexes: Functional Heterogeneous Liquid-Solid Materials Formed by Helicene Oligomers

    Directory of Open Access Journals (Sweden)

    Nozomi Saito

    2018-01-01

    Full Text Available Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles emit light; silica nanoparticles aggregate and adsorb double-helices. Notable dynamics appears during self-assembly, including multistep self-assembly, solid surface catalyzed double-helix formation, sigmoidal and stairwise kinetics, molecular recognition of nanoparticles, discontinuous self-assembly, materials clocking, chiral symmetry breaking and homogeneous-heterogeneous transitions. These phenomena are derived from strong intercomplex interactions of chiral cylindrical molecular complexes.

  14. Solid tritium breeder materials-Li2O and LiAlO2: a data base review

    International Nuclear Information System (INIS)

    Liu, Y.Y.; Billone, M.C.; Clemmer, R.G.; Fischer, A.K.; Hollenberg, G.W.; Tam, S.W.

    1985-01-01

    The fabrication, properties, and irradiation behavior of Li 2 O and γ-LiAlO 2 are reviewed and assessed to determine the potential of these materials to satisfy the basic solid breeder blanket performance requirements. Based on the data analysis and theoretical modeling, a set of major technical uncertainties is identified. These uncertainties include: fabricability of sphere-pac solid breeders; high fluence and burnup effects on thermal conductivity and microstructural stability; high fluence and burnup effects on tritium diffusion coefficients at low temperature; relationship among purge flow chemistry, surface adsorption, and species of released tritium; and mechanical properties and the loads imposed on the structural materials by the breeder during blanket operation. Resolution of these issues is important in assuring that solid breeder blankets can be designed with confidence

  15. Evaluating the Efficiency of Tragacanth Coagulant Aid in Removing Colloidal Materials and Suspended Solids Creating Turbidity from Karun River Water

    OpenAIRE

    Majid Farhadi; Afshin Takdastan; Roghayeh Baghbany

    2016-01-01

    Introduction: Colloidal materials and suspended solids cause turbidity in water. To remove turbidity, clarification method is used that includes processes of coagulation, flocculation, and sedimentation. Due to the long duration of coagulation process, coagulant aids are applied. Despite the favorable efficiency of synthetic polyelectrolytes as a coagulant aid, due to their harmful effects on human health, in this process, natural organic polymers are used instead. Materials and Methods: I...

  16. Vapor-liquid-solid mechanisms: Challenges for nanosized quantum cluster/dot/wire materials

    Science.gov (United States)

    Cheyssac, P.; Sacilotti, M.; Patriarche, G.

    2006-08-01

    The growth mechanism model of a nanoscaled material is a critical step that has to be refined for a better understanding of a nanostructure's dot/wire fabrication. To do so, the growth mechanism will be discussed in this paper and the influence of the size of the metallic nanocluster starting point, referred to later as "size effect," will be studied. Among many of the so-called size effects, a tremendous decrease of the melting point of the metallic nanocluster changes the physical properties as well as the physical/mechanical interactions inside the growing structure composed of a metallic dot on top of a column. The thermodynamic size effect is related to the bending or curvature of chains of atoms, giving rise to the weakening of bonds between them; this size or curvature effect is described and approached to crystal nanodot/wire growth. We will describe this effect as that of a "cooking machine" when the number of atoms decreases from ˜1023at./cm3 for a bulk material to a few tens of them in a 1-2nm diameter sphere. The decrease of the number of atoms in a metallic cluster from such an enormous quantity is accompanied by a lowering of the melting temperature that extends from 200 up to 1000K, depending on the metallic material and its size under study. In this respect, the vapor-liquid-solid (VLS) model, which is the most utilized growth mechanism for quantum nanowires and nanodots, is critically exposed to size or curvature effects (CEs). More precisely, interactions in the vicinity of the growth regions should be reexamined. Some results illustrating the growth of micrometer-/nanometer-sized materials are presented in order to corroborate the CE/VLS models utilized by many research groups in today's nanosciences world. Examples of metallic clusters and semiconducting wires will be presented. The results and comments presented in this paper can be seen as a challenge to be overcome. From them, we expect that in a near future an improved model can be exposed

  17. Some solid state properties of LiF:Mg,Cu,P TL-materials

    Energy Technology Data Exchange (ETDEWEB)

    Prokert, K [Dresden Univ. of Technology (Georgia). Inst. of Radiation Protection

    1996-12-31

    This paper describes some investigations of solid state characteristics of a LiF:Mg,Cu,P thermoluminofor. The investigations were carried out with LiF:Mg,Cu,P-thermoluminescence (TL)-material prepared by the chemical institute of the Moscow State University in form of powder and sintered pellets. Following methods were used: (1) Studies of the chemical composition was carried out by x-ray fluorescence analysis with `SPECTRO-X-LAB`-equipment with Rh-anode, B{sub 4}C-polarizator, LN{sub 2}-cooled 30 mm{sup 2} Si(Li)-detector with Be-window (energy resolution 155 keV for Mn-k{sub {alpha}}-radiation). The software of the equipment permits a qualitative and quantitative determination of elements with atomic numbers >10; (2) investigations of the crystal structure were taken by x-ray-diffractometry with a SIEMENS-diffractometer D 500 using Cu-k{sub {alpha}}-radiation. The integrated software permits to analyze the crystalline phases using the data of the measured material by comparison with standards spectra of various pure substances. The results of determination of the chemical composition and the crystal structure show that in the thermoluminofor LiF:Mg,Cu,P, besides the basic material LiF also Li{sub 3}PO{sub 4}- and Li{sub 4}P{sub 2}O{sub 7}-crystal regions exists. The occurrence of the two lithium phosphate phases follow from the high ammonium phosphate content in the mixture for the thermoluminofor production. The formation of the various lithium phosphates depends from state of dehydration of phosphoric acids, created by thermal decomposition of NH{sub 4}H{sub 2}PO{sub 4} before their reactions with LiF start. Therefore the content of these compounds can differ if thermoluminofors are prepared under various conditions. The maintenance of the needed equilibrium of special structures in the material depends on the preparation procedure, on the reading and annealing methods. Typically for such an equilibrium is its poor thermal stability. (Abstract Truncated)

  18. Materials and systems developments on solid absorption refrigeration with CaCl2·xNH3

    International Nuclear Information System (INIS)

    Iloeji, O.C.

    1995-10-01

    The paper presents some developments on the stabilization of CaCl 2 for use as a solid absorption material in refrigerators, the development of a refrigerator using the stabilized salt, and computer modelling of the refrigerator system. (author). 8 refs, 19 figs

  19. Sorption behavior of charged and neutral polar organic compounds on solid phase extraction materials: which functional group governs sorption?

    NARCIS (Netherlands)

    Bäuerlein, P.S.; Mansell, J.E.; ter Laak, T.L.; de Voogt, P.

    2012-01-01

    Numerous polar anthropogenic organic chemicals have been found in the aqueous environment. Solid phase extraction (SPE) has been applied for the isolation of these from aqueous matrices, employing various materials. Nevertheless, little is known about the influence of functional groups on the

  20. Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading

    KAUST Repository

    Ding, I-Kang; Melas-Kyriazi, John; Cevey-Ha, Ngoc-Le; Chittibabu, Kethinni G.; Zakeeruddin, Shaik M.; Grä tzel, Michael; McGehee, Michael D.

    2010-01-01

    We report using doctor-blading to replace conventional spin coating for the deposition of the hole-transport material spiro-OMeTAD (2,20,7,70-tetrakis-(N, N-di-p-methoxyphenylamine)- 9,90-spirobifluorene) in solid-state dye-sensitized solar cells

  1. Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103

    NARCIS (Netherlands)

    Callini, Elsa; Aguey-Zinsou, Kondo Francois; Ahuja, Rajeev; Ares, Jos Ramon; Bals, Sara; Biliskov, Nikola; Chakraborty, Sudip; Charalambopoulou, Georgia; Chaudhary, Anna Lisa; Cuevas, Fermin; Dam, Bernard; de Jongh, Petra; Dornheim, Martin; Filinchuk, Yaroslav; Novakovic, Jasmina G.; Hirscher, Michael; Hirscher, M.; Jensen, Torben R.; Jensen, Peter Bjerre; Novakovic, Nikola; Lai, Qiwen; Leardini, Fabrice; Gattia, Daniele Mirabile; Pasquini, Luca; Steriotis, Theodore; Turner, Stuart; Vegge, Tejs; Zuttel, Andreas; Montone, Amelia

    2016-01-01

    In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated

  2. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    Science.gov (United States)

    Pal, Nabanita; Bhaumik, Asim

    2013-03-01

    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103

    DEFF Research Database (Denmark)

    Callini, Elsa; Aguey-Zinsou, Kondo-Francois; Ahuja, Rajeev

    2016-01-01

    In the framework of the European Cooperation in Science and Technology (COST) Action MP1103 Nanostructured Materials for Solid-State Hydrogen Storage were synthesized, characterized and modeled. This Action dealt with the state of the art of energy storage and set up a competitive and coordinated...

  4. The Black Studies Boondoggle

    Science.gov (United States)

    Long, Richard A.

    1970-01-01

    Indicates tendencies dangerous to the basic purpose of Black Studies, and identifies four external challeges--imperialism, paternalism, nihilism, and materialism. An internal challenge is considered to be the use of European and Establishment constructs to analyze black reality. (DM)

  5. A choice of renewable or upgraded material from oil palm solid wastes

    International Nuclear Information System (INIS)

    Farid Nasir Ani; Wong Chuan Chin; Hussin Mohd Nor

    2006-01-01

    Malaysian palm oil industries are producing a large amount of solid wastes from the palm oil mills. Malaysia generates around 1.10 million tons of oil palm shells in year 1980 but this amount increased up to 4.11 million tons in year 2002 as wastes. Disposal of these wastes created environmental problems. Thus, a process was designed to reuse and recycle these wastes into value added products. This research used oil palm shells as a renewable material resource by thermo-chemical process to produce pyrolysis oil. The oil could be utilized as fuel or converted to valued added products. Since it contain a significant amount of phenols, it was extracted using solvent extraction technique to gain the useful phenol and phenolic compounds. The extracted oil-palm-shell-based phenol was used in the manufacturing of phenol formaldehyde wood adhesives. Then the capability of wood bonding was tested comparing with the petroleum-based phenol formaldehyde wood adhesives. For the commercial values of this research, the total global consumption of phenol in 2000 was 11.3 million metric ton that worth USD 10.0 billions. Thus, the commercial potentiality of this research is very high as the oil-palm-shell-based phenol could replace the petroleum-based phenol. The methods and products utilize low manufacturing cost from relatively simple technology and locally abundant raw material, comparable performances in wood bonding and competitive in price. It is estimated that around USD 900 / ton for petroleum-based, but just USD 250 / ton for palm-shell-based phenol

  6. Study utilization of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuels

    Science.gov (United States)

    Hendrianie, Nuniek; Juliastuti, Sri Rachmania; Ar-rosyidah, Fanny Husna; Rochman, Hilal Abdur

    2017-05-01

    Nowadays the existence of energy sources of oil and was limited. Therefore, it was important to searching for new innovations of renewable energy sources by utilizing the waste into a source of energy. On the other hand, the process of extractable petroleum hydrocarbons biodegradation generated sludge that had calorific value and untapped. Because of the need for alternative sources of energy innovation with the concept of zero waste and the fuel potential from extractable petroleum hydrocarbons biodegradation waste, so it was necessary to study the use of extractable petroleum hydrocarbons biodegradation waste as the main material for making solid fuel. In addition, sawdust is a waste that had a great quantities and also had a high calorific value to be mixed with extractable petroleum hydrocarbons biodegradation waste. The purpose of this study was to determine the characteristics of the extractable petroleum hydrocarbons biodegradation waste and to determine the potential and a combination of a mixture of extractable petroleum hydrocarbons biodegradation waste and sawdust which has the best calorific value. The variables of this study was the composition of the waste and sawdust as follows 1:1; 1:3; and 3:1 (mass of sawdust : mass of waste) and time of sawdust carbonization was 10, 15 and 20 minutes. Sawdust was carbonized to get the high heating value. The characteristic of main material and fuel analysis performed with proximate analysis. While the calorific value analysis was performed with a bomb calorimeter. From the research, it was known that extractable petroleum hydrocarbons biodegradation waste had a moisture content of 3.06%; volatile matter 19.98%; ash content of 0.56%; fixed carbon content of 76.4% and a calorific value of 717 cal/gram. And a mixture that had the highest calorific value (4286.5 cal/gram) achieved in comparison sawdust : waste (3:1) by carbonization of sawdust for 20 minutes.

  7. Solid Liquid Interdiffusion Bonding of Zn4Sb3 Thermoelectric Material with Cu Electrode

    Science.gov (United States)

    Lin, Y. C.; Lee, K. T.; Hwang, J. D.; Chu, H. S.; Hsu, C. C.; Chen, S. C.; Chuang, T. H.

    2016-10-01

    The ZnSb intermetallic compound may have thermoelectric applications because it is low in cost and environmentally friendly. In this study, a Zn4Sb3 thermoelectric element coated with a Ni barrier layer and a Ag reaction layer was bonded with a Ag-coated Cu electrode using a Ag/Sn/Ag solid-liquid interdiffusion bonding process. The results indicated that a Ni5Zn21 intermetallic phase formed easily at the Zn4Sb3/Ni interface, leading to sound adhesion. In addition, Sn film was found to react completely with the Ag layer to form a Ag3Sn intermetallic layer having a melting point of 480°C. The resulting Zn4Sb3 thermoelectric module can be applied at the optimized operation temperature (400°C) of Zn4Sb3 material as a thermoelectric element. The bonding strengths ranged from 14.9 MPa to 25.0 MPa, and shear tests revealed that the Zn4Sb3/Cu-joints fractured through the interior of the thermoelectric elements.

  8. A Noncontact Measurement Technique for the Density and Thermal Expansion Coefficient of Solid and Liquid Materials

    Science.gov (United States)

    Chung, Sang K.; Thiessen, David B.; Rhim, Won-Kyu

    1996-01-01

    A noncontact measurement technique for the density and the thermal expansion refractory materials in their molten as well as solid phases is presented. This technique is based on the video image processing of a levitated sample. Experiments were performed using the high-temperature electrostatic levitator (HTESL) at the Jet Propulsion Laboratory in which 2-3 mm diameter samples can be levitated, melted, and radiatively cooled in a vacuum. Due to the axisymmetric nature of the molten samples when levitated in the HTESL, a rather simple digital image analysis can be employed to accurately measure the volumetric change as a function of temperature. Density and the thermal expansion coefficient measurements were made on a pure nickel sample to test the accuracy of the technique in the temperature range of 1045-1565 C. The result for the liquid phase density can be expressed by p = 8.848 + (6.730 x 10(exp -4)) x T (degC) g/cu cm within 0.8% accuracy, and the corresponding thermal expansion coefficient can be expressed by Beta=(9.419 x 10(exp -5)) - (7.165 x 10(exp -9) x T (degC)/K within 0.2% accuracy.

  9. Environmental and economic benefits of the recovery of materials in a municipal solid waste management system.

    Science.gov (United States)

    De Feo, Giovanni; Ferrara, Carmen; Finelli, Alessio; Grosso, Alberto

    2017-12-07

    The main aim of this study was to perform a Life cycle assessment study as well as an economic evaluation of the recovery of recyclable materials in a municipal solid waste management system. If citizens separate erroneously waste fractions, they produce both environmental and economic damages. The environmental and economic evaluation was performed for the case study of Nola (34.349 inhabitants) in Southern Italy, with a kerbside system that assured a source separation of 62% in 2014. The economic analysis provided a quantification of the economic benefits obtainable for the population in function of the achievable percentage of source separation. The comparison among the environmental performance of four considered scenarios showed that the higher the level of source separation was, the lower the overall impacts were. This occurred because, even if the impacts of the waste collection and transport increased, they were overcome by the avoided impacts of the recycling processes. Increasing the source separation by 1% could avoid the emission of 5 kg CO 2 eq. and 5 g PM10 for each single citizen. The economic and environmental indicators defined in this study provide simple and effective information useful for a wide-ranging audience in a behavioural change programme perspective.

  10. Oxides with polyatomic anions considered as new electrolyte materials for solid oxide fuel cells (SOFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bin Hassan, Oskar Hasdinor

    2010-10-21

    Materials with Polyatomic anions of [Al{sub 2}O{sub 7}]{sup -8}, [Ti{sub 2}O{sub 8}]{sup -8} and [P{sub 2}O{sub 7}]{sup -4} were investigated with respect to their ionic conductivity properties as well as its thermal expansion properties with the aim to use them as SOFCs electrolytes. The polyatomic anion groups selected from the oxy-cuspidine family of Gd{sub 4}Al{sub 2}O{sub 9} and Gd{sub 4}Ti{sub 2}O{sub 10} as well as from pyrophosphate SnP{sub 2}O{sub 7}. The pure oxy-cuspidine Gd{sub 4}Al{sub 2}O{sub 9}, the series of Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} with x=0.10-1.0 and Gd{sub 4-x}M{sub x}Al{sub 2}O{sub 9-x/2} (M=Ca, Sr) with x = 0.05-0.5 were prepared successfully by the citrate complexation method. All samples showed the crystal structure of monoclinic oxycuspidine structure with space group of P2{sub 1/c} and Z=4. No solid solution was observed for Gd{sub 4}Al{sub 2-x}Mg{sub x}O{sub 9-x/2} where additional phases of Gd{sub 2}O{sub 3} and MgO were presence. XRD semiquantitative analysis together with SEM-EDX analysis revealed that Mg{sup 2+} was not able to substitute the Al{sup 3+} ions even at low Mg{sup 2+} concentration. The solid solution limit of Gd{sub 4-x}Ca{sub x}Al{sub 2}O{sub 9-x/2} and Gd{sub 4-x}Sr{sub x}Al{sub 2}O{sub 9-x/2} was determined between 0.05-0.10 and 0.01-0.05 mol for Ca and Sr, respectively. Beyond the substitution limit Gd{sub 4}Al{sub 2}O{sub 9}, GdAlO{sub 3} and SrGd{sub 2}Al{sub 2}O{sub 7} appeared as additional phases. The highest electrical conductivity obtained at 900 C yielded {sigma}= 1.49 x 10{sup -4}Scm{sup -1} for Gd{sub 3.95}Ca{sub 0.05}Al{sub 2}O{sub 8.98}. In comparison, the conductivity of pure Gd{sub 4}Al{sub 2}O{sub 9} was {sigma}= 1.73 x 10{sup -5} Scm{sup -1}. The conductivities determined were in a similar range as those of other cuspidine materials investigated previously. The thermal expansion coefficient of Gd{sub 4}Al{sub 2}O{sub 9} at 1000 C was 7.4 x 10{sup -6}K{sup -1}. The earlier reported

  11. Extensively Reversible Thermal Transformations of a Bistable, Fluorescence-Switchable Molecular Solid: Entry into Functional Molecular Phase-Change Materials.

    Science.gov (United States)

    Srujana, P; Radhakrishnan, T P

    2015-06-15

    Functional phase-change materials (PCMs) are conspicuously absent among molecular materials in which the various attributes of inorganic solids have been realized. While organic PCMs are primarily limited to thermal storage systems, the amorphous-crystalline transformation of materials like Ge-Sb-Te find use in advanced applications such as information storage. Reversible amorphous-crystalline transformations in molecular solids require a subtle balance between robust supramolecular assembly and flexible structural elements. We report novel diaminodicyanoquinodimethanes that achieve this transformation by interlinked helical assemblies coupled with conformationally flexible alkoxyalkyl chains. They exhibit highly reversible thermal transformations between bistable (crystalline/amorphous) forms, along with a prominent switching of the fluorescence emission energy and intensity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Solid Waste Management Available Information Materials. Total Listing 1966-1976.

    Science.gov (United States)

    Larsen, Julie L.

    This publication is a compiled and indexed bibliography of solid waste management documents produced in the last ten years. This U.S. Environmental Protection Agency (EPA) publication is compiled from the Office of Solid Waste Management Programs (OSWMP) publications and the National Technical Information Service (NTIS) reports. Included are…

  13. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Science.gov (United States)

    2011-08-30

    ... Measurement; Municipal Solid Waste (MSW), Recycling, and Source Reduction Measurement in the U.S. AGENCY... Subjects Environmental protection, municipal solid waste (MSW) characterization, MSW management, recycling, measurement, data, data collection, construction and demolition (C&D) recycling, source reduction, life cycle...

  14. On levels unconditional declassification of solid materials with very low radioactive content and downloads liquids and gases to the environment

    International Nuclear Information System (INIS)

    2004-01-01

    This guide aims to establish radiological criteria for declassification (waiver) of the radioactive material of radiological regulatory control and levels unconditional clearance for solid materials and the authorized discharge limits for liquids and gases to the environment that meet these criteria for exposure scenarios acceptably conservative. This Guide to radioactive waste from the apply industrial, medical and research, which they will be managed as waste conventional. This guidance excludes from its scope the option of recycling and reuse of materials that have been declassified and wastes arising from activities and practices which naturally occurring radionuclides present are.

  15. Novel materials and methods for solid-phase extraction and liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Ambrose, Diana [Iowa State Univ., Ames, IA (United States)

    1997-06-24

    This report contains a general introduction which discusses solid-phase extraction and solid-phase micro-extraction as sample preparation techniques for high-performance liquid chromatography, which is also evaluated in the study. This report also contains the Conclusions section. Four sections have been removed and processed separately: silicalite as a sorbent for solid-phase extraction; a new, high-capacity carboxylic acid functionalized resin for solid-phase extraction; semi-micro solid-phase extraction of organic compounds from aqueous and biological samples; and the high-performance liquid chromatographic determination of drugs and metabolites in human serum and urine using direct injection and a unique molecular sieve.

  16. Microwave assisted solid phase extraction for separation preconcentration sulfamethoxazole in wastewater using tyre based activated carbon as solid phase material prior to spectrophotometric determination

    Science.gov (United States)

    Mogolodi Dimpe, K.; Mpupa, Anele; Nomngongo, Philiswa N.

    2018-01-01

    This work was chiefly encouraged by the continuous consumption of antibiotics which eventually pose harmful effects on animals and human beings when present in water systems. In this study, the activated carbon (AC) was used as a solid phase material for the removal of sulfamethoxazole (SMX) in wastewater samples. The microwave assisted solid phase extraction (MASPE) as a sample extraction method was employed to better extract SMX in water samples and finally the analysis of SMX was done by the UV-Vis spectrophotometer. The microwave assisted solid phase extraction method was optimized using a two-level fractional factorial design by evaluating parameters such as pH, mass of adsorbent (MA), extraction time (ET), eluent ratio (ER) and microwave power (MP). Under optimized conditions, the limit of detection (LOD) and limit of quantification (LOQ) were 0.5 μg L- 1 and 1.7 μg L- 1, respectively, and intraday and interday precision expressed in terms of relative standard deviation were > 6%.The maximum adsorption capacity was 138 mg g- 1 for SMX and the adsorbent could be reused eight times. Lastly, the MASPE method was applied for the removal of SMX in wastewater samples collected from a domestic wastewater treatment plant (WWTP) and river water.

  17. Black to Black

    DEFF Research Database (Denmark)

    Langkjær, Michael Alexander

    2012-01-01

    Pop musicians performing in black stage costume take advantage of cultural traditions relating to matters black. Stylistically, black is a paradoxical color: although a symbol of melancholy, pessimism, and renunciation, black also expresses minimalist modernity and signifies exclusivity (as is hi...

  18. Nitric-phosphoric acid oxidation of solid and liquid organic materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.; Poprik, D.C.

    1995-01-01

    Nitric-phosphoric acid oxidation has been developed specifically to address issues that face the Savannah River Site, other defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate SRS solid, Pu-contaminated job-control waste, the technology has also exhibited potential for remediating hazardous and mixed-hazardous waste forms. The process is unique to Savannah River and offers a valuable alternative to other oxidation processes that require extreme temperatures and/or elevated pressures. To address the broad categories of waste, many different organic compounds which represent a cross-section of the waste that must be treated have been successfully oxidized. Materials that have been quantitatively oxidized at atmospheric pressure below 180 degrees C include neoprene, cellulose, EDTA, tributylphosphate, and nitromethane. More stable compounds such as benzoic acid, polyethylene, oils, and resins have been completely decomposed below 200 degrees C and 10 psig. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allow nitric acid to be retained in solution well above its normal boiling point. The reaction forms NOx vapors which can be reoxidized and recycled using air and water. The addition of 0.001M Pd(II) reduces CO generation to near 1% of the released carbon gases. The advantages of this process are that it is straightforward, uses relatively inexpensive reagents, operates at relatively low temperature and pressure, and produces final solutions which are compatible with stainless steel equipment. For organic wastes, all carbon, hydrogen, and nitrogen are converted to gaseous products. If interfaced with an acid recovery system which converts NOx back to nitric acid, the net oxidizer would be oxygen from air

  19. New, Efficient, and Reliable Air Electrode Material for Proton-Conducting Reversible Solid Oxide Cells.

    Science.gov (United States)

    Huan, Daoming; Shi, Nai; Zhang, Lu; Tan, Wenzhou; Xie, Yun; Wang, Wanhua; Xia, Changrong; Peng, Ranran; Lu, Yalin

    2018-01-17

    Driven by the demand to minimize fluctuation in common renewable energies, reversible solid oxide cells (RSOCs) have drawn increasing attention for they can operate either as fuel cells to produce electricity or as electrolysis cells to store electricity. Unfortunately, development of proton-conducting RSOCs (P-RSOCs) faces a major challenge of poor reliability because of the high content of steam involved in air electrode reactions, which could seriously decay the lifetime of air electrode materials. In this work, a very stable and efficient air electrode, SrEu 2 Fe 1.8 Co 0.2 O 7-δ (SEFC) with layer structure, is designed and deployed in P-RSOCs. X-ray diffraction analysis and High-angle annular dark-filed scanning transmission electron microscopy images of SEFC reveal that Sr atoms occupy the center of perovskite slabs, whereas Eu atoms arrange orderly in the rock-salt layer. Such a special structure of SEFC largely depresses its Lewis basicity and therefore its reactivity with steam. Applying the SEFC air electrode, our button switches smoothly between both fuel cell and electrolysis cell (EC) modes with no obvious degradation over a 135 h long-term test under wet H 2 (∼3% H 2 O) and 10% H 2 O-air atmospheres. A record of over 230 h is achieved in the long-term stability test in the EC mode, doubling the longest test that had been previously reported. Besides good stability, SEFC demonstrates great catalytic activity toward air electrode reactions when compared with traditional La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ air electrodes. This research highlights the potential of stable and efficient P-RSOCs as an important part in a sustainable new energy power system.

  20. A broadband variable-temperature test system for complex permittivity measurements of solid and powder materials

    Science.gov (United States)

    Zhang, Yunpeng; Li, En; Zhang, Jing; Yu, Chengyong; Zheng, Hu; Guo, Gaofeng

    2018-02-01

    A microwave test system to measure the complex permittivity of solid and powder materials as a function of temperature has been developed. The system is based on a TM0n0 multi-mode cylindrical cavity with a slotting structure, which provides purer test modes compared to a traditional cavity. To ensure the safety, effectiveness, and longevity, heating and testing are carried out separately and the sample can move between two functional areas through an Alundum tube. Induction heating and a pneumatic platform are employed to, respectively, shorten the heating and cooling time of the sample. The single trigger function of the vector network analyzer is added to test software to suppress the drift of the resonance peak during testing. Complex permittivity is calculated by the rigorous field theoretical solution considering multilayer media loading. The variation of the cavity equivalent radius caused by the sample insertion holes is discussed in detail, and its influence to the test result is analyzed. The calibration method for the complex permittivity of the Alundum tube and quartz vial (for loading powder sample), which vary with the temperature, is given. The feasibility of the system has been verified by measuring different samples in a wide range of relative permittivity and loss tangent, and variable-temperature test results of fused quartz and SiO2 powder up to 1500 °C are compared with published data. The results indicate that the presented system is reliable and accurate. The stability of the system is verified by repeated and long-term tests, and error analysis is presented to estimate the error incurred due to the uncertainties in different error sources.

  1. Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study.

    Directory of Open Access Journals (Sweden)

    Hironobu Koseki

    Full Text Available Biofilms forming on the surface of biomaterials can cause intractable implant-related infections. Bacterial adherence and early biofilm formation are influenced by the type of biomaterial used and the physical characteristics of implant surface. In this in vitro research, we evaluated the ability of Staphylococcus epidermidis, the main pathogen in implant-related infections, to form biofilms on the surface of the solid orthopaedic biomaterials, oxidized zirconium-niobium alloy, cobalt-chromium-molybdenum alloy (Co-Cr-Mo, titanium alloy (Ti-6Al-4V, commercially pure titanium (cp-Ti and stainless steel. A bacterial suspension of Staphylococcus epidermidis strain RP62A (ATCC35984 was added to the surface of specimens and incubated. The stained biofilms were imaged with a digital optical microscope and the biofilm coverage rate (BCR was calculated. The total amount of biofilm was determined with the crystal violet assay and the number of viable cells in the biofilm was counted using the plate count method. The BCR of all the biomaterials rose in proportion to culture duration. After culturing for 2-4 hours, the BCR was similar for all materials. However, after culturing for 6 hours, the BCR for Co-Cr-Mo alloy was significantly lower than for Ti-6Al-4V, cp-Ti and stainless steel (P0.05. These results suggest that surface properties, such as hydrophobicity or the low surface free energy of Co-Cr-Mo, may have some influence in inhibiting or delaying the two-dimensional expansion of biofilm on surfaces with a similar degree of smoothness.

  2. Breaking Open the Black Boxes: media archaeology, anarchaeology and media materiality

    OpenAIRE

    Goddard, M.

    2015-01-01

    An essay on the emergent methodology of media archaeology, in realtion to the material turn in approaches to digital media. In particular, this article advocates taking up Siegfried Zielinski's concept of 'anarchaeology', but in a different sense to the way it was originally proposed, in order to emphasise the political potentials of a media (an)archaeological methodological approach.

  3. Ab initio study of perovskite type oxide materials for solid oxide fuel cells

    Science.gov (United States)

    Lee, Yueh-Lin

    2011-12-01

    Perovskite type oxides form a family of materials of significant interest for cathodes and electrolytes of solid oxide fuel cells (SOFCs). These perovskites not only are active catalysts for surface oxygen reduction (OR) reactions but also allow incorporating the spilt oxygen monomers into their bulk, an unusual and poorly understood catalytic mechanism that couples surface and bulk properties. The OR mechanisms can be influenced strongly by defects in perovskite oxides, composition, and surface defect structures. This thesis work initiates a first step in developing a general strategy based on first-principles calculations for detailed control of oxygen vacancy content, transport rates of surface and bulk oxygen species, and surface/interfacial reaction kinetics. Ab initio density functional theory methods are used to model properties relevant for the OR reactions on SOFC cathodes. Three main research thrusts, which focus on bulk defect chemistry, surface defect structures and surface energetics, and surface catalytic properties, are carried to investigate different level of material chemistry for improved understanding of key physics/factors that govern SOFC cathode OR activity. In the study of bulk defect chemistry, an ab initio based defect model is developed for modeling defect chemistry of LaMnO 3 under SOFC conditions. The model suggests an important role for defect interactions, which are typically excluded in previous defect models. In the study of surface defect structures and surface energetics, it is shown that defect energies change dramatically (1˜2 eV lower) from bulk values near surfaces. Based on the existing bulk defect model with the calculated ab initio surface defect energetics, we predict the (001) MnO 2 surface oxygen vacancy concentration of (La0.9Sr0.1 )MnO3 is about 5˜6 order magnitude higher than that of the bulk under typical SOFC conditions. Finally, for surface catalytic properties, we show that area specific resistance, oxygen

  4. Solid-state drawing of post-consumer isotactic poly(propylene): Effect of melt filtration and carbon black on structural and mechanical properties.

    Science.gov (United States)

    Luijsterburg, B J; Jobse, P S; Spoelstra, A B; Goossens, J G P

    2016-08-01

    Post-consumer plastic waste obtained via mechanical recycling is usually applied in thick-walled products, because of the low mechanical strength due to the presence of contaminants. In fact, sorted post-consumer isotactic poly(propylene) (i-PP) can be considered as a blend of 95% i-PP and 5% poly(ethylene), with traces of poly(ethylene terephthalate) (PET). By applying a treatment such as solid-state drawing (SSD) after melt extrusion, the polymer chains can be oriented in one direction, thereby improving the stiffness and tensile strength. In this research, molecular processes such as crystal break-up and chain orientation of these complex blends were monitored as a function of draw ratio. The melt filter mesh size - used to exclude rigid PET particles - and the addition of carbon black (CB) - often added for coloration in the recycling industry - were varied to investigate their influence on the SSD process. This research shows that despite the blend complexity, the molecular processes during SSD compare to virgin i-PP and that similar draw ratios can be obtained (λmax=20), albeit at reduced stiffness and strength as a result of the foreign polymers present in post-consumer i-PP. It is observed that the process stability improves with decreasing mesh size and that higher draw ratios can be obtained. The addition of carbon black, which resides in the dispersed PE phase, also stabilizes the SSD process. Compared to isotropic post-consumer i-PP, the stiffness can be improved by a factor 10 to over 11GPa, while the tensile strength can be improved by a factor 15-385MPa, which is approx. 70% of the maximum tensile strength achieved for virgin i-PP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of Slow External Flow on Flame Spreading over Solid Material: Opposed Spreading over Polyethylene Wire Insulation

    Science.gov (United States)

    Fujita, O.; Nishizawa, K.; Ito, K.; Olson, S. L.; Kashigawa, T.

    2001-01-01

    The effect of slow external flow on solid combustion is very important from the view of fire safety in space because the solid material in spacecraft is generally exposed to the low air flow for ventilation. Further, the effect of low external flow on fuel combustion is generally fundamental information for industrial combustion system, such as gas turbine, boiler incinerator and so on. However, it is difficult to study the effect of low external flow on solid combustion in normal gravity, because the buoyancy-induced flow strongly disturbs the flow field, especially for low flow velocity. In this research therefore, the effect of slow external flow on opposed flame spreading over polyethylene (PE) wire insulation have been investigated in microgravity. The microgravity environment was provided by Japan Microgravity Center (JAMIC) in Japan and KC-135 at NASA GRC. The tested flow velocity range is 0-30cm/s with different oxygen concentration and inert gas component.

  6. Homogeneous synthesis of cellulose acrylate-g-poly (n-alkyl acrylate) solid-solid phase change materials via free radical polymerization.

    Science.gov (United States)

    Qian, Yong-Qiang; Han, Na; Bo, Yi-Wen; Tan, Lin-Li; Zhang, Long-Fei; Zhang, Xing-Xiang

    2018-08-01

    A novel solid-solid phase change materials, namely, cellulose acrylate-g-poly (n-alkyl acrylate) (CA-g-PAn) (n = 14, 16 and 18) were successfully synthesized by free radical polymerization in N, N-dimethylacetamide (DMAc). The successful grafting was confirmed by fourier transform infrared spectra (FT-IR) and nuclear magnetic resonance (NMR). The properties of the CA-g-PAn copolymers were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The phase change temperatures and the melting enthalpies of CA-g-PAn copolymers are in the range of 10.1-53.2 °C and 15-95 J/g, respectively. It can be adjusted by the contents of poly (n-alkyl acrylate) and the length of alkyl side-chain. The thermal resistant temperatures of CA-g-PA14, 16 and 18 copolymers are 308 °C, 292 °C and 273 °C, respectively. It show that all of grafting materials exhibit good thermal stability and shape stability. Therefore, it is expected to be applied in the cellulose-based thermos-regulating field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Chemical Bonding and Structural Information of Black CarbonReference Materials and Individual Carbonaceous AtmosphericAerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

    2007-04-25

    The carbon-to-oxygen ratios and graphitic nature of a rangeof black carbon standard reference materials (BC SRMs), high molecularmass humic-like substances (HULIS) and atmospheric particles are examinedusing scanning transmission X-ray microscopy (STXM) coupled with nearedge X-ray absorption fine structure (NEXAFS) spectroscopy. UsingSTXM/NEXAFS, individual particles with diameter>100 nm are studied,thus the diversity of atmospheric particles collected during a variety offield missions is assessed. Applying a semi-quantitative peak fittingmethod to the NEXAFS spectra enables a comparison of BC SRMs and HULIS toparticles originating from anthropogenic combustion and biomass burns,thus allowing determination of the suitability of these materials forrepresenting atmospheric particles. Anthropogenic combustion and biomassburn particles can be distinguished from one another using both chemicalbonding and structural ordering information. While anthropogeniccombustion particles are characterized by a high proportion ofaromatic-C, the presence of benzoquinone and are highly structurallyordered, biomass burn particles exhibit lower structural ordering, asmaller proportion of aromatic-C and contain a much higher proportion ofoxygenated functional groups.

  8. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    International Nuclear Information System (INIS)

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; Bojnicic-Kninski, Clemens M. von; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A.R.; Breitling, Frank

    2016-01-01

    Highlights: • New matrix material for peptide array synthesis from a ‘solid solvent’. • Resolution was increased with possible spot densities of up to 20.000 spots per cm"2. • The coupling depth and the effectiveness of washing steps analyzed by ToF-SIMS. • Adaptations and custom changes of the matrix material are possible. - Abstract: Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a “solid” solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm"2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  9. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ridder, Barbara [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Foertsch, Tobias C. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Welle, Alexander [Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mattes, Daniela S. [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Bojnicic-Kninski, Clemens M. von; Loeffler, Felix F.; Nesterov-Mueller, Alexander [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Meier, Michael A.R., E-mail: m.a.r.meier@kit.edu [Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Breitling, Frank, E-mail: frank.breitling@kit.edu [Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-12-15

    Highlights: • New matrix material for peptide array synthesis from a ‘solid solvent’. • Resolution was increased with possible spot densities of up to 20.000 spots per cm{sup 2}. • The coupling depth and the effectiveness of washing steps analyzed by ToF-SIMS. • Adaptations and custom changes of the matrix material are possible. - Abstract: Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a “solid” solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm{sup 2}, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  10. Accident tolerant clad material modeling by MELCOR: Benchmark for SURRY Short Term Station Black Out

    International Nuclear Information System (INIS)

    Wang, Jun; Mccabe, Mckinleigh; Wu, Lei; Dong, Xiaomeng; Wang, Xianmao; Haskin, Troy Christopher; Corradini, Michael L.

    2017-01-01

    Highlights: • Thermo-physical and oxidation kinetics properties calculation and analysis of FeCrAl. • Properties modelling of FeCrAl in MELCOR. • Benchmark calculation of Surry nuclear power plant. - Abstract: Accident tolerant fuel and cladding materials are being investigated to provide a greater resistance to fuel degradation, oxidation and melting if long-term cooling is lost in a Light Water Reactor (LWR) following an accident such as a Station Blackout (SBO) or Loss of Coolant Accident (LOCA). Researchers at UW-Madison are analyzing an SBO sequence and examining the effect of a loss of auxiliary feedwater (AFW) with the MELCOR systems code. Our research work considers accident tolerant cladding materials (e.g., FeCrAl alloy) and their effect on the accident behavior. We first gathered the physical properties of this alternative cladding material via literature review and compared it to the usual zirconium alloys used in LWRs. We then developed a model for the Surry reactor for a Short-term SBO sequence and examined the effect of replacing FeCrAl for Zircaloy cladding. The analysis uses MELCOR, Version 1.8.6 YR, which is developed by Idaho National Laboratory in collaboration with MELCOR developers at Sandia National Laboratories. This version allows the user to alter the cladding material considered, and our study examines the behavior of the FeCrAl alloy as a substitute for Zircaloy. Our benchmark comparisons with the Sandia National Laboratory’s analysis of Surry using MELCOR 1.8.6 and the more recent MELCOR 2.1 indicate good overall agreement through the early phases of the accident progression. When FeCrAl is substituted for Zircaloy to examine its performance, we confirmed that FeCrAl slows the accident progression and reduce the amount of hydrogen generated. Our analyses also show that this special version of MELCOR can be used to evaluate other potential ATF cladding materials, e.g., SiC as well as innovative coatings on zirconium cladding

  11. Accident tolerant clad material modeling by MELCOR: Benchmark for SURRY Short Term Station Black Out

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun, E-mail: jwang564@wisc.edu [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States); Mccabe, Mckinleigh [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States); Wu, Lei [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Dong, Xiaomeng [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States); Wang, Xianmao [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Haskin, Troy Christopher [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States); Corradini, Michael L., E-mail: corradini@engr.wisc.edu [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States)

    2017-03-15

    Highlights: • Thermo-physical and oxidation kinetics properties calculation and analysis of FeCrAl. • Properties modelling of FeCrAl in MELCOR. • Benchmark calculation of Surry nuclear power plant. - Abstract: Accident tolerant fuel and cladding materials are being investigated to provide a greater resistance to fuel degradation, oxidation and melting if long-term cooling is lost in a Light Water Reactor (LWR) following an accident such as a Station Blackout (SBO) or Loss of Coolant Accident (LOCA). Researchers at UW-Madison are analyzing an SBO sequence and examining the effect of a loss of auxiliary feedwater (AFW) with the MELCOR systems code. Our research work considers accident tolerant cladding materials (e.g., FeCrAl alloy) and their effect on the accident behavior. We first gathered the physical properties of this alternative cladding material via literature review and compared it to the usual zirconium alloys used in LWRs. We then developed a model for the Surry reactor for a Short-term SBO sequence and examined the effect of replacing FeCrAl for Zircaloy cladding. The analysis uses MELCOR, Version 1.8.6 YR, which is developed by Idaho National Laboratory in collaboration with MELCOR developers at Sandia National Laboratories. This version allows the user to alter the cladding material considered, and our study examines the behavior of the FeCrAl alloy as a substitute for Zircaloy. Our benchmark comparisons with the Sandia National Laboratory’s analysis of Surry using MELCOR 1.8.6 and the more recent MELCOR 2.1 indicate good overall agreement through the early phases of the accident progression. When FeCrAl is substituted for Zircaloy to examine its performance, we confirmed that FeCrAl slows the accident progression and reduce the amount of hydrogen generated. Our analyses also show that this special version of MELCOR can be used to evaluate other potential ATF cladding materials, e.g., SiC as well as innovative coatings on zirconium cladding

  12. Composite cathode materials development for intermediate temperature solid oxide fuel cell systems

    Science.gov (United States)

    Qin, Ya

    Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have

  13. Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading

    KAUST Repository

    Ding, I-Kang

    2010-07-01

    We report using doctor-blading to replace conventional spin coating for the deposition of the hole-transport material spiro-OMeTAD (2,20,7,70-tetrakis-(N, N-di-p-methoxyphenylamine)- 9,90-spirobifluorene) in solid-state dye-sensitized solar cells. Doctor-blading is a roll-to-roll compatible, large-area coating technique, is capable of achieving the same spiro-OMeTAD pore filling fraction as spin coating, and uses much less material. The average power conversion efficiency of solid-state dye-sensitized solar cells made from doctorblading is 3.0% for 2-lm thick films and 2.0% for 5-lm thick films, on par with devices made with spin coating. Directions to further improve the filling fraction are also suggested. © 2010 Elsevier B.V. All rights reserved.

  14. Recent advances in small molecular, non-polymeric organic hole transporting materials for solid-state DSSC

    Directory of Open Access Journals (Sweden)

    Bui Thanh-Tuan

    2013-10-01

    Full Text Available Issue from thin-film technologies, dye-sensitized solar cells have become one of the most promising technologies in the field of renewable energies. Their success is not only due to their low weight, the possibility of making large flexible surfaces, but also to their photovoltaic efficiency which are found to be more and more significant (>12% with a liquid electrolyte, >7% with a solid organic hole conductor. This short review highlights recent advances in the characteristics and use of low-molecular-weight glass-forming organic materials as hole transporters in all solid-state dye-sensitized solar cells. These materials must feature specific physical and chemical properties that will ensure both the operation of a photovoltaic cell and the easy implementation. This review is an english extended version based on our recent article published in Matériaux & Techniques 101, 102 (2013.

  15. Research of Methods, Technologies and Materials for Drainage Water Treatment at the Municipal Solid Waste Landfill in Salaryevo

    OpenAIRE

    Gogina Elena; Pelipenko Alexey

    2016-01-01

    The article deals with innovative methods, technologies and materials intended to reduce the adverse ecological impact of human waste and various industrial waste situated in municipal solid waste landfills (MSW), on water bodies, soil, and atmosphere. The existence of these factors makes the region less attractive for urban development. A comparison has been made of the methods intended to reduce the damage caused to the environment, in order to provide for sustainable development of cities,...

  16. Study of Mg-based materials to be used in a functional solid state hydrogen reservoir for vehicular applications

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Amedeo; Petris, Milo; Palade, Petru; Sartori, Sabrina; Principi, Giovanni [Settore Materiali and CNISM, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Settimo, Eliseo [Celco-Profil, via dell' Artigianato 4, 30030 Vigonovo (Venezia) (Italy); Molinas, Bernardo [Venezia Tecnologie, via delle Industrie 39, 30175 Marghera (Venezia) (Italy); Lo Russo, Sergio [Dipartimento di Fisica and CNISM, Universita di Padova, via Marzolo 8, 35131 Padova (Italy)

    2006-11-15

    Powders mixtures of nanosized MgH{sub 2} and suitable additives, obtained by high energy milling, have been studied as materials to be used in a functional solid state hydrogen reservoir. A prototype of a two stages reservoir is under development (patent pending). The hydrogen release from the main stage, with high capacity Mg-based hydrides, is primed by a primer stage containing commercial hydrides able to operate at room temperature. (author)

  17. Process for the liquefaction of solid carbonaceous materials wherein nitrogen is separated from hydrogen via ammonia synthesis

    Science.gov (United States)

    Stetka, Steven S.; Nazario, Francisco N.

    1982-01-01

    In a process for the liquefaction of solid carbonaceous materials wherein bottoms residues are upgraded with a process wherein air is employed, the improvement wherein nitrogen buildup in the system is avoided by ammonia synthesis. In a preferred embodiment hydrogen from other portions of the liquefaction process will be combined with hydrogen produced as a result of the bottoms upgrading to increase the H.sub.2 :N.sub.2 ratio in the ammonia reactor.

  18. TSAAS: finite-element thermal and stress analysis of plane and axisymmetric solids with orthotropic temperature-dependent material properties

    Energy Technology Data Exchange (ETDEWEB)

    Browning, R.V.; Anderson, C.A.

    1982-02-01

    The finite element method is used to determine the temperatures, displacements, stresses, and strains in axisymmetric solids with orthotropic, temperature-dependent material properties under axisymmetric thermal and mechanical loads. The mechanical loads can be surface pressures, surface shears, and nodal point forces as well as an axial or centripetal acceleration. The continuous solid is replaced by a system of ring elements with triangular or quadrilateral cross sections. Accordingly, the method is valid for solids that are composed of many different materials and that have complex geometry. Nonlinear mechanical behavior as typified by plastic, locking, or creeping materials can be approximated. Two dimensional mesh generation, plotting, and editing features allow the computer program to be readily used. In addition to a stress analysis program that is based on a modified version of the SAAS code, TSAAS can carry out a transient thermal analysis with the finite element mesh used in stress analysis. An implicit time differencing scheme allows the use of arbitrary time steps with consequent fast running times. At specified times, the program will return to SAAS for thermal stress analysis. Nonlinear thermal properties and Arrhenius reaction kinetics are also incorporated into TSAAS. Several versions of TSAAS are in use at Los Alamos, running on CDC-7600, CRAY-1 and VAX 11/780 computers. This report describes the nominal TSAAS; other versions may have some unique features.

  19. A Universal 3D Voxel Descriptor for Solid-State Material Informatics with Deep Convolutional Neural Networks.

    Science.gov (United States)

    Kajita, Seiji; Ohba, Nobuko; Jinnouchi, Ryosuke; Asahi, Ryoji

    2017-12-05

    Material informatics (MI) is a promising approach to liberate us from the time-consuming Edisonian (trial and error) process for material discoveries, driven by machine-learning algorithms. Several descriptors, which are encoded material features to feed computers, were proposed in the last few decades. Especially to solid systems, however, their insufficient representations of three dimensionality of field quantities such as electron distributions and local potentials have critically hindered broad and practical successes of the solid-state MI. We develop a simple, generic 3D voxel descriptor that compacts any field quantities, in such a suitable way to implement convolutional neural networks (CNNs). We examine the 3D voxel descriptor encoded from the electron distribution by a regression test with 680 oxides data. The present scheme outperforms other existing descriptors in the prediction of Hartree energies that are significantly relevant to the long-wavelength distribution of the valence electrons. The results indicate that this scheme can forecast any functionals of field quantities just by learning sufficient amount of data, if there is an explicit correlation between the target properties and field quantities. This 3D descriptor opens a way to import prominent CNNs-based algorithms of supervised, semi-supervised and reinforcement learnings into the solid-state MI.

  20. Material-specific Conversion Factors for Different Solid Phantoms Used in the Dosimetry of Different Brachytherapy Sources

    Directory of Open Access Journals (Sweden)

    Sedigheh Sina

    2015-07-01

    Full Text Available Introduction Based on Task Group No. 43 (TG-43U1 recommendations, water phantom is proposed as a reference phantom for the dosimetry of brachytherapy sources. The experimental determination of TG-43 parameters is usually performed in water-equivalent solid phantoms. The purpose of this study was to determine the conversion factors for equalizing solid phantoms to water. Materials and Methods TG-43 parameters of low- and high-energy brachytherapy sources (i.e., Pd-103, I-125 and Cs-137 were obtained in different phantoms, using Monte Carlo simulations. The brachytherapy sources were simulated at the center of different phantoms including water, solid water, poly(methyl methacrylate, polystyrene and polyethylene. Dosimetric parameters such as dose rate constant, radial dose function and anisotropy function of each source were compared in different phantoms. Then, conversion factors were obtained to make phantom parameters equivalent to those of water. Results Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water. Conclusion Polynomial coefficients of conversion factors were obtained for all sources to quantitatively compare g(r values in different phantom materials and the radial dose function in water.

  1. PHYSICAL AND MECHANICAL PROPERTIES OF BLACK WOOD (EBONY AS A CONSTRUCTION MATERIAL

    Directory of Open Access Journals (Sweden)

    Fengky Satria Yoresta

    2015-01-01

    Full Text Available This research is aimed to determine physical and mechanical properties of Ebony wood as a construction material. The physical and mechanical properties test is conducted based on ASTM D 143-94 code. The mean value of moisture content and specific gravity of Ebony wood is obtained 12,90% and 0,92 gr.cm-3 respectively. Meanwhile MOE, bending strength, compressive strength parallel to grain, shear strength, and tensile strength parallel to grain are 180.425,87 kg.cm-2; 1656,22 kg.cm-2; 861,55 kg.cm-2; 119,61 kg.cm-2; dan 2.319,03 kg.cm-2 respectively. Based on the test results, it can be concluded that Ebony wood is classified to Strength Class I due to PKKI 1961, so it can be recommended for use in heavy construction such as bridge and building structures   Penelitian ini bertujuan menentukan sifat fisis dan mekanis kayu  Ebony sebagai material konstruksi. Pengujian sifat fisis dan mekanis dilakukan berdasarkan standar ASTM D 143-94. -3Nilai kadar air rata-rata kayu Ebony diperoleh sebesar 12,90% dan berat jenis 0,92 gr.cm . Sementara nilai rata-rata MOE, kuat lentur, kuat tekan sejajar serat, kuat geser, dan kuat tarik -2 -2 -2sejajar serat berturut-turut adalah 180.425,87 kg.cm ; 1656,22 kg.cm ; 861,55 kg.cm ; -2 -2119,61 kg.cm ; dan 2.319,03 kg.cm . Berdasarkan hasil penelitian dapat disimpulkan bahwa kayu Ebony tergolong kelas kuat I menurut PKKI 1961, sehingga dapat direkomendasikan untuk digunakan pada konstruksi-konstruksi berat seperti jembatan dan struktur bangunan.   REFERENCES Aghayere A & Jason V. 2007. Structural Wood Design: A Practice-Oriented Approach Using the ASD Method. John Wiley & Sons, Inc., New Jersey Boen T. 2009. Constructing Seismic Resistant Masonry Houses in Indonesia. United Nation. Chauf KA. 2005. Karakteristik Mekanik Kayu Kamper sebagai Bahan Konstruksi. Majalah Ilmiah MEKTEK . Vol 7 : 41-47. Dolan JD. 2004. Timber Structures. Pp 628-669 in Wai FC & Eric ML (Eds Handbook of Structural Engineering – 2nd

  2. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid

  3. Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System

    Directory of Open Access Journals (Sweden)

    D. I. Pikulin

    2017-07-01

    Full Text Available A system of Majorana zero modes with random infinite-range interactions—the Sachdev-Ye-Kitaev (SYK model—is thought to exhibit an intriguing relation to the horizons of extremal black holes in two-dimensional anti–de Sitter space. This connection provides a rare example of holographic duality between a solvable quantum-mechanical model and dilaton gravity. Here, we propose a physical realization of the SYK model in a solid-state system. The proposed setup employs the Fu-Kane superconductor realized at the interface between a three-dimensional topological insulator and an ordinary superconductor. The requisite N Majorana zero modes are bound to a nanoscale hole fabricated in the superconductor that is threaded by N quanta of magnetic flux. We show that when the system is tuned to the surface neutrality point (i.e., chemical potential coincident with the Dirac point of the topological insulator surface state and the hole has sufficiently irregular shape, the Majorana zero modes are described by the SYK Hamiltonian. We perform extensive numerical simulations to demonstrate that the system indeed exhibits physical properties expected of the SYK model, including thermodynamic quantities and two-point as well as four-point correlators, and discuss ways in which these can be observed experimentally.

  4. Effect of municipal solid waste compost and sewage sludge on yield and heavy metal accumulation in soil and black cumin (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    F. Akbarnejad

    2016-04-01

    Full Text Available In order to investigate the effect of municipal solid waste (MSw compost and sewage sludge (SS on yield and concentration of heavy metals in soil and black cumin (Nigella sativa L. an experiment with MSW compost at 0, 15, 30 t.ha-1 (C0, C15 and C30 and sewage sludge at 0, 15, 30 t.ha-1 (S0, S15 and S30 in a factorial experiment based on completely randomized design with three replications was conducted in greenhouse of Faculty of Agriculture, Ferdowsi University of Mashhad, Iran. Results showed that MSW compost and SS had significant effects on plant dry matter. Increasing the amounts of SS increased dry matter of plant. But increasing MSW compost from 15 to 30 t.ha-1 was decreased in dry matter. The Effect of MSW compost and SS on concentration of heavy metals (Ni and Pb in plant except Cd was significant. Addition of MSW compost and sewage sludge increased availability of Pb, Ni and Cd in soil. But effect of MSW compost and sewage sludge on Cd availability was not significant. Results showed that the amounts of Ni exceed the standard limits in dry matter. Therefore in use of organic wastes for medicinal plants we should be careful..

  5. Research and Development of solar cell frame. Study on solar cell array solid with building material-business building

    Energy Technology Data Exchange (ETDEWEB)

    1986-08-01

    This is a NEDO annual report for 1985. A feasibility study was carried out from the viewpoints demanded both from the building material side and the solar cell. Evaluation from the technical, institutional, and economical viewpoints indicated the possibility of using a roof material solid with carbon-fiber-reinforced concrete and a curtain wall. The solar cell module was verified as a building material to be resistant against the external force, water, and heat. A problem left is how to enlarge the module. Integrated use of CFRC (Carbon Fiber Reinforced Concrete) and a cell of maximum size (1,240 x 700 mm), which is industrially available, can be expected. Present solar cell array can be utilized as a building material as it is for a curtain wall. Cost calculation of the CFRC solid roofing material indicates 276 yen/KWH for 15 years depreciation, 10 % residual value, and 8% annual interest, which is a little expensive, but this cost may be applicable to the use as a curtain wall.

  6. The characteristics of palm oil plantation solid biomass wastes as raw material for bio oil

    Science.gov (United States)

    Yanti, RN; Hambali, E.; Pari, G.; Suryani, A.

    2018-03-01

    Indonesia is the largest palm oil plantations estate in the world. It reached 11,30 million hectares in 2015 and increased up to 11,67 million hectares in 2016. The advancement of technology recent, the solid waste of palm oil plantation can be re-produced become bio oil through pyrolysis hydrothermal process and utilized for biofuel. The purpose of this research was to analyze the characteristics of feedstock of bio oil of solid waste of palm oil plantations estate. The feedstock used was derived from solid waste of palm oil plantations in Riau Province. Characteristic analysis of waste oil included chemical compound content (cellulose, hemicellulose, lignin), ultimate analysis (C, H, N, O, S) to know height heating value (HHV). The result of analysis of chemical content showed that solid waste of palm cellulose 31,33 – 66,36 %, hemicellulose 7,54 – 17,94 %, lignin 21,43 - 43,1. The HHV of hydrothermal pyrolysis feedstock was 15,18 kJ/gram - 19,57 kJ/gram. Generally, the solid waste of palm oil plantations estate containing lignocellulose can be utilized as bio oil through hydrothermal pyrolysis. The CG-MS analysis of bio oil indicated hydrocarbon contents such as pentadecane, octadecane, hexadecane and benzene.

  7. Nano-porous inorganic-organic hybrid solids: some new materials for hydrogen storage?

    International Nuclear Information System (INIS)

    Serre, Ch.; Loiseau, Th.; Devic, T.; Ferey, G.; Latroche, M.; Llewellyn, Ph.; Chang, J.S.

    2007-01-01

    Recently have been studied chromium and aluminium carboxylates MIL-53(Cr, Al), formed from an assembly of octahedrons chains and for hybrid solids formed with octahedrons trimers (MIL-100 and MIL-101). The compounds MIL-53(Cr, Al) are microporous (φ ∼ 8 Angstroms, while the solids MIL-100 and MIL-101 have very large porous volumes (V ∼ 380-700000 (Angstroms) 3 ), meso-pores (φ ∼ 25-34 Angstroms) and a zeolitic architecture. The resulting specific surface areas are important (between 1000 m 2 .g -1 for the MIL-53 solids, until 4000 m 2 .g -1 for the MIL-101 compound. Here is presented their hydrogen adsorption properties, at 77 K and 298 K. The hydrogen adsorption kinetics has been tested on the MIL-53(Cr) solid at 77 K. Hydrogen adsorption micro-calorimetry experiments have been carried out on these solids between 0 and 1 bar in order to obtain data on the strongest interactions between hydrogen and the porous basic structure. (O.M.)

  8. Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review.

    Science.gov (United States)

    Silva, R V; de Brito, J; Lynn, C J; Dhir, R K

    2017-10-01

    This paper presents a literature review on the incorporation of municipal solid waste incinerated bottom ash as raw material in several markets, other than those where it is conventionally used, such as geotechnical applications and road pavement construction. The main findings of an ample selection of experimental investigations on the use of the bottom ash as precursor of alkali-activated materials, as an adsorbent material for the removal of hazardous elements from wastewater and landfill gases, as soil replacement in agricultural activities, as partial or complete substitute of raw materials for the manufacture of ceramic-based products, as landfill cover and as biogas production enhancer, were gathered, collated and analysed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.

    Science.gov (United States)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-01

    This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Baddock, J.A.; Oades, J.M.; Nelson, P.N.; Skene, T.M.; Golchin, A.; Clarke, P.

    1997-01-01

    Solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy has become an important tool for examining the chemical structure of natural organic materials and the chemical changes associated with decomposition. In this paper, solid-state 13 C NMR data pertaining to changes in the chemical composition of a diverse range of natural organic materials, including wood, peat, composts, forest litter layers, and organic materials in surface layers of mineral soils, were reviewed with the objective of deriving an index of the extent of decomposition of such organic materials based on changes in chemical composition. Chemical changes associated with the decomposition of wood varied considerably and were dependent on a strong interaction between the species of wood examined and the species composition of the microbial decomposer community, making the derivation of a single general index applicable to wood decomposition unlikely. For the remaining forms of natural organic residues, decomposition was almost always associated with an increased content of alkyl C and a decreased content of O-alkyl C. The concomitant increase and decrease in alkyl and O-alkyl C contents, respectively, suggested that the ratio of alkyl to O-alkyl carbon (A/O-A ratio) may provide a sensitive index of the extent of decomposition. Contrary to the traditional view that humic substances with an aromatic core accumulate as decomposition proceeds, changes in the aromatic region were variable and suggested a relationship with the activity of lignin-degrading fungi. The A/O-A ratio did appear to provide a sensitive index of extent of decomposition provided that its use was restricted to situations where the organic materials were derived from a common starting material. In addition, the potential for adsorption of highly decomposable materials on mineral soil surfaces and the impacts which such an adsorption may have on bioavailability required consideration when the A/O-A ratio was used to assess the

  11. Treatment of black liquor from the papermaking industry by acidification and reuse.

    Science.gov (United States)

    Yang, Wen-Bo; Mu, Huan-Zhen; Huang, Yan-Chu

    2003-09-01

    Two different kinds of black liquor from the papermaking industry were treated by acidification and reuse. The experimental parameters and conditions were discussed in detail. The experimental results indicated that the treatment process mentioned in this article is an effective process for the treatment of black liquor from the papermaking industry. By the treatment, the solid materials in black liquor are transferred into two by-products and the other components are reused or evaporated. Thus, no wastewater except some condensation water would be discharged in pulping process and the problem of pollution of black liquor would be effectively solved.

  12. A Method for Field Calibration of the PA260 Phosphorus Analyzer Using Solid Adsorbent Materials

    Science.gov (United States)

    1989-12-01

    plant environment. The solid adsorbent approach has two major advantages over other traditional air sampling devices such as bubblers or impingers...GC (60/80 mesh) or Chromosorb 106 (80/100 mesh). Both adsorbents were supplied by Alltech Associates (Deerfield, IL). The adsorbents were packed in

  13. Synthesis of an organic–inorganic hybrid material by solid state ...

    Indian Academy of Sciences (India)

    Unknown

    organic guest species into layered vanadium phosphorus oxide (Yamamoto et al 2001), zeolites (Lázár et al 1994) and layered clay minerals (Yariv and ..... microspores determination, the microspores of these sam- ples are given in table 3, specific surface area is very low in all the intercalated solids, being between 4 and ...

  14. Thermal expansion of TRU nitride solid solutions as fuel materials for transmutation of minor actinides

    International Nuclear Information System (INIS)

    Takano, Masahide; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2009-01-01

    The lattice thermal expansion of the transuranium nitride solid solutions was measured to investigate the composition dependence. The single-phase solid solution samples of (Np 0.55 Am 0.45 )N, (Pu 0.59 Am 0.41 )N, (Np 0.21 Pu 0.52 Am 0.22 Cm 0.05 )N and (Pu 0.21 Am 0.18 Zr 0.61 )N were prepared by carbothermic nitridation of the respective transuranium dioxides and nitridation of Zr metal through hydride. The lattice parameters were measured by the high temperature X-ray diffraction method from room temperature up to 1478 K. The linear thermal expansion of each sample was determined as a function of temperature. The average thermal expansion coefficients over the temperature range of 293-1273 K for the solid solution samples were 10.1, 11.5, 10.8 and 8.8 x 10 -6 K -1 , respectively. Comparison of these values with those for the constituent nitrides showed that the average thermal expansion coefficients of the solid solution samples could be approximated by the linear mixture rule within the error of 2-3%.

  15. Radon diffusion studies in some building materials using solid state nuclear track detectors

    CERN Document Server

    Singh, S; Singh, B; Singh, J

    1999-01-01

    LR-115 plastic track detector has been used to study radon diffusion through some building materials, viz. cement, soil, marble chips, sand and lime as well as air. Diffusion constant and diffusion length is calculated for all these materials.

  16. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    International Nuclear Information System (INIS)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-01-01

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst

  17. Solid-solution-like ZnO/C composites as excellent anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Guanhua; Zhang, Hang; Zhang, Xiang; Zeng, Wei; Su, Qingmei; Du, Gaohui; Duan, Huigao

    2015-01-01

    Exploring advanced anode materials to maximize the capacity of lithium ion batteries has been an active research area for decades. Constructing composites materials has been proved to be one of the most effective methods to achieve higher capacity due to the synergistic effect. In this work, we proposed and demonstrated a concept of solid-solution-like ZnO/C composites to approach the largest possible synergistic effect by introducing the most interfaces and minimizing the pulverization. The solid-solution-like ZnO/C electrode could achieve a high reversible capacity of 813.3 mAh g −1 at a current density of 100 mA g −1 after 100 cycles with a decrease rate of only 0.4% per cycle. Moreover, the discharge capacity still maintained 53.5% of the original value even when the current density increased to 40 times as much as the original, showing a distinguished rate performance. In addition, such solid-solution-like nanofibers can be easily prepared because of their compatibility with the existing industrial PAN-based spinning process. This may pave the way to mass produce lithium ion batteries with significantly enhanced performance using existing low-cost commercial facilities and recipes.

  18. Materials data base and design equations for the UCLA solid breeder blanket

    International Nuclear Information System (INIS)

    Sharafat, S.; Amodeo, R.; Ghoniem, N.M.

    1986-02-01

    The materials and properties investigated for this blanket study are listed. The phenomenological equations and mathematical fits for all materials and properties considered are given. Efforts to develop a swelling equation based on the few experimental data points available for breeder materials are described. The sintering phenomena for ceramics is investigated

  19. Synthesis and characterization of gadolinia-doped ceria-silver cermet cathode material for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2008-01-01

    A series of Ce 0.9 Gd 0.1 O 2-δ -Ag cermets with different Ag contents were prepared by conventional sintering process aiming at assessing the suitability of using them as cathode material for solid oxide fuel cell (SOFC) with Gadolinia-doped ceria electrolyte. The chemical compatibility between Ce 0.9 Gd 0.1 O 2-δ (CGO) and Ag was investigated by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Thermal expansion coefficients of the cermets were measured as a function of Ag content and were found to increase with metallic content. Although oxygen adsorption at the surface of the cermets could be detected, no reaction or solid solubility between CGO and Ag was found

  20. The Laser Damage Threshold for Materials and the Relation Between Solid-Melt and Melt-Vapor Interface Velocities

    International Nuclear Information System (INIS)

    Khalil, Osama Mostafa

    2010-01-01

    Numerous experiments have demonstrated and analytic theories have predicted that there is a threshold for pulsed laser ablation of a wide range of materials. Optical surface damage threshold is a very complex and important application of high-power lasers. Optical damage may also be considered to be the initial phase of laser ablation. In this work it was determined the time required and the threshold energy of a layer of thickness to heat up. We used the Finite Difference method to simulate the process of laser-target interaction in three cases. Namely, the case before melting begins using a continuous wave (c.w) laser source and a pulsed laser source, the case after the first change of state (from solid to melt), and the case after the second change of state (from melt to vapor). And also study the relation between the solid-melt and melt-vapor interface velocities to have a commonsense of the laser ablation process.

  1. Solid-state physics. An introduction to principles of materials science. 4. ext. upd. and enl. ed.

    International Nuclear Information System (INIS)

    Ibach, Harald; Lueth, Hans

    2009-01-01

    This new edition of the popular introduction to solid-state physics provides a comprehensive overview on basic theoretical and experimental concepts of material science. Additional sections emphasize current topics in solid-state physics. Notably, sections on important devices, aspects of non-periodic structures of matter, phase transitions, defects, superconductors and nanostructures have been added, the chapters presenting semi- and superconductivity had been completely updated. Students will benefit significantly from solving the exercises given at the end of each chapter. This book is intended for university students in physics, engineering and electrical engineering. This edition has been carefully revised, updated, and enlarged. Among the key recent developments incorporated throughout GMR (giant magneto resistance), thin-film magnetic properties, magnetic hysteresis and domain walls, quantum transport, metamaterials, and preparation techniques for nanostructures. (orig.)

  2. The Effect of Fluid and Solid Properties on the Auxetic Behavior of Porous Materials Having Rock-like Microstructures

    Science.gov (United States)

    Wollner, U.; Vanorio, T.; Kiss, A. M.

    2017-12-01

    Materials with a negative Poisson's Ratio (PR), known as auxetics, exhibit the counterintuitive behavior of becoming wider when uniaxially stretched and thinner when compressed. Though negative PR is characteristic of polymer foams or cellular solids, tight as well as highly porous rocks have also been reported to exhibit a negative Poisson's ratio, both from dynamic (PRd) and static measurements. We propose a novel auxetic structure based on pore-space configuration observed in rocks. First, we performed 2D and 3D imaging of a pumice and tight basalt to analyze their rock microstructure as well as similarities to natural structures of auxetic materials - e.g., cork. Based on these analyses, we developed a theoretical auxetic 3D model consisting of rotating rigid bodies having pore configurations similar to those observed in rocks. To alleviate the mechanical assumption of rotating bodies, the theoretical model was modified to include crack-like features being represented by intersecting, elliptic cylinders. We then used a 3D printer to create a physical version of the modified model, whose PRd was tested. We also numerically explored how the compressibility of fluids located in the pore-space of the modified model as well as how the elastic properties of the material from which the model is made of affect its auxetic behavior. We conclude that for a porous medium composed of a single material saturated with a single fluid (a) the more compliant the fluid is and (b) the lower the PR of the solid material, the lower the PR value of the composite material.

  3. Numerical simulation of the induction heating of hybrid semi-finished materials into the semi-solid state

    Science.gov (United States)

    Seyboldt, Christoph; Liewald, Mathias

    2017-10-01

    Current research activities at the Institute for Metal Forming Technology (IFU) of the University of Stuttgart are focusing on the manufacturing of hybrid components using semi-solid forming strategies. As part of the research project "Hybrid interaction during and after thixoforging of multi-material systems", which is founded by the German Research Foundation (DFG), a thixoforging process for producing hybrid components with cohesive metal-to-metal connections is developed. In this context, this paper deals with the numerical simulation of the inductive heating process of hybrid semi-finished materials, consisting of two different aluminium alloys. By reason of the skin effect that leads to inhomogeneous temperature distributions during inductive heating processes, the aluminium alloy with the higher melting point is thereby assembled in the outer side and the alloy with the lower melting point is assembled in the core of the semi-finished material. In this way, the graded heat distribution can be adapted to the used materialś flow properties that are heavily heat dependent. Without this graded heat distribution a proper forming process in the semi-solid state will not be possible. For numerically modelling the inductive heating system of the institute, a coupling of the magnetostatic and the thermal solver was realized by using Ansys Workbench. While the electromagnetic field and its associated heat production rate were solved in a frequency domain, the temperature development was solved in the time based domain. The numerical analysis showed that because of the high thermal conductivity of the aluminium, which leads to a rapid temperature equalization in the semi-finished material, the heating process has to be fast and with a high frequency for produce most heat in the outer region of the material. Finally, the obtained numerical results were validated with experimental heating tests.

  4. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system

    International Nuclear Information System (INIS)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-01-01

    Highlights: ► This study evaluates the effects of co-gasification of MSW with MSW bottom ash. ► No significant difference between MSW treatment with and without MSW bottom ash. ► PCDD/DFs yields are significantly low because of the high carbon conversion ratio. ► Slag quality is significantly stable and slag contains few hazardous heavy metals. ► The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by

  5. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    Science.gov (United States)

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Neutron cross sections of cryogenic materials: a synthetic kernel for molecular solids

    International Nuclear Information System (INIS)

    Granada, J.R.; Gillette, V.H.; Petriw, S.; Cantargi, F.; Pepe, M.E.; Sbaffoni, M.M.

    2004-01-01

    A new synthetic scattering function aimed at the description of the interaction of thermal neutrons with molecular solids has been developed. At low incident neutron energies, both lattice modes and molecular rotations are specifically accounted for, through an expansion of the scattering law in few phonon terms. Simple representations of the molecular dynamical modes are used, in order to produce a fairly accurate description of neutron scattering kernels and cross sections with a minimum set of input data. As the neutron energies become much larger than that corresponding to the characteristic Debye temperature and to the rotational energies of the molecular solid, the 'phonon formulation' transforms into the traditional description for molecular gases. (orig.)

  7. Heat Modeling and Material Development of Mg-Based Nanomaterials Combined with Solid Oxide Fuel Cell for Stationary Energy Storage

    Directory of Open Access Journals (Sweden)

    Huaiyu Shao

    2017-11-01

    Full Text Available Mg-based materials have been investigated as hydrogen storage materials, especially for possible onboard storage in fuel cell vehicles for decades. Recently, with the development of large-scale fuel cell technologies, the development of Mg-based materials as stationary storage to supply hydrogen to fuel-cell components and provide electricity and heat is becoming increasingly promising. In this work, numerical analysis of heat balance management for stationary solid oxide fuel cell (SOFC systems combined with MgH2 materials based on a carbon-neutral design concept was performed. Waste heat from the SOFC is supplied to hydrogen desorption as endothermic heat for the MgH2 materials. The net efficiency of this model achieves 82% lower heating value (LHV, and the efficiency of electrical power output becomes 68.6% in minimizing heat output per total energy output when all available heat of waste gas and system is supplied to warm up the storage. For the development of Mg-based hydrogen storage materials, various nano-processing techniques have been widely applied to synthesize Mg-based materials with small particle and crystallite sizes, resulting in good hydrogen storage kinetics, but poor thermal conductivity. Here, three kinds of Mg-based materials were investigated and compared: 325 mesh Mg powers, 300 nm Mg nanoparticles synthesized by hydrogen plasma metal reaction, and Mg50Co50 metastable alloy with body-centered cubic structure. Based on the overall performances of hydrogen capacity, absorption kinetics and thermal conductivity of the materials, the Mg nanoparticle sample by plasma synthesis is the most promising material for this potential application. The findings in this paper may shed light on a new energy conversion and utilization technology on MgH2-SOFC combined concept.

  8. Solid-phase extraction of the alcohol abuse biomarker phosphatidylethanol using newly synthesized polymeric sorbent materials containing quaternary heterocyclic groups.

    Science.gov (United States)

    Duarte, Mariana; Jagadeesan, Kishore Kumar; Billing, Johan; Yilmaz, Ecevit; Laurell, Thomas; Ekström, Simon

    2017-10-13

    Phosphatidylethanol (PEth) is an interesting biomarker finding increased use for detecting long term alcohol abuse with high specificity and sensitivity. Prior to detection, sample preparation is an unavoidable step in the work-flow of PEth analysis and new protocols may facilitate it. Solid-phase extraction (SPE) is a versatile sample preparation method widely spread in biomedical laboratories due to its simplicity of use and the possibility of automation. In this work, SPE was used for the first time to directly extract PEth from spiked human plasma and spiked human blood. A library of polymeric SPE materials with different surface functionalities was screened for PEth extraction in order to identify the surface characteristics that control PEth retention and recovery. The plasma samples were diluted 1:10 (v/v) in water and spiked at different concentrations ranging from 0.3 to 5μM. The library of SPE materials was then evaluated using the proposed SPE method and detection was done by LC-MS/MS. One SPE material efficiently retained and recovered PEth from spiked human plasma. With this insight, four new SPE materials were formulated and synthesized based on the surface characteristics of the best SPE material found in the first screening. These new materials were tested with spiked human blood, to better mimic a real clinical sample. All the newly synthetized materials outperformed the pre-existing commercially available materials. Recovery values for the new SPE materials were found between 29.5% and 48.6% for the extraction of PEth in spiked blood. A material based on quaternized 1-vinylimidazole with a poly(trimethylolpropane trimethacrylate) backbone was found suitable for PEth extraction in spiked blood showing the highest analyte recovery in this experiment, 48.6%±6.4%. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. final register SOLID FERMENTED MATERIAL (BOKASHI) AS A BIOFERTILIZER FOR POTTING MEDIA USING EFFECTIVE MICROORGANISMS (EM)

    OpenAIRE

    Jenkins, Tim A.; Daly, Mike

    2005-01-01

    Adding a solid fermentation product (bokashi) to potting media enhanced the growth of vegetable seedlings when the microbial inoculant Effective Micororganisms (EM) was used. There was a negative response to the inclusion of bokashi made without EM. The benefit to seedling growth from EM bokashi also improved crop performance post-transplanting. Effect on seedlings was further enhanced by the inclusion of fishmeal and, to a lesser extent, by adding trace elements in the bokashi fermentation. ...

  10. Simulation of Semi-Solid Material Mechanical Behavior Using a Combined Discrete/Finite Element Method

    Science.gov (United States)

    Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.

    2011-01-01

    As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress-strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid-liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearing.

  11. Assessment of municipal solid waste generation and recyclable materials potential in Kuala Lumpur, Malaysia.

    Science.gov (United States)

    Saeed, Mohamed Osman; Hassan, Mohd Nasir; Mujeebu, M Abdul

    2009-07-01

    This paper presents a forecasting study of municipal solid waste generation (MSWG) rate and potential of its recyclable components in Kuala Lumpur (KL), the capital city of Malaysia. The generation rates and composition of solid wastes of various classes such as street cleansing, landscape and garden, industrial and constructional, institutional, residential and commercial are analyzed. The past and present trends are studied and extrapolated for the coming years using Microsoft office 2003 Excel spreadsheet assuming a linear behavior. The study shows that increased solid waste generation of KL is alarming. For instance, the amount of daily residential SWG is found to be about 1.62 kg/capita; with the national average at 0.8-0.9 kg/capita and is expected to be increasing linearly, reaching to 2.23 kg/capita by 2024. This figure seems reasonable for an urban developing area like KL city. It is also found that, food (organic) waste is the major recyclable component followed by mix paper and mix plastics. Along with estimated population growth and their business activities, it has been observed that the city is still lacking in terms of efficient waste treatment technology, sufficient fund, public awareness, maintaining the established norms of industrial waste treatment etc. Hence it is recommended that the concerned authority (DBKL) shall view this issue seriously.

  12. Major- and minor-metal composition of three distinct solid material fractions associated with Juan de Fuca hydrothermal fluids (northeast Pacific), and calculation of dilution fluid samples

    Science.gov (United States)

    Hinkley, T.K.; Seeley, J.L.; Tatsumoto, M.

    1988-01-01

    Three distinct types of solid material are associated with each sample of the hydrothermal fluid that was collected from the vents of the Southern Juan de Fuca Ridge. The solid materials appear to be representative of deposits on ocean floors near mid-ocean ridges, and interpretation of the chemistry of the hydrothermal solutions requires understanding of them. Sr isotopic evidence indicates that at least two and probably all three of these solid materials were removed from the solution with which they are associated, by precipitation or adsorption. This occurred after the "pure" hydrothermal fluid was diluted and thoroughly mixed with ambient seawater. The three types of solid materials, are, respectively, a coarse Zn- and Fe-rich material with small amounts of Na and Ca; a finer material also rich in Zn and Fe, but with alkali and alkaline-earth metals; and a scum composed of Ba or Zn, with either considerable Fe or Si, and Sr. Mineral identification is uncertain because of uncertain anion composition. Only in the cases of Ba and Zn were metal masses greater in solid materials than in the associated fluids. For all other metals measured, masses in fluids dwarf those in solids. The fluids themselves contain greater concentrations of all metals measured, except Mg, than seawater. We discuss in detail the relative merits of two methods of determining the mixing proportions of "pure" hydrothermal solution and seawater in the fluids, one based on Sr isotopes, and another previously used method based on Mg concentrations. Comparison of solute concentrations in the several samples shows that degree of dilution of "pure" hydrothermal solutions by seawater, and amounts of original solutes that were removed from it as solid materials, are not related. There is no clear evidence that appreciable amounts of solid materials were not conserved (lost) either during or prior to sample collection. ?? 1988.

  13. Integrated generation of solid fuel and biogas from green cut material from landscape conservation and private households.

    Science.gov (United States)

    Hensgen, F; Richter, F; Wachendorf, M

    2011-11-01

    Green cut material is a potential source of renewable energy which is not fully exploited through conventional energy recovery systems. A new energy conversion process, the integrated generation of solid fuel and biogas from biomass (IFBB), which includes mechanical separation after hydro-thermal conditioning, was investigated. Ash softening temperature and lower heating value of the solid fuel were increased through the IFFB process in comparison to the untreated raw material. The net energy yield of IFBB at 40 °C conditioning temperature ranged between 1.96 and 2.85 kWh kg(-1) dry matter (DM) and for the direct combustion between 1.75 and 2.65 kWh kg(-1) DM. Conversion efficiencies for the IFBB system were 0.42-0.68 and for direct combustion 0.42-0.63. The IFBB system produces storable energy from material which is nowadays not used for energy conversion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Enhancement of gamma-ray radiolysis of carbon dioxide with the assistance of solid materials

    International Nuclear Information System (INIS)

    Watanabe, D.; Allen, C.; Yoshida, T.; Tanabe, T.

    2007-01-01

    This work is devoted to enhance gamma-ray radiolysis of CO 2 with the assistance of coexisting metal materials. It is found that lower energy electrons which are generated through interactions of γ-photons with the coexisting metal materials and ejected to CO 2 gas actually enhance decomposition of CO 2 to produce CO. The increment of CO production agrees well with the increment of the deposited energy in CO 2 , given by the lower energy electrons emitted from the materials, which is calculated by a numerical simulations code MCNP. It is also suggested that the volumetric decomposition of CO 2 dominates the decomposition at the material's surface. (author)

  15. Synthesis and characterization of Co-doped lanthanum nickelate perovskites for solid oxide fuel cell cathode material

    International Nuclear Information System (INIS)

    Chavez G, L.; Hinojosa R, M.; Medina L, B.; Ringuede, A.; Cassir, M.; Vannier, R. N.

    2017-01-01

    In the perovskite structures widely investigated and used as solid oxide fuel cells cathodes, oxygen reduction is mainly limited to the triple phase boundary (TPB), where oxygen (air), electrode and electrolyte are in contact. It is possible via the sol-gel modified Pechini method to: 1) control the material grain size, which can increase TPBs, 2) produce a homogenous material and 3) obtain a cathode material in a faster way compared with the solid state route. LaNi_xCo_1_-_xO_3 (x = 0.3, 0.5, 0.7) were synthesized by the modified Pechini method. The perovskite phase formation began at 350 degrees Celsius and the presence of pure LaNi_0_._7Co_0_._3O_3, LaNi_0_._5Co_0_._5O_3 and LaNi_0_._3Co_0_._7O_3 structures was evidenced by high temperature X-ray diffraction (Ht-XRD) measurements. Scanning electron microscopy (Sem) micrographs showed that the microstructure evolves with the amount of cobalt from a coalesced to an open structure. Electrochemical impedance spectroscopy (EIS) on symmetrical cells LaNi_xCo_1_-_xO_3/YSZ (Yttria-stabilized zirconia)/LaNi_xCo_1_-_xO_3 showed that the highest ASR (area specific resistance) is obtained with x = 0.3, whereas ASR values are similar for x = 0.5 and 0.7 at temperatures higher than 600 degrees Celsius. At temperatures lower than 600 degrees Celsius, ASR is the lowest for LaNi_0_._5Co_0_._5O_3, showing that this composition with intermediate porosity appears as a good choice for and intermediate-temperature solid oxid fuel cell. (Author)

  16. Chemically treated carbon black waste and its potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Pengwei; Maneerung, Thawatchai; Ng, Wei Cheng; Zhen, Xu [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Dai, Yanjun [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Tong, Yen Wah [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Ting, Yen-Peng [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Koh, Shin Nuo [Sembcorp Industries Ltd., 30 Hill Street #05-04, 179360 (Singapore); Wang, Chi-Hwa, E-mail: chewch@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Neoh, Koon Gee, E-mail: chenkg@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore)

    2017-01-05

    Highlights: • Hazardous impurities separated from carbon black waste with little damage to solid. • Heavy metals were effectively removed from carbon black waste by HNO{sub 3} leaching. • Treated carbon black waste has high adsorption capacity (∼356.4 mg{sub dye}/g). • Carbon black waste was also found to show high electrical conductivity (10 S/cm). - Abstract: In this work, carbon black waste – a hazardous solid residue generated from gasification of crude oil bottom in refineries – was successfully used for making an absorbent material. However, since the carbon black waste also contains significant amounts of heavy metals (especially nickel and vanadium), chemical leaching was first used to remove these hazardous impurities from the carbon black waste. Acid leaching with nitric acid was found to be a very effective method for removal of both nickel and vanadium from the carbon black waste (i.e. up to 95% nickel and 98% vanadium were removed via treatment with 2 M nitric acid for 1 h at 20 °C), whereas alkali leaching by using NaOH under the same condition was not effective for removal of nickel (less than 10% nickel was removed). Human lung cells (MRC-5) were then used to investigate the toxicity of the carbon black waste before and after leaching. Cell viability analysis showed that the leachate from the original carbon black waste has very high toxicity, whereas the leachate from the treated samples has no significant toxicity. Finally, the efficacy of the carbon black waste treated with HNO{sub 3} as an absorbent for dye removal was investigated. This treated carbon black waste has high adsorption capacity (∼361.2 mg {sub dye}/g {sub carbonblack}), which can be attributed to its high specific surface area (∼559 m{sup 2}/g). The treated carbon black waste with its high adsorption capacity and lack of cytotoxicity is a promising adsorbent material. Moreover, the carbon black waste was found to show high electrical conductivity (ca. 10 S

  17. Applications of solid-state Nuclear Magnetic Resonance (NMR) in studies of Portland cements-based materials

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Andersen, Morten Daugaard; Jakobsen, Hans Jørgen

    2007-01-01

    Solid-state NMR spectroscopy represents an important research tool in the characterization of a range of structural properties for cement-based materials. Different approaches of the technique can be used to obtain information on hydration kinetics, mobile and bound water, porosity, and local...... atomic structures. After a short introduction to these NMR techniques, it is exemplified how magic-angle spinning (MAS) NMR can provide quantitative and structural information about specific phases in anhydrous and hydrated Portland cements with main emphasis on the incorporation of Al3+ ions...

  18. Analysis of non-axisymmetric wave propagation in a homogeneous piezoelectric solid circular cylinder of transversely isotropic material

    CSIR Research Space (South Africa)

    Shatalov, MY

    2009-01-01

    Full Text Available ). The main disadvantage of this approach is that the roots of characteristic arguments ( ( )0, 1, , 4k kξ = = … ) are also displayed on the surface plots as obvious artefacts. An elaborate discussion of these artefacts is given in Yenwong-Fai (2008...-matrix interface by guided waves: Axisymmetric case. J. Acoust. Soc. Am 89 (6), 2573-2583. Yenwong-Fai, A., 2008. Wave propagation in a piezoelectric solid cylinder of transversely isotropic material. Master’s thesis, University of Witwatersrand, Johannesburg...

  19. Study of radiation damage in solid materials by simulating physical processes

    International Nuclear Information System (INIS)

    Pinnera Hernandez, Ibrahin

    2006-12-01

    Nowadays the damage induced by different types of radiation in advanced materials is widely studied. Especially those materials involved in experiments and developing of new technologies, such as high critical temperature superconductors, semiconductors, metals. These materials are the basis constituents of radiation detectors, particle accelerators, etc. One way of studying this kind of damage is through the determination of the displacements per atom (dpa) induced by the radiation in these materials. This magnitude is one of the measures of the provoked radiation damage. On this direction, the present thesis deals with the study of two types of materials through mathematical simulation of physical processes taking place in the radiation transport. Ceramic superconductor Yba 2 Cu 3 O 7-x and metal Fe are the selected materials. The energy range of the incident gamma radiation goes from a few keV to 15 MeV. The MCNPX version 2.6b is used to determine the physical magnitudes required to calculate the distribution of displacements per atom within these materials, using an algorithm implemented for this purpose. Finally, a comparison between the obtained dpa profiles and the corresponding of energy deposition by radiation in these same materials and the possible linear dependence between both quantities is discussed. (Author)

  20. 76 FR 46290 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Science.gov (United States)

    2011-08-02

    ... States'' as part of a broader discussion about sustainable materials management. This information will be..., as well as its transparency. There is also a growing need for a more holistic assessment of how... sustainable management of these materials through safe recycling and source reduction. The Agency will...

  1. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    Science.gov (United States)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  2. Array of Chemosensitive Resistors with Composites of Gas Chromatography (GC) Materials and Carbon Black for Detection and Recognition of VOCs: A Basic Study

    Science.gov (United States)

    Wyszynski, Bartosz; Yatabe, Rui; Nakao, Atsuo; Nakatani, Masaya; Oki, Akio; Oka, Hiroaki; Toko, Kiyoshi

    2017-01-01

    Mimicking the biological olfaction, large odor-sensor arrays can be used to acquire a broad range of chemical information, with a potentially high degree of redundancy, to allow for enhanced control over the sensitivity and selectivity of artificial olfaction systems. The arrays should consist of the largest possible number of individual sensing elements while being miniaturized. Chemosensitive resistors are one of the sensing platforms that have a potential to satisfy these two conditions. In this work we test viability of fabricating a 16-element chemosensitive resistor array for detection and recognition of volatile organic compounds (VOCs). The sensors were fabricated using blends of carbon black and gas chromatography (GC) stationary-phase materials preselected based on their sorption properties. Blends of the selected GC materials with carbon black particles were subsequently coated over chemosensitive resistor devices and the resulting sensors/arrays evaluated in exposure experiments against vapors of pyrrole, benzenal, nonanal, and 2-phenethylamine at 150, 300, 450, and 900 ppb. Responses of the fabricated 16-element array were stable and differed for each individual odorant sample, proving the blends of GC materials with carbon black particles can be effectively used for fabrication of large odor-sensing arrays based on chemosensitive resistors. The obtained results suggest that the proposed sensing devices could be effective in discriminating odor/vapor samples at the sub-ppm level. PMID:28696353

  3. New materials for biodiesel production. The use of MgAl hydrotalcites solid catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Joao F.P.; Puna, Jaime F.B.; Goncalves, L. [Instituto Superior de Engenharia de Lisboa (ISEL), Lisboa (Portugal). Chemical Engineering Dept.; Bordado, Joao C. [Instituto Superior Tecnico (IST), Lisboa (Portugal). Inst. of Biotechnology and Bioengineering

    2010-07-01

    This work, reports preliminary studies and experimental work done so far in this field, using new solid basic catalysts: Double oxides of Mg and Al, produced by the calcination, at high temperature, of MgAl lamellar structures, the hidrotalcites. A brief introduction of its characterization, utilisation and synthesis of these catalysts, experimental conditions, experimental results and respective conclusions are described, here, with specific detail. The oil treatment procedure, the biodiesel production and purification processes and their respective morphological and textural characterizations are also described, with appropriate tables and figures, using, for instance, SEM, X-Ray Diffraction, Thermo gravimetric analysis (TG) and Middle Infrared Spectroscopy (MIR). (orig.)

  4. Solid-state dewetting and island morphologies in strongly anisotropic materials

    International Nuclear Information System (INIS)

    Jiang, Wei; Wang, Yan; Zhao, Quan; Srolovitz, David J.; Bao, Weizhu

    2016-01-01

    We propose a sharp-interface continuum model based on a thermodynamic variational approach to investigate the strong anisotropic effect on solid-state dewetting including contact line dynamics. For sufficiently strong surface energy anisotropy, we show that multiple equilibrium shapes may appear that cannot be described by the widely employed Winterbottom construction, i.e., the modified Wulff construction for an island on a substrate. We repair the Winterbottom construction to include multiple equilibrium shapes and employ our evolution model to demonstrate that all such shapes are dynamically accessible.

  5. Method of pyrolytic decomposition and coking of a mixture of finely distributed solid or semisolid carbonaceous material and hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1933-09-09

    A method of pyrolytic decomposition and coking of a mixture of finely distributed of solid or semi-solid carbonaceous material and hydrocarbon oils is disclosed whereby the mixture is exposed to a decomposition temperature and later is brought into the zone of decomposition where vapors are separated from the unvaporized residue and the vapors are exposed to fractional condensation for the purpose of obtaining a light product of distillation. The method is characterized by the mixture being exposed to heating by means of indirect exchange of heat in a heating zone or by means of a direct addition of a hot heat-conducting medium, or by means of both the mentioned indirect exchange of heat and direct heat under such conditions that the unvaporized residue obtained from the thus-heated mixture in the decomposition zone is transformed to solid coke in this zone by being heated to coking temperature in a comparatively thin layer on the surface of the decomposition zone that has been heated to a high temperature.

  6. Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: September 1990 progress report

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Osborne, S.C.; Francis, C.L.; Scott, T.C.

    1993-09-01

    Stabilization/solidification (S/S) is the most widely used technology for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % ASTM Class F fly ash, and 4 wt % Type I-II-LA Portland cement. The blend is mixed with 106-AN waste at a ratio of 9 lb of dry-solids blend per gallon of waste. This report documents progress made to date on efforts at Oak Ridge National Laboratory (ORNL) in support of WHC's Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula

  7. Directory of crystal growth and solid state materials production and research

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, T.F.; Battle, G.C.; Keesee, A.M. (comps.)

    1979-03-01

    This directory lists only those who returned questionnaires distributed by the Research Materials Information Center during 1978. The directory includes, in addition to crystal growers, those preparing starting materials for crystal growth and ultrapure noncrystalline research specimens. It also includes responses from those characterizing, or otherwise studying, the properties of materials provided by others. The international coverage of the directory is limited to the United States, Argentina, Australia, Bulgaria, Canada, Czechoslovakia, Egypt, Finland, East Germany, Hungary, India, Israel, Japan, Mexico, Poland, Romania, South Africa, Taiwan, Yugoslavia, and Zaire.

  8. Directory of crystal growth and solid state materials production and research

    International Nuclear Information System (INIS)

    Connolly, T.F.; Battle, G.C.; Keesee, A.M.

    1979-03-01

    This directory lists only those who returned questionnaires distributed by the Research Materials Information Center during 1978. The directory includes, in addition to crystal growers, those preparing starting materials for crystal growth and ultrapure noncrystalline research specimens. It also includes responses from those characterizing, or otherwise studying, the properties of materials provided by others. The international coverage of the directory is limited to the United States, Argentina, Australia, Bulgaria, Canada, Czechoslovakia, Egypt, Finland, East Germany, Hungary, India, Israel, Japan, Mexico, Poland, Romania, South Africa, Taiwan, Yugoslavia, and Zaire

  9. Report of the joint seminar on solid state physics, atomic and molecular physics, and materials science in the energy region of tandem accelerators

    International Nuclear Information System (INIS)

    Kazumata, Yukio

    1993-01-01

    The joint seminar on Solid State Physics, Atomic and Molecular Physics and Materials Science in the Energy Region of Tandem Acceleration was held at Tokai Research Establishment of JAERI, for two days from January 22 to 23, 1991. About 60 physicists and material scientists participated and 18 papers were presented in this seminar. The topics presented in this seminar included lattice defects in semiconductors, ion-solid collisions, atomic collisions by high energy particles, radiation effects on high T c superconducting materials and FCC metals, radiation effects on materials of space and fusion reactors, uranium compounds and superlattice. (J.P.N.)

  10. Characterization of proton exchange membrane materials for fuel cells by solid state nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Zueqian [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Solid-state nuclear magnetic resonance (NMR) has been used to explore the nanometer-scale structure of Nafion, the widely used fuel cell membrane, and its composites. We have shown that solid-state NMR can characterize chemical structure and composition, domain size and morphology, internuclear distances, molecular dynamics, etc. The newly-developed water channel model of Nafion has been confirmed, and important characteristic length-scales established. Nafion-based organic and inorganic composites with special properties have also been characterized and their structures elucidated. The morphology of Nafion varies with hydration level, and is reflected in the changes in surface-to-volume (S/V) ratio of the polymer obtained by small-angle X-ray scattering (SAXS). The S/V ratios of different Nafion models have been evaluated numerically. It has been found that only the water channel model gives the measured S/V ratios in the normal hydration range of a working fuel cell, while dispersed water molecules and polymer ribbons account for the structures at low and high hydration levels, respectively.

  11. Improving the sensitivity of J coupling measurements in solids with application to disordered materials

    International Nuclear Information System (INIS)

    Guerry, Paul; Brown, Steven P.; Smith, Mark E.

    2016-01-01

    It has been shown previously that for magic angle spinning (MAS) solid state NMR the refocused INADEQUATE spin-echo (REINE) experiment can usefully quantify scalar (J) couplings in disordered solids. This paper focuses on the two z filter components in the original REINE pulse sequence, and investigates by means of a product operator analysis and fits to density matrix simulations the effects that their removal has on the sensitivity of the experiment and on the accuracy of the extracted J couplings. The first z filter proves unnecessary in all the cases investigated here and removing it increases the sensitivity of the experiment by a factor ∼1.1–2.0. Furthermore, for systems with broad isotropic chemical shift distributions (namely whose full widths at half maximum are greater than 30 times the mean J coupling strength), the second z filter can also be removed, thus allowing whole-echo acquisition and providing an additional √2 gain in sensitivity. Considering both random and systematic errors in the values obtained, J couplings determined by fitting the intensity modulations of REINE experiments carry an uncertainty of 0.2–1.0 Hz (∼1−10 %).

  12. Properties of Copper Doped Neodymium Nickelate Oxide as Cathode Material for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Lee Kyoung-Jin

    2016-06-01

    Full Text Available Mixed ionic and electronic conducting K2NiF4-type oxide, Nd2Ni1-xCuxO4+δ (x=0~1 powders were synthesized by solid state reaction technique and solid oxide fuel cells consisting of a Nd2Ni1-xCuxO4+δ cathode, a Ni-YSZ anode and ScSZ as an electrolyte were fabricated. The effect of copper substitution for nickel on the electrical and electrochemical properties was examined. Small amount of copper doping (x=0.2 resulted in the increased electrical conductivity and decreased polarization resistance. It appears that this phenomenon was associated with the high mean valence of nickel and copper and the resulting excess oxygen (δ. It was found that power densities of the cell with the Nd2Ni1-xCuxO4+δ (x=0.1 and 0.2 cathode were higher than that of the cell with the Nd2NiO4+δ cathode.

  13. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells.

    Science.gov (United States)

    Kim, Junyoung; Sengodan, Sivaprakash; Kwon, Goeun; Ding, Dong; Shin, Jeeyoung; Liu, Meilin; Kim, Guntae

    2014-10-01

    We report on an excellent anode-supported H(+) -SOFC material system using a triple conducting (H(+) /O(2-) /e(-) ) oxide (TCO) as a cathode material for H(+) -SOFCs. Generally, mixed ionic (O(2-) ) and electronic conductors (MIECs) have been selected as the cathode material of H(+) -SOFCs. In an H(+) -SOFC system, however, MIEC cathodes limit the electrochemically active sites to the interface between the proton conducting electrolyte and the cathode. New approaches to the tailoring of cathode materials for H(+) -SOFCs should therefore be considered. TCOs can effectively extend the electrochemically active sites from the interface between the cathode and the electrolyte to the entire surface of the cathode. The electrochemical performance of NBSCF/BZCYYb/BZCYYb-NiO shows excellent long term stability for 500 h at 1023 K with high power density of 1.61 W cm(-2) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Influence of the conditions of a solid-state synthesis anode material ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... Abstract. Lithium–titanium spinel is a promising electrode material for high power and environmentally friendly batteries. .... electrolyte and increases the availability of Li4Ti5O12 towards lithium ions. ... container. The milling ...

  15. Nanomechanical analysis of high performance materials (solid mechanics and its applications)

    CERN Document Server

    2013-01-01

    This book is intended for researchers who are interested in investigating the nanomechanical properties of materials using advanced instrumentation techniques. The chapters of the book are written in an easy-to-follow format, just like solved examples. The book comprehensively covers a broad range of materials such as polymers, ceramics, hybrids, biomaterials, metal oxides, nanoparticles, minerals, carbon nanotubes and welded joints. Each chapter describes the application of techniques on the selected material and also mentions the methodology adopted for the extraction of information from the raw data. This is a unique book in which both equipment manufacturers and equipment users have contributed chapters. Novices will learn the techniques directly from the inventors and senior researchers will gain in-depth information on the new technologies that are suitable for advanced analysis. On one hand, fundamental concepts that are needed to understand the nanomechanical behavior of materials is included in the i...

  16. Fracture Toughness, Mechanical Property, And Chemical Characterization Of A Critical Modification To The NASA SLS Solid Booster Internal Material System

    Science.gov (United States)

    Pancoast, Justin; Garrett, William; Moe, Gulia

    2015-01-01

    A modified propellant-liner-insulation (PLI) bondline in the Space Launch System (SLS) solid rocket booster required characterization for flight certification. The chemical changes to the PLI bondline and the required additional processing have been correlated to mechanical responses of the materials across the bondline. Mechanical properties testing and analyses included fracture toughness, tensile, and shear tests. Chemical properties testing and analyses included Fourier transform infrared (FTIR) spectroscopy, cross-link density, high-performance liquid chromatography (HPLC), gas chromatography (GC), gel permeation chromatography (GPC), and wave dispersion X-ray fluorescence (WDXRF). The testing identified the presence of the expected new materials and found the functional bondline performance of the new PLI system was not significantly changed from the old system.

  17. Study of new technique of solid combustible materials to determination of volatile elements by flame atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Campos, R.C. de.

    1988-01-01

    A new technique for direct trace element analysis of solid combustible materials is described. The samples (up to 10 mg) are weighed on a graphite platform wich is then placed in a quartz tube, at the focal point of three infrared lamps. When the lamps are turned on, the sample burns in a stream of air, and the resulting dry aerosol containing volatile elements such as Hg, Cd, Bi, Tl, Zn, Pb and Cu is carried into the mixing chamber and thence into the flame, where the atomic absorption measurement is carried out. This technique overcomes chemical sample preparation steps, avoiding contaminations of losses associated with these steps. A ''furnace in flame'' system where the aerosol is transported to a flame heated T-tube is also described. The influence of flame stoichiometry, observation height, platform material and air flux intensity was studied inorder to determine optimal analytical conditions. (author) [pt

  18. Means and apparatus for throttling a dry pulverized solid material pump

    Science.gov (United States)

    Meyer, J. W.; Daniel, Jr, A. D.; Bonin, J. H.

    1982-12-07

    Method and apparatus are shown for control of continuous feeding of pulverized material to a high pressure container. A rotor is located within the high pressure container. The pulverized material is fed from a feed hopper through a stationary feed pipe to a vented spin-up zone chamber to a plurality of sprues mounted in the rotor. Control of the pressure within control nozzles downstream from the sprues adjusts the flow rate of coal through the sprues. 9 figs.

  19. A novel approach to engineer the microstructure of solid oxide fuel cell materials

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Morales, J.C.; Nunez, P.; Dominguez-Gonzalez, J.M. [Departamento de Quimica Inorganica, Universidad de La Laguna, 38200-La Laguna, Tenerife (Spain); Marrero-Lopez, D. [Departamento de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C. S. I. C.) Universidad de Malaga, 29071 Malaga (Spain); Canales-Vazquez, J. [Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain)

    2011-02-15

    A novel and cost-effective process to accurately control the design of 3D structures of SOFC materials is proposed. A master mould is fabricated from a rubber-based material. Metallic meshes are used to transfer any type of patterns to the rubber-based material. The reusable master mould can then be filled with a slurry of inorganic materials made of single or complex oxides and other organic components commonly used in tape-casting technology. After drying at room temperature, the master-mould can be easily peeled-off and then a slow thermal process allows obtaining a sintered material with precisely controlled features such as the size and distribution of the pore holes in the structure, the thickness of the electrode and electrolyte layers, type of patterning, etc. The potential advantages of micro- and nanoengineering of materials for energy applications are also discussed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Black, Hayden T; Harrison, Katharine Lee

    2016-10-01

    The synthesis and characterization of the first polyelectrolyte of intrinsic microporosity (PEIM) is described. The novel material was synthesized via reaction between the nitrile group in the polymer backbone and n-butyl lithium, effectively anchoring an imine anion to the porous framework while introducing a mobile lithium counterion. The PEIM was characterized by 13C, 1H, and 7Li NMR experiments, revealing quantitative conversion of the nitrile functionality to the anionic imine. Variable temperature 7Li NMR analysis of the dry PEIM and the electrolyteswollen PEIM revealed that lithium ion transport within the dry PEIM was largely due to interchain hopping of the Li+ ions, and that the mobility of polymer associated Li+ was reduced after swelling in electrolyte solution. Meanwhile, the swollen PEIM supported efficient transport of dissolved Li+ within the expanded pores. These results are discussed in the context of developing novel solid or solid-like lithium ion electrolytes using the new PEIM material.

  1. Novel Mg-Doped SrMoO3 Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Vanessa Cascos

    2016-07-01

    Full Text Available SrMo1−xMxO3−δ (M = Fe and Cr, x = 0.1 and 0.2 oxides have been recently described as excellent anode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFC with LSGM as the electrolyte. In this work, we have improved their properties by doping with aliovalent Mg ions at the B-site of the parent SrMoO3 perovskite. SrMo1−xMgxO3−δ (x = 0.1, 0.2 oxides have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers near 900 mW/cm−2 at 850 °C using pure H2 as fuel. We have studied its crystal structure with an “in situ” neutron power diffraction (NPD experiment at temperatures as high as 800 °C, emulating the working conditions of an SOFC. Adequately high oxygen deficiencies, observed by NPD, together with elevated disk-shaped anisotropic displacement factors suggest a high ionic conductivity at the working temperatures. Furthermore, thermal expansion measurements, chemical compatibility with the LSGM electrolyte, electronic conductivity and reversibility upon cycling in oxidizing-reducing atmospheres have been carried out to find out the correlation between the excellent performance as an anode and the structural features.

  2. On-line double isotope dilution laser ablation inductively coupled plasma mass spectrometry for the quantitative analysis of solid materials.

    Science.gov (United States)

    Fernández, Beatriz; Rodríguez-González, Pablo; García Alonso, J Ignacio; Malherbe, Julien; García-Fonseca, Sergio; Pereiro, Rosario; Sanz-Medel, Alfredo

    2014-12-03

    We report on the determination of trace elements in solid samples by the combination of on-line double isotope dilution and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method requires the sequential analysis of the sample and a certified natural abundance standard by on-line IDMS using the same isotopically-enriched spike solution. In this way, the mass fraction of the analyte in the sample can be directly referred to the certified standard so the previous characterization of the spike solution is not required. To validate the procedure, Sr, Rb and Pb were determined in certified reference materials with different matrices, including silicate glasses (SRM 610, 612 and 614) and powdered samples (PACS-2, SRM 2710a, SRM 1944, SRM 2702 and SRM 2780). The analysis of powdered samples was carried out both by the preparation of pressed pellets and by lithium borate fusion. Experimental results for the analysis of powdered samples were in agreement with the certified values for all materials. Relative standard deviations in the range of 6-21% for pressed pellets and 3-21% for fused solids were obtained from n=3 independent measurements. Minimal sample preparation, data treatment and consumption of the isotopically-enriched isotopes are the main advantages of the method over previously reported approaches. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  4. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review.

    Science.gov (United States)

    He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin

    2017-06-22

    For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future

  5. Materials data base and design equations for the UCLA solid breeder blanket

    International Nuclear Information System (INIS)

    Sharafat, S.; Amodeo, R.; Ghoniem, N.M.

    1986-01-01

    The need for a complete and coherent material data base for fusion reactor systems has been an important issue for some time now. Since the choices for materials used in fusion reactors are becoming more apparent, it is important to be able to quickly access this data to facilitate reactor design. The philosophy of a data base is one of expansion and modification. This will lead to a constantly growing collection of most recently acquired information. Based on this philosophy special care has been given to the structure, the accessibility and ease of modification. The data base is developed primarily for use on Personal Computers (PC's). In Section 10.2. materials and properties investigated for this blanket study are listed. Section 10.3. is a list of phenomenological equations and mathematical fits for all materials and properties considered. Section 10.4. describes the authors efforts to develop a swelling equations based on the few experimental data points available for breeder materials. In Section 10.5. the sintering phenomena for ceramics is investigated

  6. Measurement of properties of sealant materials for solid oxide fuel cell systems

    International Nuclear Information System (INIS)

    Boersma, R.J.; Sammes, N.M.; Zhang, Y.

    1998-01-01

    Thermal expansion of ceramic materials, ceramic cements and steels was studied, and their compatibility with materials used in the SOFC system was evaluated. A number of ceramic cements, a glass paste and a glass ceramic were examined to identify their potential as a sealing material in a tubular fuel cell system. Thermal expansion coefficients of these materials were compared for thermal matching with materials employed in the fuel cell construction, such as yttria stabilised with 8 mole% zirconia (8YSZ) and stainless steel. A reasonable match was found for Macor, a glass ceramic, with one of the steel samples studied and with 8YSZ. Candidate sealants were tested for bonding quality, which made it evident that the ceramic cements had to be discarded. Good bonds between Macor and one of the steel samples and Macor and 8YSZ were formed, resulting in a gas tight seal. Uncertainty remains regarding the long term effect of the interface reactions between steel and Macor. Exposure of the Macor and a steel-Macor-8YSZ assembly to the different fuel cell gas atmospheres revealed that the Macor reacts with hydrogen, the long term effect of which is also unknown. Copyright (1998) Australasian Ceramic Society

  7. Clearance levels for radionuclides in solid materials. Application of exemption principles. Interim report for comment

    International Nuclear Information System (INIS)

    1996-01-01

    This report proposes levels of radionuclides in solid wastes below which regulatory control may be relinquished on the grounds that the associated radiation hazards are trivial. The radiological basis for the guidance is the international consensus on principles for the exemption of radiation sources and practices from regulatory control reached in 1988 and published in IAEA Safety Series No. 89. The levels are intended as international reference values. The levels may be seen as those below which release from regulatory control is 'automatic' without further consideration being needed. Release from regulatory control may, of course, be allowed under other conditions; regulatory authorities may decide, on the basis of a generic or site specific optimization subject to dose constraints, to select other, less restrictive, release levels. This optimization process includes consideration of factors other than those associated with radiation protection, for example, those concerned with the health, social, environmental and economic benefits and risks of implementing the practice. 44 refs, tabs

  8. How to increase the efficiency of the electrical discharge method for destruction of nonconductive solid materials

    Energy Technology Data Exchange (ETDEWEB)

    Voitenko, N. V., E-mail: tevn@hvd.tpu.ru; Yudin, A. S.; Kuznetsova, N. S. [National Research Tomsk Polytechnic University (Russian Federation); Krastelev, E. G. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-12-15

    The paper deals with the relevance of using electrical discharge technology for construction works in the city. The technical capabilities of the installation for the multi-borehole electro-discharge splitting off and destruction of rocks and concrete are described. The ways to increase the efficiency of the electrical discharge method for the destruction of solids are proposed. In order to augment the discharge circuit energy, the energy storage is separated into two individual capacitor batteries. The throttle with the inductance of 28.6 μH is installed in one of the batteries, which increases the duration of the channel energy release to 400 μs and the efficiency of electrical discharge splitting off of concrete.

  9. Moessbauer study of Mg-Ni(Fe) alloys processed as materials for solid state hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Palade, P.; Principi, G., E-mail: giovanni.principi@unipd.it; Sartori, S.; Maddalena, A. [Universita di Padova, Settore Materiali, DIM (Italy); Lo Russo, S. [Universita di Padova, Dipartimento di Fisica (Italy); Schinteie, G.; Kuncser, V.; Filoti, G. [National Institute for Materials Physics, Solid State Magnetism Department (Romania)

    2006-02-15

    Mg-Ni-Fe magnesium-rich intermetallic compounds were prepared following two distinct routes. A Mg{sub 88}Ni{sub 11}Fe{sub 1} sample (A) was prepared by melt spinning Mg-Ni-Fe pellets and then by high-energy ball milling for 6 h the obtained ribbons. A (MgH{sub 2}){sub 88}Ni{sub 11}Fe{sub 1} sample (B) was obtained by high-energy ball milling for 20 h a mixture of Ni, Fe and MgH{sub 2} powders in the due proportions. A SPEX8000 shaker mill with a 10:1 ball to powder ratio was used for milling in argon atmosphere. The samples were submitted to repeated hydrogen absorption/desorption cycles in a Sievert type gas-solid reaction controller at temperatures in the range 520 - 590 K and a maximum pressure of 2.5 MPa during absorption. The samples were analysed before and after the hydrogen absorption/desorption cycles by X-ray diffraction and Moessbauer spectroscopy. The results concerning the hydrogen storage properties of the studied compounds are discussed in connection with the micro-structural characteristics found by means of the used analytical techniques. The improved kinetics of hydrogen desorption for sample A, in comparison to sample B, has been ascribed to the different behaviour of iron atoms in the two cases, as proved by Moessbauer spectroscopy. In fact, iron results homogeneously distributed in sample A, partly at the Mg{sub 2}Ni grain boundaries, with catalytic effect on the gas-solid reaction; in sample B, instead, iron is dispersed inside the hydride powder as metallic iron or superparamagnetic iron.

  10. Improved resins and novel materials and methods for solid phase extraction and high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Freeze, Ronald [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    Solid-phase extraction (SPE) has grown to be one of the most widely used methods for isolation and preconcentration of a vast range of compounds from aqueous solutions. By modifying polymeric SPE resins with chelating functional groups, the selective uptake of metals was accomplished. The resin, along with adsorbed metals, was vaporized in the ICP and detection of the metals was then possible using either mass or emission spectroscopy. Drug analyses in biological fluids have received heightened attention as drug testing is on the increase both in sports and in the work environment. By using a direct-injection technique, biological fluids can be injected directly into the liquid chromatographic system with no pretreatment. A new surfactant, a sulfonated form of Brij-30 (Brij-S) is shown to prevent the uptake of serum proteins on commercial HPLC columns by forming a thin coating on the silica C18 surface. Excellent separations of eight or more drugs with a wide range of retention times were obtained. The separations had sharper peaks and lower retention times than similar separations performed with the surfactant sodium dodecylsulfate (SDS). Quantitative recovery of a number of drugs with limits of detection near 1 ppm with a 5 μl injection volume were obtained. Finally, a method for solid-phase extraction in a syringe is introduced. The system greatly reduced the volume of solvent required to elute adsorbed analytes from the SPE bed while providing a semi-automated setup. SPE in a syringe consists of a very small bed of resin-loaded membrane packed into a GC or HPLC syringe. After extraction, elution was performed with just a few μl of solvent. This small elution volume allowed injection of the eluent directly from the syringe into the chromatographic system, eliminating the handling problems associated with such small volumes.

  11. Experimental study on composite solid propellant material burning rate using algorithm MATLAB

    Directory of Open Access Journals (Sweden)

    Thunaipragasam Selvakumaran

    2016-01-01

    Full Text Available In rocketry application, now-a-days instead of monopropellants slowly composite propellants are introduced. Burning rate of a solid state composite propellant depends on many factors like oxidizer-binder ratio, oxidizer particle size and distribution, particle size and its distribution, pressure, temperature, etc. Several researchers had taken the mass varied composite propellant. In that, the ammonium perchlorate mainly varied from 85 to 90%. This paper deals with the oxidizer rich propellant by allowing small variation of fuel cum binder ranging from 2%, 4%, 6%, and 8% by mass. Since the percent of the binder is very less compared to the oxidizer, the mixture remains in a powder form. The powder samples are used to make a pressed pellet. Experiments were conducted in closed window bomb set-up at pressures of 2, 3.5, and 7 MN/m2. The burning rates are calculated from the combustion photography (images taken by a high-speed camera. These images were processed frame by frame in MATLAB, detecting the edges in the images of the frames. The burning rate is obtained as the slope of the linear fit from MATLAB and observed that the burn rate increases with the mass variation of constituents present in solid state composite propellant. The result indicates a remarkable increase in burn rate of 26.66%, 20%, 16.66%, and 3.33% for Mix 1, 2, 3, 4 compared with Mix 5 at 7 MN/m2. The percentage variations in burn rate between Mix 1 and Mix 5 at 2, 3.5, and 7 MN/m2 are 25.833%, 32.322%, and 26.185%, respectively.

  12. Testing the homogeneity of candidate reference materials by solid sampling - AAS and INAA

    International Nuclear Information System (INIS)

    Rossbach, M.; Grobecker, K.-H.

    2002-01-01

    The necessity to quantify a natural material's homogeneity with respect to its elemental distribution prior to chemical analysis of a given aliquot is emphasised. Available instruments and methods to obtain the relevant information are described. Additionally the calculation of element specific, relative homogeneity factors, H E , and of a minimum sample mass M 5% to achieve 5% precision on a 95% confidence level is given. Especially, in the production and certification of Certified Reference Materials (CRMs) this characteristic information should be determined in order to provide the user with additional inherent properties of the CRM to enable more economical use of the expensive material and to evaluate further systematic bias of the applied analytical technique. (author)

  13. Evaluation of municipal solid waste management performance by material flow analysis: Theoretical approach and case study.

    Science.gov (United States)

    Zaccariello, Lucio; Cremiato, Raffaele; Mastellone, Maria Laura

    2015-10-01

    The main role of a waste management plan is to define which is the combination of waste management strategies and method needed to collect and manage the waste in such a way to ensure a given set of targets is reached. Objectives have to be sustainable and realistic, consistent with the environmental policies and regulations and monitored to verify the progressive achievement of the given targets. To get the aim, the setting up and quantification of indicators can allow the measurement of efficiency of a waste management system. The quantification of efficiency indicators requires the developing of a material flow analysis over the system boundary, from waste collection to secondary materials selling, processing and disposal. The material flow analysis has been carried out with reference to a case study for which a reliable, time- and site-specific database was available. The material flow analysis allowed the evaluation of the amount of materials sent to recycling, to landfilling and to waste-to-energy, by highlighting that the sorting of residual waste can further increase the secondary materials amount. The utilisation of energy recovery to treat the low-grade waste allows the maximisation of waste diversion from landfill with a low production of hazardous ash. A preliminary economic balance has been carried out to define the gate fee of the waste management system that was in the range of 84-145 € t(-1) without including the separate collection cost. The cost of door-by-door separate collection, designed to ensure the collection of five separate streams, resulted in 250 € t(-1) ±30%. © The Author(s) 2015.

  14. Resource planning of solid waste materials through process modelling as contribution to sustainable resource management; Ressourcenplanung fester Abfallstoffe mit Hilfe der Prozessmodellierung als Beitrag zum nachhaltigen Ressourcenmanagement

    Energy Technology Data Exchange (ETDEWEB)

    Pehlken, Alexandra [Bremen Univ. (Germany). BIK, Institut fuer integrierte Produktentwicklung

    2010-10-15

    Raw materials are essential to satisfy our needs in energy and products. Many raw materials are restricted and far away from being endless available; therefore there is a strong intention of developing raw material- and energy-efficient production processes. Recycling processes provide a substantial contribution to sustainable resource management due to the supply of valuable secondary raw materials for new applications. Processing solid waste materials generate new secondary resources from residues as resources for new products. This saves primary resources and keeps up a long material life cycle. But material characterisation is an important issue to look at. Material properties ascertain the following application possibilities. It has to be noted that no processing technique can guarantee solely material flows with properties to substitute primary raw materials. There are always material flows that are of minor quality. This makes it difficult to assess the future potential of secondary raw materials to be available for following applications with specific quality demands. (orig.)

  15. Effect of materials mixture on the higher heating value: Case of biomass, biochar and municipal solid waste.

    Science.gov (United States)

    Boumanchar, Imane; Chhiti, Younes; M'hamdi Alaoui, Fatima Ezzahrae; El Ouinani, Amal; Sahibed-Dine, Abdelaziz; Bentiss, Fouad; Jama, Charafeddine; Bensitel, Mohammed

    2017-03-01

    The heating value describes the energy content of any fuel. In this study, this parameter was evaluated for different abundant materials in Morocco (two types of biochar, plastic, synthetic rubber, and cardboard as municipal solid waste (MSW), and various types of biomass). Before the evaluation of their higher heating value (HHV) by a calorimeter device, the thermal behavior of these materials was investigated using thermogravimetric (TGA) and Differential scanning calorimetry (DSC) analyses. The focus of this work is to evaluate the calorific value of each material alone in a first time, then to compare the experimental and theoretical HHV of their mixtures in a second time. The heating value of lignocellulosic materials was between 12.16 and 20.53MJ/kg, 27.39 for biochar 1, 32.60MJ/kg for biochar 2, 37.81 and 38.00MJ/kg for plastic and synthetic rubber respectively and 13.81MJ/kg for cardboard. A significant difference was observed between the measured and estimated HHVs of mixtures. Experimentally, results for a large variety of mixture between biomass/biochar and biomass/MSW have shown that the interaction between biomass and other compounds expressed a synergy of 2.37% for biochar 1 and 6.11% for biochar 2, 1.09% for cardboard, 5.09% for plastic and 5.01% for synthetic rubber. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Summary of workshop 'Theory Meets Industry' - the impact of ab initio solid state calculations on industrial materials research

    International Nuclear Information System (INIS)

    Wimmer, E

    2008-01-01

    A workshop, 'Theory Meets Industry', was held on 12-14 June 2007 in Vienna, Austria, attended by a well balanced number of academic and industrial scientists from America, Europe, and Japan. The focus was on advances in ab initio solid state calculations and their practical use in industry. The theoretical papers addressed three dominant themes, namely (i) more accurate total energies and electronic excitations (ii) more complex systems, and (iii) more diverse and accurate materials properties. Hybrid functionals give some improvements in energies, but encounter difficulties for metallic systems. Quantum Monte Carlo methods are progressing, but no clear breakthrough is on the horizon. Progress in order-N methods is steady, as is the case for efficient methods for exploring complex energy hypersurfaces and large numbers of structural configurations. The industrial applications were dominated by materials issues in energy conversion systems, the quest for hydrogen storage materials, improvements of electronic and optical properties of microelectronic and display materials, and the simulation of reactions on heterogeneous catalysts. The workshop is a clear testimony that ab initio computations have become an industrial practice with increasingly recognized impact

  17. Summary of workshop 'Theory Meets Industry'—the impact of ab initio solid state calculations on industrial materials research

    Science.gov (United States)

    Wimmer, E.

    2008-02-01

    A workshop, 'Theory Meets Industry', was held on 12-14 June 2007 in Vienna, Austria, attended by a well balanced number of academic and industrial scientists from America, Europe, and Japan. The focus was on advances in ab initio solid state calculations and their practical use in industry. The theoretical papers addressed three dominant themes, namely (i) more accurate total energies and electronic excitations, (ii) more complex systems, and (iii) more diverse and accurate materials properties. Hybrid functionals give some improvements in energies, but encounter difficulties for metallic systems. Quantum Monte Carlo methods are progressing, but no clear breakthrough is on the horizon. Progress in order-N methods is steady, as is the case for efficient methods for exploring complex energy hypersurfaces and large numbers of structural configurations. The industrial applications were dominated by materials issues in energy conversion systems, the quest for hydrogen storage materials, improvements of electronic and optical properties of microelectronic and display materials, and the simulation of reactions on heterogeneous catalysts. The workshop is a clear testimony that ab initio computations have become an industrial practice with increasingly recognized impact.

  18. Method of removing arsenic and/or other amphoteric elements from sludge and solid waste materials

    NARCIS (Netherlands)

    Van Breemen, A.N.

    1990-01-01

    Abstract of WO 9006820 (A1) The noxious element arsenic may be removed with high efficiency from iron hydroxide sludge by first subjecting that sludge first to a thermal treatment in the presence of air or oxygen and of an alkaline reagent and next extracting the treated material with water. The

  19. Novel family of solid acid catalysts: substantially amorphous or partially crystalline zeolitic materials

    CSIR Research Space (South Africa)

    Nicolaides, CP

    1999-01-01

    Full Text Available of the samples obtained at the various temperatures showed that for synthesis temperatures of up to 70 degrees C, X-ray amorphous aluminosilicates were obtained, whereas treatment at 90 degrees C produced a material exhibiting a 2% XRD crystallinity. Higher...

  20. Solid state photochemistry. Subpanel A-2(a): Design of molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Wells, R.L. [Duke Univ., Durham, NC (United States)

    1996-09-01

    Recent achievements of synthetic chemistry in the field of electronic materials are presented in three categories; viz, precursor design for improved processing, new chemistry for selective growth, and new growth techniques. This is followed by a discussion of challenges and opportunities in two general areas designated as composition and structure, and growth and processing.

  1. Quasiparticle GW calculations for solids, molecules, and two-dimensional materials

    DEFF Research Database (Denmark)

    Hüser, Falco; Olsen, Thomas; Thygesen, Kristian Sommer

    2013-01-01

    band gap is around 1eV too low. Similar relative deviations are found for the ionization potentials of a test set of 32 small molecules. The importance of substrate screening for a correct description of quasiparticle energies and Fermi velocities in supported two-dimensional (2D) materials...... of quasiparticle states....

  2. Gas-solid heat exchange in a fibrous metallic material measured by a heat regenerator technique

    NARCIS (Netherlands)

    Golombok, M.; Jariwala, H.; Shirvill, C.

    1990-01-01

    The convective heat transfer properties of a porous metallic fibre material used in gas surface combustion burners are studied. The important parameter governing the heat transfer between hot gas and metal fibre—the heat transfer coefficient—is measured using a non-steady-state method based on

  3. Methane steam reforming kinetics over Ni-YSZ anode materials for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Mogensen, David

    of internal reforming has to be carefully controlled. The objective of this thesis is to make such a careful control possible by examining the rate of internal steam reforming in SOFCs. The catalytic steam reforming activity of Ni-YSZ anode material was tested both in a packed bed reactor to determine...

  4. Effects of porosity on seismic velocities, elastic moduli and Poisson's ratios of solid materials and rocks

    Directory of Open Access Journals (Sweden)

    Chengbo Yu

    2016-02-01

    Full Text Available The generalized mixture rule (GMR is used to provide a unified framework for describing Young's (E, shear (G and bulk (K moduli, Lame parameter (λ, and P- and S-wave velocities (Vp and Vs as a function of porosity in various isotropic materials such as metals, ceramics and rocks. The characteristic J values of the GMR for E, G, K and λ of each material are systematically different and display consistent correlations with the Poisson's ratio of the nonporous material (ν0. For the materials dominated by corner-shaped pores, the fixed point at which the effective Poisson's ratio (ν remains constant is at ν0 = 0.2, and J(G > J(E > J(K > J(λ and J(G  0.2 and ν0  J(Vp and J(Vs  0.2 and ν0  0.2 and ν0 = 0.2, respectively. For natural rocks containing thin-disk-shaped pores parallel to mineral cleavages, grain boundaries and foliation, however, the ν fixed point decreases nonlinearly with decreasing pore aspect ratio (α: width/length. With increasing depth or pressure, cracks with smaller α values are progressively closed, making the ν fixed point rise and finally reach to the point at ν0 = 0.2.

  5. Faradic redox active material of Cu7S4 nanowires with a high conductance for flexible solid state supercapacitors

    Science.gov (United States)

    Javed, Muhammad Sufyan; Dai, Shuge; Wang, Mingjun; Xi, Yi; Lang, Qiang; Guo, Donglin; Hu, Chenguo

    2015-08-01

    The exploration of high Faradic redox active materials with the advantages of low cost and low toxicity has been attracting great attention for producing high energy storage supercapacitors. Here, the high Faradic redox active material of Cu7S4-NWs coated on a carbon fiber fabric (CFF) is directly used as a binder-free electrode for a high performance flexible solid state supercapacitor. The Cu7S4-NW-CFF supercapacitor exhibits excellent electrochemical performance such as a high specific capacitance of 400 F g-1 at the scan rate of 10 mV s-1 and a high energy density of 35 Wh kg-1 at a power density of 200 W kg-1, with the advantages of a light weight, high flexibility and long term cycling stability by retaining 95% after 5000 charge-discharge cycles at a constant current of 10 mA. The high Faradic redox activity and high conductance behavior of the Cu7S4-NWs result in a high pseudocapacitive performance with a relatively high specific energy and specific power. Such a new type of pseudocapacitive material of Cu7S4-NWs with its low cost is very promising for actual application in supercapacitors.The exploration of high Faradic redox active materials with the advantages of low cost and low toxicity has been attracting great attention for producing high energy storage supercapacitors. Here, the high Faradic redox active material of Cu7S4-NWs coated on a carbon fiber fabric (CFF) is directly used as a binder-free electrode for a high performance flexible solid state supercapacitor. The Cu7S4-NW-CFF supercapacitor exhibits excellent electrochemical performance such as a high specific capacitance of 400 F g-1 at the scan rate of 10 mV s-1 and a high energy density of 35 Wh kg-1 at a power density of 200 W kg-1, with the advantages of a light weight, high flexibility and long term cycling stability by retaining 95% after 5000 charge-discharge cycles at a constant current of 10 mA. The high Faradic redox activity and high conductance behavior of the Cu7S4-NWs result in

  6. Electrical properties of Ba doped LSGM for electrolyte material of solid oxide fuel cells

    Science.gov (United States)

    Raghvendra, Singh, Prabhakar; Singh, Rajesh Kumar

    2013-02-01

    We report our investigations on Lanthanum Strontium Magnesium Gallate, LSGM, La0.8Sr0.2Ga0.8Mg0.2O3-δ doped with Barium at Strontium site having composition La0.8(Sr0.1Ba0.1)Ga0.8Mg0.2O3-δ (LSBGM). The pure cubic phase along with some additional phase was confirmed by XRD pattern. Electrical properties of the Composition LSBGM [La0.8(Sr0.1Ba0.1)Ga0.8Mg0.2O3-δ] prepared by solid state route, was studied employing impedance spectroscopy in the temperature range 573 K-993 K and frequency range 20 Hz-1MHz. The total ionic conductivity of the composition was found to be 0.072 S.cm-1 at 953 K and the activation energy from Arrhenius plot was found to be 1.16 eV in the measured temperature range. This confirms oxygen ion conductivity in the system. SEM micrograph shows the uniform densed particle morphology with gains of average size 200 nm.

  7. Sorption-spectroscopic and test methods for the determination of metal ions on the solid-phase of ion-exchange materials

    International Nuclear Information System (INIS)

    Savvin, Sergey B; Dedkova, Valentina P; Shvoeva, Ol'ga P

    2000-01-01

    Data on sorption-spectroscopic and test methods for the determination of metal ions on the solid-phase of ion-exchange materials published over the past decade are reviewed. The advantages and disadvantages of ion-exchange materials are discussed. The detection limits and selectivity of these techniques are described. The bibliography includes 151 references.

  8. Modeling the interaction of high power ion or electron beams with solid target materials

    International Nuclear Information System (INIS)

    Hassanein, A.M.

    1983-11-01

    Intense energy deposition on first wall materials and other components as a result of plasma disruptions in magnetic fusion devices are expected to cause melting and vaporization of these materials. The exact amount of vaporization losses and melt layer thickness are very important to fusion reactor design and lifetime. Experiments using ion or electron beams to simulate the disruption effects have different environments than the actual disruption conditions in fusion reactors. A model has been developed to accurately simulate the beam-target interactions so that the results from such experiments can be meaningful and useful to reactor design. This model includes a two dimensional solution of the heat conduction equation with moving boundaries. It is found that the vaporization and melting of the sample strongly depends on the characteristics of the beam spatial distribution, beam diameter, and on the power-time variation of the beam

  9. Determination of dry matter and organic matter content in input material for solid-matter fermentation

    International Nuclear Information System (INIS)

    Edelmann, W.

    2008-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents and discusses the results of tests made on various samples of biogenous wastes taken from four fermentation plants in Switzerland. The aims of the tests made on the fermentation input materials that were sampled on a weekly basis are discussed. Various relevant data on the samples noted include the characterisation of the material and even weather data. The spread of the data acquired is discussed. The results obtained are examined in detail, including seasonal variations. The basic findings of the project are presented and differences between countryside and city areas as well as garden and catering wastes are discussed. A comprehensive appendix presents details on the data collected.

  10. Computational analysis of gas-solid interactions in materials for energy storage and conversion

    DEFF Research Database (Denmark)

    Lysgaard, Steen

    . The focus is specifically on the investigation of catalytic materials for electrochemical CO2 fixation into fuels as well as ammonia storage materials, using computational methods relying on density functional theory (DFT) and effective medium theory (EMT) calculations as well as a genetic algorithm....... Nanoparticles of binary alloys have previously been shown to be catalytically active for electrochemical CO2 fixation. The stability of the nanoparticles is critical for a catalytic system. We have developed a method to determine the structure and composition of nanoparticles under reactive conditions...... found in certain experiments. We have furthermore determined a stable surface state of ammonia in SrCl2 ammines and identified its implications on the ab- and desorption kinetics. Metal salts often bind ammonia and water molecules in a similar structural coordination. We have studied the competitive...

  11. Mimicking heme enzymes in the solid state: metal-organic materials with selectively encapsulated heme.

    Science.gov (United States)

    Larsen, Randy W; Wojtas, Lukasz; Perman, Jason; Musselman, Ronald L; Zaworotko, Michael J; Vetromile, Carissa M

    2011-07-13

    To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal-organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a "ship-in-a-bottle" fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levels of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.

  12. Laser materials development by means of a solid-state bonding method

    International Nuclear Information System (INIS)

    Sugiyama, Akira

    2011-01-01

    This paper reviews laser materials development via a bonding method without adhesives. Instead of conventional chemical etching, a dry etching technique using an argon beam has been newly developed for the bonding method. This method meets the requirement for the use of optical materials. We succeeded in the fabrication of a composite laser crystal with good heat conductivity by bonding two kinds of crystals; one is neodymium-doped YVO 4 crystal (Nd:YVO 4 ) and the other is its host crystal YVO 4 . In the comparison of the laser performance between the normal and composite crystal, the composite one shows the good lasing capability of increasing laser output without fracture of the crystal due to thermal stress which appeared in the normal one. (author)

  13. Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices

    Science.gov (United States)

    2014-03-06

    extraction with minimization of electron -hole recombination, resistive losses, down conversions and so on and on device processing. Meeting the...the establishment of multiple feedback loops through Mexico/US video conferencing (including all students) needed to capitalize on the high degree of...PCBM) as electron acceptor material. The cells were not optimized in active layer preparation conditions such as solvent, thickness, annealing, or

  14. Synthesis and characterization of Co-doped lanthanum nickelate perovskites for solid oxide fuel cell cathode material

    Energy Technology Data Exchange (ETDEWEB)

    Chavez G, L.; Hinojosa R, M. [Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, San Nicolas de los Garza, 66450 Nuevo Leon (Mexico); Medina L, B.; Ringuede, A.; Cassir, M. [Institut de Recherche de Chimie Paris, CNRS-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris (France); Vannier, R. N., E-mail: leonardo.chavezgr@uanl.edu.mx [Unite de Catalyse et de Chimie du Solide, UMR 8181 CNRS, 59655, Villeneuve d Ascq Cedex (France)

    2017-11-01

    In the perovskite structures widely investigated and used as solid oxide fuel cells cathodes, oxygen reduction is mainly limited to the triple phase boundary (TPB), where oxygen (air), electrode and electrolyte are in contact. It is possible via the sol-gel modified Pechini method to: 1) control the material grain size, which can increase TPBs, 2) produce a homogenous material and 3) obtain a cathode material in a faster way compared with the solid state route. LaNi{sub x}Co{sub 1-x}O{sub 3} (x = 0.3, 0.5, 0.7) were synthesized by the modified Pechini method. The perovskite phase formation began at 350 degrees Celsius and the presence of pure LaNi{sub 0.7}Co{sub 0.3}O{sub 3}, LaNi{sub 0.5}Co{sub 0.5}O{sub 3} and LaNi{sub 0.3}Co{sub 0.7}O{sub 3} structures was evidenced by high temperature X-ray diffraction (Ht-XRD) measurements. Scanning electron microscopy (Sem) micrographs showed that the microstructure evolves with the amount of cobalt from a coalesced to an open structure. Electrochemical impedance spectroscopy (EIS) on symmetrical cells LaNi{sub x}Co{sub 1-x}O{sub 3}/YSZ (Yttria-stabilized zirconia)/LaNi{sub x}Co{sub 1-x}O{sub 3} showed that the highest ASR (area specific resistance) is obtained with x = 0.3, whereas ASR values are similar for x = 0.5 and 0.7 at temperatures higher than 600 degrees Celsius. At temperatures lower than 600 degrees Celsius, ASR is the lowest for LaNi{sub 0.5}Co{sub 0.5}O{sub 3}, showing that this composition with intermediate porosity appears as a good choice for and intermediate-temperature solid oxid fuel cell. (Author)

  15. Papulo-Nodular Reactions in Black Tattoos as Markers of Sarcoidosis: Study of 92 Tattoo Reactions from a Hospital Material.

    Science.gov (United States)

    Sepehri, Mitra; Hutton Carlsen, Katrina; Serup, Jørgen

    2016-01-01

    Sarcoidosis is, from historical data, suggested to be more prevalent among patients with tattoo reactions. We aimed to evaluate this association in a systematic study. This is a consecutive study of patients with tattoo complications, diagnosed in the "Tattoo Clinic" at Bispebjerg University Hospital in Copenhagen, Denmark, from 2008 to 2015, based on clinical assessment and histology. From the overall group of 494 tattoo complications in 406 patients, 92 reactions in 72 patients showed a papulo-nodular pattern studied for local and systemic sarcoidosis, since sarcoidosis is expected to be nodular. Of the 92 reactions with a papulo-nodular pattern, 27 (29%) reactions in 19 patients were diagnosed as cutaneous or systemic sarcoidosis, supported by histology; 65 (71%) were diagnosed as non-sarcoidosis due to histology and no clinical sarcoid manifestations. "Rush phenomenon" with concomitant reaction in many other black tattoos, triggered by a recent tattoo with a papulo-nodular reaction, was observed in 70% in the sarcoidosis group and 28% in the non-sarcoidosis group, indicating a predisposing factor which may be autoimmune and linked with sarcoidosis. Agglomerates of black pigment forming foreign bodies may in the predisposed individual trigger widespread reaction in the skin and internal organs. Black tattoos with papulo-nodular reactions should be seen as markers of sarcoidosis. Papulo-nodular reactions may, as triggers, induce widespread reactions in other black tattoos - a "rush phenomenon" - depending on individual predisposition. Sarcoidosis is estimated to be 500-fold increased in papulo-nodular reactions compared to the prevalence in the general population, and the association with black tattoos is strong. © 2017 S. Karger AG, Basel.

  16. Thermal expansion and density measurements of molten and solid materials at high temperatures by the gamma attenuation technique

    International Nuclear Information System (INIS)

    Drotning, W.D.

    1979-05-01

    An apparatus is described for the measurement of the density and thermal expansion of molten materials to 3200 0 K using the gamma attenuation technique. The precision of the experimental technique was analytically examined for both absolute and relative density determinations. Three analytical expressions used to reduce data for liquid density determinations were evaluated for their precision. Each allows use of a different set of input data parameters, which can be chosen based on experimental considerations. Using experimentally reasonable values for the precision of the parameters yields a similar resultant density precision from the three methods, on the order of 0.2%. The analytical method for measurements of the linear thermal expansion of solids by the gamma method is also described. To demonstrate the use of the technique on reasonably well-characterized systems, data are presented for (1) the density and thermal expansion of molten tin, lead, and aluminum to 1300 0 K, (2) the thermal expansion of solid aluminum to the melting point, and (3) the thermal expansion of a low melting point glass through the transition temperature and melting region. The data agree very well with published results using other methods where such published data exist

  17. A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance

    Directory of Open Access Journals (Sweden)

    Muneeb Irshad

    2016-03-01

    Full Text Available Today’s world needs highly efficient systems that can fulfill the growing demand for energy. One of the promising solutions is the fuel cell. Solid oxide fuel cell (SOFC is considered by many developed countries as an alternative solution of energy in near future. A lot of efforts have been made during last decade to make it commercial by reducing its cost and increasing its durability. Different materials, designs and fabrication technologies have been developed and tested to make it more cost effective and stable. This article is focused on the advancements made in the field of high temperature SOFC. High temperature SOFC does not need any precious catalyst for its operation, unlike in other types of fuel cell. Different conventional and innovative materials have been discussed along with properties and effects on the performance of SOFC’s components (electrolyte anode, cathode, interconnect and sealing materials. Advancements made in the field of cell and stack design are also explored along with hurdles coming in their fabrication and performance. This article also gives an overview of methods required for the fabrication of different components of SOFC. The flexibility of SOFC in terms fuel has also been discussed. Performance of the SOFC with varying combination of electrolyte, anode, cathode and fuel is also described in this article.

  18. Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.

    Science.gov (United States)

    Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2018-01-17

    Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

  19. Determination of phthalates released from paper packaging materials by solid-phase extraction-high-performance liquid chromatography.

    Science.gov (United States)

    Gao, Xin; Yang, Bofeng; Tang, Zhixu; Luo, Xin; Wang, Fengmei; Xu, Hui; Cai, Xue

    2014-01-01

    A solid phase extraction (SPE) high-performance liquid chromatography (HPLC) method was developed for the simultaneous determination of 10 phthalic acid esters (dimethyl phthalate, diethyl phthalate, dipropyl phthalate, benzylbutyl phthalate, diisobutyl phthalate, dicyclohexyl phthalate, diamyl phthalate, di-n-hexyl phthalate, di-n-octyl phthalate and di-2-ethylhexyl phthalate) released from food paper packaging materials. The use of distilled water, 3% acetic acid (w/v), 10% ethanol (v/v) and 95% ethanol (v/v) instead of the different types of food simulated the migration of 10 phthalic acid esters from food paper packaging materials; the phthalic acid esters in four food simulants were enriched and purified by a C18 SPE column and nitrogen blowing, and quantified by HPLC with a diode array detector. The chromatographic conditions and extraction conditions were optimized and all 10 of the phthalate acid esters had a maximum absorbance at 224 nm. The method showed limitations of detection in the range of 6.0-23.8 ng/mL the correlation coefficients were greater than 0.9999 in all cases, recovery values ranged between 71.27 and 106.97% at spiking levels of 30, 60 and 90 ng/mL and relative standard deviation values ranged from 0.86 to 8.00%. The method was considered to be simple, fast and reliable for a study on the migration of these 10 phthalic acid esters from food paper packaging materials into food.

  20. High-flexibility combinatorial peptide synthesis with laser-based transfer of monomers in solid matrix material.

    Science.gov (United States)

    Loeffler, Felix F; Foertsch, Tobias C; Popov, Roman; Mattes, Daniela S; Schlageter, Martin; Sedlmayr, Martyna; Ridder, Barbara; Dang, Florian-Xuan; von Bojničić-Kninski, Clemens; Weber, Laura K; Fischer, Andrea; Greifenstein, Juliane; Bykovskaya, Valentina; Buliev, Ivan; Bischoff, F Ralf; Hahn, Lothar; Meier, Michael A R; Bräse, Stefan; Powell, Annie K; Balaban, Teodor Silviu; Breitling, Frank; Nesterov-Mueller, Alexander

    2016-06-14

    Laser writing is used to structure surfaces in many different ways in materials and life sciences. However, combinatorial patterning applications are still limited. Here we present a method for cost-efficient combinatorial synthesis of very-high-density peptide arrays with natural and synthetic monomers. A laser automatically transfers nanometre-thin solid material spots from different donor slides to an acceptor. Each donor bears a thin polymer film, embedding one type of monomer. Coupling occurs in a separate heating step, where the matrix becomes viscous and building blocks diffuse and couple to the acceptor surface. Furthermore, we can consecutively deposit two material layers of activation reagents and amino acids. Subsequent heat-induced mixing facilitates an in situ activation and coupling of the monomers. This allows us to incorporate building blocks with click chemistry compatibility or a large variety of commercially available non-activated, for example, posttranslationally modified building blocks into the array's peptides with >17,000 spots per cm(2).

  1. Novel materials for more robust solid oxide fuel cells in small scale applications

    DEFF Research Database (Denmark)

    Holtappels, Peter

    , especially for remote fuel cell systems. For those applications, redox tolerant and Sulphur resistant fuel electrode materials are advantageous in order to make the cells more tolerant against sudden system failures such as fuel cut off and reformer breakdown. Also for direct feeding of alcohols and higher...... hydrocarbons, coking tolerant electrodes are required. State-of art fuel electrodes are based on a nickel ceramic composite, a nickel cermet, which suffers from low redox stability, susceptibility for sulfur poisoning and coking. Redox stable anodes can be achieved by replacing the Ni-cermet fuel electrode...

  2. Accelerated expansion of laser-ablated materials near a solid surface

    International Nuclear Information System (INIS)

    Chen, K.R.; Leboeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-01-01

    A dynamic source effect that accelerates the expansion of laser-ablated material in the direction perpendicular to the target is demonstrated. A self-similar theory shows that the maximum expansion velocity is proportional to c s /α, where 1-α is the slope of the velocity profile and c s is the sound speed. Numerical hydrodynamic modeling is in good agreement with the theory. A dynamic partial ionization effect is also studied. With these effects, α is reduced and the maximum expansion velocity is significantly increased over that found from conventional models. copyright 1995 The American Physical Society

  3. Liquid electrolyte-free, solid-state solar cells with inorganic hole transport materials

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Chung, In; Lee, Byunghong; Chang, Robert P. H.

    2017-10-31

    Photovoltaic cells incorporating the compounds A/M/X compounds as hole transport materials are provide. The A/M/X compounds comprise one or more A moieties, one or more M atoms and one or more X atoms. The A moieties are selected from organic cations and elements from Group 1 of the periodic table, the M atoms are selected from elements from at least one of Groups 3, 4, 5, 13, 14 or 15 of the periodic table, and the X atoms are selected from elements from Group 17 of the periodic table.

  4. Reassembling Solid Materials by Femtosecond Laser Ablation: Case of Aluminum Nitride

    Science.gov (United States)

    Kobayashi, Tohru; Matsuo, Yukari

    2013-06-01

    Through atomization and ionization, we could completely alter the composition of a nonconductive material, aluminum nitride, by femtosecond laser ablation. Preferential production of pure aluminum cluster cations Aln+ (n≤32) reflects not only their higher energetic stability compared with mixed clusters AlnNm+ but also completion of thermal relaxation in ablation plasma. Observation of metastable dissociation of Aln+ indicates that cluster cations have still enough internal energy for dissociation to occur, although the process is much slower than the cluster formation. Almost no cluster formation has been observed after nanosecond laser ablation of aluminum nitride, which highlights the distinct nature of ablation plasma produced by femtosecond laser ablation.

  5. Nanobiotechnology approach to fabricate polycaprolactone nanofibers containing solid titanium nanoparticles as future implant materials

    DEFF Research Database (Denmark)

    Sheikh, Faheem A.; Kanjwal, Muzafar Ahmed; Cha, Jaegwan

    2011-01-01

    In this study, a good combination of electrospun poly(caprolactone) nanofibers incorporated with high purity titanium nanoparticles is introduced for hard tissue engineering applications. A simple approach to utilize the colloidal properties of poly(caprolactone) and titanium nanoparticles...... nanofiber mats, they were incubated in simulated body fluid at 37 °C for 10 days. Field emission scanning electron microscopy in combination with energy-dispersive X-ray spectroscopy indicated that incorporation of titanium strongly activates precipitation of the apatite-like materials from the utilized...... simulated body fluid. Moreover, in-vivo experiments using experimental dogs revealed that nanofibers can yield good tissue regeneration on the surfaces of nanofibers....

  6. Elaboration of building materials from industrial waste from solid granular diatomaceous earth; Elaboracion de material de construccion a partir de residuos industriales solidos granulares procedentes de tierras diatomaceas

    Energy Technology Data Exchange (ETDEWEB)

    Del Angel S, A.

    2015-07-01

    In this work the initial characterization of granular solid industrial waste from diatomaceous earth was carried out using techniques of Scanning Electron Microscopy and X-ray Diffraction. In a second stage leaching of the material was undertaken to the US Patent Number 5, 376,000 and 5, 356,601 obtaining the samples M1-S ph 2, M1-L ph, M1-S ph 10 and M1-L ph 10. In the third stage a new characterization of the samples obtained with the techniques of Scanning Electron Microscopy, X-ray Diffraction and Atomic Absorption Spectrometry was performed, the latter in order to determine the efficiency percentage of the leaching process. In the fourth stage the specimens for performing mechanical, physical and chemical tests were manufactured, using molds as PVC pipes of 1 inch in diameter and 2 inches in length, with a composition of 50% of diatomaceous earth and 50% of cement produced in each. Finally, in the fifth stage mechanical testing (compression resistance), physical (moisture absorption rate) and chemical (composition and structure of the material) are performed. In the last stage, when conducting mechanical testing with the test specimens, the presence of bubbles enclosed in each obtaining erroneous results noted, so it was necessary to develop the specimens again, obtaining in this occasion concentrations of 20:80, 40:60, 60:40 and 80:20 of diatomaceous earth with the cement. These results were analyzed to determine if the used material is suitable for the production of building materials such as bricks or partitions, being demonstrated by the tests carried out if they are eligible. (Author)

  7. Black rings

    International Nuclear Information System (INIS)

    Emparan, Roberto; Reall, Harvey S

    2006-01-01

    A black ring is a five-dimensional black hole with an event horizon of topology S 1 x S 2 . We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  8. Research of Methods, Technologies and Materials for Drainage Water Treatment at the Municipal Solid Waste Landfill in Salaryevo

    Directory of Open Access Journals (Sweden)

    Gogina Elena

    2016-01-01

    Full Text Available The article deals with innovative methods, technologies and materials intended to reduce the adverse ecological impact of human waste and various industrial waste situated in municipal solid waste landfills (MSW, on water bodies, soil, and atmosphere. The existence of these factors makes the region less attractive for urban development. A comparison has been made of the methods intended to reduce the damage caused to the environment, in order to provide for sustainable development of cities, using the example of an actual landfill situated in the territory of Moscow. A scheme of reconstruction is recommended for the drainage water treatment plant at this landfill, which will lead to improvement of the environmental situation and contribute to the development of territories in the adjacent districts, and to reduction of pollution load on the river and atmosphere.

  9. Recycling of Pre-Washed Municipal Solid Waste Incinerator Fly Ash in the Manufacturing of Low Temperature Setting Geopolymer Materials

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-08-01

    Full Text Available In this work, three samples of municipal solid waste incinerators fly ash (MSWI-FA have been stabilized in systems containing coal fly ash to create geopolymers through a polycondensation reaction. Monolithic products have been obtained with both MSWI fly ash as received and after the partial removal of chloride and sulfate by water washing. The polycondensation products have been characterized qualitatively by means of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy and quantitatively, through the determination of the volume of reacted water and silicate. Furthermore, the heavy metals and chloride releases together with the physico-mechanical properties have been evaluated on the hardened products. In conclusion, considering the technological and environmental performances of the obtained geopolymers, they could be suitable for many non-structural applications, such as backfilling of abandoned quarries, decorative materials or brick fireplaces, hearths, patios, etc.

  10. Recycling of Pre-Washed Municipal Solid Waste Incinerator Fly Ash in the Manufacturing of Low Temperature Setting Geopolymer Materials.

    Science.gov (United States)

    Ferone, Claudio; Colangelo, Francesco; Messina, Francesco; Santoro, Luciano; Cioffi, Raffaele

    2013-08-12

    In this work, three samples of municipal solid waste incinerators fly ash (MSWI-FA) have been stabilized in systems containing coal fly ash to create geopolymers through a polycondensation reaction. Monolithic products have been obtained with both MSWI fly ash as received and after the partial removal of chloride and sulfate by water washing. The polycondensation products have been characterized qualitatively by means of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy and quantitatively, through the determination of the volume of reacted water and silicate. Furthermore, the heavy metals and chloride releases together with the physico-mechanical properties have been evaluated on the hardened products. In conclusion, considering the technological and environmental performances of the obtained geopolymers, they could be suitable for many non-structural applications, such as backfilling of abandoned quarries, decorative materials or brick fireplaces, hearths, patios, etc.

  11. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos de Gois, Jefferson; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); Welz, Bernhard [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil); Borges, Daniel L.G., E-mail: daniel.borges@ufsc.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil)

    2015-03-01

    This work describes a methodology developed to carry out Cl determination in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. The solid samples were directly weighed into graphite ‘cups’ and inserted into the graphite furnace. The RF power and the carrier gas flow rate were optimized at 1300 W and 0.7 L min{sup −1}, respectively. Calibration could be carried out using aqueous standard solutions with pre-dried modifiers (Pd + Nd or Pd + Ca) or using solid certified reference materials with the same pre-dried modifiers or without the use of modifiers. The limit of quantification was determined as 5 μg g{sup −1} under optimized conditions and the Cl concentration was determined in five certified reference materials with certified concentrations for Cl, in addition to three certified reference materials, for which certified values for Cl were unavailable; in the latter case, the results were compared with those obtained using high-resolution continuum source molecular absorption spectrometry. Good agreement at a 95% statistical confidence level was achieved between determined and certified or reference values. - Highlights: • Direct determination of chlorine in solid biological materials is described for the first time using ICP-MS. • Calibration against aqueous standards is feasible. • The method is accurate and sensitive, regardless of the composition of the solid sample.

  12. Effect of adding bulking materials over the composting process of municipal solid biowastes

    Directory of Open Access Journals (Sweden)

    Ricardo Oviedo-Ocaña

    2015-12-01

    Full Text Available Biowastes (BW, the main raw materials for the composting installations in developing countries, are characterized for containing uncooked food wastes (FW, high moisture content, low porosity, acidic pH, and low C/N ratios which affects the overall composting process (CP. In this study, we evaluated the effect of adding sugarcane bagasse (SCB and star grass (SG (Cynodon plectostachyus (K. Schum. Pilg. as bulking materials (BM over the quality of the substrate, progress of the process, and quality of the obtained product. In this sense, two pilot-scale experiments were performed. The first one contained a substrate formed by 78% BW and 22% SCB (pile A. The second experiment contained a substrate formed by 66% BW and 34% SG (pile B. For each experiment, control treatments (piles A' and B' respectively were performed by using 100% BW without BM. The results showed that in both cases the adding of BM improved substrate quality (pH, moisture, and total organic C content [TOC], speeding up the starting step (2-3 d and reducing the duration of the thermophilic phase of CP (3 d. However, the physico-chemical properties of both BM increased cooling and maturation phases duration (between 15 and 20 d. Obtained products quality was improved in terms of higher TOC, cation-exchange capacity, bulk density, and higher water holding capacity. Application of obtained products A and B could improve some soil properties like major nutrient, water retention, and increasing the organic matter.

  13. UTILIZATION OF PINE NEEDLES AS BED MATERIAL IN SOLID STATE FERMENTATION FOR PRODUCTION OF LACTIC ACID BY LACTOBACILLUS STRAINS

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Ghosh

    Full Text Available Pine needles, which are abundantly found as underexploited biomass in coniferous forests, are responsible for fire hazards and air pollution. Utilization of pine needles as bed material in lactic acid production with solid state fermentation (SSF has been studied here. This investigation compared lactic acid production by pure strains of Lactobacilli, (1 L. delbrueckii (NCIM2025; (2 L. pentosus (NCIM 2912; (3 Lactobacillus sp. (NCIM 2734; (4 Lactobacillus sp. (NCIM2084; and a co-culture of the first two strains. The studies required 6 g per flask powdered dry pine needles as bed material, 2 g/L (inoculum, liquid production media based on pure glucose or whey substituted glucose, at 60, 80, and 120 g/L sugar levels, 37 oC, and an initial pH of 6.5. Co-culture attained a maximum lactic acid concentration of 45.10 g/L, followed by that of strain-1, 43.87 g/L and strain-4, 26.15 g/L, in 80 g/L pure glucose media. With 120g/L total sugar in whey-substituted media, the co-culture attained maximum lactic acid production of 44.88 g/L followed by that of strain-1, 43.67 g/L. The present experimental studies indicated better compatibility of pine needle bed with co-culture in solid state fermentation of lactic acid, which may prove to be an eco-friendly technology for utilization of biomass as well as minimizing fires in coniferous forests.

  14. Development of materials for use in solid oxid fuel cells anodes using renewable fuels in direct operation

    International Nuclear Information System (INIS)

    Lima, D.B.P.L. de; Florio, D.Z. de; Bezerra, M.E.O.

    2016-01-01

    Fuel cells produce electrical current from the electrochemical combustion of a gas or liquid (H2, CH4, C2H5OH, CH3OH, etc.) inserted into the anode cell. An important class of fuel cells is the SOFC (Solid Oxide Cell Fuel). It has a ceramic electrolyte that transports protons (H +) or O-2 ions and operating at high temperatures (500-1000 °C) and mixed conductive electrodes (ionic and electronic) ceramics or cermets. This work aims to develop anodes for fuel cells of solid oxide (SOFC) in order to direct operations with renewable fuels and strategic for the country (such as bioethanol and biogas). In this context, it becomes important to study in relation to the ceramic materials, especially those that must be used in high temperatures. Some types of double perovskites such as Sr2MgMoO6 (or simply SMMO) have been used as anodes in SOFC. In this study were synthesized by the polymeric precursor method, analyzed and characterized different ceramic samples of families SMMO, doped with Nb, this is: Sr2 (MgMo)1-xNbxO6 with 0 ≤ x ≤ 0.2. The materials produced were characterized by various techniques such as, thermal analysis, X-ray diffraction and scanning electron microscopy, and electrical properties determined by dc and ac measurements in a wide range of temperature, frequency and partial pressure of oxygen. The results of this work will contribute to a better understanding of advanced ceramic properties with mixed driving (electronic and ionic) and contribute to the advancement of SOFC technology operating directly with renewable fuels. (author)

  15. Experimental studies and modelling of cation interactions with solid materials: application to the MIMICC project. (Multidimensional Instrumented Module for Investigations on chemistry-transport Coupled Codes)

    International Nuclear Information System (INIS)

    Hardin, Emmanuelle

    1999-01-01

    The study of cation interactions with solid materials is useful in order to define the chemistry interaction component of the MIMICC project (Multidimensional Instrumented Module for Investigations on chemistry-transport Coupled Codes). This project will validate the chemistry-transport coupled codes. Database have to be supplied on the cesium or ytterbium interactions with solid materials in suspension. The solid materials are: a strong cation exchange resin, a natural sand which presents small impurities, and a zirconium phosphate. The cation exchange resin is useful to check that the surface complexation theory can be applied on a pure cation exchanger. The sand is a natural material, and its isotherms will be interpreted using pure oxide-cation system data, such as pure silica-cation data. Then the study on the zirconium phosphate salt is interesting because of the increasing complexity in the processes (dissolution, sorption and co-precipitation). These data will enable to approach natural systems, constituted by several complex solids which can interfere on each other. These data can also be used for chemistry-transport coupled codes. Potentiometric titration, sorption isotherms, sorption kinetics, cation surface saturation curves are made, in order to obtain the different parameters relevant to the cation sorption at the solid surface, for each solid-electrolyte-cation system. The influence of different parameters such as ionic strength, pH, and electrolyte is estimated. All the experimental curves are fitted with FITEQL code based on the surface complexation theory using the constant capacitance model, in order to give a mechanistic interpretation of the ion retention phenomenon at the solid surface. The speciation curves of all systems are plotted, using the FITEQL code too. Systems with an increasing complexity are studied: dissolution, sorption and coprecipitation coexist in the cation-salt systems. Then the data obtained on each single solid, considered

  16. Contact Resistance of Ceramic Interfaces Between Materials Used for Solid Oxide Fuel Cell Applications

    DEFF Research Database (Denmark)

    Koch, Søren

    The contact resistance can be divided into two main contributions. The small area of contact between ceramic components results in resistance due to current constriction. Resistive phases or potential barriers at the interface result in an interface contribution to the contact resistance, which may....... The influence of the mechanical load on the contact resistance was ascribed to an area effect. The contact resistance of the investigated materials was dominated by current constric-tion at high temperatures. The measured contact resistance was comparable to the resis-tance calculated on basis of the contact...... areas found by optical and electron microscopy. At low temperatures, the interface contribution to the contact resistance was dominating. The cobaltite interface could be described by one potential barrier at the contact interface, whereas the manganite interfaces required several consecutive potential...

  17. Ionic liquids and their solid-state analogues as materials for energy generation and storage

    Science.gov (United States)

    Macfarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.; Kar, Mega; Passerini, Stefano; Pringle, Jennifer M.; Ohno, Hiroyuki; Watanabe, Masayoshi; Yan, Feng; Zheng, Wenjun; Zhang, Shiguo; Zhang, Jie

    2016-02-01

    Salts that are liquid at room temperature, now commonly called ionic liquids, have been known for more than 100 years; however, their unique properties have only come to light in the past two decades. In this Review, we examine recent work in which the properties of ionic liquids have enabled important advances to be made in sustainable energy generation and storage. We discuss the use of ionic liquids as media for synthesis of electromaterials, for example, in the preparation of doped carbons, conducting polymers and intercalation electrode materials. Focusing on their intrinsic ionic conductivity, we examine recent reports of ionic liquids used as electrolytes in emerging high-energy-density and low-cost batteries, including Li-ion, Li-O2, Li-S, Na-ion and Al-ion batteries. Similar developments in electrolyte applications in dye-sensitized solar cells, thermo-electrochemical cells, double-layer capacitors and CO2 reduction are also discussed.

  18. Recycling of agroindustrial solid wastes as additives in brick manufacturing for development of sustainable construction materials

    OpenAIRE

    Lisset Maritza Luna-Cañas; Carlos Alberto Ríos-Reyes; Luz Amparo Quintero-Ortíz

    2014-01-01

    La acumulación de residuos sólidos agroindustriales no administ rados especialmente en los países en vías de desarrollo ha dado lugar a una creciente preocupación ambiental. El reciclaje de tales res iduos como un material de construcción sostenible parece ser un a solución viable no sólo al problema de la contaminación, sino también un a opción económica para diseñar edificios verdes. El presente t rabajo estudia la aplicación de varios residuos agroindustriales en la fabricación de ladrillo...

  19. Understanding mechanisms of solid-state phase transformations by probing nuclear materials

    Science.gov (United States)

    Banerjee, Srikumar; Donthula, Harish

    2018-04-01

    In this review a few examples will be cited to illustrate that a study on a specific nuclear material sometimes lead to a better understanding of scientific phenomena of broader interests. Zirconium alloys offer some unique opportunities in addressing fundamental issues such as (i) distinctive features between displacive and diffusional transformations, (ii) characteristics of shuffle and shear dominated displacive transformations and (iii) nature of mixed-mode transformations. Whether a transformation is of first or higher order?" is often raised while classifying it. There are rare examples, such as Ni-Mo alloys, in which during early stages of ordering the system experiences tendencies for both first order and second order transitions. Studies on the order-disorder transitions under a radiation environment have established the pathway for the evolution of ordering. These studies have also identified the temperature range over which the chemically ordered state remains stable in steady state under radiation.

  20. The use of low energy ion beams for the growth and processing of solid materials

    International Nuclear Information System (INIS)

    Armour, D.G.; Al-Bayati, A.H.; Gordon, J.S.

    1992-01-01

    Low energy ion bombardment forms the basis of ion assisted etching and growth of materials in plasma and ion beam systems. The growing demands for low temperature, highly controlled processing has led a rapid increase in both the application of low energy beams and the study of the fundamental ion surface interactions involved. The growth in the practical applications of ion beams in the few eV to a few hundred eV range has presented new problems in the production and transport of ion beams and has led to the development of highly specialised, ultra-low energy systems. These technological developments, in conjunction with the improvements in understanding of fundamental processes have widened the range of applications of low energy beams. (author) 52 refs

  1. New Primary Standards for Establishing SI Traceability for Moisture Measurements in Solid Materials

    Science.gov (United States)

    Heinonen, M.; Bell, S.; Choi, B. Il; Cortellessa, G.; Fernicola, V.; Georgin, E.; Hudoklin, D.; Ionescu, G. V.; Ismail, N.; Keawprasert, T.; Krasheninina, M.; Aro, R.; Nielsen, J.; Oğuz Aytekin, S.; Österberg, P.; Skabar, J.; Strnad, R.

    2018-01-01

    A European research project METefnet addresses a fundamental obstacle to improving energy-intensive drying process control: due to ambiguous reference analysis methods and insufficient methods for estimating uncertainty in moisture measurements, the achievable accuracy in the past was limited and measurement uncertainties were largely unknown. This paper reports the developments in METefnet that provide a sound basis for the SI traceability: four new primary standards for realizing the water mass fraction were set up, analyzed and compared to each other. The operation of these standards is based on combining sample weighing with different water vapor detection techniques: cold trap, chilled mirror, electrolytic and coulometric Karl Fischer titration. The results show that an equivalence of 0.2 % has been achieved between the water mass fraction realizations and that the developed methods are applicable to a wide range of materials.

  2. Highly efficient solid-state neutron scintillators based on hybrid sol-gel nanocomposite materials

    International Nuclear Information System (INIS)

    Kesanli, Banu; Hong, Kunlun; Meyer, Kent; Im, Hee-Jung; Dai, Sheng

    2006-01-01

    This research highlights opportunities in the formulation of neutron scintillators that not only have high scintillation efficiencies but also can be readily cast into two-dimensional detectors. Series of transparent, crack-free monoliths were prepared from hybrid polystyrene-silica nanocomposites in the presence of arene-containing alkoxide precursor through room temperature sol-gel processing. The monoliths also contain lithium-6 salicylate as a target material for neutron-capture reactions and amphiphilic scintillator solution as a fluorescent sensitizer. Polystyrene was functionalized by trimethoxysilyl group in order to enable the covalent incorporation of aromatic functional groups into the inorganic sol-gel matrices for minimizing macroscopic phase segregation and facilitating lithium-6 doping in the sol-gel samples. Neutron and alpha responses of these hybrid polystyrene-silica monoliths were explored

  3. Modelling of ion sorption on complex solid materials. Synthesis of research activities

    International Nuclear Information System (INIS)

    Marmier, Nicolas

    2000-01-01

    In this HDR (Accreditation to Supervise Researches) report, the author proposes an overview of his research activities which are part of efforts of qualification and quantification of retention capacities of synthetic and artificial materials used to confine nuclear wastes in an underground geological site by absorption of radio-elements possibly passed into solution. More specifically, these research works focused on models aimed at predicting the behaviour of a mixing with respect to adsorption, and thus at avoiding too cumbersome experimental characterizations. The author presents the designed modelling approach and models, describes the implemented scientific approach and the associated data acquisition methodology, and discusses the obtained results. He finally proposed an assessment of these research works, and discusses research perspectives on a short and medium term [fr

  4. Contact resistance of ceramic interfaces between materials used for solid oxide fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Koch, S.

    2002-01-01

    The contact resistance can be divided into two main contributions. The small area of contact between ceramic components results in resistance due to current constriction. Resistive phases or potential barriers at the interface result in an interface contribution to the contact resistance, which may be smaller or larger than the constriction resistance. The contact resistance between pairs of three different materials were analysed (strontium doped lanthanum manganite, yttria stabilised zirconia and strontium and nickel doped lanthanum cobaltite), and the effects of temperature, atmosphere, polarisation and mechanical load on the contact resistance were investigated. The investigations revealed that the mechanical load of a ceramic contact has a high influence on the contact resistance, and generally power law dependence between the contact resistance and the mechanical load was found. The influence of the mechanical load on the contact resistance was ascribed to an area effect. The contact resistance of the investigated materials was dominated by current constriction at high temperatures. The measured contact resistance was comparable to the resistance calculated on basis of the contact areas found by optical and electron microscopy. At low temperatures, the interface contribution to the contact resistance was dominating. The cobaltite interface could be described by one potential barrier at the contact interface, whereas the manganite interfaces required several consecutive potential barriers to model the observed behaviour. The current-voltage behaviour of the YSZ contact interfaces was only weakly non-linear, and could be described by 22{+-}1 barriers in series. Contact interfaces with sinterable contact layers were also investigated, and the measured contact resistance for these interfaces were more than 10 times less than for the other interfaces. (au)

  5. Solid waste management

    OpenAIRE

    Srebrenkoska, Vineta; Golomeova, Saska; Zhezhova, Silvana

    2013-01-01

    Waste is unwanted or useless materials from households, industry, agriculture, hospitals. Waste materials in solid state are classified as solid waste. Increasing of the amount of solid waste and the pressure what it has on the environment, impose the need to introduce sustainable solid waste management. Advanced sustainable solid waste management involves several activities at a higher level of final disposal of the waste management hierarchy. Minimal use of material and energy resources ...

  6. Microparticles and human health: particulate materials, trace metals elements and black carbon in aerosols collected at Andravoahangy-Antananarivo, Madagascar

    International Nuclear Information System (INIS)

    Rasoazanany, E. O.; Andriamahenina, N. N.; Harinoely, M.; Ravoson, H. N.; Randriamanivo, L. V.; Raoelina Andriambololona; Ramaherison, H.

    2013-01-01

    The present work is to determine the concentrations of microparticles having diameter inferior to 10 μm (PM 10 ), the metal trace elements and the black carbon in the aerosols sampled in Andravoahangy-Antananarivo, Madagascar in 2008. The air sampler GENT is used to collect aerosol samples. The total reflection X-ray fluorescence spectrometer is used for qualitative and quantitative analysis of simultaneous way all metallic trace elements contained in the aerosols. The M43D reflectometer permits to measure the reflectances in order to determine the black carbon concentrations. The results show that the average concentrations of the particulate matters PM 2,5-10 are higher than those of PM 2,5 . The average concentrations of PM 10 in the aerosols are exceeding the World Health Organisation (WHO) and European Union guidelines, set at 50 μg.m -3 and those of PM 2,5 are higher than the 2005 WHO (25 μg.m-3) and the United States Environment Protection Agency (35 μg.m -3 ) guidelines. Consequently, air quality in Andravoahangy does not respect these daily guidelines. The identified metallic trace elements in the aerosols are Ti, Cr, Mn, Fe, Ni, Cu, Zn and Pb. The average concentrations of these elements are also higher in the coarse particles than in the fine particles. The concentrations of black carbon are higher in the fine particles. The maximum value is 9.12 μg.m -3 . [fr

  7. Porous Aromatic Framework 48/Gel Hybrid Material Coated Solid-Phase Microextraction Fiber for the Determination of the Migration of Styrene from Polystyrene Food Contact Materials.

    Science.gov (United States)

    Jin, Yuanyuan; Li, Zhongyue; Yang, Lei; Xu, Jun; Zhao, Le; Li, Zhonghao; Niu, Jiajia

    2017-01-17

    A novel solid-phase microextraction (SPME) fiber was fabricated by a porous aromatic framework 48 (PAF-48)/gel hybrid material through a sol-gel process. PAF-48 is a porous organic framework (POF) material that was polymerized from 1,3,5-triphenylbenzene. The uniform pore structure, high surface area, continuous conjugate network, and hydrophobicity make PAF-48 expected to have special abilities to absorb and extract styrene as well as some other harmful volatile aromatic compounds (VACs). The PAF-48/gel-coated fiber was explored for the extraction of styrene and six VACs (benzene, toluene, ethylbenzene, and xylenes) from aqueous food simulants followed by gas chromatography (GC) separation. The fiber was found to be very sensitive for the determination of the target molecules with wide linear ranges (0.1-200 or 500 μg·kg -1 ), low limits of detection (LODs, 0.003-0.060 μg·kg -1 ), acceptable precisions (intraday relative standard deviation, RSD 200 times). Particularly for styrene, the PAF-48/gel-coated fiber exhibited a much lower LOD (0.006 μg·kg -1 ) compared with most of the reported fibers. Moreover, the PAF-48/gel-coated fiber had a high extraction selectivity for styrene and VACs over alcohols, phenols, aromatic amines, and alkanes and show a molecular sieving effect for the different molecule sizes. Finally, the PAF-48/gel-coated SPME fiber was successfully applied in GC for the determination of the specific migrations of styrene and VACs from polystyrene (PS) plastic food contact materials (FCMs).

  8. Finite element analysis of ion transport in solid state nuclear waste form materials

    Science.gov (United States)

    Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.

    2017-09-01

    Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.

  9. MCSAD: Improved algorithm for Monte Carlo Simulation of Atom Displacements in solid materials

    International Nuclear Information System (INIS)

    Correa-Alfonso, C. M.; Pinnera, I.; Cruz, C. M.; Abreu, Y.; Leyva, A.

    2011-01-01

    In order to directly simulate the stochastic occurrence of atom displacements (AD) formation processes during gamma and electron irradiation, an improved Monte Carlo calculation code is presented. In MCSAD, AD processes were considered only on the basis of single elastic scattering interactions among fast primary and/or secondary electrons with matrix atoms. The AD distribution was statistically sampled and simulated in the framework of the Monte Carlo Method to perform discrete single electron scattering processes (ES), particularly those leading to AD events. As study case, the high critical temperature superconducting material YBa 2 Cu 3 O 7-x (YBCO) is presented. The AD in-depth distributions at different incident photons kinetic energies were obtained. Furthermore, the AD contribution from each atomic species to total AD distribution was achieved. In addition the AD energy profiles with the scattered electron kinetic energies were carried out. A comparison with the theoretical expressions proposed by Oen-Holmes-Cahn [1,2] is presented and discussed. (Author)

  10. Mechanical and trybological characterization of ceramic materials obtained of mine solid wastes

    International Nuclear Information System (INIS)

    Soto T, J.L.

    2003-01-01

    A discussion of the physical, mechanical and tribological characterization of the ceramics Jaar, Jaca and Vijaar is presented in this work. They have been obtained from the industrial residuals, coming from metals and sand of the mining industry in Pachuca Hidalgo, Mexico. The methodology followed for the obtention and characterization of these ceramics consists on eliminating the cyanides from the tailings through columns coupled with a system controlled with thermostats. Then, the chemical composition is analysed with spectrometry emission of plasma and scanning electronic microscopy. Then the ceramics are produced. The base material is agglutinated with clay or kaolin. For this purpose, it was used a sintering processes and isothermal compacting in hot condition. Finally, the physical, chemical, mechanical and tribological properties of these new products are determined. Carbon, oxygen, sodium, magnesium, aluminium, manganese, silicon, potassium, phosphor, calcium, titanium, iron, molybdenum, silver and gold are in the chemical composition or ceramic analysed. Also these are heterogeneous mixture of clay and kaolin. The cyanide was eliminated. The results show that Vijaar has better wear resistances to the waste; this was demonstrated in tribology tests. They were not perforated with the abrasive particles. Also, they have high hardness and they can to support more loads in compression than Jaar and the Jaca. Consequently, they are less fragile and, therefore, they can tolerate bending stresses and bigger impact loading. (Author)

  11. Black holes

    International Nuclear Information System (INIS)

    Feast, M.W.

    1981-01-01

    This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied

  12. The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View

    Science.gov (United States)

    Joseph, Aneeta Mary; Snellings, Ruben; Van den Heede, Philip; Matthys, Stijn

    2018-01-01

    Huge amounts of waste are being generated, and even though the incineration process reduces the mass and volume of waste to a large extent, massive amounts of residues still remain. On average, out of 1.3 billion tons of municipal solid wastes generated per year, around 130 and 2.1 million tons are incinerated in the world and in Belgium, respectively. Around 400 kT of bottom ash residues are generated in Flanders, out of which only 102 kT are utilized here, and the rest is exported or landfilled due to non-conformity to environmental regulations. Landfilling makes the valuable resources in the residues unavailable and results in more primary raw materials being used, increasing mining and related hazards. Identifying and employing the right pre-treatment technique for the highest value application is the key to attaining a circular economy. We reviewed the present pre-treatment and utilization scenarios in Belgium, and the advancements in research around the world for realization of maximum utilization are reported in this paper. Uses of the material in the cement industry as a binder and cement raw meal replacement are identified as possible effective utilization options for large quantities of bottom ash. Pre-treatment techniques that could facilitate this use are also discussed. With all the research evidence available, there is now a need for combined efforts from incineration and the cement industry for technical and economic optimization of the process flow. PMID:29337887

  13. Characterization of the solid, airborne materials created when UF6 reacts with moist air flowing in single-pass mode

    International Nuclear Information System (INIS)

    Pickrell, P.W.

    1985-10-01

    A series of experiments has been performed in which UF 6 was released into flowing air in order to characterize the solid particulate material produced under non-static conditions. In two of the experiments, the aerosol was allowed to stagnate in a static chamber after release and examined further but in the other experiments characterization was done only on material collected a few seconds after release. Transmission electron microscopy and mass measurement by cascaded impactor were used to characterize the aerosol particles which were usually single spheroids with little agglomeration in evidence. The goal of the work is to determine the chemistry and physics of the UF 6 -atmospheric moisture reaction under a variety of conditions so that information about resulting species and product morphologies is available for containment and removal (knockdown) studies as well as for dispersion plume modeling and toxicology studies. This report completes the milestone for reporting the information obtained from releases of UF 6 into flowing rather than static air. 26 figs., 3 tabs

  14. Synthesis strategies for improving the performance of doped-BaZrO 3 materials in solid oxide fuel cell applications

    KAUST Repository

    Bi, Lei

    2013-08-07

    Solid oxide fuel cells (SOFCs) offer an efficient energy conversion technology for alleviating current energy problems. High temperature proton-conducting (HTPC) oxides are promising electrolytes for this technology, since their activation energy is lower than that of conventional oxygen-ion conductors, enabling the operating temperature reduction at 600 °C. Among HTPC oxides, doped BaZrO3 materials possess high chemical stability, needed for practical applications. Though, poor sinterability and the resulting large volume of highly resistive grain boundaries hindered their deployment for many years. Nonetheless, the recently demonstrated high proton conductivity of the bulk revived the attention on doped BaZrO3, stimulating research on solving the sintering issues. The proper selection of dopants and sintering aids was demonstrated to be successful for improving the BaZrO3 electrolyte sinterability. We here briefly review the synthesis strategies proposed for preparing BaZrO3-based nanostructured powders for electrolyte and electrodes, with the aim to improve the SOFC performance. © Materials Research Society 2013.

  15. Reuse of Solid Waste as Alternative Training Environment Conservation for Brewing in New Materials of Initial Education Teacher

    Directory of Open Access Journals (Sweden)

    Francys Yuviana Garrido Rojas

    2016-08-01

    Full Text Available The study focuses its objective to establish the reuse of solid waste as an alternative training in environmental conservation by developing new materials for teachers C.E.I.N. "Sebastian Araujo Briceño" Ciudad Bolivia, Barinas Pedraza municipality. The nature of the research is qualitative, the method is Action Research. Key informants shall consist of the director of the institution, the educational coordinator and classroom teacher. The technique used is the semi-structured interview, and the interview guide instrument. The analysis of information will be done through coding, categorization, triangulation and structuring theories. In conclusion, through the experience that has been the research in this institution, it has been shown that there is a pressing need in terms of training of staff of the institution in relation to the importance and benefits of environmental conservation and Similarly, the need for teaching and learning materials accompanying the different spaces where children are served, all this reality, gives an important sense this study.

  16. The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View

    Directory of Open Access Journals (Sweden)

    Aneeta Mary Joseph

    2018-01-01

    Full Text Available Huge amounts of waste are being generated, and even though the incineration process reduces the mass and volume of waste to a large extent, massive amounts of residues still remain. On average, out of 1.3 billion tons of municipal solid wastes generated per year, around 130 and 2.1 million tons are incinerated in the world and in Belgium, respectively. Around 400 kT of bottom ash residues are generated in Flanders, out of which only 102 kT are utilized here, and the rest is exported or landfilled due to non-conformity to environmental regulations. Landfilling makes the valuable resources in the residues unavailable and results in more primary raw materials being used, increasing mining and related hazards. Identifying and employing the right pre-treatment technique for the highest value application is the key to attaining a circular economy. We reviewed the present pre-treatment and utilization scenarios in Belgium, and the advancements in research around the world for realization of maximum utilization are reported in this paper. Uses of the material in the cement industry as a binder and cement raw meal replacement are identified as possible effective utilization options for large quantities of bottom ash. Pre-treatment techniques that could facilitate this use are also discussed. With all the research evidence available, there is now a need for combined efforts from incineration and the cement industry for technical and economic optimization of the process flow.

  17. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples

    International Nuclear Information System (INIS)

    Herreweghe, Samuel van; Swennen, Rudy; Vandecasteele, Carlo; Cappuyns, Valerie

    2003-01-01

    Leaching experiments, a mineralogical survey and larger samples are preferred when arsenic is present as discrete mineral phases. - Availability, mobility, (phyto)toxicity and potential risk of contaminants is strongly affected by the manner of appearance of elements, the so-called speciation. Operational fractionation methods like sequential extractions have been applied for a long time to determine the solid phase speciation of heavy metals since direct determination of specific chemical compounds can not always be easily achieved. The three-step sequential extraction scheme recommended by the BCR and two extraction schemes based on the phosphorus-like protocol proposed by Manful (1992, Occurrence and Ecochemical Behaviours of Arsenic in a Goldsmelter Impacted Area in Ghana, PhD dissertation, at the RUG) were applied to four standard reference materials (SRM) and to a batch of samples from industrially contaminated sites, heavily contaminated with arsenic and heavy metals. The SRM 2710 (Montana soil) was found to be the most useful reference material for metal (Mn, Cu, Zn, As, Cd and Pb) fractionation using the BCR sequential extraction procedure. Two sequential extraction schemes were developed and compared for arsenic with the aim to establish a better fractionation and recovery rate than the BCR-scheme for this element in the SRM samples. The major part of arsenic was released from the heavily contaminated samples after NaOH-extraction. Inferior extraction variability and recovery in the heavily contaminated samples compared to SRMs could be mainly contributed to subsample heterogeneity

  18. Recycling of agroindustrial solid wastes as additives in brick manufacturing for development of sustainable construction materials

    Directory of Open Access Journals (Sweden)

    Lisset Maritza Luna-Cañas

    2014-01-01

    Full Text Available La acumulación de residuos sólidos agroindustriales no administ rados especialmente en los países en vías de desarrollo ha dado lugar a una creciente preocupación ambiental. El reciclaje de tales res iduos como un material de construcción sostenible parece ser un a solución viable no sólo al problema de la contaminación, sino también un a opción económica para diseñar edificios verdes. El presente t rabajo estudia la aplicación de varios residuos agroindustriales en la fabricación de ladrillos, que incluyen cáscara de cacao, aserr ín, cáscara de arroz y caña de azúcar. En primer lugar, se determinó la compos ición mineralógica y química de los residuos y del suelo arcill oso. A continuación, los ladrillos se fabricaron con diferentes cantid ades de residuos (5%, 10% y 20%. El efecto de la adición de es tos residuos en el comportamiento tecnológico del ladrillo se evaluó mediant e ensayos de resistencia a la compresión, resistencia a la flex ión y durabilidad. Con base en los resultados obtenidos, las cantidad es óptimas de residuos agroindustriales para obtener ladrillos fueron mezclando 10% de cáscara de cacao y 90% de suelo arcilloso. Est os porcentajes producen ladrillos cuyas propiedades mecánicas e ran adecuadas para su uso como materias primas secundarias en la pr oducción de ladrillos.

  19. Electroactive mesoporous yttria stabilized zirconia containing platinum or nickel oxide nanoclusters: a new class of solid oxide fuel cell electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Mamak, M.; Coombs, N.; Ozin, G.A. [Toronto Univ., ON (Canada). Dept. of Chemistry

    2001-02-01

    The electroactivity of surfactant-templated mesoporous yttria stabilized zirconia, containing nanoclusters of platinum or nickel oxide, is explored by alternating current (AC) complex impedance spectroscopy. The observed oxygen ion and mixed oxygen ion-electron charge-transport behavior for these materials, compared to the sintered-densified non-porous crystalline versions, is ascribed to the unique integration of mesoporosity and nanocrystallinity within the binary and ternary solid solution microstructure. These attributes inspire interest in this new class of materials as candidates for the development of improved performance solid oxide fuel cell electrodes. (orig.)

  20. Polymer-Based Black Phosphorus (bP) Hybrid Materials by in Situ Radical Polymerization: An Effective Tool To Exfoliate bP and Stabilize bP Nanoflakes

    Science.gov (United States)

    2018-01-01

    Black phosphorus (bP) has been recently investigated for next generation nanoelectronic multifunctional devices. However, the intrinsic instability of exfoliated bP (the bP nanoflakes) toward both moisture and air has so far overshadowed its practical implementation. In order to contribute to fill this gap, we report here the preparation of new hybrid polymer-based materials where bP nanoflakes (bPn) exhibit a significantly improved stability. The new materials have been prepared by different synthetic paths including: (i) the mixing of conventionally liquid-phase exfoliated bP (in dimethyl sulfoxide, DMSO) with poly(methyl methacrylate) (PMMA) solution; (ii) the direct exfoliation of bP in a polymeric solution; (iii) the in situ radical polymerization after exfoliating bP in the liquid monomer (methyl methacrylate, MMA). This last methodology concerns the preparation of stable suspensions of bPn–MMA by sonication-assisted liquid-phase exfoliation (LPE) of bP in the presence of MMA followed by radical polymerization. The hybrids characteristics have been compared in order to evaluate the bP dispersion and the effectiveness of the bPn interfacial interactions with polymer chains aimed at their long-term environmental stabilization. The passivation of the bPn is particularly effective when the hybrid material is prepared by in situ polymerization. By using this synthetic methodology, the nanoflakes, even if with a gradient of dispersion (size of aggregates), preserve their chemical structure from oxidation (as proved by both Raman and 31P-solid state NMR studies) and are particularly stable to air and UV light exposure. The feasibility of this approach, capable of efficiently exfoliating bP while protecting the bPn, has been then verified by using different vinyl monomers (styrene and N-vinylpyrrolidone), thus obtaining hybrids where the nanoflakes are embedded in polymer matrices with a variety of intriguing thermal, mechanical, and solubility characteristics.

  1. Hydrodynamic Tunneling of 440 GeV SPS protons in Solid Material: Production of Warm Dense Matter at CERN HiRadMat Facility

    Science.gov (United States)

    Tahir, Naeem Ahmad; Blanco Sancho, Juan; Schmidt, Ruediger; Shutov, Alaxander; Burkart, Florian; Wollmann, Daniel; Piriz, Antonio Roberto

    2013-10-01

    Numerical simulations have shown that the range of 7 TeV LHC protons in solid matter will be significantly increased due to hydrodynamic tunneling. For example, in solid copper and solid carbon, these protons and the shower can penetrate up to 35 m and 25 m, respectively. However, their corresponding static range in the two materials is 1 m and 3 m, respectively. This will have important implications on machine protection design. In order to validate these simulation results, experiments have been performed at the CERN HiRadMat facility using the 440 GeV SPS proton beam irradiating solid copper cylindrical target. The phenomenon of hydrodynamic tunneling has been experimentally confirmed and good agreement has been found between the simulations and the experimental results. A very interesting outcome of this work is that the HiRadMat facility can be used to generate High Energy Density matter including Warm Dense Matter and strongly coupled plasmas in the laboratory.

  2. Black Alcoholism.

    Science.gov (United States)

    Watts, Thomas D.; Wright, Roosevelt

    1988-01-01

    Examines some aspects of the problem of alcoholism among Blacks, asserting that Black alcoholism can best be considered in an ecological, environmental, sociocultural, and public health context. Notes need for further research on alcoholism among Blacks and for action to reduce the problem of Black alcoholism. (NB)

  3. Black holes

    OpenAIRE

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  4. Experimental performance evaluation of solid concrete and dry insulation materials for passive buildings in hot and humid climatic conditions

    International Nuclear Information System (INIS)

    Rehman, Hassam Ur

    2017-01-01

    Highlights: • Experimental investigation of building insulation materials in UAE from 2012–2014. • Four same calorimeters with different south walls were built in open air laboratory. • Heat flux was reduced by 22–75% in steady state analysis during summer by insulation. • Hence, energy consumption for cooling was reduced by an average 7.6–25.3%. • Heat flow was steady in free floating analysis in winter through insulated walls. - Abstract: It is known that enhancement of building energy efficiency can help in reducing energy consumption. The use of the solar insulating materials are the most efficient and cost effective passive methods for reducing the cooling requirements of the buildings. Apart from theoretical studies, no detailed experimental studies were performed in the UAE on energy savings by using solar insulation materials on buildings. Four (3 m × 3 m × 3 m) solar calorimeters were built in RAK, UAE in order to perform an open air outdoor test for energy savings obtained with solar insulating materials. The design is aimed to determine the heat flux reduction and the energy savings achieved with and without different solar insulating materials, mounted at the south wall of solar calorimeters with similar indoor and ambient conditions. Experimental results are discussed to evaluate the thermal performance during high temperature conditions in summer’s period when cooling demand of the building is at its peak and also in winters when there is no cooling demand. The test is from 2012 to 2014. The controlled-temperature experimental study at a set point of 24 °C showed that if the standard building material, i.e. solid concrete, is retrofitted with polyisocyanurate (PIR) and reflective coatings or completely replaced with energy-efficient dry insulation material walls such as exterior insulation finishing system (EIFS), energy savings up to an average of 7.6–25.3% can be achieved. This is due to the reduction of heat flux by an

  5. Combustibility of tetraphenylborate solids

    International Nuclear Information System (INIS)

    Walker, D.D.

    1989-01-01

    Liquid slurries expected under normal in-tank processing (ITP) operations are not ignitible because of their high water content. However, deposits of dry solids from the slurries are combustible and produce dense, black smoke when burned. The dry solids burn similarly to Styrofoam and more easily than sawdust. It is the opinion of fire hazard experts that a benzene vapor deflagration could ignite the dry solids. A tetraphenylborate solids fire will rapidly plug the waste tank HEPA ventilation filters due to the nature of the smoke produced. To prevent ignition and combustion of these solids, the waste tanks have been equipped with a nitrogen inerting system

  6. Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches.

    Science.gov (United States)

    Kireeva, Natalia; Pervov, Vladislav S

    2017-08-09

    The organic electrolytes of most current commercial rechargeable Li-ion batteries (LiBs) are flammable, toxic, and have limited electrochemical energy windows. All-solid-state battery technology promises improved safety, cycling performance, electrochemical stability, and possibility of device miniaturization and enables a number of breakthrough technologies towards the development of new high power and energy density microbatteries for electronics with low processing cost, solid oxide fuel cells, electrochromic devices, etc. Currently, rational materials design is attracting significant attention, which has resulted in a strong demand for methodologies that can accelerate the design of materials with tailored properties; cheminformatics can be considered as an efficient tool in this respect. This study was focused on several aspects: (i) identification of the parameters responsible for high Li-ion conductivity in garnet structured oxides; (ii) development of quantitative models to elucidate composition-structure-Li ionic conductivity relationships, taking into account the experimental details of sample preparation; (iii) circumscription of the materials space of solid garnet-type electrolytes, which is attractive for virtual screening. Several candidate compounds have been recommended for synthesis as potential solid state electrolyte materials.

  7. Assessing and monitoring the effects of filter material amendments on the biophysicochemical properties during composting of solid winery waste under open field and varying climatic conditions.

    Science.gov (United States)

    Mtimkulu, Y; Meyer, A H; Mulidzi, A R; Shange, P L; Nchu, F

    2017-01-01

    Waste management in winery and distillery industries faces numerous disposal challenges as large volumes of both liquid and solid waste by-products are generated yearly during cellar practices. Composting has been suggested as a feasible option to beneficiate solid organic waste. This incentivized the quest for efficient composting protocols to be put in place. The objective of this study was to experiment with different composting strategies for spent winery solid waste. Compost materials consisting of chopped pruning grape stalks, skins, seed and spent wine filter material consisting of a mixture of organic and inorganic expend ingredients were mixed in compost heaps. The filter material component varied (in percentage) among five treatments: T1 (40%) lined, T2 (20%) lined, T3 (0%) lined, T4 (40%) ground material, lined and T5 (40%) unlined. Composting was allowed to proceed under open field conditions over 12months, from autumn to summer. Indicators such as temperature, moisture, enzyme activities, microbial counts, pH, and C/N ratio, were recorded. Generally, season (df=3, 16, Pwinery solid waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Evaluation of plastic materials for range shifting, range compensation, and solid-phantom dosimetry in carbon-ion radiotherapy

    International Nuclear Information System (INIS)

    Kanematsu, Nobuyuki; Koba, Yusuke; Ogata, Risa

    2013-01-01

    Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. In dosimetry, solid phantoms are often used for convenience. These materials should ideally be equivalent to water. In this study, the authors evaluated dosimetric water equivalence of four common plastics, high-density polyethylene (HDPE), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polyoxymethylene (POM). Methods: Using the Bethe formula for energy loss, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, the authors calculated the effective densities of the plastics for these interactions. The authors experimentally measured variation of the Bragg peak of carbon-ion beams by insertion of HDPE, PMMA, and POM, which were compared with analytical model calculations. Results: The theoretical calculation resulted in slightly reduced multiple scattering and severely increased nuclear interactions for HDPE, compared to water and the other plastics. The increase in attenuation of carbon ions for 20-cm range shift was experimentally measured to be 8.9% for HDPE, 2.5% for PMMA, and 0.0% for POM while PET was theoretically estimated to be in between PMMA and POM. The agreement between the measurements and the calculations was about 1% or better. Conclusions: For carbon-ion beams, POM was dosimetrically indistinguishable from water and the best of the plastics examined in this study. The poorest was HDPE, which would reduce the Bragg peak by 0.45% per cm range shift, although with marginal superiority for reduced multiple scattering. Between the two clear plastics, PET would be superior to PMMA in dosimetric water equivalence.

  9. Performance of LiCl Impregnated Mesoporous Material Coating over Corrugated Heat Exchangers in a Solid Sorption Chiller

    Directory of Open Access Journals (Sweden)

    Hongzhi Liu

    2018-06-01

    Full Text Available The composite material made by impregnating 40 wt. % lithium chloride (LiCl into the mesopores of a kind of natural porous rock (Wakkanai Siliceous Shale: WSS micropowders (short for “WSS + 40 wt. % LiCl” had been developed previously, and can be regenerated below 100 °C with a cooling coefficient of performance (COP of approximately 0.3 when adopted as a sorbent in a sorption cooler. In this study, experiments have been carried out on an intermittent solid sorption chiller with the WSS + 40 wt. % LiCl coating over two aluminum corrugated heat exchangers. Based on the experimental condition (regeneration temperature of 80 °C, condensation temperature of 30 °C in the desorption process; sorption temperature of 30 °C and evaporation temperature of 12 °C in the sorption process, the water sorption amount changes from 20 wt. % to 70 wt. % in one sorption cooling cycle. Moreover, a specific cooling power (SCP of 86 W/kg, a volumetric specific cooling power (VSCP of 42 W/dm3, and a specific sorption power of 170 W/kg can be achieved with a total sorption and desorption time of 20 min. The obtained cooling COP is approximately 0.16.

  10. The Effect of Hole Transport Material Pore Filling on Photovoltaic Performance in Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Melas-Kyriazi, John

    2011-04-05

    A detailed investigation of the effect of hole transport material (HTM) pore filling on the photovoltaic performance of solid-state dye-sensitized solar cells (ss-DSCs) and the specific mechanisms involved is reported. It is demonstrated that the efficiency and photovoltaic characteristics of ss-DSCs improve with the pore filling fraction (PFF) of the HTM, 2,2\\',7,7\\'-tetrakis-(N, N-di-p-methoxyphenylamine)9,9\\'-spirobifluorene(spiro-OMeTAD). The mechanisms through which the improvement of photovoltaic characteristics takes place were studied with transient absorption spectroscopy and transient photovoltage/photocurrent measurements. It is shown that as the spiro-OMeTAD PFF is increased from 26% to 65%, there is a higher hole injection efficiency from dye cations to spiro-OMeTAD because more dye molecules are covered with spiro-OMeTAD, an order-of-magnitude slower recombination rate because holes can diffuse further away from the dye/HTM interface, and a 50% higher ambipolar diffusion coefficient due to an improved percolation network. Device simulations predict that if 100% PFF could be achieved for thicker devices, the efficiency of ss-DSCs using a conventional rutheniumdye would increase by 25% beyond its current value. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Catalytic properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature

    Science.gov (United States)

    Sauvet, A.-L.; Fouletier, J.

    The recent trend in solid oxide fuel cell concerns the use of natural gas as fuel. Steam reforming of methane is a well-established process for producing hydrogen directly at the anode side. In order to develop new anode materials, the catalytic activities of several oxides for the steam reforming of methane were characterized by gas chromatography. We studied the catalytic activity as a function of steam/carbon ratios r. The methane and the steam content were varied between 5 and 30% and between 1.5 and 3.5%, respectively, corresponding to r-values between 0.07 and 0.7. Catalyst (ruthenium and vanadium)-doped lanthanum chromites substituted with strontium, gadolinium-doped ceria (Ce 0.9Gd 0.1O 2) referred as to CeGdO 2, praseodymium oxide, molybdenum oxide and copper oxide were tested. The working temperature was fixed at 850°C, except for 5% ruthenium-doped La 1- xSr xCrO 3 where the temperature was varied between 700 and 850°C. Two types of behavior were observed as a function of the activity of the catalyst. The higher steam reforming efficiency was observed with 5% of ruthenium above 750°C.

  12. The Effect of Hole Transport Material Pore Filling on Photovoltaic Performance in Solid-State Dye-Sensitized Solar Cells

    KAUST Repository

    Melas-Kyriazi, John; Ding, I-Kang; Marchioro, Arianna; Punzi, Angela; Hardin, Brian E.; Burkhard, George F.; Té treault, Nicolas; Grä tzel, Michael; Moser, Jacques-E.; McGehee, Michael D.

    2011-01-01

    A detailed investigation of the effect of hole transport material (HTM) pore filling on the photovoltaic performance of solid-state dye-sensitized solar cells (ss-DSCs) and the specific mechanisms involved is reported. It is demonstrated that the efficiency and photovoltaic characteristics of ss-DSCs improve with the pore filling fraction (PFF) of the HTM, 2,2',7,7'-tetrakis-(N, N-di-p-methoxyphenylamine)9,9'-spirobifluorene(spiro-OMeTAD). The mechanisms through which the improvement of photovoltaic characteristics takes place were studied with transient absorption spectroscopy and transient photovoltage/photocurrent measurements. It is shown that as the spiro-OMeTAD PFF is increased from 26% to 65%, there is a higher hole injection efficiency from dye cations to spiro-OMeTAD because more dye molecules are covered with spiro-OMeTAD, an order-of-magnitude slower recombination rate because holes can diffuse further away from the dye/HTM interface, and a 50% higher ambipolar diffusion coefficient due to an improved percolation network. Device simulations predict that if 100% PFF could be achieved for thicker devices, the efficiency of ss-DSCs using a conventional rutheniumdye would increase by 25% beyond its current value. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Annual report 1991 on R and D work by the Institute for Materials and Solid State Research (IMF), Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    1992-03-01

    The annual report summarises the activities of the IMF in the following subject areas: 1) Contributions to the PKF (fusion technology project (refewing to structural materials, superconducting magnets, blanket development); 2) PSU, project for the management of pollutants in the environment (treatment and recycling of hazardous waste); 3) solid state and materials research (high-temperature materials, ceramic materials as protective coatings, polymer materials, high-performance ceramics, high-TC superconducting materials; biomechanics, laser technology); 4) microtechnology (development and testing of compact or layered materials in microtechnology); 5) PSF project, nuclear safety, research (safety and materials aspects of fast breeder reactors, transient behaviour of fuel elements in fact breeder reactors, LWR-specific safety research, containment design concepts for the next generation of PWR-type reactors); 6) NE project, nuclear waste management (analysis of solid wastes from the dissolution of spent LWR fuels, materials testing in nitric acid). The primary reports and other publications of the Institute issued in 1991 are listed in an annex. (orig./MM) [de

  14. The teaching staff of the public education system in the period of the First Russian Revolution (1905–1907 years (on the materials of the Black Sea province

    Directory of Open Access Journals (Sweden)

    Konstantin V. Taran

    2016-03-01

    Full Text Available The article on the basis of archival documents examines the role of teaching staff of educational institutions of the Black Sea province during the First Russian revolution. The attention is paid to the participation of students of senior classes in the revolutionary movement. Among the materials are the archival documents of central and regional archives, namely the state archive of the Russian Federation, Russian state military historical archive, the state archive of the Krasnodar Krai, the center for documentation of contemporary history of Krasnodar Krai and the archive department of historical museum of city-resort Sochi. The authors come to the conclusion that on the territory of the Black Sea province, the activities of significant part of the teaching staff were aimed at destabilization of the political situation, contributing to the overthrow of the existing government. Rather than to protect the high schools students from the influence of political propaganda and to return students to the classrooms, some teachers have contributed to reverse the process, encouraging the study of the political programs of the parties and the desire to participate in the revolutionary movement. As a result, the schoolchildren, minors with unsettled teenage psychology participated in various revolutionary actions, which could lead to the tragic consequences.

  15. Impedance study of the ion-to-electron transduction process for carbon cloth as solid-contact material in potentiometric ion sensors

    International Nuclear Information System (INIS)

    Mattinen, Ulriika; Rabiej, Sylwia; Lewenstam, Andrzej; Bobacka, Johan

    2011-01-01

    Carbon cloth was studied as solid-contact material in potentiometric ion sensors by using electrochemical impedance spectroscopy and potentiometry. The ion-to-electron transduction process was studied by electrochemical impedance spectroscopy by using a two-electrode symmetrical cell where a liquid electrolyte was sandwiched between two solid electrodes, including bare glassy carbon (GC), GC/carbon cloth and GC/poly(3,4-ethylenedioxythiophene). Impedance data for different electrode/electrolyte combinations were evaluated and compared. Solid-contact K + -selective electrodes were fabricated by coating the carbon cloth with a conventional plasticized PVC-based K + -selective membrane via drop casting. These K + -sensors showed proper analytical performance and acceptable long-term potential stability (potential drift ≈ 1 mV/day). Solid contact reference electrodes were fabricated in an analogous manner by coating the carbon cloth with a plasticized PVC membrane containing a moderately lipophilic salt. The results indicate that carbon cloth can be used as a solid-contact material in potentiometric ion sensors and pseudo-reference electrodes.

  16. Preparation and properties of poly(vinyl alcohol)-g-octadecanol copolymers based solid–solid phase change materials

    International Nuclear Information System (INIS)

    Shi Haifeng; Li Jianhua; Jin Yanmei; Yin Yiping; Zhang Xingxiang

    2011-01-01

    Highlights: ► In this paper, our objective is just focused on the preparation and characterization of such SSPCMs aiming at providing one suitable material for improving the thermal stability and preventing the liquid leakage from the matrix. Here, the SSPCMs can be fabricated by grafting to method between poly(vinyl alcohol) and octadecanol, which the grafting ratio can be controlled by adjusting the feeding components. ► The thermal properties, crystalline structure and morphology were detailed studies by WAXD, FT-IR, TGA and DSC, proving that the PVA-g-octadecanol process the better thermal storage ability and thermal stability. Compared with pure octadecanol, the heat fusion of PVA-g-octadecanol decreased due to the mobility confinement and the lower rearrangements of C18 alkyl side chains. ► This result is for the first time reported, and is a meaningful result for the investigation of the solid–solid phase change materials, and the preparation process provides one template-directed approach to obtain the high-performance materials with the better heat storage and thermal stability. - Abstract: The heat storage and phase transition behavior of a series of poly(vinyl alcohol)-g-octadecanol copolymers (PVA-g-C18OH) with apparent grafting ratios ranging from 283 to 503%, synthesized through “grafting to” method, has been investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide-angle X-ray diffraction (WAXD) and polarized optical microscopy (POM). PVA-g-C18OH copolymers exhibit the better thermal stability against C18OH, and the thermal energy storage ability (ΔH m ) is of dependence on the apparent grafting ratios. Compared with C18OH, the lower thermal storage efficiency possible is attributed to the less CH 2 groups entered into the crystalline domains and the frustrated mobility of the grafted C18 alkyl side chains between PVA backbones. The results show that

  17. Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes

    Science.gov (United States)

    Wang, Keliang; Xu, Ming; Gu, Yan; Gu, Zhengrong; Fan, Qi Hua

    2016-11-01

    N-doped porous carbon materials derived from urea-modified lignin were prepared via efficient KOH activation under carbonization. The synthesized N-doped carbon materials, which displayed a well-developed porous morphology with high specific surface area of 3130 m2 g-1, were used as electrode materials in symmetric supercapacitors with aqueous and solid electrolytes. In consistent with the observed physical structures and properties, the supercapacitors exhibited specific capacitances of 273 and 306 F g-1, small resistances of 2.6 and 7.7 Ω, stable charge/discharge at different current densities for over 5000 cycles and comparable energy and power density in 6 mol L-1 KOH liquid and KOH-PVA solid electrolytes, respectively.

  18. Synthesis of LiNixFe1−xPO4 solid solution as cathode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Qing, Rui; Yang, Ming-Che; Meng, Ying Shirley; Sigmund, Wolfgang

    2013-01-01

    Highlights: • Phase pure LiNi x Fe 1−x PO 4 and LiNi x Fe 1−x PO 4 /C nanocomposites were obtained via a solid state reaction method. • Crystallite sizes were around 50 nm. Linear relationship was observed between lattice parameters and chemical composition. • Synthesized materials displayed electronic conductivity similar to reported value of LiFePO 4 . Carbon coating increased the conductivity to ∼10 −3 S/cm. • Chemical delithiation via NO 2 BF 4 extracted more than 90% of lithium from the nanocomposites, proving that Ni 2+ /Ni 3+ redox couple was activated. -- Abstract: Nanosize LiNi x Fe 1−x PO 4 solid solution and LiNi x Fe 1−x PO 4 /C nanocomposites were prepared via a solid state reaction method under argon atmosphere. A single phase olivine-type structure with Pnma space group was determined by X-ray diffraction. Crystallite sizes were found to be around 50 nm. A linear relationship was observed between lattice parameters and chemical composition which follows Vegard's law. Synthesized materials displayed electronic conductivity similar to previous reported values of LiFePO 4 . Carbon coating further increased the overall conductivity of nanocomposites to the order of 10 −3 S/cm. Chemical delithiation via NO 2 BF 4 oxidant extracted more than 95% of lithium from the solid solution material accompanied by a decrease in lattice parameters

  19. A new method for studying the transport of radon and thoron in various building materials using CR-39 and LR-115 solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Ktata, A.; Bakhchi, A.

    2000-01-01

    Radon ( 222 Rn) and thoron ( 220 Rn) α-activities per unit volume were measured inside and outside different building materials by using two types of solid state nuclear track detectors (SSNTD) (CR-39 and LR-115 type II). In addition, the radon and thoron emanation coefficients of the studied materials were evaluated. Based on these data, the transport of radon and thoron across parallelepipedic blocks of the building materials could be investigated and radon and thoron global α-activities per unit volume outside different building material blocks were determined. Moreover, the diffusion length and the effective diffusion coefficient of radon in the building materials were evaluated and the total alpha activity due to radon in the atmospheres of different rooms consisting of different building materials was studied

  20. Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials.

    Science.gov (United States)

    Dang, Yan; Sun, Dezhi; Woodard, Trevor L; Wang, Li-Ying; Nevin, Kelly P; Holmes, Dawn E

    2017-08-01

    Growth of bacterial and archaeal species capable of interspecies electron exchange was stimulated by addition of conductive materials (carbon cloth or granular activated carbon (GAC)) to anaerobic digesters treating dog food (a substitute for the dry-organic fraction of municipal solid waste (OFMSW)). Methane production (772-1428mmol vs carbon cloth than controls. OFMSW degradation was also significantly accelerated and VFA concentrations were substantially lower in reactors amended with conductive materials. These results suggest that both conductive materials (carbon cloth and GAC) can promote conversion of OFMSW to methane even in the presence of extremely high VFA concentrations (∼500mM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Summary of Blast Shield and Material Testing for Development of Solid Debris Collection at the National Ignition Facility (NIF)

    International Nuclear Information System (INIS)

    Shaughnessy, D.A.; Gostic, J.M.; Moody, K.J.; Grant, P.M.; Lewis, L.A.; Hutcheon, I.D.

    2011-01-01

    The ability to collect solid debris from the target chamber following a NIF shot has application for both capsule diagnostics, particularly for fuel-ablator mix, and measuring cross sections relevant to the Stockpile Stewardship program and nuclear astrophysics. Simulations have shown that doping the capsule with up to 10 15 atoms of an impurity not otherwise found in the capsule does not affect its performance. The dopant is an element that will undergo nuclear activations during the NIF implosion, forming radioactive species that can be collected and measured after extraction from the target chamber. For diagnostics, deuteron or alpha induced reactions can be used to probe the fuel-ablator mix. For measuring neutron cross sections, the dopant should be something that is sensitive to the 14 MeV neutrons produced through the fusion of deuterium and tritium. Developing the collector is a challenge due to the extreme environment of the NIF chamber. The collector surface is exposed to a large photon flux from x-rays and unconverted laser light before it is exposed to a debris wind that is formed from vaporized material from the target chamber center. The photons will ablate the collector surface to some extent, possibly impeding the debris from reaching the collector and sticking. In addition, the collector itself must be mechanically strong enough to withstand the large amount of energy it will be exposed to, and it should be something that will be easy to count and chemically process. In order to select the best material for the collector, a variety of different metals have been tested in the NIF chamber. They were exposed to high-energy laser shots in order to evaluate their postshot surface characterization, morphology, degree of melt, and their ability to retain debris from the chamber center. The first set of samples consisted of 1 mm thick pieces of aluminum that had been fielded in the chamber as blast shields protecting the neutron activation diagnostic. Ten

  2. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes

    Science.gov (United States)

    Fei, Haojie; Yang, Chongyang; Bao, Hua; Wang, Gengchao

    2014-11-01

    Flexible all-solid-state supercapacitors (SCs) are fabricated using graphene/carbon black nanoparticle (GCB) film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes (gPVAP-H2SO4). The GCB composite films, with carbon black (CB) nanoparticles uniformly distributed in the graphene nanosheets, greatly improve the active surface areas and ion transportation of pristine graphene film. The porous structure of as-prepared gPVAP-H2SO4 membrane improves the equilibrium swelling ratio in electrolyte and provides interconnected ion transport channels. The chemical crosslinking solves the fluidity problem of PVA-H2SO4 gel electrolyte at high temperature. As-fabricated GCB//gPVAP(20)-H2SO4//GCB flexible SC displays an increased specific capacitance (144.5 F g-1 at 0.5 A g-1) and a higher specific capacitance retention (67.9% from 0.2 to 4 A g-1). More importantly, the flexible SC possesses good electrochemical performance at high temperature (capacitance retention of 78.3% after 1000 cycles at 70 °C).

  3. About the Compatibility between High Voltage Spinel Cathode Materials and Solid Oxide Electrolytes as a Function of Temperature.

    Science.gov (United States)

    Miara, Lincoln; Windmüller, Anna; Tsai, Chih-Long; Richards, William D; Ma, Qianli; Uhlenbruck, Sven; Guillon, Olivier; Ceder, Gerbrand

    2016-10-12

    The reactivity of mixtures of high voltage spinel cathode materials Li 2 NiMn 3 O 8 , Li 2 FeMn 3 O 8 , and LiCoMnO 4 cosintered with Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 and Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 electrolytes is studied by thermal analysis using X-ray-diffraction and differential thermoanalysis and thermogravimetry coupled with mass spectrometry. The results are compared with predicted decomposition reactions from first-principles calculations. Decomposition of the mixtures begins at 600 °C, significantly lower than the decomposition temperature of any component, especially the electrolytes. For the cathode + Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 mixtures, lithium and oxygen from the electrolyte react with the cathodes to form highly stable Li 2 MnO 3 and then decompose to form stable and often insulating phases such as La 2 Zr 2 O 7 , La 2 O 3 , La 3 TaO 7 , TiO 2 , and LaMnO 3 which are likely to increase the interfacial impedance of a cathode composite. The decomposition reactions are identified with high fidelity by first-principles calculations. For the cathode + Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 mixtures, the Mn tends to oxidize to MnO 2 or Mn 2 O 3 , supplying lithium to the electrolyte for the formation of Li 3 PO 4 and metal phosphates such as AlPO 4 and LiMPO 4 (M = Mn, Ni). The results indicate that high temperature cosintering to form dense cathode composites between spinel cathodes and oxide electrolytes will produce high impedance interfacial products, complicating solid state battery manufacturing.

  4. Thermodynamics. Vol. II. Proceedings of the Symposium on Thermodynamics with Emphasis on Nuclear Materials and Atomic Transport in Solids

    International Nuclear Information System (INIS)

    1966-01-01

    Knowledge of the thermodynamics of nuclear materials is vital to the design of reactor fuels and moderating and cooling systems, in fact all facets of nuclear plant operation that involve mixtures of, or contact between, two or more elements in single- or multi-phase systems. The steep thermal gradients and the high temperatures involved in nuclear technology pose special problems for engineers and thermodynamicists, who have found that extrapolation of low-temperature data to high temperatures very often proves invalid. For this reason, standard thermodynamic techniques such as calorimetry and EMF-methods have been extended into high-temperature regions. Since the Agency's last conference on this subject, also held in Vienna (Thermodynamics of Nuclear Materials, 1962), there have been notable advances in calorimetry performed at temperatures greater than 1000°C, and in the use of EMF cells with solid electrolytes operated at similar temperatures. Significant advances have also been made in measuring diffusion parameters at the higher temperatures. An important field covered in this Symposium was the correlation of such atomic transport data with thermodynamic data, a prerequisite if the nuclear engineer is to incorporate diffusion results into his normal process- assessment techniques. Finally the Symposium suggested the requirements for good critical tables. The mere compiling of such data is no longer sufficient; the compiler must have free access to all the data of a particular experiment, he must have an intimate knowledge of experimental work in this field and he must weight every figure quoted in the light of his experience. As a step in this direction, the Agency has called on the services of many well-known experts and is preparing a number of monographs giving critical assessments of thermodynamic data and phase-diagrams for many of the elements of interest in reactor design. Most of the countries engaged in research in thermodynamics were represented at

  5. Theory and numerical modeling of the accelerated expansion of laser-ablated materials near a solid surface

    International Nuclear Information System (INIS)

    Chen, K.R.; King, T.C.; Hes, J.H.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Puretzky, A.A.; Donato, J.M.

    1999-01-01

    A self-similar theory and numerical hydrodynamic modeling is developed to investigate the effects of dynamic source and partial ionization on the acceleration of the unsteady expansion of laser-ablated material near a solid target surface. The dynamic source effect accelerates the expansion in the direction perpendicular to the target surface, while the dynamic partial ionization effect accelerates the expansion in all directions. The vaporized material during laser ablation provides a nonadiabatic dynamic source at the target surface into the unsteady expanding fluid. For studying the dynamic source effect, the self-similar theory begins with an assumed profile of plume velocity, u=v/v m =α+(1-α)ξ, where v m is the maximum expansion velocity, α is a constant, and ξ=x/v m t. The resultant profiles of plume density and plume temperature are derived. The relations obtained from the conservations of mass, momentum, and energy, respectively, all show that the maximum expansion velocity is inversely proportional to α, where 1-α is the slope of plume velocity profile. The numerical hydrodynamic simulation is performed with the Rusanov method and the Newton Raphson method. The profiles and scalings obtained from numerical hydrodynamic modeling are in good agreement with the theory. The dynamic partial ionization requires ionization energy from the heat at the expansion front, and thus reduces the increase of front temperature. The reduction of thermal motion would increase the flow velocity to conserve the momentum. This dynamic partial ionization effect is studied with the numerical hydrodynamic simulation including the Saha equation. With these effects, α is reduced from its value of conventional free expansion. This reduction on α increases the flow velocity slope, decreases the flow velocity near the surface, and reduces the thermal motion of plume, such that the maximum expansion velocity is significantly increased over that found from conventional models

  6. Thermodynamics. Vol. II. Proceedings of the Symposium on Thermodynamics with Emphasis on Nuclear Materials and Atomic Transport in Solids

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-02-15

    Knowledge of the thermodynamics of nuclear materials is vital to the design of reactor fuels and moderating and cooling systems, in fact all facets of nuclear plant operation that involve mixtures of, or contact between, two or more elements in single- or multi-phase systems. The steep thermal gradients and the high temperatures involved in nuclear technology pose special problems for engineers and thermodynamicists, who have found that extrapolation of low-temperature data to high temperatures very often proves invalid. For this reason, standard thermodynamic techniques such as calorimetry and EMF-methods have been extended into high-temperature regions. Since the Agency's last conference on this subject, also held in Vienna (Thermodynamics of Nuclear Materials, 1962), there have been notable advances in calorimetry performed at temperatures greater than 1000 Degree-Sign C, and in the use of EMF cells with solid electrolytes operated at similar temperatures. Significant advances have also been made in measuring diffusion parameters at the higher temperatures. An important field covered in this Symposium was the correlation of such atomic transport data with thermodynamic data, a prerequisite if the nuclear engineer is to incorporate diffusion results into his normal process- assessment techniques. Finally the Symposium suggested the requirements for good critical tables. The mere compiling of such data is no longer sufficient; the compiler must have free access to all the data of a particular experiment, he must have an intimate knowledge of experimental work in this field and he must weight every figure quoted in the light of his experience. As a step in this direction, the Agency has called on the services of many well-known experts and is preparing a number of monographs giving critical assessments of thermodynamic data and phase-diagrams for many of the elements of interest in reactor design. Most of the countries engaged in research in thermodynamics were

  7. Thermodynamics. Vol. I. Proceedings of the Symposium on Thermodynamics with Emphasis on Nuclear Materials and Atomic Transports in Solids

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-01-15

    Knowledge of the thermodynamics of nuclear materials is vital to the design of reactor fuels and moderating and cooling systems, in fact all facets of nuclear plant operation that involve mixtures of, or contact between, two or more elements in single- or multi-phase systems. The steep thermal gradients and the high temperatures involved in nuclear technology pose special problems for engineers and thermodynamicists, who have found that extrapolation of low-temperature data to high temperatures very often proves invalid. For this reason, standard thermodynamic techniques such as calorimetry and EMF-methods have been extended into high-temperature regions. Since the Agency's last conference on this subject, also held in Vienna (Thermodynamics of Nuclear Materials, 1962), there have been notable advances in calorimetry performed at temperatures greater than 1000 Degree-Sign C, and in the use of EMF cells with solid electrolytes operated at similar temperatures. Significant advances have also been made in measuring diffusion parameters at the higher temperatures. An important field covered in this Symposium was the correlation of such atomic transport data with thermodynamic data, a prerequisite if the nuclear engineer is to incorporate diffusion results into his normal process- assessment techniques. Finally the Symposium suggested the requirements for good critical tables. The mere compiling of such data is no longer sufficient; the compiler must have free access to all the data of a particular experiment, he must have an intimate knowledge of experimental work in this field and he must weight every figure quoted in the light of his experience. As a step in this direction, the Agency has called on the services of many well-known experts and is preparing a number of monographs giving critical assessments of thermodynamic data and phase-diagrams for many of the elements of interest in reactor design. Most of the countries engaged in research in thermodynamics were

  8. Black Tea

    Science.gov (United States)

    ... mental alertness as well as learning, memory, and information processing skills. It is also used for treating headache; ... of carbamazepine. Since black tea contains caffeine, in theory taking black tea with carbamazepine might decrease the ...

  9. X-ray emission fluorescence (XRF) analysis of origin of raw materials of light dark reddish brown porcelain and porcelain with black flower on a white background of Dangyangyu kiln

    International Nuclear Information System (INIS)

    Zhang Hongyu; Yang Dawei; Guo Wenyu

    2009-01-01

    Dangyangyu kiln was an important civil porcelain production place in the North China during the Song Dynasty. In order to find out the source of raw materials of the porcelain body and glaze and their classification relationship so as to correctly distinguish them, we have used XRF to determine the major chemical elements of some porcelain samples with light brown and samples with black flower on a white background. Dynamic fuzzy cluster analysis was applied to the data. Results indicate that the origin of raw materials of light brown porcelain body samples is comparatively more concentrated, while that of the porcelain with black flower on a white background is scattered about. The origin of the body materials of those two kinds of porcelain samples is obviously different. The origin of raw materials of light brown porcelain samples is comparatively concentrated and stable, while that of the porcelain with black flower on a white background is scattered about, moreover, the origin of glaze raw materials and the formula of the two kinds are obviously different. The origin and formula of the light brown porcelain with white glaze in the interior are close to those of the white glaze of porcelain with black flower on a white background, but they are not entirely identical. (author)

  10. Black Holes

    OpenAIRE

    Horowitz, Gary T.; Teukolsky, Saul A.

    1998-01-01

    Black holes are among the most intriguing objects in modern physics. Their influence ranges from powering quasars and other active galactic nuclei, to providing key insights into quantum gravity. We review the observational evidence for black holes, and briefly discuss some of their properties. We also describe some recent developments involving cosmic censorship and the statistical origin of black hole entropy.

  11. Solid State Division

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces

  12. Solid State Division

    Energy Technology Data Exchange (ETDEWEB)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  13. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  14. Solid-state Ceramic Laser Material for Remote Sensing of Ozone Using Nd:Yttria, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Tunable solid state lasers have played an important role in providing the technology necessary for active remote sensing of the atmosphere. Recently, polycrystalline...

  15. Identification of plant cells in black pigments of prehistoric Spanish Levantine rock art by means of a multi-analytical approach. A new method for social identity materialization using chaîne opératoire.

    Science.gov (United States)

    López-Montalvo, Esther; Roldán, Clodoaldo; Badal, Ernestina; Murcia-Mascarós, Sonia; Villaverde, Valentín

    2017-01-01

    We present a new multi-analytical approach to the characterization of black pigments in Spanish Levantine rock art. This new protocol seeks to identify the raw materials that were used, as well as reconstruct the different technical gestures and decision-making processes involved in the obtaining of these black pigments. For the first of these goals, the pictorial matter of the black figurative motifs documented at the Les Dogues rock art shelter (Ares del Maestre, Castellón, Spain) was characterized through the combination of physicochemical and archeobotanical analyses. During the first stage of our research protocol, in situ and non-destructive analyses were carried out by means of portable Energy Dispersive X-Ray Fluorescence spectrometry (EDXRF); during the second stage, samples were analyzed by Optical Microscopy (OM), Raman spectroscopy, and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy (SEM-EDX). Two major conclusions have been drawn from these analyses: first, charred plant matter has been identified as a main component of these prehistoric black pigments; and second, angiosperm and conifer charcoal was a primary raw material for pigment production, identified by means of the archaeobotanical study of plant cells. For the second goal, black charcoal pigments were replicated in the laboratory by using different raw materials and binders and by reproducing two main chaînes opératoires. The comparative study of the structure and preservation of plant tissues of both prehistoric and experimental pigments by means of SEM-EDX underlines both a complex preparation process and the use of likely pigment recipes, mixing raw material with fatty or oily binders. Finally, the formal and stylistic analysis of the motifs portrayed at Les Dogues allowed us to explore the relationship between identified stylistic phases and black charcoal pigment use, raising new archaeological questions concerning the acquisition of know-how and the

  16. Nanocrystal conversion chemistry: A unified and materials-general strategy for the template-based synthesis of nanocrystalline solids

    International Nuclear Information System (INIS)

    Vasquez, Yolanda; Henkes, Amanda E.; Chris Bauer, J.; Schaak, Raymond E.

    2008-01-01

    The concept of nanocrystal conversion chemistry, which involves the use of pre-formed nanoparticles as templates for chemical transformation into derivative solids, has emerged as a powerful approach for designing the synthesis of complex nanocrystalline solids. The general strategy exploits established synthetic capabilities in simple nanocrystal systems and uses these nanocrystals as templates that help to define the composition, crystal structure, and morphology of product nanocrystals. This article highlights key examples of 'conversion chemistry' approaches to the synthesis of nanocrystalline solids using a variety of techniques, including galvanic replacement, diffusion, oxidation, and ion exchange. The discussion is organized according to classes of solids, highlighting the diverse target systems that are accessible using similar chemical concepts: metals, oxides, chalcogenides, phosphides, alloys, intermetallic compounds, sulfides, and nitrides. - Graphical abstract: Nanocrystal conversion chemistry uses pre-formed nanoparticles as templates for chemical transformation into derivative solids, helping to define the composition, crystal structure, and morphology of product nanocrystals that have more complex features than their precursor templates. This article highlights the application of this concept to diverse classes of solids, including metals, oxides, chalcogenides, phosphides, alloys, intermetallics, sulfides, and nitrides

  17. Synthesis and structural studies on cerium substituted La0.4Ca0.6MnO3 as solid oxide fuel cell electrode material

    Science.gov (United States)

    Singh, Monika; Kumar, Dinesh; Singh, Akhilesh Kumar

    2018-04-01

    For solid oxide fuel cell electrode material, calcium doped lanthanum manganite La0.4Ca0.6MnO3 (LCMO) and cerium-incorporated on Ca-site with composition La0.40Ca0.55Ce0.05MnO3 (LCCMO) were synthesized using most feasible and efficient glycine-nitrate method. The formation of crystalline single phase was confirmed by x-ray diffraction (XRD). The Rietveld analysis reveals that both systems crystallize into orthorhombic crystal structure with Pnma space group. Additionally, 8 mole % Y2O3 stabilized ZrO2 (8YSZ) solid electrolyte was also synthesized using high energy ball mill to check the reaction with electrode materials. It was found that the substitution of Ce+4 cations in LCMO perovskite suppressed formation of undesired insulating CaZrO3 phase.

  18. Material balance of two sewage sludge incineration systems; Methods and results - disposal of solid residues. Stoffflussanalyse bei zwei Klaerschlammverbrennungsanlagen; Methodik und Ergebnisse - Entsorgung der festen Rueckstaende

    Energy Technology Data Exchange (ETDEWEB)

    Staeubli, B. (Abt. Abfallwirtschaft des Amtes fuer Gewaesserschutz und Wasserbau des Kantons Zuerich (Switzerland)); Keller, C. (Elektrowatt Ingenieurunternehmung AG, Zurich (Switzerland))

    1993-02-01

    Material balances were analyzed in two Swiss sewage sludge combustion plants. The methodology is described. Aspects of the standards set for waste management in Switzerland are described. The two incinerations are described. The volumes and compositions of the sewage sludges and all gaseous, liquid, and solid products are gone into. The possibilities of recycling and dumping of combustion products are reviewed in consideration of the volumes and compositions of combustion products. The text is supplemented by tables and flowsheets. (orig.)

  19. Successive self-propagating sintering process using carbonaceous materials: A novel low-cost remediation approach for dioxin-contaminated solids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Long, E-mail: zhaolong@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing 100012 (China); Hou, Hong, E-mail: houhong@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing 100012 (China); Zhu, Tengfei; Li, Fasheng [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Dayangfang 8, Beijing 100012 (China); Terada, Akihiko; Hosomi, Masaaki [Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2015-12-15

    Highlights: • A SSPSP using carbonaceous materials for removing dioxin pollutants was developed. • Removal and degradation efficiencies of DL-PCBs were higher than those of PCDD/Fs. • Compositions of PCDD/Fs were dependent on the available precursors in raw materials. • Dechlorination of O{sub 8}CDD and formation pathways of PCDFs were deduced. • Dioxin levels in the effluent gas complied with the International emission limit. - Abstract: The disposal of dioxin-contaminated solids was studied using a novel successive self-propagating sintering process (SSPSP) incorporating a carbonaceous material. Among the five types of carbonaceous materials investigated, Charcoal B displayed optimum adsorbent properties and was selected as the best thermal source in the current remediation approach based on economical efficiency aspects. The feasibility of this proposed approach, removal efficiencies, and congener compositions of dioxins were examined using two types of dioxin-contaminated solids (Fugan sediment and Toyo soil) that displayed different characteristics including the initial concentrations of dioxins. The removal efficiencies of DL-PCBs (“dioxin-like” polychlorinated biphenyls) were higher than those of PCDD/Fs (polychlorinated dibenzo-p-dioxins/dibenzofurans), achieving 99.9 and 92% removal in the Fugan sediment and Toyo soil, respectively. In contrast, the degradation efficiencies of DL-PCBs were lower (i.e., 89.3 and 88.8%, respectively). The initial concentrations of dioxins, available precursors, and properties of the solids strongly influenced the congener compositions and removal efficiencies of dioxins. Furthermore, the dechlorination reaction pathways of high-chlorinated PCDDs and potential regeneration pathways of PCDFs from PCBs were deduced using isotope labeling. The proposed novel low-cost remediation approach for the removal of dioxins from solids is a highly efficient and environmentally sound treatment technology.

  20. Successive self-propagating sintering process using carbonaceous materials: A novel low-cost remediation approach for dioxin-contaminated solids

    International Nuclear Information System (INIS)

    Zhao, Long; Hou, Hong; Zhu, Tengfei; Li, Fasheng; Terada, Akihiko; Hosomi, Masaaki

    2015-01-01

    Highlights: • A SSPSP using carbonaceous materials for removing dioxin pollutants was developed. • Removal and degradation efficiencies of DL-PCBs were higher than those of PCDD/Fs. • Compositions of PCDD/Fs were dependent on the available precursors in raw materials. • Dechlorination of O_8CDD and formation pathways of PCDFs were deduced. • Dioxin levels in the effluent gas complied with the International emission limit. - Abstract: The disposal of dioxin-contaminated solids was studied using a novel successive self-propagating sintering process (SSPSP) incorporating a carbonaceous material. Among the five types of carbonaceous materials investigated, Charcoal B displayed optimum adsorbent properties and was selected as the best thermal source in the current remediation approach based on economical efficiency aspects. The feasibility of this proposed approach, removal efficiencies, and congener compositions of dioxins were examined using two types of dioxin-contaminated solids (Fugan sediment and Toyo soil) that displayed different characteristics including the initial concentrations of dioxins. The removal efficiencies of DL-PCBs (“dioxin-like” polychlorinated biphenyls) were higher than those of PCDD/Fs (polychlorinated dibenzo-p-dioxins/dibenzofurans), achieving 99.9 and 92% removal in the Fugan sediment and Toyo soil, respectively. In contrast, the degradation efficiencies of DL-PCBs were lower (i.e., 89.3 and 88.8%, respectively). The initial concentrations of dioxins, available precursors, and properties of the solids strongly influenced the congener compositions and removal efficiencies of dioxins. Furthermore, the dechlorination reaction pathways of high-chlorinated PCDDs and potential regeneration pathways of PCDFs from PCBs were deduced using isotope labeling. The proposed novel low-cost remediation approach for the removal of dioxins from solids is a highly efficient and environmentally sound treatment technology.