WorldWideScience

Sample records for black pdms structures

  1. Accounting for PDMS shrinkage when replicating structures

    International Nuclear Information System (INIS)

    Polydimethylsiloxane (PDMS) is a widely used material for fabrication of microfluidic devices and for replication of micro- and nanotextured surfaces. Shrinkage of PDMS in the fabrication process can lead to leaking devices and poor alignment of layers. However, corrections to the mold master are seldom applied to counteract the shrinkage of PDMS. Also, to perform metrological measurements using replica techniques one has to take the shrinkage into account. Thus we report a study of the shrinkage of PDMS with several different mixing ratios and curing temperatures. The shrinkage factor, with its associated uncertainty, for PDMS in the range 40 to 120 °C is provided. By applying this correction factor, it is possible to replicate structures with a standard uncertainty of less than 0.2% in lateral dimensions using typical curing temperatures and PDMS mixing ratios in the range 1:6 to 1:20 (agent:base). (technical note)

  2. Accounting for PDMS shrinkage when replicating structures

    DEFF Research Database (Denmark)

    Madsen, Morten Hannibal; Feidenhans'l, Nikolaj Agentoft; Hansen, Poul-Erik;

    2014-01-01

    are seldom applied to counteract the shrinkage of PDMS. Also, to perform metrological measurements using replica techniques one has to take the shrinkage into account. Thus we report a study of the shrinkage of PDMS with several different mixing ratios and curing temperatures. The shrinkage factor, with its...... associated uncertainty, for PDMS in the range 40 to 120 °C is provided. By applying this correction factor, it is possible to replicate structures with a standard uncertainty of less than 0.2% in lateral dimensions using typical curing temperatures and PDMS mixing ratios in the range 1:6 to 1:20 (agent:base)....

  3. A new approach to fabricate pdms structures using femtosecond laser

    Science.gov (United States)

    Selvaraj, Hamsapriya

    Polydimethylsiloxane (PDMS) is commonly used to prototype micro and nano featured components due to its beneficial properties. PDMS based devices have been used for diverse applications such as cell culturing, cell sorting and sensors. Motivated by such diverse applications possible through pure PDMS and reinforced PDMS, numerous efforts have been directed towards developing novel fabrication techniques. Prototyping 2D and 3D pure and reinforced PDMS microdevices normally require a long curing time and must go through multiple steps. This research explores the possibility of fabricating microscale and nanoscale structures directly from PDMS resin using femtosecond laser processing. This study offers an alternative fabrication route that potentially lead to a new way for prototyping of pure and reinforced PDMS devices, and the generation of hybrid nanomaterials. In depth investigation of femtosecond laser irradiation of PDMS resin reveals that the process is highly intensity-dependent. At low to intermediate intensity regime, femtosecond laser beam is able to rapidly cure the resin and create micron-sized structures directly from PDMS resin. At higher intensity regime, a total break-down of the resin material occurs and leads to the formation of PDMS nanoparticles. This work demonstrates a new way of rapid curing of PDMS resin on a microsecond timescale using femtosecond laser irradiation. The proposed technique permits maskless singlestep curing and is capable of fabricating 2D and 3D structures in micro-scale. Reinforced PDMS microstructures also have been fabricated through this method. The proposed technique permits both reinforcement and rapid curing and is ideal for fabricating reinforced structures in microscale. The strength of the nanofiber reinforced PDMS microstructures has been investigated by means of Nanoindentation test. The results showed significant improvement in strength of the material. Hybrid PDMS-Si and hybrid PDMS-Al nanoparticle aggregate

  4. How does the molecular network structure influence PDMS elastomer wettability?

    Science.gov (United States)

    Melillo, Matthew; Genzer, Jan

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from medical devices to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - microfluidic devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, end-group chemical functionality, and the extent of dilution of the curing mixture on the mechanical and surface properties of end-linked PDMS networks. The gel and sol fractions, storage and loss moduli, liquid swelling ratios, and water contact angles have all been shown to vary greatly based on the aforementioned variables. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have confirmed theories predicting the relationships between modulus and swelling. Furthermore, we have provided new evidence for the strong influence that substrate modulus and molecular network structure have on the wettability of PDMS elastomers. These findings will aid in the design and implementation of efficient microfluidics and other PDMS-based materials that involve the transport of liquids.

  5. Micro-structured PDMS piezoelectric enhancement through charging conditions

    Science.gov (United States)

    Kachroudi, Achraf; Basrour, Skandar; Rufer, Libor; Sylvestre, Alain; Jomni, Fathi

    2016-10-01

    Micro-structured cellular polydimethylsiloxane (PDMS) materials were prepared by a low-cost molding process allowing us to control geometry and sample size. Cellular structures are charged with a triangular quasi-static voltage with amplitudes between 1 kV and 4 kV and a frequency of 0.5 Hz fixed after having evaluated the conditions enhancing the piezoelectric response of the cellular PDMS. The piezo-electret PDMS material charged at room temperature has a piezoelectric coefficient d 33 of 350 pC/N, which is ten times larger than that of polyvinylidene fluoride. The high piezoelectric coefficient with a very low elastic modulus of 300 kPa makes these materials very useful for wearable device applications. The piezoelectric coefficient d 33 of the samples poled at high temperatures improves thermal stability but reduces PDMS piezo-electret piezoelectricity, which is explained by the structure’s stiffness. These results are useful and allow us to set the conditions for the preparation of the piezo-electret materials according to desired applications.

  6. [The Study of PDMS Grating Structure Gradient Preparation Techniques].

    Science.gov (United States)

    Wang, Chen-guang; Yang, Jiang-tao; Kang, Ning; Guo, Hao; Tang, Jun; Liu, Jun; Xue, Chen-yang

    2015-12-01

    Because traditional method for tunable grating fabrication has harsh process condition, complex fabrication process, high costs and long cycle. Proposed a low-cost, simple process, can be prepared in large quantities gradient grating process method, based on self-assembly process using the rigid film/flexible substrate and oxygen plasma method prepared a micron scale gradient grating. Use of plasma free time controllability and excellent elastic of PDMS obtained the desired grating. First, polyethylene terephthalate (PET) was spin-coated layer of polydimethylsiloxane (PDMS) film on the thin film, two-layer film to be cured PDMS film after bending and treated with an oxygen plasma (plasma), in generating a rigid surface oxide layer, With flexible PET rigid layer applied uniform stress, when the stress exceeds the critical value, the PDMS substrate to form a self-assembled structure grating fold. Due to changes in prestressed bending, so the PDMS film formation period and height of the grating stepped fold, which is graded grating. Using visible light as the performance test light source for graded grating and selecting first-order diffracted as the detection target. The authors can see the grating has a good diffraction effects and achieves good spectral effect. Experiments show that graded grating has obvious diffraction grating, and the diffraction angle varies significantly, and can be widely used for stress measurement, the flexible gradient grating prepared by this method can also be used to detect changes in the stress strain as a miniature device, the future is expected for miniature spectrometer, scanners, optical communications and other fields. PMID:26964244

  7. Structured PDMS Chambers for Enhanced Human Neuronal Cell Activity on MEA Platforms

    Institute of Scientific and Technical Information of China (English)

    Joose Kreutzer; Laura Yl(a)-Outinen; Paula K(a)irn(a); Tiina Kaarela; Jarno Mikkonen; Heli Skottman; Susanna Narkilahti; Pasi Kallio

    2012-01-01

    Structured poly(dimethylsiloxane) (PDMS) chambers were designed and fabricated to enhance the signaling of human Embryonic Stem Cell (hESC) - derived neuronal networks on Microelectrode Array (MEA) platforms.The structured PDMS chambers enable cell seeding on restricted areas and thus,reduce the amount of needed coating materials and cells.In addition,the neuronal cells formed spontaneously active networks faster in the structured PDMS chambers than that in control chainbers.In the PDMS chambers,the neuronal networks were more active and able to develop their signaling into organized signal trains faster than control cultures.The PDMS chamber design enables much more repeatable analysis and rapid growth of functional neuronal network in vitro.Moreover,due to its easy and cheap fabrication process,new configurations can be easily fabricated based on investigator requirements.

  8. Beam pen lithography based on arrayed polydimethylsiloxane (PDMS) micro-pyramids spin-coated with carbon black photo-resist

    International Nuclear Information System (INIS)

    This paper presents a new method for preparing a polydimethylsiloxane (PDMS) mold which can be used in beam pen lithography for patterning a photo-resist (PR) layer in a maskless and direct-write manner. The PDMS mold contains an array of micro-pyramids on its surface and is spin-coated with a layer of carbon black PR which is an opaque material. Because of the arrayed pyramidal surface profile, the spin-coated carbon black PR layer is either thinner at the pyramid tips or does not cover the tips at all, which allows ultraviolet (UV) light to pass through the PDMS mold and forms an array of UV beams. The aperture size of the UV beams can be controlled at a sub-micrometer scale and hence can be used for micro/nano-patterning. Applying this carbon black-PR-coated PDMS mold in beam pen lithography along with a metal lift-off process, various metal dot patterns with a dot-size around 400 to 500 nm are successfully obtained. Both experimental results and theoretical analysis are given along with possible improvements and applications in the future. (paper)

  9. Study on hierarchical structured PDMS for surface super-hydrophobicity using imprinting with ultrafast laser structured models

    Science.gov (United States)

    Liu, Bin; Wang, Wenjun; Jiang, Gedong; Mei, Xuesong; Wang, Zibao; Wang, Kedian; Cui, Jianlei

    2016-02-01

    We report a simple and inexpensive method for producing super-hydrophobic surfaces through direct replication of micro/nano-structures on polydimethylsiloxane (PDMS) from a replication master prepared by ultrafast-laser texturing process. Gratings were obtained on 304L stainless steel plate using picosecond laser ablation. It has been used as a master with grating areas of different structural features. PDMS negative replica was prepared from the masters, and PDMS positive replica was prepared from the negative replica thereafter. Wettability of samples of the steel master, negative and positive replicas was distinguished using the apparent contact angle (CA) of water drop. Relationships between the CAs on three kinds of samples and structural features were presented. Super-hydrophobic behavior with self-cleaning, exhibited by a water contact angle of 164.5° and sliding angle of 8.44°, was observed on the PDMS negative replica surface. The negative and positive replicas were sputtered on gold films, which were used to metalized PDMS and eliminate the submicron/nano-structures in hierarchical structures. Results prove that submicro/nano-structures of hierarchical structures enhance the hydrophobicity of material surface remarkably. This replication method can be applied for large scale production of micro/nano textured super-hydrophobic surfaces for commercial applications.

  10. The Mechanical Aspects of Formation and Application of PDMS Bilayers Rolled into a Cylindrical Structure

    Directory of Open Access Journals (Sweden)

    Dongwon Kang

    2015-01-01

    Full Text Available A polydimethylsiloxane (PDMS film with its surface being oxidized by a plasma treatment or a UV-ozone (UVO treatment, that is, a bilayer made of PDMS and its oxidized surface layer, is known to roll into a cylindrical structure upon exposure to the chloroform vapor due to the mismatch in the swelling ratio between PDMS and the oxidized layer by the chloroform vapor. Here we analyzed the formation of the rolled bilayer with the mechanical aspects: how the mismatch in the swelling ratio of the bilayer induces rolling of the bilayer, why any form of trigger that breaks the symmetry in the in-plane stress level is needed to roll the bilayer uniaxially, why the rolled bilayer does not unroll in the dry state when there is no more mismatch in the swelling ratio, and how the measured curvature of rolled bilayer matches well with the prediction by the theory. Moreover, for the use of the rolled bilayer as the channel of the microfluidic device, we examined whether the rolled bilayer deforms or unrolls by the flow of the aqueous solution that exerts the circumferential stress on the rolled bilayer.

  11. TECHNICAL NOTE: Spun-cast micromolding for etchless micropatterning of electrically functional PDMS structures

    Science.gov (United States)

    McClain, Maxine A.; La Placa, Michelle C.; Allen, Mark G.

    2009-10-01

    Polydimethylsiloxane (PDMS) is widely used in bioMEMS applications; however, patterning of this material to form complex structures is often challenging. Chemical etches are typically ineffective due to the inertness of the material. Plasma processing of bulk material can be time intensive and presents concerns regarding the mechanical properties of the post-etched polymer due to etch-induced cross-linking of surrounding material. Presented in this paper, the etchless process of spun-cast micromolding (SCμM) is used to create an array of patterned, PDMS, electrical microcables. The microcables are arranged in a net-like array and incorporate electrical functionality. The geometries fabricated with these techniques include straight and sinusoidal microcables. In addition to the cables themselves, specific regions of the cables' top insulating layer can also be patterned using a hierarchical application of the SCμM process, creating exposed electrical access sites useful as electrical access points for electrophysiological applications. The SCμM process is a simple, relatively rapid technique that can be used to make highly compliant electronic structures with patternable geometries.

  12. MICROPHASE SEPARATED STRUCTURES AND PROPERTIES OF PDMS-MDI-PEG COPOLYMER SURFACE

    Institute of Scientific and Technical Information of China (English)

    Hong-xia Fang; Li-bang Feng; Li-min Wu

    2009-01-01

    A series of poly(dimethylsiloxane) (PDMS)-4,4'-diphenylmethanediisocyanate(MDI)-poly(ethylene glycol) (PEG) multiblock copolymers were synthesized by employing two-step growth polymerization and investigated by AFM, XPS, contact angle system, protein adsorption and platelets adhesion measurements, respectively. It was found that as the molecular weight of PDMS increased, the surface of copolymers had increasing phase separation, while the increase in the molecular weight of PEG decreased the phase separation extents of the copolymer surface. XPS and contact angle measurements showed that the greater the phase separation extent was, the lower both the surface enrichment of PDMS and the surface free energy of the copolymer film were. The protein adsorption experiments indicated that the best phase separation did not exhibit the best biocompatibility.

  13. A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips

    KAUST Repository

    Zhang, Mengying

    2010-01-01

    We report a simple methodology to fabricate PDMS multi-layer microfluidic chips. A PDMS slab was surface-treated by trichloro (1H,1H,2H,2H-perfluorooctyl) silane, and acts as a reusable transferring layer. Uniformity of the thickness of the patterned PDMS layer and the well-alignment could be achieved due to the transparency and proper flexibility of this transferring layer. Surface treatment results are confirmed by XPS and contact angle testing, while bonding forces between different layers were measured for better understanding of the transferring process. We have also designed and fabricated a few simple types of 3D PDMS chip, especially one consisting of 6 thin layers (each with thickness of 50 μm), to demonstrate the potential utilization of this technique. 3D fluorescence images were taken by a confocal microscope to illustrate the spatial characters of essential parts. This fabrication method is confirmed to be fast, simple, repeatable, low cost and possible to be mechanized for mass production. © The Royal Society of Chemistry 2010.

  14. Hidden Structures of Black Holes

    CERN Document Server

    Vercnocke, Bert

    2010-01-01

    This thesis investigates two main topics concerning black holes in extensions of general relativity inspired by string theory. First, the structure of the equations of motion underlying black hole solutions is considered, in theories of D-dimensional gravity coupled to scalars and vectors. For solutions preserving supersymmetry, the equations of motion have a dramatic simplification: they become first-order instead of the second-order equations one would expect. Recently, it was found that this is a feature some non-supersymmetric black hole solutions exhibit as well. We investigate if this holds more generally, by examining what the conditions are to have first-order equations for the scalar fields of non-supersymmetric black holes, that mimic the form of their supersymmetric counterparts. This is illustrated in examples. Second, the structure of black holes themselves is investigated. String theory has been successful in explaining the Bekenstein-Hawking entropy for (mainly supersymmetric) black holes from ...

  15. Time-Dependent Wetting Behavior of PDMS Surfaces with Bio-Inspired, Hierarchical Structures

    KAUST Repository

    Mishra, Himanshu

    2015-12-28

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, non-uniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 10-7-10-4 m. Under saturated vapor conditions, we found that in the short-term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θSDT = 140° ± 3°, was accurately described by the Cassie-Baxter model (predicted θSDT = 137°); however, after 90 min, θSDT fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θSDT to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θSDT to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and

  16. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.

    Science.gov (United States)

    Mishra, Himanshu; Schrader, Alex M; Lee, Dong Woog; Gallo, Adair; Chen, Szu-Ying; Kaufman, Yair; Das, Saurabh; Israelachvili, Jacob N

    2016-03-01

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, nonuniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 1 × 10(-7) to 1 × 10(-4) m. Under saturated vapor conditions, we found that in the short term (PDMS, θ(SDT) = 140 ± 3°, was accurately described by the Cassie-Baxter model (predicted θ(SDT) = 137°); however, after 90 min, θ(SDT) fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θ(SDT) to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θ(SDT) to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and development of long- and short-lived coatings. PMID

  17. Rapid bonding of polydimethylsiloxane (PDMS) to various stereolithographically (STL) structurable epoxy resins using photochemically cross-linked intermediary siloxane layers

    Science.gov (United States)

    Wilhelm, Elisabeth; Neumann, Christiane; Sachsenheimer, Kai; Länge, Kerstin; Rapp, Bastian E.

    2014-03-01

    In this paper we present a fast, low cost bonding technology for combining rigid epoxy components with soft membranes made out of polydimethylsiloxane (PDMS). Both materials are commonly used for microfluidic prototyping. Epoxy resins are often applied when rigid channels are required, that will not deform if exposed to high pressure. PDMS, on the other hand, is a flexible material, which allows integration of membrane valves on the chip. However, the integration of pressure driven components, such as membrane valves and pumps, into a completely flexible device leads to pressure losses. In order to build up pressure driven components with maximum energy efficiency a combination of rigid guiding channels and flexible membranes would be advisable. Stereolithographic (STL) structuring would be an ideal fabrication technique for this purpose, because complex 3D-channels structures can easily be fabricated using this technology. Unfortunately, the STL epoxies cannot be bonded using common bonding techniques. For this reason we propose two UV-light based silanization techniques that enable plasma induced bonding of epoxy components. The entire process including silanization and corona discharge bonding can be carried out within half an hour. Average bond strengths up to 350 kPa (depending on the silane) were determined in ISO-conform tensile testing. The applicability of both techniques for microfluidic applications was proven by hydrolytic stability testing lasting more than 40 hours.

  18. Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor.

    Science.gov (United States)

    Joo, Yunsik; Byun, Junghwan; Seong, Narkhyeon; Ha, Jewook; Kim, Hyunjong; Kim, Sangwoo; Kim, Taehoon; Im, Hwarim; Kim, Donghyun; Hong, Yongtaek

    2015-04-14

    The development of highly sensitive pressure sensors with a low-cost and facile fabrication technique is desirable for electronic skins and wearable sensing devices. Here a low-cost and facile fabrication strategy to obtain multiscale-structured elastomeric electrodes and a highly sensitive and robust flexible pressure sensor is presented. The principles of spontaneous buckle formation of the PDMS surface and the embedding of silver nanowires are used to fabricate the multiscale-structured elastomeric electrode. By laminating the multiscale-structured elastomeric electrode onto the dielectric layer/bottom electrode template, the pressure sensor can be obtained. The pressure sensor is based on the capacitive sensing mechanism and shows high sensitivity (>3.8 kPa(-1)), fast response and relaxation time (sensor arrays and they can detect the spatial distribution of the applied pressure. It is also demonstrated that the fingertip pressure sensing device can sense the pressure distribution of each finger, when grabbing an object. PMID:25779911

  19. Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor.

    Science.gov (United States)

    Joo, Yunsik; Byun, Junghwan; Seong, Narkhyeon; Ha, Jewook; Kim, Hyunjong; Kim, Sangwoo; Kim, Taehoon; Im, Hwarim; Kim, Donghyun; Hong, Yongtaek

    2015-04-14

    The development of highly sensitive pressure sensors with a low-cost and facile fabrication technique is desirable for electronic skins and wearable sensing devices. Here a low-cost and facile fabrication strategy to obtain multiscale-structured elastomeric electrodes and a highly sensitive and robust flexible pressure sensor is presented. The principles of spontaneous buckle formation of the PDMS surface and the embedding of silver nanowires are used to fabricate the multiscale-structured elastomeric electrode. By laminating the multiscale-structured elastomeric electrode onto the dielectric layer/bottom electrode template, the pressure sensor can be obtained. The pressure sensor is based on the capacitive sensing mechanism and shows high sensitivity (>3.8 kPa(-1)), fast response and relaxation time (pressure sensor arrays and they can detect the spatial distribution of the applied pressure. It is also demonstrated that the fingertip pressure sensing device can sense the pressure distribution of each finger, when grabbing an object.

  20. Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers

    DEFF Research Database (Denmark)

    Schulte, Lars; Grydgaard, Anne; Jakobsen, Mathilde R.;

    2011-01-01

    Experimental procedures used at the preparation and characterization stages of nanoporous materials (NPM) from 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymers are presented. The NPM were obtained from self-assembled block copolymers after firstly cross-linking 1,2-PB (the...

  1. Fabrication of PDMS (poly-dimethyl siloxane) molding and 3D structure by two-photon absorption induced by an ultrafast laser

    Science.gov (United States)

    Yi, Shin Wook; Lee, Seong Ku; Cho, Mi Jung; Kong, Hong Jin; Yang, Dong-Yol; Park, Sang-hu; Lim, Tae-woo; Kim, Ran Hee; Lee, Kwang-Sup

    2004-12-01

    Multi-photon absorption phenomena induced by ultra fast laser have been considered for many applications of microfabrications such as metal ablation, glass etching and photopolymerization. Among the applications, the photopolymerization by two-photon absorption (TPA) has been regarded as a new microfabricating method. It is possible to be used in photo mask correcting, diffractive optical element and micro machining. The TPA photopolymerization is made possible to fabricate a complicated three dimensional structure which the conventional photomask technology has not been able to make. Furthermore the TPA photopolymerization process applied to a two dimensional structure fabrication may take shorter time than the old process since the absence of etching and deposition processes. Recently we have made a simple 3D structure and applied the technique to PDMS(poly-dimethyl siloxane) molding.

  2. PCL-b-PDMS-b-PCL复合环氧树脂的表面结构%Surface Structure of Epoxy Resin Blended with PCL-b-PDMS-b-PCL

    Institute of Scientific and Technical Information of China (English)

    李慧琴; 金承钰; 范文春; 梁齐

    2009-01-01

    利用原子力显微镜(AFM)中的敲击模式原子力显微镜(TM-AFM)和摩擦力显微镜(FFM)对不同含量聚己内酯-b-聚二甲基硅氧烷-b-聚己内酯三嵌段(PCL-b-PDMS-b-PCL)共聚物复合环氧树脂的表面富集结构进行了分析研究.TM-AFM测试在不同作用力下得到了PCL-b-PDMS-b-PCL含量不同环氧树脂表面及其亚表面的分相结构;同时利用FFM对其表面进行摩擦和磨损试验.结果表明,PCL-b-PDMS-b-PCL含量不同时摩擦性能表现出较大的变化,当其质量分数达到30%时,表面性能达到了稳定.接触角试验也验证了以上的结果.

  3. 3D structures of liquid-phase GaIn alloy embedded in PDMS with freeze casting.

    Science.gov (United States)

    Fassler, Andrew; Majidi, Carmel

    2013-11-21

    Liquid phase electronic circuits are created by freeze casting gallium-indium (GaIn) alloys, such as eutectic gallium-indium (EGaIn), and encapsulating these frozen components within an elastomer. These metal alloys are liquid at room temperature, and can be cast using either injection or a vacuum to fill a PDMS mold and placing the mold in a freezer. Once solidified, a GaIn alloy segment can be manipulated, altered, or bonded to other circuit elements. A stretchable circuit can be fabricated by placing frozen components onto an elastomer substrate, which can be either patterned or flat, and sealing with an additional layer of elastomer. Circuits produced in this fashion are soft, stretchable, and can have complex 3D channel geometries. In contrast, current fabrication techniques, including needle injection, mask deposition, and microcontact printing, are limited to 2D planar designs. Additionally, freeze casting fabrication can create closed loops, multi-terminal circuits with branching features, and large area geometries. PMID:24067934

  4. Hawking Radiation from Regular Black Hole as a Possible Probe for Black Hole Interior Structure

    CERN Document Server

    Deng, Yanbin

    2016-01-01

    The notion of the black hole singularity and the proof of the singularity theorem in general relativity were considered great successes in gravitational physics. On the other hand they also presented deep puzzles to physicists. Conceptual challenges were set up by the intractability of the singularity. The existence of black hole horizons which cover up the interior, including the singularity of the black hole from outside observers, builds an information curtain, further hindering physicists from understanding the nature of the singularity and the interior structure of black holes. The regular black hole is a concept produced out of multiple attempts to establish a tractable and understandable interior structure for black hole and to avoid the singularity inside the black hole body. A method is needed to check the correctness of the new constructions of black holes. After studying the Hawking radiation by fermion tunnelling from one type of regular black hole, structure dependent results were obtained. The r...

  5. Phase Structure of Higher Spin Black Hole

    CERN Document Server

    Chen, Bin; Wang, Yi-Nan

    2013-01-01

    In this paper, we investigate the phase structures of the black holes with one single higher spin hair, focusing specifically on the spin 3 and spin tilde 4 black holes. Based on dimensional analysis and the requirement of having consistent thermodynamics, we derive an universal formula relating the entropy and the conserved charges for arbitrary AdS3 higher spin black holes. Then we use it to study the phase structure of the higher spin black holes. We find that there are six branches of solutions in the spin 3 gravity, eight branches of solutions in the spin tilde 4 gravity and twelve branches of solutions in the G2 gravity. In each case, all branches are related by a simple angle shift in the entropy functions. In the spin 3 case, we reproduce all the results found before. In the spin tilde 4 case, we find that in the low temperature it is at the BTZ branch while in the high temperature it transits to one of two other branches, depending on the signature of the chemical potential, a reflection of charge co...

  6. The Study of PDMS Grating Structure Gradient Preparation Techniques%PD MS梯度光栅结构制备技术研究

    Institute of Scientific and Technical Information of China (English)

    王晨光; 杨江涛; 康宁; 郭浩; 唐军; 刘俊; 薛晨阳

    2015-01-01

    polydimethylsiloxane (PDMS) film on the thin film ,two-layer film to be cured PDMS film after bending and treated with an oxygen plasma (plasma) ,in generating a rigid surface oxide layer ,With flexi-ble PET rigid layer applied uniform stress ,when the stress exceeds the critical value ,the PDMS substrate to form a self-assem-bled structure grating fold .Due to changes in prestressed bending ,so the PDMS film formation period and height of the grating stepped fold ,which is graded grating .Using visible light as the performance test light source for graded grating and selecting first-order diffracted as the detection target .The authors can see the grating has a good diffraction effects and achieves good spectral effect .Experiments show that graded grating has obvious diffraction grating ,and the diffraction angle varies significant-ly ,and can be widely used for stress measurement ,the flexible gradient grating prepared by this method can also be used to de-tect changes in the stress strain as a miniature device ,the future is expected for miniature spectrometer ,scanners ,optical com-munications and other fields .

  7. Evaluating structural and microstructural changes of PDMS –SiO{sub 2} hybrid materials after sterilization by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. Carlos [Department of Materials and Ceramic Engineering/CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Lancastre, Joana [Campus Tecnologico e Nuclear, IST, University of Lisbon, E.N 10, 2686-953 Sacavém (Portugal); Vaz Fernandes, M. Helena [Department of Materials and Ceramic Engineering/CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Margaça, Fernanda M.A.; Ferreira, Luís [Campus Tecnologico e Nuclear, IST, University of Lisbon, E.N 10, 2686-953 Sacavém (Portugal); Miranda Salvado, Isabel M., E-mail: isabelmsalvado@ua.pt [Department of Materials and Ceramic Engineering/CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)

    2015-03-01

    PDMS–SiO{sub 2} hybrid materials obtained by sol–gel process have been extensively studied over the past years due to its promising biomedical applications namely as bone substitutes, catheters, and drug delivery devices. Regardless of the intended biomedical application, all these materials should go through a sterilization process before interfacing with a living structure. However, it is unclear whether they undergo structural and microstructural changes when subjected to sterilization by gamma irradiation. This paper addresses this issue by showing that a sol–gel processed biomaterial based on the PDMS–CaO–SiO{sub 2} hybrid system suffers only small structural changes when submitted to a radiation dose of 25 kGy, the dose usually recommended to achieve a Sterility Assurance Level of 10{sup −6} when the natural contamination level and microorganism types cannot be calculated. The characterization was assessed by FT-IR, {sup 29}Si–{"1H} CP-MAS, thermal analysis (DTG), and SEM. - Highlights: • Hybrid PDMS–SiO{sub 2} materials were subjected to sterilization by γ-irradiation. • Materials suffer only small structural changes when irradiated. • Characterization was assessed by FT-IR, {sup 29}Si-{"1H} CP-MAS, DTG and SEM.

  8. Observational strong gravity and quantum black hole structure

    CERN Document Server

    Giddings, Steven B

    2016-01-01

    Quantum considerations have led many theorists to believe that classical black hole physics is modified not just deep inside black holes but at horizon scales, or even further outward. The near-horizon regime has just begun to be observationally probed for astrophysical black holes -- both by LIGO, and by the Event Horizon Telescope. This suggests exciting prospects for observational constraints on or discovery of new quantum black hole structure.

  9. Structural characterization of allomelanin from black oat.

    Science.gov (United States)

    Varga, Mónika; Berkesi, Ottó; Darula, Zsuzsanna; May, Nóra Veronika; Palágyi, András

    2016-10-01

    The brown to black coloration found in plants is due to the melanins, which have been relatively poorly investigated among the plant pigments. The aim of this work was to study the dark pigment extracted from the black oat hull with respect to composition and structure. Ultraviolet-visible (UV-Vis) spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and Fourier transform infrared (FT-IR) spectroscopy were applied for the characterization of the pigment. UV-Vis spectroscopy revealed that the extracted material displays a broadband, structureless absorption profile a common feature of melanins. MALDI-TOF MS measurements demonstrated that oat melanin is a homopolymer built up from p-coumaric acid and consists mainly of low molecular weight (527-1499 Da) oligomers of 3-9 monomer units. The tetramer oligomer proved to be dominant. The results of the FT-IR analysis indicated that oat melanin is a fully conjugated aromatic system containing tetrasubstituted aromatic rings linked by CC coupling. The in vitro preparation of melanin from p-coumaric acid by horseradish peroxidase was performed for comparison. The resulting polymer consisted of oligomers of 4-9 monomer units similarly to those in oat melanin. However, the building blocks proved to be connected to each other via COC linkages in contrast with the CC linkages in oat melanin. PMID:27427433

  10. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk;

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping...

  11. Primordial Structure of Massive Black Hole Clusters

    OpenAIRE

    Khlopov, Maxim Yu.; Rubin, Sergei G.; Sakharov, Alexander S.(Department of Physics, CERN, 1211, Geneva 23, Switzerland)

    2004-01-01

    We describe a mechanism of the primordial black holes formation that can explain the existence of a population of supermassive black holes in galactic bulges. The mechanism is based on the formation of black holes from closed domain walls. The origin of such domain walls could be a result of the evolution of an effectively massless scalar field during inflation. The initial non-equilibrium distribution of the scalar field imposed by background de-Sitter fluctuations gives rise to the spectrum...

  12. Domain structure of black hole space-times

    International Nuclear Information System (INIS)

    We introduce the domain structure for stationary black hole space-times. The domain structure lives on the submanifold of fixed points of the Killing vector fields. Depending on which Killing vector field has fixed points the submanifold is naturally divided into domains. The domain structure provides invariants of the space-time, both topological and continuous. It is defined for any space-time dimension and any number of Killing vector fields. We examine the domain structure for asymptotically flat space-times and find a canonical form for the metric of such space-times. The domain structure generalizes the rod structure introduced for space-times with D-2 commuting Killing vector fields. We analyze in detail the domain structure for Minkowski space, the Schwarzschild-Tangherlini black hole and the Myers-Perry black hole in six and seven dimensions. Finally, we consider the possible domain structures for asymptotically flat black holes in six and seven dimensions.

  13. Modulating surface stiffness of polydimethylsiloxane (PDMS) with kiloelectronvolt ion patterning

    International Nuclear Information System (INIS)

    This study is to investigate the modulated surface properties of polydimethylsiloxane (PDMS) with kiloelectronvolt ions. By irradiating the PDMS surface with a focused ion beam (FIB, keV Ga+), nano/microscale patterns of controlled stiffness can be fabricated with ion fluence ranging from 0.1–20 pC µm−2. The following nanoindentation measurements with an atomic force microscope (AFM) revealed that Young’s modulus increased exponentially with the increase of ion fluence and reached 2 GPa. The stiffening was found to be less significant with irradiation at a higher ion incident angle and lower accelerating voltage. Raman spectroscopy results also confirmed that disordering caused by cross-linking and hydrogen release occurred on the target PDMS surface. By modelling and experimenting on PDMS-Si3N4 bilayer structures, the volume reduction ratios of PDMS with ion beam and electron beam irradiation were estimated. The proposed site specific modulating method and understanding of detailed governing mechanisms will allow the tuning of the PDMS surface with great accuracy and flexibility towards future applications in tissue engineering and microfabrication. (paper)

  14. Structure of Black Male Students Academic Achievement in Science

    Science.gov (United States)

    Rascoe, Barbara

    Educational policies and practices have been largely unsuccessful in closing the achievement gap between Black and White students "Schwartz, 2001". This achievement gap is especially problematic for Black students in science "Maton, Hrabrowski, - Schmitt, 2000. Given the fact that the Black-White achievement gap is still an enigma, the purpose of this article is to address the Black female-Black male academic achievement gap in science majors. Addressing barriers that Black male students may experience as college science and engineering majors, this article presents marketing strategies relative to politics, emotional intelligence, and issues with respect to how science teaching, and Black male students' responses to it, are different. Many Black male students may need to experience a paradigm shift, which structures and enhances their science achievement. Paradigm shifts are necessary because exceptional academic ability and motivation are not enough to get Black males from their first year in a science, technology, education, and mathematics "STEM" major to a bachelor's degree in science and engineering. The conclusions focus on the balance of truth-slippery slopes concerning the confluence of science teachers' further ado and Black male students' theories, methods, and values that position their academic achievement in science and engineering majors.

  15. Black Hole Structure in Schwarzschild Coordinates

    Directory of Open Access Journals (Sweden)

    Proffitt D.

    2014-07-01

    Full Text Available In the analysis of the interior region of both stationary and rotating black holes, it is customary to switch to a set of in-falling coordinates to avoid problems posed by the coordinate singularity at the event horizon. I take the view here that to understand the physics of black holes, we need to restrict ourselves to book keeper or Schwarzschild coordinates of a distant observer if we are to derive measurable properties. I show that one can derive interesting properties of black holes th at might explain some of the observational evidence available without the necessity of introducing further ad hoc conjectures.

  16. Black Hole Structure in Schwarzschild Coordinates

    OpenAIRE

    Proffitt D.

    2014-01-01

    In the analysis of the interior region of both stationary and rotating black holes, it is customary to switch to a set of in-falling coordinates to avoid problems posed by the coordinate singularity at the event horizon. I take the view here that to understand the physics of black holes, we need to restrict ourselves to book keeper or Schwarzschild coordinates of a distant observer if we are to derive measurable properties. I show that one can derive interesting proper...

  17. Phase structure of fuzzy black holes

    Science.gov (United States)

    Digal, S.; Govindarajan, T. R.; Gupta, Kumar S.; Martin, X.

    2012-01-01

    Noncommutative deformations of the BTZ black holes are described by non- commutative cylinders. We study the scalar fields in this background. The spectrum is studied analytically and through numerical simulations we establish the existence of novel `stripe phases'. These are different from stripes on Moyal spaces and stable due to topo- logical obstruction.

  18. Universal Near-Horizon Conformal Structure and Black Hole Entropy

    Science.gov (United States)

    Chakrabarti, Sayan K.; Gupta, Kumar S.; Sen, Siddhartha

    It is shown that a massless scalar probe reveals a universal near-horizon conformal structure for a wide class of black holes, including the BTZ. The central charge of the corresponding Virasoro algebra contains information about the black hole. With a suitable quantization condition on the central charge, the CFT associated with the black hole in our approach is consistent with the recent observation of Witten, where the dual theory for the BTZ in the AdS/CFT framework has been identified with the construction of Frenkel, Lepowsky and Meurman. This CFT admits the Fischer-Griess monster group as its symmetry. The logarithm of the dimension of a specific representation of the monster group has been identified by Witten as the entropy of the BTZ black hole. Our algebraic approach shows that a wide class of black holes share the same near-horizon conformal structure as that for the BTZ. With a suitable quantization condition, the CFT's for all these black holes in our formalism can be identified with the FLM model, although not through the AdS/CFT correspondence. The corresponding entropy for the BTZ provides a lower bound for the entropy of this entire class of black holes.

  19. Holographic shell model: Stack data structure inside black holes?

    Science.gov (United States)

    Davidson, Aharon

    2014-03-01

    Rather than tiling the black hole horizon by Planck area patches, we suggest that bits of information inhabit, universally and holographically, the entire black core interior, a bit per a light sheet unit interval of order Planck area difference. The number of distinguishable (tagged by a binary code) configurations, counted within the context of a discrete holographic shell model, is given by the Catalan series. The area entropy formula is recovered, including Cardy's universal logarithmic correction, and the equipartition of mass per degree of freedom is proven. The black hole information storage resembles, in the count procedure, the so-called stack data structure.

  20. Structural and magnetic properties of Fe{sub 2-x}CoSm{sub x}O{sub 4}-nanoparticles and Fe{sub 2-x}CoSm{sub x}O{sub 4}-PDMS magnetoelastomers as a function of Sm content

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Mariano M.; Mietta, Jose L.; Soledad Antonel, P. [Instituto de Quimica Fisica de Materiales, Ambiente y Energia (INQUIMAE), Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Cantilo s/n (1428), Buenos Aires (Argentina); Perez, Oscar E. [Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Cantilo s/n (1428), Buenos Aires (Argentina); Martin Negri, R. [Instituto de Quimica Fisica de Materiales, Ambiente y Energia (INQUIMAE), Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Cantilo s/n (1428), Buenos Aires (Argentina); Jorge, Guillermo, E-mail: gjorge@df.uba.ar [Instituto de Fisica de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Cantilo s/n (1428), Buenos Aires (Argentina); Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150 (1613), Los Polvorines, Buenos Aires (Argentina)

    2013-02-15

    We have synthesized magnetic Fe{sub 2-x}CoSm{sub x}O{sub 4} nanoparticles (NPs) by means of the coprecipitation method, varying Sm content from x=0 to x=0.5. Energy-dispersive X-ray spectroscopy showed agreement between the metal proportion of the obtained nanoparticles and the stoichiometric mixture of cations used for the synthesis. Part of the particles were heated at 800 Degree-Sign C, and both were characterized by X-ray diffraction, scanning electron microscope imaging and magnetization measurements. Physical and magnetic properties were analyzed as a function of Sm content, before and after the heating treatment. A phase segregation is found for the calcined nanoparticles with large Sm content. The magnetic remanence, saturation and coercive field were investigated as a function of Sm content for both heated and unheated (as-prepared) particles. Polydimethylsiloxane-NPs magnetoelastomers were prepared and cured under an external uniform magnetic field, obtaining structured anisotropic composites, in which inorganic needles (columnar micrometric structures) oriented in the direction of the magnetic field are formed. Young modulus and remanent magnetic moment were measured and magnetization time relaxation experiments were performed in the directions parallel and perpendicular to the needles in order to determine the magnetic and elastic anisotropy of the composites. The elastic modulus measured parallel to the needles resulted almost twice in magnitude with respect to the perpendicular modulus. The measured magnetic anisotropy of the composites is probably due to the enhanced interparticle interaction within a needle and the freezing of an preferred easy axis distribution among the particles at the curing process. - Highlights: Black-Right-Pointing-Pointer We study magnetic and physical properties of Sm-substituted Fe{sub 2}CoO{sub 4} nanoparticles. Black-Right-Pointing-Pointer Magnetic nanoparticles were synthesized by the coprecipitation method. Black

  1. Supermassive black holes, large scale structure and holography

    CERN Document Server

    Mongan, T R

    2013-01-01

    A holographic analysis of large scale structure in the universe estimates the mass of supermassive black holes at the center of large scale structures with matter density varying inversely as the square of the distance from their center. The estimate is consistent with two important test cases involving observations of the supermassive black hole with mass 3.6\\times10^{-6} times the galactic mass in Sagittarius A^{*} near the center of our Milky Way and the 2\\times10^{9} solar mass black hole in the quasar ULAS J112001.48+064124.3 at redshift z=7.085. It is also consistent with upper bounds on central black hole masses in globular clusters M15, M19 and M22 developed using the Jansky Very Large Array in New Mexico.

  2. Stretchable electronics based on Ag-PDMS composites

    Science.gov (United States)

    Larmagnac, Alexandre; Eggenberger, Samuel; Janossy, Hanna; Vörös, Janos

    2014-12-01

    Patterned structures of flexible, stretchable, electrically conductive materials on soft substrates could lead to novel electronic devices with unique mechanical properties allowing them to bend, fold, stretch or conform to their environment. For the last decade, research on improving the stretchability of circuits on elastomeric substrates has made significant progresses but designing printed circuit assemblies on elastomers remains challenging. Here we present a simple, cost-effective, cleanroom-free process to produce large scale soft electronic hardware where standard surface-mounted electrical components were directly bonded onto all-elastomeric printed circuit boards, or soft PCBs. Ag-PDMS tracks were stencil printed onto a PDMS substrate and soft PCBs were made by bonding the top and bottom layers together and filling punched holes with Ag-PDMS to create vias. Silver epoxy was used to bond commercial electrical components and no mechanical failure was observed after hundreds of stretching cycles. We also demonstrate the fabrication of a stretchable clock generator.

  3. Dynamical structure of magnetized dissipative accretion flow around black holes

    OpenAIRE

    Sarkar, Biplob; Das, Santabrata

    2016-01-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion t...

  4. Horizon structure of rotating Bardeen black hole and particle acceleration

    International Nuclear Information System (INIS)

    We investigate the horizon structure and ergosphere in a rotating Bardeen regular black hole, which has an additional parameter (g) due to the magnetic charge, apart from the mass (M) and the rotation parameter (a). Interestingly, for each value of the parameter g, there exists a critical rotation parameter (a = aE), which corresponds to an extremal black hole with degenerate horizons, while for a < aE it describes a non-extremal black hole with two horizons, and no black hole for a > aE. We find that the extremal value aE is also influenced by the parameter g, and so is the ergosphere. While the value of aE remarkably decreases when compared with the Kerr black hole, the ergosphere becomes thicker with the increase in g.We also study the collision of two equal mass particles near the horizon of this black hole, and explicitly show the effect of the parameter g. The center-of-mass energy (ECM) not only depend on the rotation parameter a, but also on the parameter g. It is demonstrated that the ECM could be arbitrarily high in the extremal cases when one of the colliding particles has a critical angular momentum, thereby suggesting that the rotating Bardeen regular black hole can act as a particle accelerator. (orig.)

  5. EFFECT OF MOLECULAR WEIGHT OF PDMS ON MORPHOLOGY AND MECHANICAL PROPERTIES OF PP/PDMS BLENDS

    Institute of Scientific and Technical Information of China (English)

    Ze-yong Zhao; Wei-wei Yap; Rong-ni Du; Qin Zhang; Qiang Fu; Ze-hao Qiu; Su-lan Yuan

    2009-01-01

    A series of polydimethylsiloxane (PDMS) with varied molecular weights (Mw = 3x106,1x106 and 0.5x106)were melt blended with PP to investigate the effect of PDMS molecular weight (MW) on the morphology and mechanical properties of PP/PDMS blends.Scanning electron microscopic (SEM) examination showed that the size of PDMS domains was dependent on the MW of PDMS.It was found that the lower the value of PDMS MW,the better dispersion of the PDMS domains in the PP matrix.Tensile and Izod impact tests revealed that the addition of PDMS with lower MW would lead to a more significant increase in impact strength of the blends compared with the blends with higher MW ones,while the influence of the molecular weight on tensile strengths of the blends was relatively small in the MW range studied.Differential scanning calorimetry (DSC) results also showed that the crystallization temperature of PP was increased with decreasing PDMS MW,indicating a better nucleation capability of lower MW of PDMS.Melting flow rate (MFR)measurements indicated that the processibility of PP could be enhanced by adding PDMS,and again the lower MW PDMS resulted in better data.Our work demonstrates that not only the processibility but also the mechanical properties of PP could be enhanced to a more significant degree by using low MW PDMS than the higher ones.

  6. Visualisation and characterisation of heterogeneous bimodal PDMS networks

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Fleury, Clemence;

    2014-01-01

    by rheology. All heterogeneous bimodal networks displayed significantly lower moduli than mono-modal PDMS elastomers prepared from the long polymer chains. Low-loss moduli as well as low-sol fractions indicate that low-elastic moduli can be obtained without compromising the network's structure...

  7. Universal near-horizon conformal structure and black hole entropy

    CERN Document Server

    Chakrabarti, Sayan K; Sen, Siddhartha

    2007-01-01

    It is shown that a massless scalar probe reveals a universal near-horizon conformal structure for a wide class of black holes, including the BTZ. The central charge of the corresponding Virasoro algebra contains information about the black hole. With a suitable quantization condition on the central charge, the CFT associated with the black hole in our approach is consistent with the recent observation of Witten, where the dual theory for the BTZ in the AdS/CFT framework has been identified with the construction of Frenkel, Lepowsky and Meurman. This CFT admits the Fischer-Griess monster group as its symmetry. The logarithm of the dimension of a specific representation of the monster group has been identified by Witten as the entropy of the BTZ black hole. Our algebraic approach shows that a wide class of black holes share the same near-horizon conformal structure as that for the BTZ. With a suitable quantization condition, the CFT's for all these black holes can be identified with the FLM model and the corres...

  8. Varying Fine Structure Constant and Black Hole Physics

    CERN Document Server

    Das, S; Das, Saurya; Kunstatter, Gabor

    2003-01-01

    Recent astrophysical observations suggest that the fine structure constant $\\alpha=e^2/\\hbar c$ may be slowly increasing with time. This may be due to an increase of $e$ or a decrease of $c$, or both. In this article, we argue from model independent considerations that this variation should be considered adiabatic. Then, we examine in detail the consequences of such an adiabatic variation in the context of a specific model of quantized charged black holes. We find that the second law of black hole thermodynamics is obeyed, regardless of the origin of the variation, and that interesting constraints arise on the charge and mass of black holes. Finally, we estimate the work done on a black hole of mass $M$ due to the $\\alpha$ variation.

  9. Global Structure of Exact Scalar Hairy Dynamical Black Holes

    CERN Document Server

    Fan, Zhong-Ying; Lu, Hong

    2016-01-01

    We study the global structure of some exact scalar hairy dynamical black holes which were constructed in Einstein gravity either minimally or non-minimally coupled to a scalar field. We find that both the apparent horizon and the local event horizon (measured in luminosity coordinate) monotonically increase with the advanced time as well as the Vaidya mass. At late advanced times, the apparent horizon approaches the event horizon and gradually becomes future outer. Correspondingly, the space-time arrives at stationary black hole states with the relaxation time inversely proportional to the $1/(n-1)$ power of the final black hole mass. These results strongly support the solutions describing the formation of black holes with scalar hair. We also obtain new charged dynamical solutions in the non-minimal theory by introducing an Maxwell field which is non-minimally coupled to the scalar. The presence of the electric charge strongly modifies the dynamical evolution of the space-time.

  10. Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices

    Science.gov (United States)

    Shiroma, Letícia S.; Piazzetta, Maria H. O.; Duarte-Junior, Gerson F.; Coltro, Wendell K. T.; Carrilho, Emanuel; Gobbi, Angelo L.; Lima, Renato S.

    2016-05-01

    This paper outlines a straightforward, fast, and low-cost method to fabricate polydimethylsiloxane (PDMS) chips. Termed sandwich bonding (SWB), this method requires only a laboratory oven. Initially, SWB relies on the reversible bonding of a coverslip over PDMS channels. The coverslip is smaller than the substrate, leaving a border around the substrate exposed. Subsequently, a liquid composed of PDMS monomers and a curing agent is poured onto the structure. Finally, the cover is cured. We focused on PDMS/glass chips because of their key advantages in microfluidics. Despite its simplicity, this method created high-performance microfluidic channels. Such structures featured self-regeneration after leakages and hybrid irreversible/reversible behavior. The reversible nature was achieved by removing the cover of PDMS with acetone. Thus, the PDMS substrate and glass coverslip could be detached for reuse. These abilities are essential in the stages of research and development. Additionally, SWB avoids the use of surface oxidation, half-cured PDMS as an adhesive, and surface chemical modification. As a consequence, SWB allows surface modifications before the bonding, a long time for alignment, the enclosure of sub-micron channels, and the prototyping of hybrid devices. Here, the technique was successfully applied to bond PDMS to Au and Al.

  11. Atomic and electronic structure of exfoliated black phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.

  12. Atomic and electronic structure of exfoliated black phosphorus

    International Nuclear Information System (INIS)

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO3 or H3PO3 during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time

  13. A boosted Kerr black hole solution and the structure of a general astrophysical black hole

    CERN Document Server

    Soares, Ivano Damião

    2016-01-01

    A solution of Einstein's vacuum field equations that describes a boosted Kerr black hole relative to an asymptotic Lorentz frame at the future null infinity is derived. The solution has three parameters (mass, rotation and boost) and corresponds to the most general configuration that an astrophysical black hole must have; it reduces to the Kerr solution when the boost parameter is zero. In this solution the ergosphere is north-south asymmetric, with dominant lobes in the direction opposite to the boost. However the event horizon, the Cauchy horizon and the ring singularity {\\bf --} which are the core of the black hole structure {\\bf --} do not alter, being independent of the boost parameter. Possible consequences for astrophysical processes connected with Penrose processes in the asymmetric ergosphere are discussed.

  14. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    KAUST Repository

    Zhang, Fang

    2012-11-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst binder and diffusion layer, and compared to cathodes of the same structure having a Nafion binder. With PDMS binder, copper mesh cathodes produced a maximum power of 1710 ± 1 mW m -2, while SS mesh had a slightly lower power of 1680 ± 12 mW m -2, with both values comparable to those obtained with Nafion binder. Cathodes with PDMS binder had stable power production of 1510 ± 22 mW m -2 (copper) and 1480 ± 56 mW m -2 (SS) over 15 days at cycle 15, compared to a 40% decrease in power with the Nafion binder. Cathodes with the PDMS binder had lower total cathode impedance than those with Nafion. This is due to a large decrease in diffusion resistance, because hydrophobic PDMS effectively prevented catalyst sites from filling up with water, improving oxygen mass transfer. The cost of PDMS is only 0.23% of that of Nafion. These results showed that PDMS is a very effective and low-cost alternative to Nafion binder that will be useful for large scale construction of these cathodes for MFC applications. © 2012 Elsevier B.V.

  15. Subcrustal structure of the black sea basin from seismological data

    Science.gov (United States)

    Yanovskaya, T. B.; Gobarenko, V. S.; Yegorova, T. P.

    2016-01-01

    The P-wave travel time data from the earthquakes offshore and onshore around the Black Sea are used for the tomographic reconstruction of the three-dimensional (3D) velocity distribution in the lithosphere of the region. The preliminary refinement of the foci parameters (the coordinates and origin time) has reduced the random errors in the travel-time data. The earthquake data were supplemented by the previous deep seismic sounding (DSS) data on the profiles in Crimea and offshore off the Black Sea. The dataset included more than 4000 travel times overall. In order to eliminate the crustal effect, the travel times were reduced to a surface at a depth of 35 km corresponding to the mean Moho depth in the region. The improved crustal model was used for removing the contribution of the crust from the initial data. The new tomography method, which was recently developed by one of the authors and which relies on the assumption of smoothness of the lateral velocity variations, was applied for reconstructing the velocity structure of the upper mantle beneath the Black Sea up to a depth of 95 km. The lateral velocity variation maps at different depths and the vertical velocity distributions along the meridional and sublatitudinal cross sections across the Black Sea were constructed. High velocities were revealed in the subcrustal lithosphere, and the structural difference below two subbasins—the West Black Sea (WBS) and the East Black Sea (EBS) ones—was established. It shows that the high-velocity body below the WBS is located deeper than below the EBS and is distinguished by higher velocities. Based on these results, it is concluded that the lithosphere beneath the Black Sea has a continental origin.

  16. Encapsulated PDMS microspheres with reactive handles

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Ma, Baoguang; Li, Li;

    2014-01-01

    , cured PDMS microspheres are coated with poly(methyl methacrylate) using a chemical process (solvent evaporation technique). Three solvents are used in three different experiments: dichloromethane, tetrahydrofuran, and acetone. The composition and morphology of the cured PDMS microspheres and PMMA coated...

  17. Optical waveguides using PDMS-metal oxide hybrid nanocomposites

    Science.gov (United States)

    Hosseinzadeh, Arash; Middlebrook, Christopher T.; Mullins, Michael E.

    2015-03-01

    Development of passive and active polymer based optical materials for high data rate waveguide routing and interconnects has gained increased attention because of their excellent properties such as low absorption, cost savings, and ease in fabrication. However, optical polymers are typically limited in the range of their refraction indices. Combining polymeric and inorganic optical materials provides advantages for as development of nano-composites with higher refractive indices with the possibility of being used as an active optical component. In this paper a new composite material is proposed based on polymer-metal oxide nano-composites for use as optical wave guiding structures and components. PDMS (Polydimethylsiloxane) is utilized for the polymer portion while the inorganic material is titanium dioxide. Refraction indices as high as 1.74 have been reported using these composites. For PDMS-TiO2 hybrids, the higher the ratio of titanium dioxide to PDMS, the higher the resulting refractive index. The index of refraction as a function of the PDMS:TiO2 ratio is reported with an emphasis on use as optical waveguide devices. Absorption spectrum of the nano-composites is measured showing low absorption at 850 nm and high absorption in the UV regime for direct UV laser/light curing. Prototype multimode waveguides are fabricated using soft imprint embossing that is compatible with the low viscosity nano-composite material. Cross dimensional shape and profile show the potential for full scale development utilizing the material set.

  18. Phase structure of black holes and strings on cylinders

    International Nuclear Information System (INIS)

    We use the (M,n) phase diagram recently introduced in hep-th/0309116 to investigate the phase structure of black holes and strings on cylinders. We first prove that any static neutral black object on a cylinder can be put into an ansatz for the metric originally proposed in hep-th/0204047, generalizing a result of Wiseman. Using the ansatz, we then show that all branches of solutions obey the first law of thermodynamics and that any solution has an infinite number of copies. The consequences of these two results are analyzed. Based on the new insights and the known branches of solutions, we finally present an extensive discussion of the possible scenarios for the Gregory-Laflamme instability and the black hole/string transition

  19. The causal structure of dynamical charged black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sungwook E; Hwang, Dong-il; Stewart, Ewan D; Yeom, Dong-han, E-mail: eostm@muon.kaist.ac.k, E-mail: enotsae@gmail.co, E-mail: innocent@muon.kaist.ac.k [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of)

    2010-02-21

    We study the causal structure of dynamical charged black holes, with a sufficient number of massless fields, using numerical simulations. Neglecting Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature singularity due to mass inflation. When we include Hawking radiation, the inner horizon becomes space-like and is separated from the Cauchy horizon, which is parallel to the out-going null direction. Since a charged black hole must eventually transit to a neutral black hole, we studied the neutralization of the black hole and observed that the inner horizon evolves into a space-like singularity, generating a Cauchy horizon which is parallel to the in-going null direction. Since the mass function is finite around the inner horizon, the inner horizon is regular and penetrable in a general relativistic sense. However, since the curvature functions become trans-Planckian, we cannot say more about the region beyond the inner horizon, and it is natural to say that there is a 'physical' space-like singularity. However, if we assume an exponentially large number of massless scalar fields, our results can be extended beyond the inner horizon. In this case, strong cosmic censorship and black hole complementarity can be violated.

  20. Hairy Black Holes in Massive Gravity: Thermodynamics and Phase Structure

    CERN Document Server

    Capela, Fabio

    2012-01-01

    The thermodynamic properties of a static and spherically-symmetric hairy black hole of massive gravity are investigated. The analysis is carried out by enclosing the black hole in a spherical cavity whose surface is maintained at a fixed temperature $T$. It turns out that the ensemble is well-defined only if the "hair" parameter $Q$ characterizing the solution is conserved. Under this condition we compute some relevant thermodynamic quantities, such as thermal energy and entropy, and we study stability and phase structure of the ensemble. In particular, for negative values of the hair parameter, the phase structure is isomorphic to the one of Reissner-Nordstrom black holes in the canonical ensemble. Moreover, the phase-diagram in the plan ($Q,T$) has a line of first-order phase transition that at a critical value of $Q$ terminates in a second-order phase transition. Below this line the dominant phase consists of small, cold black holes that are long-lived and may thus contribute much more to the energy densit...

  1. Near horizon structure of extremal vanishing horizon black holes

    Directory of Open Access Journals (Sweden)

    S. Sadeghian

    2015-11-01

    Full Text Available We study the near horizon structure of Extremal Vanishing Horizon (EVH black holes, extremal black holes with vanishing horizon area with a vanishing one-cycle on the horizon. We construct the most general near horizon EVH and near-EVH ansatz for the metric and other fields, like dilaton and gauge fields which may be present in the theory. We prove that (1 the near horizon EVH geometry for generic gravity theory in generic dimension has a three dimensional maximally symmetric subspace; (2 if the matter fields of the theory satisfy strong energy condition either this 3d part is AdS3, or the solution is a direct product of a locally 3d flat space and a d−3 dimensional part; (3 these results extend to the near horizon geometry of near-EVH black holes, for which the AdS3 part is replaced with BTZ geometry. We present some specific near horizon EVH geometries in 3, 4 and 5 dimensions for which there is a classification. We also briefly discuss implications of these generic results for generic (gauged supergravity theories and also for the thermodynamics of near-EVH black holes and the EVH/CFT proposal.

  2. Femtosecond laser induced microripple on PDMS surface

    Institute of Scientific and Technical Information of China (English)

    Jin Xie; Changhe Zhou; Wei Wang; Tengfei Wu

    2009-01-01

    laser pulses and the subsequent cool-down solidification of the melting PDMS along with the movement of the femtosecond laser spot. This result will be helpful to understand the interaction between the femtosecond laser and the polymer.

  3. Biofunctionalization of PDMS-based microfluidic systems

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Bergoi Ibarlucea, Cesar Fernández-Sánchez, Stefanie Demming, Stephanus Büttgenbach & Andreu Llobera ### Abstract Three simple approaches for the selective immobilization of biomolecules on the surface of poly(dimethylsiloxane) (PDMS) microfluidic systems that do not require any specific instrumentation, are described and compared. They are based in the introduction of hydroxyl groups on the PDMS surface by direct adsorption of either polyethylene glycol (PEG) or polyvinyl...

  4. Influence of Soft Segment Composition on Phase Separated Microstructure of PDMS-Based Multiblock Polyurethane Copolymers.

    Science.gov (United States)

    Choi, Taeyi; Weksler, Jadwiga; Padsalgikar, Ajay; Runt, James

    2008-03-01

    Multiblock polyurethane (PU) copolymers with polydimethylsiloxane (PDMS) based soft segments possess intriguing microphase separation behavior and excellent biocompatibility. In this study we investigate the microphase-separated structure of PDMS-PUs with various well-defined soft segment compositions, which is closely connected to the structural and surface properties of these copolymers. The PDMS-PUs are shown to exhibit a three phase, core-shell like morphology. Intra- and intercomponent hydrogen bonding was explored using FTIR spectroscopy and quantitative analysis of hard/soft segment mixing was determined by small-angle X-ray scattering. The presentation will focus on the latest findings, particularly the role of PDMS in controlling the details of the microphase-separated texture.

  5. Dynamical structure of magnetized dissipative accretion flow around black holes

    CERN Document Server

    Sarkar, Biplob

    2016-01-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accret...

  6. Low cost fabrication of polymer composite (h-ZnO + PDMS) material for piezoelectric device application

    Science.gov (United States)

    Singh, Akanksha; Das, Sonatan; Bharathkumar, Mareddi; Revanth, D.; Karthik, ARB; Sudhakara Sastry, Bala; Ramgopal Rao, V.

    2016-07-01

    Flexible piezoelectric composites offer alternative and/or additional solutions to sensor, actuator and transducer applications. Here in this work, we have successfully fabricated highly flexible piezoelectric composites with poly dimethyl siloxane (PDMS) using herbal zinc oxide (h-ZnO) as filler having weight fractions up to 50 wt.% by solution casting of dispersions of h-ZnO in PDMS. Excellent piezo properties (Resonant frequency 935 Hz, d*33 29.76 pm V-1), physiochemical properties (Wurtzite structure ZnO, 380 nm absorbance) and mechanical properties (Young modulus 16.9 MPa) have been optimized with theoretical simulations and observed experimentally for h-ZnO + PDMS. As such, the demonstrated piezoelectric PDMS membranes combined with the excellent properties of these composites open new ways to ‘soft touch’ applications and could serve as a variety of soft and sensitive electromechanical transducers, which are desired for a variety of sensor and energy harvesting applications.

  7. Synthesis and characterization of fluorinated PEO-b-PDMS-b-fluorinated PEO by free radical addition

    Institute of Scientific and Technical Information of China (English)

    Wei Hu Li; Xing Yuan Zhang; Jia Bing Dai

    2009-01-01

    Fluorinated poly(ethylene oxide)propyl-b-polydimethylsiloxane-b-propyl fluorinated poly(ethylene oxide)(FPEO-b-PDMS-b-FPEO)was synthesized by a free radical addition of carbon-hydrogen of polyether segments of poly(ethylene oxide)propyl-b-polydimethylsiloxane-b-propyl poly(ethylene oxide)(PEO-b-PDMS-b-PEO)to hexafluoropropylene(HFP)using rert-butyl peroxypivalate as an initiator.In order to reduce the possibility of side reaction,the protection and deprotection via silylation were used for the end-hydroxyls in PEO-b-PDMS-b-PEO chain.The structure of Intermediates and FPEO-b-PDMS-b-FPEO was confirmed by means of Fourier transform infrared and 1H NMR spectroscopy.The effects of amount of initiator,reaction temperature and time on free radical addition were investigated in detail.

  8. Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation

    International Nuclear Information System (INIS)

    The conventional fabrication methods for microfluidic devices require cleanroom processes that are costly and time-consuming. We present a novel, facile, and low-cost method for rapid fabrication of polydimethylsiloxane (PDMS) molds and devices. The method consists of three main fabrication steps: female mold (FM), male mold (MM), and chip fabrication. We use a CO2 laser cutter to pattern a thin, spin-coated PDMS layer for FM fabrication. We then obtain reusable PDMS MM from the FM using PDMS/PDMS casting. Finally, a second casting step is used to replicate PDMS devices from the MM. Demolding of one PDMS layer from another is carried out without any potentially hazardous chemical surface treatment. We have successfully demonstrated that this novel method allows fabrication of microfluidic molds and devices with precise dimensions (thickness, width, length) using a single material, PDMS, which is very common across microfluidic laboratories. The whole process, from idea to device testing, can be completed in 1.5 h in a standard laboratory. (paper)

  9. Rapid fabrication of microfluidic PDMS devices from reusable PDMS molds using laser ablation

    Science.gov (United States)

    Isiksacan, Ziya; Tahsin Guler, M.; Aydogdu, Berkan; Bilican, Ismail; Elbuken, Caglar

    2016-03-01

    The conventional fabrication methods for microfluidic devices require cleanroom processes that are costly and time-consuming. We present a novel, facile, and low-cost method for rapid fabrication of polydimethylsiloxane (PDMS) molds and devices. The method consists of three main fabrication steps: female mold (FM), male mold (MM), and chip fabrication. We use a CO2 laser cutter to pattern a thin, spin-coated PDMS layer for FM fabrication. We then obtain reusable PDMS MM from the FM using PDMS/PDMS casting. Finally, a second casting step is used to replicate PDMS devices from the MM. Demolding of one PDMS layer from another is carried out without any potentially hazardous chemical surface treatment. We have successfully demonstrated that this novel method allows fabrication of microfluidic molds and devices with precise dimensions (thickness, width, length) using a single material, PDMS, which is very common across microfluidic laboratories. The whole process, from idea to device testing, can be completed in 1.5 h in a standard laboratory.

  10. The phase structure of higher-dimensional black rings and black holes

    International Nuclear Information System (INIS)

    We construct an approximate solution for an asymptotically flat, neutral, thin rotating black ring in any dimension D ≥ 5 by matching the near-horizon solution for a bent boosted black string, to a linearized gravity solution away from the horizon. The rotating black ring solution has a regular horizon of topology S1 x SD-3 and incorporates the balancing condition of the ring as a zero-tension condition. For D = 5 our method reproduces the thin ring limit of the exact black ring solution. For D ≥ 6 we show that the black ring has a higher entropy than the Myers-Perry black hole in the ultra-spinning regime. By exploiting the correspondence between ultra-spinning black holes and black membranes on a two-torus, we take steps towards qualitatively completing the phase diagram of rotating blackfolds with a single angular momentum. We are led to propose a connection between MP black holes and black rings, and between MP black holes and black Saturns, through merger transitions involving two kinds of 'pinched' black holes. More generally, the analogy suggests an infinite number of pinched black holes of spherical topology leading to a complicated pattern of connections and mergers between phases

  11. Dynamical structure of magnetized dissipative accretion flow around black holes

    Science.gov (United States)

    Sarkar, Biplob; Das, Santabrata

    2016-09-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.

  12. Influence of 1,2-PB matrix cross-linking on structure and properties of selectively etched 1,2-PB-b-PDMS block copolymers

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Andreasen, Jens Wenzel; Vigild, Martin Etchells;

    2007-01-01

    cross-linked samples in toluene was converted into a degree of cross-linking following the Flory scheme; a simple relation between the Flory cross-linking degree and the fraction of consumed double bonds during the cross-linking reaction followed. The structure of the block copolymer at different stages...

  13. The Phase Structure of Higher-Dimensional Black Rings and Black Holes

    CERN Document Server

    Emparan, Roberto; Niarchos, Vasilis; Obers, Niels A; Rodriguez, Maria J

    2007-01-01

    We construct an approximate solution for an asymptotically flat, neutral, thin rotating black ring in any dimension D>=5 by matching the near-horizon solution for a bent boosted black string, to a linearized gravity solution away from the horizon. The rotating black ring solution has a regular horizon of topology S^1 x S^{D-3} and incorporates the balancing condition of the ring as a zero-tension condition. For D=5 our method reproduces the thin ring limit of the exact black ring solution. For D>=6 we show that the black ring has a higher entropy than the Myers-Perry black hole in the ultra-spinning regime. By exploiting the correspondence between ultra-spinning black holes and black membranes on a two-torus, we take steps towards qualitatively completing the phase diagram of rotating blackfolds with a single angular momentum. We are led to propose a connection between MP black holes and black rings, and between MP black holes and black Saturns, through merger transitions involving two kinds of `pinched' blac...

  14. Contemporary genetic structure and postglacial demographic history of the black scorpionfish, Scorpaena porcus, in the Mediterranean and the Black Seas.

    Science.gov (United States)

    Boissin, E; Micu, D; Janczyszyn-Le Goff, M; Neglia, V; Bat, L; Todorova, V; Panayotova, M; Kruschel, C; Macic, V; Milchakova, N; Keskin, Ç; Anastasopoulou, A; Nasto, I; Zane, L; Planes, S

    2016-05-01

    Understanding the distribution of genetic diversity in the light of past demographic events linked with climatic shifts will help to forecast evolutionary trajectories of ecosystems within the current context of climate change. In this study, mitochondrial sequences and microsatellite loci were analysed using traditional population genetic approaches together with Bayesian dating and the more recent approximate Bayesian computation scenario testing. The genetic structure and demographic history of a commercial fish, the black scorpionfish, Scorpaena porcus, was investigated throughout the Mediterranean and Black Seas. The results suggest that the species recently underwent population expansions, in both seas, likely concomitant with the warming period following the Last Glacial Maximum, 20 000 years ago. A weak contemporaneous genetic differentiation was identified between the Black Sea and the Mediterranean Sea. However, the genetic diversity was similar for populations of the two seas, suggesting a high number of colonizers entered the Black Sea during the interglacial period and/or the presence of a refugial population in the Black Sea during the glacial period. Finally, within seas, an east/west genetic differentiation in the Adriatic seems to prevail, whereas the Black Sea does not show any structured spatial genetic pattern of its population. Overall, these results suggest that the Black Sea is not that isolated from the Mediterranean, and both seas revealed similar evolutionary patterns related to climate change and changes in sea level. PMID:26989881

  15. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding

    Science.gov (United States)

    2016-01-01

    Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In the FRE printing process, the Carbopol support acts as a Bingham plastic that yields and fluidizes when the syringe tip of the 3D printer moves through it, but acts as a solid for the PDMS extruded within it. This, in combination with the immiscibility of hydrophobic PDMS in the hydrophilic Carbopol, confines the PDMS prepolymer within the support for curing times up to 72 h while maintaining dimensional stability. After printing and curing, the Carbopol support gel releases the embedded PDMS prints by using phosphate buffered saline solution to reduce the Carbopol yield stress. As proof-of-concept, we used Sylgard 184 PDMS to 3D print linear and helical filaments via continuous extrusion and cylindrical and helical tubes via layer-by-layer fabrication. Importantly, we show that the 3D printed tubes were manifold and perfusable. The results demonstrate that hydrophobic polymers with low viscosity and long cure times can be 3D printed using a hydrophilic support, expanding the range of biomaterials that can be used in additive manufacturing. Further, by implementing the technology using low cost open-source hardware and software tools, the FRE printing technique can be rapidly implemented for research applications.

  16. PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin

    2016-10-21

    Fouling in membrane distillation (MD) results in an increase in operation costs and deterioration in a water quality. In this work, a poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) electrospun (E-PH) membrane was fabricated by hybridizing polydimethylsiloxane (PDMS) polymeric microspheres with superhydrophobicity onto the E-PH membrane via electrospinning. The resulting hybrid PDMS with E-PH (E-PDMS) membrane showed a significant enhancement in surface hydrophobicity (contact angle, CA = 155.4°) and roughness (Ra = 1,285mm). The zeta potential of E-PDMS membrane surface showed a higher negative value than that of a commercial PVDF (C-PVDF) membrane. These properties of E-PDMS membrane provided an antifouling in treating of differently-charged dyes and generated a flake-like dye–dye (loosely bound foulant) structure on the membrane surface rather than in the membrane pores. This also led to a high productivity of E-PDMS membrane (34 Lm-2h-1, 50% higher than that of C-PVDF membrane) without fouling or wetting. In addition, complete color removal and pure water production were achieved during a long-term operation. An application of intermittent water flushing (WF) in direct contact MD (DCMD) operation led to a 99% CA recovery of E-PDMS membrane indicating its sustainability. Therefore, the E-PDMS membrane is a promising candidate for MD application in dyeing wastewater treatment.

  17. Broadband energy harvesting using acoustic black hole structural tailoring

    Science.gov (United States)

    Zhao, Liuxian; Conlon, Stephen C.; Semperlotti, Fabio

    2014-06-01

    This paper explores the concept of an acoustic black hole (ABH) as a main design framework for performing dynamic structural tailoring of mechanical systems for vibration energy harvesting applications. The ABH is an integral feature embedded in the host structure that allows for a smooth reduction of the phase velocity, theoretically approaching zero, while minimizing the reflected energy. This mechanism results in structural areas with high energy density that can be effectively exploited to develop enhanced vibration-based energy harvesting. Fully coupled electro-mechanical models of an ABH tapered structure with surface mounted piezo-transducers are developed to numerically simulate the response of the system to both steady state and transient excitations. The design performances are numerically evaluated using structural intensity data as well as the instantaneous voltage/power and energy output produced by the piezo-transducer network. Results show that the dynamically tailored structural design enables a drastic increase in the harvested energy as compared to traditional structures, both under steady state and transient excitation conditions.

  18. Black Hole Mergers as Probes of Structure Formation

    Science.gov (United States)

    Alicea-Munoz, Emily

    2008-01-01

    Observations of gravitational waves from massive black hole (MBH) mergers can provide us with important clues about the era of structure formation in the early universe. Previous research in this field has been limited to calculating merger rates of MBHs using different models where many assumptions are made about the specific values of physical parameters of the mergers, resulting in merger rate estimates that span 5 to 6 orders of magnitude. We develop a semi-analytical, phenomenological model that includes plausible combinations of several physical parameters involved in the mergers. which we then turn around to determine how well LISA observations will be able to enhance our understanding of the universe during the critical z approximately equal to 5-30 structure formation era. We do this by generating synthetic LISA observable data (masses, redshifts, merger rates), which are then analyzed using a Markov Chain Monte Carlo (MCMC) method. This allows us to constrain the physical parameters of the mergers.

  19. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems.

    Science.gov (United States)

    Mata, Alvaro; Fleischman, Aaron J; Roy, Shuvo

    2005-12-01

    Polydimethylsiloxane (PDMS Sylgard 184, Dow Corning Corporation) pre-polymer was combined with increasing amounts of cross-linker (5.7, 10.0, 14.3, 21.4, and 42.9 wt.%) and designated PDMS1, PDMS2, PDMS3, PDMS4, and PDMS5, respectively. These materials were processed by spin coating and subjected to common micro-fabrication, micro-machining, and biomedical processes: chemical immersion, oxygen plasma treatment, sterilization, and exposure to tissue culture media. The PDMS formulations were analyzed by gravimetry, goniometry, tensile testing, nano-indentation, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Spin coating of PDMS was formulation dependent with film thickness ranging from 308 microm on PDMS1 to 171 microm on PDMS5 at 200 revolutions per minute (rpm). Ultimate tensile stress (UTS) increased from 3.9 MPa (PDMS1) to 10.8 MPa (PDMS3), and then decreased down to 4.0 MPa (PDMS5). Autoclave sterilization (AS) increased the storage modulus (sigma) and UTS in all formulations, with the highest increase in UTS exhibited by PDMS5 (218%). PDMS surface hydrophilicity and micro-textures were generally unaffected when exposed to the different chemicals, except for micro-texture changes after immersion in potassium hydroxide and buffered hydrofluoric, nitric, sulfuric, and hydrofluoric acids; and minimal changes in contact angle after immersion in hexane, hydrochloric acid, photoresist developer, and toluene. Oxygen plasma treatment decreased the contact angle of PDMS2 from 109 degrees to 60 degrees. Exposure to tissue culture media resulted in increased PDMS surface element concentrations of nitrogen and oxygen.

  20. Lens array fabrication method with volume expansion property of PDMS

    Science.gov (United States)

    Jang, WonJae; Kim, Junoh; Lee, Muyoung; Lee, Jooho; Bang, Yousung; Won, Yong Hyub

    2016-03-01

    Conventionally, poly (dimethylsiloxane) lens array is fabricated by replica molding. In this paper, we describe simple method for fabricating lens array with expanding property of PDMS. The PDMS substrate is prepared by spin coating on cleaned glass. After spin coating PDMS, substrate is treated with O2 plasma to promote adhesion between PDMS substrate and photoresist pattern on it. Positive photoresist az-4330 and AZ 430K developer is used for patterning on PDMS. General photolithography process is used to patterning. Then patterned PDMS substrate is dipped to 1- Bromododecane bath. During this process, patterned photoresist work as a barrier and prevent blocked PDMS substrate from reaction with 1-Bromododecane. Unblocked part of PDMS directly react with 1-Bromododecane and results in expanded PDMS volume. The expansion of PDMS is depends on absorbed 1-Bromododecane volume, dipping time and ratio of block to open area. The focal length of lens array is controlled by those PDMS expansion factors. Scale of patterned photoresist determine a diameter of each lens. The expansion occurs symmetrically at center of unblocked PDMS and 1-Bromododecane interface. As a result, the PDMS lens array is achieved by this process.

  1. Using Black Hole Mergers to Explore Structure Formation

    Science.gov (United States)

    Alicea-Munoz, E.; Miller, M. Coleman

    2009-01-01

    Observations of gravitational waves from massive black hole mergers will open a new window into the era of structure formation in the early universe. Past efforts have concentrated on calculating merger rates using different physical assumptions, resulting in merger rate estimates that span a wide range (0.1 - 10(exp 4) mergers/year). We develop a semi-analytical, phenomenological model of massive black hole mergers that includes plausible combinations of several physical parameters, which we then turn around to determine how well observations with the Laser Interferometer Space Antenna (LISA) will be able to enhance our understanding of the universe during the critical z approximately equal to 5-30 epoch. Our approach involves generating synthetic LISA observable data (total BH masses, BH mass ratios, redshifts, merger rates), which are then analyzed using a Markov Chain Monte Carlo method, thus finding constraints for the physical parameters of the mergers. We find that our method works well at estimating merger parameters and that the number of merger events is a key discriminant among models, therefore making our method robust against observational uncertainties. Our approach can also be extended to more physically-driven models and more general problems in cosmology. This work is supported in part by the Cooperative Education Program at NASA/GSFC.

  2. Structure and Spectroscopy of Black Hole Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Liedahl, D; Mauche, C

    2005-02-14

    The warped spacetime near black holes is one of the most exotic observable environments in the Universe. X-ray spectra from active galaxies obtained with the current generation of X-ray observatories reveal line emission that is modified by both special relativistic and general relativistic effects. The interpretation is that we are witnessing X-ray irradiated matter orbiting in an accretion disk around a supermassive black hole, as it prepares to cross the event horizon. This interpretation, however, is based upon highly schematized models of accretion disk structure. This report describes a project to design a detailed computer model of accretion disk atmospheres, with the goal of elucidating the high radiation density environments associated with mass flows in the curved spacetime near gravitationally collapsed objects. We have evolved the capability to generate realistic theoretical X-ray line spectra of accretion disks, thereby providing the means for a workable exploration of the behavior of matter in the strong-field limit of gravitation.

  3. Conversion of actual structure to optimal structure in fir stands of Black Sea region

    OpenAIRE

    Aylak Özdemir, Gafura

    2014-01-01

    Conversion of actual structure to optimal structure in fir stands of Black Sea regionAbstract : In this study, it has been tried to develop an iteration method using natural relationships in order that the spoilt actual structures, that Karadeniz region fir stands have, be taken to the optimal structure. For this purpose, a computer program named as GOKOP has been written using the Visual Basic Application (VBA) Macro programming language of Ms Excel 2000.Keywords: Actual and optimum structur...

  4. Exploring the "Black Box" of Programming: Applying Systematic Implementation Evaluation to a Structured Camp Curriculum

    Science.gov (United States)

    Mainieri, Tracy L.; Anderson, Denise M.

    2015-01-01

    Camp scholars have designed structured curricula to engender specific outcomes and to break down the "black box" of programming. Implementation evaluation explores how well a program operates when delivered, further breaking down the black box. The purpose of this study was to explore the implementation of a new structured camp…

  5. Modulation of hepatocarcinoma cell morphology and activity by parylene-C coating on PDMS.

    Directory of Open Access Journals (Sweden)

    Nazaré Pereira-Rodrigues

    Full Text Available BACKGROUND: The ability to understand and locally control the morphogenesis of mammalian cells is a fundamental objective of cell and developmental biology as well as tissue engineering research. We present parylene-C (ParC deposited on polydimethylsiloxane (PDMS as a new substratum for in vitro advanced cell culture in the case of Human Hepatocarcinoma (HepG2 cells. PRINCIPAL FINDINGS: Our findings establish that the intrinsic properties of ParC-coated PDMS (ParC/PDMS influence and modulate initial extracellular matrix (ECM; here, type-I collagen surface architecture, as compared to non-coated PDMS substratum. Morphological changes induced by the presence of ParC on PDMS were shown to directly affect liver cell metabolic activity and the expression of transmembrane receptors implicated in cell adhesion and cell-cell interaction. These changes were characterized by atomic force microscopy (AFM, which elucidated differences in HepG2 cell adhesion, spreading, and reorganization into two- or three-dimensional structures by neosynthesis of ECM components. Local modulation of cell aggregation was successfully performed using ParC/PDMS micropatterns constructed by simple microfabrication. CONCLUSION/SIGNIFICANCE: We demonstrated for the first time the modulation of HepG2 cells' behavior in relation to the intrinsic physical properties of PDMS and ParC, enabling the local modulation of cell spreading in a 2D or 3D manner by simple microfabrication techniques. This work will provide promising insights into the development of cell-based platforms that have many applications in the field of in vitro liver tissue engineering, pharmacology and therapeutics.

  6. Softlithographic partial integration of surface-active nanoparticles in a PDMS matrix for microfluidic biodevices

    Energy Technology Data Exchange (ETDEWEB)

    Demming, Stefanie; Buettgenbach, Stephanus [Institute for Microtechnology (IMT), Technische Universitaet Braunschweig, Alte Salzdahlumer Strasse 203, 38124 Braunschweig (Germany); Hahn, Anne; Barcikowski, Stephan [Nanotechnology Department, Laser Zentrum Hannover e.V. (LZH), Hollerithallee 8, 30419 Hannover (Germany); Edlich, Astrid; Franco-Lara, Ezequiel; Krull, Rainer [Institute of Biochemical Engineering (IBVT), Technische Universitaet Braunschweig, Gaussstrasse 17, 38106 Braunschweig (Germany)

    2010-04-15

    The mergence of microfluidics and nanocomposite materials and their in situ structuring leads to a higher integration level within microsystems technology. Nanoparticles (Cu and Ag) produced via laser radiation were suspended in Poly(dimethylsiloxane) to permanently modify surface material. A microstructuring process was implemented which allows the incorporation of these nanomaterials globally or partially at defined locations within a microbioreactor (MBR) for the determination of their antiseptic and toxic effects on the growth of biomass. Partially structured PDMS with nanoparticle-PDMS composite. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. On Black Hole Structures in Scalar-Tensor Theories of Gravity

    CERN Document Server

    Bronnikov, Kirill A; Rodrigues, Denis C

    2016-01-01

    We review some properties of black hole structures appearing in gravity with a massless scalar field, with both minimal and nonminimal coupling. The main properties of the resulting cold black holes are described. The study of black holes in scalar-gravity systems is extended to $k$-essence theories, and some examples are explicitly worked out. In these cases, even while the existence of horizons is possible, the metric regularity requirement on the horizon implies either a cold black type structure or a singular behavior of the scalar field.

  8. Sub-15nm Silicon Lines Fabrication via PS-b-PDMS Block Copolymer Lithography

    DEFF Research Database (Denmark)

    Rasappa, Sozaraj; Schulte, Lars; Borah, Dipu;

    2013-01-01

    This paper describes the fabrication of nanodimensioned silicon structures on silicon wafers from thin films of a poly(styrene)-block-poly(dimethylsiloxane) (PS-b-PDMS) block copolymer (BCP) precursor self-assembling into cylindrical morphology in the bulk. The structure alignment of the PS-b-PDM...

  9. Black Holes and Quantum Theory: The Fine Structure Constant Connection

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available The new dynamical theory of space is further confirmed by showing that the effective “black hole” masses M BH in 19 spherical star systems, from globular clusters to galaxies, with masses M , satisfy the prediction that M BH = α 2 M , where α is the fine structure constant. As well the necessary and unique generalisations of the Schr ̈ odinger and Dirac equations permit the first derivation of gravity from a deeper theory, showing that gravity is a quantum effect of quantum matter interacting with the dynamical space. As well the necessary generalisation of Maxwell’s equations displays the observed light bending effects. Finally it is shown from the generalised Dirac equation where the spacetime mathematical formalism, and the accompanying geodesic prescription for matter trajectories, comes from. The new theory of space is non-local and we see many parallels between this and quantum theory, in addition to the fine structure constant manifesting in both, so supporting the argument that space is a quantum foam system, as implied by the deeper information-theoretic theory known as Process Physics. The spatial dynamics also provides an explanation for the “dark matter” effect and as well the non-locality of the dynamics provides a mechanism for generating the uniformity of the universe, so explaining the cosmological horizon problem.

  10. Fabrication of TEOS/PDMS/F127 hybrid coating materials for conservation of historic stone sculptures

    Science.gov (United States)

    Liu, Yurong; Liu, Jia

    2016-08-01

    The present work was aimed to develop a new kind of stone conservation materials (TEOS/PDMS/F127 hybrid coating) by a facile sol-gel method for the protection of decayed sandstones of Chongqing Dazu stone sculptures in China. The hydrophobic property, surface morphology, water vapor permeability, ultraviolet aging resistance and mechanical properties were measured to evaluate the effectiveness of TEOS/PDMS/F127 hybrid coating as a stone conservation material. The results showed that the addition of hydroxyl-terminated polydimethylsiloxane (PDMS-OH) contributed to improve the hydrophobic properties and incorporation of PEO-PPO-PEO (F127) surfactant resulted in the formation of superficial protrusions with micro- and nanoscopic structures and overall alteration of surface morphology and roughness, thus preventing the coating materials from cracking. After treatment with TEOS/PDMS/F127 hybrid coating materials, the ultraviolet aging resistance and mechanical properties of stone were also improved without the obvious effects on the breathability and color of the stone, indicating promising applications of TEOS/PDMS/F127 hybrid coating materials for conservation of historic stone sculptures.

  11. Synthesis and characterization of a novel hydroxypolyether blocked polydimethylsiloxane PEO-b-PDMS-b-PEO

    Institute of Scientific and Technical Information of China (English)

    Wei Hu Li; Xing Yuan Zhang; Jia Bing Dai

    2008-01-01

    A novel hydroxypolyether blocked polydimethylsiloxane,poly(ethylene oxide)propyl-b-polydimethylsiloxane-b-propyl poly(ethylene oxide)(PEO-b=PDMS-b-PEO)was synthesized by simple hydrosilation reaction of poly(ethylene glycol)monoallyl ether with α,ω-dihydrogen terminated PDMS(HPDMS).Fourier transform infrared spectroscopy(FTIR)and 1H NMR were used to identify the structure of PEO-b-PDMS-b-PEO and intermediate product HPDMS.Based on the effect investigations of temperature.reactant molar ratio,catalyst and time on the hydrosilation,it Was found that the conversion of Si-H bond to Si-C bond increased with the increase of catalyst and time,and the reaction completed when the content of catalyst Was 22 μg/g and the time Was 5 h,respectively.Urethane reaction of OH and NCO group confirms that PEO-b-PDMS-b-PEO is more reactive toward to diisocyanate than α,ω-dihydroxylbutyl terminated PDMS.

  12. Quantitative Studies on PDMS-PDMS Interface Bonding with Piranha Solution and its Swelling Effect

    Directory of Open Access Journals (Sweden)

    Choon-Lai Chiang

    2012-05-01

    Full Text Available In this paper, a low-cost yet effective method of irreversible bonding between two elastomeric polydimethylsiloxane (PDMS interfaces using Piranha solution is investigated. Piranha solutions at a weight ratio of 3:1 using different acids and hydrogen peroxide were attempted. The average tensile strengths of the device bonded with concentrated sulfuric acid-based piranha solution and nitric acid-based piranha solution were found to be 200 ± 20 kPa and 100 ± 15 kPa respectively. A PDMS surface treated with Piranha Solution demonstrated an increase in hydrophilicity. In addition, relatively straightforward swelling studies of PDMS using a weight loss method with common organic solvents were also investigated. Experimental results show that hexane, toluene, ethyl acetate, n-propyl alcohol and acetone swell PDMS significantly over a duration of up to 1 h and above; PDMS samples reached a steady state of swelling only after 5 min of immersion in other solvents. This will enable researchers to develop devices for the future according to the interaction between the material and the solvents in contact.

  13. Cold Scalar-Tensor Black Holes Causal Structure, Geodesics, Stability

    CERN Document Server

    Bronnikov, K A; Constantinidis, C P; Fabris, J C

    1998-01-01

    We study the structure and stability of spherically symmetric Brans-Dicke black-hole type solutions with an infinite horizon area and zero Hawking temperature, existing for negative values of the coupling constant $\\omega$. These solutions split into two classes, depending on finite (B1) or infinite (B2) proper time needed for an infalling particle to reach the horizon. Class B1 metrics can be extended through the horizon only for discrete values of mass and scalar charge, depending on two integers m and n. For even m-n, the space-time is globally regular; for odd m, the metric changes its signature on the horizon but remains Lorentzian. Geodesics are smoothly continued across the horizon, but for odd m timelike geodesics become spacelike and vice versa. Causality problems, arising in some cases, are discussed. Tidal forces are shown to grow infinitely near type B1 horizons. All vacuum static, spherically symmetric solutions of the Brans-Dicke theory with $\\omega<-3/2$ are found to be linearly stable again...

  14. Primordial Black Holes as Dark Matter: The Power Spectrum and Evaporation of Early Structures

    OpenAIRE

    Afshordi, N; McDonald, P; Spergel, D. N.

    2003-01-01

    We consider the possibility that massive primordial black holes are the dominant form of dark matter. Black hole formation generates entropy fluctuations that adds a Poisson noise to the matter power spectrum. We use Lyman-alpha forest observations to constrain this Poisson term in matter power spectrum, then we constrain the mass of black holes to be less than few times 10^4 solar mass. We also find that structures with less than ~ 10^3 primordial black holes evaporate by now.

  15. Territory structure, parental provisioning, and chick growth in the American Black Oystercatcher Haematopus bachmani

    NARCIS (Netherlands)

    Hazlitt, S.L.; Ydenberg, R.C.; Lank, D.B.

    2002-01-01

    We investigate parental food provisioning and chick growth to better understand how parental effort and territory structure relate to reproductive success in the American Black Oystercatcher. American Black Oystercatcher chick diet was comprised mainly of limpets. Most prey items were 20 mm or short

  16. Internal Structure of Charged AdS Black Holes

    CERN Document Server

    Bhattacharjee, Srijit; Virmani, Amitabh

    2016-01-01

    When an electrically charged black hole is perturbed its inner horizon becomes a singularity, often referred to as the Poisson-Israel mass inflation singularity. Ori constructed a model of this phenomenon for asymptotically flat black holes, in which the metric can be determined explicitly in the mass inflation region. In this paper we implement the Ori model for charged AdS black holes. We find that the mass function inflates faster than the flat space case as the inner horizon is approached. Nevertheless, the mass inflation singularity is still a weak singularity: although spacetime curvature becomes infinite, tidal distortions remain finite on physical objects attempting to cross it.

  17. Structure and Mass Absorption of Hypothetical Terrestrial Black Holes

    OpenAIRE

    VanDevender, A. P.; VanDevender, J. Pace

    2011-01-01

    The prospect of mini black holes, either primordial or in planned experiments at the Large Hadron Collider, interacting with the earth motivate us to examine how they may be detected and the scope of their impact on the earth. We propose that the more massive of these objects may gravitationally bind matter without significant absorption. Since the wave functions of gravitationally bound atoms orbiting a black hole are analogous to those of electrons around a nucleus, we call such an object t...

  18. Low cost fabrication of polymer composite (h-ZnO + PDMS) material for piezoelectric device application

    Science.gov (United States)

    Singh, Akanksha; Das, Sonatan; Bharathkumar, Mareddi; Revanth, D.; Karthik, ARB; Sudhakara Sastry, Bala; Ramgopal Rao, V.

    2016-07-01

    Flexible piezoelectric composites offer alternative and/or additional solutions to sensor, actuator and transducer applications. Here in this work, we have successfully fabricated highly flexible piezoelectric composites with poly dimethyl siloxane (PDMS) using herbal zinc oxide (h-ZnO) as filler having weight fractions up to 50 wt.% by solution casting of dispersions of h-ZnO in PDMS. Excellent piezo properties (Resonant frequency 935 Hz, d*33 29.76 pm V‑1), physiochemical properties (Wurtzite structure ZnO, 380 nm absorbance) and mechanical properties (Young modulus 16.9 MPa) have been optimized with theoretical simulations and observed experimentally for h-ZnO + PDMS. As such, the demonstrated piezoelectric PDMS membranes combined with the excellent properties of these composites open new ways to ‘soft touch’ applications and could serve as a variety of soft and sensitive electromechanical transducers, which are desired for a variety of sensor and energy harvesting applications.

  19. Characterization of Piezoelectric PDMS-Nanoparticle Composites

    Science.gov (United States)

    Borsa, C. J.; Mionic Ebersold, M.; Bowen, P.; Farine, P.-A.; Briand, D.

    2015-12-01

    In this work, the novel fabrication and characterization of elastomeric piezoelectric nanocomposites are explored. Fabrication methods explored herein utilize ball milled barium titanate powder dispersions, along with double walled carbon nanotubes which are dispersed in toluene though the use of an ultrasonic probe. Test devices are then constructed with electrodes made from evaporated gold on polyimide foils and protective dielectrics of pristine PDMS. Two different device construction methods are explored utilizing both direct contact bonding and plasma bonding of the active composite layers to the dielectric/electrode. Test samples are evaluated through the use of a dedicated Berlincourt type piezoelectric d33 meter.

  20. Electroosmotic flow in single PDMS nanochannels

    Science.gov (United States)

    Peng, Ran; Li, Dongqing

    2016-06-01

    The electroosmotic flow (EOF) velocity in single PDMS nanochannels with dimensions as small as 20 nm is investigated systematically by the current slope method in this paper. A novel method for the fabrication of single nanochannels on PDMS surfaces is developed. The effects of channel size, ionic concentration of the electrolyte solution and electric field on the EOF velocity in single nanochannels are investigated. The results show that the EOF velocity in smaller nanochannels with overlapped electric double layers (EDL) is proportional to the applied electric field but is smaller than the EOF velocity in microchannels under the same applied electric field. The EOF velocity in relatively large nanochannels without the overlap of EDLs is independent of the channel size and is the same as that in microchannels under the same applied electric field. Furthermore, in smaller nanochannels with overlapped EDLs, the EOF velocity depends on the ionic concentration and also on the channel size. The experimental results reported in this paper are valuable for the future studies of electrokinetic nanofluidics.The electroosmotic flow (EOF) velocity in single PDMS nanochannels with dimensions as small as 20 nm is investigated systematically by the current slope method in this paper. A novel method for the fabrication of single nanochannels on PDMS surfaces is developed. The effects of channel size, ionic concentration of the electrolyte solution and electric field on the EOF velocity in single nanochannels are investigated. The results show that the EOF velocity in smaller nanochannels with overlapped electric double layers (EDL) is proportional to the applied electric field but is smaller than the EOF velocity in microchannels under the same applied electric field. The EOF velocity in relatively large nanochannels without the overlap of EDLs is independent of the channel size and is the same as that in microchannels under the same applied electric field. Furthermore, in

  1. Elastic properties of nonstoichiometric reacted PDMS networks

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Hansen, Kristoffer Karsten; Sommer-Larsen, Peter;

    2003-01-01

    The influence of stoichiometry on the elastic modulus of eight-functional end-linked poly(dimethylsiloxane) (PDMS) networks was investigated by extensional rheometry with extensions up to more than 100%, and the stress-strain relation was found to be almost linear-a characteristic property...... obtained for the Mooney-Rivlin constants. It was furthermore found that trapped entanglements dominate when there is an excess of cross-linker, ensuring that all long difunctional DMS chains are bound to the infinite network in both ends....

  2. PDMS Based Thermopnuematic Peristaltic Micropump for Microfluidic Systems

    International Nuclear Information System (INIS)

    A thermopnuematic peristaltic micropump for controlling micro litters of fluid was designed and fabricated from multi-stack PDMS structure on glass substrate. Pump structure consists of inlet and outlet, microchannel, three thermopneumatic actuation chambers, and three heaters. In microchannel, fluid is controlled and pumped by peristaltic motion of actuation diaphragm. Actuation diaphragm can bend up and down by exploiting air expansion that is induced by increasing heater temperature. The micropump characteristics were measured as a function of applied voltage and frequency. The flow rate was determined by periodically recording the motion of fluid at Nanoport output and computing flow volume from height difference between consecutive records. From the experiment, an optimum flow rate of 0.82 μl/min is obtained under 14 V three-phase input voltages at 0.033 Hz operating frequency

  3. Electrically tunable, optical microcavity based on metallized and ultra-soft PDMS gel

    Science.gov (United States)

    Franke, M.; Slowik, I.; Paschew, G.; Merkel, U.; Fröb, H.; Leo, K.; Richter, A.

    2016-04-01

    Tunable, optical microcavities (MC) gain more and more importance for display, laser or other optical applications. The setup of dielectric elastomer actuators (DEA) enables a simple integration of an optical cavity, since reflective electrodes can confine a cavity that is filled with a transparent elastomer. Applying a voltage to the electrodes leads to squeezing of the elastomer and, due to the cavity thickness decrease, the resonator modes of interfering light changes. In this work we present an electrically tunable, optical MC based on ultra-soft poly(dimethylsiloxane) (PDMS). The PDMS gel is coated on a glass substrate with a distributed Bragg reflector, an ITO bottom electrode and a flexible, highly reflective metal electrode and mirror on top. The usage of an ultra-soft PDMS gel, with a storage modulus of about 1kPa, allows to decrease the operating voltage down to a few hundred or even several ten volts. The critical step of fabrication is the metallization of the PDMS gel layer that requires a previous oxidizing surface activation to gain reflective and conductive silver based layers on top. Therefore, the effects of oxygen plasma and UV/ozone treatment on PDMS and the created metal layer were investigated intensively. The performance of the electrically tunable, optical MC is tremendously dependent from an adequate surface activation and structuring of the top electrodes considering the mirror displacement and activation voltage. Here we could show that tunable MCs based on oxygen plasma activated PDMS show a homogenous and high thickness decrease up to 70% at 200V.

  4. Micromolded U-shaped PDMS optical waveguide for biosensing applications

    Science.gov (United States)

    Punjabi, Nirmal; Khatri, Anjali; Mukherji, Soumyo

    2013-09-01

    Integrated optical waveguide sensors are usually fabricated using materials like silicon, silica, SU-8, etc. Their fabrication requires clean room processes which are expensive and time-consuming. We demonstrated the fabrication of PDMS based optical waveguide in non-cleanroom environment using soft lithography technique. A master-mold was fabricated using Acralyn. PDMS polymer was chosen for waveguide fabrication, as it provides low refractive index contrast in the sensing region. These PDMS waveguides were found to be 5-times more sensitive than SU-8 waveguides. High sensitivity along with mechanical robustness and ease of fabrication of PDMS waveguides provides a promising and versatile platform for biosensor application.

  5. PDMS-based Optical Leaky Waveguide Coated with Self-assemble Au-NPs for Bio-analytical Detections

    Directory of Open Access Journals (Sweden)

    Yi-Chieh Chen

    2012-03-01

    Full Text Available This paper presents a novel method for fabricating PDMS-based optical leaky waveguides coated with self-assembled gold nano-particles (Au-NP for bio-analytical detection utilizing the localized surface plasmon resonance (LSPR effect. In the presented method, a PDMS optical waveguide is first cast in Teflon tubing to form a cylindrical leaky waveguide structure. The de-molded PDMS optical waveguide is then modified with PDDA molecules and coated with a layer of 13 nm Au-NPs for inducing the LSPR effect. The fabricated LSPR sensor is finally connected to multi-mode optic fibers for guiding the detection light. The measured sensitivity of the PDMS waveguide based LSPR sensor for detecting diluted glycerol solutions was 7.25 AU/RIU and 325.97 nm/RIU. Experimental results of a label-free detection of DNA hybridization show that the presented PDMS waveguide based LSPR sensor has a good linear response and has a detection limit of about 10pM, confirming the detection performance of the developed PDMS waveguide-based LSPR sensor.

  6. Development and performance evaluation of Polydimethyl siloxane/Polysulfone (PDMS/PSF) composite membrane for CO2/CH4 separation

    Science.gov (United States)

    Suleman, M. S.; Lau, K. K.; Yeong, Y. F.

    2016-06-01

    Asymmetric polysulfone (PSF) membrane was developed by phase inversion in this study. Polysulfone (PSF) membrane was modified to develop a composite polymeric membrane. Polydimethyl siloxane (PDMS) was used to modify the PSF membrane. PDMS/PSF composite membrane was developed by dip coating of PDMS over PSF. Developed membranes were characterized in terms of membrane morphology by scanning electron microscope (SEM). Micro structure of polysulfone (PSF) membrane confirmed that developed membrane was asymmetric. Dense PDMS coating in microstructure of composite membrane was observed. Membrane swelling experiments were performed by immersing developed membranes in water for specific time period. PDMS/PSF composite membrane resisted water swelling as compared to PSF membrane. Performance of the membrane was evaluated before and after swelling within the pressure range of 2-10 bar. Reasonable decrement in permeance and selectivity was observed after membrane swelling. Thus, membrane swelling affected the separation performance of both PSF and PDMS/PSF composite membrane by decreasing the permeance and selectivity values.

  7. Features for Exploiting Black-Box Optimization Problem Structure

    DEFF Research Database (Denmark)

    Tierney, Kevin; Malitsky, Yuri; Abell, Tinus

    2013-01-01

    Black-box optimization (BBO) problems arise in numerous scientic and engineering applications and are characterized by compu- tationally intensive objective functions, which severely limit the number of evaluations that can be performed. We present a robust set of features that analyze the tness...

  8. Flexible electret energy harvesters with parylene electret on PDMS substrates

    Science.gov (United States)

    Chiu, Yi; Wu, Shih-Hsien

    2013-12-01

    Currently, most vibrational energy harvesters have rigid and resonant structures to harvest energy from periodic motions in specific directions. However, in some situations the motion is random and aperiodic; or the targeted energy source is the strain energy in deformation, rather than the kinetic energy in vibration. Therefore we propose and demonstrate a PDMS-based flexible energy harvester with parylene-C electret that can be attached to any deformable surfaces to harvest the stain energy caused by external deformation. The proposed flexible harvester was fabricated and characterized. The measured power at 20 Hz is 0.18 μW and 82 nW in the compression and bending modes, respectively. Such a harvester has the potential for wearable and implantable electronics applications.

  9. Bulk modification of PDMS microchips by an amphiphilic copolymer.

    Science.gov (United States)

    Xiao, Yan; Yu, Xiao-Dong; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A simple and rapid bulk-modification method based on adding an amphiphilic copolymer during the fabrication process was employed to modify PDMS microchips. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was used as the additive substance. Compared to the native PDMS microchips, both the contact angle and the EOF of the bulk-modified PDMS microchips decreased. The effects of the additive loading and the pH on the EOF were investigated in detail. The bulk-modified PDMS microchips exhibited reproducible and stable EOF behavior. The application of the bulk-modified PDMS microchips was also studied and the results indicated that they could be successfully used to separate amino acids and to suppress protein adsorption.

  10. Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS

    Directory of Open Access Journals (Sweden)

    Kyeongseob Kim

    2016-04-01

    Full Text Available A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS. To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm to 6.4 cm.

  11. Gravitational wave tests of quantum modifications to black hole structure

    CERN Document Server

    Giddings, Steven B

    2016-01-01

    A preliminary discussion is given of the prospects that gravitational-wave observations of binary inspiral of black holes could reveal or constrain quantum modifications to black hole dynamics, such as are required to preserve postulates of quantum mechanics. Different proposals for such modifications are characterized by different scales, and the size of these scales relative to those probed by observation of inspiral signals is important in determining the feasibility of finding experimental signatures. Certain scenarios with strong quantum modifications in a region extending well outside the horizon are expected to modify classical evolution, and distort the near-peak gravitational wave signal, suggesting a search for anomalies such as decreased regularity of the signal and increased power.

  12. PTFE-PDMS/PET复合膜制备及其渗透汽化性能%Preparation and pervaporation performances of PTFE-PDMS/PET composite membranes

    Institute of Scientific and Technical Information of China (English)

    孙德; 李冰冰; 许振良

    2013-01-01

    以聚四氟乙烯(PTFE)微粉填充聚二甲基硅氧烷(PDMS)硅橡胶膜为活性皮层和PET无纺布为底膜,制备了PTFE-PDMS/PET渗透汽化复合膜并用于分离乙醇水溶液,分析了复合膜结构、疏水性、力学性能及溶胀性能.研究表明,随着PDMS复合膜中PTFE含量(质量分数,下同)增加,复合膜结晶度及水接触角增加;断裂伸长率和拉伸强度均呈现先增加后减小的趋势;膜溶胀度呈线性减少.复合膜渗透汽化选择性α和乙醇渗透系数JE随PTFE含量的增加先增加后减少,而水渗透系数Jw呈逐渐减小的趋势,当PTFE填充量为10%时,乙醇渗透系数JE最大.%A novel composite membrane using micron polytetrafluoroetene (PTFE) powder filled polydimethylsiloxane (PDMS) as the top active layer and polyethylene terephthalate (PET) non-woven fabric as the support layer was prepared for the pervaporation of ethanol from water.The crystal structure,mechanical prosperities and swelling degree of composite membranes were characterized.With the increase of the PTFE content,the crystallinity of composite membrane increased but the swelling degree decreased.The elongation at break and the tensile stress of the PTFE filled PDMS membrane first increased and then decreased.The separation selectivity(a)and ethanol permeance (JE)increased quickly to the maximum then decreased slowly but water permeance (Jw) decreased with the increasing of PTFE content in filled PDMS membranes.When the content of the PTFE additive in PDMS composite membrane 10%,the ethanol permeance is the best.

  13. Phase structures of 4D stringy charged black holes in canonical ensemble

    Science.gov (United States)

    Jia, Qiang; Lu, J. X.; Tan, Xiao-Jun

    2016-08-01

    We study the thermodynamics and phase structures of the asymptotically flat dilatonic black holes in 4 dimensions, placed in a cavity a la York, in string theory for an arbitrary dilaton coupling. We consider these charged black systems in canonical ensemble for which the temperature at the wall of and the charge inside the cavity are fixed. We find that the dilaton coupling plays the key role in the underlying phase structures. The connection of these black holes to higher dimensional brane systems via diagonal (double) and/or direct dimensional reductions indicates that the phase structures of the former may exhaust all possible ones of the latter, which are more difficult to study, under conditions of similar settings. Our study also shows that a diagonal (double) dimensional reduction preserves the underlying phase structure while a direct dimensional reduction has the potential to change it.

  14. Phase structures of 4D stringy charged black holes in canonical ensemble

    CERN Document Server

    Jia, Qiang; Tan, Xiao-Jun

    2016-01-01

    We study the thermodynamics and phase structures of the asymptotically flat dilatonic black holes in 4 dimensions, placed in a cavity {\\it a la} York, in string theory for an arbitrary dilaton coupling. We consider these charged black systems in canonical ensemble for which the temperature at the wall of and the charge inside the cavity are fixed. We find that the dilaton coupling plays the key role in the underlying phase structures. The connection of these black holes to higher dimensional brane systems via diagonal (double) and/or direct dimensional reductions indicates that the phase structures of the former may exhaust all possible ones of the latter, which are more difficult to study, under conditions of similar settings. Our study also shows that a diagonal (double) dimensional reduction preserves the underlying phase structure while a direct dimensional reduction has the potential to change it.

  15. PDMS content affects in vitro hemocompatibility of synthetic vascular grafts.

    Science.gov (United States)

    Spiller, Dario; Losi, Paola; Briganti, Enrica; Sbrana, Silverio; Kull, Silvia; Martinelli, Ilaria; Soldani, Giorgio

    2007-06-01

    An unsolved problem when employing small-diameter vascular grafts for aorto-coronary by-pass and peripheral reconstruction is the early thrombotic occlusion. The PEtU-PDMS is a new elastomeric material, composed of poly(ether)urethane and polydimethylsiloxane, synthesized to realize grafts with improved hemocompatibility characteristics. In order to investigate the effect of PDMS content on hemocompatibility, three different percentages of PDMS containing grafts (10, 25 and 40) were evaluated. Grafts realized with Estane 5714-F1 and silicone medical grade tubes were used as references. The hemocompatibility was investigated by an in vitro circuit in which human anticoagulated blood was circulated into grafts by a peristaltic pump modified to obtain a passive flow. For each experiment, 40 cm length graft was closed into a circular loop and put in rotation for 2 h at 37 degrees C. At the end of the experiments different parameters regarding platelet adhesion and activation were evaluated: circulating platelets count, beta-thromboglobulin release, platelet CD62P expression and amount of monocyte-platelet conjugates. PEtU-PDMS grafts with 25 and 40% of PDMS induced the lowest platelet adhesion, plasma level of beta-TG and amount of monocyte-platelet conjugates. No significative variations were observed in CD62P expression. In conclusion, PDMS content significatively affects blood-graft surface interaction, in fact higher PDMS percentage containing grafts showed the best in vitro hemocompatibility. PMID:17268875

  16. Fluorinated ethylene-propylene: a complementary alternative to PDMS for nanoimprint stamps

    Science.gov (United States)

    Greer, Andrew I. M.; Vasiev, Iskandar; Della-Rosa, Benoit; Gadegaard, Nikolaj

    2016-04-01

    Polydimethylsiloxane (PDMS) is used by many for nanoimprint applications due to its affordability, ease of preparation, mechanical flexibility, compatibility with imprint resists and transparency to UV light. However PDMS is notoriously flexible, tacky and permeable to air. Here fluorinated ethylene-propylene (FEP) is considered as a viable and versatile alternative material for nanoimprint stamps. FEP possesses many of the desirable nanoimprint attributes associated with PDMS but crucially also features a range of complementary characteristics, including an order of magnitude more mechanical strength allowing it to handle higher loads than PDMS, an intrinsically non-stick surface and is compatible with oxygen sensitive resists. Unlike elastomeric polymers, FEP is glassy so patterning may be realised via hot embossing. Not only is this a facile and rapid means of physical structuring but it also facilitates combinatorial patterning, providing a versatility beyond that of traditional casting materials. Due to the intrinsically slow creep of FEP both micro- and nanopatterning are successfully performed sequentially. Feature sizes from 45 nm were successfully realised via the hot-embossing method. To further demonstrate the potential of the material, a modified computer numerical control machine is used. It is capable of photo-, nanoimprint- and laser lithography in conjunction with patterned FEP foils. The tool is used to perform pattern transfer into a developmental nanoimprint resist from Micro Resist Technology, mr-NIL210 XP, and Nano SU-8 3005 negative tone photo resist from MicroChem. Ultimately three-tier lithography is performed in unison and advantageous step-and-repeat performance is achieved with fabricated FEP imprint stamps as they demould more compliantly and resist pressure and contamination better than PDMS.

  17. A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature.

    Science.gov (United States)

    Tang, Linzhi; Lee, Nae Yoon

    2010-05-21

    Plastic materials do not generally form irreversible bonds with poly(dimethylsiloxane) (PDMS) regardless of oxygen plasma treatment and a subsequent thermal process. In this paper, we perform plastic-PDMS bonding at room temperature, mediated by the formation of a chemically robust amine-epoxy bond at the interfaces. Various plastic materials, such as poly(methylmethacrylate) (PMMA), polycarbonate (PC), polyimide (PI), and poly(ethylene terephthalate) (PET) were adopted as choices for plastic materials. Irrespective of the plastic materials used, the surfaces were successfully modified with amine and epoxy functionalities, confirmed by the surface characterizations such as water contact angle measurements and X-ray photoelectron spectroscopy (XPS), and chemically robust and irreversible bonding was successfully achieved within 1 h at room temperature. The bonding strengths of PDMS with PMMA and PC sheets were measured to be 180 and 178 kPa, respectively, and their assemblies containing microchannel structures endured up to 74 and 84 psi (510 and 579 kPa) of introduced compressed air, respectively, without destroying the microdevices, representing a robust and highly stable interfacial bonding. In addition to microchannel-molded PDMS bonded with flat plastic substrates, microchannel-embossed plastics were also bonded with a flat PDMS sheet, and both types of bonded assemblies displayed sufficiently robust bonding, tolerating an intense influx of liquid whose per-minute injection volume was nearly 1000 to 2000 times higher than the total internal volume of the microchannel used. In addition to observing the bonding performance, we also investigated the potential of surface amine and epoxy functionalities as durable chemical adhesives by observing their storage-time-dependent bonding performances. PMID:20445880

  18. Thermodynamic phase structure of charged anti-de Sitter scalar-tensor black holes

    International Nuclear Information System (INIS)

    When electromagnetic field with nonlinear lagrangian acts as a source of gravity the no-scalar-hair theorems can be eluded and black holes with non-trivial scalar field can be found in scalar tensor theories. Black holes with secondary scalar hair exist also when a cosmological constant is added in the theory. The thermodynamics of black holes in anti-de Sitter (AdS) space-time has attracted considerable interest due to the AdS/CFT conjecture. A natural question that arises is whether the non-trivial scalar field would alter the black-hole thermodynamical phase structure. In the current work we present the phase structure of charged hairy black holes coupled to nonlinear Born-Infeld electrodynamics in canonical ensemble which is naturally related to AdS space-time. In certain regions of the parameter space we find the existence of a first-order phase transition between small and very large black holes. An unexpected result is that for a small subinterval of charge values two phase transitions are observed – one of zeroth and one of first order

  19. Modulating the phase structure of black D6 branes in canonical ensemble

    CERN Document Server

    Lu, J X

    2013-01-01

    In [1], we find that the phase structure of charged black D5 system can be changed qualitatively by adding the delocalized D1 branes but the similar change resists to happen for the charged black D6 system through adding the delocalized D2 branes, giving rise to the same type of D(p - 4)/Dp. Adding the delocalized D4 branes to the black D6 branes doesn't work, either. In this paper, we consider further to add the delocalized D0 branes, the only remaining lower dimensional branes, to the black D6 system for this purpose. We find that the delocalized charged black D0-branes alone share the same phase structure as the charged black D6 branes, having no van der Waals-Maxwell liquid-gas type. However, when the two are combined to form D0/D6, the resulting phase diagram has finally been changed dramatically to the wanted one, containing now the above liquid-gas type. This change arises from the interaction between the delocalized D0 and D6.

  20. On The Phase Structure and Thermodynamic Geometry of R-Charged Black Holes

    CERN Document Server

    Sahay, Anurag; Sengupta, Gautam

    2010-01-01

    We study the phase structure and equilibrium state space geometry of R-charged black holes in $D = 5$, 4 and 7 and the corresponding rotating $D3$, $M2$ and $M5$ branes. For various charge configuratins of the compact black holes in the canonical ensemble we demonstrate new liquid-gas like phase coexistence behaviour culminating in second order critical points. The critical exponents turn out to be the same as that of four dimensional asymptotically AdS black holes in Einstein Maxwell theory. We further establish that the regions of stability for R-charged black holes are, in some cases, more constrained than is currently believed, due to properties of some of the response coefficients. The equilibrium state space scalar curvature is calculated for various charge configurations, both for the case of compact as well as flat horizons and its asymptotic behaviour with temperature is established.

  1. The Young Modulus of Black Strings and the Fine Structure of Blackfolds

    CERN Document Server

    Armas, Jay; Harmark, Troels; Obers, Niels A

    2011-01-01

    We explore corrections in the blackfold approach, which is a worldvolume theory capturing the dynamics of thin black branes. The corrections probe the fine structure of the branes, going beyond the approximation in which they are infinitely thin, and account for the dipole moment of worldvolume stress-energy as well as the internal spin degrees of freedom. We show that the dipole correction is induced elastically by bending a black brane. We argue that the long-wavelength transport coefficient capturing this response is a relativistic generalization of the Young modulus of elastic materials and we compute it analytically. Using this we draw predictions for black rings in dimensions greater than six. Furthermore, we employ our corrected blackfold equations to various multi-spinning black hole configurations in the blackfold limit, finding perfect agreement with known analytic solutions.

  2. Horizon structure of rotating Einstein-Born-Infeld black holes and shadow

    Energy Technology Data Exchange (ETDEWEB)

    Atamurotov, Farruh [Institute of Nuclear Physics, Tashkent (Uzbekistan); Inha University in Tashkent, Tashkent (Uzbekistan); Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan); Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of Kwa-Zulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Private Bag 54001, Durban (South Africa); Ahmedov, Bobomurat [Institute of Nuclear Physics, Tashkent (Uzbekistan); Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan)

    2016-05-15

    We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity (β → ∞). We find that for a given β, mass M, and charge Q, there exist a critical spinning parameter a{sub E} and r{sub H}{sup E}, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and a{sub E} decreases and r{sub H}{sup E} increases with increase of the Born-Infeld parameter β, while a < a{sub E} describes a non-extremal Einstein-Born-Infeld black hole with outer and inner horizons. Similarly, the effect of β on the infinite redshift surface and in turn on the ergo-region is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational field. We also investigate the shadow cast by the both static and rotating Einstein-Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated, which allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadow of an Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole, which consists of concentric circles, for different values of the Born-Infeld parameter β, whose radius decreases with increase of the value of the parameter β. Finally, we have studied observable distortion parameter for shadow of the rotating Einstein-Born-Infeld black hole. (orig.)

  3. Viscoelastic nature of Au nanoparticle–PDMS nanocomposite gels

    Indian Academy of Sciences (India)

    Ritu Gupta; Hima K Nagamanasa; Rajesh Ganapathy; Giridhar U Kulkarni

    2015-08-01

    A stable gel of Au nanoparticles in polydimethylsiloxane (PDMS) nanocomposite is prepared by employing the curing agent of PDMS elastomer as a reducing agent for the formation of Au nanoparticles by an in-situ process. The viscoelastic nature of these gels is very sensitive to the Au nanoparticle loading and the synthetic temperature conditions. Even a very low Au content of 0.09 wt% is sufficient enough to bring in the transition from sponge state to gel state at room temperature. Higher synthetic temperature also forms sponge formation. Infrared and ultraviolet–visible spectroscopy measurements have provided insight into PDMS crosslinking and nanoparticle formation, respectively. The optimization of the gel properties can have direct influence on the processability of Au nanoparticle–PDMS nanocomposite gels, with interesting implications in electronic, optical and microfluidic devices.

  4. Disentangling bulk from surface contributions in the electronic structure of black phosphorus

    Science.gov (United States)

    Golias, E.; Krivenkov, M.; Sánchez-Barriga, J.

    2016-02-01

    Most recently, black phosphorus has come into focus as a promising material for future applications in nanoelectronic devices due to its unique electronic and transport properties. Here, we use angle-resolved photoemission spectroscopy in conjunction with ab initio calculations within the framework of density-functional theory to disentangle surface from the bulk contributions in the electronic structure of black phosphorus. We find good agreement between our theoretical predictions for the intra- and interlayer energy-momentum dispersions and the experimentally obtained three-dimensional band structure of this material. Our results provide compelling evidence for the existence of surface-resonant states near the top of the valence band, which can play an important role in the performance of electronic devices based on black phosphorus.

  5. Actuation of a Hyperelastic PDMS Membrane Suspended inside a Microfluidic Channel: From Computer Simulation to Microfabrication

    OpenAIRE

    Ribe, Jonas Myren

    2012-01-01

    This Master-project was done in the Department of Physics at NTNU in the spring of 2012. The project develops micro- and nanofabrication processes useful for lab-on-a-chip systems. These systems aim to scale down and automate lab processes primarily in the fields of biomedicine and chemistry.A hyperelastic membrane suspended inside a microfluidic channel was the starting point of the project. The membrane was made from poly(dimethylsiloxane) (PDMS) and structured through physical and chemical...

  6. Time-like geodesic structure of a spherically symmetric black hole in the brane-world

    Institute of Scientific and Technical Information of China (English)

    Zhou Sheng; Chen Ju-Hua; Wang Yong-Jiu

    2011-01-01

    Recently Malihe Heydari-Fard obtained a spherically symmetric exterior black hole solution in the brane-world scenario,which can be used to explain the galaxy rotation curves without postulating dark matter.By analysing the particle effective potential,we have investigated the time-like geodesic structure of the spherically symmetric black hole in the brane-world.We mainly take account of how the cosmological constant α and the stellar pressure β affect the time-like geodesic structure of the black hole.We find that the radial particle falls to the singularity from a finite distance or plunges into the singularity,depending on its initial conditions.But the non-radial time-like geodesic structure is more complex than the radial case.We find that the particle moves on the bound orbit or stable (unstable) circle orbit or plunges into the singularity,or reflects to infinity,depending on its energy and initial conditions.By comparing the particle effective potential curves for different values of the stellar pressure β and the cosmological constant α,we find that the stellar pressure parameter β does not affect the time-like geodesic structure of the black hole,but the cosmological constant α has an impact on its time-like geodesic structure.

  7. Time-like geodesic structure of a spherically symmetric black hole in the brane-world

    International Nuclear Information System (INIS)

    Recently Malihe Heydari-Fard obtained a spherically symmetric exterior black hole solution in the brane-world scenario, which can be used to explain the galaxy rotation curves without postulating dark matter. By analysing the particle effective potential, we have investigated the time-like geodesic structure of the spherically symmetric black hole in the brane-world. We mainly take account of how the cosmological constant α and the stellar pressure β affect the time-like geodesic structure of the black hole. We find that the radial particle falls to the singularity from a finite distance or plunges into the singularity, depending on its initial conditions. But the non-radial time-like geodesic structure is more complex than the radial case. We find that the particle moves on the bound orbit or stable (unstable) circle orbit or plunges into the singularity, or reflects to infinity, depending on its energy and initial conditions. By comparing the particle effective potential curves for different values of the stellar pressure β and the cosmological constant α, we find that the stellar pressure parameter β does not affect the time-like geodesic structure of the black hole, but the cosmological constant α has an impact on its time-like geodesic structure. (general)

  8. Internal structure of non-Abelian black holes and nature of singularity

    CERN Document Server

    Galtsov, D V; Zotov, M Yu

    1997-01-01

    Recent results concerning the internal structure of static spherically-symmetric non-Abelian black holes in the Einstein-Yang-Mills (EYM) theory and its generalizations including scalar fields are reviewed and discussed with an emphasis on the problem of a generic singularity in black holes. It is argued that in the theories admitting a violation of the naive no-hair conjecture the structure of singularity is essentially affected by the "hair roots". This invalidates an image of a non-Abelian black hole as a Schwarzschild black hole sitting inside the soliton. We give an analytic description of the generic oscillatory approach to the singularity in the pure EYM theory in terms of a divergent discrete sequence and show that the mass function is exponentially growing "in average". The second type of a generic approach to the singularity in hairy black holes is a "power-law mass inflation" which is realized in the theories including scalar fields. Both singularities are spacelike and no Cauchy horizons are met i...

  9. Microchannel deformations due to solvent-induced PDMS swelling.

    Science.gov (United States)

    Dangla, Rémi; Gallaire, François; Baroud, Charles N

    2010-11-01

    The compatibility of polydimethylsiloxane (PDMS) channels with certain solvents is a well known problem of soft lithography techniques, in particular when it leads to the swelling of the PDMS blocks. However, little is known about the modification of microchannel geometries when they are subjected to swelling solvents. Here, we experimentally measure the deformations of the roof of PDMS microchannels due to such solvents. The dynamics of impregnation of the solvents in PDMS and its relation to volume dilation are first addressed in a model experiment, allowing the precise measurement of the diffusion coefficients of oils in PDMS. When Hexadecane, a swelling solvent, fills a microchannel 1 mm in width and 50 μm in height, we measure that the channel roof bends inwards and takes a parabolic shape with a maximum deformation of 7 μm. The amplitude of the subsidence is found to increase with the channel width, reaching 28 μm for a 2 mm wide test section. On the other hand, perfluorinated oils do not swell the PDMS and the microchannel geometry is not affected by the presence of perfluorodecalin. Finally, we observe that the trajectories of droplets flowing in this microchannel are strongly affected by the deformations: drops carried by swelling oils are pushed towards the edges of the channel while those carried by non-swelling oils remain in the channel center. PMID:20848011

  10. An Experimental and Theoretical Investigation of Ultrasound Transmission in Bubbly PDMS Phononic Crystals

    Science.gov (United States)

    Christianson, Caleb; Mukhopadhyay, Saikat; Sachse, Wolfgang; Stewart, Derek

    2014-03-01

    Phononic crystals are two- and three-dimensional structures with a periodic arrangement of two or more materials with different acoustic properties. Depending on the size, structure, and characteristics of the constituent materials, metamaterials with interesting acoustic properties can be formed. These crystals can be used to control the transmission of sound at selected frequencies, focus sound, or serve as waveguides. In this talk, we will focus on the transmission of ultrasonic waves through polydimethylsiloxane (PDMS) films with entrapped air bubbles. Two different theoretical models were used to predict ultrasonic transmission through air-PDMS crystals: (1) a simple scattering model for a series of partially reflective thin films and (2) the code MULTEL, which calculates the transmission using multiple scattering theory. A fabrication process was also developed to stack layers of the crystals with unprecedented alignment. We measured the ultrasonic transmission through the films using the ultrasonic through-transmission mode in a water bath and found an excellent agreement between the measured and calculated transmission. Additionally, we used these models to predict the performance of new phononic structures by scanning a large parameter space and showed how ultrasonic transmission through PDMS layers can be engineered by varying the dimensions, separation, and arrangement of air bubbles. This work was supported by the National Science Foundation.

  11. DNA microarray synthesis by using PDMS molecular stamp (II) -- Oligonucleotide on-chip synthesis using PDMS stamp

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the standard phosphoramidites chemistry protocol, two oligonucleotides synthetic routes were studied by contact stamping reactants to a modified glass slide. Route A was a contact coupling reaction, in which a nucleoside monomer was transferred and coupled to reactive groups (OH) on a substrate by spreading the nucleoside activated with tetrazole on a polydimethylsiloxane (PDMS) stamp. Route B was a contact detritylation, in which one nucleoside was fixed on the desired synthesis regions where dimethoxytrityl (DMT) protecting groups on the 5′-hydroxyl of the support-bound nucleoside were removed by stamping trichloroacetic acid (TCA) distributed on features on a PDMS stamp. Experiments showed that the synthetic yield and the reaction speed of route A were higher than those of route B. It was shown that 20 mer oligonucleotide arrays immobilized on the glass slide were successfully synthesized using the PDMS stamps, and the coupling efficiency showed no difference between the PDMS stamping and the conventional synthesis methods.

  12. A Facile PDMS-Assisted Crystallization for the Crystal-Engineering of C60 Single-Crystal Organic Field-Effect Transistors.

    Science.gov (United States)

    Wu, Kuan-Yi; Wu, Tzu-Yi; Chang, Shu-Ting; Hsu, Chain-Shu; Wang, Chien-Lung

    2015-08-01

    Poly(dimethylsiloxane) (PDMS)-assisted crystallization (PAC) is a facile method to produce oriented C60 crystal arrays. Changing the drying mechanism from evaporation to solvent absorption (by PDMS) widens the solvent selection and facilitates the engineering of both the macroscopic shape and the microscopic lattice structure of the crystal arrays. The method also shows the potential to be applied to other organic semiconductors and large-area production. PMID:26088050

  13. A soft photo-mask with embedded carbon black and its application in contact photolithography

    International Nuclear Information System (INIS)

    This paper presents a new type of soft photo-mask which can be used in contact photolithography for achieving small line-width, large area, and high throughput ultraviolet (UV) patterning. It starts from a polydimethylsiloxane (PDMS) mold replicated from a silicon master mold. A carbon black photo-resist (PR) is spin-coated on top of the PDMS mold and then thermally cured. After a contact transfer process, the solidified carbon black PR exists only in the concave region of the PDMS mold, which converts the PDMS mold into a carbon-black/PDMS soft photo-mask. Due to its flexibility, this soft photo-mask can be used in contact photolithography on a slightly curved substrate. Experiments on preparing this new soft photo-mask and its application for fabricating patterned sapphire substrates (PSSs) used in the light-emitting-diode (LED) industry are carried out. Successful results are observed. (paper)

  14. Changes in the ecosystem structure of the Black Sea under predicted climatological and anthropogenic variations

    Science.gov (United States)

    Akoglu, Ekin; Salihoglu, Baris; Fach Salihoglu, Bettina; Libralato, Simone; Cannaby, Heather; Oguz, Temel; Solidoro, Cosimo

    2014-05-01

    A dynamic Ecopath with Ecosim higher-trophic-level (HTL) model representation of the Black Sea ecosystem was coupled to the physical (BIMS-CIR) and biogeochemical (BIMS-ECO) models of the Black Sea in order to investigate historical anthropogenic and climatological interactions and feedbacks in the ecosystem. Further, the coupled models were used to assess the likely consequences of these interactions on the ecosystem's structure and functioning under predicted future climate (IPCC A1B) and fishing variability. Therefore, two model scenarios were used; i) a hindcast scenario (1980-1999) to evaluate and understand the impacts of the short-term climate and physical variability and the introduction of invasive species on the Black Sea ecosystem, and ii) a forecast scenario (2080-2099) to investigate the potential implications of climate change and anthropogenic exploitation on living resources of the Black Sea ecosystem by the end of the 21st century. According to the outcomes of the hindcast simulation, fisheries were found to be the main driver in determining the structure and functioning of the Black Sea ecosystem under changing environmental conditions. The coupled physical-biogeochemical forecast simulations predicted a slight but statistically significant basin-wide increase in the Black Sea's primary productivity by the end of the century due to increased stratification induced by basin-wide temperature increase and reduced Cold Intermediate Layer (CIL) formation which increased the residence time of riverine nutrients within the euphotic zone. Despite this increased primary productivity, the HTL model forecast simulation predicted a significant decrease in the commercial fish stocks primarily due to fisheries exploitation if current catch rates are maintained into the future. Results further suggested that some economically important small pelagic fish species are likely to disappear from the ecosystem making the recovery of the already-collapsed piscivorous

  15. Controlled Contamination of Epoxy Composites with PDMS and Removal by Laser Ablation

    Science.gov (United States)

    Palmieri, Frank; Ledesma, Rodolfo; Cataldo, Daniel; Lin, Yi; Wohl, Christopher; Gupta, Mool; Connell, John

    2016-01-01

    Surface preparation is critical to the performance of adhesively bonded composites. During manufacturing, minute quantities of mold release compounds are inevitably deposited on faying surfaces and may compromise bond performance. To ensure safety, mechanical fasteners and other crack arrest features must be installed in the bondlines of primary structures, which negates some advantages of adhesively bonded construction. Laser ablation is an automated, repeatable, and scalable process with high potential for the surface preparation of metals and composites in critical applications such as primary airframe structures. In this study, laser ablation is evaluated on composite surfaces for the removal of polydimethylsiloxane (PDMS), a common mold release material. Composite panels were contaminated uniformly with PDMS film thicknesses as low as 6.0 nm as measured by variable angle spectroscopic ellipsometry. Bond performance was assessed by mechanical testing using a 250 F cure, epoxy adhesive and compared with pre-bond surface inspection results. Water contact angle, optically stimulated electron emission, and laser induced breakdown spectroscopy were used to characterize contaminated and laser ablated surfaces. The failure mode obtained from double cantilever beam tests correlated well with surface characterization data. The test results indicated that even low levels of PDMS were not completely removed by laser ablation.

  16. Black-hole horizons in modified spacetime structures arising from canonical quantum gravity

    International Nuclear Information System (INIS)

    Several properties of canonical quantum gravity modify spacetime structures, sometimes to the degree that no effective line elements exist to describe the geometry. An analysis of solutions, for instance in the context of black holes, then requires new insights. In this paper, standard definitions of horizons in spherical symmetry are first reformulated canonically, and then evaluated for solutions of equations and constraints modified by inverse-triad corrections of loop quantum gravity. When possible, a spacetime analysis is performed which reveals a mass threshold for black holes and small changes to Hawking radiation. For more general conclusions, canonical perturbation theory is developed to second order to include back-reaction from matter. The results shed light on the questions of whether renormalization of Newton's constant or other modifications of horizon conditions should be taken into account in computations of black-hole entropy in loop quantum gravity.

  17. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus

    DEFF Research Database (Denmark)

    Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.;

    2012-01-01

    The structural and elastic properties of orthorhombic black phosphorus have been investigated using first-principles calculations based on density functional theory. The structural parameters have been calculated using the local density approximation (LDA), the generalized gradient approximation...... (GGA), and with several dispersion corrections to include van der Waals interactions. It is found that the dispersion corrections improve the lattice parameters over LDA and GGA in comparison with experimental results. The calculations reproduce well the experimental trends under pressure and show...

  18. Horizon structure and shadow of rotating Einstein-Born-Infeld black holes

    Science.gov (United States)

    Atamurotov, Farruh

    2016-07-01

    We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to innity ( ! 1). We nd that for a given , mass M and charge Q, there exist critical spinning parameter aE and rEH, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and aE decreases and rEH increases with increase in the Born-Infeld parameter . While a shadow as an optical appearance due to its strong gravitational eld. We also investigate the shadow cast by the rotating Einstein- Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated that allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadows of Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole which are concentric circles, for different values of the Born-Infeld parameter , whose radius decreases with increase in the value of parameter . The shadows for the rotating Einstein-Born-Infeld solution are also included.

  19. Fabrication of large area flexible PDMS waveguide sheets

    Science.gov (United States)

    Green, Robert; Knopf, George K.; Bordatchev, Evgueni

    2016-03-01

    Soft-lithography techniques can be used to fabricate mechanically flexible polydimethylsiloxane (PDMS) optical waveguide sheets that act as large area light collectors (concentrators) and illuminators (diffusers). The performance and efficiency of these optical sheets is determined by the position and geometry of micro-optical features embedded in the sheet or imprinted on its surface, thickness and shape of the waveguide, core and cladding refractive indices, and wavelength of the incident light source. The critical design-for-manufacturability parameters are discussed and a scalable method of fabricating multi-layered PDMS optical waveguides is introduced. To illustrate the concepts a prototype waveguide sheet that acts a combined light collector and illumination panel is fabricated and tested. The region of the waveguide sheet that acts as the light collector consists of two superimposed PDMS layers with slightly different indices of refraction. The top layer is patterned with micro-lenses that focus the incident light rays onto the micro-wedge features that act as reflectors on the bottom of the second layer and, due to total internal reflection, redirect the light rays to the light diffuser region of the waveguide sheet. The bottom face of the diffuser PDMS layer is patterned with angled triangular wedge micro-features that project the light out of the waveguide sheet forming an illuminating pattern. The proposed fabrication technique utilizes precision machined polymethylmethacrylate (PMMA) moulds with negative patterned PDMS inserts that transfer the desired micro-optical features onto the moulded waveguide.

  20. An Electromagnetically-Actuated All-PDMS Valveless Micropump for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Farid Amirouche

    2011-07-01

    Full Text Available This paper presents the fabrication process of a single-chamber planar valveless micropump driven by an external electromagnetic actuator. This micropump features a pair of micro diffuser and nozzle elements used to rectify the fluid flow, and an elastic magnetic membrane used to regulate the pressure in the enclosed fluid chamber. Polydimethylsiloxane (PDMS is used as the main construction material of this proposed micropump, including the structural substrate and the planar actuation membrane embedded with a thin micro magnet. Both the Finite Element Method and experimental analysis are used to assess the PDMS-membrane actuation under the applied electromagnetic forces and characterize the pump performance at variable working conditions. The resonant frequency of this micropump is identified experimentally and de-ionized (DI water is loaded to account for the coupling effects of the working fluid. The experimental data was used to demonstrate the reliability of flow rates and how it can be controlled by consistently adjusting the driving frequencies and currents. The proposed micropump is capable of delivering a maximum flow rate of 319.6 μL/min and a maximum hydrostatic backpressure of 950 Pa (9.5 cm H2O. The planar design feature of the pump allows for potential integration of the pump with other PDMS-based microfluidic systems for biomedical applications.

  1. Mesomorphic phase behaviour of low molar mass PEP-PDMS diblock copolymers synthesized by anionic polymerization

    International Nuclear Information System (INIS)

    The phase behaviour of low molar mass poly(ethylene-alt-propylene) -poly(dimethylsiloxane) (PEP-PDMS) is investigated in this thesis by the combination of dynamical mechanical spectroscopy (rheology) to measure phase transition temperatures, and small-angle x-ray scattering to identify the morphology of encountered phases. Samples of PEP-PDMS in the range of 0.2-0.7 in volume fraction of PEP are studied. This diblock copolymer system exhibits the three classical phases of lamellar sandwich structure (LAM), hexagonally packed cylinders (HEX), and spheres arranged on a body centered cubic lattice (BCC). Furthermore the gyroid phase (Ia3d symmetry) of two interpenetrating networks was also identified as a stable phase of the PEP-PDMS system. Time resolved measurements of small-angle neutron scattering in tandem with simultaneous in-situ rheological measurements are performed on samples showing transitions between different ordered phases. The identification of especially the BCC and gyroid phases from scattering experiments is treated. By performing mesoscopic crystallographic measurements using a custom built goniometer it was unambiguously shown that the application of shear to an unoriented powder-like sample introduces uniaxial orientation of the gyroid phase. The orientation of the ordered phase is otherwise random, causing a two-dimensional powder. Finally this dissertation presents a discussion of relevant parameters for the description of diblock copolymer phase behaviour together with descriptions of anionic polymerization for the synthesis of copolymers, and various experimental techniques for the characterization of diblocks. (au)

  2. Thin PDMS films using long spin times or tert-butyl alcohol as a solvent.

    Directory of Open Access Journals (Sweden)

    John H Koschwanez

    Full Text Available Thin polydimethylsiloxane (PDMS films are frequently used in "lab on a chip" devices as flexible membranes. The common solvent used to dilute the PDMS for thin films is hexane, but hexane can swell the underlying PDMS substrate. A better solvent would be one that dissolves uncured PDMS but doesn't swell the underlying substrate. Here, we present protocols and spin curves for two alternatives to hexane dilution: longer spin times and dilution in tert-butyl alcohol. The thickness of the PDMS membranes under different spin speeds, spin times, and PDMS concentrations was measured using an optical profilometer. The use of tert-butyl alcohol to spin thin PDMS films does not swell the underlying PDMS substrate, and we have used these films to construct multilayer PDMS devices.

  3. Intrinsic Topological Structure of Entropy of Kerr Black Holes%Kerr黑洞熵的内禀拓扑结构

    Institute of Scientific and Technical Information of China (English)

    颜继江; 杨国宏; 田立君

    2005-01-01

    In the light of φ-mapping method and the relationship between entropy and the Euler characteristic, the intrinsic topological structure of entropy of Kerr black holes is studied. From the Gauss-Bonnet-Chern theorem, it is shown that the entropy of Kerr black hole is determined by singularities of the Killing vector field of spacetime. These singularities naturally carry topological numbers, Hopf indices and Brouwer degrees, which can also be viewed as topological quantization of entropy of Kerr black holes. Specific results S =A/4 for non-extreme Kerr black holes and S = 0 for extreme ones are calculated independently by using the above-mentioned methods.

  4. Design and Fabrication of a PDMS Microchip Based Immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guocheng; Wang, Wanjun; Wang, Jun; Lin, Yuehe

    2010-07-01

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close a 200µm wide micro channel with flow rate up to 20µl/min.

  5. Fs-laser processing of medical grade polydimethylsiloxane (PDMS)

    Science.gov (United States)

    Atanasov, P. A.; Stankova, N. E.; Nedyalkov, N. N.; Fukata, N.; Hirsch, D.; Rauschenbach, B.; Amoruso, S.; Wang, X.; Kolev, K. N.; Valova, E. I.; Georgieva, J. S.; Armyanov, St. A.

    2016-06-01

    Medical grade polydimethylsiloxane (PDMS) elastomer is a biomaterial widely used in medicine and high-tech devices, e.g. MEMS and NEMS. In this work, we report an experimental investigation on femtosecond laser processing of PDMS-elastomer with near infrared (NIR), visible (VIS) and ultraviolet (UV) pulses. High definition trenches are produced by varying processing parameters as laser wavelength, pulse duration, fluence, scanning speed and overlap of the subsequent pulses. The sample surface morphology and chemical composition are investigated by Laser Microscopy, SEM and Raman spectroscopy, addressing the effects of the various processing parameters through comparison with the native materials characteristics. For all the laser pulse wavelengths used, the produced tracks are successfully metalized with Ni via electro-less plating method. We observe a negligible influence of the time interval elapsed between laser treatment and metallization process. Our experimental findings suggest promising perspectives of femtosecond laser pulses in micro- and nano-fabrication of hi-tech PDMS devices.

  6. Viscoelastic and optical properties of four different PDMS polymers

    Science.gov (United States)

    Deguchi, Shinji; Hotta, Junya; Yokoyama, Sho; Matsui, Tsubasa S.

    2015-09-01

    Polydimethylsiloxane (PDMS) is the most commonly used silicone elastomer with a wide range of applications including microfluidics and microcontact printing. Various types of PDMS are currently available, and their bulk material properties have been extensively investigated. However, because the properties are rarely compared in a single study, it is often unclear whether the large disparity of the reported data is attributable to the difference in methodology or to their intrinsic characteristics. Here we report on viscoelastic properties and optical properties of four different PDMS polymers, i.e. Sylgard-184, CY52-276, SIM-360, and KE-1606. Our results show that all the PDMSs are highly elastic rather than viscoelastic at the standard base/curing agent ratios, and their quantified elastic modulus, refractive index, and optical cleanness are similar but distinct in magnitude.

  7. Fiber optic ultrasound transducers with carbon/PDMS composite coatings

    Science.gov (United States)

    Mosse, Charles A.; Colchester, Richard J.; Bhachu, Davinder S.; Zhang, Edward Z.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2014-03-01

    Novel ultrasound transducers were created with a composite of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) that was dip coated onto the end faces of optical fibers. The CNTs were functionalized with oleylamine to allow for their dissolution in xylene, a solvent of PDMS. Ultrasound pulses were generated by illuminating the composite coating with pulsed laser light. At distances of 2 to 16 mm from the end faces, ultrasound pressures ranged from 0.81 to 0.07 MPa and from 0.27 to 0.03 MPa with 105 and 200 μm core fibers, respectively. Using an optical fiber hydrophone positioned adjacent to the coated 200 µm core optical fiber, ultrasound reflectance measurements were obtained from the outer surface of a sheep heart ventricle. The results of this study suggest that ultrasound transducers that comprise optical fibers with CNT-PDMS composite coatings may be suitable for miniature medical imaging probes.

  8. Electronic structure and the properties of phosphorene and few-layer black phosphorus

    International Nuclear Information System (INIS)

    A single atomic layer of black phosphorus, phosphorene, was experimentally realized in 2014. It has a puckered honeycomb lattice structure and a semiconducting electronic structure. In the first part of this paper, we use a simple LCAO model, and qualitatively discuss the electronic structure of phosphorene systems under electric and magnetic fields, especially noting their midgap edge states. The next part is devoted to the review of the progress in research on phosphorene over the past one year since its realization in 2014. Phosphorene has been a typical material to study the semiconductor physics in atomic layers. (author)

  9. Optofluidic Waveguides in Teflon AF-Coated PDMS Microfluidic Channels

    OpenAIRE

    Cho, Sung Hwan; Godin, Jessica; Lo, Yu-Hwa

    2009-01-01

    We report a new method for fabricating an optofluidic waveguide that is compatible with polydimethylsiloxane (PDMS). The light path follows the microfluidic channels, an architecture that can maximize detection efficiency and make the most economic use of chip area in many lab-on-chip applications. The PDMS-based microfluidic channels are coated with Teflon amorphous fluoropolymers (Teflon AF) which has a lower refractive index (n = 1.31) than water (n = 1.33) to form a water/Teflon AF optica...

  10. fs- and ns-laser processing of polydimethylsiloxane (PDMS) elastomer: Comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Atanasov, P.A.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose, Sofia 1784 (Bulgaria); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Amoruso, S.; Wang, X.; Bruzzese, R. [CNR-SPIN, Dipartimento di Scienze Fisiche, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Grochowska, K.; Śliwiński, G. [Photophysics Department, The Szewalski Institute, Polish Academy of Sciences, 14 Fiszera St., 80-231 Gdańsk (Poland); Baert, K.; Hubin, A. [Vrije Universiteit Brussels, Faculty of Engineering, Research group, SURF “Electrochemical and Surface Engineering” (Belgium); Delplancke, M.P.; Dille, J. [Université Libre de Bruxelles, Materials Engineering, Characterization, Synthesis and Recycling (Service 4MAT), Faculté des Sciences Appliquées, 1050 Brussels (Belgium)

    2015-05-01

    Highlights: • fs- and ns-laser (266 and 532 nm) processing of PDMS-elastomer, in air, is studied. • High definition tracks (on the PDMS-elastomer surface) for electrodes are produced. • Selective Pt or Ni metallization of the tracks is produced via electroless plating. • Irradiated and metallized tracks are characterized by μ-Raman spectrometry and SEM. • DC resistance of Pt and Ni tracks is always between 0.5 and 15 Ω/mm. - Abstract: Medical grade polydimethylsiloxane (PDMS) elastomer is a widely used biomaterial as encapsulation and/or as substrate insulator carrier for long term neural implants because of its remarkable properties. Femtosecond (λ = 263 and 527 nm) and nanosecond (266 and 532 nm) laser processing of PDMS-elastomer surface, in air, is investigated. The influence of different processing parameters, including laser wavelength, pulse duration, fluence, scanning speed and overlapping of the subsequent pulses, on the surface activation and the surface morphology are studied. High definition tracks and electrodes are produced. Remarkable alterations of the chemical composition and structural morphology of the ablated traces are observed in comparison with the native material. Raman spectra illustrate well-defined dependence of the chemical composition on the laser fluence, pulse duration, number of pulses and wavelength. An extra peak about ∼512–518 cm{sup −1}, assigned to crystalline silicon, is observed after ns- or visible fs-laser processing of the surface. In all cases, the intensities of Si−O−Si symmetric stretching at 488 cm{sup −1}, Si−CH{sub 3} symmetric rocking at 685 cm{sup −1}, Si−C symmetric stretching at 709 cm{sup −1}, CH{sub 3} asymmetric rocking + Si−C asymmetric stretching at 787 cm{sup −1}, and CH{sub 3} symmetric rocking at 859 cm{sup −1}, modes strongly decrease. The laser processed areas are also analyzed by SEM and optical microscopy. Selective Pt or Ni metallization of the laser processed

  11. Population Abundance and Genetic Structure of Black Bears in Coastal North Carolina and Virginia Using Noninvasive Genetic Techniques.

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Master thesis on the population abundance and genetic structure of black bears in coastal North Carolina and Virginia using noninvasive genetic technigues on...

  12. Geodesic Structure of the Noncommutative Schwarzschild Anti-de Sitter Black Hole I: Timelike Geodesics

    CERN Document Server

    Larranaga, Alexis

    2011-01-01

    By considering particles as smeared objects, we investigate the effects of space noncommutativity on the geodesic structure in Schwarzschild-AdS spacetime. By means of a detailed analysis of the corresponding effective potentials for particles, we find the possible motions which are allowed by the energy levels. Radial and non-radial trajectories are treated and the effects of space noncommutativity on the value of the precession of the perihelion are estimated. We show that the geodesic structure of this black hole presents new types of motion not allowed by the Schwarzschild spacetime.

  13. Brans-Dicke Theory with Λ>0: Black Holes and Large Scale Structures.

    Science.gov (United States)

    Bhattacharya, Sourav; Dialektopoulos, Konstantinos F; Romano, Antonio Enea; Tomaras, Theodore N

    2015-10-30

    A step-by-step approach is followed to study cosmic structures in the context of Brans-Dicke theory with positive cosmological constant Λ and parameter ω. First, it is shown that regular stationary black-hole solutions not only have constant Brans-Dicke field ϕ, but can exist only for ω=∞, which forces the theory to coincide with the general relativity. Generalizations of the theory in order to evade this black-hole no-hair theorem are presented. It is also shown that in the absence of a stationary cosmological event horizon in the asymptotic region, a stationary black-hole horizon can support a nontrivial Brans-Dicke hair. Even more importantly, it is shown next that the presence of a stationary cosmological event horizon rules out any regular stationary solution, appropriate for the description of a star. Thus, to describe a star one has to assume that there is no such stationary horizon in the faraway asymptotic region. Under this implicit assumption generic spherical cosmic structures are studied perturbatively and it is shown that only for ω>0 or ω≲-5 their predicted maximum sizes are consistent with observations. We also point out how, many of the conclusions of this work differ qualitatively from the Λ=0 spacetimes.

  14. Temperature and thermodynamic structure of Einstein's equations for a cosmological black hole

    Science.gov (United States)

    Bhattacharya, Krishnakanta; Majhi, Bibhas Ranjan

    2016-07-01

    It is expected that the cosmological black holes are the closest realistic solutions of gravitational theories and they evolve with time. Moreover, the natural way of defining thermodynamic entities for the stationary ones is not applicable in the case of a time dependent spacetime. Here we confine our discussion within the Sultana-Dyer metric, which is a cosmological black hole solution of Einstein's gravity. In the literature, there exist two expressions of horizon temperature—one is time dependent and the other does not depend on time. To single out the correct one we find the temperature by studying the Hawking effect in the tunneling formalism. This leads to time dependent structure. After identifying the correct one, Einstein's equations are written on the horizon and we show that this leads to the first law of thermodynamics. In this process the expressions for horizon entropy and energy, obtained earlier by explicit calculations, are being used. This provides the evidence that Einstein's equations have thermodynamic structure even for a cosmological black hole spacetime. Moreover, this study further clarifies the correctness of the expressions for the thermodynamic quantities, like temperature, entropy, and internal energy.

  15. Brans-Dicke Theory with Λ>0: Black Holes and Large Scale Structures.

    Science.gov (United States)

    Bhattacharya, Sourav; Dialektopoulos, Konstantinos F; Romano, Antonio Enea; Tomaras, Theodore N

    2015-10-30

    A step-by-step approach is followed to study cosmic structures in the context of Brans-Dicke theory with positive cosmological constant Λ and parameter ω. First, it is shown that regular stationary black-hole solutions not only have constant Brans-Dicke field ϕ, but can exist only for ω=∞, which forces the theory to coincide with the general relativity. Generalizations of the theory in order to evade this black-hole no-hair theorem are presented. It is also shown that in the absence of a stationary cosmological event horizon in the asymptotic region, a stationary black-hole horizon can support a nontrivial Brans-Dicke hair. Even more importantly, it is shown next that the presence of a stationary cosmological event horizon rules out any regular stationary solution, appropriate for the description of a star. Thus, to describe a star one has to assume that there is no such stationary horizon in the faraway asymptotic region. Under this implicit assumption generic spherical cosmic structures are studied perturbatively and it is shown that only for ω>0 or ω≲-5 their predicted maximum sizes are consistent with observations. We also point out how, many of the conclusions of this work differ qualitatively from the Λ=0 spacetimes. PMID:26565454

  16. Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre

    CERN Document Server

    Doeleman, Sheperd; Rogers, Alan E E; Plambeck, Richard; Freund, Robert; Tilanus, Remo P J; Friberg, Per; Ziurys, Lucy M; Moran, James M; Corey, Brian; Young, Ken H; Smythe, Daniel L; Titus, Michael; Marrone, Daniel P; Cappallo, Roger J; Bock, Douglas C J; Bower, Geoffrey C; Chamberlin, Richard; Davis, Gary R; Krichbaum, Thomas P; Lamb, James; Maness, Holly; Niell, Arthur E; Roy, Alan; Strittmatter, Peter; Werthimer, Daniel; Whitney, Alan R; Woody, David

    2008-01-01

    The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation (ref 1). Sagittarius A*, the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4 million times that of the Sun (refs. 2,3). A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A* where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering (refs. 4-7). Here we report observations at a wavelength of 1.3 mm that set a size of 37 (+16, -10; 3-sigma) microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expe...

  17. Microfabrication procedure of PDMS microbeam array using photolithography for laminin printing and piconewton force transduction on axons.

    Science.gov (United States)

    Sasoglu, F Mert; Bohl, Andrew J; Layton, Bradley E

    2006-01-01

    The purpose of this paper is to introduce our design for transducing forces on the order of tens of piconewtons by optically measuring deflection of a microfabricated beam tip as it pulls on an array of flexible structures such as axons in an array of laminin-printed neurons. To achieve this we have designed polymeric beams with spring constants on the order of 10 pN/microm. We have fabricated circular microbeams with Sylgard polydimethylsiloxane (PDMS). The elastic modulus of PDMS was determined experimentally using a microscale and a micrometer at different concentrations of curing agent and base agent and found to be on the order of 100 kPa. The designed geometry is a 100x100 tapered microcone array with each beam having a length of 100 microm, and a base diameter of 10 microm. A SU-8 negative photoresist is etched using photolithography and used as a mold for PDMS soft lithography. PDMS was injected into the mold and the array peeled from the mold.

  18. Modular microfluidic systems using reversibly attached PDMS fluid control modules

    DEFF Research Database (Denmark)

    Skafte-Pedersen, Peder; Sip, Christopher G.; Folch, Albert;

    2013-01-01

    The use of soft lithography-based poly(dimethylsiloxane) (PDMS) valve systems is the dominating approach for high-density microscale fluidic control. Integrated systems enable complex flow control and large-scale integration, but lack modularity. In contrast, modular systems are attractive altern...

  19. Factors affecting surface and release properties of thin PDMS films

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Junker, Michael Daniel; Skov, Anne Ladegaard

    2013-01-01

    Polydimethysiloxane (PDMS) elastomers are commonly used as dielectric electroactive polymers (DEAP). DEAP films are used in making actuators, generators and sensors. In the large scale manufacture of DEAP films, release of films from the substrate (carrier web) induces some defects and pre-strain...

  20. Investigation of PDMS as coating on CMUTs for Imaging

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Stuart, Matthias Bo; Laursen, Mads Bjerregaard;

    2014-01-01

    A protective layer is necessary for Capacitive Mi- cromachined Ultrasonic Transducers (CMUTs) to be used for imaging purpose. The layer should both protect the device itself and the patient while maintaining the performance of the device. In this work Sylgard 170 PDMS is tested as coating material...

  1. Surface morphology of PS-PDMS diblock copolymer films

    DEFF Research Database (Denmark)

    Andersen, T.H.; Tougaard, S.; Larsen, N.B.;

    2001-01-01

    Spin coated thin films (∼400 Å) of poly(styrene)–poly(dimethylsiloxane) (PS–PDMS) diblock copolymers have been investigated using X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. Surface segregation of the poly(dimethylsiloxane) blocks was studied for five diblock copolymers which ra...

  2. Temperature and thermodynamic structure of Einstein's equations for a cosmological black hole

    CERN Document Server

    Bhattacharya, Krishnakanta

    2016-01-01

    It is expected that the cosmological black holes are the closest realistic solutions of gravitational theories and they evolve with time. Moreover, the natural way of defining thermodynamic entities for the stationary ones is not applicable in the case of a time dependent spacetime. Here we confine our discussion within the Sultana-Dyer metric which is a cosmological black hole solution of Einstein's gravity. In literature, there exists two expressions of horizon temperature -- one is time dependent and the other does not depend on time. To single out the correct one we find the temperature by studying the Hawking effect in the tunnelling formalism. This leads to time dependent structure. After identifying the correct one, the Einstein's equations are written on the horizon and we show that this leads to the first law of thermodynamics. In this process the expressions for horizon entropy and energy, obtained earlier by explicit calculations, are being used. This provides the evidence that Einstein's equations...

  3. Jet Launching Structure Resolved Near the Supermassive Black Hole in M87

    CERN Document Server

    Doeleman, Sheperd S; Schenck, David E; Beaudoin, Christopher; Blundell, Ray; Bower, Geoffrey C; Broderick, Avery E; Chamberlin, Richard; Freund, Robert; Friberg, Per; Gurwell, Mark A; Ho, Paul T P; Honma, Mareki; Inoue, Makoto; Krichbaum, Thomas P; Lamb, James; Loeb, Abraham; Lonsdale, Colin; Marrone, Daniel P; Moran, James M; Oyama, Tomoaki; Plambeck, Richard; Primiani, Rurik A; Rogers, Alan E E; Smythe, Daniel L; SooHoo, Jason; Strittmatter, Peter; Tilanus, Remo P J; Titus, Michael; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H; Ziurys, Lucy M; 10.1126/science.1224768

    2012-01-01

    Approximately 10% of active galactic nuclei exhibit relativistic jets, which are powered by accretion of matter onto super massive black holes. While the measured width profiles of such jets on large scales agree with theories of magnetic collimation, predicted structure on accretion disk scales at the jet launch point has not been detected. We report radio interferometry observations at 1.3mm wavelength of the elliptical galaxy M87 that spatially resolve the base of the jet in this source. The derived size of 5.5 +/- 0.4 Schwarzschild radii is significantly smaller than the innermost edge of a retrograde accretion disk, suggesting that the M87 jet is powered by an accretion disk in a prograde orbit around a spinning black hole.

  4. Diameter structure modeling and the calculation of plantation volume of black poplar clones

    Directory of Open Access Journals (Sweden)

    Andrašev Siniša

    2004-01-01

    Full Text Available A method of diameter structure modeling was applied in the calculation of plantation (stand volume of two black poplar clones in the section Aigeiros (Duby: 618 (Lux and S1-8. Diameter structure modeling by Weibull function makes it possible to calculate the plantation volume by volume line. Based on the comparison of the proposed method with the existing methods, the obtained error of plantation volume was less than 2%. Diameter structure modeling and the calculation of plantation volume by diameter structure model, by the regularity of diameter distribution, enables a better analysis of the production level and assortment structure and it can be used in the construction of yield and increment tables.

  5. Characterizing the Deformation of the Polydimethylsiloxane (PDMS) Membrane for Microfluidic System through Image Processing

    OpenAIRE

    Xiang Qian; Wenhui Zhang; Cheng Peng; Xingyang Liu; Quan Yu; Kai Ni; Xiaohao Wang

    2016-01-01

    Polydimethylsiloxane (PDMS) membranes have been widely used in the microfluidic community to achieve various functions such as control, sensing, filter, etc. In this paper, an experimental process was proposed to directly characterize the deformation of the on-chip PDMS membrane at large deformation based on the image processing method. High precision pressures were applied on the surface of the PDMS membrane with fixed edges and a series deformation of the PDMS membrane were captured by the ...

  6. Study of the glow curve structure of the minerals separated from black pepper (Piper nigrum L.)

    Science.gov (United States)

    Guzmán, S.; Ruiz Gurrola, B.; Cruz-Zaragoza, E.; Tufiño, A.; Furetta, C.; Favalli, A.; Brown, F.

    2011-04-01

    The inorganic mineral fraction extracted from black pepper (Piper nigrum L.) has been analysed using a thermoluminescence (TL) method, investigating the glow curve structure, including an evaluation of the kinetic parameters. Different grain sizes, i.e. 10, 74, and 149 μm, were selected from commercial black pepper. The X-ray diffraction of the inorganic fraction shows that quartz is the main mineral present in it. The samples were exposed to 1-25 kGy doses by gamma rays of 60Co in order to analyse the thermally stimulated luminescence response as a function of the delivered dose. The glow curves show a complex structure for different grain sizes of the pepper mineral samples. The fading of the TL signal at room temperature was obtained after irradiation, and it was observed that the maximum peaks of the glow curves shift towards higher values of the temperature when the elapsed time from irradiation increases. It seems that the fading characteristic may be related to a continuous trap distribution responsible for the complex structure of the glow curve. Similar glow curves structure behaviour was found under ultraviolet irradiation of the samples. The activation energy and the frequency factor were determined from the glow curves of different grain sizes using a deconvolution programme because of the evident complexity of the structure.

  7. The effect of compatibilization and rheological properties of polystyrene and poly(dimethylsiloxane) on phase structure of polystyrene/poly(dimethylsiloxane) blends

    DEFF Research Database (Denmark)

    Chuai, C. Z.; Li, S; Almdal, Kristoffer;

    2004-01-01

    The compatibilization effect of polystyrene (PS)-poly(dimethylsiloxane) (PDMS) diblock copolymer (PS-b-PDMS) and the effect of rheological properties of PS and PDMS on phase structure of PS/PDMS blends were investigated using a selective extraction technique and scanning electron microscopy (SEM...

  8. Bacterial community structure and diversity in a black soil as affected by long-term fertilization

    Institute of Scientific and Technical Information of China (English)

    WEI Dan; YANG Qian; ZHANG Jun-Zheng; WANG Shuang; CHEN Xue-Li; ZHANG Xi-Lin; LI Wei-Qun

    2008-01-01

    Black soil (Mollisol) is one of the main soil types in northeastern China.Biolog and polymerase chain reactiondenaturing gradient gel electrophoresis (PCR-DGGE) methods were used to examine the influence of various fertilizer combinations on the structure and function of the bacterial community in a black soil collected from Harbin,Heilongjiang Province.Biolog results showed that substrate richness and catabolic diversity of the soil bacterial community were the greatest in the chemical fertilizer and chemical fertilizer+manure treatments.The metabolic ability of the bacterial community in the manure treatment was similar to the control.DGGE fingerprinting indicated similarity in the distribution of most 16S rDNA bands among all treatments,suggesting that microorganisms with those bands were stable and not influenced by fertilization.However,chemical fertilizer increased the diversity of soil bacterial community.Principal component analysis of Biolog and DGGE data revealed that the structure and function of the bacterial community were similar in the control and manure treatments,suggesting that the application of manure increased the soil microbial population,but had no effect on the bacterial community structure.Catabolic function was similar in the chemical fertilizer and chemical fertilizer+manure treatments,but the composition structure of the soil microbes differed between them.The use of chemical fertilizers could result in a decline in the catabolic activity of fast-growing or eutrophic bacteria.

  9. Are the program packages for molecular structure calculations really black boxes?

    Directory of Open Access Journals (Sweden)

    ANA MRAKOVIC

    2007-12-01

    Full Text Available In this communication it is shown that the widely held opinion that compact program packages for quantum–mechanical calculations of molecular structure can safely be used as black boxes is completely wrong. In order to illustrate this, the results of computations of equilibrium bond lengths, vibrational frequencies and dissociation energies for all homonuclear diatomic molecules involving the atoms from the first two rows of the Periodic Table, performed using the Gaussian program package are presented. It is demonstrated that the sensible use of the program requires a solid knowledge of quantum chemistry.

  10. Morphological investigations of cells that adhered to the irregular patterned polydimethylsiloxane (PDMS) surface without reagents.

    Science.gov (United States)

    Chung, Sung Hee; Min, Junhong

    2009-07-01

    Polydimethylsiloxane (PDMS) surface consisting irregular pattern was investigated to develop cell-based biochip using PDMS. PDMS surface was modified with nano- and micro-combined patterns using surface deformation technology. Hydrophobicity of nano-patterned PDMS surface was sustained. Nevertheless it has irregular patterns consisting of micro- and nano-patterns. According to atomic force microscopy (AFM), scanning electron microscopy (SEM) and confocal microscopy results by immunostaining method, human mammary epithelial cells (HMEC) adhered well on irregularly patterned surface without any reagents such as gelatin and collagen, compared to commercial culture dish. It implies PDMS material can be utilized as template for cell-based biochip without any reagents. PMID:19427124

  11. Development of PDMS-based Microfluidic Device for Cell-based Assays

    Institute of Scientific and Technical Information of China (English)

    LI Chenuk-Wing; YANG Jun; TZANG Chi-Hung; YANG Meng-Su

    2004-01-01

    In a single step photolithography, muhi-level microfluidic device is fabricated by printing novel architectures on a film photomasks. The whole fabrication process is executed by classical PCB technology without the need to access clean room facilities. Different levels of protruding features on PCB master are produced by exposing a photomask with specifically arranged "windows and rims" architectures, followed by chemical wet etching. Poly(dimethylsiloxane)(PDMS) is then molded against the positive relief master to generate microfluidic device featured with multi-level sandbag structure and peripheral microchannels. This sandbag structure is an analog to traditional dam or weir for particle entrapment. The microstructure does not collapse when subjected to applied pressure, which is suitable for operation on elastic PDMS substrate.Typical immunocytochemcial staining assays were performed in the microdevice to demonstrate the applicability of the sandbag structure for cellular analysis. This simplified microfabrication process employs low-cost materials and minimal specialized equipment and can reproducibly produce mask lines with about 20 μm in width, which is sufficient for most microfluidic applications.

  12. Holographic entanglement entropy and the extended phase structure of STU black holes

    CERN Document Server

    Caceres, Elena; Pedraza, Juan F

    2015-01-01

    We study the extended thermodynamics, obtained by considering the cosmological constant as a thermodynamic variable, of STU black holes in 4-dimensions in the fixed charge ensemble. The associated phase structure is conjectured to be dual to an RG-flow on the space of field theories. We find that for some charge configurations the phase structure resembles that of a Van der Waals gas: the system exhibits a family of first order phase transitions ending in a second order phase transition at a critical temperature. We calculate the holographic entanglement entropy for several charge configurations and show that for the cases where the gravity background exhibits Van der Waals behavior, the entanglement entropy presents a transition at the same critical temperature. To further characterize the phase transition we calculate appropiate critical exponents show that they coincide. Thus, the holographic entanglement entropy successfully captures the information of the extended phase structure. Finally, we discuss the...

  13. Design and fabrication of microfluidic mixer from carbonyl iron–PDMS composite membrane

    KAUST Repository

    Li, Jiaxing

    2010-10-12

    This paper introduces a carbonyl iron-PDMS (CI-PDMS) composite magnetic elastomer in which carbonyl iron (CI) particles are uniformly distributed in a PDMS matrix. The CI particles and the PDMS were mixed at different weight ratios and tested to determine the influence of CI concentration. The magnetic and mechanical properties of the magnetic elastomers were characterized, respectively, by vibrating-sample magnetometer and by tensile testing using a mechanical analyzer. The elastomer was found to exhibit high magnetization and good mechanical flexibility. The morphology and deformation of the CI-PDMS membrane also were observed. A magnetically actuated microfluidic mixer (that is, a micromixer) integrated with CI-PDMS elastomer membranes was successfully designed and fabricated. The high efficiency and quality of the mixing makes possible the impressive potential applications of this unique CI-PDMS material in microfluidic systems. © Springer-Verlag 2010.

  14. Control of PDMS crosslinking by encapsulating a hydride crosslinker in a PMMA microcapsule

    DEFF Research Database (Denmark)

    Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren;

    2014-01-01

    crosslinker in a PMMA shell. Microcapsules are mixed with vinyl-terminated PDMS to create a gelation system, which allows for storage at 50 °C, without premature gelation, and in addition allows for extensive crosslinking reaction at 120 °C. Both visual observations and rheological studies show that a robust...... PDMS elastomer is obtained upon heating the gelation system. Furthermore, the influence of stoichiometric imbalance on the equilibrium storage modulus of the PDMS network is investigated, by employing different amounts of microcapsules in vinyl-terminated PDMS. It has been found that adding...... microcapsules increases the equilibrium storage modulus of the PDMS elastomer until the diffusion of the hydride crosslinker is constricted. An optimum amount of crosslinker used in the control crosslinking reaction has also been found. However, compared to the pure PDMS elastomer, the modulus of the PDMS...

  15. Nanostructured PDMS surfaces with patterned wettability

    OpenAIRE

    Hobæk, Thor Christian

    2011-01-01

    In this study, a surface with patterned wettability by means of surface structuring, rather than through modifying the surface chemistry, was developed. The device presented in this thesis was inspired by the Namib Desert Bettle, which collects water from the fog by having hydrophilic spots surrounded by hydrophobic wax-coated regions on its back. Besides water collection, controlling the wetting behaviour locally on the surface may find applications within droplet-based microfluidics, or fab...

  16. PDMS-based gold electrode for sensing ascorbic acid.

    Science.gov (United States)

    Xu, Qin; Bi, Lianhua; Zheng, Huxiang; Fan, Dahe; Wang, Wei

    2011-11-01

    Electrode with optical shapes is appreciated in microfluidics. In this article, we reported a flexible poly(dimethylsiloxane) (PDMS)-based gold electrode for ascorbic acid detection. Gold nanoparticles were chemically deposited on PDMS and the composite film was applied as working electrode. The electrode could undergo deformation and display good response performance without damage. This biosensor could give quick response to ascorbic acid (AA) (<5s) and the currents were linear with concentrations of AA in range of 0.023-7.00 mM and 30-100 mM, respectively. Limit of detection was 0.008 mM (S/N=3). This biosensor has been applied to determine ascorbic acid content in vitamin C tablets and the results were consistent with traditional iodometric method. PMID:21807485

  17. Fabrication and characterization of phantoms made of polydimethylsiloxane (PDMS)

    Science.gov (United States)

    Villanueva-Luna, A. E.; Santiago-Alvarado, A.; Castro-Ramos, J.; Licona-Moran, B.; Vazquez-Montiel, S.; Flores-Gil, A.; Delgado-Atencio, J. A.

    2011-03-01

    The transparent elastomer Polydimethylsiloxane (PDMS) Sylgard 184 is increasingly used in optical applications, as in the manufacture of microlens, waveguides (optical fibers) and to elaborated phantoms (simulator of biological tissue); The wide range of applications is due to its excellent physic-chemical properties, its low cost, easy operation and null toxicity. This paper describes the manufacturing process and physic-chemical characterization of Phantoms prepared with PDMS as grid and doped with some elements present as Gliceryl, ink, glucose 10% and melanin provided by sigma aldrich. We made phantoms with different concentrations and elements; we measured their profiles, and thicknesses. Finally, we obtained their Raman Spectra. We present the experimental results obtained of the physic-chemical parameters of the phantoms and the conclusions.

  18. Parametric and scattering characterization of PDMS membranes for optical applications

    Science.gov (United States)

    Santiago-Alvarado, A.; Vazquez Montiel, S.; Munoz-Lopez, J.; Castro-Ramos, J.; Delgado Atencio, J. A.

    2009-08-01

    Today elastic membranes are being used more frequent as optical surfaces in the science or in the industry. This due to the advantages that they display in their handling and in their cost of production. These characteristics make them ideals to apply them in micro-optical components and Tunable Focus Liquid Filled Length Lens (TFLFLL). In order to know if a membrane of PDMS (PDMS Sylgard 184) is feasible for a specific application within the field of the optics, it is necessary to know its mechanical, optical and chemical properties. In this work the parametric membrane characterization is reported for an optical application. An important factor in the performance of these membranes is related with their scattering factor that is produced due to the roughness and impurities (micro-bubbles or dust particles). These membranes are used as refractive surface in TFLFLL. Experimental results of the characterization process and device performance are presented.

  19. Femtosecond laser embedded grating micromachining of flexible PDMS plates

    Science.gov (United States)

    Cho, Sung-Hak; Chang, Won-Seok; Kim, Kwang-Ryul; Hong, Jong Wook

    2009-04-01

    We report on the femtosecond laser micromachining of photo-induced embedded diffraction grating in flexible Poly (Dimethly Siloxane) (PDMS) plates using a high-intensity femtosecond (130 fs) Ti: sapphire laser ( λp = 800 nm). The refractive index modifications with diameters ranging from 2 μm to 5 μm were photo-induced after the irradiation with peak intensities of more than 1 × 10 11 W/cm 2. The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which femtosecond laser was focused. The maximum refractive index change (Δ n) was estimated to be 2 × 10 -3. By the X- Y- Z scanning of sample, the embedded diffraction grating in PDMS plate was fabricated successfully using a femtosecond laser.

  20. Growth control of sessile microbubbles in PDMS devices

    CERN Document Server

    Volk, Andreas; Kähler, Christian J; Hilgenfeldt, Sascha; Marin, Alvaro

    2015-01-01

    In a microfluidic environment, the presence of bubbles is often detrimental to the functionality of the device, leading to clogging or cavitation, but microbubbles can also be an indispensable asset in other applications such as microstreaming. In either case, it is crucial to understand and control the growth or shrinkage of these bodies of air, in particular in common soft-lithography devices based on polydimethylsiloxane (PDMS), which is highly permeable to gases. In this work, we study the gas transport into and out of a bubble positioned in a microfluidic device, taking into account the direct gas exchange through PDMS as well as the transport of gas through the liquid in the device. Hydrostatic pressure regulation allows for the quantitative control of growth, shrinkage, or the attainment of a stable equilibrium bubble size. We find that the vapor pressure of the liquid plays an important role for the balance of gas transport, accounting for variability in experimental conditions and suggesting addition...

  1. Mesomorphic phase behaviour of low molar mass PEP-PDMS diblock copolymers synthesized by anionic polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vigild, M.E.

    1997-10-01

    The phase behaviour of low molar mass poly(ethylene-alt-propylene) -poly(dimethylsiloxane) (PEP-PDMS) is investigated in this thesis by the combination of dynamical mechanical spectroscopy (rheology) to measure phase transition temperatures, and small-angle x-ray scattering to identify the morphology of encountered phases. Samples of PEP-PDMS in the range of 0.2-0.7 in volume fraction of PEP are studied. This diblock copolymer system exhibits the three classical phases of lamellar sandwich structure (LAM), hexagonally packed cylinders (HEX), and spheres arranged on a body centered cubic lattice (BCC). Furthermore the gyroid phase (Ia3d symmetry) of two interpenetrating networks was also identified as a stable phase of the PEP-PDMS system. Time resolved measurements of small-angle neutron scattering in tandem with simultaneous in-situ rheological measurements are performed on samples showing transitions between different ordered phases. The identification of especially the BCC and gyroid phases from scattering experiments is treated. By performing mesoscopic crystallographic measurements using a custom built goniometer it was unambiguously shown that the application of shear to an unoriented powder-like sample introduces uniaxial orientation of the gyroid phase. The orientation of the ordered phase is otherwise random, causing a two-dimensional powder. Finally this dissertation presents a discussion of relevant parameters for the description of diblock copolymer phase behaviour together with descriptions of anionic polymerization for the synthesis of copolymers, and various experimental techniques for the characterization of diblocks. (au). 9 tabs., 40 ills., 81 refs.

  2. Black to Black

    DEFF Research Database (Denmark)

    Langkjær, Michael Alexander

    2012-01-01

    Pop musicians performing in black stage costume take advantage of cultural traditions relating to matters black. Stylistically, black is a paradoxical color: although a symbol of melancholy, pessimism, and renunciation, black also expresses minimalist modernity and signifies exclusivity (as...

  3. Embedded silver PDMS electrodes for single cell electrical impedance spectroscopy

    Science.gov (United States)

    Wei, Yuan; Xu, Zhensong; Cachia, Mark A.; Nguyen, John; Zheng, Yi; Wang, Chen; Sun, Yu

    2016-09-01

    This paper presents a microfluidic device with wide channels and embedded AgPDMS electrodes for measuring the electrical properties of single cells. The work demonstrates the feasibility of using a large channel design and embedded electrodes for impedance spectroscopy to circumvent issues such as channel clogging and limited device re-usability. AgPDMS electrodes were formed on channel sidewalls for impedance detection and cell electrical properties measurement. Equivalent circuit models were used to interpret multi-frequency impedance data to quantify each cell’s cytoplasm conductivity and specific membrane capacitance. T24 cells were tested to validate the microfluidic system and modeling results. Comparisons were then made by measuring two leukemia cell lines (AML-2 and HL-60) which were found to have different cytoplasm conductivity values (0.29  ±  0.15 S m‑1 versus 0.47  ±  0.20 S m‑1) and specific membrane capacitance values (41  ±  25 mF m‑2 versus 55  ±  26 mF m‑2) when the cells were flown through the wide channel and measured by the AgPDMS electrodes.

  4. Embedded silver PDMS electrodes for single cell electrical impedance spectroscopy

    Science.gov (United States)

    Wei, Yuan; Xu, Zhensong; Cachia, Mark A.; Nguyen, John; Zheng, Yi; Wang, Chen; Sun, Yu

    2016-09-01

    This paper presents a microfluidic device with wide channels and embedded AgPDMS electrodes for measuring the electrical properties of single cells. The work demonstrates the feasibility of using a large channel design and embedded electrodes for impedance spectroscopy to circumvent issues such as channel clogging and limited device re-usability. AgPDMS electrodes were formed on channel sidewalls for impedance detection and cell electrical properties measurement. Equivalent circuit models were used to interpret multi-frequency impedance data to quantify each cell’s cytoplasm conductivity and specific membrane capacitance. T24 cells were tested to validate the microfluidic system and modeling results. Comparisons were then made by measuring two leukemia cell lines (AML-2 and HL-60) which were found to have different cytoplasm conductivity values (0.29  ±  0.15 S m-1 versus 0.47  ±  0.20 S m-1) and specific membrane capacitance values (41  ±  25 mF m-2 versus 55  ±  26 mF m-2) when the cells were flown through the wide channel and measured by the AgPDMS electrodes.

  5. Separating a water-propanol mixture using PDMS pervaporation membranes

    Directory of Open Access Journals (Sweden)

    Mahacine Amrani

    2010-04-01

    Full Text Available Recovering and purifying organic solvents during chemical and pharmaceutical synthesis has great economic and environmental importance. Water-alcohol mixture pervaporation was investigated using a pervaporation cell and hy-drophobic membranes. This work studied polydimethylsiloxane (PDMS membrane performance and hydrophobic membranes for removing propanol from aqueous mixtures. PDMS is recognised as being alcohol permselective du-ring pervaporation. It was also observed that water was transferred through a hydrophobic membrane as water’s molecular size is smaller than that of propanol. A laboratory-scale pervaporation unit was used for studying this membrane’s separation characteristics in terms of pervaporation flux and selectivity for feeds containing up to water mass and 30°C-50°C. Total propanol/water flux was observed to vary as operating temperature increased. Although PDMS membranes presented good characteristics for separating water/propanol mixtures, the separation factor and pervaporation flow decreased as water content in the feed increased. The tested membrane was found to be very e-fficient for water concentrations of less than 0.3, corresponding to total flux transfer maximum.

  6. Structural and sensory characterization of key pungent and tingling compounds from black pepper (Piper nigrum L.).

    Science.gov (United States)

    Dawid, Corinna; Henze, Andrea; Frank, Oliver; Glabasnia, Anneke; Rupp, Mathias; Büning, Kirsten; Orlikowski, Diana; Bader, Matthias; Hofmann, Thomas

    2012-03-21

    To gain a more comprehensive knowledge on whether, besides the well-known piperine, other compounds are responsible for the pungent and tingling oral impression imparted by black pepper, an ethanol extract prepared from black pepper (Piper nigrum L.) was screened for its key sensory-active nonvolatiles by application of taste dilution analysis (TDA). Purification of the compounds perceived with the highest sensory impact, followed by LC-MS and 1D/2D NMR experiments as well as synthesis, led to the structure determination of 25 key pungent and tingling phytochemicals, among which the eight amides 1-(octadeca-2E,4E,13Z-trienyl)piperidine, 1-(octadeca-2E,4E,13Z-trienyl)pyrrolidine, (2E,4E,13Z)-N-isobutyl-octadeca-2,4,13-trienamide, 1-(octadeca-2E,4E,12Z-trienoyl)-pyrrolidine, 1-(eicosa-2E,4E,15Z-trienyl)piperidine, 1-(eicosa-2E,4E,15Z-trienyl)pyrrolidine, (2E,4E,15Z)-N-isobutyl-eicosa-2,4,15-trienamide, and 1-(eicosa-2E,4E,14Z-trienoyl)-pyrrolidine were not yet reported in literature. Sensory studies by means of a modified half-tongue test revealed recognition thresholds ranging from 3.0 to 1150.2 nmol/cm² for pungency and from 520.6 to 2162.1 nmol/cm² for the tingling orosensation depending on their chemical structure.

  7. Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets

    Science.gov (United States)

    Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun

    2016-08-01

    Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications.

  8. Sub-100 nm gold nanohole-enhanced Raman scattering on flexible PDMS sheets.

    Science.gov (United States)

    Lee, Seunghyun; Ongko, Andry; Kim, Ho Young; Yim, Sang-Gu; Jeon, Geumhye; Jeong, Hee Jin; Lee, Seungwoo; Kwak, Minseok; Yang, Seung Yun

    2016-08-01

    Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive vibrational spectroscopy technique enabling detection of multiple analytes at the molecular level in a nondestructive and rapid manner. In this work, we introduce a new approach to fabricate deep subwavelength-scaled (sub-100 nm) metallic nanohole arrays (quasi-3D metallic nanoholes) on flexible and highly efficient SERS substrates. Target structures have been fabricated using a two-step process consisting of (i) direct pattern transfer of spin-coated polymer films onto polydimethylsiloxane (PDMS) substrates by plasma etching with transferred anodic aluminum oxide masks, and (ii) producing SERS-active substrates by functionalization of the etched polymeric films followed by Au deposition. Such an all-dry, top-down lithographic approach enables on-demand patterning of SERS-active metallic nanoholes with high structural fidelity even onto flexible and stretchable substrates, thus making possible multiple sensing modes in a versatile fashion. For example, metallic nanoholes on flexible PDMS substrates are highly amenable to their integration with curved glass sticks, which can be used in optical fiber-integrated SERS systems. Au surfaces immobilized by probe DNA molecules show a selective enhancement of Raman scattering with Cy5-labeled complementary DNA (as compared to flat Au surfaces), demonstrating the potential of using the quasi-3D Au nanohole arrays for bio-sensing applications. PMID:27334794

  9. INFLUENCE OF BIOLOGICALLY ACTIVE AGENTS ON A STRUCTURAL STATE AND THE ENZYMATIC ACTIVITY OF BLACK ORDINARY CARBONATED SOIL

    Directory of Open Access Journals (Sweden)

    Lychman V. A.

    2014-04-01

    Full Text Available The results of a long-term research of the influence of various biologically active agents (a humic preparation Lignogumat and microbiological Baikal EM fertilizer on a structural state and the enzymatic activity of ordinary carbonated black soil are presented. It has been established that biologically active substances contribute to increased enzymatic activity, humus and improve the soil structure

  10. Modeling angle-resolved photoemission of graphene and black phosphorus nano structures.

    Science.gov (United States)

    Park, Sang Han; Kwon, Soonnam

    2016-05-10

    Angle-resolved photoemission spectroscopy (ARPES) data on electronic structure are difficult to interpret, because various factors such as atomic structure and experimental setup influence the quantum mechanical effects during the measurement. Therefore, we simulated ARPES of nano-sized molecules to corroborate the interpretation of experimental results. Applying the independent atomic-center approximation, we used density functional theory calculations and custom-made simulation code to compute photoelectron intensity in given experimental setups for every atomic orbital in poly-aromatic hydrocarbons of various size, and in a molecule of black phosphorus. The simulation results were validated by comparing them to experimental ARPES for highly-oriented pyrolytic graphite. This database provides the calculation method and every file used during the work flow.

  11. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures

    OpenAIRE

    Jayachandra Bingi; Vadakke Matham Murukeshan

    2015-01-01

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution ...

  12. Analysis of internal structure changes in black human hair keratin fibers resulting from bleaching treatments using Raman spectroscopy

    Science.gov (United States)

    Kuzuhara, Akio

    2013-09-01

    In order to investigate in detail the internal structure changes in virgin black human hair keratin fibers resulting from bleaching treatments, the structure of cross-sections at various depths of black human hair, which had been impossible due to high melanin grande content, was directly analyzed using Raman spectroscopy. The gauche-gauche-gauche (GGG) content of the sbnd SSsbnd groups existing from the cuticle region to the center of cortex region of the virgin black human hair remarkably decreased, while the gauche-gauche-trans and trans-gauche-trans contents were not changed by performing the excessive bleaching treatment. In particular, it was found that not only the β-sheet and/or random coil content, but also the α-helix content existing throughout the cortex region of virgin black human hair decreased. In addition, the transmission electron microscope observation shows that the proteins in the cell membrane complex, the cuticle and cortex of the virgin black human hair were remarkably eluted by performing the excessive bleaching treatment. From these experiments, the author concluded that the sbnd SSsbnd groups, which have a GGG conformation were decomposed and finally converted to cysteic acid, and the α-helix structure of some of the proteins existing in the keratin was changed to the random coil structure, or eluted from the cortex region, thereby leading to the reduction in the protein density of the virgin human hair after the excessive bleaching treatment.

  13. Relationships between MODIS black-sky shortwave albedo and airborne lidar based forest canopy structure

    Science.gov (United States)

    Korhonen, Lauri; Rautiainen, Miina; Arumäe, Tauri; Lang, Mait; Flewelling, James; Tokola, Timo; Stenberg, Pauline

    2016-04-01

    Albedo is one of the essential climate variables affecting the Earth's radiation balance. It is however not well understood how changes in forest canopy structure influence the albedo. Canopy structure can be mapped consistently for fairly large areas using airborne lidar sensors. Our objective was to study the relationships between MODIS shortwave black sky albedo product and lidar-based estimates of canopy structure in different biomes ranging from arctic to tropical. Our study is based on six structurally different forest sites located in Finland, Estonia, USA and Laos. Lidar-based mean height of the canopy, canopy cover and their transformations were used as predictor variables to describe the canopy structure. Tree species composition was also included for the three sites where it was available. We noticed that the variables predicting albedo best were different in open and closed canopy forests. In closed canopy forests, the species information was more important than canopy structure variables (R2=0.31-0.32) and using only structural variables resulted in poor R2 (0.13-0.15). If the 500 m MODIS pixel contained a mixture of forests and other land cover types, the albedo was strongly related to the forest area percent. In open canopy forests, structural variables such as canopy cover or height explained albedo well, but species information still improved the models (R2=0.27-0.52). We obtained the highest R2=0.52 using only structural variables in Laos on a partially degraded tropical forest with large variation in canopy cover. The different canopy structure variables were often correlated and the one that provided the best model changed from site to site.

  14. Preliminary study of the mite community structure in different black truffle producing soils

    Directory of Open Access Journals (Sweden)

    Mikel Queralt

    2014-08-01

    Full Text Available Aims of the study: The goals of this paper are to provide preliminary data on the composition of the mite community in truffle-producing soils (both wild and plantations; and to elucidate those species which may interact with the black truffle life cycle.Area of study: The study was carried out in two black truffle productive zones in Navarra (Spain, in four different plantations and five wild production areas.Material and Methods: Fauna was extracted using Berlese Tullgren funnels. Animals were separated into taxonomic groups, and mites were identified. To analyse the composition and community structure of the different habitats, parameters such as abundance, species richness, and Shanon Weiner diversity index (H’ were calculated.Main results: A total of 305 mites were recognized, belonging to 58 species representing the three major taxonomic groups (Oribatida, Prostigmata, Mesostigmata.Research highlights: The results show a possible trend towards wild areas having greater diversity and species richness than plantations. Furthermore, community analysis shows differences in species compositions among different study areas, and oribatid mites always exhibit the highest relative abundance and species richness.Keywords: Acari; Tuber melanosporum; Oribatida; Mesostigmata; Prostigmata; truffle orchards. 

  15. Line Emission from an Accretion Disk around a Black hole Effects of Disk Structure

    CERN Document Server

    Pariev, V I; Pariev, Vladimir I.; Bromley, Benjamin C.

    1998-01-01

    The observed iron K-alpha fluorescence lines in Seyfert-1 galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the line emission. These lines serve as powerful probes for examining the structure of inner regions of accretion disks. Previous studies of line emission have considered geometrically thin disks only, where the gas moves along geodesics in the equatorial plane of a black hole. Here we extend this work to consider effects on line profiles from finite disk thickness, radial accretion flow and turbulence. We adopt the Novikov and Thorne (1973) solution, and find that within this framework, turbulent broadening is the dominant new effect. The most prominent change in the skewed, double-horned line profiles is a substantial reduction in the maximum flux at both red and blue peaks. The effect is most pronounced when the inclination angle is large, and when the accretion rate is high. Thus, the effects discussed here may be important for future detailed model...

  16. Line emission from an accretion disk around black hole effects of the disk structure

    CERN Document Server

    Pariev, V I; Bromley, Benjamin C.; Pariev, Vladimir I.

    1998-01-01

    The observed iron K-alpha fluorescence lines in Seyfert galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the line emission. Previous studies of line emission have considered only geometrically thin disks, where the gas moves along geodesics in the equatorial plane of a black hole. Here we extend this work to include effects on line profiles from finite disk thickness, radial accretion flow and turbulence. We adopt the Novikov-Thorne solution, and find that within this framework, turbulent broadening is the most significant effect. The most prominent changes in the skewed, double-horned line profiles is a substantial reduction in the maximum flux at both red and blue peaks. We show that at the present level of signal-to-noise in X-ray spectra, proper treatment of the actual structure of the accretion disk can change estimates of the inclination angle of the disk. Thus these effects will be important for future detailed modeling of high quality observational d...

  17. Differing patterns of brain structural abnormalities between black and white patients with their first episode of psychosis.

    LENUS (Irish Health Repository)

    Morgan, K D

    2010-07-01

    African-Caribbean and black African people living in the UK are reported to have a higher incidence of diagnosed psychosis compared with white British people. It has been argued that this may be a consequence of misdiagnosis. If this is true they might be less likely to show the patterns of structural brain abnormalities reported in white British patients. The aim of this study therefore was to investigate whether there are differences in the prevalence of structural brain abnormalities in white and black first-episode psychosis patients.

  18. The deformation of flexible PDMS microchannels under a pressure driven flow.

    Science.gov (United States)

    Hardy, Brian S; Uechi, Kawika; Zhen, Janet; Pirouz Kavehpour, H

    2009-04-01

    Poly(dimethylsiloxane) (PDMS) microchannels are commonly used microfluidic structures that have a wide variety of biological testing applications, including the simulation of blood vessels to study the mechanics of vascular disease. In these studies in particular, the deformation of the channel due to the pressure inside is a critical parameter. We describe a method for using fluorescence microscopy to quantify the deformation of such channels under pressure driven flow. Additionally, the relationship between wall thickness and channel deformation is investigated. PDMS microchannels of varying top wall thickness were created using a soft lithography process. A solution of fluorescent dye is pumped through the channels at constant volume flow rates and illuminated. Pressure and fluorescence intensity are measured at five positions along the length of the channel. Fluorescence measurements are then used to determine deformation, using the linear relationship of dye layer thickness and intensity. A linear relationship between pressure and microchannel deformation is measured. Pressure drops and deformations closely correspond to values predicted by the model in most cases. Additionally, measured pressure drops are found to be up to 35% less than the pressure drop in a rigid-walled channel, and channel wall thickness is found to have an increasing effect as the channel wall thickness decreases. PMID:19294304

  19. A PDMS-Based 2-Axis Waterproof Scanner for Photoacoustic Microscopy

    Directory of Open Access Journals (Sweden)

    Jin Young Kim

    2015-04-01

    Full Text Available Optical-resolution photoacoustic microscopy (OR-PAM is an imaging tool to provide in vivo optically sensitive images in biomedical research. To achieve a small size, fast imaging speed, wide scan range, and high signal-to-noise ratios (SNRs in a water environment, we introduce a polydimethylsiloxane (PDMS-based 2-axis scanner for a flexible and waterproof structure. The design, theoretical background, fabrication process and performance of the scanner are explained in details. The designed and fabricated scanner has dimensions of 15 × 15 × 15 mm along the X, Y and Z axes, respectively. The characteristics of the scanner are tested under DC and AC conditions. By pairing with electromagnetic forces, the maximum scanning angles in air and water are 18° and 13° along the X and Y axes, respectively. The measured resonance frequencies in air and water are 60 and 45 Hz along the X axis and 45 and 30 Hz along the Y axis, respectively. Finally, OR-PAM with high SNRs is demonstrated using the fabricated scanner, and the PA images of micro-patterned samples and microvasculatures of a mouse ear are successfully obtained with high-resolution and wide-field of view. OR-PAM equipped with the 2-axis PDMS based waterproof scanner has lateral and axial resolutions of 3.6 μm and 26 μm, respectively. This compact OR-PAM system could potentially and widely be used in preclinical and clinical applications.

  20. A Method to Pattern Silver Nanowires Directly on Wafer-Scale PDMS Substrate and Its Applications.

    Science.gov (United States)

    Chou, Namsun; Kim, Youngseok; Kim, Sohee

    2016-03-01

    This study describes a fabrication method of microsized AgNW patterns based on poly dimethylsiloxane (PDMS) substrate using a poly(p-xylylene) (parylene) stencil technique. Various patterns of AgNW conductive sheets were created on the wafer scale area in the forms of straight and serpentine lines, texts, and symbols, which dimensions ranged from a few tens of micrometers to hundreds of micrometers. We demonstrated the electrical performance of straight line and serpentine line patterned AgNW electrodes when subjected to mechanical strains. The gauge factor and stretchability ranged from 0.5 to 55.2 at 2% uniaxial strain and from 4.7 to 55.7%, respectively, depending on the shapes and structures of the AgNW electrodes. Using the developed AgNW patterning technique, we fabricated strain sensors to detect small body signals epidermally such as hand motion, eye blink and heart rate. Also, tactile sensors were fabricated and exhibited the sensitivity of 3.91 MPa(-1) in the pressure range lower than 50 kPa, and 0.28 MPa(-1) in the pressure range greater than 50 kPa up to 1.3 MPa. From these results, we concluded that the proposed technique enables the fabrication of reliable AgNW patterns on wafer-scale PDMS substrate and the potential applications for various flexible electronic devices.

  1. The Dimensions of Subjective Well-Being among Black Americans: A Structural Model Analysis.

    Science.gov (United States)

    Tran, Thanh V.; And Others

    1994-01-01

    Analysis of data from 668 black adult respondents to the 1980 National Survey of Black Americans suggests that subjective well-being among black Americans is multidimensional. A three-factor model of subjective well-being encompassing strain (depressive symptoms), life satisfaction, and self-esteem was empirically supported and consistently…

  2. Comment on "Insight into the Microscopic Structure of an AdS Black Hole from Thermodynamical Phase Transition"

    CERN Document Server

    Zangeneh, M Kord; Sheykhi, A

    2016-01-01

    In their Letter [Phys. Rev. Lett. 115, 111302 (2015)], Shao-Wen Wei and Yu-Xiao Liu have introduced the number density of the black hole molecules as a measure for microscopic degrees of freedom of the black hole. Based on this, they have figured out some microscopic properties of the $4$-dimensional charged AdS black hole as an example relying on the thermodynamic phase transition and thermodynamic geometry, specially the behavior of the Ricci scalar of Ruppeiner geometry \\cite{Rup0}. At first glance, the obtained Ricci scalar seems surprising since shows no divergency as one usually expects for black holes \\cite{Rup1}. This motivates us to check whether the obtained Ricci scalar is correct. We observed that Ricci scalar is not correct as we guessed and therefore discussions and insights about microscopic structure of charged AdS black holes relying on this should be revised. In this Letter, we address the correct Ricci scalar of the $4$-dimensional charged AdS black holes and disclose the correct properties...

  3. Effect of ZnO Addition on Structural Properties of ZnO-PANi/ Carbon Black Thin Films

    International Nuclear Information System (INIS)

    The aim of this project was to investigate the effect of ZnO addition on the structural properties of ZnO-PANi/ carbon black thin films. The sol gel method was employed for the preparation of ZnO sol. The sol was dried for 24 h at 100 degree Celsius and then annealed at 600 degree Celsius for 5 h. XRD characterization of the ZnO powder showed the formation of wurtzite type ZnO crystals. The ZnO powder were mixed into PANi/ carbon black solution which was dissolved into M-Pyrol, N-Methyl-2-Pyrrolidinone (NMP) to produce a composite solution of ZnO-PANi/ carbon black. The weight ratio of ZnO were 4 wt %, 6 wt % and 8 wt %. The composite solutions were deposited onto glass substrates using a spin-coating technique to fabricate ZnO-PANi/ carbon black thin films. AFM characterization showed the decreasing of average roughness from 7.98 nm to 2.23 nm with the increment of ZnO addition in PANi/ carbon black films. The thickness of the films also decreased from 59.5 nm to 28.3 nm. FESEM image revealed that ZnO-PANi/ carbon black thin films have changed into agglomerated surface morphology resulting in the increment of porosity of the films. (author)

  4. Black Hole or MECO? Decided by a Thin Luminous Ring Structure Deep Within Quasar Q0957

    CERN Document Server

    Schild, Rudolph E

    2008-01-01

    Optical, Infrared, X-ray, and radio wavelength studies of quasars are beginning to define the luminous quasar structure from techniques of reverberation and microlensing. An important result is that the inner quasar structure of the first identified gravitational lens, Q0957+561 A,B seems not to show the kind of structure expected for a supermassive black hole, but instead show a clean-swept interior region as due to the action of a magnetic propeller, just as expected for a MECO (Magnetic Eternally Collapsing Object) structure. Given the present state of the observations, the strongest model discriminant seems to be the existence of a thin luminous band around the inner edge of the accretion disc, at a distant radius ~ 70 R_g from the ~ 4 x 10^9 Mo central object. Since the existence of a clean magnetic propeller swept inner region ~70 R_g surrounded by a sharp ~ 1 R_g disc edge are the low-hard state spectral properties associated with a highly redshifted central MECO object, we are led to the conclusion th...

  5. Population genetic structure and demographic history of the black fly vector, Simulium nodosum in Thailand.

    Science.gov (United States)

    Chaiyasan, P; Pramual, P

    2016-09-01

    An understanding of the genetic structure and diversity of vector species is crucial for effective control and management. In this study, mitochondrial DNA sequences were used to examine the genetic structure, diversity and demographic history of a black fly vector, Simulium nodosum Puri (Diptera: Simuliidae), in Thailand. A total of 145 sequences were obtained from 10 sampling locations collected across geographical ranges in the country. Low genetic diversity was found in populations of S. nodosum that could be explained by the recent population history of this species. Demographic history analysis revealed a signature of demographic expansion dating back to only 2600-5200 years ago. Recent population expansion in S. nodosum possibly followed an increase in agriculture that enabled its hosts', humans and domestic animals, densities to increase. Alternatively, the Thai populations could be a derivative of an older expansion event in the more northern populations. Mitochondrial DNA genealogy revealed no genetically divergent lineages, which agrees with the previous cytogenetic study. Genetic structure analyses found that only 27% of the pairwise comparisons were significantly different. The most likely explanation for the pattern of genetic structuring is the effect of genetic drift because of recent colonization. PMID:27245148

  6. Structure and magnetism of Mn, Fe, or Co adatoms on monolayer and bilayer black phosphorus

    Science.gov (United States)

    Wang, Hongbo; Zhu, Shasha; Fan, Fengren; Li, Zhengwei; Wu, Hua

    2016-03-01

    Black phosphorus (BP) is an emergent layered material and is currently explored for its potential applications in nanoelectronics. Here using density functional calculations, we investigate the structure and magnetism of transition metal (TM) adatoms (Mn, Fe, and Co) on the monolayer and bilayer BP. We find that while the TM adatoms prefer to occupy a valley site of the puckered monolayer BP and have a low-spin magnetic state, they could move to an interlayer interstitial site of the bilayer BP and turn into a high-spin state. In particular, Mn adatom at the valley site of monolayer BP has also a metastable high-spin state, and moreover, a low-spin to high-spin magnetic transition can readily be induced by a strain along the armchair direction. Then Mn adsorbed BP monolayer has a strain-tuning spin switch.

  7. Experimental study of evaporation of sessile water droplet on PDMS surfaces

    Science.gov (United States)

    Yu, Ying-Song; Wang, Zi-Qian; Zhao, Ya-Pu

    2013-12-01

    Evaporation of sessile water droplet on polydimethylsiloxane (PDMS) surfaces with three different curing ratios (5: 1, 10: 1, and 20: 1) was experimentally investigated in this paper. We show that the constant contact radius (CCR) evaporation on surface with high curing ratio lasts longer than that with low curing ratio. We also measured Young's moduli of PDMS films by using atomic force microscopy (AFM) and simulated surface deformation of PDMS films induced by sessile water droplet. With increasing curing ratio of PDMS film, Young's modulus of PDMS film is getting lower, and then there will be larger surface deformation and more elastic stored energy. Since such energy acts as a barrier to keep the three-phase contact line pinned, thus it will result in longer CCR evaporation on PDMS surface with higher curing ratio.

  8. Production of Structural Colors with High Contrast and Wide Viewing Angles from Assemblies of Polypyrrole Black Coated Polystyrene Nanoparticles.

    Science.gov (United States)

    Yang, Xiaoming; Ge, Dengteng; Wu, Gaoxiang; Liao, Zhiwei; Yang, Shu

    2016-06-29

    Structural color with wide viewing angles has enormous potential applications in pigment, ink formulation, displays, and sensors. However, colors obtained from colloidal assemblies with low refractive index contrast or without black additives typically appear pale. Here, we prepare polypyrrole (PPy) black coated polystyrene (PS) nanoparticles and demonstrate well-defined colors with high color contrast and wide viewing angles under ambient light. Depending on the loading of pyrrole during polymerization, PPy nanogranules of different sizes and coverages are grafted to the surface of PS nanoparticles. The bumpy particles can self-assemble into quasi-amorphous arrays, resulting in low angle dependent structure colors under ambient light. The color can be tuned by the size of the PS nanoparticles, and the presence of the PPy black on PS nanoparticles enhances the color contrast by suppressing incoherent and multiple scattering.

  9. Characterization of the nanosized porous structure of black Si solar cells fabricated via a screen printing process

    Institute of Scientific and Technical Information of China (English)

    Tang Yehua; Fei Jianming; Cao Hongbin; Zhou Chunlan; Wang Wenjing; Zhou Su; Zhao Yan; Zhao Lei; Li Hailing; Yan Baojun; Chen Jingwei

    2012-01-01

    A silicon (Si) surface with a nanosized porous structure was formed via simple wet chemical etching catalyzed by gold (Au) nanoparticles on p-type Cz-Si (100).The average reflectivity from 300 to 1200 nm was less than 1.5%.Black Si solar cells were then fabricated using a conventional production process.The results reflected the output characteristics of the cells fabricated using different etching depths and emitter dopant profiles.Heavier dopants and shallower etching depths should be adopted to optimize the black Si solar cell output characteristics.The efficiency at the optimized etching time and dopant profile was 12.17%.However,surface passivation and electrode contact due to the nanosized porous surface structure are still obstacles to obtaining high conversion efficiency for the black Si solar cells.

  10. Effect of mold treatment by solvent on PDMS molding into nanoholes

    OpenAIRE

    Con, Celal; Cui, Bo

    2013-01-01

    Polydimethylsiloxane (PDMS) is the most popular and versatile material for soft lithography due to its flexibility and easy fabrication by molding process. However, for nanoscale patterns, it is challenging to fill uncured PDMS into the holes or trenches on the master mold that is coated with a silane anti-adhesion layer needed for clean demolding. PDMS filling was previously found to be facilitated by diluting it with toluene or hexane, which was attributed to the great reduction of viscosit...

  11. Full elastic constitutive relation of non-isotropic aligned-CNT/PDMS flexible nanocomposites

    Science.gov (United States)

    Sepúlveda, A. T.; Guzman de Villoria, R.; Viana, J. C.; Pontes, A. J.; Wardle, B. L.; Rocha, L. A.

    2013-05-01

    The elastic response of vertically aligned-carbon nanotube/polydimethylsiloxane (A-CNT/PDMS) nanocomposites is presented in this study and related to the underlying aligned-CNT morphology. Multiwalled carbon nanotubes (MWCNTs) at 1% Vf are embedded in a flexible substrate of PDMS to create a flexible polymer nanocomposite (PNC). The PNC properties are evaluated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and tensile mechanical tests, and the full linearly elastic constitutive relation is established for such a PNC. The results suggest that the CNTs retain the alignment after wetting and curing of PDMS. PDMS is significantly modified by the reinforcing aligned-CNT fibers, demonstrating non-isotropic (as opposed to the isotropic neat PDMS) elastic properties all different from PDMS (Young's modulus of 0.8 MPa), including an anisotropy ratio of 4.8 and increases in the modulus of A-CNT/PDMS over PDMS by more than 900% and 100%, in the CNT longitudinal and transverse directions, respectively. This study reports the first full constitutive relation that may be useful in modeling PNCs as composites or as elements of hierarchical nanoengineered composites, particularly PDMS-CNT PNCs are envisioned as elements in biomedical devices such as pressure transducers and energy harvesters.

  12. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.

    Science.gov (United States)

    Kim, Jungkyu; Surapaneni, Rajesh; Gale, Bruce K

    2009-05-01

    Rapid prototyping of microfluidic systems using a combination of double-sided tape and PDMS (polydimethylsiloxane) is introduced. PDMS is typically difficult to bond using adhesive tapes due to its hydrophobic nature and low surface energy. For this reason, PDMS is not compatible with the xurography method, which uses a knife plotter and various adhesive coated polymer tapes. To solve these problems, a PDMS/tape composite was developed and demonstrated in microfluidic applications. The PDMS/tape composite was created by spinning it to make a thin layer of PDMS over double-sided tape. Then the PDMS/tape composite was patterned to create channels using xurography, and bonded to a PDMS slab. After removing the backing paper from the tape, a complete microfluidic system could be created by placing the construct onto nearly any substrate; including glass, plastic or metal-coated glass/silicon substrates. The bond strength was shown to be sufficient for the pressures that occur in typical microfluidic channels used for chemical or biological analysis. This method was demonstrated in three applications: standard microfluidic channels and reactors, a microfluidic system with an integrated membrane, and an electrochemical biosensor. The PDMS/tape composite rapid prototyping technique provides a fast and cost effective fabrication method and can provide easy integration of microfluidic channels with sensors and other components without the need for a cleanroom facility.

  13. Paraffin-PDMS composite thermo microactuator with large vertical displacement capability

    OpenAIRE

    Dubois, P.; Vela, E; Koster, S.; Briand, D.; Shea, H. R.; De Rooij, N. F.

    2006-01-01

    We have micromachined and tested the first paraffin–PDMS composite thermal microactuator having multi shot large vertical displacement capabilities ( 160 um for 1 mm diameter device). A solid to liquid phase change of trapped paraffin into the PDMS is used to create a large volume dilatation of the composite (18%, for a temperature varied from 20 to 80 °C). The elasticity of the PDMS ensures the reversibility of the actuation. The paraffin-PDMS composite also facilitates fabrication and confi...

  14. Rapid selective metal patterning on polydimethylsiloxane (PDMS) fabricated by capillarity-assisted laser direct write

    KAUST Repository

    Lee, Ming-Tsang

    2011-08-12

    In this study we demonstrate a novel approach for the rapid fabricating micro scale metal (silver) patterning directly on a polydimethylsiloxane (PDMS) substrate. Silver nanoparticles were sintered on PDMS to form conductive metal films using laser direct write (LDW) technology. To achieve good metal film quality, a capillarity-assisted laser direct writing (CALDW) of nanoparticle suspensions on a low surface energy material (PDMS) was utilized. Experimental results showed controllable electrical conductivities and good film properties of the sintered silver patterns. This study reveals an advanced method of metal patterning on PDMS, and proposes a new research application of LDW in a nanoparticle colloidal environment. © 2011 IOP Publishing Ltd.

  15. Design and microfabrication of a high-aspect-ratio PDMS microbeam array for parallel nanonewton force measurement and protein printing

    Science.gov (United States)

    Sasoglu, F. M.; Bohl, A. J.; Layton, B. E.

    2007-03-01

    Cell and protein mechanics has applications ranging from cellular development to tissue engineering. Techniques such as magnetic tweezers, optic tweezers and atomic force microscopy have been used to measure cell deformation forces of the order of piconewtons to nanonewtons. In this study, an array of polymeric polydimethylsiloxane (PDMS) microbeams with diameters of 10-40 µm and lengths of 118 µm was fabricated from Sylgard® with curing agent concentrations ranging from 5% to 20%. The resulting spring constants were 100-300 nN µm-1. The elastic modulus of PDMS was determined experimentally at different curing agent concentrations and found to be 346 kPa to 704 kPa in a millimeter-scale array and ~1 MPa in a microbeam array. Additionally, the microbeam array was used to print laminin for the purpose of cell adhesion. Linear and nonlinear finite element analyses are presented and compared to the closed-from solution. The highly compliant, transparent, biocompatible PDMS may offer a method for more rapid throughput in cell and protein mechanics force measurement experiments with sensitivities necessary for highly compliant structures such as axons.

  16. Molecular cloning, structural analysis, and tissue expression of the TNNT3 gene in Guizhou black goat.

    Science.gov (United States)

    Chen, Haolin; Zhang, Jinhua; Yu, Bo; Li, Liang; Shang, Yishun

    2015-11-15

    The vertebrate fast skeletal troponin T (TNNT3) protein is an important regulatory and structural component of thin filaments in skeletal muscle, which improves meat quality traits of livestock and poultry. In this study, the troponin T isoforms from adult goat (skeletal muscle mRNA) were identified. We isolated the full-length coding sequence of the goat TNNT3 gene (GenBank: KM042888), analyzed its structure, and investigated its expression in different tissues from different aged goats (10, 30, 90, 180, and 360 days old). Real-time quantitative reverse transcription-polymerase chain reaction analyses revealed that Guizhou black goat TNNT3 was highly expressed in the biceps femoris muscle, abdominal muscle, and longissimus dorsi muscle (P0.05). Western blotting confirmed that the TNNT3 protein was expressed in the muscle tissues listed above, with the highest level found in the longissimus dorsi muscle, and the lowest level in the masseter muscle. In the 10 to 360day study period the TNNT3 protein expression level was the highest when the goats were 30 days old. A peptide, ASPPPAEVPEVHEEVH that may contribute to improved goat meat tenderness was identified. This study provides an insight into the molecular structure of the vertebrate TNNT3 gene. PMID:26187066

  17. Structure evolution of carbon black under ionic-liquid-assisted microwave irradiation

    International Nuclear Information System (INIS)

    The interactions between the carbon black (CB) and the ionic liquid (IL), 1-butyl-3-methyl-imiazolium hexafluorophosphate ([BMIM+][PF6-]), are firstly examined. The CB, mixed with the IL via simple blending, is then subjected to microwave (MW) irradiation to prepare the modified CB. The structure evolutions of the modified CB such as the microcrystalline structure and surface chemistry are revealed by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and pore analysis. After mixing but before MW irradiation, the microcrystalline arrangement of CB turns to be more ordering and microcrystalline size (La) to be a little bigger but with a limited degree. Under MW irradiation, the IL undergoes severe decomposition. The combination of localized high temperature (proposed to be higher than 425 deg. C) and the decomposition of the IL leads to substantial structure changes of the CB. The graphitization of the CB surface, the disordering of the microcrystalline and the decrease in La are disclosed. In addition, compared with the untreated CB, the CB treated with IL-assisted MW irradiation is found to have much higher volume of the smaller mesopore.

  18. DEA material enhancement with dipole grafted PDMS networks

    Science.gov (United States)

    Risse, Sebastian; Kussmaul, Björn; Krüger, Hartmut; Waché, Rémi; Kofod, Guggi

    2011-04-01

    Silicone elastomers are highly suitable for application in the field of dielectric elastomer actuators (DEA) due to their unique material properties (e.g. low glass temperature, thermal stability, large capability of chemical tailoring). The elastomer forming Polydimethysiloxane (PDMS) employed for this study consists of chains with vinyl termination and is cross linked via hydrosilylation to a cross linking molecule in the presence of platinum catalyst. Here, dipole molecules (N-Allyl-N-methyl-4-nitroaniline) were specifically synthesized such that they could chemically graft to the silicone network. The most prominent advantage of this approach is the achievement of a homogeneous distribution of dipoles in the PDMS matrix and a suppression of phase separation due to the grafting to the junction points of the rubber network. Several films with dipole contents ν ranging from 0 %wt up to 10.9 %wt were prepared. The films were investigated to determine their mechanical (tensile testing), dielectric (dielectric relaxation spectroscopy) and electrical (electrical breakdown) properties. This new approach for composites on the molecular level leads to homogeneous films with enhanced material properties for DEA applications. An increase in permittivity from 3.3 to 6.0, a decrease in electrical breakdown from 130 V/μm to 50 V/μm and a lowering of the mechanical stiffness from 1700 kPa to 300 kPa was observed.

  19. Growth control of sessile microbubbles in PDMS devices.

    Science.gov (United States)

    Volk, Andreas; Rossi, Massimiliano; Kähler, Christian J; Hilgenfeldt, Sascha; Marin, Alvaro

    2015-12-21

    In a microfluidic environment, the presence of bubbles is often detrimental to the functionality of the device, leading to clogging or cavitation, but microbubbles can also be an indispensable asset in other applications such as microstreaming. In either case, it is crucial to understand and control the growth or shrinkage of these bodies of air, in particular in common soft-lithography devices based on polydimethylsiloxane (PDMS), which is highly permeable to gases. In this work, we study the gas transport into and out of a bubble positioned in a microfluidic device, taking into account the direct gas exchange through PDMS as well as the transport of gas through the liquid in the device. Hydrostatic pressure regulation allows for the quantitative control of growth, shrinkage, or the attainment of a stable equilibrium bubble size. We find that the vapor pressure of the liquid plays an important role for the balance of gas transport, accounting for variability in experimental conditions and suggesting additional means of bubble size control in applications.

  20. Phase structure of the Born-Infeld-anti-de Sitter black holes probed by non-local observables

    CERN Document Server

    Zeng, Xiao-Xiong; Li, Li-Fang

    2016-01-01

    With the non-local observables such as two point correlation function and holographic entanglement entropy, we probe the phase structure of the Born-Infeld-anti-de Sitter black holes. We find for the case $bQ>0.5$, the phase structure is similar to that of the Reissner-Nordstr\\"om-AdS black hole, namely the black hole undergoes a Hawking-Page phase transition, a first order phase transition, and a second order phase transition. While for the case $bQ<0.5$, we find there is a new branch for the infinitesimally small black hole so that a pseudo phase transition emerges besides the original first order phase transition. For the first order phase transition and the pseudo phase transition, the equal area law is checked, and for the second order phase transition, the critical exponent of the analogous heat capacity is obtained in the neighborhood of the critical points. All the results show that the phase structure of the non-local observables is the same as that of the thermal entropy regardless of the size of...

  1. Population genetic structure of male black grouse (Tetrao tetrix L.) in fragmented vs. continuous landscapes.

    Science.gov (United States)

    Caizergues, Alain; Rätti, Osmo; Helle, Pekka; Rotelli, Luca; Ellison, Laurence; Rasplus, Jean-Yves

    2003-09-01

    We investigated the association of habitat fragmentation with genetic structure of male black grouse Tetrao tetrix. Using 14 microsatellites, we compared the genetic differentiation of males among nine localities in continuous lowland habitats in Finland to the genetic differentiation among 14 localities in fragmented habitats in the Alps (France, Switzerland and Italy). In both areas, we found significant genetic differentiation. However, the average differentiation, measured as theta, was more than three times higher in the Alps than in Finland. The greater differentiation found in the Alps is probably due to the presence of mountain ridges rising above natural habitats of the species, which form barriers to gene flow, and to a higher influence of genetic drift resulting from lower effective sizes in highly fragmented habitats. The detection of isolation by distance in the Alps suggests that gene flow among populations does occur. The genetic variability measured as gene diversity HE and allelic richness A was lower in the Alps than in Finland. This could result from the higher fragmentation and/or from the fact that populations in the Alps are isolated from the main species range and have a lower effective size than in Finland. This study suggests that habitat fragmentation can affect genetic structure of avian species with relatively high dispersal propensities. PMID:12919469

  2. Dynamic molecular structure of plant biomass-derived black carbon (biochar)

    Energy Technology Data Exchange (ETDEWEB)

    Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M.

    2009-11-15

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration ('biochar'). Here we present a molecular-level assessment of the physical organization and chemical complexity of biomass-derived chars and, specifically, that of aromatic carbon in char structures. BET-N{sub 2} surface area, X-ray diffraction (XRD), synchrotron-based Near-edge X-ray Absorption Fine Structure (NEXAFS), and Fourier transform infrared (FT-IR) spectroscopy are used to show how two plant materials (wood and grass) undergo analogous, but quantitatively different physical-chemical transitions as charring temperature increases from 100 to 700 C. These changes suggest the existence of four distinct categories of char consisting of a unique mixture of chemical phases and physical states: (i) in transition chars the crystalline character of the precursor materials is preserved, (ii) in amorphous chars the heat-altered molecules and incipient aromatic polycondensates are randomly mixed, (iii) composite chars consist of poorly ordered graphene stacks embedded in amorphous phases, and (iv) turbostratic chars are dominated by disordered graphitic crystallites. The molecular variations among the different char categories translate into differences in their ability to persist in the environment and function as environmental sorbents.

  3. Semi-contact-writing of polymer molds for prototyping PDMS chips with low surface roughness, sharp edges and locally varying channel heights

    Science.gov (United States)

    Gutzweiler, Ludwig; Stumpf, Fabian; Tanguy, Laurent; Roth, Guenter; Koltay, Peter; Zengerle, Roland; Riegger, Lutz

    2016-04-01

    Microfluidic systems fabricated in polydimethylsiloxane (PDMS) enable a broad variety of applications and are widespread in the field of Lab-on-a-Chip. Here we demonstrate semi-contact-writing, a novel method for fabrication of polymer based molds for casting microfluidic PDMS chips in a highly flexible, time and cost-efficient manner. The method is related to direct-writing of an aqueous polymer solution on a planar glass substrate and substitutes conventional, time- and cost-consuming UV-lithography. This technique facilitates on-demand prototyping in a low-cost manner and is therefore ideally suited for rapid chip layout iterations. No cleanroom facilities and less expertise are required. Fabrication time from scratch to ready-to-use PDMS-chip is less than 5 h. This polymer writing method enables structure widths down to 140 μm and controllable structure heights ranging from 5.5 μm for writing single layers up to 98 μm by stacking. As a unique property, freely selectable height variations across a substrate can be achieved by application of local stacking. Furthermore, the molds exhibit low surface roughness (R a   =  24 nm, R RMS  =  28 nm) and high fidelity edge sharpness. We validated the method by fabrication of molds to cast PDMS chips for droplet based flow-through PCR with single-cell sensitivity.

  4. Population structure and genetic diversity of black redhorse (Moxostoma duquesnei) in a highly fragmented watershed

    Science.gov (United States)

    Reid, S.M.; Wilson, C.C.; Mandrak, N.E.; Carl, L.M.

    2008-01-01

    Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects. ?? 2007 Springer Science+Business Media B.V.

  5. New Trends in Black American Interracial Marriage: The Social Structural Context.

    Science.gov (United States)

    Tucker, M. Belinda; Mitchell-Kernan, Claudia

    1990-01-01

    Addressed underlying demographic correlates of interracial marriage as distinct among Black women and men. Found that interracially married tended to be younger, more likely to have been married before, and more distant in age from their spouses. Persons born in North and foreign countries were more likely to be married to non-Blacks. (Author/NB)

  6. Dissipative particle dynamics simulation of the microphase separation of PEG-b-PDMS-b-PEG%PEG-b-PDMS-b-PEG微相分离结构的耗散粒子动力学模拟

    Institute of Scientific and Technical Information of China (English)

    张旭茗; 李莉; 张玉

    2012-01-01

    为了探讨PEG-b-PDMS-b-PEG三嵌段共聚物中链段含量对其微相分离结构的影响规律,采用耗散粒子动力学模拟方法,建立了不同PEG链段含量的共聚物介观结构模型.通过介观相分离过程及形态的模拟,分析了相形貌与侧链接枝密度的依赖关系.模拟结果表明,随着嵌段共聚物体系中侧链密度的增加,微相分离结构呈现规律性变化,出现了粒状、岛状及双连续相等不同形态的介观结构.同时,对PEG含量为28%的PEG-b-PDMS-b-PEG三嵌段梳型共聚物的原子力形貌观察结果表明,其具有一定的相分离结构.%In order to discuss the effect of chain segment contents on the microphase separation structure of triblock comb copolymer PEG-b-PDMS-b-PE,G, mesoscopic structure models of copolymers with varying PEG segment contents were built using the dissipative particle dynamics (DPD) method. Through simulation of the meso-phase separation process and morphology, the relationship between the morphology of the meso-phase and graft density was analyzed. It was indicated that regular changes appear in microphase structures with the increase of graft density in copolymers; furthermore, granular, island, and bicontinuous phase structures emerge in the structures. At the same time, the atomic force microscope image result of the triblock comb copolymer PEG-b-PDMS-b-PEG with 28% PEG molar content shows that the copolymer has certain microphase separation structures.

  7. Fabrication and characterization of artificial hair cell sensor based on MWCNT-PDMS composite

    Science.gov (United States)

    Kim, Chi Yeon; Lee, Hyun Sup; Cho, Yo Han; Joh, Cheeyoung; Choi, Pyung; Park, Seong Jin

    2011-06-01

    The aim of this work is to design and fabricate a flow sensor using an artificial hair cell (AHC) inspired by biological hair cells of fish. The sensor consists of a single cilium structure with high aspect ratio and a mechanoreceptor using force sensitive resistor (FSR). The cilium structure is designed for capturing a drag force with direction due to flow field around the sensor and the mechanoreceptor is designed for sensing the drag force with direction from the cilium structure and converting it into an electric signal. The mechanoreceptor has a symmetric four electrodes to sense the drag force and its direction. To fabricate the single cilium structure with high aspect ratio, we have proposed a new design concept using a separated micro mold system (SMS) fabricated by the LIGA process. For a successful replication of the cilium structure, we used the hot embossing process with the help of a double-sided mold system. We used a composite of multiwall carbon nanotube and polydimethylsiloxane (MWCNT-PDMS). The performance of the mechanoreceptors was measured by a computer-controlled nanoindenter. We carried out several experiments with the sensor in the different flow rate and direction using the experimental test apparatus. To calibrate the sensor and calculate the velocity with direction based the signal from the sensor, we analyzed the coupled phenomena between flow field and the cilium structure to calculate the deflection of the cilium structure and the drag force applying to the cilium structure due to the flow field around sensor.

  8. Improved wafer-scale fabrication of aligned pdms-glass microchips with integrated electrodes

    NARCIS (Netherlands)

    Li, J.; Le Gac, S.; Berg, van den A.; Viovy, J.L.; Tabeling, P.; Descroix, S.; Malaquin, L.

    2007-01-01

    We report an improved fabrication process of PDMS-based hybrid chips at the scale of a whole wafer and including an alignment step. This implies a control of the dimension variations of this elastomer upon temperature changes and the production of a PDMS wafer compatible with the use of standard ali

  9. Preparation and characterization of magnetite–PDMS composites by magnetic induction heating

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Mohamed S.A., E-mail: msa.darwish@gmail.com [Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec (Czech Republic); Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El Zohour Region, Nasr City, Cairo 11727 (Egypt); Stibor, Ivan [Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec (Czech Republic)

    2015-08-15

    Magnetic induction heating was used to produce magnetite–Poly (dimethylsiloxane) (PDMS) composites in the presence of the magnetite nanoparticles. Magnetite nanoparticles under an AC magnetic field generate heat, which used to accelerate polymerization and curing of PDMS. Magnetite nanoparticles were prepared using co-precipitation process in the presence of the basic solution. Magnetite nanoparticle was characterized using Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), zeta potential, dynamic light scattering (DLS), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). Magnetite–PDMS composite morphology was characterized using scanning electron microscopy, while curing and thermal stability were assessed through infrared spectroscopy and thermogravimetric analysis, respectively. Heating properties and rate of heating of magnetite nanoparticles and magnetite–PDMS composites were studied as a function of time applied and magnetite content (20% and 30%). The improved thermal stability of magnetite–PDMS composite, which produced in a shorter time without using catalyst, compared with the conventional PDMS will offer potential as thermally stable elastomers. - Highlights: • Magnetic induction heating was used to produce magnetite–PDMS composites. • The composites produced in a shorter time without catalyst with improved in the thermal stability. • Magnetite–PDMS composites are promising as thermally stable elastomers.

  10. Anti-stiction coating of PDMS moulds for rapid microchannel fabrication by double replica moulding

    DEFF Research Database (Denmark)

    Zhuang, Guisheng; Kutter, Jörg Peter

    2011-01-01

    ), which resulted in an anti-stiction layer for the improved release after PDMS casting. The deposition of FDTS on an O2 plasma-activated surface of PDMS produced a reproducible and well-performing anti-stiction monolayer of fluorocarbon, and we used the FDTS-coated moulds as micro-masters for rapid...... polymer-based waveguides....

  11. Review on the structural approach of the Black-Scholes model

    Science.gov (United States)

    Saad, Shakila; Jaffar, Maheran Mohd

    2015-05-01

    Black-Scholes model developed in 1973 has become one of the important concepts in modern financial theory. This model is regarded as one of the best ways in determining fair prices of the options. Many studies have been done to improve the performance of the Black-Scholes model since this model is built with few limitations. Thus, the objective of this review paper is to discuss on the Black-Scholes model. The aim of this review paper is to present the derivation of Black-Scholes, Merton and KMV-Merton models. Besides, it provides a literature review on the modifications done by the researchers on the Black-Scholes model.

  12. Visualization and measurement of teat structures in Black-and-White cows through ultrasonography

    Directory of Open Access Journals (Sweden)

    Ivan Fasulkov

    2014-03-01

    Full Text Available The aim of the present study was to determine the features and size of teat structures in cows using ultrasonography. The experiment was conducted with 12 clinically healthy Black-and-White cows, 3 years of age, with body weight 350–450 kg. Ultrasonography was performed on 48 teats using ultrasound SonoScape A5v (SonoScape, China with multifrequency linear transducer (5–12 MHz. The potential of the imaging technique to visualize teat structures as well as teat canal length and diameter, the diameter in the area of the rosette of Furstenberg, teat wall thickness, teat cistern diameter in its middle part and teat cistern diameter in teat base was evaluated. Scans were conducted before milking, immediately after milking, and 1 and 2 hours after milking. The average teat canal length measured by ultrasound was 8.48±1.41 mm before milking, and until the 2nd post milking hour its size became statistically significantly (p<0.001 lower (7.48±0.93 mm. Teat canal diameter showed a significant difference (p<0.01 only immediately after milking compared to the size before milking. The diameter of the middle part and the base of the teat cistern also tended to decrease considerably after milking (p<0.001 as compared to premilking values. The teat wall thickness immediately after milking and 1 hour after milking were statistically significantly higher (p<0.001 compared to the premilking size. The analysis of results showed that ultrasonography is a rapid non-invasive and accurate method for determination of characteristics and size of teat structures. It could be used for evaluation of changes occurring in bovine teat after milking – shortening of the teat canal, teat wall thickening and reduction of teat cistern diameter.

  13. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei

    2013-04-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  14. Membranes ceramic by PDMS/SLC containing groups phosphotungstic acid

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.O.; Guimaraes, D.H.; Santa Rosa, L.O.; Silva da, L.T.F.; Fiuza, J.R.A.; Boaventura, F.J.S.; Jose, N.M. [Univ. Federal da Bahia, Salvador (Brazil). Dept. of Physical Chemistry

    2009-07-01

    This study investigated the use of a hybrid material developed for proton exchange membrane fuel cell (PEMFC) applications. The materials were comprised of polydimethylsiloxane reticulated with tetrathylorthosilicate and reinforced with silicon carbide (SiC) and phosphotungstic acid. PDMS and TEOS were reacted in a 70-30 mass proportion. Al203 and PWA were then incorporated in mass proportions of 5, 10, 15, 20, and 25 per cent. The membranes were then analyzed using X-ray diffraction (XRD), thermogravimetric (TG), direct scanning calorimetry (DSC) and Fourier Transform Infrared (FTIR) techniques. The study showed that the addition of SiC and PWA altered both the organization of the material as well as its crystallinity. Load incorporation increased the thermal stability of the material in relation to the pure matrix. The membranes did not exhibit any phase separation. It was concluded that the materials are suitable for PEMFC applications.

  15. Straightforward protein immobilization on Sylgard 184 PDMS microarray surface.

    Science.gov (United States)

    Heyries, Kevin A; Marquette, Christophe A; Blum, Loïc J

    2007-04-10

    In this work, a straightforward technique for protein immobilization on Sylgard 184 is described. The method consists of a direct transfer of dried protein/salt solutions to the PDMS interface during the polymer curing. Such non-conventional treatment of proteins was found to have no major negative consequence on their integrity. The mechanisms of this direct immobilization were investigated using a lysine modified dextran molecule as a model. Clear experimental results suggested that both chemical bounding and molding effect were implicated. As a proof of concept study, three different proteins were immobilized on a single microarray (Arachis hypogaea lectin, rabbit IgG, and human IgG) and used as antigens for capture of chemiluminescent immunoassays. The proteins were shown to be easily recognized by their specific antibodies, giving antibody detection limits in the fmol range.

  16. Enhanced biocompatibility of PDMS (polydimethylsiloxane) polymer films by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ionescu, M., E-mail: Mihail.Ionescu@ansto.gov.au [Australian Nuclear Science and Technology Organization, Sydney (Australia); Winton, B.; Wexler, D. [Faculty of Engineering, University of Wollongong, Wollongong (Australia); Siegele, R.; Deslantes, A.; Stelcer, E.; Atanacio, A.; Cohen, D.D. [Australian Nuclear Science and Technology Organization, Sydney (Australia)

    2012-02-15

    PDMS films several microns thick deposited on polished Si wafers were irradiated with Mg, Ta, and Fe in the low energy range of 40 keV to 200 keV, and for doses of 10{sup 16}-10{sup 18} ions/cm{sup 2}. After irradiation the films surface is self-organised into 3D coherent and semi-coherent domains. As a consequence of the surface irradiation conditions and the surface boundary conditions, some domains are highly ordered in the form of parallel waves of approximately 1 {mu}m in height, or the result can be semi-ordered regions or disordered regions. In addition, the surface energy of the irradiated polymer is increasing, as reflected in the decrease in its surface hydrophobicity, which is beneficial for cell adhesion. The irradiated samples were tested in vivo, and the results show an increase in viable cell count of up to 650%.

  17. The stacking dependent electronic structure and optical properties of bilayer black phosphorus.

    Science.gov (United States)

    Shu, Huabing; Li, Yunhai; Niu, Xianghong; Wang, Jinlan

    2016-02-17

    By employing density-functional theory, the G0W0 method and Bethe-Salpter equation, we explore quasi-particle energy bands, optical responses and excitons of bilayer black phosphorus (BBP) with four different stacking patterns. All the structures are direct band gap semiconductors and the band gap is highly dependent on the stacking pattern, with a maximum of 1.31 eV for AB-stacking and a minimum of 0.92 eV for AD-stacking. Such dependence can be well understood by the tight-binding model in terms of the interlayer hopping. More interestingly, stacking sensitive optical absorption and exciton binding energy are observed in BBPs. For x-polarized light, more red-shift of optical adsorption appears in AA-stacking and the strong exciton binding energy in the AA-stacking bilayer can be as large as 0.82 eV, that is ∼1.7 times larger than that of AD-stacking bilayer. PMID:26845322

  18. Black titania: effect of hydrogenation on structural and thermal stability of nanotitania

    Science.gov (United States)

    Khanam, Rizwin; Taparia, Dolly; Mondal, Biplob; Mohanta, Dambarudhar

    2016-02-01

    We report on the effect of hydrogenation on sol-gel-derived, anatase-phase TiO2 nanoparticles. The structural analysis of white nanotitania (W-TiO2) and hydrogenated black titania (B-TiO2) has been carried out by X-ray diffraction (XRD) studies, which confirms anatase phase for both the cases, but with weak diffraction signals in the latter system. Upon hydrogenation, nanotitania system is believed to acquire a disordered phase in the form of a thin amorphous layer surrounding the nanoparticles, which can be realized through transmission electron microscopy analyses. As compared to W-TiO2 (~3.15 eV), the optical band gap of B-TiO2 is substantially reduced with respective band gap values of ~1.99 and 1.53 eV for 0.5 and 1 % H2 inclusion cases. Moreover, thermogravimetric analysis reveals high temperature thermal stability of B-TiO2 system, especially in the range of 350-600 °C. Exploiting thermal, optical and electronic properties of hydrogenated nanotitania could find scope in infrared optics, hydrogen storage and suitable photocatalytic applications.

  19. Biocompatible membrane of PDMS for the new chamber prosthesis stapes.

    Science.gov (United States)

    Banasik, Katarzyna; Kwacz, Monika

    2016-06-30

    Stapes protheses are designed for patients with otosclerosis resulting immobilization or significant reduction of the stapes mobility. All currently used prostheses are called - piston prosthesis. However, its use to stimulate the cochlea is still imperfect. New chamber stapes prosthesis allows the perilymph excitation more effective than the piston prothesis. Moreover, the chamber prosthesis eliminates the common causes of piston-stapedotomy failures. The most important element of the new prosthesis is a flexible membrane. The membrane stiffness should be close to the stiffness of normal annular ligament. This work presents the process of selection of the membrane's thickness and its manufacturing technology. Method A 3D model of the chamber stapes prosthesis was build using Autodesk Inventor 2015. The model was imported to Abacus 6.13 computing environment. During numerical simulations, displacements corresponding to applied loads were calculated and the membrane thickness was adjusted so that its stiffness was the same as the ligament stiffness (~ 120 N/m). The compliance ratios calculated from the load-displacement curves for the membrane and the annular ligament were verified using linear regression analysis. After determining the thickness, the manufacturing technology of the membrane was developed. Results The best similarity between the membrane's and annular ligament's stiffness was achieved for PDMS membrane with the 0,15- mm thickness (similarity ratio R2=0,997752). In this work, the technological parameters of spin-coating process for membrane manufacture are also presented. Summary The proper functioning of the chamber stapes prosthesis requires the PDMS membrane with a thickness of 0,15 mm. The 0,15-mm membrane has the tiffness close to the stiffness of the normal annular ligament. Therefore, the chamber stapes prosthesis provides the perilymph stimulation at the level comparable to the healthy ear. New prosthesis is currently under pre

  20. Biocompatible membrane of PDMS for the new chamber prosthesis stapes.

    Science.gov (United States)

    Banasik, Katarzyna; Kwacz, Monika

    2016-06-30

    Stapes protheses are designed for patients with otosclerosis resulting immobilization or significant reduction of the stapes mobility. All currently used prostheses are called - piston prosthesis. However, its use to stimulate the cochlea is still imperfect. New chamber stapes prosthesis allows the perilymph excitation more effective than the piston prothesis. Moreover, the chamber prosthesis eliminates the common causes of piston-stapedotomy failures. The most important element of the new prosthesis is a flexible membrane. The membrane stiffness should be close to the stiffness of normal annular ligament. This work presents the process of selection of the membrane's thickness and its manufacturing technology. Method A 3D model of the chamber stapes prosthesis was build using Autodesk Inventor 2015. The model was imported to Abacus 6.13 computing environment. During numerical simulations, displacements corresponding to applied loads were calculated and the membrane thickness was adjusted so that its stiffness was the same as the ligament stiffness (~ 120 N/m). The compliance ratios calculated from the load-displacement curves for the membrane and the annular ligament were verified using linear regression analysis. After determining the thickness, the manufacturing technology of the membrane was developed. Results The best similarity between the membrane's and annular ligament's stiffness was achieved for PDMS membrane with the 0,15- mm thickness (similarity ratio R2=0,997752). In this work, the technological parameters of spin-coating process for membrane manufacture are also presented. Summary The proper functioning of the chamber stapes prosthesis requires the PDMS membrane with a thickness of 0,15 mm. The 0,15-mm membrane has the tiffness close to the stiffness of the normal annular ligament. Therefore, the chamber stapes prosthesis provides the perilymph stimulation at the level comparable to the healthy ear. New prosthesis is currently under pre

  1. Impacts of methamidophos, copper, and their combinations on bacterial community structure and function in black soil

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Huiwen; ZHOU; Qixing; ZHANG; Qianru; ZHANG; Chengg

    2005-01-01

    The potential ecotoxicologial risks of methamidophos, copper, and their combinations on microbial community of black soil ecosystem in the Northeast China were assessed in species richness and structures by using 16S rDNA-PCR-DGGE analysis approach, and functional characteristics at community levels by using BIOLOGGN system analysis method as well as two conventional methods(DHA and SIR). All results of DGGE banding fingerprint patterns(amplified by bacterial specific 16S rDNA V3 high variable region universal primer) indicated that the species richness of bacterial community in tested soil was significantly decreased to different extents by using different concentrations of single methamidophos, copper, especially some of their combinations had worse effects than their corresponding single factors. In addition,the structures of soil bacterial community had been disturbed under all stresses applied in this study because of the enrichment of some species and the disappearance of other species from the bacterial community. The effects of the single factors with lower concentrations on the communiy structure were weaker than those with higher concentrations. Moreover, the bacterial community structures under the combined stresses of methamidophos and copper were significantly different from those of control and their corresponding single factors. The change of DHA and carbon source substrate utilizing fingerprint patterns based on BIOLOGGNsystem were two relatively sensitive directors corresponding to the stress presented in this study. Between methamodophos and copper, there happened the significant joint-toxic actions when they were used in combination on DHA and carbon source substrate utilizing fingerprint patterns of soil bacterial communities. The DHA of soil under the combined stresses was lower than that of the control and that under the single factors, and the BIOLOGGN substrate utilizing patterns of soil treated by combinations were distinctively

  2. Tree spatial structure, host composition and resource availability influence mirid density or black pod prevalence in cacao agroforests in Cameroon.

    Science.gov (United States)

    Gidoin, Cynthia; Babin, Régis; Bagny Beilhe, Leïla; Cilas, Christian; ten Hoopen, Gerben Martijn; Bieng, Marie Ange Ngo

    2014-01-01

    Combining crop plants with other plant species in agro-ecosystems is one way to enhance ecological pest and disease regulation mechanisms. Resource availability and microclimatic variation mechanisms affect processes related to pest and pathogen life cycles. These mechanisms are supported both by empirical research and by epidemiological models, yet their relative importance in a real complex agro-ecosystem is still not known. Our aim was thus to assess the independent effects and the relative importance of different variables related to resource availability and microclimatic variation that explain pest and disease occurrence at the plot scale in real complex agro-ecosystems. The study was conducted in cacao (Theobroma cacao) agroforests in Cameroon, where cocoa production is mainly impacted by the mirid bug, Sahlbergella singularis, and black pod disease, caused by Phytophthora megakarya. Vegetation composition and spatial structure, resource availability and pest and disease occurrence were characterized in 20 real agroforest plots. Hierarchical partitioning was used to identify the causal variables that explain mirid density and black pod prevalence. The results of this study show that cacao agroforests can be differentiated on the basis of vegetation composition and spatial structure. This original approach revealed that mirid density decreased when a minimum number of randomly distributed forest trees were present compared with the aggregated distribution of forest trees, or when forest tree density was low. Moreover, a decrease in mirid density was also related to decreased availability of sensitive tissue, independently of the effect of forest tree structure. Contrary to expectations, black pod prevalence decreased with increasing cacao tree abundance. By revealing the effects of vegetation composition and spatial structure on mirids and black pod, this study opens new perspectives for the joint agro-ecological management of cacao pests and diseases at the

  3. Tree spatial structure, host composition and resource availability influence mirid density or black pod prevalence in cacao agroforests in Cameroon.

    Directory of Open Access Journals (Sweden)

    Cynthia Gidoin

    Full Text Available Combining crop plants with other plant species in agro-ecosystems is one way to enhance ecological pest and disease regulation mechanisms. Resource availability and microclimatic variation mechanisms affect processes related to pest and pathogen life cycles. These mechanisms are supported both by empirical research and by epidemiological models, yet their relative importance in a real complex agro-ecosystem is still not known. Our aim was thus to assess the independent effects and the relative importance of different variables related to resource availability and microclimatic variation that explain pest and disease occurrence at the plot scale in real complex agro-ecosystems. The study was conducted in cacao (Theobroma cacao agroforests in Cameroon, where cocoa production is mainly impacted by the mirid bug, Sahlbergella singularis, and black pod disease, caused by Phytophthora megakarya. Vegetation composition and spatial structure, resource availability and pest and disease occurrence were characterized in 20 real agroforest plots. Hierarchical partitioning was used to identify the causal variables that explain mirid density and black pod prevalence. The results of this study show that cacao agroforests can be differentiated on the basis of vegetation composition and spatial structure. This original approach revealed that mirid density decreased when a minimum number of randomly distributed forest trees were present compared with the aggregated distribution of forest trees, or when forest tree density was low. Moreover, a decrease in mirid density was also related to decreased availability of sensitive tissue, independently of the effect of forest tree structure. Contrary to expectations, black pod prevalence decreased with increasing cacao tree abundance. By revealing the effects of vegetation composition and spatial structure on mirids and black pod, this study opens new perspectives for the joint agro-ecological management of cacao pests

  4. Horizon Shells: Classical Structure at the Horizon of a Black Hole

    CERN Document Server

    Blau, Matthias

    2016-01-01

    We address the question of the uniqueness of the Schwarzschild black hole by considering the following question: How many meaningful solutions of the Einstein equations exist that agree with the Schwarzschild solution (with a fixed mass m) everywhere except maybe on a codimension one hypersurface? The perhaps surprising answer is that the solution is unique (and uniquely the Schwarzschild solution everywhere in spacetime) *unless* the hypersurface is the event horizon of the Schwarzschild black hole, in which case there are actually an infinite number of distinct solutions. We explain this result and comment on some of the possible implications for black hole physics.

  5. Genetic differentiation and spatial structure of Geosmithia morbida, the causal agent of thousand cankers disease in black walnut (Juglans nigra).

    Science.gov (United States)

    Hadziabdic, Denita; Vito, Lisa M; Windham, Mark T; Pscheidt, Jay W; Trigiano, Robert N; Kolarik, Miroslav

    2014-05-01

    The main objectives of this study were to evaluate genetic composition of Geosmithia morbida populations in the native range of black walnut and provide a better understanding regarding demography of the pathogen. The fungus G. morbida, and the walnut twig beetle, Pityophthorus juglandis, have been associated with a disease complex of black walnut (Juglans nigra) known as thousand cankers disease (TCD). The disease is manifested as branch dieback and canopy loss, eventually resulting in tree death. In 2010, the disease was detected in black walnut in Tennessee, and subsequently in Virginia and Pennsylvania in 2011 and North Carolina in 2012. These were the first incidences of TCD east of Colorado, where the disease has been established for more than a decade on indigenous walnut species. A genetic diversity and population structure study of 62 G. morbida isolates from Tennessee, Pennsylvania, North Carolina and Oregon was completed using 15 polymorphic microsatellite loci. The results revealed high haploid genetic diversity among seven G. morbida populations with evidence of gene flow, and significant differentiation among two identified genetic clusters. There was a significant correlation between geographic and genetic distance. Understanding the genetic composition and demography of G. morbida can provide valuable insight into recognizing factors affecting the persistence and spread of an invasive pathogen, disease progression, and future infestation predictions. Overall, these data support the hypotheses of two separate, highly diverse pathogen introductions into the native range of black walnut.

  6. The influence of the PDMS technique in the study of the induced modifications of polymers used in nuclear environment; Apport de la technique PDMS a l`etude des modifications induites dans des polymeres utilises en ambiance nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Nsouli, B. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire

    1995-07-20

    The PDMS technique (Particle Induced Desorption Mass Spectrometry) combined with a TOF detection (Time of Flight) is the main tool used in this study of polymer degradation in nuclear environment. Ar{sup 3+} ions with a 9 MeV energy have been used to induce the secondary ion emission, and the study was devoted to two stresses typical of this type of environment. The first part of the work concerned with the structural modifications induced by gamma irradiation on ion exchange resin, used for nuclear effluents reprocessing, namely the poly(4-vinylpyridine), or P-4PV. For such a material, the negative fragment emission is particularly sensitive to structural modifications. Difficult physical measurements in such an insoluble and infusible material (IR, UV - Vis, EPR, TGA, dielectric measurements) became consistent after the degradation mechanisms were elucidated. These effects, interpreted in terms of scissions and recombinations, enabled us to explicit different modes of energy deposition, and shed light on some discrepancies between SIMS and PDMS. The second part of the study is devoted to the thermal ageing of an elastomer, used in fabrication of valve gaskets submitted to high temperatures. First of all, we studied the constituents of the polymeric material, i. e. copolymer, homo polymers, and also additives. This last component proved useful to analyze, as a superficial lubricant layer can mask the conformational rearrangements which seem to occur after few hours of thermal treatment (PE blocks are prevailing at the surface). Here too, the PDMS information is important to account for static SIMS and ESCA results, as its probed layer thickness lies in-between. (author) 187 refs.

  7. Mechanically compliant electrodes and dielectric elastomers from PEG-PDMS copolymers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    2016-01-01

    Soft conducting elastomers have been prepared from polydimethylsiloxane-polyethyleneglycol (PDMS-PEG) copolymer and surfactant-stabilized multi-walled carbon nanotubes (MWCNTs). The copolymer was chain-extended with PDMS of molecular weight 17.2 kg mol-1 in order to obtain a crosslinkable PDMS wi...... showed high conductivity combined with inherent softness. The high conductivity and softness, PDMS-PEG copolymers with incorporated MWCNTs hold great promises as compliant and highly stretchable electrodes for stretchable devices such as electro-mechanical transducers.......Soft conducting elastomers have been prepared from polydimethylsiloxane-polyethyleneglycol (PDMS-PEG) copolymer and surfactant-stabilized multi-walled carbon nanotubes (MWCNTs). The copolymer was chain-extended with PDMS of molecular weight 17.2 kg mol-1 in order to obtain a crosslinkable PDMS...... with molecular weight around 20 – 30 kg mol-1. MWCNTs were treated with surfactant and sonicated for better dispersion in the polymer matrix. The conductivity and mechanical properties of conducting elastomers were thoroughly investigated including stress and strain at break. The developed conducting elastomers...

  8. Vacuum-driven power-free microfluidics utilizing the gas solubility or permeability of polydimethylsiloxane (PDMS).

    Science.gov (United States)

    Xu, Linfeng; Lee, Hun; Jetta, Deekshitha; Oh, Kwang W

    2015-10-21

    Suitable pumping methods for flow control remain a major technical hurdle in the path of biomedical microfluidic systems for point-of-care (POC) diagnostics. A vacuum-driven power-free micropumping method provides a promising solution to such a challenge. In this review, we focus on vacuum-driven power-free microfluidics based on the gas solubility or permeability of polydimethylsiloxane (PDMS); degassed PDMS can restore air inside itself due to its high gas solubility or gas permeable nature. PDMS allows the transfer of air into a vacuum through it due to its high gas permeability. Therefore, it is possible to store or transfer air into or through the gas soluble or permeable PDMS in order to withdraw liquids into the embedded dead-end microfluidic channels. This article provides a comprehensive look at the physics of the gas solubility and permeability of PDMS, a systematic review of different types of vacuum-driven power-free microfluidics, and guidelines for designing solubility-based or permeability-based PDMS devices, alongside existing applications. Advanced topics and the outlook in using micropumping that utilizes the gas solubility or permeability of PDMS will be also discussed. We strongly recommend that microfluidics and lab-on-chip (LOC) communities harness vacuum energy to develop smart vacuum-driven microfluidic systems.

  9. Polymeric microlens array fabricated with PDMS mold-based hot embossing

    Science.gov (United States)

    Liu, Yongshun; Zhang, Ping; Deng, Yongbo; Hao, Peng; Fan, Jianhua; Chi, Mingbo; Wu, Yihui

    2014-09-01

    This study presents a simple, flexible and cost-effective process to fabricate microlens arrays. The polymeric microlens arrays are fabricated using a polydimethylsiloxane (PDMS) mold-based hot embossing process. The desired profile of the lens is achieved with the use of air pressure to deform the PDMS membrane. The deformation of the PDMS membrane is determined by numerical simulation. Simulation results show that the sag height of the PDMS membrane varies nearly linearly along with the change of the negative pressure. The shape of the PDMS membrane is transferred to the PDMS mold with UV curing and casting processes. Then, PDMS is used as a mold insert, and polycarbonate microlens arrays with different sag heights are fabricated with the hot embossing technique. The surface profile of the fabricated microlens keeps spherical with the variation of the sag height induced by the negative pressure. For the negative pressure -3600 and -5900 Pa, sag heights with 40 and 65 µm are obtained and the corresponding focal lengths are changed from 1.0 to 0.6 mm. Good uniformity and imaging quality of the microlenses is confirmed by the experimentally evaluated and measured optical properties of the replica.

  10. Characterizing the Deformation of the Polydimethylsiloxane (PDMS Membrane for Microfluidic System through Image Processing

    Directory of Open Access Journals (Sweden)

    Xiang Qian

    2016-05-01

    Full Text Available Polydimethylsiloxane (PDMS membranes have been widely used in the microfluidic community to achieve various functions such as control, sensing, filter, etc. In this paper, an experimental process was proposed to directly characterize the deformation of the on-chip PDMS membrane at large deformation based on the image processing method. High precision pressures were applied on the surface of the PDMS membrane with fixed edges and a series deformation of the PDMS membrane were captured by the imaging system. The Chan and Vese (CV level set method was applied to segment the images of the deformed membrane. The volumes wrapped by the deformed membranes were obtained, and pressure-volumes relationships of the PDMS membranes with different geometry parameters were also calculated. Then the membrane capacitance can be derived by differentiating the curve of pressure-volumes. In addition, the theoretical estimation of the capacitance of the PDMS membrane at large deformation was also obtained through finite element simulation (FEM, which was in good agreement with the experimental results. These results are expected to be significant for designing and on-chip measuring of such PDMS membrane based microfluidic components in our future work.

  11. An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes

    Science.gov (United States)

    Zhao, Liuxian; Conlon, Stephen C.; Semperlotti, Fabio

    2015-06-01

    In this paper, we present an experimental investigation on the energy harvesting performance of dynamically tailored structures based on the concept of embedded acoustic black holes (ABHs). Embedded ABHs allow tailoring the wave propagation characteristics of the host structure creating structural areas with extreme levels of energy density. Experiments are conducted on a tapered plate-like aluminum structure with multiple embedded ABH features. The dynamic response of the structure is tested via laser vibrometry in order to confirm the vibration localization and the passive wavelength sweep characteristic of ABH embedded tapers. Vibrational energy is extracted from the host structure and converted into electrical energy by using ceramic piezoelectric discs bonded on the ABHs and shunted on an external electric circuit. The energy harvesting performance is investigated both under steady state and transient excitation. The experimental results confirm that the dynamic tailoring produces a drastic increase in the harvested energy independently from the nature of the excitation input.

  12. The influence of the PDMS technique in the study of the induced modifications of polymers used in nuclear environment

    International Nuclear Information System (INIS)

    The PDMS technique (Particle Induced Desorption Mass Spectrometry) combined with a TOF detection (Time of Flight) is the main tool used in this study of polymer degradation in nuclear environment. Ar3+ ions with a 9 MeV energy have been used to induce the secondary ion emission, and the study was devoted to two stresses typical of this type of environment. The first part of the work concerned with the structural modifications induced by gamma irradiation on ion exchange resin, used for nuclear effluents reprocessing, namely the poly(4-vinylpyridine), or P-4PV. For such a material, the negative fragment emission is particularly sensitive to structural modifications. Difficult physical measurements in such an insoluble and infusible material (IR, UV - Vis, EPR, TGA, dielectric measurements) became consistent after the degradation mechanisms were elucidated. These effects, interpreted in terms of scissions and recombinations, enabled us to explicit different modes of energy deposition, and shed light on some discrepancies between SIMS and PDMS. The second part of the study is devoted to the thermal ageing of an elastomer, used in fabrication of valve gaskets submitted to high temperatures. First of all, we studied the constituents of the polymeric material, i. e. copolymer, homo polymers, and also additives. This last component proved useful to analyze, as a superficial lubricant layer can mask the conformational rearrangements which seem to occur after few hours of thermal treatment (PE blocks are prevailing at the surface). Here too, the PDMS information is important to account for static SIMS and ESCA results, as its probed layer thickness lies in-between. (author)

  13. Effect of mold treatment by solvent on PDMS molding into nanoholes

    Science.gov (United States)

    Con, Celal; Cui, Bo

    2013-09-01

    Polydimethylsiloxane (PDMS) is the most popular and versatile material for soft lithography due to its flexibility and easy fabrication by molding process. However, for nanoscale patterns, it is challenging to fill uncured PDMS into the holes or trenches on the master mold that is coated with a silane anti-adhesion layer needed for clean demolding. PDMS filling was previously found to be facilitated by diluting it with toluene or hexane, which was attributed to the great reduction of viscosity for diluted PDMS. Here, we suggest that the reason behind the improved filling for diluted PDMS is that the diluent solvent increases in situ the surface energy of the silane-treated mold and thus the wetting of PDMS to the mold surface. We treated the master mold surface (that was already coated with a silane anti-adhesion monolayer) with toluene or hexane, and found that the filling by undiluted PMDS into the nanoscale holes on the master mold was improved despite the high viscosity of the undiluted PDMS. A simple estimation based on capillary filing into a channel also gives a filling time on the millisecond scale, which implies that the viscosity of PMDS should not be the limiting factor. We achieved a hole filling down to sub-200-nm diameter that is smaller than those of the previous studies using regular Sylgard PDMS (not hard PDMS, Dow Corning Corporation, Midland, MI, USA). However, we are not able to explain using a simple argument based on wetting property why smaller, e.g., sub-100-nm holes, cannot be filled, for which we suggested a few possible factors for its explanation.

  14. Optimal use of resources structures home ranges and spatial distribution of black bears

    Science.gov (United States)

    Mitchell, M.S.; Powell, R.A.

    2007-01-01

    Research has shown that territories of animals are economical. Home ranges should be similarly efficient with respect to spatially distributed resources and this should structure their distribution on a landscape, although neither has been demonstrated empirically. To test these hypotheses, we used home range models that optimize resource use according to resource-maximizing and area-minimizing strategies to evaluate the home ranges of female black bears, Ursus americanus, living in the southern Appalachian Mountains. We tested general predictions of our models using 104 home ranges of adult female bears studied in the Pisgah Bear Sanctuary, North Carolina, U.S.A., from 1981 to 2001. We also used our models to estimate home ranges for each real home range under a variety of strategies and constraints and compared similarity of simulated to real home ranges. We found that home ranges of female bears were efficient with respect to the spatial distribution of resources and were best explained by an area-minimizing strategy with moderate resource thresholds and low levels of resource depression. Although resource depression probably influenced the spatial distribution of home ranges on the landscape, levels of resource depression were too low to quantify accurately. Home ranges of lactating females had higher resource thresholds and were more susceptible to resource depression than those of breeding females. We conclude that home ranges of animals, like territories, are economical with respect to resources, and that resource depression may be the mechanism behind ideal free or ideal preemptive distributions on complex, heterogeneous landscapes. ?? 2007 The Association for the Study of Animal Behaviour.

  15. 黑莓企业服务平台架设结构%The Frame Structure of BlackBerry Enterprises' Service Platform

    Institute of Scientific and Technical Information of China (English)

    杨微微

    2012-01-01

      Black Berry English referred to as BlackBerry, it is the Canadian RIM Company launched a terminal of mobile E-mail system. 1, The first problem is guided into what's BlackBerry business and its business characteristics, let every-body understand it; 2, And then, expressed the internal division component and service independently accomplished of their respective functions of BES server, analyzes BES. Then through the BlackBerry enterprise service system structure diagram to present the frame structure of BlackBerry service.; 3, Expressed BlackBerry's cell phone types and the characteristics of the mobile phone used and more press closed to BlackBerry; 4, Through the BlackBerry's mobile E-mail and office solutions and banking system solutions to further BlackBerry, analyzing its use. 5, Finally, an overview to Blackberry advantages and current social development of domestic situation and future trends.%  黑莓英文简称 BlackBerry,它是加拿大 RIM 公司推出的一种移动电子邮件系统终端.一、首先问题导入什么是 BlackBerry业务与 BlackBerry 业务的特点,让大家对其有所了解.二、之后表述 BES 服务器的内部划分组件和服务独立完成各自的功能,剖析BES.随之通过 BlackBerry 的企业服务系统框架图来呈现 BlackBerry 的服务架设.三、表述 BlackBerry 的手机类型及其手机的特点与使用,更加贴近黑莓手机.四、通过 BlackBerry 移动邮件及办公解决方案与银行业金融系统解决方案来深入黑莓,解析其用途.五、最后总述黑莓的优点与当前社会发展国内现状及未来走向.

  16. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    Directory of Open Access Journals (Sweden)

    Liao Hsuan-Yu

    2016-01-01

    Full Text Available The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05. An empirical model, consisting of the molecular weight and the polarizability, was developed to appropriately predict the partition coefficients of organic compounds. The empirical model for estimating the PDMS-gas partition coefficient will contribute to the practical applications of the SPME technique.

  17. Polydimethylsiloxane (PDMS Coating onto Magnetic Nanoparticles Induced by Attractive Electrostatic Interaction

    Directory of Open Access Journals (Sweden)

    Carina Sötebier

    2012-05-01

    Full Text Available In this article, we present an efficient synthesis pathway of polydimethylsiloxane (PDMS coated magnetic nanoparticles from hydrophilic polyacrylate coated ferrofluids (NPPAA. A block copolymer based on polydimethylsiloxane is selected for its propensity to interact with the carboxylate functions on the NPPAA. The interaction is due to negative charges on NPPAA and positive ones on the amphiphilic copolymer. The synthesis is achieved by interfacial interaction, simplifying the purification of the PDMS-coated nanoparticles (NPPDMS from subproducts such as ions and water. NPPDMS are well dispersed in hydrophobic solvents (toluene, diethyl ether and can then be embedded into a curable PDMS polymer.

  18. Massive black holes interactions during the assembly of heavy sub-structures in the centre of galaxy clusters

    CERN Document Server

    Donnari, M; Merafina, M

    2016-01-01

    We performed a series of direct N-body simulations with the aim to follow the dynamical evolution of a galaxy cluster (GC) ($M_{clus}\\simeq 10^{14} M_{\\odot}$) in different environment. The results show the formation of heavy sub-structures in the cluster centre in consequence of multiple merging among the innermost galaxies. Moreover we investigate the dynamics of super-massive black holes (SMBHs) residing in the centre of galaxies that form the most massive sub-structure.

  19. Computer-Assisted Structure Elucidation of Black Chokeberry (Aronia melanocarpa) Fruit Juice Isolates with a New Fused Pentacyclic Flavonoid Skeleton.

    Science.gov (United States)

    Naman, C Benjamin; Li, Jie; Moser, Arvin; Hendrycks, Jeffery M; Benatrehina, P Annécie; Chai, Heebyung; Yuan, Chunhua; Keller, William J; Kinghorn, A Douglas

    2015-06-19

    Melanodiol 4″-O-protocatechuate (1) and melanodiol (2) represent novel flavonoid derivatives isolated from a botanical dietary supplement ingredient, dried black chokeberry (Aronia melanocarpa) fruit juice. These noncrystalline compounds possess an unprecedented fused pentacyclic core with two contiguous hemiketals. Due to having significant hydrogen deficiency indices, their structures were determined using computer-assisted structure elucidation software. The in vitro hydroxyl radical-scavenging and quinone reductase-inducing activity of each compound are reported, and a plausible biogenetic scheme is proposed. PMID:26030740

  20. Effects of warming on the structure and function of a boreal black spruce forest

    Energy Technology Data Exchange (ETDEWEB)

    Stith T.Gower

    2010-03-03

    A strong argument can be made that there is a greater need to study the effect of warming on boreal forests more than on any other terrestrial biome. Boreal forests, the second largest forest biome, are predicted to experience the greatest warming of any forest biome in the world, but a process-based understanding of how warming will affect the structure and function of this economically and ecologically important forest biome is lacking. The effects of warming on species composition, canopy structure and biogeochemical cycles are likely to be complex; elucidating the underlying mechanisms will require long-term whole-ecosystem manipulation to capture all the complex feedbacks (Shaver et al. 2000, Rustad et al. 2001, Stromgren 2001). The DOE Program for Ecosystem Research funded a three year project (2002-2005) to use replicated heated chambers on soil warming plots in northern Manitoba to examine the direct effects of whole-ecosystem warming. We are nearing completion of our first growing season of measurements (fall 2004). In spite of the unforeseen difficulty of installing the heating cable, our heating and irrigation systems worked extremely well, maintaining environmental conditions within 5-10% of the specified design 99% of the time. Preliminary data from these systems, all designed and built by our laboratory at the University of Wisconsin, support our overall hypothesis that warming will increase the carbon sink strength of upland boreal black spruce forests. I request an additional three years of funding to continue addressing the original objectives: (1) Examine the effect of warming on phenology of overstory, understory and bryophyte strata. Sap flux systems and dendrometer bands, monitored by data loggers, will be used to quantify changes in phenology and water use. (2) Quantify the effects of warming on nitrogen and water use by overstory, understory and bryophytes. (3) Compare effects of warming on autotrophic respiration and above- and belowground

  1. Inner Structure of Black Holes in Eddington-inspired Born-Infeld gravity: the role of mass inflation

    CERN Document Server

    Avelino, P P

    2015-01-01

    We investigate the interior dynamics of accreting black holes in Eddington-inspired Born-Infeld gravity using the homogeneous approximation and taking charge as a surrogate for angular momentum, showing that accretion can have an enormous impact on their inner structure. We find that, unlike in general relativity, there is a minimum accretion rate bellow which the mass inflation instability, which drives the centre-of-mass streaming density to exponentially high values in an extremely short interval of time, does not occur. We further show that, above this threshold, mass inflation takes place inside black holes very much in the same way as in general relativity, but is brought to a halt at a maximum energy density which is, in general, much smaller than the fundamental energy density of the theory. We conjecture that some of these results may be a common feature of modified gravity theories in which significant deviations from general relativity manifest themselves at very high densities.

  2. Line Shapes Emitted from Spiral Structures around Symmetric Orbits of Supermassive Binary Black Holes

    Indian Academy of Sciences (India)

    M. Smailagić; E. Bon

    2015-12-01

    Variability of active galactic nuclei is not well understood. One possible explanation is existence of supermassive binary black holes (SMBBH) in their centres. It is expected that major mergers are common in the Universe. It is expected that each supermassive black hole of every galaxy eventually finish as a SMBBH system in the core of newly formed galaxy. Here we model the emission line profiles of active galactic nuclei (AGN) assuming that the flux and emission line shape variations are induced by supermassive binary black hole systems (SMBBH). We assume that the accreting gas inside the circumbinary (CB) disk is photo ionized by mini accretion disk emission around each SMBBH. We calculate variations of emission line flux, shifts and shapes for different parameters of SMBBH orbits. We consider cases with different masses and inclinations for circular orbits and measure the effect to the shape of emission line profiles and flux variability.

  3. Line Shapes Emitted from Spiral Structures around Symmetric Orbits of Supermassive Binary Black Holes

    CERN Document Server

    Smailagić, Marijana

    2016-01-01

    Variability of active galactic nuclei is not well understood. One possible explanation is existence of supermassive binary black holes (SMBBH) in their centres. It is expected that major mergers are common in the Universe. It is expected that each supermassive black hole of every galaxy eventually finish as a SMBBH system in the core of newly formed galaxy. Here we model the emission line profiles of active galactic nuclei (AGN) assuming that the flux and emission line shapes variation are induced by supermassive binary black hole systems (SMBBH). We assume that accreting gas inside of circumbinary (CB) disk is photo ionized by mini accretion disk emission around each SMBBH. We calculate variations of emission line flux, shifts and shapes for different parameters of SMBBH orbits. We consider cases with different masses and inclinations for circular orbits and measure the effect to the shape of emission line profiles and flux variability.

  4. Gravitational string-membrane hedgehog and internal structure of black holes

    CERN Document Server

    Kawai, Hikaru

    2010-01-01

    We investigate charged Nambu-Goto strings/membrane systems in the Einstein-Maxwell theory in 3+1 dimensions. We first construct a charged string hedgehog solution that has a single horizon and conical singularity. Then we examine a charged membrane system, and give a simple derivation of its self energy. We find that the membrane may form an extremal Reissner-Nordstrom black hole, but its interior is a flat spacetime. Finally by combining the charged strings and the membrane we construct black hole solutions that have no singularities inside the horizons. We study them in detail by varying the magnitude of the two parameters, namely, the charge times the membrane tension and the string tension. We also argue that the strings have, due to the large redshift inside the system, a fair amount of degrees of freedom that may explain the entropy of the corresponding black holes.

  5. Stick-Slip Friction of PDMS Surfaces for Bioinspired Adhesives.

    Science.gov (United States)

    Xue, Longjian; Pham, Jonathan T; Iturri, Jagoba; Del Campo, Aránzazu

    2016-03-15

    Friction plays an important role in the adhesion of many climbing organisms, such as the gecko. During the shearing between two surfaces, periodic stick-slip behavior is often observed and may be critical to the adhesion of gecko setae and gecko-inspired adhesives. Here, we investigate the influence of short oligomers and pendent chains on the stick-slip friction of polydimethylsiloxane (PDMS), a commonly used material for bioinspired adhesives. Three different stick-slip patterns were observed on these surfaces (flat or microstructured) depending on the presence or absence of oligomers and their ability to diffuse out of the material. After washing samples to remove any untethered oligomeric chains, or after oxygen plasma treatment to convert the surface to a thin layer of silica, we decouple the contributions of stiffness, oligomers, and pendant chains to the stick-slip behavior. The stick phase is mainly controlled by the stiffness while the amount of untethered oligomers and pendant chains available at the contact interface defines the slip phase. A large amount of oligomers and pendant chains resulted in a large slip time, dominating the period of stick-slip motion. PMID:26903477

  6. A soft and conductive PDMS-PEG block copolymer as a compliant electrode for dielectric elastomers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    conductivity. The combination of soft chainextended PDMS-PEG block copolymers and conductive MWCNTs results in a soft and conductive block copolymer composite which potentially can be used as a compliant and highly stretchable electrode for dielectric elastomers. The addition of MWCNTs into the PDMS-PEG matrix......Conductive PDMS-PEG block copolymers (Mn = 3 – 5 kg/mol) were chain-extended (Mn = 30 – 45 kg/mol) using hydrosilylation reaction as presented in figure 1. Subsequently, the extended copolymers were added to a conductive nano-filler (multi-walled carbon nanotubes – MWCNTs) in order to enhance...... not only increases the conductivity, but also increases mechanical strength by reinforcing the network1. However, incorporating MWCNTs into the PDMS-PEG matrix is challenging due to strong van der Waals forces between the MWCNTs2. In the present study, MWCNTs were dispersed in organic solvent (N...

  7. Fabrication of silver nanorods embedded in PDMS film and its application for strain sensing

    Science.gov (United States)

    Goel, Pratibha; Singh, J. P.

    2014-11-01

    Highly reflective and surface conductive strain gauges have been prepared by embedding the silver nanorods (AgNRs) into polydimethylsiloxane (PDMS). Thermal curing of PDMS on AgNRs grown Si wafer leads to a flexible, reflective and conductive silver surface. The reflectance of the as prepared films were observed to be 60% with a low value of sheet resistance. The reflectance of the film was able to be tuned from 60% to 15% in the visible region. The fabrication of a parallel plate capacitor strain sensor from AgNRs embedded PDMS, and tuning of the capacitance with respect to the applied strain, leads to a gauge factor of ~1. These mechanically tunable AgNRs/PDMS films demonstrate potential application as a strain sensor.

  8. New perspectives for direct PDMS microfabrication using a CD-DVD laser.

    Science.gov (United States)

    Hautefeuille, M; Cabriales, L; Pimentel-Domínguez, R; Velázquez, V; Hernández-Cordero, J; Oropeza-Ramos, L; Rivera, M; Carreón-Castro, M P; Grether, M; López-Moreno, E

    2013-12-21

    A simple and inexpensive alternative to high-power lasers for the direct fabrication of microchannels and rapid prototyping of poly-dimethylsiloxane (PDMS) is presented. By focusing the infrared laser beam of a commercial, low-power CD-DVD unit on absorbing carbon micro-cluster additives, highly localized PDMS combustion can be used to etch the polymer, which is otherwise transparent at such wavelengths. Thanks to a precise and automated control of laser conditions, laser-induced incandescence is originated at the material surface and produces high-resolution micropatterns that present properties normally induced with lasers of much greater energies in PDMS: formation of in situ nanodomains, local fluorescence and waveguide patterns. An extensive study of the phenomenon and its performance for PDMS microfabrication are presented. PMID:24172647

  9. Black holes

    CERN Document Server

    Chrúsciel, P T

    2002-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usual one for gravity, and leads to the one associated with the Unruh metric in the case of Euler equations. We review the global conditions which have been used in the Scri-based definition of a black hole and point out the deficiencies of the Scri approach. Various results on the structure of horizons and apparent horizons are presented, and a new proof of semi-convexity of horizons based on a variational principle is given. Recent results on the classification of stationary singularity-free vacuum solutions are reviewed. ...

  10. The study of PDMS surface treatment and it's applications by using proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Baek, J. Y.; Kim, J. Y.; Kwon, K. H.; Park, J. Y. [Korea Univ., Seoul (Korea, Republic of)

    2007-04-15

    PDMS(Polydimethylsiloxane) is mainly used as a material to do lab on a chip for biochemical analysis. PDMS has many applicability at the Bio-Technology(BT) field, because it is flexible, biocompatible and has good oxygen permeability. In this study, we have investigated to physical and chemical changes of PDMS surface by proton beam radiation conditions. The used kind of ion were Ar and N, beam energy was 30keV, 60keV, 80keV, total fluence was 1E10 to 1E16 [ions/cm{sup 2}]. PDMS membrane was produced as 150 {mu}m thick on the 3' silicon wafer. We inquired into physical and chemical changes up to beam radiation conditions through the investigate the change of surface roughness by AFM(Atomic Force Microscope), the change of surface morphology by SEM(Scanning Electron Microscope) and the change of chemical composition by FT-IR(Fourier Transform Infrared Raman spectroscopy) and XPS(X-ray Photoelectron Spectroscopy). From these basic data to we set up the proton beam radiation conditions to secure metal layer and PDMS adhesion. This enables to produce the electrode at the PDMS material lab on a chip. From now on, we'll investigate the cell patterning possibility after carry out of cell culture with mouse fibroblast at PDMS surface what is surface modification by using of proton beam radiation and apply this to produce lab on a chip. Physical property: Surface roughness of PDMS membrane was observed using AFM, after exposure of proton beam on it. The roughness increased as the power level of proton beam increase. This phenomena was caused by the kinetic energy of particle. Chemical property: Long term observation was conducted on the contact angles of the samples made by the proton beam exposure or oxygen plasma treatment; the hydrophilicity was found to be stronger in the samples made by the proton beam exposure. We found the reason of this was the destruction of polymer chains by proton beam. Feasibility of Through-hole: Considering that comparatively high

  11. Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination

    Science.gov (United States)

    Zheng, Buxiang; Wang, Wenjun; Jiang, Gedong; Mei, Xuesong

    2016-06-01

    A hybrid method consisting of ultrafast laser-assisted texturing and chemical fluorination treatment was applied for efficiently enhancing the surface broadband antireflection to fabricate black titanium alloy surface with ultra-light-trapping micro-nanostructure. Based on the theoretical analysis of surface antireflective principle of micro-nanostructures and fluoride film, the ultra-light-trapping micro-nanostructures have been processed using a picosecond pulsed ultrafast laser on titanium alloy surfaces. Then fluorination treatment has been performed by using fluoroalkyl silane solution. According to X-ray diffraction phase analysis of the surface compositions and measurement of the surface reflectance using spectrophotometer, the broadband antireflective properties of titanium alloy surface with micro-nano structural characteristics were investigated before and after fluorination treatment. The results show that the surface morphology of micro-nanostructures processed by picosecond laser has significant effects on the antireflection of light waves to reduce the surface reflectance, which can be further reduced using chemical fluorination treatment. The high antireflection of over 98 % in a broad spectral range from ultraviolet to infrared on the surface of metal material has been achieved for the surface structures, and the broadband antireflective black metal surfaces with an extremely low reflectance of ultra-light-trapping structures have been obtained in the wavelength range from ultraviolet-visible to near-infrared, middle-wave infrared. The average reflectance of microgroove groups structured surface reaches as low as 2.43 % over a broad wavelength range from 200 to 2600 nm. It indicates that the hybrid method comprising of picosecond laser texturing and chemical fluorination can effectively induce the broadband antireflective black metal surface. This method has a potential application for fabricating antireflective surface used to improve the

  12. Fabrication of superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings and study of its wetting behaviour

    International Nuclear Information System (INIS)

    Superhydrophobic surfaces based on ZnO-PDMS nanocomposite coatings are demonstrated by a simple, facile, time-saving, wet chemical route. ZnO nanopowders with average particle size of 14 nm were synthesized by a low temperature solution combustion method. Powder X-ray diffraction results confirm that the nanopowders exhibit hexagonal wurtzite structure and belong to space group P63mc. Field emission scanning electron micrographs reveal that the nanoparticles are connected to each other to make large network systems consisting of hierarchical structure. The as formed ZnO coating exhibits wetting behaviour with Water Contact Angle (WCA) of ∼108o, however on modification with polydimethylsiloxane (PDMS), it transforms to superhydrophobic surface with measured contact and sliding angles for water at 155o and less than 5o respectively. The surface properties such as surface free energy (γp), interfacial free energy (γpw), and the adhesive work (Wpw) were evaluated. Electron paramagnetic resonance (EPR) studies on superhydrophobic coatings revealed that the surface defects play a major role on the wetting behaviour. Advantages of the present method include the cheap and fluorine-free raw materials, environmentally benign solvents, and feasibility for applying on large area of different substrates.

  13. Study on internal structure of Maxwell-Gauss-Bonnet black hole

    Energy Technology Data Exchange (ETDEWEB)

    Rannu, K A; Alexeyev, S O [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetsy Prospect, 13, Moscow 119991 (Russian Federation); Barrau, A, E-mail: rannu@xray.sai.msu.r [Laboratoire de Physique Subatomique et de Cosmologie, UJF-INPG-CNRS, 53, avenue des Martyrs, 38026 Grenoble cedex (France)

    2010-05-01

    The influence of the Maxwell field on a static, asymptotically flat and spherically-symmetric Gauss-Bonnet black hole is considered. Numerical computations suggest that if the charge increases beyond a critical value, the inner determinant singularity is replaced by an inner singular horizon.

  14. Substantial molecular variation and low genetic structure in Kenya’s black rhinoceros: implications for conservation

    NARCIS (Netherlands)

    Muya, S.M.; Bruford, M.W.; Muigai, A.W.T.; Osiemo, Z.B.; Mwachiro, E.; Ouma, B.O.; Goossens, B.

    2011-01-01

    Kenya’s black rhinoceros population declined by more than 98% from 20,000 individuals in the 1970s to around 400 individuals in 1990 due to the effects of poaching, at which time the surviving individuals were isolated in a series of demographically inviable subpopulations. An initial management exe

  15. Event Horizon Telescope Observations as Probes for Quantum Structure of Astrophysical Black Holes

    CERN Document Server

    Giddings, Steven B

    2016-01-01

    The need for a consistent quantum evolution for black holes has led to proposals that their semiclassical description is modified not just near the singularity, but at horizon or larger scales. If such modifications extend beyond the horizon, they influence regions accessible to distant observeration. Natural candidates for these modifications behave like metric fluctuations, with characteristic length and time scales set by the horizon radius. We investigate the possibility of using the Event Horizon Telescope to observe these effects, if they have a strength sufficient to make quantum evolution consistent with unitarity. We find that such quantum fluctuations can introduce a strong time dependence for the shape and size of the shadow that a black hole casts on its surrounding emission. For the black hole in the center of the Milky Way, detecting the rapid time variability of its shadow will require non-imaging timing techniques. However, for the much larger black hole in the center of the M87 galaxy, a vari...

  16. Novel silicone compatible cross-linkers for controlled functionalization of PDMS networks

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren;

    2013-01-01

    Polydimethylsiloxane (PDMS) elastomers are excellent materials for dielectric electroactive polymers (DEAPs) due to their high efficiency and fast response. PDMS suffers, however, from low dielectric permittivity and high voltages are therefore required when the material is used for DEAP actuator....... Furthermore, the dielectric losses are found to be very low while the electrical breakdown strengths are high and adequate for DEAP applications. © 2013 SPIE....

  17. The Deformation of Polydimethylsiloxane (PDMS) Microfluidic Channels Filled with Embedded Circular Obstacles under Certain Circumstances

    OpenAIRE

    Changhyun Roh; Jaewoong Lee; Chankyu Kang

    2016-01-01

    Experimental investigations were conducted to determine the influence of polydimethylsiloxane (PDMS) microfluidic channels containing aligned circular obstacles (with diameters of 172 µm and 132 µm) on the flow velocity and pressure drop under steady-state flow conditions. A significant PDMS bulging was observed when the fluid flow initially contacted the obstacles, but this phenomenon decreased in the 1 mm length of the microfluidic channels when the flow reached a steady-state. This implies...

  18. Displacement and strain field assessment of PDMS using digital image correlation

    OpenAIRE

    Mendonça, B; Ribeiro, J. E.; Lopes, H.; martins, p; M. A. P. Vaz

    2013-01-01

    The main goal of this work is the characterization of the hyper-elastic mechanical behaviour of PDMS. The special specimens of PDMS (Sylgard® 184) were tested in a bi-axial tensile machine. The displacement and strain fields were measured using a commercial digital image correlation system (ARAMIS of GOM) during the tensile test. The experimental measurements are compared with numerical simulations, which use the most popular algorithms of constitutive models to characterize the hyper-elastic...

  19. Displacement and strain field assessment of PDMS using digital image correlation

    OpenAIRE

    Mendonça, B; Ribeiro, J. E.; Lopes, H.; martins, p; M. A. P. Vaz; Gomes, S.

    2013-01-01

    The main goal of this work is to characterize the hyper-elastic mechanical behaviour of PDMS. For that, were made-up special specimens of PDMS (Sylgard® 184) for test them in bi-axial tensile machine. During the tensile test was used a commercial digital image correlation system (ARAMIS of GOM) to obtain de displacement and strain fields. These measurements are compared with numerical simulations which uses the more popular algorithms of constitutive models.

  20. TeraHz tuning of whispering gallery modes in a PDMS, stand-alone, stretchable microsphere

    OpenAIRE

    Madugani, Ramgopal; YANG, YONG; Jonathan M. Ward; Riordan, John Daniel; Coppola, Sara; Vespini, Veronica; Grilli, Simonetta; Finizio, Andrea; Ferraro, Pietro; Chormaic, Síle Nic

    2012-01-01

    We report on tuning the optical whispering gallery modes in a poly dimethyl siloxane-based (PDMS) microsphere resonator by more than a THz. The PDMS microsphere system consists of a solid spherical resonator directly formed with double stems on either side. The stems act like tie-rods for simple mechanical stretching of the microresonator over tens of microns, resulting in tuning of the whispering gallery modes by one free spectral range. Further investigations demonstrate that the whispering...

  1. Structural Transition in the NGC 6251 Jet: An Interplay with the Supermassive Black Hole and Its Host Galaxy

    CERN Document Server

    Tseng, Chih-Yin; Nakamura, Masanori; Pu, Hung-Yi; Algaba, Juan-Carlos; Lo, Wen-Ping

    2016-01-01

    The structure of the NGC 6251 jet at the milliarcsecond scale is investigated using the images taken with the European VLBI Network and the Very Long Baseline Array. We detect a structural transition of the jet from a parabolic to a conical shape at a distance of (1-2) x 10^5 times the Schwarzschild radius from the central engine, which is close to the sphere of gravitational influence (SGI) of the supermassive black hole (SMBH). We also examine the jet pressure profiles with the synchrotron minimum energy assumption to discuss the physical origin of the structural transition. The NGC 6251 jet, together with the M 87 jet, suggests a fundamental process of the structural transition in active galactic nuclei (AGN) jets. The collimated AGN jets are characterized by their external galactic medium, showing that AGN jets interplay with the SMBH and its host galaxy.

  2. Microanatomy of Passerine hard-cornified tissues: beak and claw structure of the Black-capped Chickadee (Poecile atricapillus)

    Science.gov (United States)

    Van Hemert, Caroline R.; Handel, Colleen M.; Blake, J.; Swor, Rhonda; O'Hara, Todd M.

    2012-01-01

    The microanatomy of healthy beaks and claws in passerine birds has not been well described in the literature, despite the importance of these structures in avian life. Histological processing of hard-cornified tissues is notoriously challenging and only a few reports on effective techniques have been published. An emerging epizootic of beak deformities among wild birds in Alaska and the Pacific Northwest region of North America recently highlighted the need for additional baseline information about avian hard-cornified structures. In this study, we examine the beak and claw of the Black-capped Chickadee (Poecile atricapillus), a common North American passerine that is affected by what has been described as “avian keratin disorder.” We use light and scanning electron microscopy and high-magnification radiography to document the healthy microanatomy of these tissues and identify features of functional importance. We also describe detailed methods for histological processing of avian hard-cornified structures and discuss the utility of special stains. Results from this study will assist in future research on the functional anatomy and pathology of hard-cornified structures and will provide a necessary reference for ongoing investigations of avian keratin disorder in Black-capped Chickadees and other wild passerine species.

  3. Black tea leaf extract derived Ag nanoparticle-PVA composite film: Structural and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Md Jamal [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Chaudhuri, Biswadeep; Pramanik, Krishna [Department of Biotechnology and Biomedical Engineering, NIT Rourkela, Orisa (India); Middya, Tapas Ranjan [Department of Physics, Jadavpur University, Kolkata 700 032 (India); Chaudhuri, Bijaykrishna, E-mail: sspbkc@rediffmail.com [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Black tea leaf extracts-PVA/silver nanocomposite (EPSNP) films have been prepared by biogenic synthesis approach. Black-Right-Pointing-Pointer The results demonstrated a remarkable enhancement of dielectric permittivity ({approx}900) with low loss ({approx}0.14). Black-Right-Pointing-Pointer Electrical conductivity as high as 5.98 Multiplication-Sign 10{sup -5} S/m for15 EPSNP composite film at 1 kHz and room temperature. Black-Right-Pointing-Pointer Such nanocomposite film might be important for technological applications. - Abstract: Biosynthesized metal (Ag) nanoparticles have been used to prepare high dielectric polymer composite film of technological importance. Different amounts of the tea leaf extract (E) (mother leaker prepared by soaking 2 g tea leaf in 100 ml boiled water for 3 min) were used to synthesize silver nanoparticles from 10{sup -3} M AgNO{sub 3} solution. Such a resultant solution containing Ag nanoparticles was mixed with 20 ml PVA solution (5 g PVA in 100 ml water) was used to make anhydrous Ag/PVA composite film where spherical silver nanoparticles (AgNPs) of average diameter 10 nm are well dispersed in the composite. The Ag particle size in the composite was found to enhance with the increase of E content in PVA. XRD, SEM, TEM, FT-IR, UV-vis, TGA and DSC studies are made to characterize the nanoparticles. Detailed frequency and E concentration dependent electrical and dielectric properties of the nanocomposites have been made showing low loss ({approx}0.14) and high dielectric property of these films. Maximum value of dielectric permittivity ({approx}900 which is almost 170 times higher than that of pure PVA {approx} 5.2) have been observed for 15 ml E-AgNPs/PVA nanocomposite film at 1 kHz and room temperature. Present study establishes the importance of the biosynthesized metal nanoparticles for industrial applications as in capacitors.

  4. The Deformation of Polydimethylsiloxane (PDMS Microfluidic Channels Filled with Embedded Circular Obstacles under Certain Circumstances

    Directory of Open Access Journals (Sweden)

    Changhyun Roh

    2016-06-01

    Full Text Available Experimental investigations were conducted to determine the influence of polydimethylsiloxane (PDMS microfluidic channels containing aligned circular obstacles (with diameters of 172 µm and 132 µm on the flow velocity and pressure drop under steady-state flow conditions. A significant PDMS bulging was observed when the fluid flow initially contacted the obstacles, but this phenomenon decreased in the 1 mm length of the microfluidic channels when the flow reached a steady-state. This implies that a microfluidic device operating with steady-state flows does not provide fully reliable information, even though less PDMS bulging is observed compared to quasi steady-state flow. Numerical analysis of PDMS bulging using ANSYS Workbench showed a relatively good agreement with the measured data. To verify the influence of PDMS bulging on the pressure drop and flow velocity, theoretical analyses were performed and the results were compared with the experimental results. The measured flow velocity and pressure drop data relatively matched well with the classical prediction under certain circumstances. However, discrepancies were generated and became worse as the microfluidic devices were operated under the following conditions: (1 restricted geometry of the microfluidic channels (i.e., shallow channel height, large diameter of obstacles and a short microchannel length; (2 operation in quasi-steady state flow; (3 increasing flow rates; and (4 decreasing amount of curing agent in the PDMS mixture. Therefore, in order to obtain reliable data a microfluidic device must be operated under appropriate conditions.

  5. Electrical response from nanocomposite PDMS-Ag NPs generated by in situ laser ablation in solution

    Science.gov (United States)

    Kalyva, Maria; Kumar, Susmit; Brescia, Rosaria; Petroni, Simona; La Tegola, Carola; Bertoni, Giovanni; De Vittorio, Massimo; Cingolani, Roberto; Athanassiou, Athanassia

    2013-01-01

    Laser ablation technique is employed in order to generate polydimethylsiloxane (PDMS)/Ag NPs in situ, starting from a silver target in a solution of PDMS prepolymer and toluene. The produced surfactant-free nanoparticles are characterized by high resolution transmission electron microscopy (HRTEM) and scanning TEM-high angle annular dark field (STEM-HAADF) imaging modes, showing the majority of them to be of the order of 4 nm in diameter with a small percentage of larger Ag-AgCl multidomain NPs, embedded into a PDMS matrix. Low concentrations of carbon onion-like nanoparticles or larger fibers are also formed in the toluene-PDMS prepolymer solution. In accordance with this, UV-vis spectra shows no peak from silver NPs; their small size and their coverage by the PDMS matrix suppresses the signal of surface plasmon absorption. Inductively coupled plasma measurements reveal that the concentration of silver in the polymer is characteristically low, ˜0.001% by weight. The electrical properties of the PDMS nanocomposite films are modified, with current versus voltage (I-V) measurements showing a low current of up to a few tenths of a pA at 5 V. The surface resistivity of the films is found to be up to ˜1010 Ω/sq. Under pressure (e.g. stress) applied by a dynamic mechanical analyzer (DMA), the I-V measurements demonstrate the current decreasing during the elastic deformation, and increasing during the plastic deformation.

  6. The Deformation of Polydimethylsiloxane (PDMS) Microfluidic Channels Filled with Embedded Circular Obstacles under Certain Circumstances.

    Science.gov (United States)

    Roh, Changhyun; Lee, Jaewoong; Kang, Chankyu

    2016-01-01

    Experimental investigations were conducted to determine the influence of polydimethylsiloxane (PDMS) microfluidic channels containing aligned circular obstacles (with diameters of 172 µm and 132 µm) on the flow velocity and pressure drop under steady-state flow conditions. A significant PDMS bulging was observed when the fluid flow initially contacted the obstacles, but this phenomenon decreased in the 1 mm length of the microfluidic channels when the flow reached a steady-state. This implies that a microfluidic device operating with steady-state flows does not provide fully reliable information, even though less PDMS bulging is observed compared to quasi steady-state flow. Numerical analysis of PDMS bulging using ANSYS Workbench showed a relatively good agreement with the measured data. To verify the influence of PDMS bulging on the pressure drop and flow velocity, theoretical analyses were performed and the results were compared with the experimental results. The measured flow velocity and pressure drop data relatively matched well with the classical prediction under certain circumstances. However, discrepancies were generated and became worse as the microfluidic devices were operated under the following conditions: (1) restricted geometry of the microfluidic channels (i.e., shallow channel height, large diameter of obstacles and a short microchannel length); (2) operation in quasi-steady state flow; (3) increasing flow rates; and (4) decreasing amount of curing agent in the PDMS mixture. Therefore, in order to obtain reliable data a microfluidic device must be operated under appropriate conditions. PMID:27322239

  7. Electrical response from nanocomposite PDMS-Ag NPs generated by in situ laser ablation in solution.

    Science.gov (United States)

    Kalyva, Maria; Kumar, Susmit; Brescia, Rosaria; Petroni, Simona; La Tegola, Carola; Bertoni, Giovanni; De Vittorio, Massimo; Cingolani, Roberto; Athanassiou, Athanassia

    2013-01-25

    Laser ablation technique is employed in order to generate polydimethylsiloxane (PDMS)/Ag NPs in situ, starting from a silver target in a solution of PDMS prepolymer and toluene. The produced surfactant-free nanoparticles are characterized by high resolution transmission electron microscopy (HRTEM) and scanning TEM-high angle annular dark field (STEM-HAADF) imaging modes, showing the majority of them to be of the order of 4 nm in diameter with a small percentage of larger Ag-AgCl multidomain NPs, embedded into a PDMS matrix. Low concentrations of carbon onion-like nanoparticles or larger fibers are also formed in the toluene-PDMS prepolymer solution. In accordance with this, UV-vis spectra shows no peak from silver NPs; their small size and their coverage by the PDMS matrix suppresses the signal of surface plasmon absorption. Inductively coupled plasma measurements reveal that the concentration of silver in the polymer is characteristically low, ~0.001% by weight. The electrical properties of the PDMS nanocomposite films are modified, with current versus voltage (I-V) measurements showing a low current of up to a few tenths of a pA at 5 V. The surface resistivity of the films is found to be up to ~10(10) Ω/sq. Under pressure (e.g. stress) applied by a dynamic mechanical analyzer (DMA), the I-V measurements demonstrate the current decreasing during the elastic deformation, and increasing during the plastic deformation. PMID:23262996

  8. Reversible Control in Surface Plasmon Resonance Wavelength of Gold Nanoparticles by Using Polydimethylsiloxane (PDMS)

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Yushi; Fudouzi, Hiroshi; Hayakawa, Tomokatsu; Nogami, Masayuki, E-mail: hayatomo@nitech.ac.jp [Field of Advenced Energy Conversion, Department of Frontier Materials, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan)

    2011-10-29

    In this paper, we demonstrate reversible control in surface plasomon resonance (SPR) wavelength of gold nanoparticles (GNPs) by changing their interparticle distance, which is dependent on the length of alkyl chain of alkanethiol adsorbed on GNPs and the swelling effect of polydimethylsiloxane (PDMS) used as a host material. A SPR wavelength was first positioned at a given wavelength dependent on the length of alkanethiol when GNPs were immobilized in PDMS. It was found that SPR wavelength red-shifted when the length of the carbon chain was shortened. On the other hand, when silicone oil was transfused to PDMS, SPR wavelength was blue-shifted by the swelling effect (volume expansion) of PDMS. And once silicone oil was volatilized, the particles returned to the original position and SPR did as well. Additionally, the coefficient of expansion of PDMS could be changed by changing the kind of silicon oils. From these results, it could be concluded that the SPR control due to their interparticle distance of GNPs was reversible and the varying degree of swelling of PDMS led to good controllability of SPR in a wide range of wavelength.

  9. Proton beam lithography in negative tone liquid phase PDMS polymer resist

    Science.gov (United States)

    Huszank, Robert; Rajta, István; Cserháti, Csaba

    2015-04-01

    In this work we investigated the applicability of liquid PDMS polymer as a negative resist material for direct proton beam writing technique. We irradiated the polymer in liquid phase, spin-coated on different substrate materials creating various microstructures. PDMS pre-polymer was cross-linked just by PBW. As the cross-linking process increases, the irradiated area becomes more solid. The rate of the solidification strongly depends on the deposited ion dose. The effects of fluence, beam current, substrate type and developer solvent was investigated. Furthermore, at the irradiated areas the adhesion, the wettability and Young's modulus also changes due to the chemical change of the PDMS polymer. This effect makes the possibility to form microstructures in PDMS with tunable adhesion and wettability properties. In practical viewpoint, the PDMS resist can also have some advantages compared to other resists such as easy stripping, very fast developing (as the un-cross-linked PDMS is soluble in many organic solvents), not sensitive to light, high current or high fluence.

  10. Direct transfer of multilayer graphene grown on a rough metal surface using PDMS adhesion engineering

    Science.gov (United States)

    Jang, Heejun; Kang, Il-Suk; Lee, Youngbok; Cha, Yun Jeong; Yoon, Dong Ki; Ahn, Chi Won; Lee, Wonhee

    2016-09-01

    The direct transfer of graphene using polydimethylsiloxane (PDMS) stamping has advantages such as a ‘pick-and-place’ capability and no chemical residue problems. However, it is not easy to apply direct PDMS stamping to graphene grown via chemical vapor deposition on rough, grainy metal surfaces due to poor contact between the PDMS and graphene. In this study, graphene consisting of a mixture of monolayers and multiple layers grown on a rough Ni surface was directly transferred without the use of an adhesive layer. Liquid PDMS was cured on graphene to effect a conformal contact with the graphene. A fast release of graphene from substrate was achieved by carrying out wet-etching-assisted mechanical peeling. We also carried out a thermal post-curing of PDMS to control the level of adhesion between PDMS and graphene and hence facilitate a damage-free release of the graphene. Characterization of the transferred graphene by micro-Raman spectroscopy, SEM/EDS and optical microscopy showed neither cracks nor contamination from the transfer. This technique allows a fast and simple transfer of graphene, even for multilayer graphene grown on a rough surface.

  11. Proton beam lithography in negative tone liquid phase PDMS polymer resist

    International Nuclear Information System (INIS)

    In this work we investigated the applicability of liquid PDMS polymer as a negative resist material for direct proton beam writing technique. We irradiated the polymer in liquid phase, spin-coated on different substrate materials creating various microstructures. PDMS pre-polymer was cross-linked just by PBW. As the cross-linking process increases, the irradiated area becomes more solid. The rate of the solidification strongly depends on the deposited ion dose. The effects of fluence, beam current, substrate type and developer solvent was investigated. Furthermore, at the irradiated areas the adhesion, the wettability and Young’s modulus also changes due to the chemical change of the PDMS polymer. This effect makes the possibility to form microstructures in PDMS with tunable adhesion and wettability properties. In practical viewpoint, the PDMS resist can also have some advantages compared to other resists such as easy stripping, very fast developing (as the un-cross-linked PDMS is soluble in many organic solvents), not sensitive to light, high current or high fluence

  12. Structural analysis of an HLA-B27 functional variant, B27d detected in American blacks

    Energy Technology Data Exchange (ETDEWEB)

    Rojo, S.; Aparicio, P.; Hansen, J.A.; Choo, S.Y.; Lopez de Castro, J.A.

    1987-11-15

    The structure of a new functional variant B27d has been established by comparative peptide mapping and radiochemical sequencing. This analysis complete the structural characterization of the six know histocompatibility leukocyte antigen (HLA)-B27 subtypes. The only detected amino acid change between the main HLA-B27.1 subtype and B27d is that of Try/sub 59/ to His/sub 59/. Position 59 has not been previously found to vary among class I HLA or H-2 antigens. Such substitution accounts for the reported isoelectric focusing pattern of this variant. HLA-B27d is the only B27 variant found to differ from other subtypes by a single amino acid replacement. The nature of the change is compatible with its origin by a point mutation from HLB-B27.1. Because B27d was found only American blacks and in no other ethnic groups, it is suggested that this variant originated as a result of a mutation of the B27.1 gene that occurred within the black population. Structural analysis of B27d was done by comparative mapping. Radiochemical sequencing was carried out with /sup 14/C-labeled and /sup 3/H-labeled amino acids.

  13. THE PHENOTYPIC STRUCTURE OF A MYTILUS GALLOPROVINCIALIS LMK POPULATION FROM THE ROMANIAN BLACK SEA SHORE

    Directory of Open Access Journals (Sweden)

    Aliona Novac

    2006-08-01

    Full Text Available : Among the specimens of Mytilus galloprovincialis Lmk. from the Black Sea, function of the color of the ostracum (brown, dark blue or brown with blue stripes, one can differentiate several forms. These colors are genetically determined (Stolbova, Pirkova, Ladyghina, 1996; Scherban, 2000; Shurova, 2001. The present paper analyzes the situation of these phenotypic groups, using specimens sampled at different depths in the area of Agigea dike.

  14. Horizon Shells: Classical Structure at the Horizon of a Black Hole

    OpenAIRE

    Blau, Matthias; O'Loughlin, Martin

    2016-01-01

    We address the question of the uniqueness of the Schwarzschild black hole by considering the following question: How many meaningful solutions of the Einstein equations exist that agree with the Schwarzschild solution (with a fixed mass m) everywhere except maybe on a codimension one hypersurface? The perhaps surprising answer is that the solution is unique (and uniquely the Schwarzschild solution everywhere in spacetime) *unless* the hypersurface is the event horizon of the Schwarzschild bla...

  15. A minimally invasive micro sampler for quantitative sampling with an ultrahigh-aspect-ratio microneedle and a PDMS actuator.

    Science.gov (United States)

    Liu, Long; Wang, Yan; Yao, Jinyuan; Yang, Cuijun; Ding, Guifu

    2016-08-01

    This study describes a novel micro sampler consisting of an ultrahigh-aspect-ratio microneedle and a PDMS actuator. The microneedle was fabricated by a new method which introduced reshaped photoresist technology to form a flow channel inside. The microneedle includes two parts: shaft and pedestal. In this study, the shaft length is 1500 μm with a 45° taper angle on the tip and pedestal is 1000 μm. Besides, the shaft and pedestal are connected by an arc connection structure with a length of 600 μm. The microneedles have sufficient mechanical strength to insert into skin with a wide safety margin which was proved by mechanics tests. Moreover, a PDMS actuator with a chamber inside was designed and fabricated in this study. The chamber, acting as a reservoir in sampling process as well as providing power, was optimized by finite element analysis (FEA) to decrease dead volume and improve sampling precision. The micro sampler just needs finger press to activate the sampling process as well as used for quantitative micro injection to some extent. And a volume of 31.5 ± 0.8 μl blood was successfully sampled from the ear artery of a rabbit. This micro sampler is suitable for micro sampling for diagnose or therapy in biomedical field. PMID:27372944

  16. Real-Time observation of PS-PDMS block copolymer self-assembly under solvent vapor annealing

    Science.gov (United States)

    Bai, Wubin; Yager, Kevin; Ross, Caroline

    2015-03-01

    Solvent annealing provides a convenient way to produce microphase separation in films of block copolymers, but the morphology transition of the film during the solvent absorption, equilibrium solvent-BCP concentration and solvent desorption process are not well known. An in situ study of solvent annealing of polystyrene-block-polydimethylsiloxane (PS-PDMS, 16 kg/mol, fPDMS = 30%, period 17 nm) diblock copolymer was carried by synchrotron grazing-incidence small-angle X-ray scattering (GISAXS). The swollen film morphology was found to be strongly dependent on swelling ratio. A transition from the disordered state to a highly ordered state which contained multiple layers of in-plane cylinders was observed at a swelling ratio around 1.45 from samples with 100nm to 1000nm as-cast thickness. The rate of solvent absorption was found to be less important to the dried morphology, while the time of equilibrium solvent-BCP concentration stage was found to influence the orientation of self-assembled microdomains and the drying rate was found to affect the degree of structure deformation. The implications of the results to pattern generation for block copolymer directed self-assembly will be discussed. Semiconductor Research Corporation, National Science Foundation.

  17. Fabrication and characterization of a magnetic micro-actuator based on deformable Fe-doped PDMS artificial cilium using 3D printing

    International Nuclear Information System (INIS)

    This paper proposes the use of a 3D extrusion printer to fabricate artificial magnetic cilium. The cilia are fabricated using polydimethylsiloxane (PDMS) doped with iron particles so that they remain slender and flexible. They can be driven by a magnetic field to closely mimic the behaviour of biological cilia. Doping iron particles to the polymers has already been done; however, to the best of our knowledge, printing such active and soft magnetic structures has not. The existing methods for manufacturing magnetic polymeric structures are complex and difficult to use for the fabrication of micro-sized high-aspect-ratio cilia. The 3D printing technique we propose here is simple and inexpensive compared to previously suggested fabrication methods. In this study, free-standing magnetic PDMS cilia were fabricated in different sizes up to 5 mm in length and 1 mm in width. The stress-strain curves of the PDMS cilia were experimentally obtained to quantify the effect of the concentration of the iron particles on the modulus of elasticity of the cilia. The higher the iron concentration, the higher the modulus of elasticity. We have quantified the characteristics of the cilia made of 40% w/w iron particles in PDMS. A single cilium (5 × 1 × 0.0035 mm) can output up to 27 μN blocking force under a magnetic field of 160 mT. These cilia can be used as a mixer in lap-on-chip applications and as the anchoring and propulsion legs of endoscopic capsule robots operating within the gastrointestinal tract of humans. Analytical expressions estimating the blocking force are established and compared with the experimental results. (paper)

  18. Fabrication and characterization of a magnetic micro-actuator based on deformable Fe-doped PDMS artificial cilium using 3D printing

    Science.gov (United States)

    Liu, Fengli; Alici, Gursel; Zhang, Binbin; Beirne, Stephen; Li, Weihua

    2015-03-01

    This paper proposes the use of a 3D extrusion printer to fabricate artificial magnetic cilium. The cilia are fabricated using polydimethylsiloxane (PDMS) doped with iron particles so that they remain slender and flexible. They can be driven by a magnetic field to closely mimic the behaviour of biological cilia. Doping iron particles to the polymers has already been done; however, to the best of our knowledge, printing such active and soft magnetic structures has not. The existing methods for manufacturing magnetic polymeric structures are complex and difficult to use for the fabrication of micro-sized high-aspect-ratio cilia. The 3D printing technique we propose here is simple and inexpensive compared to previously suggested fabrication methods. In this study, free-standing magnetic PDMS cilia were fabricated in different sizes up to 5 mm in length and 1 mm in width. The stress-strain curves of the PDMS cilia were experimentally obtained to quantify the effect of the concentration of the iron particles on the modulus of elasticity of the cilia. The higher the iron concentration, the higher the modulus of elasticity. We have quantified the characteristics of the cilia made of 40% w/w iron particles in PDMS. A single cilium (5 × 1 × 0.0035 mm) can output up to 27 μN blocking force under a magnetic field of 160 mT. These cilia can be used as a mixer in lap-on-chip applications and as the anchoring and propulsion legs of endoscopic capsule robots operating within the gastrointestinal tract of humans. Analytical expressions estimating the blocking force are established and compared with the experimental results.

  19. Online single particle measurements of black carbon coatings, structure and optical properties

    Science.gov (United States)

    Allan, James; Liu, Dantong; Taylor, Jonathan; Flynn, Michael; Williams, Paul; Morgan, William; Whitehead, James; Alfarra, Rami; McFiggans, Gordon; Coe, Hugh

    2016-04-01

    The impacts of black carbon on meteorology and climate remain a major source of uncertainty, owing in part to the complex relationship between the bulk composition of the particulates and their optical properties. A particular complication stems from how light interacts with particles in response to the microphysical configuration and any 'coatings', i.e. non-black carbon material that is either co-emitted or subsequently obtained through atmospheric processing. This may cause the particle to more efficiently absorb or scatter light and may even change the sign of its radiative forcing potential. While much insight has been gained through measurements of bulk aerosol properties, either while suspended or after collection on a filter or impactor substrate, this does not provide a complete picture and thus may not adequately constrain the system. Here we present an overview of recent work to better constrain the properties of black carbon using online, in situ measurements of single particles, primarily using a Single Particle Soot Photometer (SP2). We have developed novel methods of inverting the data produced and combining the different metrics derived so as to give the most effective insights into black carbon sources, processes and properties. We have also used this measurement in conjunction with other instruments (sometimes in series) and used the data to challenge many commonly used models of optical properties such as core-shell Mie, Rayleigh-Debeye-Gans and effective medium. This work has been carried out in a variety of atmospheric environments and with laboratory-produced soots, e.g. from a diesel engine rig. Highlights include the finding that with real-world atmospheric aerosols, bulk optical measurements may be insufficient to derive brown carbon parameters without detailed morphological data. We also show that the enhancement of absorption for both ambient and laboratory generated particles only occurs after the coating mass fraction reaches a certain

  20. Kinetics and equilibrium partitioning of dissolved BTEX in PDMS and POM sheets.

    Science.gov (United States)

    Nam, Go-Un; Bonifacio, Riza Gabriela; Kwon, Jung-Hwan; Hong, Yongseok

    2016-09-01

    Passive sampling of volatile organic chemicals from soil and groundwater is primarily important in assessing the status of environmental contamination. A group of low molecular weight pollutants usually found in petroleum fuels, benzene, toluene, ethylbenzene, and xylenes (BTEX) was studied for its kinetics and equilibrium partitioning with single-phase passive samplers using polydimethylsiloxane (PDMS) and polyoxymethylene (POM) as sorbing phase. PDMS (1 mm) and POM (0.076 mm) sheets were used for sorption of BTEX and concentrations were analyzed using GC-FID. The equilibrium absorption and desorption of PDMS in water was achieved after 120 min while POM sheets absorbed up to 35 days and desorbed in 7 days. The kinetic rate constants in PDMS is higher than in POM up to 3 orders of magnitude. Logarithms of partition coefficient were determined to be in the range of 1.6-2.8 for PDMS and 2.1-3.1 for POM. The results indicate that POM is a stronger sorbent for BTEX and has slower equilibration time than PDMS. The partitioning process for both polymers was found to be enthalpy-driven by measurement of K d values at varying temperatures. K d values increase at low temperature and high ionic strength conditions. Presence of other gasoline components, as well as dissolved organic matter, did not significantly affect equilibrium partitioning. A good 1:1 correlation between the measured and the predicted concentrations was established on testing the potential application of the constructed PDMS sampler on natural soils and artificial soils spiked with gasoline-contaminated water.

  1. Kinetics and equilibrium partitioning of dissolved BTEX in PDMS and POM sheets.

    Science.gov (United States)

    Nam, Go-Un; Bonifacio, Riza Gabriela; Kwon, Jung-Hwan; Hong, Yongseok

    2016-09-01

    Passive sampling of volatile organic chemicals from soil and groundwater is primarily important in assessing the status of environmental contamination. A group of low molecular weight pollutants usually found in petroleum fuels, benzene, toluene, ethylbenzene, and xylenes (BTEX) was studied for its kinetics and equilibrium partitioning with single-phase passive samplers using polydimethylsiloxane (PDMS) and polyoxymethylene (POM) as sorbing phase. PDMS (1 mm) and POM (0.076 mm) sheets were used for sorption of BTEX and concentrations were analyzed using GC-FID. The equilibrium absorption and desorption of PDMS in water was achieved after 120 min while POM sheets absorbed up to 35 days and desorbed in 7 days. The kinetic rate constants in PDMS is higher than in POM up to 3 orders of magnitude. Logarithms of partition coefficient were determined to be in the range of 1.6-2.8 for PDMS and 2.1-3.1 for POM. The results indicate that POM is a stronger sorbent for BTEX and has slower equilibration time than PDMS. The partitioning process for both polymers was found to be enthalpy-driven by measurement of K d values at varying temperatures. K d values increase at low temperature and high ionic strength conditions. Presence of other gasoline components, as well as dissolved organic matter, did not significantly affect equilibrium partitioning. A good 1:1 correlation between the measured and the predicted concentrations was established on testing the potential application of the constructed PDMS sampler on natural soils and artificial soils spiked with gasoline-contaminated water. PMID:27335013

  2. PDMS-based flexible energy harvester with Parylene electret and copper mesh electrodes

    Science.gov (United States)

    Chiu, Y.; Lee, M. H.; Wu, S.-H.

    2015-10-01

    Currently, most vibrational energy harvesters have rigid and resonant structures to scavenge kinetic energy from periodic motion in specific directions. However, in some situations the motion is random in amplitude, frequency, and direction; or the targeted energy sources apply direct deformation or displacement to the harvesters. In these applications, flexible energy harvesters that are light, flat, and conformable to arbitrary 3D surfaces of the sources are desired to scavenge the energy from device deformation, rather than the motion of a moving mass. Therefore we propose and demonstrate a PDMS-based flexible energy harvester with Parylene-C electret that can be attached to deformable surfaces. Furthermore, copper mesh is embedded in the flexible electrodes for robust electrode metallization as compared with traditional sputtered metal thin films. The fabricated harvesters achieved net output power of 2.2 μW, area power density of 2.2 μW cm-2, and volume power density of 22 μW cm-3 at the maximum test frequency of 20 Hz. Power generation by finger tapping and bending was demonstrated. Such harvesters have the potential for wearable and implantable electronic applications.

  3. PDMS-based flexible energy harvester with Parylene electret and copper mesh electrodes

    International Nuclear Information System (INIS)

    Currently, most vibrational energy harvesters have rigid and resonant structures to scavenge kinetic energy from periodic motion in specific directions. However, in some situations the motion is random in amplitude, frequency, and direction; or the targeted energy sources apply direct deformation or displacement to the harvesters. In these applications, flexible energy harvesters that are light, flat, and conformable to arbitrary 3D surfaces of the sources are desired to scavenge the energy from device deformation, rather than the motion of a moving mass. Therefore we propose and demonstrate a PDMS-based flexible energy harvester with Parylene-C electret that can be attached to deformable surfaces. Furthermore, copper mesh is embedded in the flexible electrodes for robust electrode metallization as compared with traditional sputtered metal thin films. The fabricated harvesters achieved net output power of 2.2 μW, area power density of 2.2 μW cm−2, and volume power density of 22 μW cm−3 at the maximum test frequency of 20 Hz. Power generation by finger tapping and bending was demonstrated. Such harvesters have the potential for wearable and implantable electronic applications. (paper)

  4. 基于 PDMS 的三维电缆设计方法在火力发电厂的应用%3D Cable Design for Thermal Power Plants Based on the PDMS

    Institute of Scientific and Technical Information of China (English)

    王继洋

    2016-01-01

    依据对 PDMS 软件多年的应用经验,结合俄罗斯特洛伊茨克项目,介绍了 PDMS 软件在火力发电厂三维电缆设计方面的应用情况。%Based on application experience of PDMS for many years,combined with TROITSKGRES project,the application of 3D cable design In the thermal power plant with PDMS software are introduced.

  5. Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Madhushree Bute; Shinde, Shashikant D. [Department of Physics, University of Pune, Pune 411007 (India); Bodas, Dhananjay [Centre for Nanobioscience, Agharkar Research Institute, Agharkar road, Pune 411004 (India); Patil, K.R. [Center for Materials Characterization, National Chemical Laboratories, Pune 411008 (India); Sathe, V.G. [UGC DAE Inter University Consortium, Indore 452017 (India); Adhi, K.P. [Department of Physics, University of Pune, Pune 411007 (India); Gosavi, S.W., E-mail: swg@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India)

    2014-09-30

    Graphical abstract: - Highlights: • Use of KrF Laser micromachining for Lab-On-Chip applications at lower fluence. • Addition of Benzophenone in PDMS enhances its self development sensitivity. • Benzophenone helps efficient energy transfer for equal density of bond scissioning. • Correlation of chemical composition with laser dose and microstructure. • Microstructures with well defined clean sidewalls. - Abstract: This paper discusses microfabrication process for benzophenone doped polydimethylsiloxane (PDMS) using laser lithography. KrF excimer laser of 248 nm with 20 ns pulse width at repetition rate of 1 Hz was used for microfabrication of undoped and benzophenone doped PDMS. The doped-PDMS shows sensitivity below 365 nm, permitting processing under ambient light. The analysis of etch depth revealed that doped PDMS shows self developable sensitivity at lower fluence of ∼250 mJ/cm{sup 2}. The unexposed and exposed surface was studied using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Scanning electron microscopy (SEM). Spectrocopic analysis indicated increase in C-O, C=O, Si-O{sub 3} and Si-O{sub 4} bonding at the expense of Si-C and Si-O{sub 2} bonds of PDMS. In case of laser exposed doped-PDMS, removal of benzophenone from probe depth of spectroscopy was observed. Whereas the surface morphology of exposed and unexposed doped-PDMS was observed to be same, indicating clean development of PDMS micropatterns. The present study indicates that addition of 3.0 wt.% benzophenone in PDMS enhance self development sensitivity of PDMS. The self developable results on doped-PDMS are quite encouraging for its potential use in point of care Lab-On-Chip applications, for fabricating micropatterns using direct write laser lithography technology.

  6. Rapid and low-cost fabrication of polystyrene-based molds for PDMS microfluidic devices using a CO2 laser

    KAUST Repository

    Li, Huawei

    2011-11-01

    In this article, we described a rapid and low-cost method to fabricate polystyrene molds for PDMS microfluidic devices using a CO2 laser system. It takes only several minutes to fabricate the polystyrene mold with bump pattern on top of it using a CO2 laser system. The bump pattern can be easily transferred to PDMS and fabricate microchannles as deep as 3μm on PDMS. © (2012) Trans Tech Publications, Switzerland.

  7. Probing the magnetic field structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    CERN Document Server

    Gold, Roman; Johnson, Michael D; Doeleman, Sheperd S

    2016-01-01

    Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic-field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical (MHD) simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A$^\\ast$ (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability (MRI) as well as models with large-scale ordered fields in magnetically-arrested disks (MAD). We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford-...

  8. Surface modification of PDMS microchips with poly(ethylene glycol) derivatives for μTAS applications.

    Science.gov (United States)

    de Campos, Richard Piffer Soares; Yoshida, Inez Valeria Pagotto; da Silva, José Alberto Fracassi

    2014-08-01

    In this work is presented a method for the modification of native PDMS surface in order to improve its applicability as a substrate for microfluidic devices, especially in the analysis of nonpolar analytes. Therefore, poly(ethylene glycol) divinyl ether modified PDMS substrate was obtained by surface modification of native PDMS. The modified substrate was characterized by attenuated total reflectance infrared spectroscopy, water contact angle measurements, and by evaluating the adsorption of rhodamine B and the magnitude of the EOF mobility. The reaction was confirmed by the spectroscopic evaluation. The formation of a well-spread water film over the surface immediately after the modification was an indicative of the modified surface hydrophilicity. This characteristic was maintained for approximately ten days, with a gradual return to a hydrophobic state. Fluorescence assays showed that the nonpolar adsorption property of PDMS was significantly decreased. The EOF mobility obtained was 3.6 × 10(-4) cm(2) V(-1) s(-1) , higher than the typical values found for native PDMS. Due to the better wettability promoted by the modification, the filling of the microchannels with aqueous solutions was facilitated and trapping of air bubbles was not observed.

  9. Hybrid microsystem with functionalized silicon substrate and PDMS sample operating microchannel: A reconfigurable microfluidics scheme

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A hybrid microsystem with separately functioned temperature controlling substrate and sample operating fluidic microchannel was developed to demonstrate a reconfigurable microfluidics scheme.The temperature controlling substrate integrated a micro heater and a temperature sensor by using traditional silicon-based micromechanical system(MEMS)technique,which guaranteed high performance and robust reliability for repeatable usage.The sample operating fluidic microchannel was prepared by poly-(dimethylsiloxane) (PDMS)based soft lithography technique,which made it cheap enough for disposable applications.The PDMS microchannel chip was attached to the temperature controlling substrate for reconfigurable thermal applications.A thin PDMS film was used to seal the microchannel and bridge the functionalized substrate and the sample inside the channel,which facilitated heat transferring and prevented sample contaminating the temperature controlling substrate.Demonstrated by a one dimensional thermal resistance model,the thin PDMS film was important for the present reconfiguration applications.Thermal performance of this hybrid microsystem was examined,and the experimental results demonstrated that the chip system could work stably over hours with temperature variation less than 0.1oC.Multiple PDMS microchannel chips were tested on one heating substrate sequentially with a maximum intra-chip temperature difference of 1.0oC.DNA extracted from serum of a chronic hepatitis B virus(HBV)patient was amplified by this hybrid microsystem and the gel electrophoresis result indicated that the present reconfigurable microfluidic scheme worked successfully.

  10. Novel silicone hydrogel based on PDMS and PEGMA for contact lens application.

    Science.gov (United States)

    Lin, Chien-Hong; Yeh, Yi-Hsing; Lin, Wen-Ching; Yang, Ming-Chien

    2014-11-01

    A silicone-based hydrogel was synthesized from poly(dimethylsiloxane) dialkanol (PDMS), isophorone diisocyanate (IPDI), 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methacrylate (PEGMA). The hydrophilicity of the resulting block copolymer was adjustable by manipulating the ratio of PDMS and PEGMA. The results showed that higher PEGMA content led to a lower water contact angle, higher water content, lower elastic modulus and higher glucose permeability. At a PEGMA content of 20%, the protein adsorption decreased to 23% and 18% for lysozyme and human serum albumin (HSA), respectively, of those of the control (PDMS-PU). This indicated that the PDMS-PU-PEGMA hydrogels exhibited an ability to resist protein adsorption. The oxygen permeability (Dk) was 92 barrers for the hydrogel with 20% PEGMA. Furthermore, these hydrogels were non-cytotoxic according to an in vitro L929 fibroblast assay. Overall, the results demonstrated that the PDMS-PU-PEGMA hydrogels exhibited not only relatively high oxygen permeability and relative optical transparency, but also hydrophilicity and anti-protein adsorption; therefore, they would be applicable as a contact lens material. Furthermore, this study demonstrated a new approach to controlling the performance of silicone hydrogels. PMID:25465755

  11. Structural, mechanical and electrical characterization of epoxy-amine/carbon black nanonocomposites

    Directory of Open Access Journals (Sweden)

    2008-05-01

    Full Text Available This work presents an insight into the effect of preparation procedure and the filler content on both electrical and mechanical properties of a nanocomposite system. For the preparation of the nanocomposites diglycidyl ether of bisphenol A (DGEBA was used with triethylenetetramine (TETA as a curing agent. As fillers carbon black (CB nanoparticles with size from 25 to 75 nm were used. The characterization was done using Dynamic Mechanical Analysis (DMA, Dielectric Relaxation Spectroscopy (DRS, Differential Scanning Calorimetry (DSC, Wide Angle X-ray Diffraction (WAXD and electrical conductivity measurements. The dependence of the dynamic mechanical and dielectric parameters (E′, E″, tanδ, ε', ε″, σ and Tg is associated with the filler content and is controlled by the employed curing conditions. An increase in electrical conductivity, which is observed at about 1% w/w of carbon black, indicates the creation of conducting paths and is associated with the Maxwell Wagner Sillars (MWS relaxation, probably due to the formation of aggregated microstructures in the bulk composite..

  12. Small-angle scattering, contrast variation and the study of complex composite materials: A study of the structure of carbon black

    International Nuclear Information System (INIS)

    Detailed studies are presented on the structure and aggregation of an experimental high surface area carbon black (HSA) using small-angle neutron scattering and the method of contrast variation. We find that the approximately 27 mn HSA particle form small, linear aggregates of average aggregation number 5 when suspended in cyclohexane. There is considerable density fluctuation in the interior of these particles, with the denser regions being toward the outer part of the spherically-averaged structure. This information would not have been obtained from studies of carbon black without solvent. The results will be applied to similar scattering studies on solvent-swollen bound rubber gels made from HSA-polyisoprene. These result show, however, that the strong internal fluctuations of the carbon black will limit the information that can be obtained on the structure and conformation of the elastomer in the gel. There are additional limitation from compositional heterogeneity of the sample

  13. Study of cellular behaviors on concave and convex microstructures fabricated from elastic PDMS membranes.

    Science.gov (United States)

    Park, Joong Yull; Lee, Dae Ho; Lee, Eun Joong; Lee, Sang-Hoon

    2009-07-21

    Cells respond to geometrical cues, as well as to biochemical and mechanical stimuli. Recent progress in micro- and nano-technology has allowed researchers to create microbeads, micro-circular islands, and microposts, that can be used to examine the effect of geometrical cues on cellular behavior. Knowledge of changes in cell mechanics and morphology in response to geometric cues is important for understanding the basic behavior of cells during development and pathological processes. Most previous research in this area has focused on cell responses to two-dimensional planar or rectilinear structures. Very few studies have examined cell responses to three-dimensional curved structures because of the difficulty of fabricating such microstructures. Here we describe a novel method for the fabrication of convex and concave microstructures by use of a thin poly(dimethylsiloxane) (PDMS) membrane, SU-8 shadow mask, and negative air pressure without using any complicated silicon processes. We successfully fabricated concave and convex microstructures, with base diameters of 200-300 microm and depth (or height) of 50-150 microm (aspect ratios up to 1 : 0.5), and used these microstructures to study the responses of cultured L929 mouse fibroblast cells and human mesenchymal stem cells. These cells clearly sensed the three-dimensional microscale curvature and actively "escaped" from concave patterns, but not from those which were convex. Thus, it appears that microscale concave structures suppress cell adhesion and proliferation. We hypothesized that this might relate to deformation of the plasma membrane and subsequent opening of membrane channels. We anticipate that our system will be useful for various bio-MEMS (micro electro mechanical system) applications, including formation of uniformly-sized embryoid bodies, embryonic stem cell differentiation, and the fabrication of cell docking devices, microbioreactors, and microlenses as well as cell mechanics study. PMID:19568673

  14. Genetic diversity and population structure of black Dahe pig based on DNA sequences analyses of mitochondrial and nuclear genes.

    Science.gov (United States)

    Tang, Lizhou; Yu, Long; Wang, Junjie; Liu, Chao; Shi, Xiaodong; Ding, Wei; Zhu, Lei; Guo, Songchang

    2016-01-01

    To investigate the genetic diversity and population structure of black Dahe pigs, we collected 175 samples from 5 local populations and sequenced them using a combination of two selected molecular markers for mitochondrial cytochrome b and Major Histocompatibility Complex (MHC) DRB. Overall, the results of AMOVA and phylogenetic tree and gene flow analyses detected high levels of gene flow among the five populations, particularly individual pigs from Dahe town (Pop1) or Yingshang town (Pop2) to other populations (Pop3, Pop4, and Pop5). The genetic diversity analyses showed that the diversity indices of the five populations did not vary significantly, but they were much lower than those of other Chinese pig species. These results suggest that distinct gene flow, unstable population pattern, and lower genetic diversity have been influenced mainly by human introductions for economic ends. These findings provide genetic information that could be used for the preservation and further genetic improvement of the black Dahe pig, as well as an important reference for the evaluation, conservation, and utilization of the genetic resources of this breed.

  15. 3-cm Fine Structure Masers: A Unique Signature of Supermassive Black Hole Formation via Direct Collapse in the Early Universe

    CERN Document Server

    Dijkstra, Mark; Loeb, Abraham

    2016-01-01

    The direct collapse black hole (DCBH) scenario describes the isothermal collapse of a pristine gas cloud directly into a massive, M_BH=10^4-10^6 M_sun black hole. In this paper we show that large HI column densities of primordial gas at T~10^4 K with low molecular abundance - which represent key aspects of the DCBH scenario - provide optimal conditions for pumping of the 2p-level of atomic hydrogen by trapped Lyman alpha (Lya) photons. This Lya pumping mechanism gives rise to inverted level population of the 2s_1/2-2p_3/2 transition, and therefore to stimulated fine structure emission at 3.04 cm (rest-frame). We show that simplified models of the DCBH scenario amplify the CMB by up to a factor of 10^5, above which the maser saturates. Hyperfine splitting of the 3-cm transition gives rise to a characteristic broad (FWHM ~ tens of MHz in the observers frame) asymmetric line profile. This signal subtends an angular scale of ~ 1-10 mas, which translates to a flux of ~ 0.3-3 microJy, which is detectable with ultra...

  16. Uniform integration of gold nanoparticles in PDMS microfluidics with 3D micromixing

    Science.gov (United States)

    SadAbadi, H.; Packirisamy, M.; Wuthrich, R.

    2015-09-01

    The integration of gold nanoparticles (AuNPs) on the surface of polydimethylsiloxane (PDMS) microfluidics for biosensing applications is a challenging task. In this paper we address this issue by integration of pre-synthesized AuNPs (in a microreactor) into a microfluidic system. This method explored the affinity of AuNPs toward the PDMS surface so that the pre-synthesized particles will be adsorbed onto the channel walls. AuNPs were synthesized inside a microreactor before integration. In order to improve the size uniformity of the synthesized AuNPs and also to provide full mixing of reactants, a 3D-micromixer was designed, fabricated and then integrated with the microreactor in a single platform. SEM and UV/Vis spectroscopy were used to characterize the AuNPs on the PDMS surface.

  17. Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles

    KAUST Repository

    Li, Huawei

    2013-12-21

    This paper reports a novel method to fabricate three-dimensional (3D) polydimethylsiloxane (PDMS) micro-pillars using a CO2 laser-machined poly(methyl methacrylate) (PMMA) mold with through-holes. This method eliminates the requirements of expensive and complicated facilities to fabricate a 3D mold. The micro-pillars were formed by the capillary force that draws PDMS into the through-holes of the PMMA mold. The tilt angles of the micro-pillars depend on the tilt angles of the through-holes in the mold, and the concave and convex micro-lens tip shapes of the PDMS micro-pillars can be modified by changing the surface wettability of the PMMA through-holes.

  18. Fouling release nanostructured coatings based on PDMS-polyurea segmented copolymers

    KAUST Repository

    Fang, Jason

    2010-05-01

    The bulk and surface characteristics of a series of coatings based on PDMS-polyurea segmented copolymers were correlated to their fouling release performance. Incorporation of polyurea segments to PDMS backbone gives rise to phase separation with the extensively hydrogen bonded hard domains creating an interconnected network that imparts mechanical rigidity. Increasing the compositional complexity of the system by including fluorinated or POSS-functionalized chain extenders or through nanoclay intercalation, confers further thermomechanical improvements. In analogy to the bulk morphology, the surface topography also reflects the compositional complexity of the materials, displaying a wide range of motifs. Investigations on settlement and subsequent removal of Ulva sporelings on those nanostructured surfaces indicate that the work required to remove the microorganisms is significantly lower compared to coatings based on standard PDMS homopolymer. All in all, the series of materials considered in this study demonstrate advanced fouling release properties, while exhibiting superior mechanical properties and, thus, long term durability. © 2010 Elsevier Ltd.

  19. Fabrication of polydimethylsiloxane (PDMS) nanofluidic chips with controllable channel size and spacing.

    Science.gov (United States)

    Peng, Ran; Li, Dongqing

    2016-10-01

    The ability to create reproducible and inexpensive nanofluidic chips is essential to the fundamental research and applications of nanofluidics. This paper presents a novel and cost-effective method for fabricating a single nanochannel or multiple nanochannels in PDMS chips with controllable channel size and spacing. Single nanocracks or nanocrack arrays, positioned by artificial defects, are first generated on a polystyrene surface with controllable size and spacing by a solvent-induced method. Two sets of optimal working parameters are developed to replicate the nanocracks onto the polymer layers to form the nanochannel molds. The nanochannel molds are used to make the bi-layer PDMS microchannel-nanochannel chips by simple soft lithography. An alignment system is developed for bonding the nanofluidic chips under an optical microscope. Using this method, high quality PDMS nanofluidic chips with a single nanochannel or multiple nanochannels of sub-100 nm width and height and centimeter length can be obtained with high repeatability. PMID:27539019

  20. Novel biocompatible transversal pneumatic artificial muscles made of PDMS/PET satin composite

    Directory of Open Access Journals (Sweden)

    Szmechtyk Tomasz

    2016-06-01

    Full Text Available In this study novel transversal pneumatic artificial muscles (TPAM, made from composite – poly(dimethylsiloxane (PDMS matrix membrane and poly(ethylene terephthalate (PET satin reinforcement, are presented. Miniature TPAM consists of a flexible internal braid (IB reinforcing the membrane and the external braid (EB. EB, with fibers arranged transversely to the IB, is placed laterally. Differently prepared TPAMs were tested for their effectiveness as actuators for robot drive and the PDMS/PET composite suitability was evaluated for applications in human gastrointestinal tract (chemical resistance, thermal characteristic. FT-IR spectra of the composite were compared for study PDMS impregnation process of PET satin and effect of immersion in selected solution. The composite shows outstanding biocompatibility and the muscles have competitive static load characteristics in comparison with other pneumatic artificial muscles (PAM. These results lead to believe, that in the near future painless examination of the gastrointestinal tract using a secure robot will be possible.

  1. Microfabrication of Bubbular Cavities in PDMS for Cell Sorting and Microcell Culture Applications

    Institute of Scientific and Technical Information of China (English)

    Ut-Binh T.Giang; Michael R.King; Lisa A.DeLouise

    2008-01-01

    We describe a novel technique, low surface energy Gas Expansion Molding (GEM), to fabricate microbubble arrays in polydimethylsiloxane (PDMS) which are incorporated into parallel plate flow chambers and tested in cell sorting and microcell culture applications. This architecture confers several operational advantages that distinguish this technology approach from currently used methods. Herein we describe the GEM process and the parameters that are used to control microbubble formation and a Vacuum-Assisted Coating (VAC) process developed to selectively and spatially alter the PDMS surface chemistry in the wells and on the microchannel surface. We describe results from microflow image visualization studies conducted to investigate fluid streams above and within microbubble wells and conclude with a discussion of cell culture studies in PDMS.

  2. Highly Sensitive Chemiluminescence Detection for PDMS/Glass Micro-chip Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Xiang Yi HUANG; Jiao Ning WANG; Lin CHEN; Ji Cun REN

    2004-01-01

    This paper described a highly sensitive chemiluminescence detection system for micro-chip electrophoresis (MCE) based on luminol-hydrogen peroxide reaction catalyzed by the metal ions. The micro-chip was composed of poly(dimethylsiloxane) (PDMS) and glass, and was fabricated by micro-machining technology. The surface of channels was dynamically modified by polydimethylacrylamide (PDMA) in order to eliminate unhomogeneous electroosmotic flow (EOF) of the PDMS/glass chip, adsorption of molecules, and improve hydrophobicity on PDMS surface. The detection modes, reagent mix procedures and reaction conditions were optimized and the detection limit of 5 x 10-11 mol/L for cobalt (II) was achieved by MCE with chemiluminescence detection, which was about four orders of magnitude more sensitive than that reported in the reference.

  3. PDMS Rod-SBSE System Coupled with Gas Chromatography for Determination of PAHs in Aqueous Samples

    Institute of Scientific and Technical Information of China (English)

    CHENG Chuan-xian; PEI Hai-rong; LAN Xiao-zheng

    2011-01-01

    A method for the analysis of trace polycyclic aromatic hydrocarbons(PAHs) in aqueous samples has been established by polydimethylsiloxane(PDMS) rod aided stir bar sorptive extraction(SBSE).The homemade PDMS rod has a size of 30 mm×3 mm o.d.with a volume of ca.200 μL,stable in thermal desorption process.The enriched PAHs by the PDMS rod were released in a homemade thermal desorption system coupled with gas chromatography.Experimental parameters for extraction of six PAHs were optimized including extraction time,pH,ionic strength and temperature of solution.The procedure has good recoveries of 80.0%-100.3% and very low limits of detection of 4.0-33 ng/L.PAHs in rain and river water were analyzed by this method.

  4. Breast cancers from black women exhibit higher numbers of immunosuppressive macrophages with proliferative activity and of crown-like structures associated with lower survival compared to non-black Latinas and Caucasians.

    Science.gov (United States)

    Koru-Sengul, Tulay; Santander, Ana M; Miao, Feng; Sanchez, Lidia G; Jorda, Merce; Glück, Stefan; Ince, Tan A; Nadji, Mehrad; Chen, Zhibin; Penichet, Manuel L; Cleary, Margot P; Torroella-Kouri, Marta

    2016-07-01

    Racial disparities in breast cancer incidence and outcome are a major health care challenge. Patients in the black race group more likely present with an early onset and more aggressive disease. The occurrence of high numbers of macrophages is associated with tumor progression and poor prognosis in solid malignancies. Macrophages are observed in adipose tissues surrounding dead adipocytes in "crown-like structures" (CLS). Here we investigated whether the numbers of CD163+ tumor-associated macrophages (TAMs) and/or CD163+ CLS are associated with patient survival and whether there are significant differences across blacks, non-black Latinas, and Caucasians. Our findings confirm that race is statistically significantly associated with the numbers of TAMs and CLS in breast cancer, and demonstrate that the highest numbers of CD163+ TAM/CLS are found in black breast cancer patients. Our results reveal that the density of CD206 (M2) macrophages is a significant predictor of progression-free survival univariately and is also significant after adjusting for race and for HER2, respectively. We examined whether the high numbers of TAMs detected in tumors from black women were associated with macrophage proliferation, using the Ki-67 nuclear proliferation marker. Our results reveal that TAMs actively divide when in contact with tumor cells. There is a higher ratio of proliferating macrophages in tumors from black patients. These findings suggest that interventions based on targeting TAMs may not only benefit breast cancer patients in general but also serve as an approach to remedy racial disparity resulting in better prognosis patients from minority racial groups. PMID:27283835

  5. Effort Optimism in the Classroom: Attitudes of Black and White Students on Education, Social Structure, and Causes of Life Opportunities

    Science.gov (United States)

    Matthew, Ervin

    2011-01-01

    Do black and white students hold similar beliefs about the causes of life opportunities? Disparities in academic performance between blacks and whites have been attributed, in part, to differing attitudes about the relationship between education and life opportunities. Advocates of oppositional culture theory argue that black students consider…

  6. Structural controls on fractured coal reservoirs in the southern Appalachian Black Warrior foreland basin

    Science.gov (United States)

    Groshong, R.H., Jr.; Pashin, J.C.; McIntyre, M.R.

    2009-01-01

    Coal is a nearly impermeable rock type for which the production of fluids requires the presence of open fractures. Basin-wide controls on the fractured coal reservoirs of the Black Warrior foreland basin are demonstrated by the variability of maximum production rates from coalbed methane wells. Reservoir behavior depends on distance from the thrust front. Far from the thrust front, normal faults are barriers to fluid migration and compartmentalize the reservoirs. Close to the thrust front, rates are enhanced along some normal faults, and a new trend is developed. The two trends have the geometry of conjugate strike-slip faults with the same ??1 direction as the Appalachian fold-thrust belt and are inferred to be the result of late pure-shear deformation of the foreland. Face cleat causes significant permeability anisotropy in some shallow coal seams but does not produce a map-scale production trend. ?? 2008 Elsevier Ltd. All rights reserved.

  7. Monolithic PDMS Laminates for Dielectric Elastomer Transducers through Open-Air PlasmATreatment

    DEFF Research Database (Denmark)

    Hassouneh, Suzan Sager; Oubæk, Jakob; Daugaard, Anders Egede;

    2016-01-01

    The present study investigates the use of an open-air plasma-treatment system for the surface modification of polydimethylsiloxane (PDMS), in order to improve layer-to-layer adhesion. The procedure presented herein is more cost efficient compared to conventional vacuum-based plasma-treatment......, and it is performed at different speeds and distances away from the nozzle, to investigate how these two parameters influence the resulting interfacial layer of two fully cured PDMS films. The plasma-treatment is determined not to alter mechanical properties compared to the single film, while peel forces...

  8. Enhancing relative permittivity by incorporating PDMS-PEG multi block copolymers in binary polymer blends

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    Polydimethylsiloxanes (PDMS) are well-known to actuate with relatively large strains due to low modulus, but they possess lowpermittivity. Contrary, polyethyleneglycols (PEG) are not stretchable but possess high permittivity. Combination of the two polymers in a block copolymer depicts a possibil......Polydimethylsiloxanes (PDMS) are well-known to actuate with relatively large strains due to low modulus, but they possess lowpermittivity. Contrary, polyethyleneglycols (PEG) are not stretchable but possess high permittivity. Combination of the two polymers in a block copolymer depicts a...

  9. TeraHz tuning of whispering gallery modes in a PDMS, stand-alone, stretchable microsphere

    CERN Document Server

    Madugani, Ramgopal; Ward, Jonathan M; Riordan, John Daniel; Coppola, Sara; Vespini, Veronica; Grilli, Simonetta; Finizio, Andrea; Ferraro, Pietro; Chormaic, Síle Nic

    2012-01-01

    We report on tuning the optical whispering gallery modes in a poly dimethyl siloxane-based (PDMS) microsphere resonator by more than a THz. The PDMS microsphere system consists of a solid spherical resonator directly formed with double stems on either side. The stems act like tie-rods for simple mechanical stretching of the microresonator over tens of microns, resulting in tuning of the whispering gallery modes by one free spectral range. Further investigations demonstrate that the whispering gallery mode shift has a higher sensitivity (0.13 nm/{\\mu}N) to an applied force when the resonator is in its maximally stretched state compared to its relaxed state.

  10. Synthesis, characterization and lubricating effect of long chain branched polydimethylsiloxane-g-polyethylene copolymers%长支链型PDMS-g-PE共聚物的制备及其增塑润滑作用

    Institute of Scientific and Technical Information of China (English)

    金震; 范宏

    2016-01-01

    Long chain branched polydimethylsiloxane-g-polyethylene (PDMS-g-PE) copolymers were synthesized by hydrosilylation reaction between polymethylhydrosiloxane and vinyl terminated PE macromonomer. The structure and properties were characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H NMR), high temperature gel permeation chromatography (HT-GPC) and differential scanning calorimetry (DSC). The effect of the hydrogen content of polymethylhydrosiloxane on the copolymer structure and properties was investigated. It was found that the molecular weight of PDMS-g-PE increased with the hydrogen content of polymethylhydrosiloxane since more PE macromonomers were grafted onto the polydimethylsiloxane main chains. The glass transition temperature (Tg) of PDMS-g-PE was extremely low, indicating the excellent molecular chain flexibility. PDMS-g-PE with more PE branched chains showed higher melting temperature (Tm) and higher melting enthalpy (ΔHm). PDMS-g-PE was used as flow modifier for HDPE. When 2% PDMS-g-PE was added to HDPE, the melting flow rate (MFR) increased by 21%, the elongation at break improved significantly and the impact strength improved a little, while the tensile strength and elastic modulus decreased slightly.%通过低含氢硅油与末端双键聚乙烯大单体的硅氢加成反应,制备了长支链型聚硅氧烷-聚乙烯接枝共聚物(PDMS-g-PE)。采用傅里叶变换红外光谱(FT-IR)、核磁共振波谱(1H NMR)、高温凝胶渗透色谱(HT-GPC)和差示扫描量热分析(DSC)表征了共聚物的结构与性能。考察了硅油含氢量对共聚物结构和热性能的影响,并将其用作HDPE的流动改性剂,研究了其增塑润滑改性效果。结果表明,硅油含氢量越高,能加成上的PE支链越多,PDMS-g-PE的分子量越大。PDMS-g-PE的聚硅氧烷主链具有极低的玻璃化温度(Tg),显示出优异的分子链柔顺性。聚乙烯支链使PDMS

  11. Static friction of biomimetic surface microstructure of PDMS under wet and dry conditions

    Science.gov (United States)

    Yu, Haiwu; Jia, Hongduo; Gong, Ling; Li, Rong; Wang, Caiping; Wang, Xiaojie

    2016-04-01

    Smooth adhesive pad found among arthropods, amphibians, particularly tree frogs, are usually covered with surface microstructure of different shape to enhance the attachment abilities on the smooth substrate. During the last decade, it has gained more attentions in the development of anti-slippery systems by mimicking these unique characteristics. In this paper, we studied a new amphibian species newt by observing their climbing abilities on wet and dry vertical smooth surface, and found that the newts can even hang on the surface with an inclination angle more than 90° without falling. We investigated the toe pad micro-structured surface of the newt by using scanning electron microscopy (SEM), and found that an array of hexagonal cells with micro-ridges on cell borders exists for the larvae; while an array of hexagonal cells separated by microgrooves is for the adult. Inspired by these features, the biomimetic micro-structured surfaces were fabricated using a soft elastomeric material polydimethysiloxane (PDMS). Four different microstructures were chosen to study their tribological properties with a solid substrate under wet and dry conditions. The patterns of the microstructures include round pillar, hexagonal pillar, round pillars surrounded by a closed hexagonal ridge, and round pillars surrounded by a semi-closed hexagonal ridge. The static friction tests were carried out using the multi-functional surface meter TYPE12. The results showed that the area ratio of the micro pillar plays a major role in enhancing the static friction for both wet and dry conditions, while the numerical density of the micro pillar has less effect on the friction enhancement. Among the four kind specimens, the specimen with hexagonal pillars would increase the static friction more than others at the same test conditions when the pillar area ratio is lower than 40%.

  12. PDMS-SiO2-TiO2-CaO hybrid materials - Cytocompatibility and nanoscale surface features.

    Science.gov (United States)

    Almeida, J Carlos; Wacha, András; Gomes, Pedro S; Fernandes, M Helena R; Fernandes, M Helena Vaz; Salvado, Isabel M Miranda

    2016-07-01

    Two PDMS-SiO2-TiO2-CaO porous hybrid materials were prepared using the same base composition, precursors, and solvents, but following two different sol-gel procedures, based on the authors' previous works where for the first time, in this hybrid system, calcium acetate was used as calcium source. The two different procedures resulted in monolithic materials with different structures, microstructures, and surface wettability. Even though both are highly hydrophobic (contact angles of 127.2° and 150.6°), and present different filling regimes due to different surface topographies, they have demonstrated to be cytocompatible when tested with human osteoblastic cells, against the accepted idea that high-hydrophobic surfaces are not suitable to cell adhesion and proliferation. At the nanoscale, the existence of hydrophilic silica domains containing calcium, where water molecules are physisorbed, is assumed to support this capability, as discussed. PMID:27127030

  13. Pattern formation on polymer resist by solvent-assisted nanoimprinting with PDMS mold as a solvent transport medium

    International Nuclear Information System (INIS)

    Solvent-vapor-assisted imprinting lithography (SVAIL) using a 1 mm thick flexible polydimethylsiloxane (PDMS) membrane mold as a solvent transport medium in a vapor environment is demonstrated. By adjusting the solvent vapor pressure, this transport mechanism provides a sufficient amount of solvent to soften the thin polystyrene resist (<100 nm) and avoids the deformation of imprinted nanopatterns due to excess solvent that is problematic with other methods. The results show that SVAIL has potential for large-area patterning because the molding of the softened polymer can be performed without external loading. Localized molding and conformal contact with a curved surface allow multiple imprinting to be performed to obtain more complex, two-dimensional hierarchical structures using simple stripe-patterned stamps

  14. Chemical sensing by band modulation of a black phosphorus/molybdenum diselenide van der Waals hetero-structure

    Science.gov (United States)

    Feng, Zhihong; Chen, Buyun; Qian, Shuangbei; Xu, Linyan; Feng, Liefeng; Yu, Yuanyuan; Zhang, Rui; Chen, Jiancui; Li, Qianqian; Li, Quanning; Sun, Chongling; Zhang, Hao; Liu, Jing; Pang, Wei; Zhang, Daihua

    2016-09-01

    We report on a new chemical sensor based on black phosphorus/molybdenum diselenide van der Waals hetero-junctions. Due to the atomically thin nature of two-dimensional (2D) materials, surface adsorption of gas molecules can effectively modulate the band alignment at the junction interface, making the device a highly sensitive detector for chemical adsorptions. Compared to sensors made of homogeneous nanomaterials, the hetero-junction demonstrates considerably lower detection limit and higher sensitivity toward nitrogen dioxide. Kelvin probe force microscopy and finite element simulations have provided experimental and theoretical explanations for the enhanced performance, proving that chemical adsorption can induce significant changes in band alignment and carrier transport behaviors. The study demonstrates the potential of van der Waals hetero-junction as a new platform for sensing applications, and provides more insights into the interaction between gaseous molecules and 2D hetero-structures.

  15. X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites

    Science.gov (United States)

    Al-Saleh, Mohammed H.; Sundararaj, Uttandaraman

    2013-01-01

    The electromagnetic interference (EMI) shielding effectiveness (SE) and EMI shielding mechanisms of high structure carbon black (HS-CB)/polypropylene (PP) composites in the X-band frequency range were studied. Composite plates with three different thicknesses and five different electrical conductivities were studied. The reflection loss and absorption loss of the composites were quantified based on the electromagnetic radiation power balance. The results showed that for HS-CB/PP composites, absorption loss contribution to the overall attenuation is more than the contribution of the reflection loss. The ability of the theoretical model to predict the EMI shielding by reflection and absorption was found to be a function of the shielding plate thickness and conductivity.

  16. Infrared study on the electronic structure of SmS in the black phase

    International Nuclear Information System (INIS)

    We report that the electronic structure of SmS at ambient pressure has been studied by the optical conductivity [σ(ω)] measurement and by the band structure calculation. The σ(ω) spectrum has a direct gap structure at 0.4 eV (=4600 K) but no clear gap structure expected by other experiments appears at 86 meV (=1000 K). The temperature dependence of the Drude weight, however, indicates the evidence of an indirect gap with the gap size of 1000 K. These results were well explained by a LSDA+U band structure calculation

  17. Mergers of Unequal Mass Galaxies: Supermassive Black Hole Binary Evolution and Structure of Merger Remnants

    CERN Document Server

    Khan, Fazeel Mahmood; Berczik, Peter; Berentzen, Ingo; Just, Andreas; Spurzem, Rainer

    2012-01-01

    Galaxy centers are residing places for Super Massive Black Holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves for the Laser Interferometer Space Antenna (LISA). In spherical galaxy models, SMBH binaries stall at a separation of approximately one parsec, leading to the "final parsec problem" (FPP). On the other hand, it has been shown that merger-induced triaxiality of the remnant in equal-mass mergers is capable of supporting a constant supply of stars on so-called centrophilic orbits that interact with the binary and thus avoid the FPP. In this paper, using a set of direct N-body simulations of mergers of initially spherically symmetric galaxies with different mass ratios, we show that the merger-induced triaxiality is able to drive unequal-mass SMBH binaries to coalescence. The binary hardening rates are high and depend only weakly on the...

  18. New constraints on the structure and dynamics of black hole jets

    CERN Document Server

    Potter, William J

    2015-01-01

    Accreting black holes produce powerful relativistic plasma jets which emit radiation across all observable wavelengths but the details of the initial acceleration and confinement of the jet are uncertain. We apply an innovative new model that allows us to determine key properties of the acceleration zone via multi-frequency observations. The central component of the model is a relativistic steady-state fluid flow, and the emission from physically distinct regions can be seen to contribute to different energy bands in the overall spectrum. By fitting with unprecedented accuracy to 42 simultaneous multiwavelength blazar spectra we are able to constrain the location of the brightest synchrotron emitting region, and show that there must be a linear relation between the jet power and the radius of the brightest region of the jet. We also find a correlation between the length of the accelerating region and the maximum bulk Lorentz factor of the jet and find evidence for a bimodal distribution of accretion rates in ...

  19. Black Queen evolution: the role of leakiness in structuring microbial communities.

    Science.gov (United States)

    Morris, J Jeffrey

    2015-08-01

    Black Queen (BQ) functions are biological processes that yield neither purely private nor purely public products. This partitioning of benefits, also called 'leakiness', can produce negative frequency dependence of fitness in microbial communities, allowing coexistence between function-performing helpers and function-requiring beneficiaries. The ubiquity of leakiness favors a 'race to the bottom' as members of a community lose the ability to perform functions whose products are available from the environment. Rather than being social altruists, helpers are merely those populations that lost this race and got stuck in their role as function performers. Here I discuss many such BQ functions and the microbial communities that evolve around them. I also compile evidence from laboratory evolution experiments as well as phylogenetic reconstructions that show that organisms gain greater fitness increases from gene/function loss events than is commonly expected. Finally, I consider possible consequences of long-term BQ-stabilized coexistence, including sympatric speciation and the evolution of true mutualisms. PMID:26078099

  20. Magnetosphere of a Kerr black hole immersed in magnetized plasma and its perturbative mode structure

    CERN Document Server

    Yang, Huan; Lehner, Luis

    2015-01-01

    This work studies jet-like electromagnetic configurations surrounding a slowly-spinning black-hole immersed in a uniformly magnetized force-free plasma. In the first part of this work, we present a family of stationary solutions that are jet-capable. While these solutions all satisfy the force-free equations and the appropriate boundary conditions, our numerical experiments show a unique relaxed state starting from different initial data, and so one member of the family is likely preferred over the others. In the second part of this work, we analyze the perturbations of this family of jet-like solutions, and show that the perturbative modes exhibit a similar split into the trapped and traveling categories previously found for perturbed Blandford-Znajek solutions. In the eikonal limit, the trapped modes can be identified with the fast magnetosonic waves in the force-free plasma and the traveling waves are essentially the Alfven waves. Moreover, within the scope of our analysis, we have not seen signs of unstab...

  1. Special structure of mitochondrial DNA control region and phylogenetic relationship among individuals of the black rockfish, Sebastes schlegelii.

    Science.gov (United States)

    Zhang, Hui; Zhang, Yan; Zhang, Xiumei; Song, Na; Gao, Tianxiang

    2013-04-01

    This study deals with the structure of mitochondrial DNA (mtDNA) control region (CR) of the black rockfish, Sebastes schlegelii. Two termination-associated sequences (TASs), two complementary termination-associated sequences (cTASs), and conserved sequence block (CSB), such as CSB-F, CSB-E, CSB-D, CSB1, CSB2, and CSB3, were detected in S. schlegelii. The results indicated that the structures of these blocks are similar to most marine fishes, but it is special that there are two TASs and two cTASs in the CR of S. schlegelii. One conserved region was found from 450 bp to the end of the CR, which is also a special feature of S. schlegelii. All sequences of CSB1, CSB2, and CSB3 blocks are the consensus among different individuals, which is quite different from most vertebrates. In addition, the complete mtDNA CR sequences and the first 449 bp of the CR are used to analyze the phylogenetic relationships of S. schlegelii. The phylogenetic trees show a lack of genetic structure among individuals. This study also indicated a signal that the genetic diversity might be similar between the wild and cultured individuals, which may be helpful to the fisheries management.

  2. Chemical Bonding and Structural Information of Black CarbonReference Materials and Individual Carbonaceous AtmosphericAerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

    2007-04-25

    The carbon-to-oxygen ratios and graphitic nature of a rangeof black carbon standard reference materials (BC SRMs), high molecularmass humic-like substances (HULIS) and atmospheric particles are examinedusing scanning transmission X-ray microscopy (STXM) coupled with nearedge X-ray absorption fine structure (NEXAFS) spectroscopy. UsingSTXM/NEXAFS, individual particles with diameter>100 nm are studied,thus the diversity of atmospheric particles collected during a variety offield missions is assessed. Applying a semi-quantitative peak fittingmethod to the NEXAFS spectra enables a comparison of BC SRMs and HULIS toparticles originating from anthropogenic combustion and biomass burns,thus allowing determination of the suitability of these materials forrepresenting atmospheric particles. Anthropogenic combustion and biomassburn particles can be distinguished from one another using both chemicalbonding and structural ordering information. While anthropogeniccombustion particles are characterized by a high proportion ofaromatic-C, the presence of benzoquinone and are highly structurallyordered, biomass burn particles exhibit lower structural ordering, asmaller proportion of aromatic-C and contain a much higher proportion ofoxygenated functional groups.

  3. Special structure of mitochondrial DNA control region and phylogenetic relationship among individuals of the black rockfish, Sebastes schlegelii.

    Science.gov (United States)

    Zhang, Hui; Zhang, Yan; Zhang, Xiumei; Song, Na; Gao, Tianxiang

    2013-04-01

    This study deals with the structure of mitochondrial DNA (mtDNA) control region (CR) of the black rockfish, Sebastes schlegelii. Two termination-associated sequences (TASs), two complementary termination-associated sequences (cTASs), and conserved sequence block (CSB), such as CSB-F, CSB-E, CSB-D, CSB1, CSB2, and CSB3, were detected in S. schlegelii. The results indicated that the structures of these blocks are similar to most marine fishes, but it is special that there are two TASs and two cTASs in the CR of S. schlegelii. One conserved region was found from 450 bp to the end of the CR, which is also a special feature of S. schlegelii. All sequences of CSB1, CSB2, and CSB3 blocks are the consensus among different individuals, which is quite different from most vertebrates. In addition, the complete mtDNA CR sequences and the first 449 bp of the CR are used to analyze the phylogenetic relationships of S. schlegelii. The phylogenetic trees show a lack of genetic structure among individuals. This study also indicated a signal that the genetic diversity might be similar between the wild and cultured individuals, which may be helpful to the fisheries management. PMID:23072475

  4. White South Africans' Reactions to Black Advancement: A Two-Sample Confirmatory Investigation of the Structure of Attitude Using an Analogy to the Multitrait-Multimethod Design.

    Science.gov (United States)

    Taylor, Terence R.; Chemel, Charles S.

    1991-01-01

    A questionnaire measuring affective, conative, and cognitive responses to 3 aspects of Black advancement in the workplace was administered to 128 White English-speaking and 140 Afrikaans-speaking South Africans. Results of confirmatory, single-group, and multigroup analyses of the data indicate that the structures were very similar across the…

  5. A small-angle neutron scattering study of the structure of graphitized carbon black aggregates in Triton X-100/water solutions

    DEFF Research Database (Denmark)

    Garamus, V.M.; Pedersen, J.S.

    1998-01-01

    The structure of graphitized carbon black (CB) aggregates dispersed in water solutions with a non-ionic surfactant are studied by small-angle neutron scattering using contrast variation by heavy/light water mixing. The addition of CB to Triton X-100/water mixtures shifts the critical micelle conc...

  6. Structure of the genetic diversity in Black poplar (Populus nigra L.) populations across European river systems: consequences for conservation and restoration

    NARCIS (Netherlands)

    Smulders, M.J.M.; Cottrell, J.E.; Lefevre, F.; Schoot, van der J.; Arens, P.F.P.; Vosman, B.; Tabbener, H.E.; Grassi, F.; Fossati, T.; Castiglione, S.; Krystufek, V.; Fluch, S.; Burg, K.; Vornam, B.; Pohl, A.; Gebhardt, K.; Alba, N.; Agúndez, D.; Maestro, C.; Notivol, E.; Volosyanchuck, R.; Pospiskova, M.; Bordacs, S.; Bovenschen, J.; Dam, van B.C.; Koelewijn, H.P.; Halfmaerten, D.; Ivens, B.; Slycken, Van J.; Vanden Broeck, A.; Storme, V.; Boerjan, W.

    2008-01-01

    Black poplar (Populus nigra L.) is a keystone species for riparian ecosystems in Europe. We analysed the structure of genetic diversity of 17 populations from 11 river valleys that are part of seven catchment systems (Danube, Ebro, Elbe, Po, Rhine, Rhone, and Usk) in Europe, in relation to geography

  7. Irreversible bonding of polyimide and polydimethylsiloxane (PDMS) based on a thiol-epoxy click reaction

    Science.gov (United States)

    Hoang, Michelle V.; Chung, Hyun-Joong; Elias, Anastasia L.

    2016-10-01

    Polyimide is one of the most popular substrate materials for the microfabrication of flexible electronics, while polydimethylsiloxane (PDMS) is the most widely used stretchable substrate/encapsulant material. These two polymers are essential in fabricating devices for microfluidics, bioelectronics, and the internet of things; bonding these materials together is a crucial challenge. In this work, we employ click chemistry at room temperature to irreversibly bond polyimide and PDMS through thiol-epoxy bonds using two different methods. In the first method, we functionalize the surfaces of the PDMS and polyimide substrates with mercaptosilanes and epoxysilanes, respectively, for the formation of a thiol-epoxy bond in the click reaction. In the second method, we functionalize one or both surfaces with mercaptosilane and introduce an epoxy adhesive layer between the two surfaces. When the surfaces are bonded using the epoxy adhesive without any surface functionalization, an extremely small peel strength (0.3 N mm-1 (method 2) are observed, and failure occurs by tearing of the PDMS layer. We envision that the novel processing route employing click chemistry can be utilized in various cases of stretchable and flexible device fabrication.

  8. [Toluene, Benzene and Acetone Adsorption by Activated Carbon Coated with PDMS].

    Science.gov (United States)

    Liu, Han-bing; Jiang, Xin; Wang, Xin; Yang, Bing; Xue, Nan-dong; Zhang, Shi-lei

    2016-04-15

    To improve the adsorption selectivity of volatile organic compounds ( VOCs) , activated carbon ( AC) was modified by polydimethylsiloxane (PDMS) and characterized by BET analysis and Boehm titration. Dynamic adsorption column experiments were conducted and Yoon-Neslon(Y-N) model was used to identify adsorption effect for toluene, beuzene and acetone on AC when relative humidity was 0%, 50% and 90%, respectively. The results showed that the BET area, micropore volume and surface functional groups decreased with the PDMS modification, and surface hydrophobicity of the modified AC was enhanced leading to a lower water adsorption capacity. The results of dynamic adsorption showed that the adsorption kinetics and capacity of Bare-AC decreased with the increase of relative humidity, and the adsorption capacities of PDMS coated AC were 1.86 times (toluene) and 1.92 times (benzene) higher than those of Bare-AC, while a significant improvement of adsorption capacity for acetone was not observed. These findings suggest that polarity of molecule can be an important influencing factor for adsorption on hydrophobic surface developed by PDMS. PMID:27548948

  9. Stretchable conducting gold films prepared with composite MWNT/PDMS substrates

    Science.gov (United States)

    Manzoor, M. U.; Lemoine, P.; Dixon, D.; Hamilton, J. W. J.; Maguire, P. D.

    2015-10-01

    Novel stretchable conducting films were prepared by depositing gold layers onto polymer nano-composites substrates formed by in-situ crosslinking of polydimethylsiloxane (PDMS) in the presence of multiwall carbon nanotubes (MWNT). The MWNT content interferes with the PDMS cure reaction giving variations in thermal degradation, solvent swelling, mechanical and electrical properties. Tensile cycling experiments were carried out on the gold-coated PDMS and nano-composite substrates SEM analysis and electrical measurements demonstrated that the crack widening and increased electrical resistance observed during strain cycling were reversible. The inclusion of 8 % MWNT into PDMS brought more micro-cracking in the gold layer yet reduced the electrical resistance of the gold-coated samples by 172X at 5 % strain, 38X at 10 % strain and 19X at 20 %. Hence, this improvement in conduction is attributed to assisted-conduction through the MWNT loaded substrate. This mechanism results in a more stable and reproducible electrical behaviour, making electrical conduction less critically dependent on defects in the gold layer.

  10. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring.

    Science.gov (United States)

    Jung, Ha-Chul; Moon, Jin-Hee; Baek, Dong-Hyun; Lee, Jae-Hee; Choi, Yoon-Young; Hong, Joung-Sook; Lee, Sang-Hoon

    2012-05-01

    We fabricated a carbon nanotube (CNT)/ polydimethylsiloxane (PDMS) composite-based dry ECG electrode that can be readily connected to conventional ECG devices, and showed its long-term wearable monitoring capability and robustness to motion and sweat. While the dispersion of CNTs in PDMS is challenging, we optimized the process to disperse untreated CNTs within PDMS by mechanical force only. The electrical and mechanical characteristics of the CNT/PDMS electrode were tested according to the concentration of CNTs and its thickness. The performances of ECG electrodes were evaluated by using 36 types of electrodes which were fabricated with different concentrations of CNTs, and with a differing diameter and thickness. The ECG signals were obtained by using electrodes of diverse sizes to observe the effects of motion and sweat, and the proposed electrode was shown to be robust to both factors. The CNT concentration and diameter of the electrodes were critical parameters in obtaining high-quality ECG signals. The electrode was shown to be biocompatible from the cytotoxicity test. A seven-day continuous wearability test showed that the quality of the ECG signal did not degrade over time, and skin reactions such as itching or erythema were not observed. This electrode could be used for the long-term measurement of other electrical biosignals for ubiquitous health monitoring including EMG, EEG, and ERG.

  11. Enhancing relative permittivity by incorporating PDMS-PEG multiblock copolymers in binary polymer blends

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    they do possess high permittivity. Combining two such polymers in a block copolymer allows for further crosslinking and presents the possibility of substantial improvements in the actuation response of the resulting dielectric elastomer – if carefully designed. The objective is to synthesise a PDMS...

  12. Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication

    Science.gov (United States)

    Cai, D. K.; Neyer, A.; Kuckuk, R.; Heise, H. M.

    2008-03-01

    The optical properties of transparent PDMS polymer materials, which can be integrated into general printed circuit board (PCB) for data communication, are of great interest due to the substantial market expectations for the near future. For the present paper, it was found that the absorption loss in polydimethylsiloxane (PDMS) is mainly caused by the vibrational overtone and combination bands of the CH 3-groups of the polymer in the spectral datacom region of 600-900 nm. Based on observed positions of fundamental, overtone and combination bands of the methyl-group, as recorded within the mid- and near-infrared spectra, anharmonicity constants and normal vibration frequencies were determined. Thus, an empirical equation for estimating the wavelengths with the most significant intrinsic absorption loss due to the corresponding band positions was formulated, which was found to agree well with the experimental data. In addition, PDMS multimode waveguides were fabricated and the respective optical insertion loss was measured at 850 nm, which is commercially used for optical datacom transmission and finally the thermal stability of PDMS multimode waveguides was verified as well.

  13. [Toluene, Benzene and Acetone Adsorption by Activated Carbon Coated with PDMS].

    Science.gov (United States)

    Liu, Han-bing; Jiang, Xin; Wang, Xin; Yang, Bing; Xue, Nan-dong; Zhang, Shi-lei

    2016-04-15

    To improve the adsorption selectivity of volatile organic compounds ( VOCs) , activated carbon ( AC) was modified by polydimethylsiloxane (PDMS) and characterized by BET analysis and Boehm titration. Dynamic adsorption column experiments were conducted and Yoon-Neslon(Y-N) model was used to identify adsorption effect for toluene, beuzene and acetone on AC when relative humidity was 0%, 50% and 90%, respectively. The results showed that the BET area, micropore volume and surface functional groups decreased with the PDMS modification, and surface hydrophobicity of the modified AC was enhanced leading to a lower water adsorption capacity. The results of dynamic adsorption showed that the adsorption kinetics and capacity of Bare-AC decreased with the increase of relative humidity, and the adsorption capacities of PDMS coated AC were 1.86 times (toluene) and 1.92 times (benzene) higher than those of Bare-AC, while a significant improvement of adsorption capacity for acetone was not observed. These findings suggest that polarity of molecule can be an important influencing factor for adsorption on hydrophobic surface developed by PDMS.

  14. LEO resistant PI-B-PDMS block copolymer films for solar array applications

    NARCIS (Netherlands)

    Lonkhuyzen, H. van; Bongers, E.; Fischer, H.R.; Dingemans, T.J.; Semprimoschnig, C.

    2013-01-01

    Due to their low atomic oxygen erosion yields PI-b-PDMS block copolymer films have considerable potential for application onto space exposed surfaces of satellites in low earth orbit. On solar arrays these materials might be used as electrical electrical insulation film, flexprint outer layer, elect

  15. Highly stable hydrophilic surfaces of PDMS thin layer obtained by UV radiation and oxygen plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Menezes Atayde, Cleuson de; Doi, Ioshiaki [Center for Semiconductor Components, University of Campinas - UNICAMP, Campinas, SP (Brazil); School of Electrical and Computer Engineering, University of Campinas - UNICAMP, Campinas, SP (Brazil)

    2010-02-15

    Surface modification of polydimethylsiloxane (PDMS, Sylgard 184) was carried out by O{sub 2} plasma and UV in broadband mode/O{sub 2} plasma treatments with different exposure times, and studied in terms of hydrophilic stability. Water contact angle measurements, Fourier Transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used for the analysis of the modified surface and hydrophilic stability of the PDMS films. The results show reasonably good hydrophilic stability in the range of a week with a contact angle of around 70 for O{sub 2} plasma treated samples, whereas a more high hydrophilic stability, with a low contact angle of 65 up to 15 days, was observed for UV/O{sub 2} plasma treated PDMS. FTIR analysis of the samples reveals significant oxidation noted by large presence of Si-O-Si, and Si-OH bonds on the PDMS surface, which improves the affinity with water molecules and increases the hydrophilicy. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Green silicone elastomer obtained from a counterintuitively stable mixture of glycerol and PDMS

    DEFF Research Database (Denmark)

    Mazurek, P.; Hvilsted, S.; Skov, A. L.

    2016-01-01

    and scanning electron microscopy. The materials were proven additionally to exhibit a strong affinity to water, which was investigated by simple water absorption tests. Incorporating glycerol into PDMS decreased the Young's modulus of the composites yet the ultimate strain of the elastomer was not compromised...

  17. SEPARATION OF PROPANE FROM PROPANE/NITROGEN MIXTURES USING PDMS COMPOSITE MEMBRANES BY VAPOR PERMEATION

    Institute of Scientific and Technical Information of China (English)

    Jian-hua Cao; Yang-zheng Lin; Ji-ding Li; Cui-xian Chen

    2009-01-01

    This study deals with polydimethylsiloxane(PDMS)/polyvinylidene fluoride(PVDF)composite membranes for propane separation from propane/nitrogen mixtures,which is relevant to the recovery of propane in petroleum and chemical industry.The surface and cross-section morphology of PDMS/PVDF composite membranes was observed by scanning electron microscope(SEM).The surface morphology of PDMS/PVDF composite membranes is very dense.There are three layers,the thin dense top layer,finger-like porous middle layer and sponge-like under layer in the cross-section SEM image of PDMS/PVDF composite membranes.The effects of the types of cross-linking agents and pressure on the membrane permselectivity were investigated.The permeability of nitrogen was independent of feed pressure.However,the permeability of propane increased with the pressure increasing for all membranes.The membrane cured by a tri-functional crosslinker with attached vinyl groups had better performance than the tetra-functional one,in both selectivity and permeation flux.The total permeation flux is 1.769 × 10-2 cm3(STP)/(cm2·s)and the separation factor is 19.17 when the mole percent of propane in the gas mixture is 10 at the 0.2 MPa pressure difference and 25°C.

  18. Proximity association in polygynous western black crested gibbons (Nomascus concolor jingdongensis): network structure and seasonality%Proximity association in polygynous western black crested gibbons (Nomascus concolor jingdongensis):network structure and seasonality

    Institute of Scientific and Technical Information of China (English)

    Zhen-Hua GUAN; Bei HUANG; Wen-He NING; Qing-Yong NI; Xue-Long JIANG

    2013-01-01

    We investigated the structure and seasonality of the proximity network in a group of polygynous western black crested gibbons (Nomascus concolor) using social network analysis.The spatial proximity changed seasonally and was affected by temperature and rainfall.Preferred proximity association was not distributed randomly among individuals.Kinship was one explanation for the social structure,as offspring preferred to maintain close proximity with their mothers.The proximity of infants to mothers decreased with age,and independent offspring had lower proximity to mothers than dependent ones.We found that the adult male had different proximity relationships with two different adult females.The frequency of proximity between the male and the infant-carrying female was significantly higher than that between the male and the female who had immigrated carrying one offspring of uncertain paternity into the group.Infanticide avoidance and/or predation protection for dependent infants might explain the proximity relationship differences.Temperature influenced group proximity association,with individual proximity increasing in the cold months and decreasing in the hot months.Group proximity decreased in months with higher anthropogenic disturbance.

  19. Black Consciousness

    Science.gov (United States)

    Hraba, Joseph; Siegman, Jack

    1974-01-01

    Black militancy is treated as an instance of class consciousness with criteria and scales developed to measure black consciousness and "self-placement" into black consciousness. These dimensions are then investigated with respect to the social and symbolic participation in the ideology of the black movement on the part of a sample of black…

  20. 3-cm Fine Structure Masers: A Unique Signature of Supermassive Black Hole Formation via Direct Collapse in the Early Universe

    Science.gov (United States)

    Dijkstra, Mark; Sethi, Shiv; Loeb, Abraham

    2016-03-01

    The direct collapse black hole (DCBH) scenario describes the isothermal collapse of a pristine gas cloud directly into a massive, {M}{BH} = 104-106{M}⊙ black hole. In this paper we show that large H i column densities of primordial gas at T˜ {10}4 K with low molecular abundance—which represent key aspects of the DCBH scenario—provide optimal conditions for the pumping of the 2p-level of atomic hydrogen by trapped Lyα photons. This Lyα pumping mechanism gives rise to an inverted level population of the 2{s}1/2-2{p}3/2 transition, and therefore also gives rise to stimulated fine structure emission at λ =3.04 {cm} (rest-frame). We show that simplified models of the DCBH scenario amplify the CMB by up to a factor of ˜ {10}5, above which the maser saturates. Hyperfine splitting of the 3 cm transition gives rise to a characteristic broad (FWHM ˜ tens of MHz in the observers frame) asymmetric line profile. This signal subtends an angular scale of ˜1-10 mas, which translates to a flux of ˜0.3-3 μJy, which is detectable with ultra-deep surveys being planned with SKA1-MID. While challenging, as the signal is visible for a fraction of the collapse time of the cloud, the matching required physical conditions imply that a detection of the redshifted 3-cm emission line could provide direct evidence for the DCBH scenario.

  1. Influence of drought conditions on brown trout biomass and size structure in the Black Hills, South Dakota

    Science.gov (United States)

    James, Daniel A.; Wilhite, Jerry W.; Chipps, Steven R.

    2010-01-01

    We evaluated the influence of drought conditions on the biomass of brown trout Salmo trutta in Spearfish Creek, upper Rapid Creek, and lower Rapid Creek in the Black Hills of western South Dakota. Stream discharge, mean summer water temperature, the biomass of juvenile and adult brown trout, and brown trout size structure were compared between two time periods: early (2000–2002) and late drought (2005–2007). Mean summer water temperatures were similar between the early- and late-drought periods in Spearfish Creek (12.4°C versus 11.5°C), lower Rapid Creek (19.2°C versus 19.3°C), and upper Rapid Creek (9.8°C in both periods). In contrast, mean annual discharge differed significantly between the two time periods in Spearfish Creek (1.95 versus 1.50 m3/s), lower Rapid Creek (2.01 versus 0.94 m3/s), and upper Rapid Creek (1.41 versus 0.84 m3/s). The mean biomass of adult brown trout in all three stream sections was significantly higher in the early-drought than in the late-drought period (238 versus 69 kg/ha in Spearfish Creek, 272 versus 91 kg/ha in lower Rapid Creek, and 159 versus 32 kg/ha in upper Rapid Creek). The biomass of juvenile brown trout was similar (43 versus 23 kg/ha) in Spearfish Creek in the two periods, declined from 136 to 45 kg/ha in lower Rapid Creek, and increased from 14 to 73 kg/ha in upper Rapid Creek. Size structure did not differ between the early- and late-drought periods in lower Rapid and Spearfish creeks, but it did in upper Rapid Creek. In addition to drought conditions, factors such as angler harvest, fish movements, and the nuisance algal species Didymosphenia geminata are discussed as possible contributors to the observed changes in brown trout biomass and size structure in Black Hills streams.

  2. CONNECTING STAR FORMATION QUENCHING WITH GALAXY STRUCTURE AND SUPERMASSIVE BLACK HOLES THROUGH GRAVITATIONAL HEATING OF COOLING FLOWS

    International Nuclear Information System (INIS)

    Recent observations suggested that star formation quenching in galaxies is related to galaxy structure. Here we propose a new mechanism to explain the physical origin of this correlation. We assume that while quenching is maintained in quiescent galaxies by a feedback mechanism, cooling flows in the hot halo gas can still develop intermittently. We study cooling flows in a large suite of around 90 hydrodynamic simulations of an isolated galaxy group, and find that the flow development depends significantly on the gravitational potential well in the central galaxy. If the galaxy's gravity is not strong enough, cooling flows result in a central cooling catastrophe, supplying cold gas and feeding star formation to galactic bulges. When the bulge grows prominent enough, compressional heating starts to offset radiative cooling and maintains cooling flows in a long-term hot mode without producing a cooling catastrophe. Our model thus describes a self-limited growth channel for galaxy bulges and naturally explains the connection between quenching and bulge prominence. In particular, we explicitly demonstrate that M∗/Reff1.5 is a good structural predictor of quenching. We further find that the gravity from the central supermassive black hole also affects the bimodal fate of cooling flows, and we predict a more general quenching predictor to be Mbh1.6M∗/Reff1.5, which may be tested in future observational studies

  3. [Effects of heavy machinery operation on the structural characters of cultivated soils in black soil region of Northeast China].

    Science.gov (United States)

    Wang, En-Heng; Chai, Ya-Fan; Chen, Xiang-Wei

    2008-02-01

    With the cultivated soils in black soil region of Northeast China as test objects, this paper measured their structural characters such as soil strength, bulk density, and non-capillary porosity/capillary porosity (NCP/CP) ratio before and after heavy and medium-sized machinery operation, aimed to study the effects of machinery operation on the physical properties of test soils. The results showed that after machinery operation, there existed three distinct layers from top to bottom in the soil profiles, i.e., plowed layer, cumulative compacted layer, and non-affected layer, according to the changes of soil strength. Under medium-sized machinery operation, these three layers were shallower, and there was a new plow pan at the depth between 17.5 and 30 cm. Heavy machinery operation had significant positive effects on the improvement of topsoil structure (P machinery, the bulk density of topsoil decreased by 7.2% and 3.5%, respectively, and NCP/CP increased by 556.6% after subsoiling, which would benefit water infiltration, reinforce water storage, and weaken the threat of soil erosion. The main action of heavy machinery operation was soil loosening, while that of medium-sized machinery operation was soil compacting.

  4. Cancer Research Participation Beliefs and Behaviors of a Southern Black Population: A Quantitative Analysis of the Role of Structural Factors in Cancer Research Participation.

    Science.gov (United States)

    Farr, Deeonna E; Brandt, Heather M; Comer, Kimberly D; Jackson, Dawnyéa D; Pandya, Kinjal; Friedman, Daniela B; Ureda, John R; Williams, Deloris G; Scott, Dolores B; Green, Wanda; Hébert, James R

    2015-09-01

    Increasing the participation of Blacks in cancer research is a vital component of a strategy to reduce racial inequities in cancer burden. Community-based participatory research (CBPR) is especially well-suited to advancing our knowledge of factors that influence research participation to ultimately address cancer-related health inequities. A paucity of literature focuses on the role of structural factors limiting participation in cancer research. As part of a larger CBPR project, we used survey data from a statewide cancer needs assessment of a Black faith community to examine the influence of structural factors on attitudes toward research and the contributions of both structural and attitudinal factors on whether individuals participate in research. Regression analyses and non-parametric statistics were conducted on data from 727 adult survey respondents. Structural factors, such as having health insurance coverage, experiencing discrimination during health care encounters, and locale, predicted belief in the benefits, but not the risks, of research participation. Positive attitudes toward research predicted intention to participate in cancer research. Significant differences in structural and attitudinal factors were found between cancer research participants and non-participants; however, directionality is confounded by the cross-sectional survey design and causality cannot be determined. This study points to complex interplay of structural and attitudinal factors on research participation as well as need for additional quantitative examinations of the various types of factors that influence research participation in Black communities.

  5. Learning Structure Illuminates Black Boxes: an Introduction into Estimation of Distribution Algorithms

    NARCIS (Netherlands)

    Grahl, J.; Minner, S.; Bosman, P.A.N.; Michalewicz, Z.; Siarry, P.

    2008-01-01

    This chapter serves as an introduction to estimation of distribution algorithms (EDAs). Estimation of distribution algorithms are a new paradigm in evolutionary computation. They combine statistical learning with population-based search in order to automatically identify and exploit certain structur

  6. Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The effects of carbon blacks on vulcanization and mechanical properties of filled ethylene-propylene-diene rubber (EPDM are investigated, by comparing with five types of rubber-grade carbon blacks. Curing kinetics is studied by rheometer and the results indicate that the curing characteristics are influenced by combination of surface area of carbon black and sulphur content on the filler surface, because the former one enhances the physical cross-linking and the latter one introduces the additional chemical cross-linking. Both the degree of cross-linking and cure rate increase with increasing surface area and sulphur content, whereas the optimum cure time and scorch time decrease. The reinforcing nature of the carbon black is assessed from mechanical measurements. It is suggested that the surface area of carbon blacks strongly affects the physical properties of EPDM/carbon black composites. Conductive carbon black (N472 can be used as desirable reinforcing filler due to the higher degree of cross-linking of EPDM with N472 than other EPDM/carbon black composites. The morphology and distribution of particles are studied by using scanning electron microscope. The sound reinforcing ability of N472 is also supported by scanning electron microscope due to the notable dispersibility of N472 within EPDM matrix. N472 ensures the EPDM/N472 composite the most conductive sample among the five composites.

  7. Black Droplets

    CERN Document Server

    Santos, Jorge E

    2014-01-01

    Black droplets and black funnels are gravitational duals to states of a large N, strongly coupled CFT on a fixed black hole background. We numerically construct black droplets corresponding to a CFT on a Schwarzchild background with finite asymptotic temperature. We find two branches of such droplet solutions which meet at a turning point. Our results suggest that the equilibrium black droplet solution does not exist, which would imply that the Hartle-Hawking state in this system is dual to the black funnel constructed in \\cite{Santos:2012he}. We also compute the holographic stress energy tensor and match its asymptotic behaviour to perturbation theory.

  8. 自制添加物对吉州窑黑釉的影响%Influence of Accretion on the Surface Structure of the Jizhou Kiln Black Glaze

    Institute of Scientific and Technical Information of China (English)

    李书琴; 王晓军

    2011-01-01

    采用自制的添加物对吉州窑黑釉进行焙烧研究,期望制得一种能在低温下快速烧成的釉料.采用扫描电镜、能谱仪、红外光谱分析仪等仪器对黑釉焙烧前后进行了结构、成分及形貌分析.研究结果表明:在800℃烧成时加人5wt%添加物能与原黑釉良好地结合,产生了理想的效果,制得的黑釉具有薄薄的、疏松的表面结构.%By using the self-made accretion, black glaze of the Jizhou Kiln is roasted, one kind of fast sintered glaze is expected to be manufactured under low temperature. With the scanning electron microscope,energy disperse spectroscopy and infrared spectrum et al, the structure, the ingredient and the morphology of the black glaze is analysed. Under 800 ℃, 5 wt% accretion can combine well with the original black glaze, the black glaze made have thin and loose surface structure.

  9. Global Structure of Three Distinct Accretion Flows and Outflows around Black Holes through Two-Dimensional Radiation-Magnetohydrodynamic Simulations

    CERN Document Server

    Ohsuga, Ken

    2011-01-01

    We present the detailed global structure of black hole accretion flows and outflows through newly performed two-dimensional radiation-magnetohydrodynamic simulations. By starting from a torus threaded with weak toroidal magnetic fields and by controlling the central density of the initial torus, rho_0, we can reproduce three distinct modes of accretion flow. In model A with the highest central density, an optically and geometrically thick supercritical accretion disk is created. The radiation force greatly exceeds the gravity above the disk surface, thereby driving a strong outflow (or jet). Because of the mild beaming, the apparent (isotropic) photon luminosity is ~22L_E (where L_E is the Eddington luminosity) in the face-on view. Even higher apparent luminosity is feasible if we increase the flow density. In model B with a moderate density, radiative cooling of the accretion flow is so efficient that a standard-type, cold, and geometrically thin disk is formed at radii greater than ~7R_S (where R_S is the S...

  10. Changes in oviduct structure in the black tiger shrimp,Penaeus monodon, during ovarian maturation

    Institute of Scientific and Technical Information of China (English)

    Sitthichai IAMSAARD; Siriporn SRIURAIRATANA; Boonsirm WITHYACHUMNARNKUL

    2012-01-01

    Objective:To examine the structure of the oviduct of the shrimp Penaeus monodon.Methods:The oviducts of P.monodon with three different major groups of ovarian development (Group (Gr.) 1:Stages Ⅰ & Ⅴ; Gr.2:Stages Ⅱ & Ⅲ; and Gr.3:Stage Ⅳ)were examined by light,transmission electron,and scanning electron microscopies,respectively.Results:The epithelium of the oviduct in Gr.1 was composed of tall simple columnar cells with their basal nuclei located on the basement membrane and its thick collagen fibers.In Gr.2,the oviduct seemed to produce some substances and their epithelial cells became transitional with centrally located nuclei and formed some vacuoles.Obviously,the epithelial cells in Gr.3 (at Stage Ⅳ) were disorganized,disrupted,and shed accumulated spherical secretory substances including some cellular contents into the lumen.Conclusions:The structural changes of the P.monodon oviduct were related to ovarian maturation stages (Grs.1-3).Prior to spawning,only the oviduct epithelium at ovary Stage Ⅳ produced and secreted a number of spherical secretion substances into the lumen.These substances may act as the oviductal lubricants to facilitate the spawning process.

  11. Black Eye

    Science.gov (United States)

    ... eyesight if not treated. If both eyes are black after a head injury, it could signify a skull fracture or other serious injury. Next Black Eye Symptoms Related Ask an Ophthalmologist Answers How ...

  12. The Fabrication of PDMS mould for Microelectrode Array Biochip using NIL

    Science.gov (United States)

    Beh, Khi Khim; Samsuri, Fahmi; Lee, Tze Pin; Mohamed, Khairudin

    2016-02-01

    In recent years, low-cost micro and nano fabrication process have gain intention from the manufacturing industry. Biochip is a platform of miniaturized microarrays arranged on a solid substrate that allows various biological tests to achieve immediate results. The development of biochip has established a new platform in biomedical industry. However, to fulfill the demands and availability in the market with affordable cost requires high volume manufacturing techniques for the fabrication of the biochips. In this article we will discuss the fabrication of PDMS mould for replicating microelectrode array of biochip. The fabrication of the microelectrodes utilizes the Nanoimprint lithography (NIL) technique. Finally, the fabrication of PDMS mould has been demonstrated successfully for using Nanoimprint lithography (NIL) technique and achieved 13% of size difference in overall.

  13. Deformation Analysis of a Pneumatically-Activated Polydimethylsiloxane (PDMS Membrane and Potential Micro-Pump Applications

    Directory of Open Access Journals (Sweden)

    Chi-Han Chiou

    2015-01-01

    Full Text Available This study presents a double-side diaphragm peristaltic pump for efficient medium transport without the unwanted backflow and the lagging effect of a diaphragm. A theoretical model was derived to predict the important parameter of the micropump, i.e., the motion of the valves at large deformations, for a variety of air pressures. Accordingly, we proposed an easy and robust design to fabricate a Polydimethylsiloxane (PDMS-based micropump. The theoretical model agrees with a numerical model and experimental data for the deformations of the PDMS membrane. Furthermore, variations of the generated flow rate, including pneumatic frequencies, actuated air pressures, and operation modes were evaluated experimentally for the proposed micropumps. In future, the theoretical equation could provide the optimal parameters for the scientists working on the fabrication of the diaphragm peristaltic pump for applications of cell-culture.

  14. A Janus-paper PDMS platform for air–liquid interface cell culture applications

    International Nuclear Information System (INIS)

    A commercially available Janus paper with one hydrophobic (polyethylene-coated) face and a hygroscopic/hydrophilic one is irreversibly bonded to a polydimethylsiloxane (PDMS) substrate incorporating microfluidic channels via corona discharge surface treatment. The bond strength between the polymer-coated side and PDMS is characterized as a function of corona treatment time and annealing temperature/time. A maximum strength of 392 kPa is obtained with a 2 min corona treatment followed by 60 min of annealing at 120 °C. The water contact angle of the corona-treated polymer side decreases with increased discharge duration from 98° to 22°. The hygroscopic/hydrophilic side is seeded with human lung fibroblast cells encapsulated in a methacrylated gelatin (GelMA) hydrogel to show the potential of this technology for nutrient and chemical delivery in an air–liquid interface cell culture. (paper)

  15. PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage

    DEFF Research Database (Denmark)

    Ziolkowska, K.; Jedrych, E.; Kwapiszewski, R.;

    2010-01-01

    In this paper, hybrid (PDMS/glass) microfluidic cell culture system (MCCS) integrated with the concentration gradient generator (CGG) is presented. PDMS gas permeability enabled cells' respiration in the fabricated microdevices and excellent glass hydrophilicity allowed successful cells' seeding....... The human lung carcinoma cells (A549) were cultured in the microdevice for several days. The growth and proliferation of cells was monitored using an inverted fluorescence microscope. After the cells' confluence was achieved in the microchambers, the novel method of cells' passaging in the designed...... microdevice was developed and successfully tested. The MCCS microdevice is fully reusable, i.e. it can be used several times for various cell culture and cytotoxic experiments. The suitability of designed MCCS for cell-based cytotoxicity assay application was verified using 1,4-dioxane as a model toxic agent...

  16. Deformation Analysis of a Pneumatically-Activated Polydimethylsiloxane (PDMS) Membrane and Potential Micro-Pump Applications

    OpenAIRE

    Chi-Han Chiou; Tai-Yen Yeh; Jr-Lung Lin

    2015-01-01

    This study presents a double-side diaphragm peristaltic pump for efficient medium transport without the unwanted backflow and the lagging effect of a diaphragm. A theoretical model was derived to predict the important parameter of the micropump, i.e., the motion of the valves at large deformations, for a variety of air pressures. Accordingly, we proposed an easy and robust design to fabricate a Polydimethylsiloxane (PDMS)-based micropump. The theoretical model agrees with a numerical model an...

  17. Facile fabrication of functional PDMS surfaces with tunable wettablity and high adhesive force via femtosecond laser textured templating

    Directory of Open Access Journals (Sweden)

    Yanlei Hu

    2014-12-01

    Full Text Available Femtosecond laser processing is emerged as a promising tool to functionalize surfaces of various materials, including metals, semiconductors, and polymers. However, the productivity of this technique is limited by the low efficiency of laser raster scanning. Here we report a facile approach for efficiently producing large-area functional polymer surfaces, by which metal is firstly textured by a femtosecond laser, and the as-prepared hierarchical structures are subsequently transferred onto polydimethylsiloxane (PDMS surfaces. Aluminum pieces covered by laser induced micro/nano-structures act as template masters and their performance of displaying diverse colors are investigated. Polymer replicas are endowed with tunable wetting properties, which are mainly attributed to the multi-scale surface structures. Furthermore, the surfaces are found to have extremely high adhesive force for water drops because of the high water penetration depth and the resultant high contact angle hysteresis. This characteristic facilitates many potential applications like loss-free tiny water droplets transportation. The reusability of metal master and easiness of soft lithography make it to be a very simple, fast and cost-efficient way for mass production of functional polymeric surfaces.

  18. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    International Nuclear Information System (INIS)

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr2O3 layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr2O3 layer. The α-Cr2O3 layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%

  19. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Mthunzi, P. [National Laser Centre, Council for Scientific and Industrial Research, 0001 Pretoria (South Africa); Muller, T.F.G. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Julies, B. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Manikandan, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Ramponi, R. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa)

    2014-12-01

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr{sub 2}O{sub 3} layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr{sub 2}O{sub 3} layer. The α-Cr{sub 2}O{sub 3} layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%.

  20. THE EMULSIFICATION OF HUMAN SERUM ALBUMIN AND HYALURONIC ACID SOLUTIONS IN POLYDIMETHYLSILOXANE PDMS-1000

    Directory of Open Access Journals (Sweden)

    А. M. Ruban

    2014-04-01

    Full Text Available To create a biologically inert material suitable for use in a wide range of temperatures and in corrosive environments, the methods of optical microscopy and NMR-cryometry were used for investigation of emulsification of solutions of human serum albumin and hyaluronic acid in polymethylsiloxane PDMS-1000. Unlike hyaluronic acid, human serum albumin forms persistent emulsions in the silicon matrix, whose size of the droplets varies from 100 to 10 000 nm. The presence of dispersed phase (human serum albumin or hyaluronic acid increases significantly melting temperature of polydimethylsiloxane. It is probably due to ordering influence of micro- and nanodrops of biopolymers on PDMS crystals localized between them. In case of dispersion of hyaluronic acid solution in liquid silicone only microdroplets of the aqueous phase are observed and nanosized droplets either didn’t form or were in amount not sufficient to be detected by NMR cryometry. The possibility of a significant influence of human serum albumin emulsified solution on PDMS-1000 defrosting temperature is revealed, that is impacted on its optical parameters. This effect is recorded both in the low temperature region and at temperature close to human body, which might influence on silicone state when it is used as implant.

  1. Functionalized PDMS with versatile and scalable surface roughness gradients for cell culture

    KAUST Repository

    Zhou, Bingpu

    2015-07-21

    This manuscript describes a simple and versatile approach to engineering surface roughness gradients via combination of microfluidics and photo-polymerization. Through UV-mediated polymerization, N-isopropylacrylamide with concentration gradients are successfully grafted onto PDMS surface, leading to diverse roughness degrees on the obtained PDMS substrate. Furthermore, the extent of surface roughness can be controllably regulated via tuning the flow rate ratio between the monomer solution and deionized water. Average roughness ranging from 8.050 nm to 151.68 nm has well been achieved in this work. Such PDMS samples are also demonstrated to be capable of working as supporting substrates for controlling cell adhesion or detachment. Due to the different degrees of surface roughness on a single substrate, our method provides an effective approach for designing advanced surafecs for cell culture. Finally, the thermosensitive property of N-isopropylacrylamide makes our sample furnish as another means for controlling the cell detachment from the substrates with correspondence to the surrounding temperature.

  2. Sensitivity-enhanced temperature sensor based on PDMS-coated long period fiber grating

    Science.gov (United States)

    Wang, Qi; Du, Chao; Zhang, Jiaming; Lv, Riqing; Zhao, Yong

    2016-10-01

    A sensitivity-enhanced temperature sensor based on a poly-dimethylsiloxane (PDMS)-coated long period fiber grating (LPFG) has been proposed and experimentally investigated. By embedding the LPFG in a temperature-sensitive elastomeric polymer, the temperature sensitivity of the proposed sensor could be effectively improved by 4 times higher than those of the conventional bare LPFG sensors due to the high thermo-optic coefficient (TOC) of PDMS. It can be found that the temperature sensitivities of higher-order modes are higher than those of lower-order modes by analyzing transmission spectra characteristics of the sensor. Because of LPFG is sensitive to surrounding refractive index (RI), the PDMS-coated LPFG will have a high temperature sensitivities of 255.4 pm/°C in the range of 20-80 °C. Due to the high measurement resolution of 0.078 °C, the sensor is promising to be applied to the fields that high-precision temperature measurement is required.

  3. A novel PDMS micro membrane biosensor based on the analysis of surface stress.

    Science.gov (United States)

    Sang, Shengbo; Witte, Hartmut

    2010-07-15

    The biological and medical application of biosensors is more and more important with the development of technology and society. Detection of cells and biological molecules utilizing biosensors based on the analysis of surface stress would facilitate inexpensive and high-throughput test and diagnosis. This paper presents a biocompatible surface stress-based polydimethylsiloxane (PDMS) micro membrane biosensor. Each biosensor chip consists of two available PDMS micro membranes, one acts as active membrane and the other as reference. Biosensors were functionalized using different functional materials respectively: MUA (11 Mercapto 1 undecanoicacid), MUO (11 Mercapto 1 undecanol) and DOT (Dodecane thiol). Two biosensor test systems were built based on a white light interferometer and a fiber optic interferometer respectively. Finally, testing experiments using Escherichia coli (E. coli) were performed based on the biosensor test systems we built. The results of the experiments showed that the MUA is a better functional material to functionalize the biosensor membranes than MUO and DOT for E. coli detection, some properties of E. coli, such as healthily living and dead status, can be analyzed based on the PDMS micro membrane biosensors.

  4. PDMS-BaTiO3 Composites with Mechanically Tunable Optical Properties.

    Science.gov (United States)

    Mohamed, Nasser; Hinojosa, Moises; Gonzalez, Virgilio

    2009-03-01

    Novel composites that show visible light transmittance, mechanically tunable refractive index and good mechanical properties based on PDMS and BaTiO3 (BT) nanoparticles (NP), were prepared in 2 steps. First, NP were obtained via mechanical milling; the BT was used as-purchased. Average particle sizes of ˜100nm were selected. Second, the NP were embedded into PDMS by in-situ polymerization. PDMS from Dow Corning (Sylgard 184) was supplied as a kit containing 2 components: the Base and the Curing Agent. The BT content was varied up to 1.0wt%. Finally, thick films were prepared by solvent casting and cured in a vacuum furnace, where the trapped air and solvent were extracted. Weight content of the NP was examined. XRD and Raman confirmed the desired tetragonal phase of BT NP. Average particle size was determined by SEM. EDS maps revealed a homogeneous dispersion of the NP. UV-Vis analysis showed transmittances of ˜70%. The ellipsometry results revealed that the wt% of BT significantly influences the optical response of the composite when it is stressed; however the response is not linear.

  5. The technicolor "big picture" of black hole evolution: Multiwavelength views of AGN, galaxies, and large-scale structures

    OpenAIRE

    Hickox, Ryan C.

    2016-01-01

    Large multiwavelength extragalactic surveys have revolutionized our understanding of the cosmic evolution of supermassive black holes (SMBHs). I will discuss recent results on the host galaxies and clustering of AGN selected using a range of techniques from the radio to the hard X-ray wavebands, including data from the NuSTAR and WISE space observatories. I will show that relatively small dark matter halos hosting star-forming galaxies are connected with rapid but highly variable black hole g...

  6. Race, Social Context, and Consumption: How Race Structures the Consumption Preferences and Practices of Middle and Working-Class Blacks

    OpenAIRE

    Pittman, Cassi

    2012-01-01

    The contemporary experience of race in America demands that blacks become astute observers of their surroundings, required to read subtle social, interactional and environmental cues to determine how to appropriately engage others in order to gain respect and social acceptance. Consumption objects, whether physical or material goods or services and experiences, are symbolic tools that blacks mobilize in order to define and assert themselves wherever they may be. Market research reveals that d...

  7. Black Holes

    Science.gov (United States)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  8. PERVAPORATION PROPERTIES OF PDMS MEMBRANES CURED WITH DIFFERENT CROSS-LINKING REAGENTS FOR ETHANOL CONCENTRATION FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    Xia Zhan; Ji-ding Li; Jun-qi Huang; Cui-xian Chen

    2009-01-01

    Ethanol perm-selective PDMS/PVDF composite membranes were prepared by curing polydimethylsiloxane (PDMS) with various cross-linking reagents, such as tetraethoxylsilane (TEOS), γ-aminopropyltriethoxylsilane (APTEOS), phenyltrimethoxylsilane (PTMOS) and octyltrimethoxylsilane (OTMOS) as well. The cross-linking density and surface properties of the PDMS active layer were adjusted by varying cross-linking reagents. The pervaporation performance of PDMS membranes cured with different cross-linking reagents was investigated in detail. As temperature increased, the total flux of the four kinds of membranes all increased exponentially, and the separation factor followed a reversed order. The increase of thickness of PDMS layers depressed the total flux of composite membranes and had no obvious effect on selectivity of ethanol. It was found that the composite membrane cured by PTMOS showed much better separation performance compared with other membranes. A resistance-in-series model was used to investigate and estimate the overall mass transfer coefficients and boundary layer mass transfer coefficients of ethanol and water according to experimental results. The measured diffusivities of ethanol and water in PDMS membranes had a magnitude of 10-10 m2·s-1 and 10-11 m2·s-1 at 313.15 K, respectively.

  9. Bio-inspired artificial muscle structure for integrated sensing and actuation

    Science.gov (United States)

    Ye, Zhihang; Faisal, Md. Shahnewaz Sabit; Asmatulu, Ramazan; Chen, Zheng

    2015-04-01

    In this paper, a novel artificial muscle/tendon structure is developed for achieving bio-inspired actuation and self-sensing. The hybrid structure consists of a dielectric elastomer (DE) material connected with carbon fibers, which incorporates the built-in sensing and actuation capability of DE and mechanical, electrical interfacing capability of carbon fibers. DEs are light weight artificial muscles that can generate compliant actuation with low power consumption. Carbon fibers act as artificial tendon due to their high electro-conductivity and mechanical strength. PDMS material is used to electrically and mechanically connect the carbon fibers with the DE material. A strip actuator was fabricated to verify the structure design and characterize its actuation and sensing capabilities. A 3M VHB 4905 tape was used as the DE material. To make compliant electrodes on the VHB tape, carbon black was sprayed on the surface of VHB tape. To join the carbon fibers to the VHB tape, PDMS was used as bonding material. Experiments have been conducted to characterize the actuation and sensing capabilities. The actuation tests have shown that the energy efficiency of artificial muscle can reach up to 0.7% and the strain can reach up to 1%. The sensing tests have verified that the structure is capable of self-sensing through the electrical impedance measurement.

  10. Homophobia, hypermasculinity and the US black church.

    Science.gov (United States)

    Ward, Elijah G

    2005-01-01

    Black churches in the USA constitute a significant source of the homophobia that pervades black communities. This theologically-driven homophobia is reinforced by the anti-homosexual rhetoric of black nationalism. Drawing on a variety of sources, this paper discusses the sources of homophobia within black communities, and its impact upon self-esteem, social relationships and physical health. Religion-based homophobia and black nationalism point to wider structures which have influenced their emergence, including racism, patriarchy and capitalism. It is vital for US black churches and communities to understand and transcend their longstanding resistance to openly addressing complex, painful issues of sexuality and embrace healthier definitions of black manhood.

  11. Poly(dimethyl siloxane) (PDMS) network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials.

    Science.gov (United States)

    Martinelli, Elisa; Sarvothaman, Mahesh K; Galli, Giancarlo; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Conlan, Sheelagh L; Clare, Anthony S; Sugiharto, Albert B; Davies, Cait; Williams, David

    2012-01-01

    Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700™. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.

  12. Point mass Cosmological Black Holes

    CERN Document Server

    Firouzjaee, Javad T

    2016-01-01

    Real black holes in the universe are located in the expanding accelerating background which are called the cosmological black holes. Hence, it is necessary to model these black holes in the cosmological background where the dark energy is the dominant energy. In this paper, we argue that most of the dynamical cosmological black holes can be modeled by point mass cosmological black holes. Considering the de Sitter background for the accelerating universe, we present the point mass cosmological background in the cosmological de Sitter space time. Our work also includes the point mass black holes which have charge and angular momentum. We study the mass, horizons, redshift structure and geodesics properties for these black holes.

  13. A Novel DC Microplasma Sensor Constructed in a Cavity PDMS Chamber with Needle Electrodes for Fast Detection of Methanol-containing Spirit

    Science.gov (United States)

    Luo, Dai-Bing; Duan, Yi-Xiang; He, Yi; Gao, Bo

    2014-12-01

    A novel microplasma device, for the first time, was constructed in a cavity Poly (dimethylsiloxane) (PDMS) chamber with two normal syringe needles serve as both the gas channels and the electrodes. This device employs argon plasma with direct current for molecular fragmentation and excitation. The microplasma is generated at atmospheric pressure in the PDMS chamber of 0.5 mL (5 × 10 × 10 mm3) volume with a sealable plug. Since the microplasma is maintained in a chamber by separation of the discharge zone and the substrate, stability for a long time of the microplasma is realized which could be observed by argon background emission fluctuation and SEM characterization. This property is beneficial for spectrometric detection of many volatile organics in this chamber. Besides, this kind of microplasma sensor has advantages such as flexibility in replacement of electrodes, convenience in clearance of the discharge chamber, small instrument volume, simple structure, and ease of operation. In addition, methanol-containing spirit samples were chosen to estimate the detecting performance of this microplasma for volatile organic compounds (VOCs) analysis by molecular emission spectrometry. Significant differences are observed upon the introduction of the spirit and the methanol-containing spirit samples. A detection limit of 0.3% is obtained on this microplasma device.

  14. Non-Abelian magnetic black strings versus black holes

    Science.gov (United States)

    Mazharimousavi, S. Habib; Halilsoy, M.

    2016-05-01

    We present d+1 -dimensional pure magnetic Yang-Mills (YM) black strings (or 1-branes) induced by the d -dimensional Einstein-Yang-Mills-Dilaton black holes. The Born-Infeld version of the YM field makes our starting point which goes to the standard YM field through a limiting procedure. The lifting from black holes to black strings (with less number of fields) is done by adding an extra, compact coordinate. This amounts to the change of horizon topology from S^{d-2} to a product structure. Our black string in 5 dimensions is a rather special one, with uniform Hawking temperature and non-asymptotically flat structure. As the YM charge becomes large the string gets thinner to tend into a breaking point and transform into a 4-dimensional black hole.

  15. The technicolor "big picture" of black hole evolution: Multiwavelength views of AGN, galaxies, and large-scale structures

    Science.gov (United States)

    Hickox, Ryan C.

    2016-08-01

    Large multiwavelength extragalactic surveys have revolutionized our understanding of the cosmic evolution of supermassive black holes (SMBHs). I will discuss recent results on the host galaxies and clustering of AGN selected using a range of techniques from the radio to the hard X-ray wavebands, including data from the NuSTAR and WISE space observatories. I will show that relatively small dark matter halos hosting star-forming galaxies are connected with rapid but highly variable black hole growth that is often heavily obscured. In contrast, massive halos hosting passive galaxies are associated with slower, mechanically-dominated modes of black hole growth. I will conclude by discussing new analysis techniques for measuring AGN clustering and look to the future of large-scale extragalactic surveys.

  16. Thermodynamical Structure of AdS Black Holes in Massive Gravity with Stringy Gauge-Gravity Corrections

    CERN Document Server

    Hendi, S H; Panahiyan, S

    2015-01-01

    Motivated by gauge/gravity group in the low energy effective theory of the heterotic string theory, the minimal coupling of Gauss-Bonnet-massive gravity with Born-Infeld electrodynamics is considered. At first the metric function is calculated and then the geometrical properties of the solutions are investigated. It is found that there is an essential singularity at the origin and the intrinsic curvature is regular elsewhere. In addition, the effects of massive parameters on the horizons of black holes are studied and the conserved and thermodynamic quantities are calculated. Also, it is shown that the solutions satisfy the first law of thermodynamics. Furthermore using heat capacity of these black holes, thermal stability and phase transitions are investigated. The variation of different parameters and related modifications on the (number of) phase transition are examined. Next, the critical behavior of the Gauss-Bonnet-Born-Infeld-massive black holes in context of extended phase space is studied. It is show...

  17. Black Culture

    Directory of Open Access Journals (Sweden)

    Angela Khristin Brown

    2013-07-01

    Full Text Available The migration of blacks in North America through slavery became united.  The population of blacks past downs a tradition of artist through art to native born citizens. The art tradition involved telling stories to each generation in black families. The black culture elevated by tradition created hope to determine their personal freedom to escape from poverty of enslavement and to establish a way of life through tradition. A way of personal freedoms was through getting a good education that lead to a better foundation and a better way of life. 

  18. A new low-cost, thick-film metallization transfer process onto PDMS using a sacrificial copper seed

    Science.gov (United States)

    Hilbich, Daniel; Khosla, Ajit; Shannon, Lesley; Gray, Bonnie L.

    2014-04-01

    We present a new low cost microfabrication technology that utilizes a sacrificial conductive paint transfer method to realize thick film copper microstructures that are embedded in polydimethylsiloxane (PDMS). This process has reduced fabrication complexity and cost compared to existing metal-on-PDMS techniques, which enables large scale rapid prototyping of designs using minimal laboratory equipment. This technology differs from others in its use of a conductive copper paint seed layer and a unique transfer process that results in copper microstuctures embedded in PDMS. By embedding microstructures flush with PDMS surface, rather than fabricating the microstructures on the substrate surface, we produce a metallization layer that adheres to PDMS without the need for surface modifications. The fabrication process begins with the deposition of the seed layer onto a flexible substrate via airbrushing. A dry film photoresist layer is laminated on top and patterned using standard techniques. Electroplated copper is grown on the seed layer through the photoresist mask and transferred to PDMS through a unique baking procedure. This baking transfer process releases the electroplated copper from the seed layer, permanently embedding it into the cured PDMS without cracking or otherwise deforming it. We have performed initial characterizations of the copper microstructures in terms of feature size, film thickness, surface roughness, resistivity, and reliability under flexing. Initial results show that we can achieve films 25-75 micrometers in thickness, with reliable feature sizes down to 100 micrometers and a film resistivity of approximately 7.15 micro-Ω-cm. Process variants and future work are discussed, as well as large scale adaptations and rapid prototyping. Finally, we outline the potential uses of this technology in flexible electronics, particularly in high power applications.

  19. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating

    Science.gov (United States)

    Yang, Chao; Wang, Fajun; Li, Wen; Ou, Junfei; Li, Changquan; Amirfazli, Alidad

    2016-01-01

    We present the excellent anti-icing performance for a superhydrophobic coating surface based on ZnO/polydimethylsiloxane (ZnO/PDMS) composite. The superhydrophobic ZnO/PDMS coating surface was prepared by a facile solution mixing, drop coating, room-temperature curing and surface abrading procedure. The superhydrophobic ZnO/PDMS composite coating possesses a water contact angle of 159.5° and a water sliding angle of 8.3° at room temperature (5 °C). The anti-icing properties of the superhydrophobic coating were investigated by continuously dropping cold-water droplets (about 0 °C) onto the pre-cooled surface using a home-made apparatus. The sample was placed at different tilting angle (0° and 10°) and pre-cooled to various temperatures (-5, -10 and -15 °C) prior to measure. The pure Al surface was also studied for comparison. It was found that icing accretion on the surface could be reduced apparently because the water droplets merged together and slid away from the superhydrophobic surface at all of the measuring temperatures when the surface is horizontally placed. In addition, water droplet slid away completely from the superhydrophobic surface at -5 and -10 °C when the surface is tilted at 10°, which demonstrates its excellent anti-icing properties at these temperatures. When the temperature decreased to -15 °C, though ice accretion on the tilted superhydrophobic coating surface could not be avoided absolutely, the amount of ice formed on the surface is very small, which indicated that the coating surface with superhydrophobicity could significantly reduce ice accumulation on the surface at very low temperature (-15 °C). Importantly, the sample is also stable against repeated icing/deicing cycles. More meaningfully, once the superhydrophobic surface is damaged, it can be repaired easily and rapidly.

  20. Does Parenting Explain the Effects of Structural Conditions on Children's Antisocial Behavior? A Comparison of Blacks and Whites.

    Science.gov (United States)

    McLeod, Jane D.; And Others

    1994-01-01

    Data on black children and white children over age six and their mothers (from National Longitudinal Survey of Youth) indicate no racial differences in total effects of poverty and single parenthood on parenting practices (affection and spanking). Parenting practices were reciprocally related to child's antisocial behavior for whites, but did not…

  1. Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device.

    Science.gov (United States)

    Yang, Chuan; Shi, Kebin; Edwards, Perry; Liu, Zhiwen

    2010-11-01

    A hybrid device that we term G-Fresnel (i.e., grating and Fresnel) is demonstrated. It fuses the functions of a grating and a Fresnel lens into a single device. We have fabricated the G-Fresnel device by using polydimethylsiloxane (PDMS) based soft lithography. Three-dimensional surface profilometry has been performed to examine the device quality. We have also conducted optical characterizations to confirm its dual focusing and dispersing properties. The G-Fresnel can be useful for the development of miniature optical spectrometers as well as emerging optofluidic applications. PMID:21164696

  2. Dipolar cross-linkers for PDMS networks with enhanced dielectric permittivity and low dielectric loss

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Hvilsted, Søren;

    2013-01-01

    -(4-((4-nitrophenyl)diazenyl)phenoxy)-prop-1-yn-1-ylium, with a synthesized silicone compatible azide-functional cross-linker by click chemistry. The thermal, mechanical and electromechanical properties were investigated for PDMS films with 0 to 3.6 wt% of dipole-cross-linker. The relative dielectric permittivity...... was found to increase by ∼20% at only 0.46 wt% of incorporated dipole without significant changes in the mechanical properties. Furthermore, the dielectric losses were proved to be remarkably low while the electrical breakdown strengths were high....

  3. Novel Conductive Carbon Black and Polydimethlysiloxane ECG Electrode: A Comparison with Commercial Electrodes in Fresh, Chlorinated, and Salt Water.

    Science.gov (United States)

    Noh, Yeonsik; Bales, Justin R; Reyes, Bersain A; Molignano, Jennifer; Clement, Amanda L; Pins, George D; Florian, John P; Chon, Ki H

    2016-08-01

    In this study, we evaluated the performance of two novel conductive carbon black (CB) and polydimethlysiloxane (PDMS) bio-potential electrodes, with and without an integrated flexible copper mesh, against commercially available electrodes (Polar(®) textile, Silver-coated textile, and carbon rubber). The electrodes were tested in three types of water (fresh/unfiltered, chlorinated, and salt water). Our testing revealed that our CB/PDMS electrode with integrated copper mesh provided a high-fidelity ECG signal morphologies without any amplitude degradation in all of the types of water tested (N = 10). The non-meshed CB/PDMS electrodes were also subjected to a long-term durability test by the US Navy SCUBA divers during which the electrodes maintained ECG signal quality for a 6 h period of continuous use. The results of a material degradation analysis revealed the CB/PDMS composite material does not exhibit significant changes in physical integrity after prolonged exposure to the test conditions. The newly developed meshed CB/PDMS electrodes have the potential to be used in a wide variety of both dry and wet environments including the challenge of obtaining ECG signals in salt water environments. PMID:26769718

  4. Novel Conductive Carbon Black and Polydimethlysiloxane ECG Electrode: A Comparison with Commercial Electrodes in Fresh, Chlorinated, and Salt Water.

    Science.gov (United States)

    Noh, Yeonsik; Bales, Justin R; Reyes, Bersain A; Molignano, Jennifer; Clement, Amanda L; Pins, George D; Florian, John P; Chon, Ki H

    2016-08-01

    In this study, we evaluated the performance of two novel conductive carbon black (CB) and polydimethlysiloxane (PDMS) bio-potential electrodes, with and without an integrated flexible copper mesh, against commercially available electrodes (Polar(®) textile, Silver-coated textile, and carbon rubber). The electrodes were tested in three types of water (fresh/unfiltered, chlorinated, and salt water). Our testing revealed that our CB/PDMS electrode with integrated copper mesh provided a high-fidelity ECG signal morphologies without any amplitude degradation in all of the types of water tested (N = 10). The non-meshed CB/PDMS electrodes were also subjected to a long-term durability test by the US Navy SCUBA divers during which the electrodes maintained ECG signal quality for a 6 h period of continuous use. The results of a material degradation analysis revealed the CB/PDMS composite material does not exhibit significant changes in physical integrity after prolonged exposure to the test conditions. The newly developed meshed CB/PDMS electrodes have the potential to be used in a wide variety of both dry and wet environments including the challenge of obtaining ECG signals in salt water environments.

  5. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: Stocks, molecular structure, and conversion to black carbon (charcoal)

    OpenAIRE

    Czimczik, Claudia I; Preston, Caroline M; Schmidt, Michael W I; Schulze, Ernst-Detlef

    2003-01-01

    [1] In boreal forests, fire is a frequent disturbance and converts soil organic carbon (OC) to more degradation-resistant aromatic carbon, i.e., black carbon (BC) which might act as a long-term atmospheric-carbon sink. Little is known on the effects of fires on boreal soil OC stocks and molecular composition. We studied how a surface fire affected the composition of the forest floor of Siberian Scots pine forests by comparing the bulk elemental composition, molecular structure (13C-MAS NMR), ...

  6. Separation of natural antioxidants using PDMS electrophoresis microchips coupled with amperometric detection and reverse polarity.

    Science.gov (United States)

    Lucca, Bruno Gabriel; Lunte, Susan Marie; Tomazelli Coltro, Wendell Karlos; Ferreira, Valdir Souza

    2014-12-01

    This report describes the use of PDMS ME coupled with amperometric detection for rapid separation of ascorbic, gallic , ferulic, p-coumaric acids using reverse polarity. ME devices were fabricated in PDMS by soft lithography and detection was accomplished using an integrated carbon fiber working electrode aligned in the end-channel configuration. Separation and detection parameters were investigated and the best conditions were obtained using a run buffer consisting of 5 mM phosphate buffer (pH 6.9) and a detection voltage of 1.0 V versus Ag/AgCl reference electrode. All compounds were separated within 70 s using gated injection mode with baseline resolution and separation efficiencies between 1200 and 9000 plates. Calibration curves exhibited good linearity and the LODs achieved ranged from 1.7 to 9.7 μM. The precision for migration time and peak height provided maximum values of 4% for the intrachip studies. Lastly, the analytical method was successfully applied for the analysis of ascorbic and gallic acids in commercial beverage samples. The results achieved using ME coupled with amperometric detection were in good agreement with the values provided by the supplier. Based on the data reported here, the proposed method shows suitability to be applied for the routine analysis of beverage samples.

  7. Micro pumping methods based on AC electrokinetics and Electrorheologically actuated PDMS valves

    Science.gov (United States)

    Soni, Gaurav; Squires, Todd; Meinhart, Carl

    2006-11-01

    We have developed 2 different micropumping methods for transporting ionic fluids through microchannels. The first method is based on Induced Charge Electroosmosis (ICEO) and AC flow field-effect. We used an AC electric field to produce a symmetric ICEO flow on a planar electrode, called `gate'. In order to break the symmetry of ICEO, we applied an additional AC voltage to the gate electrode. Such modulation of the gate potential is called field effect and produces a unidirectional pumping over the gate surface. We used micro PIV to measure pumping velocities for a range of ionic concentration, AC frequency and gate voltage. We have also conducted numerical simulations to understand the deteriorating effect of lateral conduction of surface charge on the pumping velocities. The second method is based on vibration of a flexible PDMS diaphragm actuated by an electrorheological (ER) fluid. ER fluid is a colloidal suspension exhibiting a reversible liquid-to-solid transition under an electric field. This liquid-to-solid transition can yield very high shear stress and can be used to open and close a PDMS valve. Three such valves were fabricated and actuated in a peristaltic fashion in order to achieve positive displacement pumping of fluids.

  8. Ceramic Supported PDMS and PEGDA Composite Membranes for CO2 Separation

    Institute of Scientific and Technical Information of China (English)

    LIU Sainan; LIU Gongping; WEI Wang; XIANGLI Fenjuan; JIN Wanqin

    2013-01-01

    Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation.In this work,ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared.The microstructure and physicochemical properties of the composite membranes were characterized.Preparation conditions were systematically optimized.The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO2,N2 and H2.Experiments showed that PDMS,as silicone rubber,exhibited larger permeance and lower separation factors.Conversely,PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2.Compared to the performance of those membranes using polymeric supports or freestanding membranes,the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity.Therefore,the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.

  9. Optimization of the replica molding process of PDMS using pennate diatoms

    Science.gov (United States)

    Hlúbiková, D.; Luís, A. T.; Vaché, V.; Ector, L.; Hoffmann, L.; Choquet, P.

    2012-11-01

    Biomimetic fabrication of nanostructured materials has recently attracted the attention of researchers as a cost-effective and easily applicable method of nanotexturing. Different techniques and materials have been used in order to replicate natural patterns, among which polydimethylsiloxane (PDMS Sylgard 184®) was recently used to replicate the micro- and nanoscale patterns from centric diatoms. In this paper, we test the reproducibility and precision of this approach using various morphologically different diatom species trying to optimize the molding parameters. The optimization process is focused on immobilization of diatoms on the glass support, which serves as a master for templating, as well as on the parameters of PDMS fabrication such as the ratio of the curing agent and elastomer, use of vacuum, curing time and temperature. The results indicate that higher ratios of curing agent and elastomer, longer curing time and lower temperature are the most favorable conditions to obtain negative diatom replicas of good quality with features of 50 nm. Although this method can give very precise results producing high-resolution molds with all micro- and nanostructures replicated, we revealed some limitations regarding the size and morphology of the species used. These results indicate that large round and flat diatom species seem to be more suitable for the cast molding.

  10. Propiedades interfaciales del surfactante pdms-peganhídrido maléico-ácido fumárico (pdms-peg-am-af) en solución acuosa

    OpenAIRE

    Johana Rodríguez; Edgardo Meza Fuentes; Maria Cecilia Azevedo Espiridiao

    2011-01-01

    En este estudio se determinaron las propiedadesinterfaciales en solución acuosadel surfactante del tipo PDMS-éster quecontiene polidimetilsiloxano (PDMS),polietilenglicol (PEG), anhídrido maléicoy ácido fumárico. Para el estudio delas propiedades interfaciales se emplearonlas técnicas tensiometría y espectroscopiaen la región del UV-Vis. En soluciónacuosa este surfactante mostró uncomportamiento complejo, que es dependientede la concentración. En este surfactantese observó un cambio brusco en...

  11. Thermodynamics of Accelerating Black Holes

    CERN Document Server

    Appels, Michael; Kubiznak, David

    2016-01-01

    We address a long-standing problem of describing the thermodynamics of a charged accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon -- even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability and phase structure of these black holes.

  12. Black holes in brane worlds

    Indian Academy of Sciences (India)

    M S Modgil; S Panda; S Sengupta

    2004-03-01

    A Kerr metric describing a rotating black hole is obtained on the three brane in a five-dimensional Randall-Sundrum brane world by considering a rotating five-dimensional black string in the bulk. We examine the causal structure of this space-time through the geodesic equations.

  13. Fabrication of microlens arrays on a glass substrate by roll-to-roll process with PDMS mold

    Science.gov (United States)

    Hu, Chia-Nying; Su, Guo-Dung J.

    2009-08-01

    This paper presents a roll-to-roll method to fabricate microlens arrays on a glass substrate by using a cost-effective PDMS (Polydimethylsiloxane) mold. We fabricated microlens arrays mold, which was made by photoresist(AZ4620), on the silicon substrate by thermal reflow process, and transferred the pattern to PDMS film. Roll-to-roll system is a standard printing process whose roller is made of acrylic cylinder surrounded with the PDMS mold. UV resin was chosen to be the material to make microlens in rolling process with UV light curing. We investigated the quality of microlens arrays by changing the parameters, such as embossing pressure and rolling speed, to ensure good quality of microlens arrays.

  14. Treatment of PDMS surfaces using pulsed DBD plasmas: comparing the use of different gases and its influence on adhesion

    CERN Document Server

    Nascimento, Fellype do; Machida, Munemasa; Parada, Sergio

    2015-01-01

    In this work we present some results of the treatment of polydimethylsiloxane (PDMS) surfaces using pulsed dielectric barrier discharge plasmas. The results of plasma treatment using different gases to produce the plasmas (argon, argon plus water, helium, helium plus water, nitrogen and nitrogen plus water) were compared testing the adhesion between two PDMS samples for each kind of plasma. We also studied the water contact angle in function of plasma process time of PDMS surfaces with each kind of plasma. The plasmas were characterized by optical emission spectroscopy to identify the emitting species and determine plasma temperatures through comparison with emission spectra simulations. Measurements of power delivered to the plasmas were also performed. Plasmas of all gases are good enough for surface treatment with long exposure time. But when only a few discharges are applied the best choice is the helium plasma.

  15. Quantum black holes

    International Nuclear Information System (INIS)

    No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references

  16. Structural Properties and Antifungal Activity against Candida albicans Biofilm of Different Composite Layers Based on Ag/Zn Doped Hydroxyapatite-Polydimethylsiloxanes

    Directory of Open Access Journals (Sweden)

    Andreea Groza

    2016-04-01

    Full Text Available Modern medicine is still struggling to find new and more effective methods for fighting off viruses, bacteria and fungi. Among the most dangerous and at times life-threatening fungi is Candida albicans. Our work is focused on surface and structural characterization of hydroxyapatite, silver doped hydroxyapatite and zinc doped hydroxyapatite deposited on a titanium substrate previously coated with polydimethylsiloxane (HAp-PDMS, Ag:HAp-PDMS, Zn:HAp-PDMS by different techniques: Scanning Electron Microscopy (SEM, Glow Discharge Optical Emission Spectroscopy (GDOES and Fourier Transform Infrared Spectroscopy (FTIR. The morphological studies revealed that the use of the PDMS polymer as an interlayer improves the quality of the coatings. The structural characterizations of the thin films revealed the basic constituents of both apatitic and PDMS structure. In addition, the GD depth profiles indicated the formation of a composite material as well as the successful embedding of the HAp, Zn:HAp and Ag:HAp into the polymer. On the other hand, in vitro evaluation of the antifungal properties of Ag:HAp-PDMS and Zn:HAp-PDMS demonstrated the fungicidal effects of Ag:HAp-PDMS and the potential antifungal effect of Zn:HAp-PDMS composite layers against C. albicans biofilm. The results acquired in this research complete previous research on the potential use of new complex materials produced by nanotechnology in biomedicine.

  17. Small black holes on cylinders

    International Nuclear Information System (INIS)

    We find the metric of small black holes on cylinders, i.e. neutral and static black holes with a small mass in d-dimensional Minkowski space times a circle. The metric is found using an ansatz for black holes on cylinders proposed in J. High Energy Phys. 05, 032 (2002). We use the new metric to compute corrections to the thermodynamics which is seen to deviate from that of the (d+1)-dimensional Schwarzschild black hole. Moreover, we compute the leading correction to the relative binding energy which is found to be non-zero. We discuss the consequences of these results for the general understanding of black holes and we connect the results to the phase structure of black holes and strings on cylinders

  18. Black holes and the multiverse

    Science.gov (United States)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  19. Implementing black hole as efficient power plant

    OpenAIRE

    Wei, Shao-Wen; Liu, Yu-Xiao

    2016-01-01

    Treating the black hole molecules as working substance and considering its phase structure, we study the black hole heat engine by a charged anti-de Sitter black hole. In the reduced temperature-entropy chart, it is found that the work, heat, and efficiency of the engine are independent of the black hole charge. Applying the Rankine cycle with or without a back pressure mechanism to the black hole heat engine, the efficiency is numerically solved. The result shows that the black hole engine w...

  20. PERVAPORATION OF ETHANOL/WATER MIXTURES WITH HIGH FLUX BY ZEOLITE-FILLED PDMS/PVDF COMPOSITE MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    李继定

    2009-01-01

    Thin-film zeolite-filled silicone/PVDF composite membranes were fabricated by incorporating zeolite particles into PDMS(poly(dimethylsiloxane)) membranes.The morphology of zeolite particles and zeolite filled silicone composite membranes were characterized by SEM.The zeolite-filled PDMS/PVDF composite membranes were applied for the pervaporation of ethanol/water mixtures and showed higher flux compared with that reported in literatures.The effect of zeolite loading and Si/Al ratio of zeolite particles on...

  1. Black psyllium

    Science.gov (United States)

    ... block your throat or esophagus and may cause choking. Do not take this product if you have ... take enough water. Otherwise, black psyllium might cause choking. Take at least 150 mL water for each ...

  2. Black tea

    Science.gov (United States)

    ... product containing black tea extract plus green tea extract, asparagus, guarana, kidney bean, and mate along with a combination of kidney bean pods, garcinia, and chromium yeast for 12 weeks does not reduce body weight ...

  3. Black tea

    Science.gov (United States)

    ... heartburn, dizziness, ringing in the ears, convulsions, and confusion. Also, people who drink black tea or other ... glimepiride (Amaryl), glyburide (DiaBeta, Glynase PresTab, Micronase), insulin, pioglitazone (Actos), rosiglitazone (Avandia), chlorpropamide (Diabinese), glipizide (Glucotrol), tolbutamide ( ...

  4. Black Hole Monodromy and Conformal Field Theory

    NARCIS (Netherlands)

    A. Castro; J.M. Lapan; A. Maloney; M.J. Rodriguez

    2013-01-01

    The analytic structure of solutions to the Klein-Gordon equation in a black hole background, as represented by monodromy data, is intimately related to black hole thermodynamics. It encodes the "hidden conformal symmetry" of a nonextremal black hole, and it explains why features of the inner event h

  5. Resource Letter BH-1: Black Holes.

    Science.gov (United States)

    Detweiler, Steven

    1981-01-01

    Lists resources on black holes, including: (1) articles of historical interest; (2) books and journal articles on elementary expositions; (3) elementary and advanced textbooks; and (4) research articles on analytic structure of black holes, black hole dynamics, and astrophysical processes. (SK)

  6. μ-Biomimetic flow-sensors--introducing light-guiding PDMS structures into MEMS.

    Science.gov (United States)

    Herzog, Hendrik; Klein, Adrian; Bleckmann, Horst; Holik, Peter; Schmitz, Sam; Siebke, Georg; Tätzner, Simon; Lacher, Manfred; Steltenkamp, Siegfried

    2015-04-16

    In the area of biomimetics, engineers use inspiration from natural systems to develop technical devices, such as sensors. One example is the lateral line system of fish. It is a mechanoreceptive system consisting of up to several thousand individual sensors called neuromasts, which enable fish to sense prey, predators, or conspecifics. So far, the small size and high sensitivity of the lateral line is unmatched by man-made sensor devices. Here, we describe an artificial lateral line system based on an optical detection principle. We developed artificial canal neuromasts using MEMS technology including thick film techniques. In this work, we describe the MEMS fabrication and characterize a sensor prototype. Our sensor consists of a silicon chip, a housing, and an electronic circuit. We demonstrate the functionality of our μ-biomimetic flow sensor by analyzing its response to constant water flow and flow fluctuations. Furthermore, we discuss the sensor robustness and sensitivity of our sensor and its suitability for industrial and medical applications. In sum, our sensor can be used for many tasks, e.g. for monitoring fluid flow in medical applications, for detecting leakages in tap water systems or for air and gas flow measurements. Finally, our flow sensor can even be used to improve current knowledge about the functional significance of the fish lateral line.

  7. Time-resolved two-wavelength contouring of adaptive fluidic PDMS-lenses

    Science.gov (United States)

    Hansel, Thomas; Grunwald, Ruediger; Steinmeyer, Günter; Griebner, Uwe; Schneider, Florian; Wallrabe, Ulrike

    2009-05-01

    We present a synthesized sub-ps dual-wavelength laser source for digital holographic interferometry with a wide reconstruction range. The developed laser source generates two spectrally separated parts within one pulse. The sub-ps pulse duration desensitizes the holographic setup to environmental impacts. A center wavelength distance of only 12 nm with a high contrast was demonstrated by spectral shaping of the 50 nm broad seed spectrum of a CPA Ti:sapphire laser system centered at 800 nm. Time-resolved two-wavelength contouring requires the simultaneous and separable recording of two holograms. In general, a single CCD-camera is applied, and the spectral separation is realized by different reference wave tilts, which requires ambitious interferometric setups. Contrary to this, we introduce two CCD-cameras for digital holographic recording, thus essentially simplifying the interferometric setup by the need of only one propagation direction of the reference wave. To separate the holograms for the simultaneous recording process, a Mach-Zehnder interferometer was extended by a polarization encoding sequence. To study our approach of time-resolved digital holographic two-wavelength contouring, an adaptive fluidic PDMS-lens with integrated piezoelectric actuator served as test object. The PDMS-lens consists of an oil-filled lens chamber and a pump actuator. If a voltage is applied to the piezoelectric bending actuator the fluid is pumped into the lens chamber which causes a curvature change of the 60-μm thick lens membrane and thus a shift of the focal length. The dynamic behavior of the PDMS-lens, driven at a frequency of 1 Hz, was investigated at a frame rate of 410 frames per second. The measured temporal change of the lens focal length between 98 and 44 mm followed the modulation of the piezoelectric voltage with a 30 V peak-to-peak amplitude. Due to the performed time-resolved two wavelength contouring, we are able to extract the optical path length differences

  8. Supermassive Black Holes and Their Environments

    OpenAIRE

    Colberg, Joerg M.; Di Matteo, Tiziana

    2008-01-01

    We make use of the first high--resolution hydrodynamic simulations of structure formation which self-consistently follows the build up of supermassive black holes introduced in Di Matteo et al. (2007) to investigate the relation between black holes (BH), host halo and large--scale environment. There are well--defined relations between halo and black hole masses and between the activities of galactic nuclei and halo masses at low redshifts. A large fraction of black holes forms anti--hierarchi...

  9. Control of the wrinkle structure on surface-reformed poly(dimethylsiloxane) via ion-beam bombardment

    Science.gov (United States)

    Park, Hong-Gyu; Jeong, Hae-Chang; Jung, Yoon Ho; Seo, Dae-Shik

    2015-07-01

    We investigated the surface reformation of poly(dimethylsiloxane) (PDMS) elastomers by means of ion beam bombardment for fabricating wrinkle structures. Oxidation on the PDMS surface formed a silica-like outer layer that interacted with the inner PDMS layer, leading to the formation of wrinkle structures that minimized the combined bending energy of the outer layer and stretching energy of the inner layer. In addition, we controlled the amplitude and period of the wrinkle structures by adjusting the PDMS annealing temperature. As the PDMS annealing temperature was increased, the amplitude and period of the wrinkles formed by IB irradiation changed from 604.35 to 69.01 nm and from 3.07 to 0.80 μm, respectively.

  10. Investigation of isomeric flavanol structures in black tea thearubigins using ultraperformance liquid chromatography coupled to hybrid quadrupole/ion mobility/time of flight mass spectrometry.

    Science.gov (United States)

    Yassin, Ghada H; Grun, Christian; Koek, Jean H; Assaf, Khaleel I; Kuhnert, Nikolai

    2014-11-01

    Ultra performance liquid chromatography (UPLC) when coupled to ion mobility (IMS)/orthogonal acceleration time of flight mass spectrometry is a suitable technique for analyzing complex mixtures such as the black tea thearubigins. With the aid of this advanced instrumental analysis, we were able to separate and identify different isomeric components in the complex mixture which could previously not be differentiated by a conventional high performance liquid chromatography/tandem mass spectrometry. In this study, the difference between isomeric structures theasinensins, proanthocyanidins B-type and rutin (quercetin-3O-rutinoside) were studied, and these are present abundantly in many botanical sources. The differentiation between these structures was accomplished according to their acquired mobility drift times differing from the traditional investigations in mass spectrometry, where calculation of theoretical collisional cross sections allowed assignment of the individual isomeric structures. The present work demonstrates UPLC-IMS-MS as an efficient technology for isolating and separating isobaric and isomeric structures existing in complex mixtures discriminating between them according to their characteristic fragment ions and mobility drift times. Therefore, a rational assignment of isomeric structures in many phenolic secondary metabolites based on the ion mobility data might be useful in mass spectrometry-based structure analysis in the future.

  11. Acceleration of black hole universe

    Science.gov (United States)

    Zhang, T. X.; Frederick, C.

    2014-01-01

    Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.

  12. Rapid, Brushless Self-assembly of a PS-b-PDMS Block Copolymer for Nanolithography

    DEFF Research Database (Denmark)

    Rasappa, Sozaraj; Schulte, Lars; Borah, Dipu;

    2014-01-01

    antidot patterns after short solvo-thermal annealing. Unlike previous reports on this system, low temperature and short annealing time provide self-assembly in homogeneous thin films covering large substrate areas. This on-chip mask was then used for pattern transfer to the underlying silicon substrate......Block copolymers (BCP) are highly promising self-assembling precursors for scalable nanolithography. Very regular BCP nanopatterns can be used as on-chip etch masks. The first step in the processing of BCP thin films is usually the chemical modification of the substrate surface, typically by...... grafting of a brush layer that renders the surface energy neutral relative to the constituent blocks. We provide here a first study on rapid, low temperature self-assembly of PS-b-PDMS (polystyrene-block-polydimethylsiloxane) on silicon substrates without a brush layer. We show that it forms line and...

  13. Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay

    DEFF Research Database (Denmark)

    Skafte-Pedersen, Peder; Sabourin, David; Dufva, Martin;

    2009-01-01

    The design, fabrication and characterization of a miniaturized, mechanically-actuated 12-channel peristaltic pump for microfluidic applications and built from simple, low-cost materials and fabrication methods is presented. Two pump configurations are tested, including one which reduces pulsating...... flow. Both use a monolithic PDMS pumping inlay featuring three-dimensional geometries favourable to pumping applications and 12 wholly integrated circular channels. Flow rates in the sub-µL min-1 to µL min-1 range were obtained. Channel-to-channel flow rate variability was comparable to a commercial...... pumping system at lower flow rates. The small footprint, 40 mm by 80 mm, of the micropump renders it portable, and allows its use on microscope stages adjacent to microfluidic devices, thus reducing system dead volumes. The micropump's design allows potential use in remote and resource-limited locations...

  14. Applications of PDMS partitioning methods in the study of biodegradation of pyrene in the

    DEFF Research Database (Denmark)

    Tejeda-Agredano, MC; Gouliarmou, Varvara; Ortega-Calvo, JJ

    fractions to contaminated soils often causes an enhanced biodegradation and desorption of these compounds from soils. Other mechanisms proposed as operating in HS-mediated enhancements of biodegradation include the promotion of compound solubility and a direct access to HS-sorbed chemicals due...... to the physical association of bacteria and HS. Here, we propose the use of partitioning techniques using poly(dimethylsiloxane) (PDMS) to study the effect of binding of pyrene to a dissolved humic acid isolated from soil on biodegradation of this PAH by a representative soil bacterium. The application...... of these techniques in biodegradation studies may solve many questions about enhancements in diffusive mass transfer, in capacity/speciation and in dissolution. Therefore, our study may provide new insights into the effects of HS on microbial degradation of polycyclic aromatic hydrocarbons (PAHs)....

  15. Real time PCR on disposable PDMS chip with a miniaturized thermal cycler.

    Science.gov (United States)

    Xiang, Q; Xu, B; Fu, R; Li, D

    2005-12-01

    This paper presents the design and implementation of a low-cost miniature PCR device consisting of a disposable reactor chip and a miniature thermal cycler. The simple fabrication of the PCR chip by PDMS (Polydimethylsiloxane) does not need micro-machining or photolithography processes. The thermal cycler was built with a thin film heater for heating and a fan for rapid cooling. This device can perform PCR tests in a single well chip or a multiple-well chip. It can run PCR reactions of different volumes to meet specific application requirements. The smallest reaction volume tested in this work is 0.9 microL. In addition, this device fits any standard fluorescence microscope for real time detection, which makes real time PCR affordable for most research labs and clinics with a fluorescence microscope. Real-time PCR of E. coli stx1 has been demonstrated with the device described. PMID:16404505

  16. Design and dynamic characterization of "single-stroke" peristaltic PDMS micropumps.

    Science.gov (United States)

    Lai, Hoyin; Folch, Albert

    2011-01-21

    In this paper, we present a monolithic PDMS micropump that generates peristaltic flow using a single control channel that actuates a group of different-sized microvalves. An elastomeric microvalve design with a raised seat, which improves bonding reliability, is incorporated into the micropump. Pump performance is evaluated based on several design parameters--size, number, and connection of successive microvalves along with control channel pressure at various operating frequencies. Flow rates ranging 0-5.87 µL min(-1) were observed. The micropump design demonstrated here represents a substantial reduction in the number of/real estate taken up by the control lines that are required to run a peristaltic pump, hence it should become a widespread tool for parallel fluid processing in high-throughput microfluidics. PMID:20957288

  17. A new water absorbable mechanical Epidermal skin equivalent: the combination of hydrophobic PDMS and hydrophilic PVA hydrogel.

    Science.gov (United States)

    Morales-Hurtado, M; Zeng, X; Gonzalez-Rodriguez, P; Ten Elshof, J E; van der Heide, E

    2015-06-01

    Research on human skin interactions with healthcare and lifestyle products is a topic continuously attracting scientific studies over the past years. It is possible to evaluate skin mechanical properties based on human or animal experimentation, yet in addition to possible ethical issues, these samples are hard to obtain, expensive and give rise to highly variable results. Therefore, the design of a skin equivalent is essential. This paper describes the design and characterization of a new Epidermal Skin Equivalent (ESE). The material resembles the properties of epidermis and is a first approach to mimic the mechanical properties of the human skin structure, variable with the length scale. The ESE is based on a mixture of Polydimethyl Siloxane (PDMS) and Polyvinyl Alcohol (PVA) hydrogel cross-linked with Glutaraldehyde (GA). It was chemically characterized by XPS and FTIR measurements and its cross section was observed by macroscopy and cryoSEM. Confocal Microscope analysis on the surface of the ESE showed an arithmetic roughness (Ra) between 14-16 μm and contact angle (CA) values between 50-60°, both of which are close to the values of in vivo human skins reported in the literature. The Equilibrium Water Content (ECW) was around 33.8% and Thermo Gravimetric Analysis (TGA) confirmed the composition of the ESE samples. Moreover, the mechanical performance was determined by indentation tests and Dynamo Thermo Mechanical Analysis (DTMA) shear measurements. The indentation results were in good agreement with that of the target epidermis reported in the literature with an elastic modulus between 0.1-1.5 MPa and it showed dependency on the water content. According to the DTMA measurements, the ESE exhibits a viscoelastic behavior, with a shear modulus between 1-2.5MPa variable with temperature, frequency and the hydration of the samples. PMID:25840121

  18. A new water absorbable mechanical Epidermal skin equivalent: the combination of hydrophobic PDMS and hydrophilic PVA hydrogel.

    Science.gov (United States)

    Morales-Hurtado, M; Zeng, X; Gonzalez-Rodriguez, P; Ten Elshof, J E; van der Heide, E

    2015-06-01

    Research on human skin interactions with healthcare and lifestyle products is a topic continuously attracting scientific studies over the past years. It is possible to evaluate skin mechanical properties based on human or animal experimentation, yet in addition to possible ethical issues, these samples are hard to obtain, expensive and give rise to highly variable results. Therefore, the design of a skin equivalent is essential. This paper describes the design and characterization of a new Epidermal Skin Equivalent (ESE). The material resembles the properties of epidermis and is a first approach to mimic the mechanical properties of the human skin structure, variable with the length scale. The ESE is based on a mixture of Polydimethyl Siloxane (PDMS) and Polyvinyl Alcohol (PVA) hydrogel cross-linked with Glutaraldehyde (GA). It was chemically characterized by XPS and FTIR measurements and its cross section was observed by macroscopy and cryoSEM. Confocal Microscope analysis on the surface of the ESE showed an arithmetic roughness (Ra) between 14-16 μm and contact angle (CA) values between 50-60°, both of which are close to the values of in vivo human skins reported in the literature. The Equilibrium Water Content (ECW) was around 33.8% and Thermo Gravimetric Analysis (TGA) confirmed the composition of the ESE samples. Moreover, the mechanical performance was determined by indentation tests and Dynamo Thermo Mechanical Analysis (DTMA) shear measurements. The indentation results were in good agreement with that of the target epidermis reported in the literature with an elastic modulus between 0.1-1.5 MPa and it showed dependency on the water content. According to the DTMA measurements, the ESE exhibits a viscoelastic behavior, with a shear modulus between 1-2.5MPa variable with temperature, frequency and the hydration of the samples.

  19. The effect of carbon nanotubes and titanium dioxide incorporated in PDMS on biofilm community composition and subsequent mussel plantigrade settlement.

    Science.gov (United States)

    Yang, Jin-Long; Li, Yi-Feng; Guo, Xing-Pan; Liang, Xiao; Xu, Yue-Feng; Ding, De-Wen; Bao, Wei-Yang; Dobretsov, Sergey

    2016-08-01

    This study investigated the effect of carbon nanotubes (CNTs) and titanium dioxide (TiO2) incorporated in PDMS on biofilm formation and plantigrade settlement of Mytilus coruscus. TiO2 increased bacterial density, and CNTs also increased bacterial density but reduced diatom density in biofilms after 28 days. Further analysis was conducted between bacterial communities on glass, PDMS, CNTs (0.5 wt%) and TiO2 (7.5 wt%). ANOSIM analysis revealed significant differences (R > 0.9) between seven, 14, 21 and 28 day-old bacterial communities. MiSeq sequencing showed that CNTs and TiO2 impacted the composition of 28 day-old bacterial communities by increasing the abundance of Proteobacteria and decreasing the abundance of Bacteroidetes. The maximum decreased settlement rate in 28 day-old biofilms on CNTs and TiO2 was > 50% in comparison to those on glass and PDMS. Thus, CNTs and TiO2 incorporated in PDMS altered the biomass and community composition of biofilms, and subsequently decreased mussel settlement.

  20. Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong-Ak; Han, Jongyoon [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Batista, Candy [Roxbury Community College, 1234 Columbus Ave., Roxbury Crossing, MA 02120 (United States); Sarpeshkar, Rahul [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2008-09-01

    In this paper we demonstrate a simple and rapid fabrication method for a microfluidic polymer electrolyte membrane (PEM) fuel cell using polydimethylsiloxane (PDMS), which has become the de facto standard material in BioMEMS. Instead of integrating a Nafion sheet film between two layers of a PDMS device in a traditional ''sandwich format,'' we pattern a perfluorinated ion-exchange resin such as a Nafion resin on a glass substrate using a reversibly bonded PDMS microchannel to generate an ion-selective membrane between the fuel-cell electrodes. After this patterning step, the assembly of the microfluidic fuel cell is accomplished by simple oxygen plasma bonding between the PDMS chip and the glass substrate. In an example implementation, the planar PEM microfluidic fuel cell generates an open circuit voltage of 600-800 mV and delivers a maximum current output of nearly 4 {mu}A. To enhance the power output of the fuel cell we utilize self-assembled colloidal arrays as a support matrix for the Nafion resin. Such arrays allow us to increase the thickness of the ion-selective membrane to 20 {mu}m and increase the current output by 166%. Our novel fabrication method enables rapid prototyping of microfluidic fuel cells to study various ion-exchange resins for the polymer electrolyte membrane. Our work will facilitate the development of miniature, implantable, on-chip power sources for biomedical applications. (author)

  1. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    Science.gov (United States)

    Pervaporation is potentially a cost-effective means of recovering biofuels, such as ethanol, from biomass fermentation broths for small- to medium-scale applications (~2 - 20 million liters per year). Hydrophobic zeolite-filled polydimethylsiloxane (PDMS) membranes have been sho...

  2. Bulk Scale Synthesis of Monodisperse PDMS Droplets above 3 μm and Their Encapsulation by Elastic Shells

    NARCIS (Netherlands)

    Elbers, Nina; Jose, Jissy; Imhof, Arnout; van Blaaderen, Alfons

    2015-01-01

    We report several facile, surfactant-free methods to prepare monodisperse polydimethylsiloxane (PDMS) droplets in the size range 3–8 μm in water. These methods, of which the pros and cons are discussed, are extensions of a procedure described before by our group which focused on smaller droplet size

  3. Novel method to prepare multiwalled carbon nanotube/poly(dimethyl siloxane) (MWCNT/PDMS) non-conducting composites

    DEFF Research Database (Denmark)

    Goswami, Kaustav; Daugaard, Anders Egede; Skov, Anne Ladegaard

    In this study a new method of carbon nanotube (CNT) incorporation was employed for the preparation of ultraviolet (UV) curable CNT filled poly (dimethyl siloxane) (PDMS) composites. The composites were designed to contain loadings of CNT above the percolation threshold without becoming conductive...

  4. Poly(Dimethylsiloxane) (PDMS) Affects Gene Expression in PC12 Cells Differentiating into Neuronal-Like Cells

    DEFF Research Database (Denmark)

    Lopacinska, Joanna M.; Emnéus, Jenny; Dufva, Martin

    2013-01-01

    Introduction: Microfluidics systems usually consist of materials like PMMA - poly(methyl methacrylate) and PDMS - poly(dimethylsiloxane) and not polystyrene (PS), which is usually used for cell culture. Cellular and molecular responses in cells grown on PS are well characterized due to decades of...

  5. Creating Sub-50 Nm Nanofluidic Junctions in PDMS Microfluidic Chip via Self-Assembly Process of Colloidal Particles.

    Science.gov (United States)

    Wei, Xi; Syed, Abeer; Mao, Pan; Han, Jongyoon; Song, Yong-Ak

    2016-03-13

    Polydimethylsiloxane (PDMS) is the prevailing building material to make microfluidic devices due to its ease of molding and bonding as well as its transparency. Due to the softness of the PDMS material, however, it is challenging to use PDMS for building nanochannels. The channels tend to collapse easily during plasma bonding. In this paper, we present an evaporation-driven self-assembly method of silica colloidal nanoparticles to create nanofluidic junctions with sub-50 nm pores between two microchannels. The pore size as well as the surface charge of the nanofluidic junction is tunable simply by changing the colloidal silica bead size and surface functionalization outside of the assembled microfluidic device in a vial before the self-assembly process. Using the self-assembly of nanoparticles with a bead size of 300 nm, 500 nm, and 900 nm, it was possible to fabricate a porous membrane with a pore size of ~45 nm, ~75 nm and ~135 nm, respectively. Under electrical potential, this nanoporous membrane initiated ion concentration polarization (ICP) acting as a cation-selective membrane to concentrate DNA by ~1,700 times within 15 min. This non-lithographic nanofabrication process opens up a new opportunity to build a tunable nanofluidic junction for the study of nanoscale transport processes of ions and molecules inside a PDMS microfluidic chip.

  6. The effect of carbon nanotubes and titanium dioxide incorporated in PDMS on biofilm community composition and subsequent mussel plantigrade settlement.

    Science.gov (United States)

    Yang, Jin-Long; Li, Yi-Feng; Guo, Xing-Pan; Liang, Xiao; Xu, Yue-Feng; Ding, De-Wen; Bao, Wei-Yang; Dobretsov, Sergey

    2016-08-01

    This study investigated the effect of carbon nanotubes (CNTs) and titanium dioxide (TiO2) incorporated in PDMS on biofilm formation and plantigrade settlement of Mytilus coruscus. TiO2 increased bacterial density, and CNTs also increased bacterial density but reduced diatom density in biofilms after 28 days. Further analysis was conducted between bacterial communities on glass, PDMS, CNTs (0.5 wt%) and TiO2 (7.5 wt%). ANOSIM analysis revealed significant differences (R > 0.9) between seven, 14, 21 and 28 day-old bacterial communities. MiSeq sequencing showed that CNTs and TiO2 impacted the composition of 28 day-old bacterial communities by increasing the abundance of Proteobacteria and decreasing the abundance of Bacteroidetes. The maximum decreased settlement rate in 28 day-old biofilms on CNTs and TiO2 was > 50% in comparison to those on glass and PDMS. Thus, CNTs and TiO2 incorporated in PDMS altered the biomass and community composition of biofilms, and subsequently decreased mussel settlement. PMID:27348759

  7. Creating Sub-50 Nm Nanofluidic Junctions in PDMS Microfluidic Chip via Self-Assembly Process of Colloidal Particles.

    Science.gov (United States)

    Wei, Xi; Syed, Abeer; Mao, Pan; Han, Jongyoon; Song, Yong-Ak

    2016-01-01

    Polydimethylsiloxane (PDMS) is the prevailing building material to make microfluidic devices due to its ease of molding and bonding as well as its transparency. Due to the softness of the PDMS material, however, it is challenging to use PDMS for building nanochannels. The channels tend to collapse easily during plasma bonding. In this paper, we present an evaporation-driven self-assembly method of silica colloidal nanoparticles to create nanofluidic junctions with sub-50 nm pores between two microchannels. The pore size as well as the surface charge of the nanofluidic junction is tunable simply by changing the colloidal silica bead size and surface functionalization outside of the assembled microfluidic device in a vial before the self-assembly process. Using the self-assembly of nanoparticles with a bead size of 300 nm, 500 nm, and 900 nm, it was possible to fabricate a porous membrane with a pore size of ~45 nm, ~75 nm and ~135 nm, respectively. Under electrical potential, this nanoporous membrane initiated ion concentration polarization (ICP) acting as a cation-selective membrane to concentrate DNA by ~1,700 times within 15 min. This non-lithographic nanofabrication process opens up a new opportunity to build a tunable nanofluidic junction for the study of nanoscale transport processes of ions and molecules inside a PDMS microfluidic chip. PMID:27023724

  8. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.

    Science.gov (United States)

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-02-13

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  9. A PDMS-Based Cylindrical Hybrid Lens for Enhanced Fluorescence Detection in Microfluidic Systems

    Directory of Open Access Journals (Sweden)

    Bor-Shyh Lin

    2014-02-01

    Full Text Available Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  10. Non-Abelian black holes The inside story

    CERN Document Server

    Breitenlohner, P; Maison, D

    1997-01-01

    Recent progress in understanding of the internal structure of non-Abelian black holes is discussed. Talk given at the international Workshop on The Internal Structure of Black Holes and Spacetime Singularities, Haifa, Israel, June 29 -- July 3, 1997.

  11. HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE

    International Nuclear Information System (INIS)

    The disruption of stars by supermassive black holes has been linked to more than a dozen flares in the cores of galaxies out to redshift z ∼ 0.4. Modeling these flares properly requires a prediction of the rate of mass return to the black hole after a disruption. Through hydrodynamical simulation, we show that aside from the full disruption of a solar mass star at the exact limit where the star is destroyed, the common assumptions used to estimate M-dot (t), the rate of mass return to the black hole, are largely invalid. While the analytical approximation to tidal disruption predicts that the least-centrally concentrated stars and the deepest encounters should have more quickly-peaked flares, we find that the most-centrally concentrated stars have the quickest-peaking flares, and the trend between the time of peak and the impact parameter for deeply penetrating encounters reverses beyond the critical distance at which the star is completely destroyed. We also show that the most-centrally concentrated stars produced a characteristic drop in M-dot (t) shortly after peak when a star is only partially disrupted, with the power law index n being as extreme as –4 in the months immediately following the peak of a flare. Additionally, we find that n asymptotes to ≅ – 2.2 for both low- and high-mass stars for approximately half of all stellar disruptions. Both of these results are significantly steeper than the typically assumed n = –5/3. As these precipitous decay rates are only seen for events in which a stellar core survives the disruption, they can be used to determine if an observed tidal disruption flare produced a surviving remnant. We provide fitting formulae for four fundamental quantities of tidal disruption as functions of the star's distance to the black hole at pericenter and its stellar structure: the total mass lost, the time of peak, the accretion rate at peak, and the power-law index shortly after peak. These results should be taken into

  12. HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Guillochon, James; Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-04-10

    The disruption of stars by supermassive black holes has been linked to more than a dozen flares in the cores of galaxies out to redshift z {approx} 0.4. Modeling these flares properly requires a prediction of the rate of mass return to the black hole after a disruption. Through hydrodynamical simulation, we show that aside from the full disruption of a solar mass star at the exact limit where the star is destroyed, the common assumptions used to estimate M-dot (t), the rate of mass return to the black hole, are largely invalid. While the analytical approximation to tidal disruption predicts that the least-centrally concentrated stars and the deepest encounters should have more quickly-peaked flares, we find that the most-centrally concentrated stars have the quickest-peaking flares, and the trend between the time of peak and the impact parameter for deeply penetrating encounters reverses beyond the critical distance at which the star is completely destroyed. We also show that the most-centrally concentrated stars produced a characteristic drop in M-dot (t) shortly after peak when a star is only partially disrupted, with the power law index n being as extreme as -4 in the months immediately following the peak of a flare. Additionally, we find that n asymptotes to {approx_equal} - 2.2 for both low- and high-mass stars for approximately half of all stellar disruptions. Both of these results are significantly steeper than the typically assumed n = -5/3. As these precipitous decay rates are only seen for events in which a stellar core survives the disruption, they can be used to determine if an observed tidal disruption flare produced a surviving remnant. We provide fitting formulae for four fundamental quantities of tidal disruption as functions of the star's distance to the black hole at pericenter and its stellar structure: the total mass lost, the time of peak, the accretion rate at peak, and the power-law index shortly after peak. These results should be taken

  13. A preliminary factor analytic investigation into the firstorder factor structure of the Fifteen Factor Plus (15FQ+ on a sample of Black South African managers

    Directory of Open Access Journals (Sweden)

    Seretse Moyo

    2011-03-01

    Full Text Available Orientation: The Fifteen Factor Questionnaire Plus (15FQ+ is a prominent personality questionnaire that organisations frequently use in personnel selection in South Africa.Research purpose: The primary objective of this study was to undertake a factor analytic investigation of the first-order factor structure of the 15FQ+.Motivation for the study: The construct validity of the 15FQ+, as a measure of personality, is necessary even though it is insufficient to justify its use in personnel selection.Research design, approach and method: The researchers evaluated the fit of the measurement model, which the structure and scoring key of the 15FQ+ implies, in a quantitative study that used an ex post facto correlation design through structural equation modelling. They conducted a secondary data analysis. They selected a sample of 241 Black South African managers from a large 15FQ+ database.Main findings: The researchers found good measurement model fit. The measurement model parameter estimates were worrying. The magnitude of the estimated model parameters suggests that the items generally do not reflect the latent personality dimensions the designers intended them to with a great degree of precision. The items are reasonably noisy measures of the latent variables they represent.Practical/managerial implications: Organisations should use the 15FQ+ carefully on Black South African managers until further local research evidence becomes available.Contribution/value-add: The study is a catalyst to trigger the necessary additional research we need to establish convincingly the psychometric credentials of the 15FQ+ as a valuable assessment tool in South Africa.

  14. Towards black-box calculations of tunneling splittings obtained from vibrational structure methods based on normal coordinates.

    Science.gov (United States)

    Neff, Michael; Rauhut, Guntram

    2014-02-01

    Multidimensional potential energy surfaces obtained from explicitly correlated coupled-cluster calculations and further corrections for high-order correlation contributions, scalar relativistic effects and core-correlation energy contributions were generated in a fully automated fashion for the double-minimum benchmark systems OH3(+) and NH3. The black-box generation of the potentials is based on normal coordinates, which were used in the underlying multimode expansions of the potentials and the μ-tensor within the Watson operator. Normal coordinates are not the optimal choice for describing double-minimum potentials and the question remains if they can be used for accurate calculations at all. However, their unique definition is an appealing feature, which removes remaining errors in truncated potential expansions arising from different choices of curvilinear coordinate systems. Fully automated calculations are presented, which demonstrate, that the proposed scheme allows for the determination of energy levels and tunneling splittings as a routine application.

  15. Implementing black hole as efficient power plant

    CERN Document Server

    Wei, Shao-Wen

    2016-01-01

    Treating the black hole molecules as working substance and considering its phase structure, we study the black hole heat engine by a charged anti-de Sitter black hole. In the reduced temperature-entropy chart, it is found that the work, heat, and efficiency of the engine are independent of the black hole charge. Applying the Rankine cycle with or without a back pressure mechanism to the black hole heat engine, the efficiency is numerically solved. The result shows that the black hole engine working along the Rankine cycle with a back pressure mechanism has a higher efficiency. This provides a novel and efficient mechanism to produce the useful mechanical work with black hole, and such heat engine may act as a possible energy source for the high energy astrophysical phenomena near the black hole.

  16. Community Composition and Structure of Soil Macro-Arthropods Under Agricultural Land Uses in the Black Soil Region of Jilin Province, China

    Institute of Scientific and Technical Information of China (English)

    WU Dong-hui; ZHANG Bai; CHEN Peng

    2006-01-01

    Soil macro-arthropods in the black soil region in Jilin Province of China were investigated with the emphasis laid on the species richness and abundance in relation to the types of land-use, i.e., farm yard, farm land and Three-North Forest Shelter Belt. Soil macro-arthropods were hand-sorted in the field. A total of 2 357 soil macro-arthropod individuals was captured and fell into 70 families. The results suggested that type of land use affected the species richness and abundance of soil macro-arthropods. Agricultural practices had a strong impact on the soil macro-arthropods community, the conventional cultivations changed the vertical structure of macro-arthropods in the soil profile, and improved the richness and abundance of macro-arthropods in the lower soil layers especially in July. The results also showed that different groups of soil macro-arthropods had various responses to land use changes.

  17. The Neglect of Governance in Forest Sector Vulnerability Assessments: Structural-Functionalism and “Black Box” Problems in Climate Change Adaptation Planning

    Directory of Open Access Journals (Sweden)

    Adam M. Wellstead

    2013-09-01

    Full Text Available Efforts to develop extensive forest-based climate change vulnerability assessments have informed proposed management and policy options intended to promote improved on-the-ground policy outcomes. These assessments are derived from a rich vulnerability literature and are helpful in modeling complex ecosystem interactions, yet their policy relevance and impact has been limited. We argue this is due to structural-functional logic underpinning these assessments in which governance is treated as a procedural “black box” and policy-making as an undifferentiated and unproblematic output of a political system responding to input changes and/or system prerequisites. Like an earlier generation of systems or cybernetic thinking about political processes, the focus in these assessments on macro system-level variables and relationships fails to account for the multi-level or polycentric nature of governance and the possibility of policy processes resulting in the nonperformance of critical tasks.

  18. Fischer Black

    OpenAIRE

    Robert C. Merton; Myron S. Scholes

    2013-01-01

    ReprintThis article was originally published by Wiley for the American Finance Association (Merton RC, Scholes MS. 1995. Fischer Black. J. Finance 50(5):1359–70). It is reprinted with permission from John Wiley and Sons © 1995. Reference formatting was updated to facilitate linking.

  19. Instantaneous room temperature bonding of a wide range of non-silicon substrates with poly(dimethylsiloxane) (PDMS) elastomer mediated by a mercaptosilane.

    Science.gov (United States)

    Wu, Wenming; Wu, Jing; Kim, Jae-Heon; Lee, Nae Yoon

    2015-07-01

    This paper introduces an instantaneous and robust strategy for bonding a variety of non-silicon substrates such as thermoplastics, metals, an alloy, and ceramics to poly(dimethylsiloxane) (PDMS) irreversibly, mediated by one-step chemical modification using a mercaptosilane at room temperature followed by corona treatment to realize heterogeneous assembly also at room temperature. The mercapto functional group is one of the strongest nucleophiles, and it can instantaneously react with electrophiles of substrates, resulting in an alkoxysilane-terminated substrate at room temperature. In this way, prior oxidation of the substrate is dispensed with, and the alkoxysilane-terminated substrate can be readily oxidized and irreversibly bonded with oxidized PDMS at room temperature. A commercially available Tesla coil was used for surface oxidation, replacing a bulky and expensive plasma generator. Surface characterization was conducted by water contact angle measurement and X-ray photoelectron spectroscopy (XPS) analysis. A total of fifteen non-silicon substrates including polycarbonate (PC), two types of poly(vinylchloride) (PVC), poly(methylmethacrylate) (PMMA), polystyrene (PS), polyimide (PI), two types of poly(ethylene terephthalate) (PET), polypropylene (PP), iron (Fe), aluminum (Al), copper (Cu), brass, alumina (Al2O3), and zirconia (ZrO2) were bonded successfully with PDMS using this method, and the bond strengths of PDMS-PMMA, PDMS-PC, PDMS-PVC, PDMS-PET, PDMS-Al, and PDMS-Cu assemblies were measured to be approximately 335.9, 511.4, 467.3, 476.4, 282.2, and 236.7 kPa, respectively. The overall processes including surface modification followed by surface oxidation using corona treatment for bonding were realized within 12 to 17 min for most of the substrates tested except for ceramics which required 1 h for the bonding. In addition, large area (10 × 10 cm(2)) bonding was also successfully realized, ensuring the high reliability and stability of the introduced

  20. Design and Fabrication of Stack Micro-Direct Methanol Fuel Cell Using Silicon and PDMS%采用硅和PDMS的堆栈式微型直接甲醇燃料电池的设计和制作

    Institute of Scientific and Technical Information of China (English)

    曾毅波; 陈观生; 赵祖光; 刘畅; 刘俊; 王婷婷; 郭航

    2013-01-01

    In order to avoid cracks of the silicon flow field plate caused by high package pressure, silicon and PDMS (Polydimethylsiloxane) are used as anodic and cathode flow field plate respectively in the stack μ-DMFC ( Micro-direct methanol fuel cell). The anodic flow field plate based on silicon is fabricated with MEMS( Micro-Electro-Mechanical Systems)technology,and cathode flow field plate is fabricated using PDMS and its metallic performance is evidently improved by means of integral shaping of copper foil and cathode flow field plate, organic cleaning and activation on PDMS surface. The output of stack μ-DMFC is tested and analyzed, in which 3 different flow channel structures on the anodic plate are introduced. Tested results verify that adhesive capability and strengthen between post-activated PDMS and Cr/Au are greatly improved, and when micro blocks and through holes are introduced alternately in the flow channel of anodic flow field plate the stack μ-DMFC can obtain the maximum output, with voltage of 0. 5 V,current density of 81. 25 mA/cm2 and output power density of 7. 73 mW/cm2. This study shows that using silicon and PDMS as flow field plate respectively not only simplifies the structure of stack μ-DMFC but also cushions clamping force and effectively protects anodic flow field plate,and furthermore to increase the output of stack μ-DMFC by optimizing structure of flow channels on the anodic flow field plate.%在堆栈式微型直接甲醇燃料电池μ-DMFC(Micro-Direct Methanol Fuel Cell)中,为了避免硅基流场板因为封装压力过大而破裂,采用了硅和PDMS(Polydimethylsiloxane,聚二甲基硅氧烷)材料分别制作阳极和阴极流场板.首先,采用微机电系统MEMS(Micro-Electro-Mechanical Systems)技术制作硅基阳极流场板.其次,通过铜箔与阴极流场板一体成型、有机清洗和PDMS表面活化等改进措施显著提升了PDMS阴极流场板金属化的能力.最后,比较和分析阳极流场板上3

  1. Acceleration of Black Hole Universe

    Science.gov (United States)

    Zhang, Tianxi

    2012-05-01

    An alternative cosmological model called black hole universe has been recently proposed by the author. According to this model, the universe originated from a hot star-like black hole, and gradually grew up through a supermassive black hole to the present state by accreting ambient materials and merging with other black holes. The entire space is structured with an infinite number of layers hierarchically. The innermost three layers are the universe that we live, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and limits to zero for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general theory of relativity with the Robertson-Walker metric of space-time, and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. In this study. we will analyze the acceleration of black hole universe that accretes its ambient matter in an increasing rate. We will also compare the result obtained from the black hole universe model with the measurement of type Ia supernova and the result from the big bang cosmology.

  2. THE CENTRAL ENGINE STRUCTURE OF 3C120: EVIDENCE FOR A RETROGRADE BLACK HOLE OR A REFILLING ACCRETION DISK

    International Nuclear Information System (INIS)

    The broad-line radio galaxy 3C120 is a powerful source of both X-ray and radio emission including superluminal jet outflows. We report on our reanalysis of 160 ks of Suzaku data taken in 2006, previously examined by Kataoka et al. Spectral fits to the X-ray Imaging Spectrometer and Hard X-ray Detector/positive intrinsic negative data over a range of 0.7-45 keV reveal a well-defined iron K line complex with a narrow Kα core and relativistically broadened features consistent with emission from the inner regions of the accretion disk. Furthermore, the inner region of the disk appears to be truncated, with an inner radius of rin = 11.7+3.5–5.2 rg . If we assume that fluorescent iron line features terminate at the inner-most stable circular orbit (ISCO), then we measure a black hole spin of a-hat 0.8) can be ruled out at the 99% confidence level. Alternatively, the disk may be truncated well outside of the ISCO of a rapid prograde hole. The most compelling scenario is the possibility that the inner regions of the disk were destroyed/ejected by catastrophic instabilities just prior to the time these observations were made.

  3. Investigations on the Structure Tectonics, Geophysics, Geochemistry, and Hydrocarbon Potential of the Black Mesa Basin, Northeastern Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Colin; Carroll, Herbert; Erickson, Richard; George, Steve; Guo, Genliang; Reeves,T.K.; Sharma, Bijon; Szpakiewicz, Michael; Volk, Len

    1999-04-27

    The U.S. Department of Energy (DOE) has instituted a basin-analysis study program to encourage drilling in underexplored and unexplored areas and increase discovery rates for hydrocarbons by independent oil companies within the continental United States. The work is being performed at the DOE's National Institute for Petroleum and Energy Research (NIPER) in Bartlesville, Oklahoma, by the Exploration and Drilling Group within BDM-Oklahoma (BDM), the manager of the facility for DOE. Several low-activity areas in the Mid-Continent, west, and southwest were considered for the initial study area (Reeves and Carroll 1994a). The Black Mesa region in northwestern Arizona is shown on the U.S. Geological Survey 1995 oil and gas map of the United States as an undrilled area, adapted from Takahashi and Gautier 1995. This basin was selected by DOE s the site for the initial NIPER-BDM survey to develop prospects within the Lower-48 states (Reeves and Carroll 1994b).

  4. THE INFLUENCE OF FERTILIZERS ON THE FORMATION OF STRUCTURAL PARAMETERS OF YIELD AND QUALITY OF WINTER WHEAT ON LEACHED BLACK SOIL

    Directory of Open Access Journals (Sweden)

    Salenko E. A.

    2015-01-01

    Full Text Available This article describes the results of programming of a yield of winter wheat grain on quality and productivity of winter wheat in the conditions of teaching and experimental farm of Stavropol upland. There were given the weather conditions during the research, their influence on the formation of the structure yield and quality of winter wheat. We have presented an analysis and a comparative evaluation of the structure of the winter wheat crop, including a variety of quantitative traits: the length of the stem and ear, number of grains per ear, mass of one ear, weight of 1000 grains, tillering and overall productivity yields. This scientific article describes the technical requirements to the content: protein, gluten, vitreous, the DCO, the class of grain. In general, the results of 4-year data on leached black soils of Stavropol Upland were the largest and the best indicators on the structure of winter wheat yield and grain quality, as they were obtained with the introduction of the planned dose N126R80K72 harvest of 6.0 t/ha according to the method of calculation by V.V. Ageev, planned yield levels 5.0 and 6.0 t / ha have been achieved, the accuracy of programming (99% was obtained by calculating the doses of fertilizers by the method of V. V. Ageev

  5. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature.

    Science.gov (United States)

    Chaffin, Kimberly A; Wilson, Charles L; Himes, Adam K; Dawson, James W; Haddad, Tarek D; Buckalew, Adam J; Miller, Jennifer P; Untereker, Darrel F; Simha, Narendra K

    2013-11-01

    Segmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C). We also showed that the ultimate tensile properties of P35 and E2A were significantly compromised when the molar mass was reduced. Here, we show that the reduction in molar mass also correlated with a reduction in both the abrasion and fatigue resistance. The instantaneous wear rate of both P35 and E2A, when exposed to the reciprocating motion of an ethylene tetrafluoroethylene (ETFE) jacketed cable, increased with the inverse of the number averaged molar mass (1/Mn). Both materials showed a change in the wear surface when the number-averaged molar mass was reduced to ≈ 16 kg/mole, where a smooth wear surface transitioned to a 'spalling-like' pattern, leaving the wear surface with ≈ 0.3 mm cracks that propagated beyond the contact surface. The fatigue crack growth rate for P35 and E2A also increased in proportion to 1/Mn, after the molar mass was reduced below a critical value of ≈30 kg/mole. Interestingly, this critical molar mass coincided with that at which the single cycle stress-strain response changed from strain hardening to strain softening. The changes in both abrasion and fatigue resistance, key predictors for long term reliability of cardiac leads, after exposure of this class of PDMS-urethanes to water suggests that these materials are susceptible to mechanical compromise in vivo.

  6. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747

  7. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  8. Structure and properties of polyurethane elastomers modified with hydroxyl terminated polydimethylsiloxane containing carbonyl%含羰基端羟基硅氧烷改性聚氨酯弹性体的结构及性能

    Institute of Scientific and Technical Information of China (English)

    许双喜; 冯兴卓; 王鹏; 曹彦海; 黄自华

    2012-01-01

    A series of modified polyurethane elastomers ( SPUs) with hydroxyl terminated polydimethylsiloxane containing carbonyl (PDMS-C) were synthesized with polytetram-ethylene ether glycol (PTMG) and PDMS-C as mixing soft segments by prepolymer method. The structures of SPUs were characterized by Fourier transform infrared spectroscopy, and the effects of PTMG/PDMS-C ( mole ratio ) on mechanical properties and high/low temperature resistance of SPUs were investigated. The results showed that PDMS-C was grafted on to polyurethane chain segment successfully. The tensile strength of SPU decreased with increasing PDMS-C content, but the retention rate of tensile strength was evidently larger than that of the polyurethane elastomers modified with common hydroxyl terminated polydimethylsiloxane. The high/low temperature resistance of SPUs was improved to a certain degree with the increase of PDMS-C content.%以聚四氢呋喃醚二醇(PTMG)和含羰基的端羟基硅氧烷(PDMS -C)为混合软段,采用预聚体法合成了一系列PDMS -C改性聚氨酯弹性体(SPUs),用傅里叶变换红外光谱对其结构进行了表征,并考察了PTMG与PDMS -C的摩尔比对SPUs力学性能和耐高低温性能的影响.结果表明,PDMS -C成功接枝到聚氨酯链段中.随着PDMS -C含量的增大,SPUs的拉伸强度降低,但与普通端羟基硅氧烷改性聚氨酯相比,其拉伸强度保持率大幅提高;随着PDMS -C含量的增大,SPUs的耐高低温性能均得到改善.

  9. Interior design of a two-dimensional semiclassic black hole

    CERN Document Server

    Levanony, Dana; 10.1103/PhysRevD.80.084008

    2009-01-01

    We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. The field equations admit two types of singularities, and their local asymptotic structure is investigated. One of these singularities is found to develop, as a spacelike singularity, inside the black hole. We then study the internal structure of the evaporating black hole from the horizon to the singularity.

  10. Uniform droplet splitting and detection using Lab-on-Chip flow cytometry on a microfluidic PDMS device

    DEFF Research Database (Denmark)

    Kunstmann-Olsen, Casper; Hanczyc, Martin; Hoyland, James;

    2016-01-01

    A PDMS chip is fabricated using soft lithography and applied to investigate the formation and division of nitrobenzene (NB) droplets in a two-phase system stabilized by oleic acid. Using an integrated on-chip flow cytometer setup, effected with optical fibers, droplet size distributions are analy......A PDMS chip is fabricated using soft lithography and applied to investigate the formation and division of nitrobenzene (NB) droplets in a two-phase system stabilized by oleic acid. Using an integrated on-chip flow cytometer setup, effected with optical fibers, droplet size distributions...... are analyzed in situ based on optical signal intensities. By controlling the hydrodynamic flow focusing, uniform droplets of sizes between 100 μm and 300 μm are created with precise size control. Cross-flow shearing allows one to divide these droplets into anything from 2 to 9 individual droplets, depending...... on flow parameters....

  11. black cat

    Institute of Scientific and Technical Information of China (English)

    杜铁梅

    2016-01-01

    The black cat is a masterpiece of short fiction of Poe. He successfully solved the problem of creating of the horror effect by using scene description, symbol, repetition and first-person narrative methods. And created a complete and unified mysterious terror, achieved the effect of shocking. This paper aims to discuss the mystery in-depth and to enrich the research system in Poe’s novels.

  12. Investigation of contact electrification based broadband energy harvesting mechanism using elastic PDMS microstructures

    International Nuclear Information System (INIS)

    Triboelectric energy harvesting has recently garnered a lot of interest because of its easy fabrication and high power output. Contact electrification depends on the chemical properties of contacting materials. Another important factor in contact electrification mechanism is surfaces’ elastic and topographical characteristics. One of the biggest limitations of resonant mechanism based devices is their narrow operating bandwidth. This paper presents a broadband mechanism which utilizes stiffness induced in the cantilever motion due to contact between two triboelectric surfaces. We have conducted experiments using polydimethylsiloxane (PDMS) micropad patterns to study the effect of micropad array configuration on the performance of triboelectric energy harvesting devices. The maximum power output measured from the device was observed to be 0.69 μW at an acceleration of 1 g. Due to the non-linearity introduced by contact separation mechanism, the bandwidth of the triboelectric energy harvester was observed to be increased by 63% at an acceleration level of 1 g. A hybrid energy harvesting mechanism has also been demonstrated by compounding the triboelectric energy harvester with a piezoelectric bimorph. (paper)

  13. Transparent, superhydrophobic, and wear-resistant surfaces using deep reactive ion etching on PDMS substrates.

    Science.gov (United States)

    Ebert, Daniel; Bhushan, Bharat

    2016-11-01

    Surfaces that simultaneously exhibit superhydrophobicity, low contact angle hysteresis, and high transmission of visible light are of interest for many applications, such as optical devices, solar panels, and self-cleaning windows. Superhydrophobicity could also find use in medical devices where antifouling characteristics are desirable. These applications also typically require mechanical wear resistance. The fabrication of such surfaces is challenging due to the competing goals of superhydrophobicity and transmittance in terms of the required degree of surface roughness. In this study, deep reactive ion etching (DRIE) was used to create rough surfaces on PDMS substrates using a O2/CF4 plasma. Surfaces then underwent an additional treatment with either octafluorocyclobutane (C4F8) plasma or vapor deposition of perfluorooctyltrichlorosilane (PFOTCS) following surface activation with O2 plasma. The effects of surface roughness and the additional surface modifications were examined with respect to the contact angle, contact angle hysteresis, and optical transmittance. To examine wear resistance, a sliding wear experiment was performed using an atomic force microscope (AFM). PMID:27454031

  14. Transparent, superhydrophobic, and wear-resistant surfaces using deep reactive ion etching on PDMS substrates.

    Science.gov (United States)

    Ebert, Daniel; Bhushan, Bharat

    2016-11-01

    Surfaces that simultaneously exhibit superhydrophobicity, low contact angle hysteresis, and high transmission of visible light are of interest for many applications, such as optical devices, solar panels, and self-cleaning windows. Superhydrophobicity could also find use in medical devices where antifouling characteristics are desirable. These applications also typically require mechanical wear resistance. The fabrication of such surfaces is challenging due to the competing goals of superhydrophobicity and transmittance in terms of the required degree of surface roughness. In this study, deep reactive ion etching (DRIE) was used to create rough surfaces on PDMS substrates using a O2/CF4 plasma. Surfaces then underwent an additional treatment with either octafluorocyclobutane (C4F8) plasma or vapor deposition of perfluorooctyltrichlorosilane (PFOTCS) following surface activation with O2 plasma. The effects of surface roughness and the additional surface modifications were examined with respect to the contact angle, contact angle hysteresis, and optical transmittance. To examine wear resistance, a sliding wear experiment was performed using an atomic force microscope (AFM).

  15. Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging.

    Science.gov (United States)

    Quinto-Su, Pedro A; Lai, Hsuan-Hong; Yoon, Helen H; Sims, Christopher E; Allbritton, Nancy L; Venugopalan, Vasan

    2008-03-01

    We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at lambda = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications. PMID:18305858

  16. A Method to Obtain Gas-PDMS Membrane Interaction Parameters for UNIQUAC Model

    Institute of Scientific and Technical Information of China (English)

    LIN Dongjie; DING Zhongwei; LIU Liying; MA Runyu

    2013-01-01

    The recovery or capture of one or more components from gas mixture by membrane separation has become a research focus in recent years.This study investigates the gas-membrane solution equilibrium,for which Henry's law is not applicable if the gas phase is a mixture.This problem can be solved by using UNIQUAC model to calculate the activity coefficient of gas dissolved in the membrane.A method was proposed in this study to obtain the gas-membrane interaction parameter for UNIQUAC model.By the experiments of gas permeation through polydimethylsiloxane PDMS membrane,the solubility coefficients of some gases (N2,CO2,CH4) were measured.Through non-linear fitting UNIQUAC model to the experimental results from this study and in literature (H2,O2,C3H8),the gas-membrane interaction parameters for these gases were obtained.Based on these parameters,the activity coefficients of the dissolved gas were calculated by UNIQUAC model,and their values agree well with the experimental data.These results confirm the feasibility and effectiveness of the proposed method,which makes it possible to better predict gas-membrane solution equilibrium.

  17. Effect of linkage disequilibrium on inferences of population structure and introgression of iberian and black honey bees

    OpenAIRE

    Chavez-Galarza, Julio; Henriques, Dora; Kryger, Per; De La Rúa, Pilar; Johnston, J. Spencer; Rufino, José; Pinto, M. Alice

    2012-01-01

    Identification of population structure, a primary goal in population genetics, is easily performed because there is a number of methods available, implemented by user-friendly software packages. However, the user must be cautious when inferring population structure because spurious results may be obtained when there is strong linkage disequilibrium. With recent development of high-density SNPs we have now more power to interrogate the honey bee genome. However, the greater the number of loci ...

  18. Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Dimitrov, Ivaylo; Daugaard, Anders Egede;

    2013-01-01

    by 35%. The contact angle of PDMS films was increased from 108° to 116° by the introduction of a small poly(pentafluorostyrene) chain. Finally, 17α-ethynyl-1,3,5(10)-estratriene-3,17β-diol and 1-ethynyl-3,5- bis(trifluoromethyl)benzene were incorporated as examples of other functional groups. © 2013...... The Royal Society of Chemistry....

  19. Nanoparticle-Incorporated PDMS Film as an Improved Performance SPME Fiber for Analysis of Volatile Components of Eucalyptus Leaf

    Directory of Open Access Journals (Sweden)

    Parviz Aberoomand Azar

    2013-01-01

    Full Text Available A new fabrication strategy was proposed to prepare polydimethylsiloxane (PDMS- coated solid-phase microextraction (SPME on inexpensive and unbreakable Cu fiber. PDMS was covalently bonded to the Cu substrate using self-assembled monolayer (SAM of (3-mercaptopropyltrimethoxysilane (3MPTS as binder. To increase the performance of the fiber, the incorporation effect of some nanomaterials including silica nanoparticles (NPs, carbon nanotubes (CNTs, and carboxylated carbon nanotubes (CNT-COOH to PDMS coating was compared. The surface morphology of the prepared fibers was characterized by scanning electron microscopy (SEM, and their applicability was evaluated through the extraction of some volatile organic compounds (VOCs of Eucalyptus leaf in headspace mode, and parameters affecting the extraction efficiency including extraction temperature and extraction time were optimized. Extracted compounds were analyzed by GC-MS instrument. The results obtained indicated that prepared fibers have some advantages relative to previously prepared SPME fibers, such as higher thermal stability and improved performance of the fiber. Also, results showed that SPME is a fast, simple, quick, and sensitive technique for sampling and sample introduction of Eucalyptus VOCs.

  20. A Contact Angle Study of the Interaction between Embedded Amphiphilic Molecules and the PDMS Matrix in an Aqueous Environment

    Directory of Open Access Journals (Sweden)

    Wenjun Qiu

    2014-08-01

    Full Text Available Poly(dimethylsiloxane (PDMS surface modification via gradient-induced transport of embedded amphiphilic molecules is a novel, easy, flexible, and environmentally friendly approach for reducing protein adsorption on PDMS in microfluidic applications. To better understand the processing and the potential use in the viability-sensitive applications such as manipulation and culturing of primary neural cells, we systematically investigate how embedded molecules interact with a PDMS matrix and its surface in aqueous environments by studying the wetting angle over time under various processing conditions, including water exposure time, water exposure temperature, curing master materials, in addition to comparing different embedded amphiphilic molecules. The results indicate that the water exposure time clearly plays an important role in the surface properties. Our interpretation is that molecular rearrangement of the surface-embedded molecules improves surface coverage in the short term; while over a longer period, the transport of molecules embedded in the bulk enhance its coverage. However, this improvement finally terminates when molecules transported from the bulk to the surface are not sufficient to replace the molecules leaching into the water.

  1. Black Holes From the Dark Ages: Exploring the Reionization Era and Early Structure Formation With Quasars and Gamma-Ray Bursts

    CERN Document Server

    Djorgovski, S G

    2004-01-01

    The cosmic reionization era, which includes formation of the first stars, galaxies, and AGN, is now one of the most active frontiers of cosmological research. We review briefly our current understanding of the early structure formation, and use the ideas about a joint formation of massive black holes (which power the early QSOs) and their host galaxies to employ high-redshift QSOs as probes of the early galaxy formation and primordial large-scale structure. There is a growing evidence for a strong biasing in the formation of the first luminous sources, which would lead to a clumpy reionization. Absorption spectroscopy of QSOs at z > 6 indicates the end of the reionization era at z ~ 6; yet measurements from the WMAP satellite suggest and early reionization at z ~ 10 - 20. The first generation of massive stars, perhaps aided by the early mini-quasars, may have reionized the universe at such high redshifts, but their feedback may have disrupted the subsequent star and galaxy formation, leading to an extended an...

  2. Stand structure and yield of the mixed white poplar and black locust plantations on sandy ridges between the Danube and Tisza rivers in Hungary

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The paper deals with the stand structure and yield of black locust (Robinia pseudoacacia L.) forests mixed with white (Populus alba L.) in various proportions, partly applying a new methodological approach. The main stand structure and yield factors were determined separately for each species, measured stem by stem, using the volume functions prepared for each species. The ratio of the volumes of the species (A and B) in mixed and in pure stands (based on volume tables) was determined. A close relationship has been found between the ratio by relative total volume and the proportion (by the number of stems) of the species. The relative surplus in the volume of the mixed stands varied between 1.24-1.55 at the age of 16 compared to the control, i.e. the yield of pure stands of the species concerned. The trial has also proven that if two species have a fast initial growth rate and a similar rotation age, they can be planted in mixed stands resulting in mutual advantages.

  3. The renaissance of black phosphorus

    Science.gov (United States)

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S.

    2015-04-01

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field.

  4. Surface modification of poly(dimethylsiloxane) (PDMS) microchannels with DNA capture-probes for potential use in microfluidic DNA analysis systems

    Science.gov (United States)

    Khodakov, Dmitriy A.; Thredgold, Leigh D.; Lenehan, Claire E.; Andersson, Gunther A.; Kobus, Hilton; Ellis, Amanda V.

    2011-12-01

    Poly(dimethylsiloxane) (PDMS) is an elastomeric material used for microfluidic devices and is especially suited to medical and forensic applications. This is due to its relatively low cost, ease of fabrication, excellent optical transmission characteristics and its ability to support electroosmotic flow, required during electrophoretic separations. These aspects combined with its large range of surface modification chemistries, make PDMS an attractive substrate in microfluidic devices for, in particular, DNA separation. Here, we report the successful wet chemical surface modification of PDMS microchannels using a simple three step method to produce an isothiocyanate-terminated surface. Initially, PDMS was oxygen plasma treated to produce a silanol-terminated surface, this was then reacted with 3-aminopropyltriethoxysilane with subsequent reaction of the now amine-terminated surface with p-phenylenediisothiocyanate. Water contact angle measurements both before and after modification showed a reduction in hydrophobicity from 101o for native PDMS to 94o for the isothiocyante-terminated PDMS. The isothiocyanate-terminated surface was then coupled with an amineterminated single-stranded DNA (ssDNA) oligonucleotide capture probe via a thiourea linkage. Confirmation of capture probe attachment was observed using fluorescent microscopy after hybridization of the capture probes with fluorescently labeled complimentary ssDNA oligonucleotides.

  5. Fabrication of the replica templated from butterfly wing scales with complex light trapping structures

    Science.gov (United States)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-11-01

    The polydimethylsiloxane (PDMS) positive replica templated twice from the excellent light trapping surface of butterfly Trogonoptera brookiana wing scales was fabricated by a simple and promising route. The exact SiO2 negative replica was fabricated by using a synthesis method combining a sol-gel process and subsequent selective etching. Afterwards, a vacuum-aided process was introduced to make PDMS gel fill into the SiO2 negative replica, and the PDMS gel was solidified in an oven. Then, the SiO2 negative replica was used as secondary template and the structures in its surface was transcribed onto the surface of PDMS. At last, the PDMS positive replica was obtained. After comparing the PDMS positive replica and the original bio-template in terms of morphology, dimensions and reflectance spectra and so on, it is evident that the excellent light trapping structures of butterfly wing scales were inherited by the PDMS positive replica faithfully. This bio-inspired route could facilitate the preparation of complex light trapping nanostructure surfaces without any assistance from other power-wasting and expensive nanofabrication technologies.

  6. Imagine the Universe! The Anatomy of Black Holes. Probing the Structure & Evolution of the Cosmos. An Information and Activity Booklet. Grades 9-12, 1998-1999.

    Science.gov (United States)

    Whitlock, Laura A.; Granger, Kara C.; Mahon, Jane D.

    The information provided in this booklet is meant to give the necessary background information so that the science of black holes can be taught confidently to secondary students. The featured activities can be used to engage and excite students about the topic of black holes in different disciplines and in a number of ways. Activities include: (1)…

  7. Black Holes in Higher-Dimensional Gravity

    CERN Document Server

    Obers, Niels A

    2008-01-01

    These lectures review some of the recent progress in uncovering the phase structure of black hole solutions in higher-dimensional vacuum Einstein gravity. The two classes on which we focus are Kaluza-Klein black holes, i.e. static solutions with an event horizon in asymptotically flat spaces with compact directions, and stationary solutions with an event horizon in asymptotically flat space. Highlights include the recently constructed multi-black hole configurations on the cylinder and thin rotating black rings in dimensions higher than five. The phase diagram that is emerging for each of the two classes will be discussed, including an intriguing connection that relates the phase structure of Kaluza-Klein black holes with that of asymptotically flat rotating black holes.

  8. The US Decentred: From Black Social Death to Cultural Transformation

    Directory of Open Access Journals (Sweden)

    Saer Maty Ba

    2011-09-01

    Full Text Available A review of Frank B. Wilderson III, Red, Black and White: Cinema and the Structure of US Antagonisms (Duke, 2010 and Patricia de Santan Pinho, Mama Africa: Reinventing Blackness in Bahia (Duke, 2010.

  9. Particles that slide over the water surface: Synthesis and characterization of iron oxides particles coated with PDMS, with hydrophobic and magnetic properties

    International Nuclear Information System (INIS)

    Magnetic nanoparticles have been of great scientific interest because of their possible industrial and biomedical applications. The magnetic iron oxide was synthesized by the co precipitation of alkaline hydrolysis of ions Fe2+ and Fe3+ in aqueous system. The coated particles were obtained by heating (50 and 250 °C) mixed magnetic iron oxide and polydimethylsiloxane oil for 30 min obtaining magnetic dust particles with hydrophobic behavior. These were used to learn the dragging effects and removal of nonpolar organic compound in aqueous systems. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), chemical analysis by potenciometric titration, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), contact angle measurement and Mössbauer spectroscopy. The diffractogram of X-ray presented peaks that were assigned to presence of spinel structure maghemite and magnetite with medium sized crystallites of 10.95 nm for the polymeric coated magnetic iron oxide, confirmed by TEM, with superparamagnetic character, also confirmed by VSM. The infrared spectrum showed absorption band at 570 cm−1 characteristic of the Fe-O bonding in inverted spinel structure and the absorption bands in 1263, 1105, 1025 and 800 cm−1 indicating the presence of PDMS on the magnetic iron oxide particles. Thermogravimetric analysis has been used to estimate the sample thermal stability of polymeric material (9.7 ± 4) % on the inorganic matrices. Contact angle measurement of the coated samples at 250 °C presented a better nonpolar character in comparison to the coated samples at 50 °C. The samples at room temperature (25 °C) presented the phases of magnetite and maghemite which were also confirmed by Mössbauer spectroscopy. It was possible to obtain iron oxides particles coated with PDMS, with hydrophobic and magnetic properties, which slide over the water surface when

  10. Particles that slide over the water surface: Synthesis and characterization of iron oxides particles coated with PDMS, with hydrophobic and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Souza Neto, Francisco N.de [Sciences and Technology Unit of the University – UnUCET, State University of Goiás, 75132-903 Anápolis, GO (Brazil); Araújo, Olacir Alves, E-mail: olacir.araujo@ueg.br [Sciences and Technology Unit of the University – UnUCET, State University of Goiás, 75132-903 Anápolis, GO (Brazil); Guilherme, Luciana R.; Garg, Vijayendra K. [Sciences and Technology Unit of the University – UnUCET, State University of Goiás, 75132-903 Anápolis, GO (Brazil); Oliveira, Aderbal C.; Souza, Paulo E.N. de [Institute of Physics, University of Brasília, 70910-900 Brasília, DF (Brazil); Franco Júnior, Adolfo [Institute of Physics, Federal University of Goiás, 74001-970 Goiânia, GO (Brazil)

    2015-07-15

    Magnetic nanoparticles have been of great scientific interest because of their possible industrial and biomedical applications. The magnetic iron oxide was synthesized by the co precipitation of alkaline hydrolysis of ions Fe{sup 2+} and Fe{sup 3+} in aqueous system. The coated particles were obtained by heating (50 and 250 °C) mixed magnetic iron oxide and polydimethylsiloxane oil for 30 min obtaining magnetic dust particles with hydrophobic behavior. These were used to learn the dragging effects and removal of nonpolar organic compound in aqueous systems. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), chemical analysis by potenciometric titration, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), contact angle measurement and Mössbauer spectroscopy. The diffractogram of X-ray presented peaks that were assigned to presence of spinel structure maghemite and magnetite with medium sized crystallites of 10.95 nm for the polymeric coated magnetic iron oxide, confirmed by TEM, with superparamagnetic character, also confirmed by VSM. The infrared spectrum showed absorption band at 570 cm{sup −1} characteristic of the Fe-O bonding in inverted spinel structure and the absorption bands in 1263, 1105, 1025 and 800 cm{sup −1} indicating the presence of PDMS on the magnetic iron oxide particles. Thermogravimetric analysis has been used to estimate the sample thermal stability of polymeric material (9.7 ± 4) % on the inorganic matrices. Contact angle measurement of the coated samples at 250 °C presented a better nonpolar character in comparison to the coated samples at 50 °C. The samples at room temperature (25 °C) presented the phases of magnetite and maghemite which were also confirmed by Mössbauer spectroscopy. It was possible to obtain iron oxides particles coated with PDMS, with hydrophobic and magnetic properties, which slide over the

  11. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  12. Formation of Supermassive Black Holes

    CERN Document Server

    Volonteri, Marta

    2010-01-01

    Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~ 0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.

  13. Black Holes and Fourfolds

    CERN Document Server

    Bena, Iosif; Vercnocke, Bert

    2012-01-01

    We establish the relation between the structure governing supersymmetric and non-supersymmetric four- and five-dimensional black holes and multicenter solutions and Calabi-Yau flux compactifications of M-theory and type IIB string theory. We find that the known BPS and almost-BPS multicenter black hole solutions can be interpreted as GKP compactifications with (2,1) and (0,3) imaginary self-dual flux. We also show that the most general GKP compactification leads to new classes of BPS and non-BPS multicenter solutions. We explore how these solutions fit into N=2 truncations, and elucidate how supersymmetry becomes camouflaged. As a necessary tool in our exploration we show how the fields in the largest N=2 truncation fit inside the six-torus compactification of eleven-dimensional supergravity.

  14. Strain Sensors with Adjustable Sensitivity by Tailoring the Microstructure of Graphene Aerogel/PDMS Nanocomposites.

    Science.gov (United States)

    Wu, Shuying; Ladani, Raj B; Zhang, Jin; Ghorbani, Kamran; Zhang, Xuehua; Mouritz, Adrian P; Kinloch, Anthony J; Wang, Chun H

    2016-09-21

    Strain sensors with high elastic limit and high sensitivity are required to meet the rising demand for wearable electronics. Here, we present the fabrication of highly sensitive strain sensors based on nanocomposites consisting of graphene aerogel (GA) and polydimethylsiloxane (PDMS), with the primary focus being to tune the sensitivity of the sensors by tailoring the cellular microstructure through controlling the manufacturing processes. The resultant nanocomposite sensors exhibit a high sensitivity with a gauge factor of up to approximately 61.3. Of significant importance is that the sensitivity of the strain sensors can be readily altered by changing the concentration of the precursor (i.e., an aqueous dispersion of graphene oxide) and the freezing temperature used to process the GA. The results reveal that these two parameters control the cell size and cell-wall thickness of the resultant GA, which may be correlated to the observed variations in the sensitivities of the strain sensors. The higher is the concentration of graphene oxide, then the lower is the sensitivity of the resultant nanocomposite strain sensor. Upon increasing the freezing temperature from -196 to -20 °C, the sensitivity increases and reaches a maximum value of 61.3 at -50 °C and then decreases with a further increase in freezing temperature to -20 °C. Furthermore, the strain sensors offer excellent durability and stability, with their piezoresistivities remaining virtually unchanged even after 10 000 cycles of high-strain loading-unloading. These novel findings pave the way to custom design strain sensors with a desirable piezoresistive behavior.

  15. Air-stable supported membranes for single-cell cytometry on PDMS microchips.

    Science.gov (United States)

    Phillips, K Scott; Kang, Kyung Mo; Licata, Louise; Allbritton, Nancy L

    2010-04-01

    Protein-reinforced supported bilayer membranes (rSBMs) composed of phosphatidylcholine (PC), biotin-PE and Neutravidin were used to coat hybrid microchips composed of polydimethylsiloxane (PDMS) and glass. Since the coatings required a freshly oxidized, hydrophilic substrate, a novel method to rapidly connect reservoirs using plasma oxidation was first developed and found to support up to 5.2 N cm(-2) (1.5 N) pull-off force. rSBMs were then assembled in the oxidized hydrophilic channels. The electroosmotic mobility (mu(eo)) of rSBM-coated channels was measured over a 3 h time to evaluate the stability of the coatings for microchip electrophoresis. rSBM-coated microchips with a simple cross-design had excellent properties for microchip separations, yielding efficiencies of up to 700,000 plates m(-1) for fluorescent dyes and peptides. The separation performance of rSBM and PC-coated channels was evaluated after repeatedly drying and rehydrating the channels. The separation efficiency of fluorescein on PC-coated devices decreased by 40% after one dehydration cycle and nearly 75% after 3 cycles. In contrast for rSBM-coated devices there was no significant change in the fluorescein efficiency until the third cycle (10% decreased efficiency). rSBM-coated channels were also markedly more stable when placed in a dehydrated state during long-term storage compared to PC-coated channels, and showed reduced chip failure and no reduction in performance for up to one month of dehydrated storage. Finally, rSBM-coated devices were used to perform single-cell cytometry. Microchips that had been dehydrated, stored two weeks, and rehydrated prior to use demonstrated similar performance to newly coated devices for the separation of fluorescein and carboxyfluorescein from single cells. Thus rSBM-coated devices were rugged withstanding electric fields, prolonged storage under dehydrated conditions, and biofouling by cellular constituents while maintaining excellent separation

  16. Thermal degradation in a trimodal PDMS network by 1H Multiple Quantum NMR

    Energy Technology Data Exchange (ETDEWEB)

    Giuliani, J R; Gjersing, E L; Chinn, S C; Jones, T V; Wilson, T S; Alviso, C T; Herberg, J L; Pearson, M A; Maxwell, R S

    2007-06-06

    Thermal degradation of a filled, crosslinked siloxane material synthesized from PDMS chains of three different average molecular weights and with two different crosslinking species has been studied by {sup 1}H Multiple Quantum (MQ) NMR methods. Multiple domains of polymer chains were detected by MQ NMR exhibiting Residual Dipolar Coupling (<{Omega}{sub d}>) values of 200 Hz and 600 Hz, corresponding to chains with high average molecular weight between crosslinks and chains with low average molecular weight between crosslinks or near the multifunctional crosslinking sites. Characterization of the <{Omega}{sub d}> values and changes in <{Omega}{sub d}> distributions present in the material were studied as a function of time at 250 C and indicates significant time dependent degradation. For the domains with low <{Omega}{sub d}>, a broadening in the distribution was observed with aging time. For the domain with high <{Omega}{sub d}>, increases in both the mean <{Omega}{sub d}> and the width in <{Omega}{sub d}> were observed with increasing aging time. Isothermal Thermal Gravimetric Analysis (TGA) reveals a 3% decrease in weight over 20 hours of aging at 250 C. Degraded samples also were analyzed by traditional solid state {sup 1}H NMR techniques and offgassing products were identified by Solid Phase MicroExtraction followed by Gas Chromatography-Mass Spectrometry (SPME GC-MS). The results, which will be discussed here, suggest that thermal degradation proceeds by complex competition between oxidative chain scissioning and post-curing crosslinking that both contribute to embrittlement.

  17. PIXE, 252Cf-PDMS and radiochemistry applied for soil and vegetable analysis

    International Nuclear Information System (INIS)

    The aim of this work is to identify the elements present in vegetables and soils using PIXE (particle induced X-rays emission) and 252Cf-PDMS (252Cf plasma desorption mass spectrometry) techniques in order to estimate the possible influence of soil and agricultural techniques in the metal absorption by the vegetables. In this work, metal concentrations were evaluated in soil and vegetable samples from several regions, where different agricultural techniques were employed. Si, Zr, Ce, Th, Sc and Pb identified in the soil samples were not biologically available. Ga, Ge, As and Br identified in the tubercles indicate that spray pesticide used on the vegetable leaves was absorbed by them. 232Th and 238U present in the soil were not absorbed by the vegetables. The airborne particles from anthropogenic sources (as CFn, VCn) were absorbed by the vegetables. Compounds from mineral sources present in soil as V+, VCO3, HPO4, Cr+, CrOH+, Mn+, FeH+, Fe(OH)n and in the bioorganic compounds as N+, Ca(China)n+ and CnH+ were identified in vegetables. The metal absorption by the vegetables is not dependent of the metal concentration in soil. Different tubercles cultivated in the same soil show similar metal absorption. The exogenous contributions such as the elements present in water irrigation, pesticides, fertilizers and airborne particles deposited on leaves can be absorbed by vegetables. The absorption by the roots depends on the chemical compound of the elements. The use of pesticide sprays and air pollution can cause more contamination in the vegetables than in soil. The use of this methodology allows the identification of possible sources of metals in soils and in vegetables and the metal speciation

  18. Highly-compliant, microcable neuroelectrodes fabricated from thin-film gold and PDMS.

    Science.gov (United States)

    McClain, Maxine A; Clements, Isaac P; Shafer, Richard H; Bellamkonda, Ravi V; LaPlaca, Michelle C; Allen, Mark G

    2011-04-01

    Bio-electrodes have traditionally been made of materials such as metal and silicon that are much stiffer than the tissue from which they record or stimulate. This difference in mechanical compliance can cause incomplete or ineffective contact with the tissue. The electrode stiffness has also been hypothesized to cause chronic low-grade injury and scar-tissue encapsulation, reducing stimulation and recording efficiency. As an initial step to resolve these issues with electrode performance, we have developed and characterized electrically-functional, low-Young's modulus, microcable-shaped neuroelectrodes and demonstrated electrophysiological recording functionality. The microcable geometry gives the electrodes a similar footprint to traditional wire and microwire neuroelectrodes, while reducing the difference in Young's modulus from nervous tissue by orders of magnitude. The electrodes are composed of PDMS and thin-film gold, affording them a high-level of compliance that is well suited for in vivo applications. The composite Young's modulus of the electrode was experimentally determined to be 1.81 ± 0.01 MPa. By incorporating a high-tear-strength silicone, Sylgard 186, the load at failure was increased by 92%, relative to that of the commonly used Sylgard 184. The microcable electrodes were also electromechanically tested, with measurable conductivity (220 kΩ) at an average 8% strain (n = 2) after the application of 200% strain. Electrophysiological recording is demonstrated by wrapping the electrode around a peripheral nerve, utilizing the compliance and string-like profile of the electrode for effective recording in nerve tissue.

  19. Edge phonons in black phosphorus.

    Science.gov (United States)

    Ribeiro, H B; Villegas, C E P; Bahamon, D A; Muraca, D; Castro Neto, A H; de Souza, E A T; Rocha, A R; Pimenta, M A; de Matos, C J S

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  20. The fabrication of microfluidic structures by means of full-wafer adhesive bonding using a poly(dimethylsiloxane) catalyst

    Science.gov (United States)

    Samel, Björn; Kamruzzaman Chowdhury, M.; Stemme, Göran

    2007-08-01

    In this work, we present the use of a PDMS (poly(dimethylsiloxane)) curing-agent as the intermediate layer for adhesive full-wafer bonding suitable for fabrication of microfluidic structures. The curing-agent of the two-component silicone rubber (Sylgard 184) is spin coated on a substrate, brought into contact with another PDMS layer and heat cured to create an irreversible seal which is as strong as or even stronger than plasma-assisted PDMS bonding. The maximum bond strength is measured to 800 kPa when bonding together PDMS and silicon. The applicability of the new PDMS adhesive bonding method is verified by means of fabricating microfluidic structures. Using this method allows for wafer-level bonding of PDMS to various materials such as PDMS, glass or silicon and more importantly to selectively bond different layers by using a patterned adhesive bonding technique. Moreover, precise alignment of the structural layers is facilitated since curing is initiated upon heat which is an advantage when fabricating multilayer microfluidic devices.