Directory of Open Access Journals (Sweden)
Robin Freeman
Full Text Available BACKGROUND: Determining the foraging movements of pelagic seabirds is fundamental for their conservation. However, the vulnerability and elusive lifestyles of these animals have made them notoriously difficult to study. Recent developments in satellite telemetry have enabled tracking of smaller seabirds during foraging excursions. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report the first successful precision tracking of a c. 700 g seabird, the vulnerable Black Petrel, Procellaria parkinsoni, foraging at sea during the breeding season, using miniature GPS-logging technology. Employing a combination of high-resolution fixes and low-power duty-cycles, we present data from nine individual foraging excursions tracked during the chick-rearing period in February 2006. CONCLUSIONS/SIGNIFICANCE: We provide a snapshot of the species' foraging range and behaviour in relation to detailed underlying bathymetry off the coast of New Zealand, finding a significant relationship between foraging movements and regions of the shelf-break. We also highlight the potential of more sophisticated analyses to identify behavioural phenomena from position data alone.
Metal and selenium concentrations in blood and feathers of petrels of the genus Procellaria.
Carvalho, Paloma Calábria; Bugoni, Leandro; McGill, Rona A R; Bianchini, Adalto
2013-07-01
Concentrations of copper (Cu), zinc (Zn), cadmium (Cd), lead (Pb), mercury (Hg), and selenium (Se) were determined in blood and feathers of spectacled (Procellaria conspicillata) and white-chinned (Procellaria aequinoctialis) petrels, species that are phylogenetically related, but with distinct ecological niches. In winter, they feed on similar foods, indicated by an overlapping range of whole-blood stable isotopes values (δ(15) N; δ(13) C). No relation was found between blood metal concentration and stable isotope values. In spectacled petrels, metal concentrations appeared lower in blood (Cu = 0.79-20.77 µg/g; Zn = 10.95-28.02 µg/g; Cd = 1.73-10.11 µg/g; Pb = 5.02-26.03 µg/g; Hg = 0.84-9.86 µg/g) than in feathers (Cu = 1.05-21.57 µg/g; Zn = 45.30-81.49 µg/g; Cd = 3.76-10.44 µg/g; Pb = 16.53-59.00 µg/g; Hg = 4.24-24.03 µg/g). In white-chinned petrels, metal concentrations also appeared lower in blood (Cu = 0.62-10.4 µg/g; Zn = 10.73-24.69 µg/g; Cd = 2.00-6.31 µg/g; Pb = 5.72-24.03 µg/g) than in feathers (Cu = 2.68-23.92 µg/g; Zn = 48.96-93.54 µg/g; Cd = 5.72-24.03 µg/g; Pb = 18.62-55.51 µg/g), except for Hg (blood = 0.20-15.82 µg/g; feathers = 0.19-8.91 µg/g). Selenium (0.24-14.18 µg/g) and Hg (0.22-1.44 µg/g) concentrations showed a positive correlation in growing feathers of spectacled petrels. Blood and feather Hg levels were higher in spectacled petrels while feathers Cu and Zn concentrations were greater in white-chinned petrels. Juvenile white-chinned petrels exhibited greater blood Hg concentrations than adults. In the south Atlantic Ocean, discards from commercial fishing operations consumed by spectacled petrels year-round and by white-chinned petrels during the wintering period have elevated Hg concentrations. Because Hg toxicity is associated with behavioral and reproductive changes in birds, it could
Diablotin Pterodroma hasitata: a biography of the endangered Black-capped Petrel
Simons, Theodore R.; Lee, David S.; Haney, J. Chris
2013-01-01
The Black-capped Petrel Pterodroma hasitata was believed extinct throughout much of the 20th century. It is the only gadfly petrel currently known to breed in the Caribbean Basin. Now seriously endangered, the species is presumed extirpated from Martinique, Dominica, and Guadeloupe, and breeding populations currently occur only on Hispaniola and perhaps Cuba. A related form (now considered a full species) once bred, but is now apparently extinct, on Jamaica. The Black-capped Petrel breeding population may number as few as 500 breeding pairs. Remaining populations suffer from multiple threats to terrestrial and pelagic habitats, including harvest by humans and predation by introduced mammals. The exact sizes, locations, and detailed chronologies of all Black-capped Petrel breeding sites remain poorly studied, although major colonies are today apparently restricted to steep sea and inland cliffs along the La Selle Ridge in Hispaniola. The largest known breeding population occurs in Haiti, although there is continued discussion about a possible breeding site in Cuba in the Sierra Maestra mountain range. Accounts from Cuba are based on the unverified assumption that birds observed at sea just offshore of that island are breeding locally.
Directory of Open Access Journals (Sweden)
Marjorie Riofrío-Lazo
Full Text Available Introduced rodents are responsible for ecosystem changes in islands around the world. In the Galapagos archipelago, their effects on the native flora and fauna are adverse, including the extinction of endemic rodents in some islands and the reduction in the reproductive success of the Galapagos petrel (Pterodroma phaeopygia in its nesting zones. Understanding the feeding behavior of introduced rodents and their trophic interactions with native and non-native species on islands, can assist in the design of management strategies and conservation plans of invasive and endemic species respectively. Four petrel nesting colonies were monitored during June 2013 on San Cristóbal Island (El Plátano, El Junco, San Joaquín, and La Comuna. The feeding habits of black rats were evaluated by analyzing stomach contents and stable isotopes in hair. Three species of introduced rodents were captured. R. rattus was the most abundant at all sites (n=43, capture success (CS = 55.8%, followed by the house mouse, Mus musculus (n = 17, CS = 37.8%, and the Norwegian rat, R. norvegicus (n = 4, CS = 4.5%, captured only at La Comuna. The omnivorous black rat ate mostly plants (98% and arthropods (2%. Intact seeds of Miconia robinsoniana were the main food at all sites (relative abundance=72.1%, present in 95% of the analyzed stomachs, showing the black rats' possible role in the archipelago as endemic seed dispersers. There was no evidence of petrel's intake; however, its possible consumption is not discarded at all. The δ15N and δ13C analysis corroborated the primarily herbivorous diet of black rats. The isotopic signatures of the three rodent species reflect the inter- and intra-specific differential use of food resources. Black rat showed a wider diet in La Comuna, which was related to a lower availability of its primary prey and its ability to adapt to the available resources in its habitat.
The origins of white-chinned petrels killed by long-line fisheries off South Africa and New Zealand
Directory of Open Access Journals (Sweden)
N.M.S. Mareile Techow
2016-06-01
Full Text Available The white-chinned petrel (Procellaria aequinoctialis is the seabird species most frequently killed by fisheries in the Southern Ocean and is listed by the International Union for the Conservation of Nature and Natural Resources as globally vulnerable. It breeds around the sub-Antarctic, but genetic data identified two subspecies: P. a. aequinoctialis from islands in the Atlantic and Indian Oceans and P. a. steadi from the New Zealand sub-Antarctic islands. We identify the region of origin of birds killed by two long-line fisheries based on differences in the mitochondrial gene cytochrome b. All 113 birds killed off South Africa had the haplotype of P. a. aequinoctialis, whereas all the 60 birds from New Zealand had P. a. steadi haplotypes. The two subspecies of white-chinned petrels thus appear to disperse to different regions irrespective of their age, which accords with the tracking data of adult birds. Our finding has significant implications for managing the bycatch of this species by regional fisheries.
Directory of Open Access Journals (Sweden)
Leigh G Torres
Full Text Available Species distribution models (SDMs are increasingly applied in conservation management to predict suitable habitat for poorly known populations. High predictive performance of SDMs is evident in validations performed within the model calibration area (interpolation, but few studies have assessed SDM transferability to novel areas (extrapolation, particularly across large spatial scales or pelagic ecosystems. We performed rigorous SDM validation tests on distribution data from three populations of a long-ranging marine predator, the grey petrel Procellaria cinerea, to assess model transferability across the Southern Hemisphere (25-65°S. Oceanographic data were combined with tracks of grey petrels from two remote sub-Antarctic islands (Antipodes and Kerguelen using boosted regression trees to generate three SDMs: one for each island population, and a combined model. The predictive performance of these models was assessed using withheld tracking data from within the model calibration areas (interpolation, and from a third population, Marion Island (extrapolation. Predictive performance was assessed using k-fold cross validation and point biserial correlation. The two population-specific SDMs included the same predictor variables and suggested birds responded to the same broad-scale oceanographic influences. However, all model validation tests, including of the combined model, determined strong interpolation but weak extrapolation capabilities. These results indicate that habitat use reflects both its availability and bird preferences, such that the realized distribution patterns differ for each population. The spatial predictions by the three SDMs were compared with tracking data and fishing effort to demonstrate the conservation pitfalls of extrapolating SDMs outside calibration regions. This exercise revealed that SDM predictions would have led to an underestimate of overlap with fishing effort and potentially misinformed bycatch mitigation
Leach’s Storm-petrel Assessment 1999
US Fish and Wildlife Service, Department of the Interior — This report outlines the natural history of the Leach’s Storm-petrel. In addition it describes management efforts for the species, and assesses habitat and...
Merino, Santiago; Martínez, Javier; Masello, Juan F; Bedolla, Yuliana; Quillfeldt, Petra
2014-06-01
During a survey of blood parasites in a population of Leach's and black storm petrels ( Oceanodroma leucorhoa and Oceanodroma melania) in Mexico, infection by a Hepatozoon species in erythrocytes of several birds was noted. Here we describe the species as Hepatozoon peircei sp. nov. Some species of Hepatozoon described from birds have been identified as lankesterellids when DNA molecular analyses were conducted. However, a sequence of 1,774 bp of the parasite found infecting storm petrels in this study clearly show the parasite is a species of the genus Hepatozoon. This is the first Hepatozoon species infecting birds to be characterized at the molecular level and the first found infecting erythrocytes and not leucocytes.
Directory of Open Access Journals (Sweden)
Stucchi, Marcelo
2011-01-01
Full Text Available Comparative measurements and photographs of the skeleton of Peruvian diving petrel Pelecanoides garnotii (Lesson, 1828 are presented as a field guide for identification. Also, the skeleton's locomotory functionality in relation to flight and diving are discussed.
AK - Contaminant burdens in storm-petrels nesting on St. Lazaria Island, Alaska Maritime NWR
US Fish and Wildlife Service, Department of the Interior — Sampling of storm-petrel eggs from St. Lazaria Island in 1992 and 1999, suggested that some birds may be accumulating polychlorinated biphenyls (PCBs) at...
Contrasting movement strategies among juvenile albatrosses and petrels
de Grissac, Sophie; Börger, Luca; Guitteaud, Audrey; Weimerskirch, Henri
2016-05-01
Animal movement is a fundamental eco-evolutionary process yet the behaviour of juvenile animals is largely unknown for many species, especially for soaring seabirds which can range widely over the oceans at low cost. We present an unprecedented dataset of 98 juvenile albatrosses and petrels (nine species), tracked for the first three months after independence. There was a startling diversity within and among species in the type and scale of post-natal movement strategies, ranging from area-restricted to nomadic patterns. Spatial scales were clustered in three groups that ranged from 6000 km from the natal nest. In seven of the nine species, the orientation of flight paths and other movement statistics showed strong similarities between juveniles and adults, providing evidence for innate orientation abilities. Our results have implications for understanding the development of foraging behaviour in naïve individuals and the evolution of life history traits such as survival, lifespan and breeding strategy.
At-Sea Distribution and Prey Selection of Antarctic Petrels and Commercial Krill Fisheries.
Descamps, Sébastien; Tarroux, Arnaud; Cherel, Yves; Delord, Karine; Godø, Olaf Rune; Kato, Akiko; Krafft, Bjørn A; Lorentsen, Svein-Håkon; Ropert-Coudert, Yan; Skaret, Georg; Varpe, Øystein
2016-01-01
Commercial fisheries may impact marine ecosystems and affect populations of predators like seabirds. In the Southern Ocean, there is an extensive fishery for Antarctic krill Euphausia superba that is projected to increase further. Comparing distribution and prey selection of fishing operations versus predators is needed to predict fishery-related impacts on krill-dependent predators. In this context, it is important to consider not only predators breeding near the fishing grounds but also the ones breeding far away and that disperse during the non-breeding season where they may interact with fisheries. In this study, we first quantified the overlap between the distribution of the Antarctic krill fisheries and the distribution of a krill dependent seabird, the Antarctic petrel Thalassoica antarctica, during both the breeding and non-breeding season. We tracked birds from the world biggest Antarctic petrel colony (Svarthamaren, Dronning Maud Land), located >1000 km from the main fishing areas, during three consecutive seasons. The overall spatial overlap between krill fisheries and Antarctic petrels was limited but varied greatly among and within years, and was high in some periods during the non-breeding season. In a second step, we described the length frequency distribution of Antarctic krill consumed by Antarctic petrels, and compared this with results from fisheries, as well as from diet studies in other krill predators. Krill taken by Antarctic petrels did not differ in size from that taken by trawls or from krill taken by most Antarctic krill predators. Selectivity for specific Antarctic krill stages seems generally low in Antarctic predators. Overall, our results show that competition between Antarctic petrels and krill fisheries is currently likely negligible. However, if krill fisheries are to increase in the future, competition with the Antarctic petrel may occur, even with birds breeding thousands of kilometers away.
US Fish and Wildlife Service, Department of the Interior — The purposes of this study were to (1) continue monitoring on Leach's forktail (Oceanadroma furcata) and on fork-tailed storm petrels (Oceanodroma leucorhoa); (2)...
Imaging Enhancement on Deep Seismic Reflection with Petrel and Ocean Working Environment
Yu, P.; Huang, D.; Feng, X.; Li, L.; Liu, W.; Wang, Y.; Zhao, Q.
2011-12-01
SinoProbe has been initiated to enhance understanding of earth deep structure, resources and geological disasters forecasting throughout Chinese continent. Besides traditional deep exploration methods, various state-of-the-art technologies have been carried out in order to acquire data and jointly utilize all possible information reflecting deep crust and mantle structures and evolution.Petrel, a powerful software application developed by Schlumberger, has been successfully applied to the O&G industry. It is now a complete seismic-to-simulation application for 3D and 2D seismic interpretation. However, it has a great potential to allow the user to extend utilization with multiple types of data sets to deal with much deeper geophysical information. Petrel all-in-one concept, that functionally comprises of massive data integration, multiple domains experts participation and 3D geological object-oriented etc., will come benefit to the deep earth study. Currently, there is no special tool designed for this purpose so that Petrel is required to extend its potential to cope with not only O&G area but also a larger area with unique requests of deeper objects.Ocean, a software framework for Petrel, provides an open development environment offering seamless integration of developer intellectual contribution to the Petrel mainstream workflow. It is able to accelerate the development and deployment of user's Petrel-like workflows to resolve complex problems. It can be implemented by means of plug-ins utilities although there is additional challenge to write a robust code with Ocean framework. Deep seismic reflection profiling is a well recognized technique to reveal the fine structure of lithosphere. Moreover, it can perform a significant role for prospective evaluation of O&G and mineral resources, and geological disasters. Its near-vertical deep seismic reflection method can enhance broad band seismic observations for imaging of the deep crust and continental geodynamics
Effects of human disturbance on cave-nesting seabirds: the case of the storm petrel
Soldatini, Cecilia; Albores-Barajas, Yuri V.; Tagliavia, Marcello; Massa, Bruno; Fusani, Leonida; Canoine, Virginie
2015-01-01
Human disturbance is an important stress factor with potentially strong impact on breeding activity in animals. The consequences can be extinction of the breeding population, because disturbed animals might desert their breeding area and find no suitable substitute area. In this study, we investigated the effects of anthropogenic disturbance on a breeding population of Mediterranean storm petrels. Seabirds are increasingly used as bio-indicators for sea environmental parameters, because they are very sensitive to changing conditions. Burrowing or cave-nesting species may be particularly susceptible to human disturbance because their direct contact with humans is usually minimal or absent. First, we compared two different populations (exposed or not exposed to human disturbance) for their individual stress response to a standardized stressor (handling and keeping in a cloth bag). Second, we compared the two sub-colonies for their population-level stress response. Third, we tested experimentally whether sub-colonies of storm petrels exposed to tourism have physiological adaptations to anthropogenic disturbances. Our results indicate that storm petrels may be habituated to moderate disturbance associated with boat traffic close to the colony. PMID:27293726
Roscales, Jose L; González-Solís, Jacob; Zango, Laura; Ryan, Peter G; Jiménez, Begoña
2016-07-01
Studies on Persistent Organic Pollutants (POPs) in Antarctic wildlife are scarce, and usually limited to a single locality. As a result, wildlife exposure to POPs across the Southern Ocean is poorly understood. In this study, we report the differential exposure of the major southern ocean scavengers, the giant petrels, to POPs across a wide latitudinal gradient. Selected POPs (PCBs, HCB, DDTs, PBDEs) and related compounds, such as Dechlorane Plus (DP), were analyzed in plasma of southern giant petrels (Macronectes giganteus) breeding on Livingston (62°S 61°W, Antarctica), Marion (46°S 37°E, sub-Antarctic), and Gough (40°S 10°W, cool temperate) islands. Northern giant petrels (Macronectes halli) from Marion Island were also studied. Stable isotope ratios of C and N (δ(13)C and δ(15)N) were used as dietary tracers of the marine habitat and trophic level, respectively. Breeding locality was a major factor explaining petrel exposure to POPs compared with species and sex. Significant relationships between δ(13)C values and POP burdens, at both inter- and intra-population levels, support latitudinal variations in feeding grounds as a key factor in explaining petrel pollutant burdens. Overall, pollutant levels in giant petrels decreased significantly with latitude, but the relative abundance (%) of the more volatile POPs increased towards Antarctica. DP was found at negligible levels compared with legacy POPs in Antarctic seabirds. Spatial POP patterns found in giant petrels match those predicted by global distribution models, and reinforce the hypothesis of atmospheric long-range transport as the main source of POPs in Antarctica. Our results confirm that wildlife movements out of the polar region markedly increase their exposure to POPs. Therefore, strategies for Antarctic wildlife conservation should consider spatial heterogeneity in exposure to marine pollution. Of particular relevance is the need to clarify the exposure of Antarctic predators to emerging
Silva, Mauro F; Smith, Andrea L; Friesen, Vicki L; Bried, Joël; Hasegawa, Osamu; Coelho, M Manuela; Silva, Mónica C
2016-05-01
The evolutionary mechanisms underlying the geographic distribution of gene lineages in the marine environment are not as well understood as those affecting terrestrial groups. The continuous nature of the pelagic marine environment may limit opportunities for divergence to occur and lineages to spatially segregate, particularly in highly mobile species. Here, we studied the phylogeography and historical demography of two tropically distributed, pelagic seabirds, the Madeiran Storm-petrel Oceanodroma castro, sampled in the Azores, Madeira, Galapagos and Japan, and its sister species Monteiro's Storm-petrel O. monteiroi (endemic to the Azores), using a multi-locus dataset consisting of 12 anonymous nuclear loci and the mitochondrial locus control region. Both marker types support the existence of four significantly differentiated genetic clusters, including the sampled O. monteiroi population and three populations within O. castro, although only the mitochondrial locus suggests complete lineage sorting. Multi-locus coalescent analyses suggest that most divergence events occurred within the last 200,000years. The proximity in divergence times precluded robust inferences of the species tree, in particular of the evolutionary relationships of the Pacific populations. Despite the great potential for dispersal, divergence among populations apparently proceeded in the absence of gene flow, emphasizing the effect of non-physical barriers, such as those driven by the paleo-oceanographical environments, philopatry and local adaptation, as important mechanisms of population divergence and speciation in highly mobile marine species. In view of the predicted climate change impacts, future changes in the demography and evolutionary dynamics of marine populations might be expected.
Aguado-Giménez, F; Sallent-Sánchez, A; Eguía-Martínez, S; Martínez-Ródenas, J; Hernández-Llorente, M D; Palanca-Maresca, C; Molina-Pardo, J L; López-Pastor, B; García-Castellanos, F A; Ballester-Moltó, M; Ballesteros-Pelegrín, G; García-García, B; Barberá, G G
2016-12-01
Cage aquaculture aggregates wild fauna due to food provision. Several seabirds frequent fish farms, including the European storm-petrel (Hydrobates pelagicus melitensis). This work investigates the presence of storm-petrels around two aquaculture areas interspersed between breeding colonies in western Mediterranean Sea. Contribution of aquaculture-derived resources to their diet was assessed. Storm-petrels were mist-netted at the colonies and marked by bleaching feathers. Density around aquaculture areas was estimated through visual counts. Marks recognition was conducted visually and by photo-capture. Storm-petrel regurgitates were used as target tissue to estimate diet sources contribution. Contribution of surface zooplankton, ichthyoplankton and aquaculture wastes was estimated through Bayesian mixing modelling combining carbon and nitrogen stable isotopes and fatty acids as biomarkers. Storm-petrel density was high in open-sea aquaculture area, but not observed around near shore farms. Temporal variability of storm-petrels density during the breeding season was linked to their reproductive phenology. Within the open-sea aquaculture area, bluefin tuna farm was more attractive for storm-petrels than seabream/seabass farms. Visual identification of bleaching marks was not useful. Photo-capture showed that 8.3% of the storm-petrels watched around farms were firstly trapped in some of the nearby colonies, and 91.7% were unmarked. Qualitative evidence of aquaculture-derived wastes utilization was obtained. However, its estimated contribution was low (4.3%) when compared to ichthyoplankton (61.1%) or zooplankton (34.6%). The studied open-sea farms significantly aggregated storm-petrels along their entire breeding season. Storm-petrels got a slight profit from aquaculture resources. Nevertheless, some concerns arise regarding the cost/benefit balance of the interaction.
Shearn-Bochsler, Valerie; Green, David Earl; Converse, K.A.; Docherty, D.E.; Thiel, T.; Geisz, H.N.; Fraser, William R.; Patterson-Fraser, Donna L.
2008-01-01
The Southern giant petrel (Macronectes giganteus) is declining over much of its range and currently is listed as vulnerable to extinction by the International Union for the Conservation of Nature (IUCN). Island-specific breeding colonies near Palmer Station, Antarctica, have been monitored for over 30 years, and because this population continues to increase, it is critically important to conservation. In austral summer 2004, six diseased giant petrel chicks were observed in four of these colonies. Diseased chicks were 6a??9 weeks old and had multiple proliferative nodules on their bills and skin. One severely affected chick was found dead on the nest and was salvaged for necropsy. Histopathological examination of nodules from the dead chick revealed epithelial cell hyperplasia and hypertrophy with numerous eosinophilic intracytoplasmic inclusions (B??llinger bodies). A poxvirus was isolated from multiple nodules. Poxviral infection has not been reported in this species, and the reason for its emergence and its potential impact on the population are not yet known.
Directory of Open Access Journals (Sweden)
Helen Gummer
2015-01-01
Full Text Available Conservation of gadfly petrels, some of the most threatened seabirds, is frequently dependent on long-term research and management. We review 20 years of a program preventing the extinction of the Chatham petrel (Pterodroma axillaris, a New Zealand endemic once declining due to intense burrow competition from another native seabird. Breeding success in the early 1990s was unsustainably low (10–30%. Recovery measures started in 1992 when Chatham petrel burrows were converted and artificial entrances blockaded to exclude broad-billed prions (Pachyptila vittata. Pair and burrow fidelity were enhanced, though prions still posed a threat during Chatham petrel chick-rearing. Breeding success improved when prions were culled, however a less intensive and contentious solution was to introduce burrow flaps in 2001 which reduced interference from prospecting prions. Subsequently, breeding success increased to a mean 80% per annum. Finding burrows, primarily using radio-telemetry, increased those under management from eight in 1990 to 217 in 2010 when spotlight surveys indicated 72% of juvenile birds had fledged from managed burrows. Chick translocations to two other islands and increasing population size (from 200–400 birds in 1990 to an estimated 1400 birds by 2010 has improved the species IUCN status from Critically Endangered in 1990 to Endangered in 2013.
Dias, Maria P.; Romero, Joana; Granadeiro, José Pedro; Catry, Teresa; Pollet, Ingrid L.; Catry, Paulo
2016-07-01
Bulwer's petrels are nocturnal seabirds that mostly prey on mesopelagic fauna. As aerial foragers and shallow divers, their feeding opportunities are limited by near-surface availability of their prey, which is highly variable both temporally (reflecting diurnal and lunar cycles) and spatially. Here we studied how Bulwer's petrels cope with these constraints by analysing their at-sea distribution and activity during the incubation period. We tracked the movements of 20 birds from Selvagem Grande (NE Atlantic) during a complete lunar cycle, and recorded 30 foraging trips that lasted 11 days on average. Birds were both distributed around the colony and in waters close to the Azorean archipelago (mid-Atlantic) located 1700 km away, and were significantly more active at night (especially just after sunset and before sunrise), when mesopelagic fauna is also closer to the sea surface due to their diel vertical migrations. Bulwer's petrels spent significantly more time flying during moonlight, although the effect of the moon was relatively weak (ca. 10-15% difference between moonlit and dark periods of the night), and not obvious when birds were foraging in mid-Atlantic waters, which were also targeted more often during full-moon. These results reveal key adaptations of the Bulwer's petrel to the highly dynamic ecology of its mesopelagic prey.
2010-01-05
...-precluded species, we took into consideration the magnitude and immediacy of the threats to the species... included familiarity with the six Procellariid species, the geographic region in which the six species... information on the current population numbers for the Cook's petrel and threats to the species was...
Climate Driven Life Histories: The Case of the Mediterranean Storm Petrel
Soldatini, Cecilia; Albores-Barajas, Yuri Vladimir; Massa, Bruno; Gimenez, Olivier
2014-01-01
Seabirds are affected by changes in the marine ecosystem. The influence of climatic factors on marine food webs can be reflected in long-term seabird population changes. We modelled the survival and recruitment of the Mediterranean storm petrel (Hydrobates pelagicus melitensis) using a 21-year mark-recapture dataset involving almost 5000 birds. We demonstrated a strong influence of prebreeding climatic conditions on recruitment age and of rainfall and breeding period conditions on juvenile survival. The results suggest that the juvenile survival rate of the Mediterranean subspecies may not be negatively affected by the predicted features of climate change, i.e., warmer summers and lower rainfall. Based on considerations of winter conditions in different parts of the Mediterranean, we were able to draw inferences about the wintering areas of the species for the first time. PMID:24728099
MacLeod, Catriona; Adams, Josh; Lyver, Phil
2008-01-01
We used satellite telemetry to determine the at-sea distribution of 32 adult (non-breeders and failed breeders) Grey-faced Petrels, Pterodroma macroptera gouldi, during July-October in 2006 and 2007. Adults captured at breeding colonies on the Ruamaahua (Aldermen) Islands ranged across the southwestern Pacific Ocean and Tasman Sea between 20-49°S and 142°E and 1300 W Petrels were located almost exclusively over offshore waters> 1000 m depth. The extent oftheir distributions was similar across years, but petrels ranged farther south and west in 2006. Individuals displayed a high degree ofspatial overlap (48-620/0 among individuals) and area use revealed three general "hotspots" within their overall range: waters near the Ruamaahua Islands; the central Tasman Sea; and the area surrounding the Chatham Rise. In July-August 2006, most petrels congregated over the Tasman Sea, but for the same period in 2007 were predominantly associated with Chatham Rise. The home ranges of petrels tended to overlap disproportionately more than expected with the Australian Exclusive Economic Zone and less than expected with High Seas, relative to the area available in each zone, in July-August 2006. Accordingly, multiple nations are responsible for determining potential impacts resulting from fisheries bycatch and potential resource competition with Grey-faced Petrels.
Brown, Ruth M; Techow, N M S Mareile; Wood, Andrew G; Phillips, Richard A
2015-01-01
Hybridization in natural populations provides an opportunity to study the evolutionary processes that shape divergence and genetic isolation of species. The emergence of pre-mating barriers is often the precursor to complete reproductive isolation. However, in recently diverged species, pre-mating barriers may be incomplete, leading to hybridization between seemingly distinct taxa. Here we report results of a long-term study at Bird Island, South Georgia, of the extent of hybridization, mate fidelity, timing of breeding and breeding success in mixed and conspecific pairs of the sibling species, Macronectes halli (northern giant petrel) and M. giganteus (southern giant petrel). The proportion of mixed-species pairs varied annually from 0.4-2.4% (mean of 1.5%), and showed no linear trend with time. Mean laying date in mixed-species pairs tended to be later than in northern giant petrel, and always earlier than in southern giant petrel pairs, and their breeding success (15.6%) was lower than that of conspecific pairs. By comparison, mixed-species pairs at both Marion and Macquarie islands always failed before hatching. Histories of birds in mixed-species pairs at Bird Island were variable; some bred previously or subsequently with a conspecific partner, others subsequently with a different allospecific partner, and some mixed-species pairs remained together for multiple seasons. We also report the first verified back-crossing of a hybrid giant petrel with a female northern giant petrel. We discuss the potential causes and evolutionary consequences of hybridization and back-crossing in giant petrels and summarize the incidence of back-crossing in other seabird species.
Colabuono, Fernanda I; Vander Pol, Stacy S; Huncik, Kevin M; Taniguchi, Satie; Petry, Maria V; Kucklick, John R; Montone, Rosalinda C
2016-09-01
Seabirds play an important role as top consumers in the food web and can be used as biomonitors of exposure to pollutants. Contamination studies involving non-destructive sampling methods are of considerable importance, allowing better evaluation of the levels of pollutants and their toxic effects. In the present study, organohalogen contaminants were analyzed in 113 blood samples from Southern Giant Petrel (Macronectes giganteus) adults and chicks collected in the austral summer of 2011/2012 and 2012/2013 from colonies on Elephant and Livingston Islands, South Shetland, Antarctica. Polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), pentachlorobenzene (PeCB), mirex, dichlorodiphenyltrichloroetane and derivatives (DDTs) and chlordanes were detected in all birds, whereas polybrominated diphenyl ethers (PBDEs) were not detected in any blood samples. No significant differences were found in organochlorine levels between sampling events. Adults exhibited significantly higher levels than chicks, except for PeCB. PCBs, HCB, mirex and DDTs were statistically similar in males and females from Elephant Island. Females on Livingston Island exhibited higher HCB values than males, but no sex differences were found regarding other organochlorines. The similarity in organochlorine levels between sexes in birds with very marked sexual segregation in feeding habits during the breeding season may indicate that significant amounts of contaminants are acquired during migration to lower latitudes, when the diets of males and females are similar. Birds sampled on Livingston Island exhibited significantly lower levels of PCBs, HCB, DDTs, mirex and chlordanes in comparison to those on Elephant Island, which could be the result of distinct foraging patterns between the two colonies. Organochlorine levels were similar between years in birds captured in two consecutive breeding seasons. Blood samples from Southern Giant Petrels adults and chicks proved to be useful for the comparison
Exploring individual quality: Basal metabolic rate and reproductive performance in storm-petrels
Blackmer, A.L.; Mauck, R.A.; Ackerman, J.T.; Huntington, C.E.; Nevitt, G.A.; Williams, J.B.
2005-01-01
Despite evidence that some individuals achieve both superior reproductive performance and high survivorship, the factors underlying variation in individual quality are not well understood. The compensation and increased-intake hypotheses predict that basal metabolic rate (BMR) influences reproductive performance; if so, variation in BMR may be related to differences in individual quality. We evaluated whether BMR measured during the incubation period provides a proximate explanation for variation in individual quality by measuring the BMRs and reproductive performance of Leach's storm-petrels (Oceanodroma leucorhoa) breeding on Kent Island, New Brunswick, Canada, during 2000 and 2001. We statistically controlled for internal (body mass, breeding age, sex) and external (year, date, time of day) effects on BMR. We found that males with relatively low BMRs hatched their eggs earlier in the season and that their chicks' wing growth rates were faster compared to males with relatively high BMRs. Conversely, BMR was not related to egg volume, hatching date, or chick growth rate for females or to lifetime (???23 years) hatching success for either sex. Thus, for males but not for females, our results support the compensation hypothesis. This hypothesis predicts that animals with low BMRs will achieve better reproductive performance than animals with high BMRs because they have lower self-maintenance costs and therefore can apportion more energy to reproduction. These results provide evidence that intraspecific variation in reproductive performance is related to BMR and suggest that BMR may influence individual quality in males. ?? The Author 2005. Published by Oxford University Press on behalf of the International Society for Behavioral Ecology. All rights reserved.
Olivier, F.; Franeker, van J.A.; Creuwels, J.C.S.; Woehler, E.J.
2005-01-01
Demographic parameters were estimated for snow petrels Pagodroma nivea nesting at the study colony of Reeve Hill near Casey station, Antarctica between 1984 and 2003. Average breeding success for the colony varied from 18.2% to 76.5%. Breeding effort, hatching and fledging success were subject to a
Weidinger, K.; Franeker, van J.A.
1998-01-01
Sexual size dimorphism in the Cape petrel Daption capense was analysed to improve methods for sexing live birds in field studies. Samples originated from two geographically distant study populations in the Antarctic: Nelson Island, South Shetland Islands (sample N: 83 M, 89 F), and Ardery and O'Conn
Blanco, Gabriela S.; Pisoni, Juan P.; Quintana, Flavio
2015-02-01
The characterization of the seascape used by marine top predators provides a wide perspective of pelagic habitat use and it is necessary to understand the functioning of marine systems. The goal of this study was to characterize the oceanographic and biological features of marine areas used by adult and first year juvenile southern giant petrels (SGP, Macronectes giganteus) from northern Patagonian colonies (Isla Arce and Gran Robredo) during the austral fall and winter (2005, 2006, 2007, and 2008). The marine environment exploited by the SGP was characterized using sea surface temperature (SST), SST gradients, chlorophyll-a concentration, water depth, oceanographic regimes, and ocean surface winds. In addition, the biological seascape was defined by considering the distribution of squid during the months of study. Juveniles SGP exploited a wide range of environments focusing mainly on productive neritic waters using a variety of oceanographic regimes. Juveniles were exposed to eutrophic and enriched waters, probably because of the frequent presence of thermal fronts in their utilization areas. Adults' environments lacked of thermal fronts remaining the majority of their time within the oceanographic regime "Continental Shelf", in water depths of 100-200 m, exploiting mesotrophic and eutrophic environments, and remaining in areas of known food resources related to the presence of squid. For the most part, juveniles were exposed to westerly winds, which may have helped them in their initial flight to the shelf break, east of the colony. Wintering adults SGP also explored areas characterized by westerly winds but this did not play a primary role in the selection of their residence areas. Juveniles during their first year at sea have to search for food exploring a variety of unknown environments. During their search, they remained in productive environments associated to fronts and probably also associated to fisheries operating in their foraging areas. The
Integrated use of NMR, petrel and modflow in the modeling of SAGD produced water re-injection
Energy Technology Data Exchange (ETDEWEB)
Campbell, K. [Miswaco(CANADA); Phair, C [Mneme Corp, CALGARY (Canada); Alloisio, S [SWS, Vancouver (CANADA); Novotny, M [SWS, Denver, (United States); Raven, S [Oilsands Quest Inc., Calgary (CANADA)
2011-07-01
In the oil industry, steam assisted gravity drainage (SAGD) is a method used to enhance oil recovery in which production water disposal is a challenge. During this process, production water is re-injected into the reservoir and operators have to verify that it will not affect the quality of the surrounding fresh groundwater. This research aimed at determining the flow path and the time that produced water would take to reach an adjacent aquifer. This study was carried out on a horizontal well pair at the Axe Lake Area in northwestern Saskatchewan, using existing site data in Petrel to create a static hydrogeological model which was then exported to Modflow to simulate injection scenarios. This innovative method provided flow path of the re-injected water and time to reach the fresh with advantages over conventional hydrogeological modeling. The innovative workflow presented herein successfully provided useful information to assess the feasibility of the SAGD project and could be used for other projects.
Zango, Laura; Calabuig, Pascual; Stefan, Laura M.; González-Solís, Jacob
2017-01-01
Cape Verde petrel (Pterodroma feae) is currently considered near threatened, but little is known about its population size, breeding biology and on land threats, jeopardizing its management and conservation. To improve this situation, we captured, marked and recaptured (CMR) birds using mist-nets over 10 years; measured and sexed them; monitored up to 14 burrows, deployed GPS devices on breeders and analyzed activity data of geolocators retrieved from breeders in Fogo (Cape Verde). We set cat traps over the colony and investigated their domestic/feral origin by marking domestic cats from a nearby village with transponders, by deploying GPS devices on domestic cats and by performing stable isotope analyses of fur of the trapped and domestic cats. The population of Fogo was estimated to be 293 birds, including immatures (95% CI: 233–254, CMR modelling). Based on geolocator activity data and nest monitoring we determined the breeding phenology of this species and we found biometric differences between sexes. While monitoring breeding performance, we verified a still ongoing cat predation and human harvesting. Overall, data gathered from trapped cats without transponder, cats GPS trips and the distinct isotopic values between domestic and trapped cats suggest cats visiting the colony are of feral origin. GPS tracks from breeders showed birds left and returned to the colony using the sector NE of the islands, where high level of public lights should be avoided specially during the fledging period. Main threats for the Cape Verde petrel in the remaining breeding islands are currently unknown but likely to be similar to Fogo, calling for an urgent assessment of population trends and the control of main threats in all Cape Verde Islands and uplisting its conservation status. PMID:28369105
Directory of Open Access Journals (Sweden)
Figueroa, Judith
2011-01-01
Full Text Available Between 2005 and 2010, 57 new records of the Peruvian diving-petrel Pelecanoides garnotii (Lesson, 1828 were recorded off the coast of Piura, Lambayeque, La Libertad, Ancash and Lima regions. Group size ranged from one to ten individuals which were found feeding or resting on the sea surface. New records occurred mainly at noon at a distance from the coast of 6.1 km to 51.02 km. We also found a greater record between September and November, falling sharply in December which could be related to its breeding activity. Based on historical information, the presence of P. garnotii in Peru was known from Lobos de Tierra island (Lambayeque, 06°28'S to Islay (Arequipa, 17°01'S, in a range of 1570 km. With the data gathered during this study from the north and complemented with other records to the south, we get an approximate range of 1850 km, extending northward its range about 126 km, from Lobos de Tierra to Sechura (Piura, 05°29'S, and southward about 197 km, from Islay to Boca del Río (Tacna, 18°19'S. Due to the frequency of observations obtained, we suggest the possibility of the existence of at least one additional breeding colony in the north and one in the central coast of Peru. On the other hand, because of the continued loss of nesting areas by guano harvesting activity, we propose the establishment of intangible islands and points where guano extraction must be banned with the aim of providing P. garnotii more areas suitable for breeding and growing.
Angelier, Frédéric; Moe, Børge; Blanc, Samuel; Chastel, Olivier
2009-01-01
Life-history theory predicts that individuals should adapt their parental investment to the costs and benefits of the current reproductive effort. This could be achieved by modulating the hormonal stress response, which may shift energy investment away from reproduction and redirect it toward survival. In birds, this stress response consists of a release of corticosterone that may be accompanied by a decrease in circulating prolactin, a hormone involved in the regulation of parental care. We lack data on the modulation of the prolactin stress response. In this study, we tested the hypothesis that individuals should modulate their prolactin stress response according to the fitness value of the current reproductive effort relative to the fitness value of future reproduction. Specifically, we examined the influence of breeding status (failed breeders vs. incubating birds) and body condition on prolactin and corticosterone stress responses in a long-lived species, the snow petrel Pagodroma nivea. When facing stressors, incubating birds had higher prolactin levels than failed breeders. However, we found no effect of body condition on the prolactin stress response. The corticosterone stress response was modulated according to body condition but was not affected by breeding status. We also performed an experiment using injections of adrenocorticotropic hormone (ACTH) and found that the modulation of the corticosterone stress response was probably associated with a reduction in ACTH release by the pituitary and a decrease in adrenal sensitivity to ACTH. In addition, we examined whether prolactin and corticosterone secretion were functionally linked. We found that these two hormonal stress responses were not correlated. Moreover, injection of ACTH did not affect prolactin levels, demonstrating that short-term variations in prolactin levels are not governed directly or indirectly by ACTH release. Thus, we suggest that the corticosterone and prolactin responses to short
DEFF Research Database (Denmark)
Langkjær, Michael Alexander
2012-01-01
’s a lifestyle I enjoy.” For Monáe, the tuxedo is both working clothes and a superhero uniform. Together with futuristic references to Fritz Lang’s dystopian Metropolis, her trademark starched shirt and tuxedo also recall Weimar and pre-war Berlin. While outwardly dissimilar, Sioux’s and Monáe’s shared black...... suggested that appreciation of the highly personal motives of both Siouxsie Sioux and Janelle Monáe in wearing black may be achieved via analogies with the minimalist sublime of American artists Frank Stella’s and Ad Reinhardt’s black canvasses....
Santos, Jorge E
2014-01-01
Black droplets and black funnels are gravitational duals to states of a large N, strongly coupled CFT on a fixed black hole background. We numerically construct black droplets corresponding to a CFT on a Schwarzchild background with finite asymptotic temperature. We find two branches of such droplet solutions which meet at a turning point. Our results suggest that the equilibrium black droplet solution does not exist, which would imply that the Hartle-Hawking state in this system is dual to the black funnel constructed in \\cite{Santos:2012he}. We also compute the holographic stress energy tensor and match its asymptotic behaviour to perturbation theory.
Furtado, Ricardo; Menezes, Dilia; Santos, Carolina Jardim; Catry, Paulo
2016-11-15
Marine plastic pollution is rapidly growing and is a source of major concern. Seabirds often ingest plastic debris and are increasingly used as biological monitors of plastic pollution. However, virtually no studies have assessed plastics in seabirds in the deep subtropical North Atlantic. We investigated whether remains of white-faced storm-petrels (WFSP) present in gull pellets could be used for biomonitoring. We analysed 263 pellets and 79.0% of these contained plastic debris originating in the digestive tract of WFSP. Pellets with no bird prey did not contain plastics. Most debris were fragments (83.6%) with fewer plastic pellets (8.2%). Light-coloured plastics predominated (71.0%) and the most frequent polymer was HDPE (73.0%). Stable isotopes in toe-nails of WFSP containing many versus no plastics did not differ, indicating no individual specialisation leading to differential plastic ingestion. We suggest WFSP in pellets are highly suitable to monitor the little known pelagic subtropical Northeast Atlantic.
Black psyllium is a weed that grows aggressively throughout the world. The plant was spread with the ... to make medicine. Be careful not to confuse black psyllium with other forms of psyllium including blond ...
Luminet, Jean-Pierre
1992-09-01
Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.
Directory of Open Access Journals (Sweden)
Angela Khristin Brown
2013-07-01
Full Text Available The migration of blacks in North America through slavery became united. The population of blacks past downs a tradition of artist through art to native born citizens. The art tradition involved telling stories to each generation in black families. The black culture elevated by tradition created hope to determine their personal freedom to escape from poverty of enslavement and to establish a way of life through tradition. A way of personal freedoms was through getting a good education that lead to a better foundation and a better way of life.
... combination.Talk with your health provider.Birth control pills (Contraceptive drugs)Black tea contains caffeine. The body breaks down caffeine to get rid of it. Birth control pills can decrease how quickly the body breaks down ...
Institute of Scientific and Technical Information of China (English)
Ainara AZKONA; I(n)igo ZUBEROGOITIA; Jose Antonio MART(I)NEZ; Jon ETXEZARRETA; Agurtzane IRAETA; I(n)aki CASTILLO; Jabier ZABALA; Sonia HIDALGO
2006-01-01
We monitored a colony of European storm-petrels Hydrobates pelagicus before and after the Prestige oil spill (November 2002) at Aketx Island (Gulf of Biscay, Northern Iberian Peninsula). A census of a part of the colony was carried out by mist-netting birds between 1993 and 2005, whereas fledgling success was studied by direct observation of the nests. Before the spill, the population of the colony was characterised by oscillations among years. The bird's sensitivity to changing weather and prey availability are probably the ultimate causes of the fluctuations. During the 2003 breeding season, the body condition of breeding storm-petrels was worse than previous years and the number of breeding pairs and fledgling success diminished. In 2004, the number of storm-petrels that bred was less than the year before, the body condition of those birds was bad but slightly better than in 2003 and all the clutches were successful. In 2005, the number of ringed storm-petrels reached the level before the oil spill, almost all of the detected pairings were successful and the body condition of those birds was similar to the years before the sinking. However, the reduction of the minimal age of the studied birds continued, suggesting an effect of oil pollution on population turnover. Further studies must determine exactly the effects of pollutant bioaccumulation on these seabirds [Acta Zoologica Sinica 52 (6): 1042 - 1048, 2006].%2002年11月原油泄漏前后,我们对伊比利亚半岛比斯开湾内的Aketx岛上的暴风海燕(Hydrobates pelagicus)进行了监测.1993-2005年期间,利用雾网法调查了暴风海燕的数量,并通过直接观察法来统计雏鸟出飞率.在石油泄漏前,暴风海燕的种群数量亦存在年际波动,天气变化和食物丰盛度可能是引起这一现象的根本原因.在2003年,繁殖个体的身体条件较前些年差,繁殖对的数量和雏鸟成活率也有所下降.2004年繁殖对的数量明显少于2003年,繁殖
Chrúsciel, P T
2002-01-01
This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usual one for gravity, and leads to the one associated with the Unruh metric in the case of Euler equations. We review the global conditions which have been used in the Scri-based definition of a black hole and point out the deficiencies of the Scri approach. Various results on the structure of horizons and apparent horizons are presented, and a new proof of semi-convexity of horizons based on a variational principle is given. Recent results on the classification of stationary singularity-free vacuum solutions are reviewed. ...
Institute of Scientific and Technical Information of China (English)
杜铁梅
2016-01-01
The black cat is a masterpiece of short fiction of Poe. He successfully solved the problem of creating of the horror effect by using scene description, symbol, repetition and first-person narrative methods. And created a complete and unified mysterious terror, achieved the effect of shocking. This paper aims to discuss the mystery in-depth and to enrich the research system in Poe’s novels.
Fletcher, MW
2016-01-01
Following the Yom Kippur war of October 1973, OPEC raises the price of oil by 70% along with a 5% reduction in oil production. Len Saunders a highly skilled and knowledgeable British engineer for Jaguar motors, is approached by the UK energy commission in the January of 1974 to create a new propulsion system; using a secret document from a German WW2 scientist, that they have come into possession of. Len Saunders sets to work on creating the holy grail of energy. Seven years later 1981, Haidar Farooq the Kuwait oil minister working at OPEC and head of a secret organisation named Black Gold bec
Directory of Open Access Journals (Sweden)
Rahim Vakili
2016-06-01
Full Text Available A 2-year-old boy was born at term of healthy, non-consanguineous Iranian parents. His mother attended in the clinic with the history of sometimes discoloration of diapers after passing urine. She noticed that first at the age of one month with intensified in recent months. His Physical examination and growth parameters were normal. His mother denied taking any medication (sorbitol, nitrofurantoin, metronidazole, methocarbamol, sena and methyldopa (5. Qualitative urine examination showed dark black discoloration. By this history, alkaptonuria was the most clinical suspicious. A 24-hour-urine sample was collected and sent for quantitative measurements. The urine sample was highly positive for homogentisic acid and negative for porphyrin metabolites.
Dissonant Black Droplets and Black Funnels
Fischetti, Sebastian; Way, Benson
2016-01-01
A holographic field theory on a fixed black hole background has a gravitational dual represented by a black funnel or a black droplet. These states are "detuned" when the temperature of the field theory near the horizon does not match the temperature of the background black hole. In particular, the gravitational dual to the Boulware state must be a detuned solution. We construct detuned droplets and funnels dual to a Schwarzschild background and show that the Boulware phase is represented by a droplet. We also construct hairy black droplets associated to a low-temperature scalar condensation instability and show that they are thermodynamically preferred to their hairless counterparts.
Black Silicon Solar Cells with Black Ribbons
DEFF Research Database (Denmark)
Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io;
2016-01-01
We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....
The Black Black Woman and the Black Middle Class.
Jeffers, Trellie
1981-01-01
Reprint of a 1973 article that describes the discrimination that particularly dark-skinned Black women suffer, especially at the hands of a color-conscious Black middle class. Calls for dark women to look to the African appearance and working-class roots as sources of pride and strength. (GC)
Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke
2009-07-01
Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair — degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.
Banerjee, Nabamita; Sen, Ashoke
2009-01-01
Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair, -- degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.
Energy Technology Data Exchange (ETDEWEB)
Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)
2007-11-15
We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.
Israel, Werner
This chapter reviews the conceptual developments on black hole thermodynamics and the attempts to determine the origin of black hole entropy in terms of their horizon area. The brick wall model and an operational approach are discussed. An attempt to understand at the microlevel how the quantum black hole acquires its thermal properties is included. The chapter concludes with some remarks on the extension of these techniques to describing the dynamical process of black hole evaporation.
Dokuchaev, V I
2012-01-01
We consider test planet and photon orbits of the third kind inside a black hole, which are stable, periodic and neither come out of the black hole nor terminate at the singularity. Interiors of supermassive black holes may be inhabited by advanced civilizations living on planets with the third-kind orbits. In principle, one can get information from the interiors of black holes by observing their white hole counterparts.
Dehghani, M. H.; Pourhasan, R.; Mann, R. B.
2011-01-01
We investigate modifications of the Lifshitz black hole solutions due to the presence of Maxwell charge in higher dimensions for arbitrary $z$ and any topology. We find that the behaviour of large black holes is insensitive to the topology of the solutions, whereas for small black holes significant differences emerge. We generalize a relation previously obtained for neutral Lifshitz black branes, and study more generally the thermodynamic relationship between energy, entropy, and chemical pot...
Moss, I. G.; Shiiki, N.; Winstanley, E.
2000-01-01
Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.
Harris, Tracy A.
1994-01-01
Considers need for colleges and universities to develop effective marketing plan for recruitment of black students. Highlights advantages of designing marketing plan for recruitment of black alumni to assist in recruitment and retention of black students. Identifies key indicators that often hinder institutions in their recruitment of black…
Wijers, R.A.M.J.
1996-01-01
Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes
Letelier, P S; Letelier, Patricio S.; Oliveira, Samuel R.
1998-01-01
The C-metric is revisited and global interpretation of some associated spacetimes are studied in some detail. Specially those with two event horizons, one for the black hole and another for the acceleration. We found that the spacetime fo an accelerated Schwarzschild black hole is plagued by either conical singularities or lack of smoothness and compactness of the black hole horizon. By using standard black hole thermodynamics we show that accelerated black holes have higher Hawking temperature than Unruh temperature. We also show that the usual upper bound on the product of the mass and acceleration parameters (<1/sqrt(27)) is just a coordinate artifact. The main results are extended to accelerated Kerr black holes. We found that they are not changed by the black hole rotation.
Gonzalez, P A; Saavedra, Joel; Vasquez, Yerko
2014-01-01
We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole solutions with the scalar field regular everywhere. We go to the zero temperature limit and we study the effect of the scalar field on the near horizon geometry of an extremal black hole. We find that except a critical value of the charge of the black hole there is also a critical value of the charge of the scalar field beyond of which the extremal black hole is destabilized. We study the thermodynamics of these solutions and we find that if the space is flat then at low temperature the Reissner-Nordstr\\"om black hole is thermodynamically preferred, while if the space is AdS the hairy charged black hole is thermodynamically preferred at low temperature.
Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica
2016-01-01
Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.
Black Branes as Piezoelectrics
Armas, Jay; Obers, Niels A
2012-01-01
We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.
Black branes as piezoelectrics.
Armas, Jay; Gath, Jakob; Obers, Niels A
2012-12-14
We find a realization of linear electroelasticity theory in gravitational physics by uncovering a new response coefficient of charged black branes, exhibiting their piezoelectric behavior. Taking charged dilatonic black strings as an example and using the blackfold approach we measure their elastic and piezolectric moduli. We also use our results to draw predictions about the equilibrium condition of charged dilatonic black rings in dimensions higher than six.
Perturbations around black holes
Wang, B
2005-01-01
Perturbations around black holes have been an intriguing topic in the last few decades. They are particularly important today, since they relate to the gravitational wave observations which may provide the unique fingerprint of black holes' existence. Besides the astrophysical interest, theoretically perturbations around black holes can be used as testing grounds to examine the proposed AdS/CFT and dS/CFT correspondence.
Ho, Pei-Ming
2016-01-01
Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.
Ho, Pei-Ming
2017-04-01
Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.
Carlip, S
2014-01-01
The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this chapter I will review the discovery of black hole thermodynamics and summarize the many independent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox.
Arbitrators, Blacks and Discipline
Jennings, Kenneth
1975-01-01
A discussion of the handling of disciplinary problems of black employees concludes that management should be concerned because of the effect that grievance resolution may have on the company's overall employee discipline program and the additional appeal alternatives available to the black employee. (Author/EA)
Perturbing supersymmetric black hole
Onozawa, H; Mishima, T; Ishihara, H; Onozawa, Hisashi; Okamura, Takashi; Mishima, Takashi; Ishihara, Hideki
1996-01-01
An investigation of the perturbations of the Reissner-Nordstr\\"{o}m black hole in the N=2 supergravity is presented. In the extreme case, the black hole responds to the perturbation of each field in the same manner. This is possibly because we can match the modes of the graviton, gravitino, and photon using supersymmetry transformations.
Indian Academy of Sciences (India)
Koustubh Ajit Kabe
2012-09-01
In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.
DEFF Research Database (Denmark)
Kragh, Helge Stjernholm
2016-01-01
Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....
Andersson, N
2000-01-01
This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.
Ashenfelter, Orley
1975-01-01
This testimony, before a public hearing of the New York City Commission on Human Rights in May 1974, focuses on two issues: (1) the effect of the presence of trade unionism on the position of black workers in the labor market relative to white workers; and (2) the effect of federal government efforts to increase the position of black workers…
Cartwright, Jon
2015-11-01
Creating dark materials that prevent reflections has become hot competition recently, with Guinness World Records having to keep revising the darkest substance yet created. But depending on who's asking, the best black may not be the blackest black, as Jon Cartwright discovers.
Stornaiolo, C
2002-01-01
In this letter we propose the existence of low density black holes and discuss its compatibility with the cosmological observations. The origin of these black holes can be traced back to the collapse of long wavelength cosmological perturbations during the matter dominated era, when the densities are low enough to neglect any internal and thermal pressure. By introducing a threshold density $\\hat{\\rho}$ above which pressure and non-gravitational interactions become effective, we find the highest wavelength for the perturbations that can reach an equilibrium state instead of collapsing to a black hole. The low density black holes introduced here, if they exist, can be observed through weak and strong gravitational lensing effects. Finally we observe that we obtained here a cosmological model which is capable to explain in a qualitative way the void formation together with the value $\\Omega=1$. But we remark that it needs to be improved by considering non spherical symmetric black holes.
Primordial Black Hole Baryogenesis
Baumann, D; Turok, N G; Baumann, Daniel; Steinhardt, Paul J.; Turok, Neil
2007-01-01
We reconsider the possibility that the observed baryon asymmetry was generated by the evaporation of primordial black holes that dominated the early universe. We present a simple derivation showing that the baryon asymmetry is insensitive to the initial black hole density and the cosmological model but is sensitive to the temperature-dependence of the CP and baryon-violating (or lepton-violating) interactions. We also consider the possibility that black holes stop evaporating and form Planck-mass remnants that act as dark matter. We show that primordial black holes cannot simultaneously account for both the observed baryon asymmetry and the (remnant) dark matter density unless the magnitude of CP violation is much greater than expected from most particle physics models. Finally, we apply these results to ekpyrotic/cyclic models, in which primordial black holes may form when branes collide. We find that obtaining the observed baryon asymmetry is compatible with the other known constraints on parameters.
Lifshitz Topological Black Holes
Mann, R B
2009-01-01
I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.
Black Hole Critical Phenomena Without Black Holes
Liebling, S L
2000-01-01
Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.
Leach's Storm Petrel - Avian Average Annual Abundance
National Oceanic and Atmospheric Administration, Department of Commerce — The data represent predicted number of individuals of each listed seabird species per standardized survey segment (15 minute travel time at 10 knots = approx. 2.5...
Wilson's Storm Petrel - Avian Average Annual Abundance
National Oceanic and Atmospheric Administration, Department of Commerce — The data represent predicted number of individuals of each listed seabird species per standardized survey segment (15 minute travel time at 10 knots = approx. 2.5...
On the Charter Question: Black Marxism and Black Nationalism
Stern, Mark; Hussain, Khuram
2015-01-01
This article brings two black intellectual traditions to bear on the question of charter schools: black Marxism and black nationalism. The authors examine the theoretical and rhetorical devices used to talk about charters schools by focusing on how notions of "black liberation" are deployed by the charter movement, and to what end. The…
Hayward, Sean Alan
2013-01-01
Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h
Energy Technology Data Exchange (ETDEWEB)
Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)
2015-05-11
In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Directory of Open Access Journals (Sweden)
Burkhard Kleihaus
2015-05-01
Full Text Available In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
P. Mitra
1994-01-01
In the talk different definitions of the black hole entropy are discussed and compared. It is shown that the Bekenstein-Hawking entropy $S^{BH}$ (defined by the response of the free energy of a system containing a black hole on the change of the temperature) differs from the statistical- mechanical entropy $S^{SM}=-\\mbox{Tr}(\\hat{\\rho}\\ln \\hat{\\rho})$ (defined by counting internal degrees of freedom of a black hole). A simple explanation of the universality of the Bekenstein-Hawking entropy (...
Frolov, V
1994-01-01
In the talk different definitions of the black hole entropy are discussed and compared. It is shown that the Bekenstein-Hawking entropy S^{BH} (defined by the response of the free energy of a system containing a black hole on the change of the temperature) differs from the statistical- mechanical entropy S^{SM}=-\\mbox{Tr}(\\hat{\\rho}\\ln \\hat{\\rho}) (defined by counting internal degrees of freedom of a black hole). A simple explanation of the universality of the Bekenstein-Hawking entropy (i.e. its independence of the number and properties of the fields which might contribute to S^{SM}) is given.
MacGibbon, Jane H; Linnemann, J T; Marinelli, S S; Stump, D; Tollefson, K
2015-01-01
Primordial Black Holes (PBHs) are of interest in many cosmological contexts. PBHs lighter than about 1012 kg are predicted to be directly detectable by their Hawking radiation. This radiation should produce both a diffuse extragalactic gamma-ray background from the cosmologically-averaged distribution of PBHs and gamma-ray burst signals from individual light black holes. The Fermi, Milagro, Veritas, HESS and HAWC observatories, in combination with new burst recognition methodologies, offer the greatest sensitivity for the detection of such black holes or placing limits on their existence.
Feminism and Black Women's Studies.
Hooks, Bell
1989-01-01
Women's studies programs have largely ignored Black women. Until Black women's studies courses are developed, feminist scholarship on Black women will not advance, and the contributions of Black women to women's rights movements and African American literature and scholarship may be neglected. (DM)
The Price of "Black Dominance."
Hoberman, John
2000-01-01
Discusses the harmful effects of stereotyping black males as athletes, noting that over-identification with athletes and the world of physical performance limits black children's development by discouraging academic achievement. Examines the negative influence of mass media focus on black athletes, rappers, and stylized ghetto blackness. Discusses…
Directory of Open Access Journals (Sweden)
Loretta I. Winters
2012-01-01
Full Text Available This article examines the relative importance of race and socioeconomic status (SES in determining whether Black and White teenagers report having ever been pregnant. Data gathered from 1999 to 2006 by the National Center for Health Statistics of the Center for Disease Control and Prevention included 1,580 Black and White females aged 15 to 19 years. Results supported the effects of race and SES, with SES having the stronger effect. However, the effects of race and SES differ when controlling for the state of the economy. No difference between Blacks and Whites was found during better economic times. During 2003-2004, the period of greatest economic stress, race was determined to be the only predictor of teenage pregnancy. In particular, during 2005-2006, the reduction in pregnancy rates for Black minors (15-17 fell below those for White minors within their respective SES categories. Policy implications are discussed in light of these findings.
Bak, Dongsu; Gutperle, Michael; Janik, Romuald A.
2011-10-01
In this paper Janus black holes in A dS 3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ blackhole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.
US Fish and Wildlife Service, Department of the Interior — Aural surveys using tape recorded calls proved to be an efficient and effective way to survey large expanses of shallow marsh for black rails (Laterallus...
Black Friday = Broget Branding?
DEFF Research Database (Denmark)
Hansen, Heidi
2015-01-01
Black Friday er et godt eksempel på, hvordan ikke kun produktbrands og corporate brands rejser på tværs af landegrænser, men også traditioner som Halloween, Valentines Day og i dette tilfælde den ultimative tilbuds-fredag, som i USA går under navnet Black Friday. Men hvad er Black Friday i Danmark......? Essensen ved Black Friday er lave priser, og det er der ved første øjekast ikke mange brandingmuligheder forbundet ved, hvis man forstår branding som en måde at skabe ekstra værdi omkring sit produkt eller sin virksomhed. Som brand bliver man dog alligevel nødt til at forholde sig til konceptet, da det er...
Govindarajan, T R
2016-01-01
Novel bound states are obtained for manifolds with singular potentials. These singular potentials require proper boundary conditions across boundaries. The number of bound states match nicely with what we would expect for black holes. Also they serve to model membrane mechanism for the black hole horizons in simpler contexts. The singular potentials can also mimic expanding boundaries elegantly, there by obtaining appropriately tuned radiation rates.
Helical superconducting black holes.
Donos, Aristomenis; Gauntlett, Jerome P
2012-05-25
We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.
Institute of Scientific and Technical Information of China (English)
Dorine; Houston
1997-01-01
Do you remember the colors the college freshmen dyed their hair when you were here? Turquoise, orange, bright yellow.... Things have changed. Black has (?)ome the color of choice among the young people. Young men and women alike dye their hair coal black. The women let their hair grow very long. and it hangs straight and stringy down their backs. The young men leave it long on
Gregory, Ruth
2008-01-01
In these lectures, I give an introduction to and overview of braneworlds and black holes in the context of warped compactifications. I first describe the general paradigm of braneworlds, and introduce the Randall-Sundrum model. I discuss braneworld gravity, both using perturbation theory, and also non perturbative results. I then discuss black holes on the brane, the obstructions to finding exact solutions, and ways of tackling these difficulties. I describe some known solutions, and conclude with some open questions and controversies.
Pelletier, G.
2004-01-01
Black Holes generate a particular kind of environments dominated by an accretion flow which concentrates a magnetic field. The interplay of gravity and magnetism creates this paradoxical situation where relativistic ejection is allowed and consequently high energy phenomena take place. Therefore Black Holes, which are very likely at the origin of powerfull astrophysical phenomena such as AGNs, micro- quasars and GRBs where relativistic ejections are observed, are at the heart of high energy a...
Cosmic censorship inside black holes
Thorlacius, L
2006-01-01
A simple argument is given that a traversable Cauchy horizon inside a black hole is incompatible with unitary black hole evolution. The argument assumes the validity of black hole complementarity and applies to a generic black hole carrying angular momentum and/or charge. In the second part of the paper we review recent work on the semiclassical geometry of two-dimensional charged black holes.
Black hole critical phenomena without black holes
Indian Academy of Sciences (India)
Steven L Liebling
2000-10-01
Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I brieﬂy review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.
Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar
2015-05-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.
Ultramassive Black Hole Coalescence
Khan, Fazeel; Berczik, Peter
2015-01-01
Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gr...
Energy Technology Data Exchange (ETDEWEB)
NONE
2002-02-01
Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for
Iguchi, Hideo
2010-01-01
Previously the five dimensional $S^1$-rotating black rings have been superposed in concentric way by some solitonic methods and regular systems of two $S^1$-rotating black rings were constructed by the authors and then Evslin and Krishnan (we called these solutions black di-rings). In this place we show some characteristics of the solutions of five dimensional black di-rings, especially in thermodynamic equilibrium. After the summary of the di-ring expressions and their physical quantities, first we comment on the equivalence of the two different solution-sets of the black di-rings. Then the existence of thermodynamic black di-rings are shown, in which both iso-thermality and iso-rotation between the inner black ring and the outer black ring are realized. We also give detailed analysis of peculiar properties of the thermodynamic black di-ring including discussion about a certain kind of thermodynamic stability (instability) of the system.
Centrella, Joan
2009-05-01
The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
Babichev, Eugeny; Hassaine, Mokhtar
2015-01-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematic...
Black Afrikaans: An alternative use
Directory of Open Access Journals (Sweden)
Anna P. Maritz
2016-09-01
Full Text Available This article provides a first look at the nature of the alternative functions of Black Afrikaans. These functions realise when Black Afrikaans is imitated by Afrikaans mother-tongue speakers. The functions of the alternative use of Black Afrikaans centre on: the social nature of the variety, sensitivity as a deciding role-player, identity, humour, inclusivity and exclusivity, language repertoire and similar variety. Furthermore, because of the direct relationship between Black Afrikaans, Pidginised Afrikaans and the imitation of Black Afrikaans, these varieties are compared to establish a starting point description for the imitation of Black Afrikaans, as the variety has not yet been described.
Pelletier, G
2004-01-01
Black Holes generate a particular kind of environments dominated by an accretion flow which concentrates a magnetic field. The interplay of gravity and magnetism creates this paradoxical situation where relativistic ejection is allowed and consequently high energy phenomena take place. Therefore Black Holes, which are very likely at the origin of powerfull astrophysical phenomena such as AGNs, micro- quasars and GRBs where relativistic ejections are observed, are at the heart of high energy astrophysics. The combination of General Relativity and Magneto-HydroDynamics (MHD) makes theory difficult; however great pionneers opened beautiful tracks in the seventies and left important problems to be solved for the next decades. These lectures will present the status of these issues. They have a tutorial aspect together with critical review aspect and contain also some new issues. Most of these lectures has been presented at the "School on Black Hole in the Universe" at Cargese, in May 2003.
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
Centrella, Joan
2012-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics
Black hole entropy quantization
Corichi, A; Fernandez-Borja, E; Corichi, Alejandro; Diaz-Polo, Jacobo; Fernandez-Borja, Enrique
2006-01-01
Ever since the pioneer works of Bekenstein and Hawking, black hole entropy has been known to have a quantum origin. Furthermore, it has long been argued by Bekenstein that entropy should be quantized in discrete (equidistant) steps given its identification with horizon area in (semi-)classical general relativity and the properties of area as an adiabatic invariant. This lead to the suggestion that black hole area should also be quantized in equidistant steps to account for the discrete black hole entropy. Here we shall show that loop quantum gravity, in which area is not quantized in equidistant steps can nevertheless be consistent with Bekenstein's equidistant entropy proposal in a subtle way. For that we perform a detailed analysis of the number of microstates compatible with a given area and show that an observed oscillatory behavior in the entropy-area relation, when properly interpreted yields an entropy that has discrete, equidistant values that are consistent with the Bekenstein framework.
Lasota, Jean-Pierre
2015-01-01
This is an introduction to models of accretion discs around black holes. After a presentation of the non-relativistic equations describing the structure and evolution of geometrically thin accretion discs we discuss their steady-state solutions and compare them to observation. Next we describe in detail the thermal-viscous disc instability model and its application to dwarf novae for which it was designed and its X-ray irradiated-disc version which explains the soft X--ray transients, i.e. outbursting black-hole low-mass X-ray binaries. We then turn to the role of advection in accretion flow onto black holes illustrating its action and importance with a toy model describing both ADAFs and slim discs. We conclude with a presentation of the general-relativistic formalism describing accretion discs in the Kerr space-time.
Institute of Scientific and Technical Information of China (English)
ZHAO Liu
2007-01-01
Hawking radiation of black ring solutions to 5-dimensional Einstein-Maxwell-dilaton theory is analyzed by use of the Parikh-Wilczek tunneling method. To get the correct tunneling amplitude and emission rate, we adopt and develop the Angheben-Nadalini-Vanzo-Zerbini covariant approach to cover the effects of rotation and electronic discharge all at once, and the effect of back reaction is also taken into account. This constitutes a unified approach to the tunneling problem. Provided the first law of thermodynamics for black rings holds, the emission rate is proportional to the exponential of the change of Bekenstein-Hawking entropy. Explicit calculation for black ring temperatures agrees exactly with the results obtained via the classical surface gravity method and the quasi-local formalism.
Black hole gravitohydromagnetics
Punsly, Brian
2008-01-01
Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...
Fender, Rob; Heywood, Ian
2013-01-01
Starting from the assumption that there is a large population (> 10^8) of isolated, stellar-mass black holes (IBH) distributed throughout our galaxy, we consider the detectable signatures of accretion from the interstellar medium (ISM) that may be associated with such a population. We simulate the nearby (radius 250 pc) part of this population, corresponding to the closest ~35 000 black holes, using current best estimates of the mass distribution of stellar mass black holes combined with two models for the velocity distribution of stellar-mass IBH which bracket likely possibilities. We distribute this population of objects appropriately within the different phases of the ISM and calculate the Bondi-Hoyle accretion rate, modified by a further dimensionless efficiency parameter \\lambda. Assuming a simple prescription for radiatively inefficient accretion at low Eddington ratios, we calculate the X-ray luminosity of these objects, and similarly estimate the radio luminosity from relations found empirically for b...
Horndeski black hole geodesics
Tretyakova, D A
2016-01-01
We examine geodesics for the scalar-tensor black holes in the Horndeski-Galileon framework. Our analysis shows that first kind relativistic orbits may not be present within some model parameters range. This is a highly pathological behavior contradicting to the black hole accretion and Solar System observations. We also present a new (although very similar to those previously known) solution, which contains the orbits we expect from a compact object, admits regular scalar field at the horizon and and can fit into the known stability criteria.
Good, Michael R R
2014-01-01
A $(3+1)$-dimensional asymptotically flat Kerr black hole angular speed $\\Omega_+$ can be used to define an effective spring constant, $k=m\\Omega_+^2$. Its maximum value is the Schwarzschild surface gravity, $k = \\kappa $, which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: $2\\pi T = \\kappa - k$. Hooke's law, in the extremal limit, provides the force $F = 1/4$, which is consistent with the conjecture of maximum force in general relativity.
Visser, M
1999-01-01
Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.
Hennigar, Robie A; Tjoa, Erickson
2016-01-01
We present what we believe is the first example of a "$\\lambda$-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid $^4$He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson
2017-01-13
We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
Characterizing Black Hole Mergers
Baker, John; Boggs, William Darian; Kelly, Bernard
2010-01-01
Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.
DEFF Research Database (Denmark)
Højer, Henrik
2016-01-01
Netflix’ kommende serie om den sorte Marvel-helt Luke Cage lander snart – midt i de aktuelle racekonflikter i USA. I GIF-anatomien "Bulletproof Black Man" sætter Henrik Højer serien ind i dens amerikanske kontekst.......Netflix’ kommende serie om den sorte Marvel-helt Luke Cage lander snart – midt i de aktuelle racekonflikter i USA. I GIF-anatomien "Bulletproof Black Man" sætter Henrik Højer serien ind i dens amerikanske kontekst....
Moon, S H
2001-01-01
We consider a brane world residing in the interior region inside the horizon of extreme black branes. In this picture, the size of the horizon can be interpreted as the compactification size. The large mass hierarchy is simply translated into the large horizon size, which is provided by the magnitude of charges carried by the black branes. Hence, the macroscopic compactification size is a quantity calculable from the microscopic theory which has only one physical scale, and its stabilization is guaranteed from the charge conservation.
Modeling black hole evaporation
Fabbri, Alessandro
2005-01-01
The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.
Good, Michael R R
2016-01-01
A black mirror is an accelerated boundary that produces particles in an exact correspondence to an evaporating black hole. We investigate the spectral dynamics of the particle creation during the formation process.
Quantum aspects of black holes
2015-01-01
Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.
Duyvesteijn, R.G.E.; Kohrman, E.
2008-01-01
In de vollegrondsrozenteelt zorgde Black Mold in 2007 voor een groot aantal mislukte oculaties. In 2008 waren er aanzienlijk minder problemen. Uit onderzoek is meer bekend over de oorzaak en bestrijding van Black Mold.
Black Sea Bass genetic connectivity
National Oceanic and Atmospheric Administration, Department of Commerce — Microsatellite analysis of black sea bass was undertaken to determine magnitude and direction of mixing of black seabass across the Hatteras boundary, as well as...
Conquering the Black Girl Blues.
Jones, Lani Valencia; Guy-Sheftall, Beverly
2015-10-01
An examination of the literature on epidemiology, etiology, and use of services for this population reveals an insufficient application of culturally congruent approaches to intervening with black women. An exploration of the social work practice literature and other relevant fields indicate that black feminist perspectives offer the opportunity to gain a clearer understanding of the intersection and influence of oppression among black women struggling with psychiatric issues and provide a useful framework for mental health practice with this population. This article discusses the evolving black feminist thought and summarizes the scholarship on black women's mental health services needs and utilization issues. The article includes a discussion of black feminisms as an emerging mental health perspective, arguing that black feminist perspectives in therapy provide an ideal framework for services that are responsive to the values and health needs of black women. The article concludes with a case vignette that illustrates some of its points.
Black Holes in Higher Dimensions
Directory of Open Access Journals (Sweden)
Reall Harvey S.
2008-09-01
Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.
Black Hole: The Interior Spacetime
Ong, Yen Chin
2016-01-01
The information loss paradox is often discussed from the perspective of the observers who stay outside of a black hole. However, the interior spacetime of a black hole can be rather nontrivial. We discuss the open problems regarding the volume of a black hole, and whether it plays any role in information storage. We also emphasize the importance of resolving the black hole singularity, if one were to resolve the information loss paradox.
Santos, Jorge E
2015-01-01
We study non-axisymmetric linearised gravitational perturbations of the Emparan-Reall black ring using numerical methods. We find an unstable mode whose onset lies within the "fat" branch of the black ring and continues into the "thin" branch. Together with previous results using Penrose inequalities that fat black rings are unstable, this provides numerical evidence that the entire black ring family is unstable.
Health Issues Facing Black Women.
Reid, Inez Smith
Black women in the United States experience a high incidence of serious health problems and, as a group, receive insufficient and inadequate medical care. The death rate for black women suffering from breast cancer has increased substantially since 1950. Also of great concern is the high incidence of cervical cancer in low income black women…
Simulations of coalescing black holes
Janiuk, Agnieszka
2016-01-01
We describe the methods and results of numerical simulations of coalescing black holes. The simulation in dynamical spacetime covers the inspiral, merger, and ringdown phases. We analyze the emission of gravitational waves and properties of a black hole being the merger product. We discuss the results in the context of astrophysical environment of black holes that exist in the Universe.
Schram, Sarah E; Willey, Andrea; Lee, Peter K; Bohjanen, Kimberly A; Warshaw, Erin M
2008-01-01
In black-spot poison ivy dermatitis, a black lacquerlike substance forms on the skin when poison ivy resin is exposed to air. Although the Toxicodendron group of plants is estimated to be the most common cause of allergic contact dermatitis in the United States, black-spot poison ivy dermatitis is relatively rare.
"Exotic" black holes with torsion
2013-01-01
In the context of three-dimensional gravity with torsion, the concepts of standard and "exotic" Banados-Teitelboim-Zanelli black holes are generalized by going over to black holes with torsion. This approach provides a unified insight into thermodynamics of black holes, with or without torsion.
Black silicon with black bus-bar strings
DEFF Research Database (Denmark)
Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io;
2016-01-01
We present the combination of black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon was realized by mask-less reactive ion etching resulting in total, average reflectance...... below 0.5% across a 156x156 mm2 silicon wafer. Black bus-bars were realized by oxidized copper resulting in reflectance below 3% in the entire visible wavelength range. The combination of these two technologies may result in aesthetic, all-black panels based on conventional, front-contacted solar cells...
Baker, John
2010-01-01
Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.
Science Teacher, 2005
2005-01-01
Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…
Bambi, Cosimo
2013-01-01
The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this letter, we apply the Newman-Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer-Lindquist coordinates. These special solutions are of Petrov type ...
DEFF Research Database (Denmark)
Christiansen, Lene Bull; Richey, Lisa Ann
2015-01-01
troubled by Joof’s performances during the telethon show, which was split between performing the figure of ‘the African woman’ and Danish ‘cultural insiderness’. The article concludes that unlike the US context where the category of ‘black celebrity’ has been analysed as connecting to a particular social...
Bena, Iosif; Chowdhury, Borun D.; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki
2012-03-01
We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no black holes were thought to exist.
Energy Technology Data Exchange (ETDEWEB)
Bambi, Cosimo, E-mail: bambi@fudan.edu.cn; Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn
2013-04-25
The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this Letter, we apply the Newman–Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer–Lindquist coordinates. These special solutions are of Petrov type D, they are singularity free, but they violate the weak energy condition for a non-vanishing spin and their curvature invariants have different values at r=0 depending on the way one approaches the origin. We propose a natural prescription to have rotating solutions with a minimal violation of the weak energy condition and without the questionable property of the curvature invariants at the origin.
Neitzke, A.; Pioline, B.; Vandoren, S.
2007-01-01
Motivated by black hole physics in N = 2,D = 4 supergravity, we study the geometry of quaternionic-K¨ahler manifolds Mobtained by the c-map construction from projective special Kähler manifolds Ms. Improving on earlier treatments, we compute the Käahler potentials on the twistor space Z and Swann sp
Gregory, Ruth; Wills, Danielle
2013-01-01
A Kerr black hole sporting cosmic string hair is studied in the context of the abelian Higgs model vortex. It is shown that a such a system displays much richer phenomenology than its static Schwarzschild or Reissner--Nordstrom cousins, for example, the rotation generates a near horizon `electric' field. In the case of an extremal rotating black hole, two phases of the Higgs hair are possible: Large black holes exhibit standard hair, with the vortex piercing the event horizon. Small black holes on the other hand, exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon. This solution however is extremely sensitive to confirm numerically, and we conjecture that it is unstable due to a supperradiant mechanism similar to the Kerr-adS instability. Finally, we compute the gravitational back reaction of the vortex, which turns out to be far more nuanced than a simple conical deficit. While the string produces a conical effect, it is con...
Black Strings, Black Rings and State-space Manifold
Bellucci, Stefano
2011-01-01
State-space geometry is considered, for diverse three and four parameter non-spherical horizon rotating black brane configurations, in string theory and $M$-theory. We have explicitly examined the case of unit Kaluza-Klein momentum $D_1D_5P$ black strings, circular strings, small black rings and black supertubes. An investigation of the state-space pair correlation functions shows that there exist two classes of brane statistical configurations, {\\it viz.}, the first category divulges a degenerate intrinsic equilibrium basis, while the second yields a non-degenerate, curved, intrinsic Riemannian geometry. Specifically, the solutions with finitely many branes expose that the two charged rotating $D_1D_5$ black strings and three charged rotating small black rings consort real degenerate state-space manifolds. Interestingly, arbitrary valued $M_5$-dipole charged rotating circular strings and Maldacena Strominger Witten black rings exhibit non-degenerate, positively curved, comprehensively regular state-space con...
Growth of Primordial Black Holes
Harada, Tomohiro
Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.
Energy Technology Data Exchange (ETDEWEB)
Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)
2011-09-22
A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.
Kao, Robert
2010-01-01
Get the most juice out of your BlackBerry handheld!. Feature-rich and complex, the BlackBerry is the number one smartphone in the corporate world is among the most popular handhelds for business users. This new and updated edition includes all the latest and greatest information on new and current BlackBerry mobile devices. Covering a range of valuable how-to topics, this helpful guide explores the BlackBerry's most useful features, techniques for getting the most out of your BlackBerry, and practical information about power usage.: Covers all aspects of the number one smartphone in the corpor
Philosophical Issues of Black Holes
Romero, Gustavo E
2014-01-01
Black holes are extremely relativistic objects. Physical processes around them occur in a regime where the gravitational field is extremely intense. Under such conditions, our representations of space, time, gravity, and thermodynamics are pushed to their limits. In such a situation philosophical issues naturally arise. In this chapter I review some philosophical questions related to black holes. In particular, the relevance of black holes for the metaphysical dispute between presentists and eternalists, the origin of the second law of thermodynamics and its relation to black holes, the problem of information, black holes and hypercomputing, the nature of determinisim, and the breakdown of predictability in black hole space-times. I maintain that black hole physics can be used to illuminate some important problems in the border between science and philosophy, either epistemology and ontology.
Faccio, Daniele; Lamperti, Marco; Leonhardt, Ulf
2012-01-01
Using numerical simulations we show how to realise an optical black hole laser, i.e. an amplifier formed by travelling refractive index perturbations arranged so as to trap light between a white and a black hole horizon. The simulations highlight the main features of these lasers: the growth inside the cavity of positive and negative frequency modes accompanied by a weaker emission of modes that occurs in periodic bursts corresponding to the cavity round trips of the trapped modes. We then highlight a new regime in which the trapped mode spectra broaden until the zero-frequency points on the dispersion curve are reached. Amplification at the horizon is highest for zero-frequencies, therefore leading to a strong modification of the structure of the trapped light. For sufficiently long propagation times, lasing ensues only at the zero-frequency modes.
Directory of Open Access Journals (Sweden)
I. Cabrera-Munguia
2015-04-01
Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.
Romero, Gustavo E
2014-01-01
Presentism is, roughly, the metaphysical doctrine that maintains that whatever exists, exists in the present. The compatibility of presentism with the theories of special and general relativity was much debated in recent years. It has been argued that at least some versions of presentism are consistent with time-orientable models of general relativity. In this paper we confront the thesis of presentism with relativistic physics, in the strong gravitational limit where black holes are formed. We conclude that the presentist position is at odds with the existence of black holes and other compact objects in the universe. A revision of the thesis is necessary, if it is intended to be consistent with the current scientific view of the universe.
1989-01-01
mediation role between African governments and their private creditors. 123 France in Black Africa To further complicate matters, France herself is...34La coop6ration Franco-Ivoirienne, annde 1986," Mission de Cooperation et d’Action Culturelle , Ambassade de France en C6te D’Ivoire, Abidjan, 1987, p. 8...Ministry in "La France et l’Afrique: Etude des relations Franco-Africaines politiques, finan- cires, economiques, commerciales et culturelles ," Paris, 1984
Institute of Scientific and Technical Information of China (English)
1994-01-01
On June 9, the 1994 ⅩⅢ Asian Make-up and Hairstyling Competition was held in Beijing. More than 200 contestants from 12 countries and regions across Asia participated. The competition is now considered the largest and most prestigious exchange activity in Asian beauty and hair circles. Black Hair is Beautiful" was the theme of this competition, which stressed Asian physical characteristics and aesthetics.
Black Friday = Broget Branding?
DEFF Research Database (Denmark)
Hansen, Heidi
2015-01-01
? Essensen ved Black Friday er lave priser, og det er der ved første øjekast ikke mange brandingmuligheder forbundet ved, hvis man forstår branding som en måde at skabe ekstra værdi omkring sit produkt eller sin virksomhed. Som brand bliver man dog alligevel nødt til at forholde sig til konceptet, da det er...
Dokuchaev, Vyacheslav
2013-11-01
It is considered the test planet and photon orbits of the third kind inside the black hole (BH), which are stable, periodic and neither come out the BH nor terminate at the central singularity. Interiors of the supermassive BHs may be inhabited by advanced civilizations living on the planets with the third kind orbits. In principle, one can get information from the interiors of BHs by observing their white hole counterparts.
Bastos, C; Dias, N C; Prata, J N
2010-01-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity regime and it is shown that the wave function vanishes in this limit.
Mathur, Samir D
2012-01-01
The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome `remnants'. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a `fuzzball' structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates ...
Lyutikov, Maxim
2011-01-01
The "no hair" theorem, a key result in General Relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the "no hair" theorem is not formally applicable for black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes $N_B = e \\Phi_\\infty /(\\pi c \\hbar)$, where $\\Phi_\\infty \\approx 2 \\pi^2 B_{NS} R_{NS}^3 /(P_{\\rm NS} c)$ is the initial magnetic flux through the hemisphere...
Clément, G; Leygnac, C; Clement, Gerard; Gal'tsov, Dmitri; Leygnac, Cedric
2003-01-01
We present new solutions to Einstein-Maxwell-dilaton-axion (EMDA) gravity in four dimensions describing black holes which asymptote to the linear dilaton background. In the non-rotating case they can be obtained as the limiting geometry of dilaton black holes. The rotating solutions (possibly endowed with a NUT parameter) are constructed using a generating technique based on the Sp(4,R) duality of the EMDA system. In a certain limit (with no event horizon present) our rotating solutions coincide with supersymmetric Israel-Wilson-Perjes type dilaton-axion solutions. In presence of an event horizon supersymmetry is broken. The temperature of the static black holes is constant, and their mass does not depend on it, so the heat capacity is zero. We investigate geodesics and wave propagation in these spacetimes and find superradiance in the rotating case. Because of the non-asymptotically flat nature of the geometry, certain modes are reflected from infinity, in particular, all superradiant modes are confined. Thi...
Bena, Iosif; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki
2011-01-01
We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no b...
Bellucci, S; Marrani, A
2008-01-01
We review recent results in the study of attractor horizon geometries (with non-vanishing Bekenstein-Hawking entropy) of dyonic extremal d=4 black holes in supergravity. We focus on N=2, d=4 ungauged supergravity coupled to a number n_{V} of Abelian vector multiplets, outlining the fundamentals of the special Kaehler geometry of the vector multiplets' scalar manifold (of complex dimension n_{V}), and studying the 1/2-BPS attractors, as well as the non-BPS (non-supersymmetric) ones with non-vanishing central charge. For symmetric special Kaehler geometries, we present the complete classification of the orbits in the symplectic representation of the classical U-duality group (spanned by the black hole charge configuration supporting the attractors), as well as of the moduli spaces of non-BPS attractors (spanned by the scalars which are not stabilized at the black hole event horizon). Finally, we report on an analogous classification for N>2-extended, d=4 ungauged supergravities, in which also the 1/N-BPS attrac...
Non-Abelian magnetic black strings versus black holes
Mazharimousavi, S. Habib; Halilsoy, M.
2016-05-01
We present d+1 -dimensional pure magnetic Yang-Mills (YM) black strings (or 1-branes) induced by the d -dimensional Einstein-Yang-Mills-Dilaton black holes. The Born-Infeld version of the YM field makes our starting point which goes to the standard YM field through a limiting procedure. The lifting from black holes to black strings (with less number of fields) is done by adding an extra, compact coordinate. This amounts to the change of horizon topology from S^{d-2} to a product structure. Our black string in 5 dimensions is a rather special one, with uniform Hawking temperature and non-asymptotically flat structure. As the YM charge becomes large the string gets thinner to tend into a breaking point and transform into a 4-dimensional black hole.
Black silicon solar cells with black bus-bar strings
DEFF Research Database (Denmark)
Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io
2016-01-01
We present the combination of black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon was realized by maskless reactive ion etching resulting in total, average reflectance...... below 0.5% across a 156x156 mm2 silicon wafer. Four different methods to obtain blackened bus-bar strings were compared with respect to reflectance, and two of these methods (i.e., oxidized copper and etched solder) were used to fabricate functional allblack solar 9-cell panels. The black bus-bars (e.......g., by oxidized copper) have a reflectance below 3% in the entire visible wavelength range. The combination of black silicon cells and blackened bus-bars results in aesthetic, all-black panels based on conventional, front-contacted solar cells without compromising efficiency....
Shiiki, N; Shiiki, Noriko; Sawado, Nobuyuki
2005-01-01
This paper is intended to give a review of the recent developments on black holes with Skyrme hair. The Einstein-Skyrme system is known to possess black hole solutions with Skyrme hair. The spherically symmetric black hole skyrmion with B=1 was the first discovered counter example of the no-hair conjecture for black holes. Recently we found the B=2 axially symmetric black hole skyrmion. In this system, the black hole at the center of the skyrmion absorbs the baryon number partially, leaving fractional charge outside the horizon. Therefore the baryon number is no longer conserved. We examine the B=1, 2 black hole solutions in detail in this paper. The model has a natural extension to the gauged version which can describe monopole black hole skyrmions. Callan and Witten discussed the monopole catalysis of proton decay within the Skyrme model. We apply the idea to the Einstein-Maxwell-Skyrme system and obtain monopole black hole skyrmions. Remarkably there exist multi-black hole skyrmion solutions in which the g...
How Black Are Black Hole Candidates?
Robertson, S L; Robertson, Stanley L.; Leiter, Darryl J.
2002-01-01
In previous work we found that many of the spectral properties of x-ray binaries, including both galactic black hole candiates (GBHC) and neutron stars, were consistent with the existence of intrinsically magnetized central objects. Here we review and extend the observational evidence for the existence of intrinsically magnetized GBHC and show that their existence is consistent with a new class of solutions of the Einstein field equations of General Relativity. These solutions are based on a strict adherence to the Principle of Equivalence, which prevents the time-like geodesics of physical matter from becoming null on trapped surfaces of infinite red shift. The new solutions emerge from the fact that the structure and radiation transfer properties of the energy-momentum tensor on the right hand side of the Einstein field equations must have a form that is consistent with this Principle of Equivalence requirement. In this context, we show that the Einstein field equations allow the existence of highly red shi...
Emanuel, K.; Lin, N.
2012-12-01
Virtually all assessments of tropical cyclone risk are based on historical records, which are limited to a few hundred years at most. Yet stronger TCs may occur in the future and at places that have not been affected historically. Such events lie outside the realm of historically based expectations and may have extreme impacts. Their occurrences are also often made explainable after the fact (e.g., Hurricane Katrina). We nickname such potential future TCs, characterized by rarity, extreme impact, and retrospective predictability, "black swans" (Nassim Nicholas Taleb, 2007). As, by definition, black swan TCs have yet to happen, statistical methods that solely rely on historical track data cannot predict their occurrence. Global climate models lack the capability to predict intense storms, even with a resolution as high as 14 km (Emanuel et al. 2010). Also, most dynamic downscaling methods (e.g., Bender et al. 2010) are still limited in horizontal resolution and are too expensive to implement to generate enough events to include rare ones. In this study, we apply a simpler statistical/deterministic hurricane model (Emanuel et al. 2006) to simulate large numbers of synthetic storms under a given (observed or projected) climate condition. The method has been shown to generate realistic extremes in various basins (Emanuel et al. 2008 and 2010). We also apply a hydrodynamic model (ADCIRC; Luettich et al. 1992) to simulate the storm surges generated by these storms. We then search for black swan TCs, in terms of the joint wind and surge damage potential, in the generated large databases. Heavy rainfall is another important TC hazard and will be considered in a future study. We focus on three areas: Tampa Bay in the U.S., the Persian Gulf, and Darwin in Australia. Tampa Bay is highly vulnerable to storm surge as it is surrounded by shallow water and low-lying lands, much of which may be inundated by a storm tide of 6 m. High surges are generated by storms with a broad
Geometry of black hole spacetimes
Andersson, Lars; Blue, Pieter
2016-01-01
These notes, based on lectures given at the summer school on Asymptotic Analysis in General Relativity, collect material on the Einstein equations, the geometry of black hole spacetimes, and the analysis of fields on black hole backgrounds. The Kerr model of a rotating black hole in vacuum is expected to be unique and stable. The problem of proving these fundamental facts provides the background for the material presented in these notes. Among the many topics which are relevant for the uniqueness and stability problems are the theory of fields on black hole spacetimes, in particular for gravitational perturbations of the Kerr black hole, and more generally, the study of nonlinear field equations in the presence of trapping. The study of these questions requires tools from several different fields, including Lorentzian geometry, hyperbolic differential equations and spin geometry, which are all relevant to the black hole stability problem.
Sarcoid granuloma on black tattoo.
Morales-Callaghan, Ana María; Aguilar-Bernier, Miguel; Martínez-García, Gerardo; Miranda-Romero, Alberto
2006-11-01
We report the case of a patient with a black and turquoise tattoo who developed sarcoid granulomas on the areas of black pigment. Patch tests showed a positive reaction to nickel, cobalt, and cadmium; spectrophotometric analysis of the black pigment revealed the presence of nickel and cobalt among other metals. Although the pathogenesis of sarcoid granulomas is unknown, it seems that a delayed type hypersensitivity reaction is one of the mechanisms involved.
Origin of supermassive black holes
Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S G
2007-01-01
The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...
The Gifted Black Child: Problems and Promise.
Howard, John R.
In this paper, it is noted that there are three reasons for studying the black gifted child. First, black destiny has in part been shaped by talented blacks--for example, Malcolm X and Martin Luther King. Second, the black gifted are a minority within a minority. The gifted black female, subject to sexism, is even more of a minority. Third,…
Thermodynamics of Accelerating Black Holes.
Appels, Michael; Gregory, Ruth; Kubizňák, David
2016-09-23
We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.
Black holes and the multiverse
Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun
2016-02-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.
How black holes saved relativity
Prescod-Weinstein, Chanda
2016-02-01
While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.
Matzko, J.J.; Overstreet, W.C.
1977-01-01
Two forms of detrital monazite are known in offshore bars in southwestern Taiwan: a yellow-green to colorless form and an unusual but abundant pelletlike form, generally black but also colored gray or brown. These black pellets, which are about 160 by 200 microns in size, are composed of fine-grained monazite crystals from 2 to 20 microns in size. The pellets are associated with highly variable amounts of discrete grains of detrital quartz, rutile, amphibole, tourmaline, and other minerals. Intergrown with the monazite are quartz, a cerium oxide mineral, chlorite, sulfides, and other minerals. Opaqueness of the pelletlike monazite is due principally to the cryptocrystalline nature of part of the monazite; only a small part of the opaqueness can be attributed to opaque inclusions. The black pelletlike monazite lacks thorium and has a high content of europium. In this respect, as in color, shape, size, and inclusions, the pelletlike monazite differs from the yellow-green detrital monazite. Despite the fact that they occur together in the littoral placers, they appear to have had different origins. The yellow-green monazite originated as an accessory mineral in plutonic rocks and has accumulated at the coast through erosion and transport. The origin of the pelletlike monazite is as yet unknown, but it is here inferred that it originated in unconsolidated coastal plain sediments through migration of cerium from the detrital monazite during weathering, and of the intermediate weight mobile rare earths from clay minerals during diagenesis. Possibly these pelletlike grains are detrital particles formed through erosion and transport from originally larger aggregates cemented by diagenetic monazite.
Roldán-Molina, A; Nunez, Alvaro S; Duine, R A
2017-02-10
We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.
Directory of Open Access Journals (Sweden)
Roberto Casadio
2015-10-01
Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce
Energy Technology Data Exchange (ETDEWEB)
Bastos, C; Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)
2010-04-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, {eta}. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.
Lasota, Jean-Pierre
2015-01-01
This is an introduction to models of accretion discs around black holes. After a presentation of the non-relativistic equations describing the structure and evolution of geometrically thin accretion discs we discuss their steady-state solutions and compare them to observation. Next we describe in detail the thermal-viscous disc instability model and its application to dwarf novae for which it was designed and its X-ray irradiated-disc version which explains the soft X--ray transients, i.e. ou...
Roldán-Molina, A.; Nunez, Alvaro S.; Duine, R. A.
2017-02-01
We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons—the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.
Visser, Matt; Volovik, Grigory E
2009-01-01
Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various "analog models". These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters - written by experts in general relativity, particle physics, and condensed matter physics - that explore various aspects of this two-way traffic.
Black Interpretation, Black American Literature, and Grey Audiences.
Washington, Earl M.
1981-01-01
Defines and illustrates language techniques used by Black authors writing to and for Blacks in the 1960s and 1970s. Suggests how language and theme barriers of such literature might be overcome in a contemporary integrated oral interpretation classroom. (PD)
Black German identities : validating the multidimensional inventory of black identity
Wandert, T.; Ochsmann, R.; Brug, P.; Chybicka, A.; Lacassagne, M.F.; Verkuyten, M.J.A.M.
2009-01-01
This study examines the reliability and validity of a German version of the Multidimensional Inventory of Black Identity (MIBI) in a sample of 170 Black Germans. The internal consistencies of all subscales are at least moderate. The factorial structure of the MIBI, as assessed by principal component
Growing Up Black: A Black Literature Unit For Schools
Massenburg, Doris O.; Applebury, Bruce C.
1971-01-01
This literature-based unit is intended to examine the prevalent black moods, conflicts, alienations and disillusionments which accompany the present era. Literature selections include works by both black and white writers. At the end of the unit, the student will be able to realize the man, from what literature has stamped as substantial accounts…
2002-10-01
Star Orbiting Massive Milky Way Centre Approaches to within 17 Light-Hours [1] Summary An international team of astronomers [2], lead by researchers at the Max-Planck Institute for Extraterrestrial Physics (MPE) , has directly observed an otherwise normal star orbiting the supermassive black hole at the center of the Milky Way Galaxy. Ten years of painstaking measurements have been crowned by a series of unique images obtained by the Adaptive Optics (AO) NAOS-CONICA (NACO) instrument [3] on the 8.2-m VLT YEPUN telescope at the ESO Paranal Observatory. It turns out that earlier this year the star approached the central Black Hole to within 17 light-hours - only three times the distance between the Sun and planet Pluto - while travelling at no less than 5000 km/sec . Previous measurements of the velocities of stars near the center of the Milky Way and variable X-ray emission from this area have provided the strongest evidence so far of the existence of a central Black Hole in our home galaxy and, implicitly, that the dark mass concentrations seen in many nuclei of other galaxies probably are also supermassive black holes. However, it has not yet been possible to exclude several alternative configurations. In a break-through paper appearing in the research journal Nature on October 17th, 2002, the present team reports their exciting results, including high-resolution images that allow tracing two-thirds of the orbit of a star designated "S2" . It is currently the closest observable star to the compact radio source and massive black hole candidate "SgrA*" ("Sagittarius A") at the very center of the Milky Way. The orbital period is just over 15 years. The new measurements exclude with high confidence that the central dark mass consists of a cluster of unusual stars or elementary particles, and leave little doubt of the presence of a supermassive black hole at the centre of the galaxy in which we live . PR Photo 23a/02 : NACO image of the central region of the Milky Way
Astrophysical Black Holes in the Physical Universe
Zhang, Shuang-Nan
2010-01-01
In this chapter I focus on asking and answering the following questions: (1) What is a black hole? Answer: There are three types of black holes, namely mathematical black holes, physical black holes and astrophysical black holes. An astrophysical black hole, with mass distributed within its event horizon but not concentrated at the singularity point, is not a mathematical black hole. (2) Can astrophysical black holes be formed in the physical universe? Answer: Yes, at least this can be done with gravitational collapse. (3) How can we prove that what we call astrophysical black holes are really black holes? Answer: Finding direct evidence of event horizon is not the way to go. Instead I propose five criteria which meet the highest standard for recognizing new discoveries in experimental physics and observational astronomy. (4) Do we have sufficient evidence to claim the existence of astrophysical black holes in the physical universe? Answer: Yes, astrophysical black holes have been found at least in some galac...
Area spectrum of slowly rotating black holes
2010-01-01
We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.
Black holes in an expanding universe.
Gibbons, Gary W; Maeda, Kei-ichi
2010-04-02
An exact solution representing black holes in an expanding universe is found. The black holes are maximally charged and the universe is expanding with arbitrary equation of state (P = w rho with -1 black hole temperature.
Neitzke, A; Vandoren, S; Neitzke, Andrew; Pioline, Boris; Vandoren, Stefan
2007-01-01
Motivated by black hole physics in N=2, D=4 supergravity, we study the geometry of quaternionic-Kahler manifolds M obtained by the c-map construction from projective special Kahler manifolds M_s. Improving on earlier treatments, we compute the Kahler potentials on the twistor space Z and Swann space S in the complex coordinates adapted to the Heisenberg symmetries. The results bear a simple relation to the Hesse potential \\Sigma of the special Kahler manifold M_s, and hence to the Bekenstein-Hawking entropy for BPS black holes. We explicitly construct the ``covariant c-map'' and the ``twistor map'', which relate real coordinates on M x CP^1 (resp. M x R^4/Z_2) to complex coordinates on Z (resp. S). As applications, we solve for the general BPS geodesic motion on M, and provide explicit integral formulae for the quaternionic Penrose transform relating elements of H^1(Z,O(-k)) to massless fields on M annihilated by first or second order differential operators. Finally, we compute the exact radial wave function ...
Belloni, T M
2016-01-01
The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...
Gurvits, Grigoriy E; Tan, Amy
2014-08-21
Black hairy tongue (BHT) is a benign medical condition characterized by elongated filiform lingual papillae with typical carpet-like appearance of the dorsum of the tongue. Its prevalence varies geographically, typically ranging from 0.6% to 11.3%. Known predisposing factors include smoking, excessive coffee/black tea consumption, poor oral hygiene, trigeminal neuralgia, general debilitation, xerostomia, and medication use. Clinical presentation varies but is typically asymptomatic, although aesthetic concerns are common. Differential diagnosis includes pseudo-BHT, acanthosis nigricans, oral hairy leukoplakia, pigmented fungiform papillae of the tongue, and congenital melanocytic/melanotic nevi/macules. Clinical diagnosis relies on visual observation, detailed history taking, and occasionally microscopic evaluation. Treatment involves identification and discontinuation of the offending agent, modifications of chronic predisposing factors, patient's re-assurance to the benign nature of the condition, and maintenance of adequate oral hygiene with gentle debridement to promote desquamation. Complications of BHT (burning mouth syndrome, halitosis, nausea, gagging, dysgeusia) typically respond to therapy. Prognosis is excellent with treatment of underlying medical conditions. BHT remains an important medical condition which may result in additional burden on the patient and health care system and requires appropriate prevention, recognition and treatment.
Black raspberry: Korean vs. American
This fact sheet shows Korean black raspberry (Rubus coreanus) fruit, flower, and leaf features that distinguish them from their Rubus relatives, black raspberry (R. occidentalis) native to America. Common names with fruit characteristics, including berry size and pigment fingerprints, are summarized...
Black Component of Dark Matter
Directory of Open Access Journals (Sweden)
A. V. Grobov
2014-01-01
Full Text Available A mechanism of primordial black hole formation with specific mass spectrum is discussed. It is shown that these black holes could contribute to the energy density of dark matter. Our approach is elaborated in the framework of universal extra dimensions.
Indian Academy of Sciences (India)
M S Modgil; S Panda; S Sengupta
2004-03-01
A Kerr metric describing a rotating black hole is obtained on the three brane in a five-dimensional Randall-Sundrum brane world by considering a rotating five-dimensional black string in the bulk. We examine the causal structure of this space-time through the geodesic equations.
Educating Black Males with Dyslexia
Robinson, Shawn Anthony
2013-01-01
Much of the scholarship on Black males in the educational literature focuses on the achievement gap; their underrepresentation in gifted and advanced placement programs; their overrepresentation in special education programs and their high rates of school suspensions and expulsions. Although overrepresented in special education, Black males with…
DEFF Research Database (Denmark)
Vestergaard, Marianne
2004-01-01
The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....
ATLAS simulated black hole event
Pequenão, J
2008-01-01
The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).
Nonlinear Electrodynamics and black holes
Breton, N; Breton, Nora; Garcia-Salcedo, Ricardo
2007-01-01
It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.
When Charged Black Holes Merge
Kohler, Susanna
2016-08-01
Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge
Black holes and the multiverse
Garriga, Jaume; Zhang, Jun
2015-01-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive blac...
Energy Technology Data Exchange (ETDEWEB)
Hubeny, Veronika; Maloney, Alexander; Rangamani, Mukund
2005-02-07
We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect -- the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive! The magnitude of this effect is related to the size of the compactification manifold.
Nyachae, Tiffany M.
2016-01-01
Millennial Black women teachers wrestle with two simultaneous burdens: disrupting the racist and sexist status quo of schooling through curriculum, and employing tactics to survive school politics among their majority White women colleagues. This article describes how the "Sisters of Promise" (SOP) curriculum aligned with Black feminism…
Magnetic fields around black holes
Garofalo, David A. G.
Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our
The renaissance of black phosphorus
Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S.
2015-04-01
One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field.
A nonsingular rotating black hole
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Durban (South Africa)
2015-11-15
The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)
Rotating black hole and quintessence
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Private Bag 54001, Durban (South Africa)
2016-04-15
We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω) due to the quintessential matter, apart from the mass (M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α = -e{sup 2} ≠ 0 and ω = 1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α = 0. Interestingly, for a given value of parameter ω, there exists a critical rotation parameter (a = a{sub E}), which corresponds to an extremal black hole with degenerate horizons, while for a < a{sub E}, it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for a > a{sub E}. We find that the extremal value a{sub E} is also influenced by the parameter ω and so is the ergoregion. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Sherik, Abdelmounam [Saudi Aramco, Dhahran (Saudi Arabia)
2009-07-01
Despite its common occurrence in the gas industry, black powder is a problem that is not well understood across the industry, in terms of its chemical and physical properties, source, formation, prevention or management of its impacts. In order to prevent or effectively manage the impacts of black powder, it is essential to have knowledge of its chemical and physical properties, formation mechanisms and sources. The present paper is divided into three parts. The first part of this paper is a synopsis of published literature. The second part reviews the recent laboratory and field work conducted at Saudi Aramco Research and Development Center to determine the compositions, properties, sources and formation mechanisms of black powder in gas transmission systems. Microhardness, nano-indentation, X-ray Diffraction (XRD), X-ray Fluorescence (XRF) and Scanning Electron Microscopy (SEM) techniques were used to analyze a large number of black powder samples collected from the field. Our findings showed that black powder is generated inside pipelines due to internal corrosion and that the composition of black powder is dependent on the composition of transported gas. The final part presents a summary and brief discussion of various black powder management methods. (author)
Cosmic Intelligence and Black Holes
Lefebvre, V A; Lefebvre, Vladimir A.; Efremov, Yuri N.
2000-01-01
The paper is devoted to a new direction in SETI. After a general discussion of the field, the authors put forth the hypothesis that the black holes may serve as a physical substratum for intelligent beings. This hypothesis is based on four parallels between the brain-psyche system, on the one hand, and black holes, on the other. (1) The descriptions of brain and psyche, in the system brain-psyche, are complementary to each other, as descriptions by internal and external observers of a black hole in Susskind-t'Hooft's schema. (2) There is an aspect of the inner structure of a black hole in Kerr's model of the rotating black hole that is isomorphic to the structure of the human subjective domain in the psychological model of reflexion. (3) Both black holes and the brain-psyche system have a facet which can be represented using thermodynamic concepts. (4) The brain lends itself to a holographic description; as has been recently demonstrated by Susskind, black holes can also be described holographically. The auth...
2012-11-26
... Energy Regulatory Commission Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC; Notice of Application for Partial Transfer of Licenses, and Soliciting Comments and Motions To Intervene On October 25, 2012, Black Bear Hydro Partners, LLC, sole licensee (transferor)...
Can Black Hole Relax Unitarily?
Solodukhin, S. N.
2005-03-01
We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.
Quantum mechanics of black holes.
Witten, Edward
2012-08-03
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.
Black holes and Higgs stability
Energy Technology Data Exchange (ETDEWEB)
Tetradis, Nikolaos [Department of Physics, University of Athens,Zographou 157 84 (Greece); Physics Department, Theory Unit, CERN,CH-1211 Geneva 23 (Switzerland)
2016-09-20
We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.
The Black Hole Information Problem
Polchinski, Joseph
2016-01-01
The black hole information problem has been a challenge since Hawking's original 1975 paper. It led to the discovery of AdS/CFT, which gave a partial resolution of the paradox. However, recent developments, in particular the firewall puzzle, show that there is much that we do not understand. I review the black hole, Hawking radiation, and the Page curve, and the classic form of the paradox. I discuss AdS/CFT as a partial resolution. I then discuss black hole complementarity and its limitations, leading to many proposals for different kinds of `drama.' I conclude with some recent ideas.
Cho, Inyong
2016-01-01
We investigate black holes formed by static perfect fluid with $p=-\\rho/3$. These represent the black holes in $S_3$ and $H_3$ spatial geometries. There are three classes of black-hole solutions, two $S_3$ types and one $H_3$ type. The interesting solution is the one of $S_3$ type which possesses two singularities. The one is at the north pole behind the horizon, and the other is naked at the south pole. The observers, however, are free from falling to the naked singularity. There are also nonstatic cosmological solutions in $S_3$ and $H_3$, and a singular static solution in $H_3$.
On regular rotating black holes
Torres, R.; Fayos, F.
2017-01-01
Different proposals for regular rotating black hole spacetimes have appeared recently in the literature. However, a rigorous analysis and proof of the regularity of this kind of spacetimes is still lacking. In this note we analyze rotating Kerr-like black hole spacetimes and find the necessary and sufficient conditions for the regularity of all their second order scalar invariants polynomial in the Riemann tensor. We also show that the regularity is linked to a violation of the weak energy conditions around the core of the rotating black hole.
Black Holes: A Traveler's Guide
Pickover, Clifford A.
1998-03-01
BLACK HOLES A TRAVELER'S GUIDE Clifford Pickover's inventive and entertaining excursion beyond the curves of space and time. "I've enjoyed Clifford Pickover's earlier books . . . now he has ventured into the exploration of black holes. All would-be tourists are strongly advised to read his traveler's guide." -Arthur C. Clarke. "Many books have been written about black holes, but none surpass this one in arousing emotions of awe and wonder towards the mysterious structure of the universe." -Martin Gardner. "Bucky Fuller thought big. Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." -Wired. "The book is fun, zany, in-your-face, and refreshingly addictive." -Times Higher Education Supplement.
Can Black Hole Relax Unitarily?
Solodukhin, S N
2004-01-01
We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.
Mobilizing Black America: Solutions to Black Health Problems
1993-04-01
the most obese ethnic group in America. Too many black children are overweight because black adults feed them a steady diet of fatty and salty foods...start and elementary school children in the Early and Periodic Screening, Diagnosis, and Treatment (EPSDT) program. EPSDT has been instrumental in...blood cholesterol, obesity , unhealthy diets, and smoking are the leading causes (major risk factors) of these killers. The underlying problems associated
Cryo-Etched Black Silicon for Use as Optical Black
Yee, Karl Y.; White, Victor E.; Mouroulis, Pantazis; Eastwood, Michael L.
2011-01-01
Stray light reflected from the surface of imaging spectrometer components in particular, the spectrometer slit degrade the image quality. A technique has been developed for rapid, uniform, and cost-effective black silicon formation based on inductively coupled plasma (ICP) etching at cryogenic temperatures. Recent measurements show less than 1-percent total reflectance from 350 2,500 nm of doped black silicon formed in this way, making it an excellent option for texturing of component surfaces for reduction of stray light. Oxygen combines with SF6 + Si etch byproducts to form a passivation layer atop the Si when the etch is performed at cryogenic temperatures. Excess flow of oxygen results in micromasking and the formation of black silicon. The process is repeatable and reliable, and provides control over etch depth and sidewall profile. Density of the needles can be controlled to some extent. Regions to be textured can be patterned lithographically. Adhesion is not an issue as the nanotips are part of the underlying substrate. This is in contrast to surface growth/deposition techniques such as carbon nanotubes (CNTs). The black Si surface is compatible with wet processing, including processing with solvents, the textured surface is completely inorganic, and it does not outgas. In radiometry applications, optical absorbers are often constructed using gold black or CNTs. This black silicon technology is an improvement for these types of applications.
Accretion, primordial black holes and standard cosmology
Indian Academy of Sciences (India)
B Nayak; P Singh
2011-01-01
Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes are the proper candidates for dark matter.
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Black end. 51.1276 Section 51.1276 Agriculture... Standards for Summer and Fall Pears 1 Definitions § 51.1276 Black end. Black end is evidenced by an abnormally deep green color around the calyx, or black spots usually occurring on the one-third of...
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Black end. 51.1318 Section 51.1318 Agriculture... Standards for Winter Pears 1 Definitions § 51.1318 Black end. Black end is evidenced by an abnormally deep green color around the calyx, or black spots usually occurring on the one-third of the surface...
Graduating Black Males: A Generic Qualitative Study
Bell, Edward E.
2014-01-01
Black males face a difficult educational battle. Across America, graduation statistics for Black males are sobering. The purpose of this study was to explore why Black males drop out of school and to examine the current employment status of the study participants. The research took place in rural North Carolina. Fifteen Black American male high…
The Making of the Black Middle Class.
Collins, Sharon M.
1983-01-01
Examines Black occupational mobility and factors that have influenced the growth of the Black middle class since the 1960s. Argues that the Black middle class occupies a fragile market position because Black mobility depends on fluctuating government policy rather than on free market factors. (Author/MJL)
The Core Journal Concept in Black Studies
Weissinger, Thomas
2010-01-01
Black Studies scholars have shown interest in the core journal concept. Indeed, the idea of core journals for the study of the Black experience has changed several times since 1940. While Black Studies scholars are citing Black Studies journals with frequency, they also cite traditional disciplinary journals a great deal of the time. However,…
Homophobia, hypermasculinity and the US black church.
Ward, Elijah G
2005-01-01
Black churches in the USA constitute a significant source of the homophobia that pervades black communities. This theologically-driven homophobia is reinforced by the anti-homosexual rhetoric of black nationalism. Drawing on a variety of sources, this paper discusses the sources of homophobia within black communities, and its impact upon self-esteem, social relationships and physical health. Religion-based homophobia and black nationalism point to wider structures which have influenced their emergence, including racism, patriarchy and capitalism. It is vital for US black churches and communities to understand and transcend their longstanding resistance to openly addressing complex, painful issues of sexuality and embrace healthier definitions of black manhood.
Magnetic Black Holes Are Also Unstable
Kim, Sang Pyo
2004-01-01
Most black holes are known to be unstable to emitting Hawking radiation (in asymptotically flat spacetime). If the black holes are non-extreme, they have positive temperature and emit thermally. If they are extremal rotating black holes, they still spontaneously emit particles like gravitons and photons. If they are extremal electrically charged black holes, they are unstable to emitting electrons or positrons. The only exception would be extreme magnetically charged black holes if there do not exist any magnetic monopoles for them to emit. However, here we show that even in this case, vacuum polarization causes all magnetic black holes to be unstable to emitting smaller magnetic black holes.
How objective is black hole entropy?
Lau, Y K
1994-01-01
The objectivity of black hole entropy is discussed in the particular case of a Schwarzchild black hole. Using Jaynes' maximum entropy formalism and Euclidean path integral evaluation of partition function, it is argued that in the semiclassical limit when the fluctutation of metric is neglected, the black hole entropy of a Schwarzchild black hole is equal to the maximal information entropy of an observer whose sole knowledge of the black hole is its mass. Black hole entropy becomes a measure of number of its internal mass eigenstates in accordance with the Boltzmann principle only in the limit of negligible relative mass fluctutation. {}From the information theoretic perspective, the example of a Schwarzchild black hole seems to suggest that black hole entropy is no different from ordinary thermodynamic entropy. It is a property of the experimental data of a black hole, rather than being an intrinsic physical property of a black hole itself independent of any observer. However, it is still weakly objective in...
Kerr black hole thermodynamical fluctuations
Pavon, D.; Rubi, J. M.
1985-04-01
The near-equilibrium thermodynamical (TD) fluctuations of a massive rotating uncharged Kerr black hole immersed in a uniformly corotating radiation bath at its temperature are investigated theoretically, generalizing Schwarzschild-black-hole analysis of Pavon and Rubi(1983), based on Einstein fluctuation theory. The correlations for the energy and angular moment fluctuations and the second moments of the other TD parameters are obtained, and the generalized second law of black-hole TD and the Bekenstein (1975) interpretation of black-hole entropy are seen as functioning well in this case. A local-stability criterion and relation for TD equilibrium between the Kerr hole and its own radiation in the flat-space-time limit are derived, and a restriction between C and Lambda is deduced.
Black hole information vs. locality
Itzhaki, N
1996-01-01
We discuss the limitations on space time measurement in Schwarzchild metric. We find that near the horizon the limitations on space time measurement are of the order of the black hole radius. We suggest that it indicates that a large mass black hole can not be described by means of local field theory even at macroscopic distances and that any attempt to describe black hole formation and evaporation by means of an effective local field theory will necessarily lead to information loss. We also present a new interpretation of the black hole entropy which leads to S=cA , where c is a constant of order 1 which does not depend on the number of fields.
Daniel, Robert A.; Robinson, Charles C.
1984-01-01
Described is a project which made the study of Black history more real to fifth graders by having them make wire jewelry, smaller versions of the ornate filigreed ironwork produced by slave blacksmiths. (RM)
Black Liquid Solar Collector Demonstrator.
Weichman, F. L.; Austen, D. J.
1979-01-01
Describes the details of constructing, and use of, a solar collector. Uses a black liquid to absorb the energy, the thermosyphon effect to drive the liquid through the collector, and a floodlamp as a surrogate sun. (GA)
'Black holes': escaping the void.
Waldron, Sharn
2013-02-01
The 'black hole' is a metaphor for a reality in the psyche of many individuals who have experienced complex trauma in infancy and early childhood. The 'black hole' has been created by an absence of the object, the (m)other, so there is no internalized object, no (m)other in the psyche. Rather, there is a 'black hole' where the object should be, but the infant is drawn to it, trapped by it because of an intrinsic, instinctive need for a 'real object', an internalized (m)other. Without this, the infant cannot develop. It is only the presence of a real object that can generate the essential gravity necessary to draw the core of the self that is still in an undeveloped state from deep within the abyss. It is the moving towards a real object, a (m)other, that relativizes the absolute power of the black hole and begins a reformation of its essence within the psyche.
Formation of Supermassive Black Holes
Volonteri, Marta
2010-01-01
Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.
Black holes and quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hooft, G. ' t, E-mail: g.thooft@uu.n [Institute for Theoretical Physics, Utrecht University and Spinoza Institute, P.O. Box 80.195, 3508 TD Utrecht (Netherlands)
2010-07-15
After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these interactions generate a Hilbert space of states on the black hole horizon, which can be investigated, displaying interesting systematics by themselves. To make such approaches more powerful, a study is made of the black hole complementarity principle, from which one may deduce the existence of a hidden form of local conformal invariance. Finally, the question is raised whether the principles underlying Quantum Mechanics are to be sharpened in this domain of physics as well. There are intriguing possibilities.
Recoiling Black Holes in Quasars
Bonning, E W; Salviander, S
2007-01-01
Recent simulations of merging black holes with spin give recoil velocities from gravitational radiation up to several thousand km/s. A recoiling supermassive black hole can retain the inner part of its accretion disk, providing fuel for a continuing QSO phase lasting millions of years as the hole moves away from the galactic nucleus. One possible observational manifestation of a recoiling accretion disk is in QSO emission lines shifted in velocity from the host galaxy. We have examined QSOs from the Sloan Digital Sky Survey with broad emission lines substantially shifted relative to the narrow lines. We find no convincing evidence for recoiling black holes carrying accretion disks. We place an upper limit on the incidence of recoiling black holes in QSOs of 4% for kicks greater than 500 km/s and 0.35% for kicks greater than 1000 km/s line-of-sight velocity.
Singularities Inside Hairy Black Holes
Gal'tsov, D. V.; Donets, E. E.; Zotov, M. Yu.
1997-01-01
We show that the Strong Cosmic Censorship is supported by the behavior of generic solutions on the class of static spherically symmetric black holes in gravitating gauge models and their stringy generalizations.
Singularities Inside Hairy Black Holes
Galtsov, D V; Zotov, M Yu
1998-01-01
We show that the Strong Cosmic Censorship is supported by the behavior of generic solutions on the class of static spherically symmetric black holes in gravitating gauge models and their stringy generalizations.
Black hole accretion disc impacts
Pihajoki, Pauli
2015-01-01
We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength {\\lambda} = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.
Energy Technology Data Exchange (ETDEWEB)
Darling, D.
1980-10-01
A discussion of Einstein's General Relativity and how it can explain black holes is included. The key idea of general relativity being that gravitational forces are a direct outcome of local curvature of space-time. The more mass something has the deeper the depression or well it causes in space-time. Black holes are supermassive objects, hence their gravity well is so steep even light can't escape. The three properties associated with a black hole are mass angular momentum, and electric charge. Non-rotating, Schwarzchild, and rotating, Kerr, black holes are studied. A Kruskal-Szekeres diagram for each type is given and explained. (SC)
Zhang, Tianxi
2014-06-01
The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin
Geometric inequalities for black holes
Dain, Sergio
2014-01-01
It is well known that the three parameters that characterize the Kerr black hole (mass, angular momentum and horizon area) satisfy several important inequalities. Remarkably, some of these inequalities remain valid also for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this article recent results in this subject are reviewed.
Matsueda, Hiroaki; Hashizume, Yoichiro
2012-01-01
A tensor network formalism of thermofield dynamics is introduced. The formalism relates the original Hilbert space with its tilde space by a product of two copies of a tensor network. Then, their interface becomes an event horizon, and the logarithm of the tensor rank corresponds to the black hole entropy. Eventually, multiscale entanglement renormalization anzats (MERA) reproduces an AdS black hole at finite temperature. Our finding shows rich functionalities of MERA as efficient graphical representation of AdS/CFT correspondence.
Regular black hole in three dimensions
Myung, Yun Soo; Yoon, Myungseok
2008-01-01
We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.
Evolution of supermassive black holes
Volonteri, M
2006-01-01
Supermassive black holes (SMBHs) are nowadays believed to reside in most local galaxies, and the available data show an empirical correlation between bulge luminosity - or stellar velocity dispersion - and black hole mass, suggesting a single mechanism for assembling black holes and forming spheroids in galaxy halos. The evidence is therefore in favour of a co-evolution between galaxies, black holes and quasars. In cold dark matter cosmogonies, small-mass subgalactic systems form first to merge later into larger and larger structures. In this paradigm galaxy halos experience multiple mergers during their lifetime. If every galaxy with a bulge hosts a SMBH in its center, and a local galaxy has been made up by multiple mergers, then a black hole binary is a natural evolutionary stage. The evolution of the supermassive black hole population clearly has to be investigated taking into account both the cosmological framework and the dynamical evolution of SMBHs and their hosts. The seeds of SMBHs have to be looked ...
Miller, M C
2004-01-01
The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (roughly 3-20 solar masses), which are produced by the core collapse of massive stars, and supermassive (millions to billions of solar masses), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with hundreds to thousands of solar masses. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work t...
Daly, Ruth A
2009-01-01
Beam powers and black hole masses of 48 extended radio sources are combined to obtain lower bounds on the spins and magnetic field strengths of supermassive black holes. This is done in the context of the models of Blandford & Znajek (1977) (the 'BZ' model) and Meier (1999); a parameterization for bounds in the context of other models is suggested. The bounds obtained for very powerful classical double radio sources in the BZ model are consistent with black hole spins of order unity for sources at high redshift. The black hole spins are largest for the highest redshift sources and decrease for sources at lower redshift; the sources studied have redshifts between zero and two. Lower power radio sources associated with central dominant galaxies may have black hole spins that are significantly less than one. Combining this analysis with other results suggests that the maximum values of black hole spin associated with powerful radio galaxies decline from values of order unity at a redshift of 2 to values of o...
Tawfik, A
2006-01-01
According to extensive ab initio calculations of lattice QCD, the very large energy density available in heavy-ion collisions at SPS and now at RHIC must be sufficient to generate quark-gluon plasma (QGP), a new state of matter in the form of plasma of free quarks and gluons. The new state of matter discovered at RHIC seems to be perfect fluid rather than free plasma. Its shear viscosity is assumed to be almost zero. In this work, I first considered the theoretical and phenomenological consequences of this discovery and finally asked questions about the nature of phase transition and properties of matter. It is important to answer these questions, otherwise QGP will remain a kind of black box; one sends a signal via new experiments or simulations or models and gets another one from it. I will show that some promising ideas have already been suggested a long time ago. I will also suggest a new phase diagram with separated deconfinement and freeze-out boundaries and a mixed state of thermal quark matter and bub...
van Herck, Walter; Wyder, Thomas
2010-04-01
The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.
Van Herck, Walter
2009-01-01
The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, arXiv:0810.4301. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the `chromosomes' of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as `crossing-over in the meiosis of a D-particle'. Our results improve on hep-th/0702012, provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity...
Directory of Open Access Journals (Sweden)
Nasrin Nooshfar
2011-05-01
Full Text Available Background/Objective: Development of science and"nart achieved with saving independence, separation"nclassification and studying their details. The other hand"nis combination of these to create a new world with"nwide dimensions and take a place to human needs."nMaterials and Methods: Our attempt is to make"nhealth-care places pleasant and attractive for patients."nWe offer best services, but they are not comfortable"nand happy in these places. They are afraid of the staff,"nequipment and the environment. For this purpose"nwe mixed the brightness and darkness of radiologic"nimages with white and black photographs or paintings"ncomplementary to create analog artistic images that"ncould be converted to digital printing by DICOM"ninterfaces on hard copies."nConclusion: Fear, pictures a bad memory in the"npatient's mind forever. We mixed radiology and"nimaging with photography as a science and art mixture"nto conflict with these problems, it is more effective in"nchildren who are suffering from social and known"ndiseases and can not adapt themselves with their"nsituations. This could create a good memory between"nthe human body image and sentimental experience."nIn the literature, printed radiologic images were used"nas fine art on glass and paper, metal and flowers were"nemployed to mix.* *Wim Delvoye (born 1965 ,Wervik"nand Steven N.Meyers and Merille Raikes
Tawfik, A
2006-01-01
According to the extensive ab initio calculations of lattice QCD, the much large energy density available in the heavy-ion collisions at SPS and now at RHIC should be enough to create the quark-gluon plasma (QGP); a new state of matter in form plasma of free quarks and gluons. The new matter discovered at RHIC is a ''nearly perfect'' fluid rather than a plasma. The shear viscosity is too small. We should then ask about the theoretical and phenomenological consequences and why we simply assumed that the deconfined hadronic matter should be an ideal gas. Finally, I will address five questions; about the properties of the new phases at high temperatures and the orders of phase transitions. Before we clarify such questions, the QGP will remain a kind of black box. One sends a signal via new experiments or simulations and gets another one out if it. Then one try to explain what is going on. I will show that some promising ideas already have been suggested long time ago, but it seems that community didn't care. Is ...
Brustein, Ram
2014-01-01
We present a calculation of the rate of information release from a Schwarzschild BH. We have recently extended Hawking's theory of black hole (BH) evaporation to account for quantum fluctuations of the background geometry, as well as for back-reaction and time-dependence effects. Our main result has been a two-point function matrix for the radiation that consists of Hawking's thermal matrix plus off-diagonal corrections that are initially small and become more important as the evaporation proceeds. Here, we show that, if the phases and amplitudes of the radiation matrix are recorded over the lifetime of the BH, then the radiation purifies in a continuous way. We conjecture that our results establish the maximal rate at which information can be released from a semiclassical BH, to be contrasted with the minimal rate that was predicted by Page on the basis of generic unitarity arguments. When the phases of the radiation matrix are not tracked, we show that it purifies only parametrically close to the end of the...
Erratic Black Hole Regulates Itself
2009-03-01
New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don
Resource Letter BH-2: Black Holes
Gallo, Elena
2008-01-01
This resource letter is designed to guide students, educators, and researchers through (some of) the literature on black holes. Both the physics and astrophysics of black holes are discussed. Breadth has been emphasized over depth, and review articles over primary sources. We include resources ranging from non-technical discussions appropriate for broad audiences to technical reviews of current research. Topics addressed include classification of stationary solutions, perturbations and stability of black holes, numerical simulations, collisions, the production of gravity waves, black hole thermodynamics and Hawking radiation, quantum treatments of black holes, black holes in both higher and lower dimensions, and connections to nuclear and condensed matter physics. On the astronomical end, we also cover the physics of gas accretion onto black holes, relativistic jets, gravitationally red-shifted emission lines, evidence for stellar-mass black holes in binary systems and super-massive black holes at the centers...
Could supermassive black holes be quintessential primordial black holes?
Bean, R; Bean, Rachel; Magueijo, Joao
2002-01-01
There is growing observational evidence for a population of supermassive black holes (SMBHs) in galactic bulges. We examine in detail the conditions under which these black holes must have originated from primordial black holes (PBHs). We consider the merging and accretion history experienced by SMBHs to find that, whereas it is possible that they were formed by purely astrophysical processes, this is unlikely and most probably a populations of primordial progenitors is necessary. We identify the mass distribution and comoving density of this population and then propose a cosmological scenario producing PBHs with the right properties. Although this is not essential we consider PBHs produced at the end of a period of inflation with a blue spectrum of fluctuations. We constrain the value of the spectral tilt in order to obtain the required PBH comoving density. We then assume that PBHs grow by accreting quintessence showing that their mass scales like the horizon mass while the quintessence field itself is scal...
Massless black holes as black diholes and quadruholes
Ortín, Tomas
1996-01-01
Massless black holes can be understood as bound states of a (positive mass) extreme a=\\sqrt{3} black hole and a singular object with opposite ({\\it i.e.}~negative) mass with vanishing ADM (total) mass but non-vanishing gravitational field. Supersymmetric balance of forces is crucial for the existence of this kind of bound states and explains why the system does not move at the speed of light in spite of being massless. We also explain how supersymmetry allows for negative mass as long as it is never isolated but in bound states of total non-negative mass. The known massless black-hole solutions should then be considered particular cases of ``gravitational dipoles''. We also present ``gravitational quadrupoles'' and comment on the possible role of all these objects in string phase transitions.
Information locking in black holes
Smolin, J; Smolin, John; Oppenheim, Jonathan
2005-01-01
The black hole information loss paradox has plagued physicists since Hawking's discovery that black holes evaporate. The calculation suggests that information thrown into a black hole is evaporated away as thermal radiation, and is destroyed: either the unitary laws of quantum theory break down, or we must modify the laws of general relativity. Here we show that one of the central presumptions of the debate is incorrect. Ensuring that information not escape during the semi-classical evaporation process does not require that all the information remain in the black hole until the final stages of evaporation. By taking into account recent results in quantum information theory, we find that the amount of information that must remain in the black hole until the final stages of evaporation can be very small, even though the amount of information which has already radiated away is negligible. Quantum effects mean that information need not be additive: a small number of quanta can lock a large amount of information, ...
Black Holes: The Membrane Viewpoint
Thorne, Kip S.
Contents: I. Introduction: 1. Overview of the membrane viewpoint. 2. History of research on the membrane viewpoint. II. The 3+1 split of spacetime: 1. ZAMOs and the 3+1 split of the metric. 2. Gravitoelectric and gravitomagnetic fields. 3. 3+1 split of electrodynamics. III. Stretching the horizon and black-hole thermodynamics: 1. Macdonald's vibrating magnetic field problem. 2. Stretching the horizon. 3. The entropy of a black hole. 4. The thermodynamics and mechanics of a black hole. IV. Electrodynamics of the stretched horizon: 1. The laws of Gauss, Ampere, Ohm, and charge conservation. 2. Lorentz force and ohmic dissipation in the stretched horizon. V. Some electromagnetic model problems: 1. Charge separation in the stretched horizon. 2. Black hole as a resistor in an electric circuit. 3. Black hole as the rotor in an electric motor. 4. Rotating hole immersed in a time-independent, vacuum magnetic field. 5. Magnetized, rotating hole as a battery for an external circuit. VI. Astrophysical applications of the membrane formalism. VII. Conclusion.
Astrophysical Black Holes: Evidence of a Horizon?
Colpi, Monica
In this Lecture Note we first follow a short account of the history of the black hole hypothesis. We then review on the current status of the search for astrophysical black holes with particular attention to the black holes of stellar origin. Later, we highlight a series of observations that reveal the albeit indirect presence of supermassive black holes in galactic nuclei, with mention to forthcoming experiments aimed at testing directly the black hole hypothesis. We further focus on evidences of a black hole event horizon in cosmic sources.
Black di-ring and infinite nonuniqueness
Iguchi, H; Iguchi, Hideo; Mishima, Takashi
2007-01-01
We show that the $S^1$-rotating black rings can be superposed by the solution generating technique. We analyze the black di-ring solution for the simplest case of multiple rings. There exists an equilibrium black di-ring where the conical singularities are cured by the suitable choice of physical parameters. Also there are infinite numbers of black di-rings with the same mass and angular momentum. These di-rings can have two different continuous limits of single black rings. Therefore we can transform the fat black ring to the thin ring with the same mass and angular momentum by way of the di-ring solutions.
Supersymmetric black holes in string theory
Energy Technology Data Exchange (ETDEWEB)
Mohaupt, T. [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Peach Street, Liverpool L69 7ZL (United Kingdom)
2007-05-15
We review recent developments concerning supersymmetric black holes in string theory. After a general introduction to the laws of black hole mechanics and to black hole entropy in string theory, we discuss black hole solutions in N=2 supergravity, special geometry, the black hole attractor equations and the underlying variational principle. Special attention is payed to the crucial role of higher derivative corrections. Finally we discuss black hole partition functions and their relation with the topological string, mainly from the supergravity perspective. We summarize the state of art and discuss various open questions and problems. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
2010-07-01
Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help
Bambi, Cosimo; Wang, Yixu
2016-01-01
We derive and study an approximate static vacuum solution generated by a point-like source in a higher derivative gravitational theory with a pair of complex conjugate ghosts. The gravitational theory is local and characterized by a high derivative operator compatible with Lee-Wick unitarity. In particular, the tree-level two-point function only shows a pair of complex conjugate poles besides the massless spin two graviton. We show that singularity-free black holes exist when the mass of the source $M$ exceeds a critical value $M_{\\rm crit}$. For $M > M_{\\rm crit}$ the spacetime structure is characterized by an outer event horizon and an inner Cauchy horizon, while for $M = M_{\\rm crit}$ we have an extremal black hole with vanishing Hawking temperature. The evaporation process leads to a remnant that approaches the zero-temperature extremal black hole state in an infinite amount of time.
Kunduri, Hari K
2016-01-01
We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional U(1)^3-supergravity which is regular on and outside an event horizon of lens space topology L(2,1). The solution has seven independent parameters and uplifts to a new family of 1/8-supersymmetric D1-D5-P black brane solutions to Type IIB supergravity. The decoupling limit is asymptotically AdS(3) x S^3 x T^4, with a near-horizon geometry that is a twisted product of the near-horizon geometry of the extremal BTZ black hole and L(2,1) x T^4, although it is not (locally) a product space in the bulk. Nevertheless, we find that the Bekenstein-Hawking entropy agrees exactly with the Cardy formula for the degeneracy of CFT states dual to the near-horizon geometry.
Christodoulou, Marios; De Lorenzo, Tommaso
2016-11-01
Black holes that have nearly evaporated are often thought of as small objects, due to their tiny exterior area. However, the horizon bounds large spacelike hypersurfaces. A compelling geometric perspective on the evolution of the interior geometry was recently shown to be provided by a generally covariant definition of the volume inside a black hole using maximal surfaces. In this article, we expand on previous results and show that finding the maximal surfaces in an arbitrary spherically symmetric spacetime is equivalent to a 1 +1 geodesic problem. We then study the effect of Hawking radiation on the volume by computing the volume of maximal surfaces inside the apparent horizon of an evaporating black hole as a function of time at infinity: while the area is shrinking, the volume of these surfaces grows monotonically with advanced time, up to when the horizon has reached Planckian dimensions. The physical relevance of these results for the information paradox and the remnant scenarios are discussed.
Black holes and galaxy formation
Propst, Raphael J
2010-01-01
Galaxies are the basic unit of cosmology. The study of galaxy formation is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning. The physics of galaxy formation is complicated because it deals with the dynamics of stars, thermodynamics of gas and energy production of stars. A black hole is a massive object whose gravitational field is so intense that it prevents any form of matter or radiation to escape. It is hypothesized that the most massive galaxies in the universe- "elliptical galaxies"- grow simultaneously with the supermassive black holes at their centers, giving us much stronger evidence that black holes control galaxy formation. This book reviews new evidence in the field.
Opatrný, Tomáš; Richterek, Lukáš; Bakala, Pavel
2017-01-01
Life is dependent on the income of energy with low entropy and the disposal of energy with high entropy. On Earth, the low-entropy energy is provided by solar radiation and the high-entropy energy is disposed of as infrared radiation emitted into cold space. Here, we turn the situation around and imagine the cosmic background radiation as the low-entropy source of energy for a planet orbiting a black hole into which the high-entropy energy is expelled. We estimate the power that can be produced by thermodynamic processes on such a planet, with a particular interest in planets orbiting a fast rotating Kerr black hole as in the science fiction movie Interstellar. We also briefly discuss a reverse Dyson sphere absorbing cosmic background radiation from the outside and dumping waste energy to a black hole inside.
Edge phonons in black phosphorus
Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.
2016-07-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.
Disrupting Entanglement of Black Holes
Leichenauer, Stefan
2014-01-01
We study entanglement in thermofield double states of strongly coupled CFTs by analyzing two-sided Reissner-Nordstrom solutions in AdS. The central object of study is the mutual information between a pair of regions, one on each asymptotic boundary of the black hole. For large regions the mutual information is positive and for small ones it vanishes; we compute the critical length scale, which goes to infinity for extremal black holes, of the transition. We also generalize the butterfly effect of Shenker and Stanford to a wide class of charged black holes, showing that mutual information is disrupted upon perturbing the system and waiting for a time of order $\\log E/\\delta E$ in units of the temperature. We conjecture that the parametric form of this timescale is universal.
Bambi, Cosimo; Modesto, Leonardo; Wang, Yixu
2017-01-01
We derive and study an approximate static vacuum solution generated by a point-like source in a higher derivative gravitational theory with a pair of complex conjugate ghosts. The gravitational theory is local and characterized by a high derivative operator compatible with Lee-Wick unitarity. In particular, the tree-level two-point function only shows a pair of complex conjugate poles besides the massless spin two graviton. We show that singularity-free black holes exist when the mass of the source M exceeds a critical value Mcrit. For M >Mcrit the spacetime structure is characterized by an outer event horizon and an inner Cauchy horizon, while for M =Mcrit we have an extremal black hole with vanishing Hawking temperature. The evaporation process leads to a remnant that approaches the zero-temperature extremal black hole state in an infinite amount of time.
Scrambling with matrix black holes
Brady, Lucas; Sahakian, Vatche
2013-08-01
If black holes are not to be dreaded sinks of information but rather fully described by unitary evolution, they must scramble in-falling data and eventually leak it through Hawking radiation. Sekino and Susskind have conjectured that black holes are fast scramblers; they generate entanglement at a remarkably efficient rate, with the characteristic time scaling logarithmically with the entropy. In this work, we focus on Matrix theory—M-theory in the light-cone frame—and directly probe the conjecture. We develop a concrete test bed for quantum gravity using the fermionic variables of Matrix theory and show that the problem becomes that of chains of qubits with an intricate network of interactions. We demonstrate that the black hole system evolves much like a Brownian quantum circuit, with strong indications that it is indeed a fast scrambler. We also analyze the Berenstein-Maldacena-Nastase model and reach the same tentative conclusion.
Opatrný, Tomáš; Bakala, Pavel
2016-01-01
Life is dependent on the income of energy with low entropy and the disposal of energy with high entropy. On Earth, the low-entropy energy is provided by solar radiation and the high-entropy energy is disposed as infrared radiation emitted into the cold space. Here we turn the situation around and assume cosmic background radiation as the low-entropy source of energy for a planet orbiting a black hole into which the high-entropy energy is disposed. We estimate the power that can be produced by thermodynamic processes on such a planet, with a particular interest in planets orbiting a fast rotating Kerr black hole as in the science fiction movie {\\em Interstellar}. We also briefly discuss a reverse Dyson sphere absorbing cosmic background radiation from the outside and dumping waste energy to a black hole inside.
Shmakova, Marina
1997-07-01
We find the entropy of N=2 extreme black holes associated with general Calabi-Yau moduli space and the prepotential F=dABC(XAXBXC/X0). We show that for arbitrary dABC and black hole charges p and q the entropy-area formula depends on combinations of these charges and parameters dABC. These combinations are the solutions of a simple system of algebraic equations. We give a few examples of particular Calabi-Yau moduli spaces for which this system has an explicit solution. For the special case when one of the black hole charges is equal to zero (p0=0) the solution always exists.
Fan, Zhong-Ying
2016-09-01
In this paper, we consider Einstein gravity coupled to a vector field, either minimally or non-minimally, together with a vector potential of the type V = 2{Λ}_0+1/2{m}^2{A}^2 + {γ}_4{A}^4 . For a simpler non-minimally coupled theory with Λ0 = m = γ4 = 0, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first law of the extremal black holes is modified by a one form associated with the vector field. In particular, due to the existence of the non-minimal coupling, the vector forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first law. For a minimally coupled theory with Λ0 ≠ 0, we also obtain one class of asymptotically flat extremal black hole solutions in general dimensions. This is possible because the parameters ( m 2 , γ4) take certain values such that V = 0. In particular, we find that the vector also forms thermodynamic conjugates with the graviton mode and contributes to the corresponding first law, although the non-minimal coupling has been turned off. Thus all the extremal black hole solutions that we obtain provide highly non-trivial examples how the first law of thermodynamics can be modified by a either minimally or non-minimally coupled vector field. We also study Gauss-Bonnet gravity non-minimally coupled to a vector and obtain asymptotically flat black holes and Lifshitz black holes.
Geometric inequalities for black holes
Energy Technology Data Exchange (ETDEWEB)
Dain, Sergio [Universidad Nacional de Cordoba (Argentina)
2013-07-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
Black holes and warped spacetime
Energy Technology Data Exchange (ETDEWEB)
Kaufmann, W.J. III
1979-01-01
Black holes (BHs) and their warping effect on spacetime are described, beginning with a discussion on stellar evolution that includes white dwarfs, supernovas and neutron stars. The structure of static, rotating, and electrically charged BHs are considered, as well as the general theory of relativity, quantum mechanics, the Einstein-Rosen bridge, and wormholes in spacetime. Attention is also given to gravitational lenses, various space geometries, quasars, Seyfert galaxies, supermassive black holes, the evaporation and particle emission of BHs, and primordial BHs, including their temperature and lifetime.
Nucamendi, U; Nucamendi, Ulises; Sudarsky, Daniel
2000-01-01
We consider the spacetimes corresponding to static Global Monopoles with interior boundaries corresponding to a Black Hole Horizon and analyze the behavior of the appropriate ADM mass as a function of the horizon radius r_H. We find that for small enough r_H, this mass is negative as in the case of the regular global monopoles, but that for large enough r_H the mass becomes positive encountering an intermediate value for which we have a Black Hole with zero ADM mass.
Irreversible gravitational collapse: black stars or black holes?
Corda, Christian
2011-01-01
It is well known that the concept of black hole has been considered very fascinating by scientists even before the introduction of Einstein's general relativity. They should be the final result of an irreversible gravitational collapse of very massive bodies. However, an unsolved problem concerning such objects is the presence of a space-time singularity in their core. Such a problem was present starting by the first historical papers concerning black holes. It is a common opinion that this problem could be solved when a correct quantum gravity theory will be, finally, constructed. In this work we review a way to remove black hole singularities at a classical level i.e. without arguments of quantum gravity. By using a particular non-linear electrodynamics Lagrangian, an exact solution of Einstein field equations is shown. The solution prevents the collapsing object to reach the gravitational radius, thus the final result becomes a black star, i.e. an astrophysical object where both of singularities and event ...
Moodulitest komplekteeritav diivan Black = A modular sofa called Black
2007-01-01
Autor Tiina Mang pälvis diivanikomplekti Black eest Eesti Sisearhitektide Liidu 2006. a. esemepreemia. T. Mangist, objektid, kuhu on valitud T. Mangi projekteeritud mööblit, näitused. 3 värv. vaadet, foto T. Mangist
New Geometries for Black Hole Horizons
Armas, Jay
2015-01-01
We construct several classes of worldvolume effective actions for black holes by integrating out spatial sections of the worldvolume geometry of asymptotically flat black branes. This provides a generalisation of the blackfold approach for higher-dimensional black holes and yields a map between different effective theories, which we exploit by obtaining new hydrodynamic and elastic transport coefficients via simple integrations. Using Euclidean minimal surfaces in order to decouple the fluid dynamics on different sections of the worldvolume, we obtain local effective theories for ultraspinning Myers-Perry branes and helicoidal black branes, described in terms of a stress-energy tensor, particle currents and non-trivial boost vectors. We then study in detail and present novel compact and non-compact geometries for black hole horizons in higher-dimensional asymptotically flat space-time. These include doubly-spinning black rings, black helicoids and helicoidal $p$-branes as well as helicoidal black rings and he...
Implementing black hole as efficient power plant
Wei, Shao-Wen
2016-01-01
Treating the black hole molecules as working substance and considering its phase structure, we study the black hole heat engine by a charged anti-de Sitter black hole. In the reduced temperature-entropy chart, it is found that the work, heat, and efficiency of the engine are independent of the black hole charge. Applying the Rankine cycle with or without a back pressure mechanism to the black hole heat engine, the efficiency is numerically solved. The result shows that the black hole engine working along the Rankine cycle with a back pressure mechanism has a higher efficiency. This provides a novel and efficient mechanism to produce the useful mechanical work with black hole, and such heat engine may act as a possible energy source for the high energy astrophysical phenomena near the black hole.
Astronomy: Intermediate-mass black hole found
Gültekin, Kayhan
2017-02-01
The existence of medium-sized black holes has long been debated. Such an object has now been discovered in the centre of a dense cluster of stars, potentially enhancing our understanding of all black holes. See Letter p.203
Regular Black Holes with Cosmological Constant
Institute of Scientific and Technical Information of China (English)
MO Wen-Juan; CAI Rong-Gen; SU Ru-Keng
2006-01-01
We present a class of regular black holes with cosmological constant Λ in nonlinear electrodynamics. Instead of usual singularity behind black hole horizon, all fields and curvature invariants are regular everywhere for the regular black holes. Through gauge invariant approach, the linearly dynamical stability of the regular black hole is studied. In odd-parity sector, we find that the Λ term does not appear in the master equations of perturbations, which shows that the regular black hole is stable under odd-parity perturbations. On the other hand, for the even-parity sector, the master equations are more complicated than the case without the cosmological constant. We obtain the sufficient conditions for stability of the regular black hole. We also investigate the thermodynamic properties of the regular black hole, and find that those thermodynamic quantities do not satisfy the differential form of first law of black hole thermodynamics. The reason for violating the first law is revealed.
"No Cosby Show": Single Black Mother Homes and How Black Men Build Romantic Relationships
Moore, Maia Niguel
2016-01-01
This qualitative study explored the lives of 11 Black men to better understand how Black men who were raised in single Black mother homes build romantic relationships with Black women. One focus group and a series of individual in-person interviews were conducted with the participants who ranged between 23 and 43 years of age. Participants were…
Black Boundary Lines: Race, Class and Gender among Black Undergraduate Students
Morales, Erica Marie
2012-01-01
Intra-group differences among Black undergraduate students remain understudied. To gain a more nuanced understanding of Black student life, we must examine how other social locations, like gender and class, connect to the racialized experiences of Black students. This dissertation argues that for Black students, class and gender, along with race,…
Black Studies, Rap and the Academy. Black Literature and Culture Series.
Baker, Houston A., Jr.
The relationships among Black Studies as an intellectual discipline and rap music are explored. It is argued that black urban culture has provided much of the impetus for Black Studies, and that the academy and those involved in the black studies discipline should feel a responsibility to take rap music seriously as the expression of urban youth,…
The case for artificial black holes.
Leonhardt, Ulf; Philbin, Thomas G
2008-08-28
The event horizon is predicted to generate particles from the quantum vacuum, an effect that bridges three areas of physics--general relativity, quantum mechanics and thermodynamics. The quantum radiation of real black holes is too feeble to be detectable, but black-hole analogues may probe several aspects of quantum black holes. In this paper, we explain in simple terms some of the motivations behind the study of artificial black holes.
Black humor in O.Henry's novels
Institute of Scientific and Technical Information of China (English)
冯静楠
2013-01-01
Black humor is a kind of literary style rose in American and O .Henry's novels used it to express the satire to society and show the sympathy to the lower class .The most typical works contain black humor two are The Cop and the Anthem and The Gift of the Magi.By using black humor, he created his unique endings .This article is trying to analysis the use of black humor in his novels and the effect.
Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes
Takahashi, Rohta
2004-01-01
Can we determine a spin parameter of a black hole by observation of a black hole shadow in an accretion disk? In order to answer this question, we make a qualitative analysis and a quantitative analysis of a shape and a position of a black hole shadow casted by a rotating black hole on an optically thick accretion disk and its dependence on an angular momentum of a black hole. We have found black hole shadows with a quite similar size and a shape for largely different black hole spin paramete...
A note on the black hole remnant
Xiang, Li
2006-01-01
Analyzing the tunneling probability of a Schwarzschild black hole with a negative log-area correction to Bekenstein-Hawking entropy, I argue that this correction may be closely related to a black hole remnant. The value for the minimal black hole mass is also discussed.
5D Black Holes and Matrix Strings
Dijkgraaf, R; Verlinde, Herman L
1997-01-01
We derive the world-volume theory, the (non)-extremal entropy and background geometry of black holes and black strings constructed out of the NS IIA fivebrane within the framework of matrix theory. The CFT description of strings propagating in the black hole geometry arises as an effective field theory.
5D black holes and matrix strings
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Dept. of Mathematics; Verlinde, E. [TH-Division, CERN, CH-1211 Geneva 23 (Switzerland)]|[Institute for Theoretical Physics, University of Utrecht, 3508 TA Utrecht (Netherlands); Verlinde, H. [Institute for Theoretical Physics, University of Amsterdam, 1018 XE Amsterdam (Netherlands)
1997-11-24
We derive the world-volume theory, the (non)-extremal entropy and background geometry of black holes and black strings constructed out of the NS IIA 5-brane within the framework of matrix theory. The CFT description of strings propagating in the black hole geometry arises as an effective field theory. (orig.). 38 refs.
5D black holes and matrix strings
Dijkgraaf, Robbert; Verlinde, Erik; Verlinde, Herman
1997-02-01
We derive the world-volume theory, the (non)-extremal entropy and background geometry of black holes and black strings constructed out of the NS IIA 5-brane within the framework of matrix theory. The CFT description of strings propagating in the black hole geometry arises as an effective field theory.
Signatures of black holes at the LHC
Cavaglià, Marco; Godang, Romulus; Cremaldi, Lucien M.; Summers, Donald J.
2007-06-01
Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.
Signatures of black holes at the LHC
Cavaglia, Marco; Cremaldi, Lucien M; Summers, Donald J
2007-01-01
Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.
Rising Expectations, Black Anger, and the Future
Cogdell, Roy T.; McLemore, William P.
1977-01-01
The societal paradox of abundant opportunities and numerous constraints affects black people's expectations, frustrations, and anger. Specific questions that this paper examines are: What are some possible causes of anger? How have black people reacted to anger-provoking situations? And what are future prospects for black people? (Author/JM)
Event horizons of two Schwarzchild black holes
Energy Technology Data Exchange (ETDEWEB)
Bishop, N.T.
1988-06-01
The problem of two Schwarzchild black holes, one much smaller than the other, is investigated by an approximate analytic method. The critical separation between the black holes at which their event horizons join is found for two cases, (2) time-symmetric initial data, and (b) the small black hole falls from rest at infinity.
Resource Letter BH-1: Black Holes.
Detweiler, Steven
1981-01-01
Lists resources on black holes, including: (1) articles of historical interest; (2) books and journal articles on elementary expositions; (3) elementary and advanced textbooks; and (4) research articles on analytic structure of black holes, black hole dynamics, and astrophysical processes. (SK)
Dumb holes: analogues for black holes.
Unruh, W G
2008-08-28
The use of sonic analogues to black and white holes, called dumb or deaf holes, to understand the particle production by black holes is reviewed. The results suggest that the black hole particle production is a low-frequency and low-wavenumber process.
Extremal black holes in N=2 supergravity
Katmadas, S.
2011-01-01
An explanation for the entropy of black holes has been an outstanding problem in recent decades. A special case where this is possible is that of extremal black holes in N=2 supergravity in four and five dimensions. The best developed case is for black holes preserving some supersymmetry (BPS), whic
Compensating Scientism through "The Black Hole."
Roth, Lane
The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for…
A Black Hole in Our Galactic Center
Ruiz, Michael J.
2008-01-01
An introductory approach to black holes is presented along with astronomical observational data pertaining to the presence of a supermassive black hole at the center of our galaxy. Concepts of conservation of energy and Kepler's third law are employed so students can apply formulas from their physics class to determine the mass of the black hole…
The Institutional Decimation of Black American Males.
Stewart, James B.; Scott, Joseph W.
1978-01-01
In 1970, there were 85 Black men for every 100 Black women in major American cities. Factors which produced this imbalance in the sex ratio of Blacks include educational, health care, public assistance, and penal correction systems, labor market mechanisms, and the military. (Author/MC)
On Quantum Contributions to Black Hole Growth
Spaans, M.
2013-01-01
The effects of Wheeler’s quantum foam on black hole growth are explored from an astrophysical per- spective. Quantum fluctuations in the form of mini (10−5 g) black holes can couple to macroscopic black holes and allow the latter to grow exponentially in mass on a time scale of 109 years. Consequent
Micro black holes in the laboratory
Bleicher, Marcus; Sprenger, Martin; Winstanley, Elizabeth
2011-01-01
The possibility of creating microscopic black holes is one of the most exciting predictions for the LHC, with potentially major consequences for our current understanding of physics. We briefly review the theoretical motivation for micro black hole production, and our understanding of their subsequent evolution. Recent work on modelling the radiation from quantum-gravity-corrected black holes is also discussed.
The Traditionally Black Colleges. 1966-1972.
Wright, Stephen J.
This document reviews the literature concerning traditionally black colleges. Emphasis is placed on history, governance and administration, teaching and educational programs, facilities, financial problems and support, students, the black university, and the future and raison d'etre for black colleges. An extensive bibliography is included. (MJM)
Black Frontier Settlements in Spanish Colonial Florida.
Landers, Jane
1988-01-01
Addresses the much neglected area of Black frontier experience in the Spanish colonies. Concentrates on the role played by Black settlers and one Black township in defending the Spanish frontier in colonial Florida against the threat of growing English settlements to the north. Provides an introduction to the 18th century Southeastern Spanish…
Charged Black Holes in New Massive Gravity
Ghodsi, Ahmad; Moghadassi, Mohammad
2010-01-01
We construct charged black hole solutions to three-dimensional New Massive Gravity (NMG), by adding electromagnetic Maxwell and Chern-Simons actions. We find charged black holes in the form of warped AdS_3 and "log" solutions in specific critical point. The entropy, mass and angular momentum of these black holes are computed.
The fuzzball proposal for black holes
Skenderis, K.; Taylor, M.
2008-01-01
The fuzzball proposal states that associated with a black hole of entropy S, there are expS horizon-free non-singular solutions that asymptotically look like the black hole but generically differ from the black hole up to the horizon scale. These solutions, the fuzzballs, are considered to be the bl
Compensating Scientism through "The Black Hole."
Roth, Lane
The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for transcendent…
Electroelasticity of Charged Black Branes
Armas, Jay; Obers, Niels A
2013-01-01
We present the first order corrected dynamics of fluid branes carrying higher-form charge by obtaining the general form of their equations of motion to pole-dipole order. Assuming linear response theory, we characterize the corresponding effective theory of stationary bent charged (an)isotropic fluid branes in terms of two sets of response coefficients, the Young modulus and the piezoelectric moduli. We subsequently find large classes of examples in gravity of this effective theory, by constructing stationary strained charged black brane solutions to first order in a derivative expansion. Using solution generating techniques and bent neutral black branes as a seed solution, we obtain a class of charged black brane geometries carrying smeared Maxwell charge in Einstein-Maxwell-dilaton gravity. In the specific case of ten-dimensional space-time we furthermore use T-duality to generate bent black branes with higher-form charge, including smeared D-branes of type II string theory. By subsequently measuring the be...
Dillard, J. L.
1971-01-01
Black English has existed for a considerable length of time in the North as well as in the South. West African slaves who came to New York in 1625 found a contact language useful and mandatory in order to function in the slave community. The earliest slaves in the New York area may have used Pidgin English, Pidgin Portuguese, or Pidgin French…
[Nuptiality among Brazil's black population].
Berquo, E
1987-08-01
Data from a three percent sample of the 1980 census of Brazil are used to analyze nuptiality trends by ethnic group. The focus is on the homogamy of marriage by color and age and on the marriage patterns of the black population.
Energy Technology Data Exchange (ETDEWEB)
Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-10-06
Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.
Black Holes: A Selected Bibliography.
Fraknoi, Andrew
1991-01-01
Offers a selected bibliography pertaining to black holes with the following categories: introductory books; introductory articles; somewhat more advanced articles; readings about Einstein's general theory of relativity; books on the death of stars; articles on the death of stars; specific articles about Supernova 1987A; relevant science fiction…
Gravitational Collapse and Black Holes
Ryder, Lewis
1973-01-01
The newest and most exotic manner in which stars die is investigated. A brief outline is presented, along with a discussion of the role supernova play, followed by a description of how the black holes originate, exist, and how they might be detected. (DF)
Selbmann, L.; de Hoog, G.S.; Zucconi, L.; Isola, D.; Onofri, S.; Buzzini, B.; Margesin, E.
2014-01-01
Black yeasts have already been known since the end of the nineteenth century, but for a number of reasons, only few workers were familiar with them. That was since recently, until the wealth of biodiversity, stunning ecologies and potential applications have become apparent. Some remote and extreme
Christensen, Sandra; Bernard, Keith
1974-01-01
Using projected labor force data (race, sex, and education) nondiscriminatory and discriminatory black-white occupational patterns and earnings ratios are defined to the year 2000. Rather than realistic estimates, the projections are designed as standards to measure progress in eliminating racial discrimination in the labor market. (EA)
Body Image Satisfaction among Blacks
Gustat, Jeanette; Carton, Thomas W.; Shahien, Amir A.; Andersen, Lori
2017-01-01
Satisfaction with body image is a factor related to health outcomes. The purpose of this study is to examine the relationship between body image satisfaction and body size perception in an urban, Black community sample in New Orleans, Louisiana. Only 42.2% of respondents were satisfied with their body image and 44.1% correctly perceived their body…
DEFF Research Database (Denmark)
Levisen, Carsten
2018-01-01
This paper explores sort humor ‘black humour’, a key concept in Danish conversational humour. Sort forms part of larger class of Danish synaesthetic humour metaphors that includes other categories such as tør ‘dry’, syg ‘sick’, and fed ‘fat’. Taking an ethnopragmatic perspective on humour discour...
Black Hawkid harjutasid Pakri poolsaarel
2014-01-01
USA 173. õhudessantbrigaadi Eestis viibiv kompanii ja Scoutspataljoni C-kompanii jalaväerühma kaitseväelased alustasid eile ühisõppust, mille käigus harjutatakse kahe Black Hawk UH-60 helikopteriga nelja Pakri poolsaarel asuva õppeobjekti ründamist
Black Holes and Exotic Spinors
Directory of Open Access Journals (Sweden)
J. M. Hoff da Silva
2016-05-01
Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.
Android for the Beaglebone Black
Henderson, Andrew
2015-01-01
If you are an Android app developer who wants to experiment with the hardware capabilities of the BeagleBone Black platform, then this book is ideal for you. You are expected to have basic knowledge of developing Android apps but no prior hardware experience is required.
Begelman, Mitchell C
2012-01-01
We propose that the growth of supermassive black holes is associated mainly with brief episodes of highly super-Eddington infall of gas ("hyperaccretion"). This gas is not swallowed in real time, but forms an envelope of matter around the black hole that can be swallowed gradually, over a much longer timescale. However, only a small fraction of the black hole mass can be stored in the envelope at any one time. We argue that any infalling matter above a few per cent of the hole's mass is ejected as a result of the plunge in opacity at temperatures below a few thousand degrees K, corresponding to the Hayashi track. The speed of ejection of this matter, compared to the velocity dispersion (sigma) of the host galaxy's core, determines whether the ejected matter is lost forever or returns eventually to rejoin the envelope, from which it can be ultimately accreted. The threshold between matter recycling and permanent loss defines a relationship between the maximum black hole mass and sigma that resembles the empiri...
Black Physical Educators and Utilitarianism.
Coursey, Leon N.
The contributions of black professional personnel to the field of physical education are enumerated and described. The careers of Anita J. Turner, Edwin B. Henderson, and Albert J. Overly in particular are examined. The ability of a minority group to provide significant leadership in an educational field is discussed, and the challenge still…
Graduate Opportunities for Black Students.
Paynter, Julie, Ed.
This document catalogues graduate opportunities specifically for black students in 1969-70 at 42 universities, 96 additional graduate departments (social sciences, natural sciences, mathematics, and humanities), and 111 additional professional schools (particularly social work, education, law, medicine, theology, business, and library science).…
Information retrieval from black holes
Lochan, Kinjalk; Padmanabhan, T
2016-01-01
It is generally believed that, when matter collapses to form a black hole, the complete information about the initial state of the matter cannot be retrieved by future asymptotic observers, through local measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge and angular momentum is expected to be revealed to such asymptotic observers after the formation of a black hole. Semi-classically, black holes evaporate after their formation through the Hawking radiation. The dominant part of the radiation is expected to be thermal and hence one cannot know anything about the initial data from the resultant radiation. However, there can be sources of distortions which make the radiation non-thermal. Although the distortions are not strong enough to make the evolution unitary, these distortions carry some part of information regarding the in-state. In this work, we show ...
Information retrieval from black holes
Lochan, Kinjalk; Chakraborty, Sumanta; Padmanabhan, T.
2016-08-01
It is generally believed that, when matter collapses to form a black hole, the complete information about the initial state of the matter cannot be retrieved by future asymptotic observers, through local measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge, and angular momentum is expected to be revealed to such asymptotic observers after the formation of a black hole. Semiclassically, black holes evaporate after their formation through the Hawking radiation. The dominant part of the radiation is expected to be thermal and hence one cannot know anything about the initial data from the resultant radiation. However, there can be sources of distortions which make the radiation nonthermal. Although the distortions are not strong enough to make the evolution unitary, these distortions carry some part of information regarding the in-state. In this work, we show how one can decipher the information about the in-state of the field from these distortions. We show that the distortions of a particular kind—which we call nonvacuum distortions—can be used to fully reconstruct the initial data. The asymptotic observer can do this operationally by measuring certain well-defined observables of the quantum field at late times. We demonstrate that a general class of in-states encode all their information content in the correlation of late time out-going modes. Further, using a 1 +1 dimensional dilatonic black hole model to accommodate backreaction self-consistently, we show that observers can also infer and track the information content about the initial data, during the course of evaporation, unambiguously. Implications of such information extraction are discussed.
Dyonic Non-Abelian Black Holes
Brihaye, Y; Kunz, J; Tell, N
1999-01-01
We study static spherically symmetric dyonic black holes in Einstein-Yang-Mills-Higgs theory. As for the magnetic non-abelian black holes, the domain of existence of the dyonic non-abelian black holes is limited with respect to the horizon radius and the dimensionless coupling constant $\\alpha$, which is proportional to the ratio of vector meson mass and Planck mass. At a certain critical value of this coupling constant, $\\hat \\alpha$, the maximal horizon radius is attained. We derive analytically a relation between $\\hat numerically. Besides the fundamental dyonic non-abelian black holes, we study radially excited dyonic non-abelian black holes and globally regular gravitating dyons.
Black Ring with a Positive Cosmological Constant
Chu, C S; Chu, Chong-Sun; Dai, Shou-Huang
2007-01-01
We construct a black ring with a cosmological constant in the five dimensional N=4 de Sitter supergravity theory. The black ring preserves half of the de Sitter supersymmetries. Unlike the flat case, this black ring is not rotating and the stability against gravitational self-attraction is balanced by the cosmological repulsion due to the cosmological constant. The black ring carries a dipole charge and this charge contributes to the first law of thermodynamics. The black ring has an entropy and mass which conform to the entropic N-bound proposal and the maximal mass conjecture.
Black Hole Decay as Geodesic Motion
Sen-Gupta, K; Gupta, Kumar S.; Sen, Siddhartha
2003-01-01
We show that a formalism for analyzing the near-horizon conformal symmetry of Schwarzschild black holes using a scalar field probe is capable of describing black hole decay. The decay rate is shown to be correctly described by geodesic motion in the space of black hole masses. This provides a novel geometric interpretation for the decay of black holes. We also show that the near-horizon conformal symmetry predicts a precise correction term to the usual expression for the decay rate of black holes. The results obtained here are a consequence of the holographic nature of the system.
An Optical Analog of a Black Holes
Royston, A; Royston, Andrew; Gass, Richard
2002-01-01
Using media with extremely low group velocities one can create an optical analog of a curved space-time. Leonhardt and Piwnicki have proposed that a vortex flow will act as an optical black hole. We show that although the Leonhardt - Piwnicki flow has an orbit of no return and an infinite red-shift surface, it is not a true black hole since it lacks a null hypersurface. However a radial flow will produce a true optical black hole that has a Hawking temperature and obeys the first law of black hole mechanics. By combining the Leonhardt - Piwnicki flow with a radial flow we obtain the analog of the Kerr black hole.
A Black feminist approach to nursing research.
Barbee, E L
1994-10-01
Despite the presence of a body of Black feminist literature, the growing body of nursing literature on feminism and the feminist approach to research remains narrowly focused on White feminist concerns. By essentially ignoring the realities of Black women, nursing has reproduced the errors of previous White feminists. This article demonstrates the relevance of the Black feminist approach to nursing by applying it in combination with general feminist research principles and anthropological theory in research concerned with low-income Black women's experiences with dysphoria and depression. The findings of the research suggest that a combination approach more clearly illuminates how context effects dysphoria in poor Black women.
Black Hole Radiation and Volume Statistical Entropy
Rabinowitz, M
2005-01-01
The simplest possible equations for Hawking radiation, and other black hole radiated power is derived in terms of black hole density. Black hole density also leads to the simplest possible model of a gas of elementary constituents confined inside a gravitational bottle of Schwarzchild radius at tremendous pressure, which yields identically the same functional dependence as the traditional black hole entropy. Variations of Sbh are can be obtained which depend on the occupancy of phase space cells. A relation is derived between the constituent momenta and the black hole radius RH
Black holes under external inﬂuence
Indian Academy of Sciences (India)
Jiří Bičák
2000-10-01
The work on black holes immersed in external ﬁelds is reviewed in both test-ﬁeld approximation and within exact solutions. In particular we pay attention to the effect of the expulsion of the ﬂux of external ﬁelds across charged and rotating black holes which are approaching extremal states. Recently this effect has been shown to occur for black hole solutions in string theory. We also discuss black holes surrounded by rings and disks and rotating black holes accelerated by strings.
Black Holes Shed Light on Galaxy Formation
2000-01-01
This videotape is comprised of several segments of animations on black holes and galaxy formation, and several segments of an interview with Dr. John Kormendy. The animation segments are: (1) a super massive black hole, (2) Centarus A active black hole found in a collision, (3) galaxy NGC-4261 (active black hole and jet model), (4) galaxy M-32 (orbits of stars are effected by the gravity of the black hole), (5) galaxy M-37 (motion of stars increases as mass of black hole increases), (6) Birth of active galactic nuclei, (7) the collision of two galaxy leads to merger of the black holes, (8) Centarus A and simulation of the collision of 2 galaxies. There are also several segments of an interview with John Kormendy. In these segments he discusses the two most important aspects of his recent black hole work: (1) the correlations between galaxies speed and the mass of the black holes, and (2) the existence of black holes and galactic formation. He also discusses the importance of the Hubble Space Telescope and the Space Telescope Imaging Spectrograph to the study of black holes. He also shows the methodology of processing images from the spectrograph in his office.
Quasistars: Accreting black holes inside massive envelopes
Begelman, Mitchell C; Armitage, Philip J
2007-01-01
We study the structure and evolution of "quasistars," accreting black holes embedded within massive hydrostatic gaseous envelopes. These configurations may model the early growth of supermassive black hole seeds. The accretion rate onto the black hole adjusts so that the luminosity carried by the convective envelope equals the Eddington limit for the total mass. This greatly exceeds the Eddington limit for the black hole mass alone, leading to rapid growth of the black hole. We use analytic models and numerical stellar structure calculations to study the structure and evolution of quasistars. We derive analytically the scaling of the photospheric temperature with the black hole mass and envelope mass, and show that it decreases with time as the black hole mass increases. Once the photospheric temperature becomes lower than 10000 K, the photospheric opacity drops precipitously and the photospheric temperature hits a limiting value, analogous to the Hayashi track for red giants and protostars, below which no hy...
From Schwinger Balls to Black Holes
Allahbakhshi, Davood
2016-01-01
We have shown intriguing similarities between Schwinger balls and black holes. By considering black hole as a gravitational Schwinger ball, we have derived the Bekenstein-Hawking entropy and the first law of black hole thermodynamics as a direct result of the inverse area dependence of the gravitational force. It is also shown that the Planck length is nothing but the gravitational Schwinger length. The relation between the mass and the radius of the black hole is derived by considering the black hole as a Schwinger ball of gravitons. We show how the evolution of the entanglement entropy of the black hole, as Page introduced many years ago, can be obtained by including gravitons in the black hole's evaporation process and using a deformed EPR mechanism. Also this deformed EPR mechanism can solve the information paradox. We show how naive simultaneous usage of Page's argument and equivalence principle leads to firewall problem.
Black supernovae and black holes in non-local gravity
Bambi, Cosimo; Modesto, Leonardo
2016-01-01
In a previous paper, we studied the interior solution of a collapsing body in a non-local theory of gravity super-renormalizable at the quantum level. We found that the classical singularity is replaced by a bounce, after which the body starts expanding. A black hole, strictly speaking, never forms. The gravitational collapse does not create an event horizon but only an apparent one for a finite time. In this paper, we solve the equations of motion assuming that the exterior solution is static. With such an assumption, we are able to reconstruct the solution in the whole spacetime, namely in both the exterior and interior regions. Now the gravitational collapse creates an event horizon in a finite comoving time, but the central singularity is approached in an infinite time. We argue that these black holes should be unstable, providing a link between the scenarios with and without black holes. Indeed, we find a non catastrophic ghost-instability of the metric in the exterior region. Interestingly, under certai...
Hawking Radiation from Regular Black Hole as a Possible Probe for Black Hole Interior Structure
Deng, Yanbin
2016-01-01
The notion of the black hole singularity and the proof of the singularity theorem in general relativity were considered great successes in gravitational physics. On the other hand they also presented deep puzzles to physicists. Conceptual challenges were set up by the intractability of the singularity. The existence of black hole horizons which cover up the interior, including the singularity of the black hole from outside observers, builds an information curtain, further hindering physicists from understanding the nature of the singularity and the interior structure of black holes. The regular black hole is a concept produced out of multiple attempts to establish a tractable and understandable interior structure for black hole and to avoid the singularity inside the black hole body. A method is needed to check the correctness of the new constructions of black holes. After studying the Hawking radiation by fermion tunnelling from one type of regular black hole, structure dependent results were obtained. The r...
Framing black boys: parent, teacher, and student narratives of the academic lives of black boys.
Rowley, Stephanie J; Ross, Latisha; Lozada, Fantasy T; Williams, Amber; Gale, Adrian; Kurtz-Costes, Beth
2014-01-01
The discourse on Black boys tends to suggest that Black boys are in complete peril. We begin with evidence that Black boys are excelling in certain contexts (i.e., in certain states, in certain schools, and in certain courses). We then discuss the ways in which the narratives used by parents, teachers, and Black boys themselves may serve to further reinforce views that Black boys are beyond hope. Research on Black parents suggests that they tend to view their sons as vulnerable and have lower expectations for sons than for daughters. Studies of teachers show that they tend to view Black boys as unteachable, as social problems, and as scary. Research on Black boys shows that they are sometimes complicit in supporting these narratives by engaging in negative or ste reotypical behavior. We also include recent research that includes counter-narratives of Black boys. We end with suggestions for future research.
Fan, Zhong-Ying
2016-01-01
In this paper, we consider Einstein gravity coupled to a Proca field, either minimally or non-minimally, together with a vector potential of the type $V=2\\Lambda_0+ m^2 A^2/2 + \\gamma_4 A^4$. For a simpler non-minimally coupled theory with $\\Lambda_0=m=\\gamma_4=0$, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first laws of the extremal black holes are modified by a one form associated with the Proca. In particular, due to the existence of the non-minimal coupling, the Proca forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first laws. For a minimally coupled theory with $\\Lambda_0\
"Twisted" black holes are unphysical
Gray, Finnian; Schuster, Sebastian; Visser, Matt
2016-01-01
So-called "twisted" black holes have recently been proposed by Zhang (1609.09721 [gr-qc]), and further considered by Chen and Jing (1610.00886 [gr-qc]), and more recently by Ong (1610.05757 [gr-qc]). While these spacetimes are certainly Ricci-flat, and so mathematically satisfy the vacuum Einstein equations, they are also merely minor variants on Taub--NUT spacetimes. Consequently they exhibit several unphysical features that make them quite unreasonable as realistic astrophysical objects. Specifically, these "twisted" black holes are not (globally) asymptotically flat. Furthermore, they contain closed timelike curves that are not hidden behind any event horizon --- the most obvious of these closed timelike curves are small azimuthal circles around the rotation axis, but the effect is more general. The entire region outside the horizon is infested with closed timelike curves.
Black Hole with Quantum Potential
Ali, Ahmed Farag
2015-01-01
In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which introduces a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. It also ameliorates the black hole singularity and the information loss problem.
Black hole with quantum potential
Directory of Open Access Journals (Sweden)
Ahmed Farag Ali
2016-08-01
Full Text Available In this work, we investigate black hole (BH physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian trajectories and hence form a quantum Raychaudhuri equation (QRE. From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.
Linezolid induced black hairy tongue
Directory of Open Access Journals (Sweden)
Govindan Balaji
2014-01-01
Full Text Available Black hairy tongue (BHT also called as lingua villosa nigra, is a self limiting benign condition characterized by hypertrophy and elongation of filiform papillae of tongue with brown or black discoloration. Smoking, poor oral hygiene, xerostomia, using peroxide containing mouth washes, substance abuse and drugs (steroids, methyldopa, olanzapine, etc are the predisposing factors. However its occurrence in relation to linezolid ingestion among south Indians has not been reported in PubMed database. Here we report a case, where significant association of linezolid intake with BHT was found in a 10-year-old boy, who was treated with tablet linezolid for post surgical infection of left side radial neck fracture. This case is reported for the rarity of occurrence with linezolid therapy. According to Naranjo adverse drug reaction (ADR causality scale, the association of BHT due to linezolid in our case was probable.
Kanti, Panagiota
2008-01-01
In these two lectures, we will address the topic of the creation of small black holes during particle collisions in a ground-based accelerator, such as LHC, in the context of a higher-dimensional theory. We will cover the main assumptions, criteria and estimates for their creation, and we will discuss their properties after their formation. The most important observable effect associated with their creation is likely to be the emission of Hawking radiation during their evaporation process. After presenting the mathematical formalism for its study, we will review the current results for the emission of particles both on the brane and in the bulk. We will finish with a discussion of the methodology that will be used to study these spectra, and the observable signatures that will help us identify the black-hole events.
Black holes in magnetic monopoles
Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.
1992-04-01
We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs-field vacuum expectation value v is less than or equal to a critical value vcr, which is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordström solution. For vsolutions which are singular at r=0, but which have this singularity hidden within a horizon. These have nontrivial matter fields outside the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The nature of these solutions as a function of v and of the total mass M and their relation to the Reissner-Nordström solutions are discussed.
Black Holes in Magnetic Monopoles
Lee, K; Weinberg, Erick J; Weinberg, Erick J.
1992-01-01
We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs vacuum expectation value $v$ is less than or equal to a critical value $v_{cr}$, which is of the order of the Planck mass. In the limiting case the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordstrom solution. For $v
Extremal Black Holes as Qudits
Rios, Michael
2011-01-01
We extend the black hole/qudit correspondence by identifying five and six-dimensional 1/2-BPS black string and hole charge vectors in N=8 and N=2 magic supergravities with qubits and qutrits over composition algebras. In D=6, this is accomplished via Hopf fibrations, which map qubits over composition algebras to rank one elements of Jordan algebras of degree two. An analogous procedure maps qutrits over composition algebras to D=5 charge vectors, which are rank one elements of Jordan algebras of degree three. In both cases, the U-duality groups are interpreted as qudit SLOCC transformation groups. We provide explicit gates for such transformations and study their applications in toroidally compactified M-theory.
Black hole with quantum potential
Energy Technology Data Exchange (ETDEWEB)
Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Science, Benha University, Benha 13518 (Egypt); Khalil, Mohammed M., E-mail: moh.m.khalil@gmail.com [Department of Electrical Engineering, Alexandria University, Alexandria 12544 (Egypt)
2016-08-15
In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.
Black Orpheus and Aesthetic Historicism
Directory of Open Access Journals (Sweden)
Marina Paola Banchetti-Robino
2011-11-01
Full Text Available This essay offers a novel approach for understanding the poetry of negritude and its role in the struggle for black liberation by appealing to Giambattista Vico’s insights on the historical, cultural, and myth-making function of poetry and of the mythopoetic imagination. The essay begins with a discussion of Vico’s aesthetic historicism and of his ideas regarding the role of imagination, poetry, and myth-making and then brings these ideas to bear on the discussion of the function of negritude poetry, focusing primarily on the writings of Aimé Césaire and on Jean-Paul Sartre’s essay, Black Orpheus.
Ashy storm-petrel at-sea density off California
National Oceanic and Atmospheric Administration, Department of Commerce — The Office of National Marine Sanctuaries (ONMS) updates and revises the management plans for each of its 13 sanctuaries. This process, which is open to the public,...
Complexity, Action, and Black Holes
Brown, Adam; Susskind, Leonard; Swingle, Brian; Zhao, Ying
2015-01-01
Our earlier paper "Complexity Equals Action" conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the `Wheeler-DeWitt' patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are fastest computers in nature.
Complexity, action, and black holes
Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying
2016-04-01
Our earlier paper "Complexity Equals Action" conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the "Wheeler-DeWitt" patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.
Institute of Scientific and Technical Information of China (English)
林琳
2001-01-01
Bleaching of black human hair has been studied systematically. On the basis of experimental data the technology of human hair bleaching through five processes was established. The optimum technology of improving the whiteness and reducing damage on fibers has been found. The technology can provide good luster,smooth handle and relatively high strength retention to human hair used for wigs or drama articles, meeting the needs of people better. Moreover, it also has important reference value to bleaching of other colored fibers.
Geometric obstruction of black holes
Punzi, R; Wohlfarth, M N R; Punzi, Raffaele; Schuller, Frederic P.; Wohlfarth, Mattias N. R.
2006-01-01
We study the global structure of Lorentzian manifolds with partial sectional curvature bounds. In particular, we prove completeness theorems for homogeneous and isotropic cosmologies as well as static spherically symmetric spacetimes. The latter result is used to rigorously prove the absence of static spherically symmetric black holes in more than three dimensions. The proofs of these new results are preceded by a detailed exposition of the local aspects of sectional curvature bounds for Lorentzian manifolds, which extends and strengthens previous constructions.
Gott, J R; Freedman, Deborah L.
2003-01-01
Since no one lives forever, all a life preserver can really do is prolong life for longer than would have otherwise been the case. With this rather limited definition in mind we explore in this paper whether in principle you can take a life preserver with you to protect you (for a while at least) against the tidal forces encountered on a trip inside a black hole.
Directory of Open Access Journals (Sweden)
Aruna Rajagopal
2014-10-01
Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.
Gal'Tsov, D. V.
1987-10-01
Exact solutions of the Einstein-Yang-Mills and Einstein-Yang-Mills-Higgs systems of equations are examined, which describe Black Holes, with gluonic and scalar hairs. A simple deduction of these equations, based on the use of the gayge symmetry is given. The transition to a nonsingular gayge for gravitating Wu - Yang monopoles, in which the singularity is headen inside the horizon, is discussed. Bibliography: 11
Black Hole Thermodynamics and Electromagnetism
Sidharth, B G
2005-01-01
We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.
DEFF Research Database (Denmark)
Sindbæk, Søren Michael
2013-01-01
Long-distance communication has emerged as a particular focus for archaeological exploration using network theory, analysis, and modelling. Initial attempts to adapt methods from social network analysis to archaeological data have, however, struggled to produce decisive results. This paper argues...... observable distributions and patterns of association in the archaeological record. In formal terms this is not a problem of network analysis, but network synthesis: the classic problem of cracking codes or reconstructing black-box circuits....
BSW process of the slowly evaporating charged black hole
Wang, Liancheng; He, Feng; Fu, Xiangyun
2015-01-01
In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.
Black Holes and Random Matrices
Cotler, Jordan S; Hanada, Masanori; Polchinski, Joseph; Saad, Phil; Shenker, Stephen H; Stanford, Douglas; Streicher, Alexandre; Tezuka, Masaki
2016-01-01
We argue that the late time behavior of horizon fluctuations in large anti-de Sitter (AdS) black holes is governed by the random matrix dynamics characteristic of quantum chaotic systems. Our main tool is the Sachdev-Ye-Kitaev (SYK) model, which we use as a simple model of a black hole. We use an analytically continued partition function $|Z(\\beta +it)|^2$ as well as correlation functions as diagnostics. Using numerical techniques we establish random matrix behavior at late times. We determine the early time behavior exactly in a double scaling limit, giving us a plausible estimate for the crossover time to random matrix behavior. We use these ideas to formulate a conjecture about general large AdS black holes, like those dual to 4D super-Yang-Mills theory, giving a provisional estimate of the crossover time. We make some preliminary comments about challenges to understanding the late time dynamics from a bulk point of view.
Black Holes as Effective Geometries
Balasubramanian, Vijay; El-Showk, Sheer; Messamah, Ilies
2008-01-01
Gravitational entropy arises in string theory via coarse graining over an underlying space of microstates. In this review we would like to address the question of how the classical black hole geometry itself arises as an effective or approximate description of a pure state, in a closed string theory, which semiclassical observers are unable to distinguish from the "naive" geometry. In cases with enough supersymmetry it has been possible to explicitly construct these microstates in spacetime, and understand how coarse-graining of non-singular, horizon-free objects can lead to an effective description as an extremal black hole. We discuss how these results arise for examples in Type II string theory on AdS_5 x S^5 and on AdS_3 x S^3 x T^4 that preserve 16 and 8 supercharges respectively. For such a picture of black holes as effective geometries to extend to cases with finite horizon area the scale of quantum effects in gravity would have to extend well beyond the vicinity of the singularities in the effective t...
Hair of astrophysical black holes
Lyutikov, Maxim
2012-01-01
The "no hair" theorem is not applicable to black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N_B = e \\Phi_\\infty /(\\pi c \\hbar), where \\Phi_\\infty is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. The black hole's magnetosphere subsequently relaxes to the split monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that...
Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew
2016-06-10
It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.
Fractal black holes and information
Energy Technology Data Exchange (ETDEWEB)
El Naschie, M.S. [Department of Physics, University of Alexandria, Alexandria (Egypt); Department of Astrophysics, Cairo University (Egypt); Department of Physics, Mansura University (Egypt)
2006-07-15
If nature is fractal as it evidently is, at classical resolution and if it is suspected to also be fractal at the quantum resolution as it is now a days generally believed to be, then we must have over looked at least two points or so in our physical model building of mini black holes. To start with at such ultra high resolution, the mini black hole geometry must be a fractal. Consequently we have zero volume and only a fractal surface area. Second because we cannot take the differential limit for the -bar {sub p}{sup 2} covering the transfinite surface area, there will be many gaps between the (-bar {sub p}){sup 2} tilings. In other words we must introduce transfinite corrections to the final result. Proceeding this way the information entropy unit of a black hole should be a=I=(7+{phi}{sup 3})(10){sup -66}cm{sup 2}=7.23606799(10){sup -66}cm{sup 2}The nearest classical result to the above is that obtained by Gerard 't Hoofta=I=(0.724)(10){sup -65}cm{sup 2}The paper ends with a general discussion of E-infinity theory and its possible relation with 't Hooft's holographic principle and his gluons-quark strings.
Caraivan, Glicherie; Corneliu, Cerchia
2016-04-01
Some Black Sea researchers still support the idea of no other connection to the Mediterranean Sea between LGM and Karangatian Stage (Riss - Wurm). We try to clarify the source of these disagreements. C14 AMS age data (HERAS Project) made on undisturbed samples from a new Mamaia drilling hole where compared with the classical Black Sea stratigraphic schemes. A first transgressive event (Zone D) is found between 38.00 - 20.20 m depth. Zone D4 shows a fairly rapid rise of sea level, about 10 m below the present one indicating an inner shelf marine polyhaline environment. AMS age data show 14C ages between 53690 - 47359 y (MIS 1), corresponding to the "Surozhian Beds" of Popov. The "beach rock" from Zone E marks the decrease of the sea level after the maximum reached in Zone D4. Zone E mollusc shells AMS data, indicate 14C ages of 48724 - 44604 y, suggesting a long-time reworked material from the previous D4 zone sediments, and represents the beginning of the "regressive Tarkankutian" sequence.The Last Glacial Maximum (LGM) led to the retreat of the sea level down to about 100 m below the current one (27-17 ky BP), followed by an retreat of the shoreline to the present position. At the beginning of the Holocene - MIS 1 (8408-8132 cal. y BP), Black Sea brackish water level grew rapidly, up to -14 m below the present one (Zone F: 22, 57-20, 20 m). Zone F deposits could be correlated with the Bugazian strata. Then, a continuous rising of the Black Sea level is recorded up to a maximum of -2 m under the present one, about 6789 - 7063 cal. y BP, when a transgressive spurt ("Neolithic transgression") may have taken place. After that, given a weak Danubian sedimentary input, coastal erosion intensified. The coarse sandy sediments were reworked and pushed over the previous peat deposits, and suggest a classical "sedimentary regression", not a sea-level decrease. During the last 1.5 ky, sea level has risen towards the current one. Previous C14 dates from "Karangatian
Hawking, Stephen W; Strominger, Andrew
2016-01-01
It has recently been shown that BMS supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft ($i.e.$ zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This paper gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the ho...
Entanglement Entropy of Black Holes
Directory of Open Access Journals (Sweden)
Sergey N. Solodukhin
2011-10-01
Full Text Available The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the black-hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.
Entropy of Quantum Black Holes
Directory of Open Access Journals (Sweden)
Romesh K. Kaul
2012-02-01
Full Text Available In the Loop Quantum Gravity, black holes (or even more general Isolated Horizons are described by a SU(2 Chern-Simons theory. There is an equivalent formulation of the horizon degrees of freedom in terms of a U(1 gauge theory which is just a gauged fixed version of the SU(2 theory. These developments will be surveyed here. Quantum theory based on either formulation can be used to count the horizon micro-states associated with quantum geometry fluctuations and from this the micro-canonical entropy can be obtained. We shall review the computation in SU(2 formulation. Leading term in the entropy is proportional to horizon area with a coefficient depending on the Barbero-Immirzi parameter which is fixed by matching this result with the Bekenstein-Hawking formula. Remarkably there are corrections beyond the area term, the leading one is logarithm of the horizon area with a definite coefficient −3/2, a result which is more than a decade old now. How the same results are obtained in the equivalent U(1 framework will also be indicated. Over years, this entropy formula has also been arrived at from a variety of other perspectives. In particular, entropy of BTZ black holes in three dimensional gravity exhibits the same logarithmic correction. Even in the String Theory, many black hole models are known to possess such properties. This suggests a possible universal nature of this logarithmic correction.
Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew
2016-06-01
It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.
The stable problem of the black-hole connected region in the Schwarzschild black hole
Tian, Guihua
2005-01-01
The stability of the Schwarzschild black hole is studied. Using the Painlev\\'{e} coordinate, our region can be defined as the black-hole-connected region(r>2m, see text) of the Schwarzschild black hole or the white-hole-connected region(r>2m, see text) of the Schwarzschild black hole. We study the stable problems of the black-hole-connected region. The conclusions are: (1) in the black-hole-connected region, the initially regular perturbation fields must have real frequency or complex frequen...
Performance evaluation of two black nickel and two black chrome solar collectors
Losey, R.
1977-01-01
The test program was based on the evaluation of four unique solar collectors described below: (1) black nickel collector surface with a desiccant drying bed, (2) black nickel collector surface without a desiccant drying bed, (3) black chrome collector surface with a dessicant drying bed, and (4) black chrome collector surface without a desiccant drying bed. The test program included three distinct phases: Initial performance evaluation, natural environmental aging, and post-aging performance evaluation. Results of Phase III testing conclusively indicated a higher normalized efficiency for Black Chrome surfaces when compared to Black Nickel.
Boosting jet power in black hole spacetimes.
Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis
2011-08-02
The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.
Kerr-Newman Black Hole In Quintessence
Xu, Zhaoyi
2016-01-01
We study the Kerr-Newman solutions of the Einstein-Maxwell equation in quintessence field around a black hole by Newman-Janis algorithm. From the horizon structure and stationary limit surfaces, we find that Kerr-Newman black hole exists an ergosphere with $r^{+} < r < r^{L}$, which is related to the parameters $\\omega$ and $\\alpha$. We obtain the general expression between $\\alpha$ and $\\omega$ if the cosmological horizon exists, in which for $\\omega=-1/2$, $\\alpha\\leq\\sqrt{2}/5$, and for $\\omega=-2/3$, $\\alpha\\leq 1/6$. For $\\omega=-2/3$, the result is same with rotational black hole in quintessence. The singularity of the black holes is the same with that of Kerr black hole. We also discuss the rotation velocity of the black holes on the equatorial plane for $\\omega =-2/3$ and $-1/2$.
NASA's Chandra Finds Black Holes Are "Green"
2006-04-01
Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce
String condensation: Nemesis of Black Holes?
Hewitt, Michael
2015-01-01
This paper puts forward a conjecture that there are no black holes in M theory. We will show that a mechanism to prevent black hole formation is needed in 4 dimensions to make string theory a viable high energy model of quantum gravity. Black hole formation may be averted by a gravity regulation mechanism based on string condensation. In this scenario, black holes are replaced by `hot holograms' that form during gravitational collapse. The geometric conditions based on the properties of free thermalon solutions that are proposed for conversion to a high temperature hologram to occur, however, are local and generic in dimension and could apply throughout M space. This idea can be applied to resolve the problems presented by the process of black hole evaporation, which appears to be inconsistent with quantum information theory. Whereas, in the conventional view, black holes are real and firewalls are probably a chimera, in the scenario proposed here that situation would be reversed.
What does a black hole look like?
Bailyn, Charles D
2014-01-01
Emitting no radiation or any other kind of information, black holes mark the edge of the universe--both physically and in our scientific understanding. Yet astronomers have found clear evidence for the existence of black holes, employing the same tools and techniques used to explore other celestial objects. In this sophisticated introduction, leading astronomer Charles Bailyn goes behind the theory and physics of black holes to describe how astronomers are observing these enigmatic objects and developing a remarkably detailed picture of what they look like and how they interact with their surroundings. Accessible to undergraduates and others with some knowledge of introductory college-level physics, this book presents the techniques used to identify and measure the mass and spin of celestial black holes. These key measurements demonstrate the existence of two kinds of black holes, those with masses a few times that of a typical star, and those with masses comparable to whole galaxies--supermassive black holes...
Seeding Black Holes in Cosmological Simulations
Taylor, Philip
2014-01-01
We present a new model for the formation of black holes in cosmological simulations, motivated by the first star formation. Black holes form from high density peaks of primordial gas, and grow via both gas accretion and mergers. Massive black holes heat the surrounding material, suppressing star formation at the centres of galaxies, and driving galactic winds. We perform an investigation into the physical effects of the model parameters, and obtain a `best' set of these parameters by comparing the outcome of simulations to observations. With this best set, we successfully reproduce the cosmic star formation rate history, black hole mass -- velocity dispersion relation, and the size -- velocity dispersion relation of galaxies. The black hole seed mass is 10^3Msun, which is orders of magnitude smaller than has been used in previous cosmological simulations with active galactic nuclei, but suggests that the origin of the seed black holes is the death of Population III stars.
Black hole chemistry: thermodynamics with Lambda
Kubiznak, David; Teo, Mae
2016-01-01
We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities, in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality - an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at exten...
Boosting jet power in black hole spacetimes
Neilsen, David; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garret, T
2010-01-01
The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.
Weighing black holes in the universe
Institute of Scientific and Technical Information of China (English)
WU Xue-bing
2006-01-01
The determination of the mass of black holes in our universe is crucial to understand their physics nature but is a great challenge to scientists.In this paper Ⅰ briefly review some methods that are currently used to estimate the mass of black holes,especially those in X-ray binary systems and in galactic nuclei.Our recent progress in improving the mass estimates of supermasssive black holes in active galactic nuclei by involving some empirical relations is presented.Finally Ⅰ point out the similarities and common physics in Galactic black hole X-ray binaries and active galactic nuclei,and demonstrate that the black hole mass estimation is very much helpful to understand the accretion physics around black holes.
The thermal radiation from dynamic black holes
Institute of Scientific and Technical Information of China (English)
2008-01-01
Using the related formula of dynamic black holes, the instantaneous radiation energy density of the general spherically symmetric charged dynamic black hole and the arbitrarily accelerating charged dynamic black hole is calculated. It is found that the instantaneous radiation energy density of black hole is always proportional to the quartic of the temperature of event horizon in the same direction. The proportional coefficient of generalized Stefan-Boltzmann is no longer a constant, and it becomes a dynamic coefficient that is related to the event horizon changing rate, space-time structure near event horizon and the radiation absorption coefficient of the black hole. It is shown that there should be an internal relation between the gravitational field around black hole and its thermal radiation.
Reversible Carnot cycle outside a black hole
Institute of Scientific and Technical Information of China (English)
Deng Xi-Hao; Gao Si-Jie
2009-01-01
A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T1 and a black hole with Hawking temperature Th. By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1-TH/T1 Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible.
Information Retention by Stringy Black Holes
AUTHOR|(CDS)2108556
2015-01-01
Building upon our previous work on two-dimensional stringy black holes and its extension to spherically-symmetric four-dimensional stringy black holes, we show how the latter retain information. A key r\\^ole is played by an infinite-dimensional $W_\\infty$ symmetry that preserves the area of an isolated black-hole horizon and hence its entropy. The exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole necessarily includes a contribution from $W_\\infty$ generators in its vertex function. This admixture manifests the transfer of information between the string black hole and external particles. We discuss different manifestations of $W_\\infty$ symmetry in black-hole physics and the connections between them.
Instability of ultra-spinning black holes
Energy Technology Data Exchange (ETDEWEB)
Emparan, Roberto [Departament de Fisica Fonamental and C.E.R. en Astrofisica, Fisica de Particules i Cosmologia, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA) (Spain); Myers, Robert C. [Perimeter Institute for Theoretical Physics, 35 King Street North, Waterloo, Ontario N2J 2W9 (Canada) and Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)]. E-mail: rmyers@perimeterinstitute.ca
2003-09-01
It has long been known that, in higher-dimensional general relativity, there are black hole solutions with an arbitrarily large angular momentum for a fixed mass. We examine the geometry of the event horizon of such ultra-spinning black holes and argue that these solutions become unstable at large enough rotation. Hence we find that higher-dimensional general relativity imposes an effective 'Kerr-bound' on spinning black holes through a dynamical decay mechanism. Our results also give indications of the existence of new stationary black holes with 'rippled' horizons of spherical topology. We consider various scenarios for the possible decay of ultra-spinning black holes, and finally discuss the implications of our results for black holes in braneworld scenarios. (author)
Non-abelian black string construction
Mazharimousavi, S Habib
2010-01-01
We present d+1-dimensional pure magnetic Yang-Mills (YM) black strings (or 1-branes) induced by the d-dimensional Einstein-Yang-Mills-Dilaton (EYMD) black holes. Incorporation of non-abelian fields in black strings, to our knowledge, has not been considered so far, for this reason we aim to fill this gap. Born-Infeld (BI) version of the YM field makes our starting point which goes to the standard YM field through a limiting procedure. The lifting from black holes to black strings, (with less number of fields) is by adding an extra, compact coordinate. This amounts to the change of horizon topology from S^{d-2} to a product structure. Our black string in 5-dimensions is a rather special one, with uniform Hawking temperature and non-asymptotically flat Local isometry in the abelian limit with the space of colliding plane waves is discussed.
Microcanonical Description of (Micro Black Holes
Directory of Open Access Journals (Sweden)
Benjamin Harms
2011-02-01
Full Text Available The microcanonical ensemble is the proper ensemble to describe black holes which are not in thermodynamic equilibrium, such as radiating black holes. This choice of ensemble eliminates the problems, e.g., negative specific heat (not allowed in the canonical ensemble and loss of unitarity, encountered when the canonical ensemble is used. In this review we present an overview of the weaknesses of the standard thermodynamic description of black holes and show how the microcanonical approach can provide a consistent description of black holes and their Hawking radiation at all energy scales. Our approach is based on viewing the horizon area as yielding the ensemble density at fixed system energy. We then compare the decay rates of black holes in the two different pictures. Our description is particularly relevant for the analysis of micro-black holes whose existenceis predicted in models with extra-spatial dimensions.
Admix Compatibility in Carbon Black Loaded Toners
Institute of Scientific and Technical Information of China (English)
Paul C. Julien
2004-01-01
In a xerographic system where the charge on the toner is controlled by the electrical nature of the carbon black used as a pigment, it is found that the speed with which added toner is charged to the proper level depends on the relative electrical negativity of the carbon black in the original and added toner. This is due to the fact that the incumbent toner typically shares its charge with the new toner through charge exchange among the conductive carbon black particles. If the carbon blacks are electrically dissimilar, this charge sharing may fail.Thus, a toner may work well by itself in a machine, but the same toner may fail when added to a machine already running with a toner from a different vendor or even a different lot of toner from the same vendor. Thus the electrical nature of the carbon black needs to be controlled. This can be done by controlling the oxidation of the carbon black.
Black Feminism: An Integrated Review of Literature.
Love, Katie L
2016-01-01
This study presents a systematic literature review exploring the uses and potential benefits of Black Feminism in nursing research. Black Feminism may benefit knowledge development for nursing in a variety of ways, such as illuminating the multifaceted factors of Black women's identities in helping scholars move away from generalization of experiences, to improve understanding of health disparities, and making such changes by broadening the social consciousness of the nurse researchers, who are predominantly White. Discrimination in health disparities may be deconstructed if the focus is placed on asking different research questions and offering different interventions with the social structures that contributes to such actions. When Black Feminism guides the research method (including research questions and analysis), the accuracy of representing the experiences of Black women is increased. In this research, Black Feminism highlights experience, coping mechanisms, spiritual values, a tradition of strength, and a holistic view of identity.
Oscillator level for black holes and black rings
Energy Technology Data Exchange (ETDEWEB)
Emparan, Roberto [Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Departament de Fisica Fonamental and CER en Astrofisica, Fisica de Particules i Cosmologia, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Mateos, David [Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2 L 2Y5 (Canada)
2005-09-07
Microscopic calculations of the Bekenstein-Hawking entropy of supersymmetric black holes in string theory are typically based on the application to a dual 2D CFT of Cardy's formula, S=2{pi}{radical}cq{sub 0}/6, where c is the central charge and q{sub 0} is the oscillator level. In the CFT, q{sub 0} is non-trivially related to the total momentum. We identify a Komar integral that equals q{sub 0} when evaluated at the horizon, and the total momentum when evaluated at asymptotic infinity, thus providing a gravitational dual of the CFT result.
Low-mass black holes as the remnants of primordial black hole formation.
Greene, Jenny E
2012-01-01
Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.
How to End Colonial Domination of Black America: A Challenge to Black Psychologists
Howard, Joseph Hannibal, III
1970-01-01
Argues that Black people must engage in a therapeutic struggle which stresses Afro-American history and nationalism, and that Black professionals must shed narrow confines of academic disciplines and think as social scientists. (KG)
Joint evolution of black holes and galaxies
Colpi, M; Haardt, F
2006-01-01
OBSERVATIONAL EVIDENCE FOR SUPERMASSIVE BLACK HOLES Introduction Some Useful Formalism General Considerations Resolved Stellar Dynamics Gas as a Tracer of the Gravitational Potential Tackling the Unresolvable: Reverberation Mapping Scaling Relations for SMBHs Black Hole Demographics The Future JOINT EVOLUTION OF BLACK HOLES AND GALAXIES: OBSERVATIONAL ISSUES Galaxy Activity: Generalities Local Evidence on the Interplay Between the Stellar and Gravitational Origin of AGN Activity The Cosmic History of Galaxy Activity Constraints on the Cosmic Energy Budget Current Observational Programs and Fut
Defense Downsizing and Blacks in the Military
1993-06-01
8217IIa NAVAL POSTGRADUATE SCHOOL Monterey, California AD-A272 415 THESIS DEFENSE DOWNSIZING AND BLACKS IN THE MILITARY by Roy L. Nixon June 1993 Thesis...include security classification) DEFENSE DOWNSIZING AND BLACKS IN TIE MILITARY 12 Plersonal Author(s) Roy L. Nixon 1 3a Type of Report I13b Time Covered...end of the draft. However. the armed forces are now engaged in the process of downsizing , and there is some speculation that blacks may be
Superradiance by mini black holes with mirror
Lee, Jong-Phil
2011-01-01
The superradiant scattering of massive scalar particles by a rotating mini black hole is investigated. Imposing the mirror boundary condition, the system becomes the so called black-hole bomb where the rotation energy of the black hole is transferred to the scattered particle exponentially with time. Bulk emissions as well as brane emissions are considered altogether. It is found that the largest effects are expected for the brane emission of lower angular modes with lighter mass and larger a...
Test fields cannot destroy extremal black holes
Natário, José; Queimada, Leonel; Vicente, Rodrigo
2016-09-01
We prove that (possibly charged) test fields satisfying the null energy condition at the event horizon cannot overspin/overcharge extremal Kerr-Newman or Kerr-Newman-anti de Sitter black holes, that is, the weak cosmic censorship conjecture cannot be violated in the test field approximation. The argument relies on black hole thermodynamics (without assuming cosmic censorship), and does not depend on the precise nature of the fields. We also discuss generalizations of this result to other extremal black holes.
Dyonic Non-Abelian Black Holes
Brihaye, Y.; Hartmann, B.; Kunz, J; Tell, N.
1999-01-01
We study static spherically symmetric dyonic black holes in Einstein-Yang-Mills-Higgs theory. As for the magnetic non-abelian black holes, the domain of existence of the dyonic non-abelian black holes is limited with respect to the horizon radius and the dimensionless coupling constant $\\alpha$, which is proportional to the ratio of vector meson mass and Planck mass. At a certain critical value of this coupling constant, $\\hat \\alpha$, the maximal horizon radius is attained. We derive analyti...
Black Hole Entropy without Brick Walls
Demers, J. -G.; Lafrance, R.; Myers, R. C.
1995-01-01
We present evidence which confirms a suggestion by Susskind and Uglum regarding black hole entropy. Using a Pauli-Villars regulator, we find that 't Hooft's approach to evaluating black hole entropy through a statistical-mechanical counting of states for a scalar field propagating outside the event horizon yields precisely the one-loop renormalization of the standard Bekenstein-Hawking formula, $S=\\A/(4G)$. Our calculation also yields a constant contribution to the black hole entropy, a contr...
Speciation of Black-necked Crane
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Based on the concepts of species and speciation,the speciation of Black-necked Grane(Grus nigricollis) was discussed using bio-geographic principles and some evidences suggest that Black-necked Grane had a close relationship with Red-crowned Crane(Grus japonensis).The Qinghai-Tibetan Plateau uplift may be the most important factor in allopatric speciation for Black-necked Crane.
Quantum aspects of black hole entropy
Indian Academy of Sciences (India)
Parthasarathi Majumdar
2000-10-01
This survey intends to cover recent approaches to black hole entropy which attempt to go beyond the standard semiclassical perspective. Quantum corrections to the semiclassical Bekenstein–Hawking area law for black hole entropy, obtained within the quantum geometry framework, are treated in some detail. Their ramiﬁcation for the holographic entropy bound for bounded stationary spacetimes is discussed. Four dimensional supersymmetric extremal black holes in string-based = 2 supergravity are also discussed, albeit more brieﬂy.
The thermodynamics in a dynamical black hole
Institute of Scientific and Technical Information of China (English)
Bo LIU; Wen-biao LIU
2009-01-01
Considering the back-reaction of emitting particles to the black hole, a "new" horizon is suggested where thermodynamics can be built in the dynamical black hole. It, at least, means that the thermodynamics of a dynamical black hole should not be constructed at the original event horizon any more. The temperature, "new" horizon position and radiating particles' energy will be consistent again under the theory of equilibrium thermodynamical system.
Noncommutative Black Holes and the Singularity Problem
Energy Technology Data Exchange (ETDEWEB)
Bastos, C; Bertolami, O [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.pt, E-mail: orfeu.bertolami@fc.up.pt, E-mail: ncdias@mail.telepac.pt, E-mail: joao.prata@mail.telepac.pt [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)
2011-09-22
A phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model is considered to study the interior of a Schwarzschild black hole. Due to the divergence of the probability of finding the black hole at the singularity from a canonical noncommutativity, one considers a non-canonical noncommutativity. It is shown that this more involved type of noncommutativity removes the problem of the singularity in a Schwarzschild black hole.
Spinning a charged dilaton black hole
Shiraishi, Kiyoshi
2015-01-01
A charged dilaton black hole which possesses infinitesimal angular momentum is studied. We find that the gyromagnetic ratio of the dilaton black hole depends not only on the parameter which appears in the interaction between the dilaton and the electric field but also nonlinearly on the ratio of the charge to the mass of the black hole. The moment of inertia for the charged dilaton hole in the limit of infinitesimal angular momentum is also calculated.
Black holes in the milky way galaxy.
Filippenko, A V
1999-08-31
Extremely strong observational evidence has recently been found for the presence of black holes orbiting a few relatively normal stars in our Milky Way Galaxy and also at the centers of some galaxies. The former generally have masses of 4-16 times the mass of the sun, whereas the latter are "supermassive black holes" with millions to billions of solar masses. The evidence for a supermassive black hole in the center of our galaxy is especially strong.
Schwarzchild Black Holes in Matrix Theory, 2
Banks, T; Klebanov, Igor R; Susskind, Leonard
1998-01-01
We present a crude Matrix Theory model for Schwarzchild black holes in uncompactified dimension greater than 5. The model accounts for the size, entropy, and long range static interactions of black holes. The key feature of the model is a Boltzmann gas of D0 branes, a concept which depends on certain qualitative features of Matrix Theory which previously have not been utilized in studies of black holes.
Geon black holes and quantum field theory
Louko, Jorma
2010-01-01
Black hole spacetimes that are topological geons in the sense of Sorkin can be constructed by taking a quotient of a stationary black hole that has a bifurcate Killing horizon. We discuss the geometric properties of these geon black holes and the Hawking-Unruh effect on them. We in particular show how correlations in the Hawking-Unruh effect reveal to an exterior observer features of the geometry that are classically confined to the regions behind the horizons.
Black Holes and Gravitational Properties of Antimatter
Hajdukovic, D
2006-01-01
We speculate about impact of antigravity (i.e. gravitational repulsion between matter and antimatter) on the creation and emission of particles by a black hole. If antigravity is present a black hole made of matter may radiate particles as a black body, but this shouldn't be true for antiparticles. It may lead to radical change of radiation process predicted by Hawking and should be taken into account in preparation of the attempt to create and study mini black holes at CERN. Gravity, including antigravity is more than ever similar to electrodynamics and such similarity with a successfully quantized interaction may help in quantization of gravity.
Schwarzschild black holes can wear scalar wigs
Barranco, Juan; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier
2012-01-01
We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultra-light scalar field dark matter around supermassive black holes and axion-like scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic, in the sense that fairly arbitrary initial data evolves, at late times, as a combination of those long-lived configurations.
Spherical Black Holes cannot Support Scalar Hair
Sudarsky, D
1998-01-01
The static spherically symmetric ``black hole solution" of the Einstein - conformally invariant massless scalar field equations known as the BBMB ( Bocharova, , Bronikov, Melinkov, Bekenstein) black hole is critically examined. It is shown that the stress energy tensor is ill-defined at the horizon, and that its evaluation through suitable regularization yields ambiguous results. Consequently, the configuration fails to represent a genuine black hole solution. With the removal of this solution as a counterexample to the no hair conjecture, we argue that the following appears to be true: Spherical black holes cannot carry any kind of classical scalar hair.
Destroying black holes with test bodies
Energy Technology Data Exchange (ETDEWEB)
Jacobson, Ted [Center for Fundamental Physics, University of Maryland, College Park, MD 20742-4111 (United States); Sotiriou, Thomas P, E-mail: jacobson@umd.ed, E-mail: T.Sotiriou@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)
2010-04-01
If a black hole can accrete a body whose spin or charge would send the black hole parameters over the extremal limit, then a naked singularity would presumably form, in violation of the cosmic censorship conjecture. We review some previous results on testing cosmic censorship in this way using the test body approximation, focusing mostly on the case of neutral black holes. Under certain conditions a black hole can indeed be over-spun or over-charged in this approximation, hence radiative and self-force effects must be taken into account to further test cosmic censorship.
Charged black holes in phantom cosmology
Energy Technology Data Exchange (ETDEWEB)
Jamil, Mubasher; Qadir, Asghar; Rashid, Muneer Ahmad [National University of Sciences and Technology, Center for Advanced Mathematics and Physics, Rawalpindi (Pakistan)
2008-11-15
In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole. (orig.)
Rotating Black Holes and Coriolis Effect
Wu, Xiaoning; Yuan, Pei-Hung; Cho, Chia-Jui
2015-01-01
In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the Petrov-like boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.
Rotating black holes and Coriolis effect
Chou, Chia-Jui; Wu, Xiaoning; Yang, Yi; Yuan, Pei-Hung
2016-10-01
In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.
Rotating black holes and Coriolis effect
Chia-Jui Chou; Xiaoning Wu; Yi Yang; Pei-Hung Yuan
2016-01-01
In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the Petrov-like boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black ho...
Rotating black holes and Coriolis effect
Directory of Open Access Journals (Sweden)
Chia-Jui Chou
2016-10-01
Full Text Available In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.
Black Holes versus Supersymmetry at the LHC
Roy, Arunava; Cavaglia, Marco
2007-11-01
Supersymmetry and extra dimensions are the two most promising candidates for new physics at the TeV scale. Supersymmetric particles or extra-dimensional effects could soon be observed at the Large Hadron Collider. In this paper we assess the distinguishability of supersymmetry and black hole events at the LHC. Black hole events are simulated with the CATFISH black hole generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET, the latter providing the mass spectrum. Our analysis shows that supersymmetry and black hole events at the Large Hadron Collider can be easily discriminated.
Thermoelectric DC conductivities from black hole horizons
Donos, Aristomenis
2014-01-01
An analytic expression for the DC electrical conductivity in terms of black hole horizon data was recently obtained for a class of holographic black holes exhibiting momentum dissipation. We generalise this result to obtain analogous expressions for the DC thermoelectric and thermal conductivities. We illustrate our results using some holographic Q-lattice black holes as well as for some black holes with linear massless axions, in both $D=4$ and $D=5$ bulk spacetime dimensions, which include both spatially isotropic and anisotropic examples. We show that some recently constructed ground states of holographic Q-lattices, which can be either electrically insulating or metallic, are all thermal insulators.
Schwarzschild black holes can wear scalar wigs.
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier
2012-08-24
We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.
Particle accelerators inside spinning black holes.
Lake, Kayll
2010-05-28
On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.
On ADM quantities of multiple black holes
Rácz, István
2016-01-01
In [11] a proposal was made to construct initial data for binary black hole configurations. It was done by using the parabolic-hyperbolic form of the constraints and choosing the free data provided by superposed Kerr-Schild black holes. The proposal of [11] do also apply to multiple systems involving generic Kerr-Schild black holes. Notably, the specific choice made for the free data allows---without making detailed use of the to be solutions to the constraints---to determine explicitly, the ADM quantities of the multiple system in terms of the separations velocities and spins of the individual Kerr-Schild black holes.
Light geodesics near an evaporating black hole
Energy Technology Data Exchange (ETDEWEB)
Guerreiro, Thiago, E-mail: thiago.barbosa@unige.ch; Monteiro, Fernando, E-mail: fernando.monteiro@unige.ch
2015-10-16
Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed. - Highlights: • We calculate the in-falling light geodesics in an evaporating black hole. • For our calculation we use a non-static metric called Vaydia metric. • We show that in-falling light cannot cross the event horizon. • In this case there is no information paradox.
Horizon detection and higher dimensional black rings
Coley, A. A.; McNutt, D. D.
2017-02-01
In this paper we study the stationary horizons of the rotating black ring and the supersymmetric black ring spacetimes in five dimensions. In the case of the rotating black ring we use Weyl aligned null directions to algebraically classify the Weyl tensor, and utilize an adapted Cartan algorithm in order to produce Cartan invariants. For the supersymmetric black ring we employ the discriminant approach and repeat the adapted Cartan algorithm. For both of these metrics we are able to construct Cartan invariants that detect the horizon alone, and which are easier to compute and analyse than scalar polynomial curvature invariants.
Do black holes really evaporate thermally
Energy Technology Data Exchange (ETDEWEB)
Tipler, F.J.
1980-09-22
The Raychaudhuri equation is used to analyze the effect of the Hawking radiation back reaction upon a black-hole event horizon. It is found that if the effective stress-energy tensor of the Hawking radiation has negative energy density as expected, then an evaporating black hole initially a solar mass in size must disappear in less than a second. This implies that either the evaporation process, if it occurs at all, must be quite different from what is commonly supposed, or else black-hole event horizons: and hence black holes: do not exist.
Do black holes really evaporate thermally
Tipler, F. J.
1980-09-01
The Raychaudhuri equation is used to analyze the effect of the Hawking radiation back reaction upon a black-hole event horizon. It is found that if the effective stress-energy tensor of the Hawking radiation has negative energy density as expected, then an evaporating black hole initially a solar mass in size must disappear in less than a second. This implies that either the evaporation process, if it occurs at all, must be quite different from what is commonly supposed, or else black-hole event horizons - and hence black holes - do not exist.
Black-White Health Inequalities in Canada.
Veenstra, Gerry; Patterson, Andrew C
2016-02-01
Little is known about Black-White health inequalities in Canada or the applicability of competing explanations for them. To address this gap, we used nine cycles of the Canadian Community Health Survey to analyze multiple health outcomes in a sample of 3,127 Black women, 309,720 White women, 2,529 Black men and 250,511 White men. Adjusting for age, marital status, urban/rural residence and immigrant status, Black women and men were more likely than their White counterparts to report diabetes and hypertension, Black women were less likely than White women to report cancer and fair/poor mental health and Black men were less likely than White men to report heart disease. These health inequalities persisted after controlling for education, household income, smoking, physical activity and body-mass index. We conclude that high rates of diabetes and hypertension among Black Canadians may stem from experiences of racism in everyday life, low rates of heart disease and cancer among Black Canadians may reflect survival bias and low rates of fair/poor mental health among Black Canadian women represent a mental health paradox similar to the one that exists for African Americans in the United States.
General Logarithmic Corrections to Black Hole Entropy
Das, S; Bhaduri, R K; Das, Saurya; Majumdar, Parthasarathi; Bhaduri, Rajat K.
2002-01-01
We compute leading order corrections to the the entropy of any thermodynamic system due to small statistical fluctuations around equilibrium. When applied to black holes, these corrections are shown to be of the form $-k\\ln(Area)$. For BTZ black holes, $k=3/2$, as found earlier. We extend the result to anti-de Sitter Schwarzschild and Reissner-Nordstrom black holes in arbitrary dimensions. Finally we examine the role of conformal field theory in black hole entropy and its corrections.
Black hole collapse and democratic models
Jansen, Aron; Magán, Javier M.
2016-11-01
We study the evolution of black hole entropy and temperature in collapse scenarios in asymptotically anti-de Sitter spacetime, finding three generic lessons. First, entropy evolution is extensive. Second, at large times, entropy and temperature ring with twice the frequency of the lowest quasinormal mode. Third, the entropy oscillations saturate black hole area theorems in general relativity. The first two features are characteristic of entanglement dynamics in "democratic" models. Solely based on general relativity and the Bekenstein-Hawking entropy formula, our results point to democratic models as microscopic theories of black holes. The third feature can be taken as a prediction for microscopic models of black hole physics.
On the thermodynamics of hairy black holes
Energy Technology Data Exchange (ETDEWEB)
Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Choque, David, E-mail: brst1010123@gmail.com [Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso (Chile)
2015-04-09
We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild–AdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the Hawking–Page phase transition.
On the thermodynamics of hairy black holes
Directory of Open Access Journals (Sweden)
Andrés Anabalón
2015-04-01
Full Text Available We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild–AdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the Hawking–Page phase transition.
Thermodynamics of black holes in rainbow gravity
Banerjee, Ritwick
2016-01-01
In this paper, we investigate the thermodynamic properties of black holes under the influence of rainbow gravity. In the metric of Schwarzschild, Reissner-Nordstrom and Reissner-Nordstrom-de-Sitter black hole surrounded by quintessence, we consider a rainbow function and derive the existence of remnant and critical masses of a black hole. Using the Hawking temperature relation we derive the heat capacity and the entropy of the rainbow gravity inspired black holes and closely study the relation between entropy and area of the horizon for different values of n of the rainbow function.
Black hole evaporation in conformal gravity
Bambi, Cosimo; Porey, Shiladitya; Rachwal, Leslaw
2016-01-01
We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.
Black Hole Growth in Hierarchical Galaxy Formation
Malbon, R K; Frenk, C S; Lacey, C G; Malbon, Rowena K.
2006-01-01
We incorporate a model for black hole growth during galaxy mergers into the semi-analytical galaxy formation model based on Lambda-CDM proposed by Baugh et al. (2005). Our black hole model has one free parameter, which we set by matching the observed zeropoint of the local correlation between black hole mass and bulge luminosity. We present predictions for the evolution with redshift of the relationships between black hole mass and bulge properties. Our simulations reproduce the evolution of the optical luminosity function of quasars. We study the demographics of the black hole population and address the issue of how black holes acquire their mass. We find that the direct accretion of cold gas during starbursts is an important growth mechanism for lower mass black holes and at high redshift. On the other hand, the re-assembly of pre-existing black hole mass into larger units via merging dominates the growth of more massive black holes at low redshift. This prediction could be tested by future gravitational wa...
Rotating black holes in brane worlds
Frolov, V P; Stojkovic, D B; Frolov, Valeri P.; Fursaev, Dmitri V.; Stojkovic, Dejan
2004-01-01
We study interaction of rotating higher dimensional black holes with a brane in space-times with large extra dimensions. We demonstrate that a rotating black hole attached to a brane can be stationary only if the null Killing vector generating the black hole horizon is tangent to the brane world-sheet. The characteristic time when a rotating black hole with the gravitational radius $r_0$ reaches this final stationary state is $T\\sim r_0^{p-1}/(G\\sigma)$, where $G$ is the higher dimensional gravitational coupling constant, $\\sigma$ is the brane tension, and $p$ is the number of extra dimensions.
On Destroying Extremal Magnetized Black Holes
Siahaan, Haryanto M
2016-01-01
The gedanken experiment by Wald to destroy a black hole using a test particle in the equatorial plane is adopted to the case of extremal magnetized black holes. We find that the presence of external magnetic fields resulting from the "magnetization" process using a Harrison-like transformation permits the test particle to have energies in the range which allows the destruction of black holes. However, from the corresponding effective potential we find that the test particle which may destroy the black hole can never reach the horizon.
Galaxies of all Shapes Host Black Holes
2008-01-01
This artist's concept illustrates the two types of spiral galaxies that populate our universe: those with plump middles, or central bulges (upper left), and those lacking the bulge (foreground). New observations from NASA's Spitzer Space Telescope provide strong evidence that the slender, bulgeless galaxies can, like their chubbier counterparts, harbor supermassive black holes at their cores. Previously, astronomers thought that a galaxy without a bulge could not have a supermassive black hole. In this illustration, jets shooting away from the black holes are depicted as thin streams. The findings are reshaping theories of galaxy formation, suggesting that a galaxy's 'waistline' does not determine whether it will be home to a big black hole.
King, LaGarrett J.; Brown, Anthony L.
2012-01-01
Social and public sites are becoming a popular medium for intellectual consumption of Black history. Given the educational climate in which many students' exposure to Black history may come from outside of schools, the authors examine how Walmart's Black History Month Web site produced simplistic and safe narratives about African American history.
Low-mass black holes as the remnants of primordial black hole formation
Greene, Jenny E
2012-01-01
This article documents our ongoing search for the elusive "intermediate-mass" black holes. These would bridge the gap between the approximately ten solar mass "stellar-mass" black holes that are the end-product of the life of a massive star, and the "supermassive" black holes with masses of millions to billions of solar masses found at the centers of massive galaxies. The discovery of black holes with intermediate mass is the key to understanding whether supermassive black holes can grow from stellar-mass black holes, or whether a more exotic process accelerated their growth only hundreds of millions of years after the Big Bang. Here we focus on searches for black holes with masses of 10^4-10^6 solar masses that are found at galaxy centers. We will refer to black holes in this mass range as "low-mass" black holes, since they are at the low-mass end of supermassive black holes. We review the searches for low-mass black holes to date and show tentative evidence, from the number of low-mass black holes that are ...
Causticizing for Black Liquor Gasifiers
Energy Technology Data Exchange (ETDEWEB)
Scott Sinquefeld; James Cantrell; Xiaoyan Zeng; Alan Ball; Jeff Empie
2009-01-07
The cost-benefit outlook of black liquor gasification (BLG) could be greatly improved if the smelt causticization step could be achieved in situ during the gasification step. Or, at a minimum, the increase in causticizing load associated with BLG could be mitigated. A number of chemistries have been proven successful during black liquor combustion. In this project, three in situ causticizing processes (titanate, manganate, and borate) were evaluated under conditions suitable for high temperature entrained flow BLG, and low temperature steam reforming of black liquor. The evaluation included both thermodynamic modeling and lab experimentation. Titanate and manganate were tested for complete direct causticizing (to thus eliminate the lime cycle), and borates were evaluated for partial causticizing (to mitigate the load increase associated with BLG). Criteria included high carbonate conversion, corresponding hydroxide recovery upon hydrolysis, non process element (NPE) removal, and economics. Of the six cases (three chemistries at two BLG conditions), only two were found to be industrially viable: titanates for complete causticizing during high temperature BLG, and borates for partial causticizing during high temperature BLG. These two cases were evaluated for integration into a gasification-based recovery island. The Larsen [28] BLG cost-benefit study was used as a reference case for economic forecasting (i.e. a 1500 tpd pulp mill using BLG and upgrading the lime cycle). By comparison, using the titanate direct causticizing process yielded a net present value (NPV) of $25M over the NPV of BLG with conventional lime cycle. Using the existing lime cycle plus borate autocausticizing for extra capacity yielded a NPV of $16M.
Black Hole Researchers in Schools
Doran, Rosa
2016-07-01
"Black Holes in my School" is a research project that aims to explore the impact of engaging students in real research experiences while learning new skills and topics addressed in the regular school curriculum. The project introduces teachers to innovative tools for science teaching, explore student centered methodologies such as inquiry based learning and provides a setting where students take the role of an astrophysicist researching the field of compact stellar mass objects in binary systems. Students will study already existing data and use the Faulkes Telescopes to acquire new data. In this presentation the main aim is to present the framework being built and the results achieved so far.
REFRACTORY FOR BLACK LIQUOR GASIFIERS
Energy Technology Data Exchange (ETDEWEB)
William L. Headrick Jr; Musa Karakus; Jun Wei
2005-03-01
The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective
Institute of Scientific and Technical Information of China (English)
Yuko
2012-01-01
《黑岩射手（Black RockShooter）》无疑是2月番中最吸引眼球的新番了。本作的人气高到几乎全国各地的漫展都可以看到黑岩射手MATO（麻陶）的Cosplay——一位身穿黑衣短裤．手持巨型枪械，左眼发出蓝色火焰般的光芒的少女。
Corda, Christian
2015-01-01
The idea that black holes (BHs) result in highly excited states representing both the "hydrogen atom" and the "quasi-thermal emission" in quantum gravity is today an intuitive but general conviction. In this paper it will be shown that such an intuitive picture is more than a picture. In fact, we will discuss a model of quantum BH somewhat similar to the historical semi-classical model of the structure of a hydrogen atom introduced by Bohr in 1913. The model is completely consistent with existing results in the literature, starting from the celebrated result of Bekenstein on the area quantization.
Dynamics around supermassive black holes
Gualandris, Alessia
2007-01-01
The dynamics of galactic nuclei reflects the presence of supermassive black holes (SBHs) in many ways. Single SBHs act as sinks, destroying a mass in stars equal to their own mass in roughly one relaxation time and forcing nuclei to expand. Formation of binary SBHs displaces a mass in stars roughly equal to the binary mass, creating low-density cores and ejecting hyper-velocity stars. Gravitational radiation recoil can eject coalescing binary SBHs from nuclei, resulting in offset SBHs and lopsided cores. We review recent work on these mechanisms and discuss the observable consequences.
Comparisons of Black Hole Entropy
Kupferman, Judy
2016-01-01
In this thesis I examine several different concepts of black hole entropy in order to understand whether they describe the same quantity. I look at statistical and entanglement entropies, Wald entropy and Carlip's entropy from conformal field theory, and compare their behavior in a few specific aspects: divergence at the BH horizon, dependence on space time curvature and behavior under a geometric variation. I find that statistical and entanglement entropy may be similar but they seem to differ from the entropy of Wald and Carlip. Chapters 2 and 3 overlap with 1010.4157 and 1310.3938. Chapter 4 does not appear elsewhere.
Black Sea coastal forecasting system
Directory of Open Access Journals (Sweden)
A. I. Kubryakov
2012-03-01
Full Text Available The Black Sea coastal nowcasting and forecasting system was built within the framework of EU FP6 ECOOP (European COastalshelf sea OPerational observing and forecasting system project for five regions: the south-western basin along the coasts of Bulgaria and Turkey, the north-western shelf along the Romanian and Ukrainian coasts, coastal zone around of the Crimea peninsula, the north-eastern Russian coastal zone and the coastal zone of Georgia. The system operates in the real-time mode during the ECOOP project and afterwards. The forecasts include temperature, salinity and current velocity fields. Ecosystem model operates in the off-line mode near the Crimea coast.
Glucoamylase I of Black Aspergillus
Medda, Sukumar; Saha, Badal Chandra; Ueda, Seinosuke
1982-01-01
Glucoamylase I of black Aspergillus was purified by (NH_4)_2SO_4 precipitation, ethanol fractionation, ion exchange chromatography on DEAE-cellulose, preparative isoelectric focusing and Sephadex G-100 gel filtration. The enzyme thus purified was found to contain no α-amylase and appeared to be homogeneous in polyacrylamide gel electrophoresis. The isoelectric point of glucoamylase I was at pH 3.4. The optimum conditions for its action on boiled soluble starch were at 60℃ and pH 4.5. The enzy...
Black hole as a wormhole factory
Kim, Sung-Won; Park, Mu-In
2015-12-01
There have been lots of debates about the final fate of an evaporating black hole and the singularity hidden by an event horizon in quantum gravity. However, on general grounds, one may argue that a black hole stops radiation at the Planck mass (ħc / G) 1 / 2 ∼10-5 g, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a wormhole-like structure, known as "spacetime foam", due to large fluctuations below the Planck length (ħG /c3) 1 / 2 ∼10-33 cm. In this paper, as an explicit example, we consider an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called "Black Wormhole", consists of two different states, depending on its mass parameter M and an IR parameter ω: For the black hole state (with ωM2 > 1 / 2), a non-traversable wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state (with ωM2 Censorship" by the existence of a wormhole-like structure which protects the naked singularity even after the black hole evaporation. One could understand the would-be wormhole inside the black hole horizon as the result of microscopic wormholes created by "negative" energy quanta which have entered the black hole horizon in Hawking radiation process; the quantum black hole could be a wormhole factory! It is found that this speculative picture may be consistent with the recent " ER = EPR " proposal for resolving the black hole entanglement debates.
Early Family Deaths May Create 'Grief Gap' for Blacks
... https://medlineplus.gov/news/fullstory_163190.html Early Family Deaths May Create 'Grief Gap' for Blacks Compared ... Americans, the researchers found that death strikes black families significantly earlier than whites on average. "Blacks were ...
Black Dialect and Academic Success: A Study of Teacher Expectations.
Cecil, Nancy Lee
1988-01-01
Compares teacher expectations for Black children who speak Black Dialect with Black children who speak Standard English. Concludes that teachers expect significantly greater overall academic achievement, reading success, and intelligence from children who speak Standard English. (MM)
Rotating embedded black holes: Entropy and Hawking's radiation
2004-01-01
In this paper we derive a class of rotating embedded black holes. Then we study Hawking's radiation effects on these embedded black holes. The surface gravity, entropy and angular velocity are given for each of these black holes.
Curiel, Erik
2014-01-01
In the early 1970s it is was realized that there is a striking formal analogy between the Laws of black-hole mechanics and the Laws of classical thermodynamics. Before the discovery of Hawking radiation, however, it was generally thought that the analogy was only formal, and did not reflect a deep connection between gravitational and thermodynamical phenomena. It is still commonly held that the surface gravity of a stationary black hole can be construed as a true physical temperature and its area as a true entropy only when quantum effects are taken into account; in the context of classical general relativity alone, one cannot cogently construe them so. Does the use of quantum field theory in curved spacetime offer the only hope for taking the analogy seriously? I think the answer is `no'. To attempt to justify that answer, I shall begin by arguing that the standard argument to the contrary is not physically well founded, and in any event begs the question. Looking at the various ways that the ideas of "tempe...
Entanglement Entropy of Black Holes
Solodukhin, Sergey N.
2011-12-01
The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.
Do black holes create polyamory?
Grudka, Andrzej; Horodecki, Michal; Horodecki, Ryszard; Oppenheim, Jonathan; Smolin, John A
2015-01-01
Of course not, but if one believes that information cannot be destroyed in a theory of quantum gravity, then we run into apparent contradictions with quantum theory when we consider evaporating black holes. Namely that the no-cloning theorem or the principle of entanglement monogamy is violated. Here, we show that neither violation need hold, since, in arguing that black holes lead to cloning or non-monogamy, one needs to assume a tensor product structure between two points in space-time that could instead be viewed as causally connected. In the latter case, one is violating the semi-classical causal structure of space, which is a strictly weaker implication than cloning or non-monogamy. We show that the lack of monogamy that can emerge in evaporating space times is one that is allowed in quantum mechanics, and is very naturally related to a lack of monogamy of correlations of outputs of measurements performed at subsequent instances of time of a single system. A particular example of this is the Horowitz-Mal...
Porth, Oliver; Mizuno, Yosuke; Younsi, Ziri; Rezzolla, Luciano; Moscibrodzka, Monika; Falcke, Heino; Kramer, Michael
2016-01-01
We present the black hole accretion code (BHAC), a new multidimensional general-relativistic magnetohydrodynamics module for the MPI-AMRVAC framework. BHAC has been designed to solve the equations of ideal general-relativistic magnetohydrodynamics in arbitrary spacetimes and exploits adaptive mesh refinement techniques with an efficient block-based approach. Several spacetimes have already been implemented and tested. We demonstrate the validity of BHAC by means of various one-, two-, and three-dimensional test problems, as well as through a close comparison with the HARM3D code in the case of a torus accreting onto a black hole. The convergence of a turbulent accretion scenario is investigated with several diagnostics and we find accretion rates and horizon-penetrating fluxes to be convergent to within a few percent when the problem is run in three dimensions. Our analysis also involves the study of the corresponding thermal synchrotron emission, which is performed by means of a new general-relativistic radi...
Black branes in flux compactifications
Energy Technology Data Exchange (ETDEWEB)
Torroba, Gonzalo; Wang, Huajia
2013-10-01
We construct charged black branes in type IIA flux compactifications that are dual to (2 + 1)-dimensional field theories at finite density. The internal space is a general Calabi-Yau manifold with fluxes, with internal dimensions much smaller than the AdS radius. Gauge fields descend from the 3-form RR potential evaluated on harmonic forms of the Calabi-Yau, and Kaluza-Klein modes decouple. Black branes are described by a four-dimensional effective field theory that includes only a few light fields and is valid over a parametrically large range of scales. This effective theory determines the low energy dynamics, stability and thermodynamic properties. Tools from flux compactifications are also used to construct holographic CFTs with no relevant scalar operators, that can lead to symmetric phases of condensed matter systems stable to very low temperatures. The general formalism is illustrated with simple examples such as toroidal compactifications and manifolds with a single size modulus. We initiate the classification of holographic phases of matter described by flux compactifications, which include generalized Reissner-Nordstrom branes, nonsupersymmetric AdS_{2}×R^{2} and hyperscaling violating solutions.
Class Transitions in Black Holes
Chakrabarti, S K
2005-01-01
A black hole spectrum is known to change from the hard state to the soft state when the energy spectral index $\\alpha$ ($F_E \\propto E^{-\\alpha}$) in, say, 2-20 keV range changes from $\\alpha \\sim 0.5$ to $\\sim 1.5$. However, this `classical' definition which characterizes black holes like Cyg X-1, becomes less useful for many objects such as GRS 1915+105 in which the spectral slope is seen to vary from one to the other in a matter of seconds and depending on whether or not winds form, the spectral slope also changes. The light curves and the colour-colour diagrams may look completely different on different days depending on the frequency and mode of switching from one spectral state to the other. Though RXTE observations have yielded wealth of information on such `variability classes' in GRS 1915+105, very rarely one has been able to observe how the object goes from one class to the other. In the present review, we discuss possible origins of the class transition and present several examples of such transiti...
Ogden, Jane; Russell, Sheriden
2013-12-01
This qualitative think aloud study explored how Black women (n = 32) processed information from a White or Black fashion magazine. Comments to the 'White' magazine were characterised by rejection, being critical of the media and ambivalence, whereas they responded to the 'Black' magazine with celebration, identification and a search for depth. Transcending these themes was their self-identity of being a Black woman that was brought to the fore either by a sense of exclusion (White magazine) or engagement (Black magazine). Such an identity provides resilience against the media's thin ideals by minimising the processes of social comparison and internalisation.
Low-mass black holes as the remnants of primordial black hole formation
Greene, Jenny E.
2012-01-01
This article documents our ongoing search for the elusive "intermediate-mass" black holes. These would bridge the gap between the approximately ten solar mass "stellar-mass" black holes that are the end-product of the life of a massive star, and the "supermassive" black holes with masses of millions to billions of solar masses found at the centers of massive galaxies. The discovery of black holes with intermediate mass is the key to understanding whether supermassive black holes can grow from...
REFRACTORY FOR BLACK LIQUOR GASIFIERS
Energy Technology Data Exchange (ETDEWEB)
William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie
2004-10-01
The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective
REFRACTORY FOR BLACK LIQUOR GASIFIERS
Energy Technology Data Exchange (ETDEWEB)
William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei
2005-04-01
The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective
REFRACTORY FOR BLACK LIQUOR GASIFIERS
Energy Technology Data Exchange (ETDEWEB)
William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei
2005-01-01
The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective
Refractory for Black Liquor Gasifiers
Energy Technology Data Exchange (ETDEWEB)
William L. Headrick Jr; Musa Karakus; Xiaoting Liang
2005-10-01
The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected/developed that either react with the gasifier environment to form protective surfaces in
REFRACTORY FOR BLACK LIQUOR GASIFIERS
Energy Technology Data Exchange (ETDEWEB)
William L. Headrick Jr; Musa Karakus; Xiaoting Liang
2005-07-01
The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective
Refractory for Black Liquor Gasifiers
Energy Technology Data Exchange (ETDEWEB)
William L. Headrick Jr; Alireza Rezaie; Xiaoting Liang; Musa Karakus; Jun Wei
2005-12-01
The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected or developed that reacted with the gasifier environment to form protective surfaces in
Refractory for Black Liquor Gasifiers
Energy Technology Data Exchange (ETDEWEB)
William L. Headrick; Musa Karakus; Alireza Rezaie
2004-03-30
The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective
Refractory for Black Liquor Gasifiers
Energy Technology Data Exchange (ETDEWEB)
William L. Headrick Jr; Alireza Rezaie
2003-08-01
The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective
Refractory for Black Liquor Gasifiers
Energy Technology Data Exchange (ETDEWEB)
William L. Headrick Jr; Alireza Rezaie
2003-12-01
The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective
REFRACTORY FOR BLACK LIQUOR GASIFIERS
Energy Technology Data Exchange (ETDEWEB)
William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie
2004-07-01
The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective
REFRACTORY FOR BLACK LIQUOR GASIFIERS
Energy Technology Data Exchange (ETDEWEB)
William L. Headrick Jr.; Alireza Rezaie
2004-04-01
The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective
Refractory for Black Liquor Gasifiers
Energy Technology Data Exchange (ETDEWEB)
Robert E. Moore; William L. Headrick; Alireza Rezaie
2003-03-31
The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective
REFRACTORY FOR BLACK LIQUOR GASIFIERS
Energy Technology Data Exchange (ETDEWEB)
William L. Headrick Jr.; Alireza Rezaie
2003-12-01
The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective
Black Hole Interior in Quantum Gravity.
Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J
2015-05-22
We discuss the interior of a black hole in quantum gravity, in which black holes form and evaporate unitarily. The interior spacetime appears in the sense of complementarity because of special features revealed by the microscopic degrees of freedom when viewed from a semiclassical standpoint. The relation between quantum mechanics and the equivalence principle is subtle, but they are still consistent.
Diagnostic tools to identify black Aspergilli
DEFF Research Database (Denmark)
Samson, Robert A.; Noonim, P.; Meijer, M.;
2007-01-01
The present taxonomy of the black aspergilli reveals that there are 19 accepted taxa. However the identification of species of Aspergillus section Nigri is often problematic in spite of the existence of numerous methods proposed. An overview is provided of phenotypic and molecular methods to iden...... evaluation of the usefulness of various techniques and genomic loci for species identification of black aspergilli is presented....
Area-charge inequality for black holes
Dain, Sergio; Reiris, Martín
2011-01-01
The inequality between area and charge $A\\geq 4\\pi Q^2$ for dynamical black holes is proved. No symmetry assumption is made and charged matter fields are included. Extensions of this inequality are also proved for regions in the spacetime which are not necessarily black hole boundaries.
Cryptosporidiosis in a black bear in Virginia.
Duncan, R B; Caudell, D; Lindsay, D S; Moll, H D
1999-04-01
Cryptosporidiosis has not been previously reported in black bears in North America, either free-roaming or captive. However, oocysts have been documented in two captive Malayan sun bears (Helarctos malayanus) located in zoological parks in Taiwan. Developmental stages of Cryptosporidium parvum were observed in tissue sections from the small intestine of a black bear cub found dead in Virginia (USA).
Black holes as parts of entangled systems
Basini, G.; Capozziello, S.; Longo, G.
A possible link between EPR-type quantum phenomena and astrophysical objects like black holes, under a new general definition of entanglement, is established. A new approach, involving backward time evolution and topology changes, is presented bringing to a definition of the system black hole-worm hole-white hole as an entangled system.
Partition functions for supersymmetric black holes
Manschot, J.
2008-01-01
This thesis presents a number of results on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view. Such a microscopic explanation was desired after the association of a
The Quantum Black-Scholes Equation
Accardi, Luigi
2007-01-01
Motivated by the work of Segal and Segal on the Black-Scholes pricing formula in the quantum context, we study a quantum extension of the Black-Scholes equation within the context of Hudson-Parthasarathy quantum stochastic calculus,. Our model includes stock markets described by quantum Brownian motion and Poisson process.
... HIV/AIDS: The Basics Black Americans and HIV/AIDS: The Basics Feb 07, 2017 Facebook Twitter LinkedIn ... Black Americans have been disproportionately affected by HIV/AIDS since the epidemic’s beginning, and that disparity has ...
Nonthermal nature of extremal Kerr black holes
Rothman, T
2000-01-01
Liberati, Rothman and Sonego have recently showed that objects collapsing into extremal Reissner-Nordstrom black holes do not behave as thermal objects at any time in their history. In particular, a temperature, and hence thermodynamic entropy, are undefined for them. I demonstrate that the analysis goes through essentially unchanged for Kerr black holes.
Effective Potential in Noncommutative BTZ Black Hole
Sadeghi, Jafar; Shajiee, Vahid Reza
2016-02-01
In this paper, we investigated the noncommutative rotating BTZ black hole and showed that such a space-time is not maximally symmetric. We calculated effective potential for the massive and the massless test particle by geodesic equations, also we showed effect of non-commutativity on the minimum mass of BTZ black hole.
Shapes of rotating nonsingular black hole shadows
Amir, Muhammed
2016-01-01
It is a belief that singularities are creation of general relativity and hence in the absence of a quantum gravity, models of nonsingular black hole have received significant attention. We study the shadow (apparent shape), an optical appearance because of its strong gravitational field, cast by a nonsingular black hole which is characterized by three parameters, i.e., mass ($M$), spin ($a$) and a deviation parameter ($k$). The nonsingular black hole, under consideration, is a generalization of the Kerr black hole can be recognized asymptotically ($r>>k, k>0$) explicitly as the Kerr\\(-\\)Newman black hole, and in the limit $k \\rightarrow 0$ as the Kerr black hole. It turns out that the shadow of a nonsingular black hole is a dark zone covered by deformed circle. Interestingly, it is seen that the shadow of a black hole is affected due to the parameter $k$. Indeed, for a given $a$, the size of a shadow reduces as the parameter $k$ increases and the shadow becomes more distorted as we increase the value of the p...
How to Create Black Holes on Earth
Bleicher, Marcus
2007-01-01
We present a short overview on the ideas of large extra dimensions and their implications for the possible production of micro black holes in the next generation particle accelerator at CERN (Geneva, Switzerland) from this year on. In fact, the possibility of black hole production on Earth is currently one of the most exciting predictions for the…
Gravitational Waves From Supermassive Black Holes
di Girolamo, Tristano
2016-10-01
In this talk, I will present the first direct detections of gravitational waves from binary stellar-mass black hole mergers during the first observing run of the two detectors of the Advanced Laser Interferometer Gravitational-wave Observatory, which opened the field of gravitational-wave astronomy, and then discuss prospects for observing gravitational waves from supermassive black holes with future detectors.
ATLAS: Black hole production and decay
2004-01-01
This track is an example of simulated data modelled for the ATLAS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. These tracks would be produced if a miniature black hole was produced in the proton-proton collision. Such a small black hole would decay instantly to various particles via a process known as Hawking radiation.
How bees distinguish black from white
Directory of Open Access Journals (Sweden)
Horridge A
2014-10-01
Full Text Available Adrian Horridge Biological Sciences, Australian National University, Canberra, ACT, AustraliaAbstract: Bee eyes have photoreceptors for ultraviolet, green, and blue wavelengths that are excited by reflected white but not by black. With ultraviolet reflections excluded by the apparatus, bees can learn to distinguish between black, gray, and white, but theories of color vision are clearly of no help in explaining how they succeed. Human vision sidesteps the issue by constructing black and white in the brain. Bees have quite different and accessible mechanisms. As revealed by extensive tests of trained bees, bees learned two strong signals displayed on either target. The first input was the position and a measure of the green receptor modulation at the vertical edges of a black area, which included a measure of the angular width between the edges of black. They also learned the average position and total amount of blue reflected from white areas. These two inputs were sufficient to help decide which of two targets held the reward of sugar solution, but the bees cared nothing for the black or white as colors, or the direction of contrast at black/white edges. These findings provide a small step toward understanding, modeling, and implementing in silicon the anti-intuitive visual system of the honeybee, in feeding behavior. Keywords: vision, detectors, black/white, color, visual processing
Stokely Carmichael: The Story of Black Power.
Johnson, Jacqueline
This biography for younger readers presents the life of Stokely Carmichael, who made famous the phrase "Black Power" as he fought for the rights of black people in the United States and who later settled in Africa, where he organizes young Africans to work for their rights. The book is introduced by an overview of the civil rights…
Lifshitz black holes in IIA supergravity
Barclay, Luke; Gregory, Ruth; Parameswaran, Susha; Tasinato, Gianmassimo; Zavala, Ivonne
2012-01-01
We compute string theoretic black hole solutions having Lifshitz asymptotics with a general dynamical exponent z > 1. We start by constructing solutions in a flux compactification of six dimensional supergravity, then uplift them to massive type HA supergravity. Alongside the Lifshitz black holes we
Finding the Black Self: A Humanistic Strategy.
Jones, Rhett S.
1980-01-01
Presents a strategy for the study of Black self-definition. Discusses the use of the constructs "personality" and "culture" by humanistic psychologists. Attends to the utility of humanistic strategies for penetrating Black presentations of self. Explores humanistic developments in anthropology, history, and sociology, as well as in psychology.…
Black Women Workers in the Twentieth Century.
Newman, Debra Lynn
1986-01-01
At the beginning of the twentieth century one-third of black women worked; most did agricultural or domestic work. Gradually as employment benefits increased and anti-discrimination laws were enforced, work opportunities for black women became more varied and better paying. (VM)
Black Essentialism: The Art of Jazz Rap.
Stewart, Earl; Duran, Jane
1999-01-01
Establishes a black essentialist aesthetic for jazz rap, showing its relation to an African-derived history and other black traditions. Examines newer lines of argument in aesthetics about contemporary recordings focusing on Theodore Gracyk. Argues that jazz rap is defined by actual, not recorded, performance. (CMK)
Songlines from Direct Collapse Seed Black Holes
Aykutalp, Aycin; Wise, John; Spaans, Marco; Meijerink, Rowin
2015-01-01
In the last decade, the growth of supermassive black holes (SMBHs) has been intricately linked to galaxy formation and evolution, and is a key ingredient in the assembly of galaxies. Observations of SMBHs with masses of 109 solar at high redshifts (z~7) poses challenges to the theory of seed black h
Retirement Financial Planning among Black Professionals.
Richardson, Virginia; Kilty, Keith M.
1989-01-01
Compared extent and patterns of financial planning among 234 Black professionals with those of White professionals. Data revealed similar expectations of continued income, supplementing finances by working in another occupation, pension income, and dependency on spouses for income. Although Blacks invested less in stocks and bonds and bank…
Black Hole Entanglement and Quantum Error Correction
Verlinde, E.; Verlinde, H.
2013-01-01
It was recently argued in [1] that black hole complementarity strains the basic rules of quantum information theory, such as monogamy of entanglement. Motivated by this argument, we develop a practical framework for describing black hole evaporation via unitary time evolution, based on a holographic