WorldWideScience

Sample records for black pdms structures

  1. Accounting for PDMS shrinkage when replicating structures

    DEFF Research Database (Denmark)

    Madsen, Morten Hannibal; Feidenhans'l, Nikolaj Agentoft; Hansen, Poul-Erik

    2014-01-01

    are seldom applied to counteract the shrinkage of PDMS. Also, to perform metrological measurements using replica techniques one has to take the shrinkage into account. Thus we report a study of the shrinkage of PDMS with several different mixing ratios and curing temperatures. The shrinkage factor, with its...... associated uncertainty, for PDMS in the range 40 to 120 °C is provided. By applying this correction factor, it is possible to replicate structures with a standard uncertainty of less than 0.2% in lateral dimensions using typical curing temperatures and PDMS mixing ratios in the range 1:6 to 1:20 (agent:base)....

  2. Thermal conductivity and stability of nano size carbon black filled PDMS: Fuel cell perspective

    CSIR Research Space (South Africa)

    Chen, H

    2011-01-01

    Full Text Available resin-CB composites (with 70wt% loading). Keywords: Polydimethylsiloxane (PDMS); Polymer nanocomposite, Carbon black; Thermal conductivity; Thermal stability; Fuel cell Biographical notes: Hao Chen received his bachelor degree honours in physics... initiative (SANi), his current main research focus is related to smart and engineered nano-materials for photonics and renewable energy applications. Prof. V. Vasudeva Rao holds Bachelors Degree in Mechanical Engineering, Masters Degree...

  3. Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting

    Science.gov (United States)

    Migliaccio, Christopher P.; Lazarus, Nathan

    2015-10-01

    Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.

  4. Thermal and bonding properties of nano size carbon black filled PDMS

    CSIR Research Space (South Africa)

    Chen, H

    2009-12-01

    Full Text Available is compared to PDMS/CF/PPy and PDMS-Pth composites in the literature5.6. For example, in PDMS-CB composites the weight loss is only 10 – 15% at ~ 500 ºC, which is better as compared to 18% weight loss at 399 ºC in PDMS-CF/PPy compsites5. Also in the case... of PDMS-Pth composite, Mehmet Sankir et al6 reported a derivative peak due to solvent loss at 75 ºC. We do not have any such solvent loss low temperature peak for our samples (see Fig 3). Further in PDMS-Pth composite the onset of degradation starts...

  5. A Facile Method and Novel Mechanism Using Microneedle-Structured PDMS for Triboelectric Generator Applications.

    Science.gov (United States)

    Trinh, Van-Long; Chung, Chen-Kuei

    2017-08-01

    The triboelectric generator (TEG) is a cost-effective, multi-fabricated, friendly mechanical-energy-harvesting device. The traditional TEG, generally formed by two triboelectric materials in multilayers or a simple pattern, generated triboelectricity as it worked in the cycling contact-separation operation. This paper demonstrates a novel, high-aspect-ratio, microneedle (MN)-structured polydimethylsiloxane (PDMS)-based triboelectric generator (MN-TEG) by means of a low-cost, simple fabrication using CO 2 laser ablation on the polymethyl methacrylate substrate and a molding process. The MN-TEG, consisting of an aluminum foil and a microneedle-structured PDMS (MN-PDMS) film, generates an output performance with an open-circuit voltage up to 102.8 V, and a short-circuit current of 43.1 µA, corresponding to the current density of 1.5 µA cm -2 . With introducing MN-PDMS into the MN-TEG, a great increase of randomly closed bending-friction-deformation (BFD) behavior of MNs leads to highly enhanced triboelectric performance of the MN-TEG. The BFD keeps increasingly on in-contact between MN with Al that results in enhancement of electrical capacitance of PDMS. The effect of aspect ratio and density of MN morphology on the output performance of MN-PDMS TEG is studied further. The MN-TEG can rapidly charge electric energy on a 0.1 µF capacitor up to 2.1 V in about 0.56 s. The MN-TEG source under tapping can light up 53 light-emitting diodes with different colors, connected in series. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Micro-pyramidal structure fabrication on polydimethylsiloxane (PDMS) by Si (100) KOH wet etching

    Science.gov (United States)

    Hwang, Shinae; Lim, Kyungsuk; Shin, Hyeseon; Lee, Seongjae; Jang, Moongyu

    2017-10-01

    A high degree of accuracy in bulk micromachining is essential to fabricate micro-electro-mechanical systems (MEMS) devices. A series of etching experiments is carried out using 40 wt% KOH solutions at the constant temperature of 70 °C. Before wet etching, SF6 and O2 are used as the dry etching gas to etch the masking layers of a 100 nm thick Si3N4 and SiO2, respectively. The experimental results indicate that (100) silicon wafer form the pyramidal structures with (111) single crystal planes. All the etch profiles are analyzed using Scanning Electron Microscope (SEM) and the wet etch rates depend on the opening sizes. The manufactured pyramidal structures are used as the pattern of silicon mold. After a short hardening of coated polydimethylsiloxane (PDMS) layer, micro pyramidal structures are easily transferred to PDMS layer.

  7. Porous PDMS structures for the storage and release of aqueous solutions into fluidic environments.

    Science.gov (United States)

    Thurgood, Peter; Baratchi, Sara; Szydzik, Crispin; Mitchell, Arnan; Khoshmanesh, Khashayar

    2017-07-11

    Typical microfluidic systems take advantage of multiple storage reservoirs, pumps and valves for the storage, driving and release of buffers and other reagents. However, the fabrication, integration, and operation of such components can be difficult. In particular, the reliance of such components on external off-chip equipment limits their utility for creating self-sufficient, stand-alone microfluidic systems. Here, we demonstrate a porous sponge made of polydimethylsiloxane (PDMS), which is fabricated by templating microscale water droplets using a T-junction microfluidic structure. High-resolution microscopy reveals that this sponge contains a network of pores, interconnected by small holes. This unique structure enables the sponge to passively release stored solutions very slowly. Proof-of-concept experiments demonstrate that the sponge can be used for the passive release of stored solutions into narrow channels and circular well plates, with the latter used for inducing intracellular calcium signalling of immobilised endothelial cells. The release rate of stored solutions can be controlled by varying the size of interconnecting holes, which can be easily achieved by changing the flow rate of the water injected into the T-junction. We also demonstrate the active release of stored liquids into a fluidic channel upon the manual compression of the sponge. The developed PDMS sponge can be easily integrated into complex micro/macro fluidic systems and prepared with a wide array of reagents, representing a new building block for self-sufficient microfluidic systems.

  8. Two-dimensional nanopatterning by PDMS relief structures of polymeric colloidal crystals

    Science.gov (United States)

    Nam, Hye Jin; Kim, Ju-Hee; Jung, Duk-Young; Park, Jong Bae; Lee, Hae Seong

    2008-06-01

    A new constructive method of fabricating a nanoparticle self-assembly on the patterned surface of a poly(dimethylsiloxane) (PDMS) relief nanostructure was demonstrated. Patterned PDMS templates with close-packed microwells were fabricated by molding against a self-assembled monolayer of polystyrene spheres. Alkanethiol-functionalized gold nanoparticles with an average particle size of 2.5 nm were selectively deposited onto a hydrophobic self-assembled monolayer printed on the substrate by the micro-contact printing (μCP) of the prepared PDMS microwell, in which the patterned gold nanoparticles consisted of close-packed hexagons with an average diameter of 370 nm. In addition, two-dimensional colloidal crystals derived from PMMA microspheres with a diameter of 380 nm and a negative surface charge were successfully formed on the hemispherical microwells by electrostatic force using positively charged PAH-coated PDMS as a template to produce multidimensional nanostructures.

  9. A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips

    KAUST Repository

    Zhang, Mengying

    2010-01-01

    We report a simple methodology to fabricate PDMS multi-layer microfluidic chips. A PDMS slab was surface-treated by trichloro (1H,1H,2H,2H-perfluorooctyl) silane, and acts as a reusable transferring layer. Uniformity of the thickness of the patterned PDMS layer and the well-alignment could be achieved due to the transparency and proper flexibility of this transferring layer. Surface treatment results are confirmed by XPS and contact angle testing, while bonding forces between different layers were measured for better understanding of the transferring process. We have also designed and fabricated a few simple types of 3D PDMS chip, especially one consisting of 6 thin layers (each with thickness of 50 μm), to demonstrate the potential utilization of this technique. 3D fluorescence images were taken by a confocal microscope to illustrate the spatial characters of essential parts. This fabrication method is confirmed to be fast, simple, repeatable, low cost and possible to be mechanized for mass production. © The Royal Society of Chemistry 2010.

  10. Fabrication of Photonic Crystal Structures on Flexible Organic Light-Emitting Diodes by Using Nano-Imprint and PDMS Mold

    Directory of Open Access Journals (Sweden)

    Ho Ting-Lin

    2016-01-01

    Full Text Available In this paper, nanoimprint lithography was used to create a photonic crystals structure film in organic light-emitting diode (OLED component, and then compare the efficiency of components whether with nanostructure or not. By using two different kinds of mold, such as silicon mold and PDMS mold, the nano structures in PMMA (molecular weight of 350K were fabricated. Nanostructures in period of 403.53nm with silicon mold and nano structures in period of 385.64nm with PDMS mold as photonic crystal films were fabricated and were integrated into OLED. In experimental results, the OLED without photonic crystal films (with packing behaves 193.3cd/m2 for luminous intensity, 3.481cd/A for lightening efficiency (ηL and 0.781 lm/W for lightening power (ηP where V is 14V and I is 5.5537mA; the OLED with photonic crystal films (with packing behaves 241.6cd/m2 for luminous intensity, 4.173cd/A for lightening efficiency (ηL and 0.936 lm/W for lightening power (ηP where voltage of 14V and current (I of 5.7891mA, which shows that the latter perform is well.

  11. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.

    Science.gov (United States)

    Mishra, Himanshu; Schrader, Alex M; Lee, Dong Woog; Gallo, Adair; Chen, Szu-Ying; Kaufman, Yair; Das, Saurabh; Israelachvili, Jacob N

    2016-03-01

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, nonuniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 1 × 10(-7) to 1 × 10(-4) m. Under saturated vapor conditions, we found that in the short term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θ(SDT) = 140 ± 3°, was accurately described by the Cassie-Baxter model (predicted θ(SDT) = 137°); however, after 90 min, θ(SDT) fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θ(SDT) to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θ(SDT) to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights

  12. Time-Dependent Wetting Behavior of PDMS Surfaces with Bio-Inspired, Hierarchical Structures

    KAUST Repository

    Mishra, Himanshu

    2015-12-28

    Wetting of rough surfaces involves time-dependent effects, such as surface deformations, non-uniform filling of surface pores within or outside the contact area, and surface chemistries, but the detailed impact of these phenomena on wetting is not entirely clear. Understanding these effects is crucial for designing coatings for a wide range of applications, such as membrane-based oil-water separation and desalination, waterproof linings/windows for automobiles, aircrafts, and naval vessels, and antibiofouling. Herein, we report on time-dependent contact angles of water droplets on a rough polydimethylsiloxane (PDMS) surface that cannot be completely described by the conventional Cassie-Baxter or Wenzel models or the recently proposed Cassie-impregnated model. Shells of sand dollars (Dendraster excentricus) were used as lithography-free, robust templates to produce rough PDMS surfaces with hierarchical, periodic features ranging from 10-7-10-4 m. Under saturated vapor conditions, we found that in the short-term (<1 min), the contact angle of a sessile water droplet on the templated PDMS, θSDT = 140° ± 3°, was accurately described by the Cassie-Baxter model (predicted θSDT = 137°); however, after 90 min, θSDT fell to 110°. Fluorescent confocal microscopy confirmed that the initial reduction in θSDT to 110° (the Wenzel limit) was primarily a Cassie-Baxter to Wenzel transition during which pores within the contact area filled gradually, and more rapidly for ethanol-water mixtures. After 90 min, the contact line of the water droplet became pinned, perhaps caused by viscoelastic deformation of the PDMS around the contact line, and a significant volume of water began to flow from the droplet to pores outside the contact region, causing θSDT to decrease to 65° over 48 h on the rough surface. The system we present here to explore the concept of contact angle time dependence (dynamics) and modeling of natural surfaces provides insights into the design and

  13. Internal structure of black holes

    International Nuclear Information System (INIS)

    Cvetic, Mirjam

    2013-01-01

    Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)

  14. Atomic structure in black hole

    International Nuclear Information System (INIS)

    Nagatani, Yukinori

    2006-01-01

    We propose that any black hole has atomic structure in its inside and has no horizon as a model of black holes. Our proposal is founded on a mean field approximation of gravity. The structure of our model consists of a (charged) singularity at the center and quantum fluctuations of fields around the singularity, namely, it is quite similar to that of atoms. Any properties of black holes, e.g. entropy, can be explained by the model. The model naturally quantizes black holes. In particular, we find the minimum black hole, whose structure is similar to that of the hydrogen atom and whose Schwarzschild radius is approximately 1.1287 times the Planck length. Our approach is conceptually similar to Bohr's model of the atomic structure, and the concept of the minimum Schwarzschild radius is similar to that of the Bohr radius. The model predicts that black holes carry baryon number, and the baryon number is rapidly violated. This baryon number violation can be used as verification of the model. (author)

  15. Nanoporous materials from stable and metastable structures of 1,2-PB-b-PDMS block copolymers

    DEFF Research Database (Denmark)

    Schulte, Lars; Grydgaard, Anne; Jakobsen, Mathilde R.

    2011-01-01

    Experimental procedures used at the preparation and characterization stages of nanoporous materials (NPM) from 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymers are presented. The NPM were obtained from self-assembled block copolymers after firstly cross-linking 1,2-PB (the...... matrix component) and secondly degrading PDMS (the expendable component). Depending on the temperature of the cross-linking reaction different morphologies can be ‘frozen’ from the same block copolymer. Starting with a block copolymer precursor of lamellar morphology at room temperature, the gyroid...

  16. Achieving polydimethylsiloxane/carbon nanotube (PDMS/CNT) composites with extremely low dielectric loss and adjustable dielectric constant by sandwich structure

    Science.gov (United States)

    Fan, Benhui; Liu, Yu; He, Delong; Bai, Jinbo

    2018-01-01

    Sandwich-structured composites of polydimethylsiloxane/carbon nanotube (PDMS/CNT) bulk between two neat PDMS thin films with different thicknesses are prepared by the spin-coating method. Taking advantage of CNT's percolation behavior, the composite keeps relatively high dielectric constant (ɛ' = 40) at a low frequency (at 100 Hz). Meanwhile, due to the existence of PDMS isolated out-layers which limits the conductivity of the composite, the composite maintains an extremely low dielectric loss (tan δ = 0.01) (at 100 Hz). Moreover, the same matrix of the out-layer and bulk can achieve excellent interfacial adhesion, and the thickness of the coating layer can be controlled by a multi-cycle way. Then, based on the experimental results, the calculation combining the percolation theory and core-shell model is used to analyze the thickness effect of the coating layer on ɛ'. The obtained relationship between the ɛ' of the composite and the thickness of the coating layer can help to optimize the sandwich structure in order to obtain the adjustable ɛ' and the extremely low tan δ.

  17. Influence of 1,2-PB matrix cross-linking on structure and properties of selectively etched 1,2-PB-b-PDMS block copolymers

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Andreasen, Jens Wenzel; Vigild, Martin Etchells

    2007-01-01

    A series of samples with varying cross-linking degree were prepared from the same 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS) diblock copolymer precursor. The stability of nanopores generated after PDMS cleaving depends on the cross-linking degree of 1,2-PB. The swelling ratio...

  18. The synthesis and protein resistance of amphiphilic PDMS-b-(PDMS-g-cysteine) copolymers

    Science.gov (United States)

    Lei, Yufeng; Lin, Yaling; Zhang, Anqiang

    2017-10-01

    Zwitterionic polymers have been used to cope with nonspecific protein adsorption and bio-fouling problems for a wide range of materials, including biomedical devices, marine coatings and membrane separation. However, direct surface modification with highly water-soluble zwitterionic polymers is rather difficult due to their poor attachment to hydrophobic solid surfaces. In this work, we utilize the hydrophobic interaction to anchor zwitterionic polysiloxanes grafted with cysteine onto surfaces by adding an hydrophobic block of polydimethylsiloxanes, referred as PDMS-b-(PDMS-g-Cys)s. The synthesis involves only three steps of reactions, and the structures of each product were characterized using GPC, FT-IR and 1H NMR. The adsorption and protein resistance of PDMS-b-(PDMS-g-Cys)s on a gold surface are investigated with QCM-D. The results show that the hydrophobic interaction moieties of the additional PDMS blocks help the hydrophilic cysteine-grafted blocks stably attach and then function on the sensor. These findings suggest that the addition of hydrophobic moieties provides an effective approach to construct anti-fouling interfaces with zwitterionic polymers in aqueous solution.

  19. Structural aspects of asymptotically safe black holes

    Science.gov (United States)

    Koch, Benjamin; Saueressig, Frank

    2014-01-01

    We study the quantum modifications of classical, spherically symmetric Schwarzschild (anti-) de Sitter black holes within quantum Einstein gravity. The quantum effects are incorporated through the running coupling constants Gk and Λk, computed within the exact renormalization group approach, and a common scale-setting procedure. We find that, in contrast to common intuition, it is actually the cosmological constant that determines the short-distance structure of the RG-improved black hole: in the asymptotic UV the structure of the quantum solutions is universal and given by the classical Schwarzschild-de Sitter solution, entailing a self-similarity between the classical and quantum regime. As a consequence asymptotically safe black holes evaporate completely and no Planck-size remnants are formed. Moreover, the thermodynamic entropy of the critical Nariai black hole is shown to agree with the microstate count based on the effective average action, suggesting that the entropy originates from quantum fluctuations around the mean-field geometry.

  20. Evaluating structural and microstructural changes of PDMS –SiO{sub 2} hybrid materials after sterilization by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. Carlos [Department of Materials and Ceramic Engineering/CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Lancastre, Joana [Campus Tecnologico e Nuclear, IST, University of Lisbon, E.N 10, 2686-953 Sacavém (Portugal); Vaz Fernandes, M. Helena [Department of Materials and Ceramic Engineering/CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Margaça, Fernanda M.A.; Ferreira, Luís [Campus Tecnologico e Nuclear, IST, University of Lisbon, E.N 10, 2686-953 Sacavém (Portugal); Miranda Salvado, Isabel M., E-mail: isabelmsalvado@ua.pt [Department of Materials and Ceramic Engineering/CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)

    2015-03-01

    PDMS–SiO{sub 2} hybrid materials obtained by sol–gel process have been extensively studied over the past years due to its promising biomedical applications namely as bone substitutes, catheters, and drug delivery devices. Regardless of the intended biomedical application, all these materials should go through a sterilization process before interfacing with a living structure. However, it is unclear whether they undergo structural and microstructural changes when subjected to sterilization by gamma irradiation. This paper addresses this issue by showing that a sol–gel processed biomaterial based on the PDMS–CaO–SiO{sub 2} hybrid system suffers only small structural changes when submitted to a radiation dose of 25 kGy, the dose usually recommended to achieve a Sterility Assurance Level of 10{sup −6} when the natural contamination level and microorganism types cannot be calculated. The characterization was assessed by FT-IR, {sup 29}Si–{"1H} CP-MAS, thermal analysis (DTG), and SEM. - Highlights: • Hybrid PDMS–SiO{sub 2} materials were subjected to sterilization by γ-irradiation. • Materials suffer only small structural changes when irradiated. • Characterization was assessed by FT-IR, {sup 29}Si-{"1H} CP-MAS, DTG and SEM.

  1. Rheology of Carbon Black Suspensions: Effect of Carbon Black Structure

    Science.gov (United States)

    Aoki, Yuji

    2008-07-01

    Rheology of carbon black (CB) suspensions in an alkyd resin-type varnish (Varnish-2), a rosin-modified phenol resin-type varnish (Varnish-1), and a polystyrene/di-butyl phthalate (PS/DBP) solution was investigated to clarify the effects of CB morphology such as primary particle size and DBP absorption value (a measure of aggregate structure). It was found that the important parameters to characterize the CB aggregates are the effective volume fraction φeff of CB aggregates evaluated by plotting the relative viscosity ηr = η0/ηm (ηm: medium viscosity) on the universal ηr versus φ curve obtained for the hard-core silica particles for CB/Varnish-2 and CB/(PS/DBP) systems, and the critical gel concentration φcrit found for CB/Varnish-1 systems. Because the φeff and φcrit values depended on DBP absorption value, irrespective of the primary particle size, and were found to be larger for the higher-structure CB with higher DBP absorption value.

  2. Influence of Bulk PDMS Network Properties on Water Wettability

    Science.gov (United States)

    Melillo, Matthew; Walker, Edwin; Klein, Zoe; Efimenko, Kirill; Genzer, Jan

    Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from sealants and marine antifouling coatings to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - medical devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, and end-group chemical functionality on the mechanical and surface properties of end-linked PDMS networks. Wettability was investigated through the sessile drop technique, wherein a DI water droplet was placed on the bulk network surface and droplet volume, shape, surface area, and contact angle were monitored as a function of time. Various silicone substrates ranging from incredibly soft and flexible materials (E' 50 kPa) to highly rigid networks (E' 5 MPa) were tested. The dynamic behavior of the droplet on the surfaces demonstrated equilibration times between the droplet and surface on the order of 5 minutes. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have provided new evidence for the strong influence that substrate modulus and molecular network structure have on the wettability of PDMS elastomers. These findings will aid in the design and implementation of efficient, accurate, and safe PDMS-based medical devices and microfluidic materials that involve aqueous media.

  3. Interior structure of rotating black holes. III. Charged black holes

    International Nuclear Information System (INIS)

    Hamilton, Andrew J. S.

    2011-01-01

    This paper extends to the case of charged rotating black holes the conformally stationary, axisymmetric, conformally separable solutions presented for uncharged rotating black holes in a companion paper. In the present paper, the collisionless fluid accreted by the black hole may be charged. The charge of the black hole is determined self-consistently by the charge accretion rate. As in the uncharged case, hyper-relativistic counterstreaming between ingoing and outgoing streams drives inflation at (just above) the inner horizon, followed by collapse. If both ingoing and outgoing streams are charged, then conformal separability holds during early inflation, but fails as inflation develops. If conformal separability is imposed throughout inflation and collapse, then only one of the ingoing and outgoing streams can be charged: the other must be neutral. Conformal separability prescribes a hierarchy of boundary conditions on the ingoing and outgoing streams incident on the inner horizon. The dominant radial boundary conditions require that the incident ingoing and outgoing number densities be uniform with latitude, but the charge per particle must vary with latitude such that the incident charge densities vary in proportion to the radial electric field. The subdominant angular boundary conditions require specific forms of the incident number- and charge-weighted angular motions. If the streams fall freely from outside the horizon, then the prescribed angular conditions can be achieved by the charged stream, but not by the neutral stream. Thus, as in the case of an uncharged black hole, the neutral stream must be considered to be delivered ad hoc to just above the inner horizon.

  4. Visualisation and characterisation of heterogeneous bimodal PDMS networks

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Fleury, Clemence

    2014-01-01

    The existence of short-chain domains in heterogeneous bimodal PDMS networks has been confirmed visually, for the first time, through confocal fluorescence microscopy. The networks were prepared using a controlled reaction scheme where short PDMS chains were reacted below the gelation point...... bimodal networks with short-chain domains within a long-chain network. The average sizes of the short-chain domains were found to vary from 2.1 to 5.7 mm depending on the short-chain content. The visualised network structure could be correlated thereafter to the elastic properties, which were determined...... by rheology. All heterogeneous bimodal networks displayed significantly lower moduli than mono-modal PDMS elastomers prepared from the long polymer chains. Low-loss moduli as well as low-sol fractions indicate that low-elastic moduli can be obtained without compromising the network's structure...

  5. Effect of proton irradiation on photoluminescent properties of PDMS-nanodiamond composites

    International Nuclear Information System (INIS)

    Borjanovic, Vesna; Hens, Suzanne; Shenderova, Olga; McGuire, Gary E; Lawrence, William G; Edson, Clark; Jaksic, Milko; Zamboni, Ivana; Vlasov, Igor

    2008-01-01

    Pure poly(dimethylsiloxane) (PDMS) films, PDMS-nanodiamond (ND) and pure nanodiamond powder were irradiated with 2 MeV protons under a variety of fluence and current conditions. Upon proton irradiation, these samples acquire a fluence-dependent photoluminescence (PL). The emission and excitation spectra, photostability and emission lifetime of the induced photoluminescence of PDMS and PDMS-ND samples are reported. Pure PDMS exhibits a noticeable stable blue PL, while the PDMS-ND composites exhibit a pronounced stable green PL under 425 nm excitation. The PL of PDMS-ND composites is much more prominent than that of pure PDMS or pure ND powder even when irradiated at higher doses. The origin of the significantly enhanced PL intensity for the proton-irradiated PDMS-ND composite is explained by the combination of enhanced intrinsic PL within ND particles due to ion-implantation-generated defects and by PL originating from structural transformations produced by protons at the nanodiamond/matrix interface.

  6. Structure of Black Male Students Academic Achievement in Science

    Science.gov (United States)

    Rascoe, Barbara

    Educational policies and practices have been largely unsuccessful in closing the achievement gap between Black and White students "Schwartz, 2001". This achievement gap is especially problematic for Black students in science "Maton, Hrabrowski, - Schmitt, 2000. Given the fact that the Black-White achievement gap is still an enigma, the purpose of this article is to address the Black female-Black male academic achievement gap in science majors. Addressing barriers that Black male students may experience as college science and engineering majors, this article presents marketing strategies relative to politics, emotional intelligence, and issues with respect to how science teaching, and Black male students' responses to it, are different. Many Black male students may need to experience a paradigm shift, which structures and enhances their science achievement. Paradigm shifts are necessary because exceptional academic ability and motivation are not enough to get Black males from their first year in a science, technology, education, and mathematics "STEM" major to a bachelor's degree in science and engineering. The conclusions focus on the balance of truth-slippery slopes concerning the confluence of science teachers' further ado and Black male students' theories, methods, and values that position their academic achievement in science and engineering majors.

  7. High aspect ratio PDMS replication through proton beam fabricated Ni masters

    International Nuclear Information System (INIS)

    Kan, J.A. van; Wang, L.P.; Shao, P.G.; Bettiol, A.A.; Watt, F.

    2007-01-01

    In application areas where multiple samples are required (for example tissue engineering substrates), proton beam writing (PBW) is a suitable technique to fabricate high quality metal masters. These masters can then be used to replicate multiple copies in polymers, either through nanoimprinting or softlithography. Since poly(dimethyl siloxane) (PDMS) is a compatible material in tissue engineering we explore PDMS casting on Ni masters as an alternative way to replicate high aspect ratio micro structures. Ni masters with grooves spaced 2.5 μm apart, and 13 μm deep were successfully replicated in PDMS: These PDMS structures, which have aspect ratio of more than 5, are comparable to the best high aspect ratios reported in PDMS replication

  8. Polydimethylsiloxane (PDMS) modulates CD38 expression, absorbs retinoic acid and may perturb retinoid signalling.

    Science.gov (United States)

    Futrega, Kathryn; Yu, Jianshi; Jones, Jace W; Kane, Maureen A; Lott, William B; Atkinson, Kerry; Doran, Michael R

    2016-04-21

    Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human umbilical cord blood (CB)-derived CD34(+) cells expanded in standard culture medium on PDMS exhibit reduced CD38 surface expression, relative to cells cultured on tissue culture polystyrene (TCP). All-trans retinoic acid (ATRA) induces CD38 expression, and we reasoned that this hydrophobic molecule might be absorbed by PDMS. Through a series of experiments we demonstrated that ATRA-mediated CD38 expression was attenuated when cultures were maintained on PDMS. Medium pre-incubated on PDMS for extended durations resulted in a time-dependant reduction of ATRA in the medium and increasingly attenuated CD38 expression. This indicated a time-dependent absorption of ATRA into the PDMS. To better understand how PDMS might generally influence cell behaviour, Ingenuity Pathway Analysis (IPA) was used to identify potential upstream regulators. This analysis was performed for differentially expressed genes in primary cells including CD34(+) haematopoietic progenitor cells, mesenchymal stromal cells (MSC), and keratinocytes, and cell lines including prostate cancer epithelial cells (LNCaP), breast cancer epithelial cells (MCF-7), and myeloid leukaemia cells (KG1a). IPA predicted that the most likely common upstream regulator of perturbed pathways was ATRA. We demonstrate here that ATRA is absorbed by PDMS in a time-dependent manner and results in the concomitant reduced expression of CD38 on the cell surface of CB-derived CD34(+) cells.

  9. Structural and magnetic properties of Fe{sub 2-x}CoSm{sub x}O{sub 4}-nanoparticles and Fe{sub 2-x}CoSm{sub x}O{sub 4}-PDMS magnetoelastomers as a function of Sm content

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, Mariano M.; Mietta, Jose L.; Soledad Antonel, P. [Instituto de Quimica Fisica de Materiales, Ambiente y Energia (INQUIMAE), Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Cantilo s/n (1428), Buenos Aires (Argentina); Perez, Oscar E. [Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Cantilo s/n (1428), Buenos Aires (Argentina); Martin Negri, R. [Instituto de Quimica Fisica de Materiales, Ambiente y Energia (INQUIMAE), Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Cantilo s/n (1428), Buenos Aires (Argentina); Jorge, Guillermo, E-mail: gjorge@df.uba.ar [Instituto de Fisica de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Cantilo s/n (1428), Buenos Aires (Argentina); Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1150 (1613), Los Polvorines, Buenos Aires (Argentina)

    2013-02-15

    We have synthesized magnetic Fe{sub 2-x}CoSm{sub x}O{sub 4} nanoparticles (NPs) by means of the coprecipitation method, varying Sm content from x=0 to x=0.5. Energy-dispersive X-ray spectroscopy showed agreement between the metal proportion of the obtained nanoparticles and the stoichiometric mixture of cations used for the synthesis. Part of the particles were heated at 800 Degree-Sign C, and both were characterized by X-ray diffraction, scanning electron microscope imaging and magnetization measurements. Physical and magnetic properties were analyzed as a function of Sm content, before and after the heating treatment. A phase segregation is found for the calcined nanoparticles with large Sm content. The magnetic remanence, saturation and coercive field were investigated as a function of Sm content for both heated and unheated (as-prepared) particles. Polydimethylsiloxane-NPs magnetoelastomers were prepared and cured under an external uniform magnetic field, obtaining structured anisotropic composites, in which inorganic needles (columnar micrometric structures) oriented in the direction of the magnetic field are formed. Young modulus and remanent magnetic moment were measured and magnetization time relaxation experiments were performed in the directions parallel and perpendicular to the needles in order to determine the magnetic and elastic anisotropy of the composites. The elastic modulus measured parallel to the needles resulted almost twice in magnitude with respect to the perpendicular modulus. The measured magnetic anisotropy of the composites is probably due to the enhanced interparticle interaction within a needle and the freezing of an preferred easy axis distribution among the particles at the curing process. - Highlights: Black-Right-Pointing-Pointer We study magnetic and physical properties of Sm-substituted Fe{sub 2}CoO{sub 4} nanoparticles. Black-Right-Pointing-Pointer Magnetic nanoparticles were synthesized by the coprecipitation method. Black

  10. Compaction of PDMS due to proton beam irradiation

    International Nuclear Information System (INIS)

    Szilasi, S.Z.; Huszank, R.; Rajta, I.; Kokavecz, J.

    2011-01-01

    Complete text of publication follows. This work is about the detailed investigation of the changes of the surface topography, the degree of compaction/shrinkage and its relation to the irradiation fluence and the structure spacing in poly(dimethylsiloxane) (PDMS) patterned with 2 MeV proton microbeam. Sylgard 184 kit (Dow-Corning) was used to create the PDMS samples. The density of the PDMS samples was determined with pycnometer. The penetration depth for 2 MeV protons is ∼85 μm, the PDMS layer was ∼95 μm thick, so the incident protons stop in the PDMS, they do not reach the substrate. The irradiations have been performed at the nuclear microprobe facility at ATOMKI. The irradiated periodic structures consisted of parallel lines with different widths and spacing. To achieve different degrees of compaction, each structure was irradiated with five different fluences. The surface topography, the phase modification of the surface, and the connection between them were revealed using an atomic force microscope (AFM PSIA XE 100). The shrinkage data were obtained from the topography images. The structures with different line widths and spacing show different degrees of compaction as a function of irradiation fluence. By plotting them in the same graph (Fig. 1) it is clearly seen that the degree of compaction depends on both the irradiation fluence and the distance of the structures. The fluence dependence of the compaction can be explained with the chemical changes of PDMS. When an energetic ion penetrates through the material it scissions the polymer chain, whereupon among other things volatile products form. In the case of PDMS, these are mainly hydrogen, methane and ethane gases that can be released from PDMS. The irradiated volume shrinks due to significant structural change during which silicate derivatives (SiO x ) are formed. The phase change and the corresponding surface topography was compared and studied at all applied irradiation fluences. It was concluded

  11. Novel anti-flooding poly(dimethylsiloxane) (PDMS) catalyst binder for microbial fuel cell cathodes

    KAUST Repository

    Zhang, Fang

    2012-11-01

    Poly(dimethylsiloxane) (PDMS) was investigated as an alternative to Nafion as an air cathode catalyst binder in microbial fuel cells (MFCs). Cathodes were constructed around either stainless steel (SS) mesh or copper mesh using PDMS as both catalyst binder and diffusion layer, and compared to cathodes of the same structure having a Nafion binder. With PDMS binder, copper mesh cathodes produced a maximum power of 1710 ± 1 mW m -2, while SS mesh had a slightly lower power of 1680 ± 12 mW m -2, with both values comparable to those obtained with Nafion binder. Cathodes with PDMS binder had stable power production of 1510 ± 22 mW m -2 (copper) and 1480 ± 56 mW m -2 (SS) over 15 days at cycle 15, compared to a 40% decrease in power with the Nafion binder. Cathodes with the PDMS binder had lower total cathode impedance than those with Nafion. This is due to a large decrease in diffusion resistance, because hydrophobic PDMS effectively prevented catalyst sites from filling up with water, improving oxygen mass transfer. The cost of PDMS is only 0.23% of that of Nafion. These results showed that PDMS is a very effective and low-cost alternative to Nafion binder that will be useful for large scale construction of these cathodes for MFC applications. © 2012 Elsevier B.V.

  12. Effects of O2 plasma treatment of PDMS on the deposition of electrospun PVA nanofibers

    Science.gov (United States)

    Kobayashi, Natsumi; Miki, Norihisa; Hishida, Koichi; Hotta, Atsushi

    2014-03-01

    A new polymeric nanofiber-alignment technique with the selective deposition of the nanofibers using oxygen (O2) plasma treatment on a base material for the electrospinning was introduced. Generally, without any pretreatments, electrospun fibers are deposited randomly on the collector. In this work, we focused on the O2 plasma treatment of the surface of the base material to modify the surface morphology and to add polar groups to the surface. O2 plasma-treated and untreated surface of poly (dimethylsiloxane) (PDMS) was prepared by masking a part of PDMS film by another PDMS film. The polyvinyl alcohol (PVA) fibers were then deposited onto the PDMS film. The surface structure of the PDMS film with PVA nanofibers was analyzed by scanning electron microscopy, water contact angle measurements, and X-ray photon spectroscopy. Only a few PVA nanofibers were deposited randomly on the untreated area of the PDMS film, while a number of PVA nanofibers were selectively deposited onto the O2 plasma-treated area. Intriguingly, PVA nanofibers were neatly aligned along the border of the untreated and the treated areas. The contact angle of the plasma-treated surface of PDMS decreased from 105 to 22 degree and the atomic ratio of O/Si was 1.7 times higher than that of the untreated PDMS.

  13. Black holes and structure in an oscillating universe

    International Nuclear Information System (INIS)

    Saslaw, W.C.

    1991-01-01

    If black holes exist in the contracting phase of a closed universe, they will give rise to a pressure and entropy catastrophe. First, the black holes absorb all the radiation; then their apparent horizons merge, and coalesce with the cosmological apparent horizon. All external observers become internal observers. It is possible that the internal metric of some of the merging black holes will be contracting, and others expanding. I suggest here that the resulting violent inhomogeneities can lead to a re-expansion in a significant portion of the universe. Global re-expansion, prompted by the merging of black holes, may thus begin in a semi-classical rather than fully quantum gravitational era, at densities greater than those at which nucleosynthesis occurs. Surviving black holes and inhomogeneities could initiate the formation of structures such as galaxies in the 'new' universe. The behaviour of such an oscillating universe would differ in detail from cycle to cycle. (author)

  14. Encapsulated PDMS microspheres with reactive handles

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Ma, Baoguang; Li, Li

    2014-01-01

    Cured poly(dimethyl siloxane) microspheres are prepared by an emulsion polymerization reaction of silicone droplets in a continuous aqueous phase. The commonly used PDMS elastomer, Sylgard 184 from Dow Corning, is used as the dispersed phase. PDMS is polymerized and cross-linked by reacting vinyl...

  15. Improving dielectric permittivity by incorporating PDMS-PEG block copolymer into PDMS network

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    .Combination of both polymers as a block copolymer depicts a possibility for substantial improvement of properties such as high permittivity and non-conductivity – if carefully designed 2. The objective of my research is to synthesize PDMS-PEG block copolymer assembling into different morphologies such as lamellae...... introduces different properties in terms of contact angles, dielectric permittivity and rheological behaviour. All morphologies of PDMS-PEG block copolymer in this study exhibit high storage permittivity; at the same time the loss permittivity is even higher which implies that the synthesized PDMS-PEG block...... copolymers are conductive. By incorporating conductive PDMS-PEG block copolymer into commercial PDMS elastomer from Wacker Chemie,the storage permittivity is significantly enhanced by 38% with 20% of PDMS-PEG block copolymer incorporated in pure PDMS network as depicted in Fig. 2....

  16. Adhesion enhancement by a dielectric barrier discharge of PDMS used for flexible and stretchable electronics

    International Nuclear Information System (INIS)

    Morent, R; Geyter, N De; Axisa, F; Smet, N de; Gengembre, L; Leersnyder, E De; Leys, C; Vanfleteren, J; Rymarczyk-Machal, M; Schacht, E; Payen, E

    2007-01-01

    Currently, there is a strong tendency to replace rigid electronic assemblies by mechanically flexible and stretchable equivalents. This emerging technology can be applied for biomedical electronics, such as implantable devices and electronics on skin. In the first step of the production process of stretchable electronics, electronic interconnections and components are encapsulated into a thin layer of polydimethylsiloxane (PDMS). Afterwards, the electronic structures are completely embedded by placing another PDMS layer on top. It is very important that the metals inside the electronic circuit do not leak out in order to obtain a highly biocompatible system. Therefore, an excellent adhesion between the 2 PDMS layers is of great importance. However, PDMS has a very low surface energy, resulting in poor adhesion properties. Therefore, in this paper, PDMS films are plasma treated with a dielectric barrier discharge (DBD) operating in air at medium pressure (5.0 kPa). Contact angle and XPS measurements reveal that plasma treatment increases the hydrophilicity of the PDMS films due to the incorporation of silanol groups at the expense of methyl groups. T-peel tests show that plasma treatment rapidly imparts adhesion enhancement, but only when both PDMS layers are plasma treated. Results also reveal that it is very important to bond the plasma-treated PDMS films immediately after treatment. In this case, an excellent adhesion is maintained several days after treatment. The ageing behaviour of the plasma-treated PDMS films is also studied in detail: contact angle measurements show that the contact angle increases during storage in air and angle-resolved XPS reveals that this hydrophobic recovery is due to the migration of low molar mass PDMS species to the surface

  17. Horizon structure of rotating Bardeen black hole and particle acceleration

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.; Amir, Muhammed

    2015-01-01

    We investigate the horizon structure and ergosphere in a rotating Bardeen regular black hole, which has an additional parameter (g) due to the magnetic charge, apart from the mass (M) and the rotation parameter (a). Interestingly, for each value of the parameter g, there exists a critical rotation parameter (a = a E ), which corresponds to an extremal black hole with degenerate horizons, while for a < a E it describes a non-extremal black hole with two horizons, and no black hole for a > a E . We find that the extremal value a E is also influenced by the parameter g, and so is the ergosphere. While the value of a E remarkably decreases when compared with the Kerr black hole, the ergosphere becomes thicker with the increase in g.We also study the collision of two equal mass particles near the horizon of this black hole, and explicitly show the effect of the parameter g. The center-of-mass energy (E CM ) not only depend on the rotation parameter a, but also on the parameter g. It is demonstrated that the E CM could be arbitrarily high in the extremal cases when one of the colliding particles has a critical angular momentum, thereby suggesting that the rotating Bardeen regular black hole can act as a particle accelerator. (orig.)

  18. Study of PDMS conformation in PDMS-based hybrid materials prepared by gamma irradiation

    International Nuclear Information System (INIS)

    Lancastre, J.J.H.; Fernandes, N.; Margaça, F.M.A.; Miranda Salvado, I.M.; Ferreira, L.M.; Falcão, A.N.; Casimiro, M.H.

    2012-01-01

    Polydimethylsiloxane-silicate based hybrid materials have recognized properties (high flexibility, low elastic modulus or high mechanical strength) for which there are a large number of applications in development, such as for the bioapplications field. The hybrids addressed in the present study were prepared by gamma irradiation of a mixture of polydimethylsiloxane (PDMS) with tetraethylorthosilicate (TEOS) and zirconium propoxide (PrZr) without addition of any solvent or other product. The materials are homogeneous, transparent, monolithic and flexible. The structure dependence on the PrZr content is addressed. A combination of X-ray diffraction (XRD) and Infrared Spectroscopy (IR) was used. The results reveal that the polymer in the hybrids prepared with PrZr, in a content≤5 wt%, shows a structure similar to that in the irradiated pure polymer sample. In these samples the presence of ordered polymer regions is clearly found. For samples prepared with higher content of Zr almost no ordered polymer regions are observed. The addition of PrZr plays an important role on polymer conformation in these hybrid materials. - Highlights: ► PDMS-based hybrid materials were prepared by γ-irradiation. ► FTIR, ATR/FT-IR and XRD techniques were used to characterize the materials. ► Changes in FTIR bands reflect growth of crosslinking network. ► Above certain Zr concentration regions of Zr-silicate oxide are formed. ► Zr content determines conformation of the polymer chain network.

  19. Photonic crystal and photonic quasicrystal patterned in PDMS surfaces and their effect on LED radiation properties

    Energy Technology Data Exchange (ETDEWEB)

    Suslik, Lubos [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Pudis, Dusan, E-mail: pudis@fyzika.uniza.sk [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Goraus, Matej [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Nolte, Rainer [Fakultät für Maschinenbau FG Lichttechnik Ilmenau University of Technology, Ilmenau (Germany); Kovac, Jaroslav [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Durisova, Jana; Gaso, Peter [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Hronec, Pavol [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)

    2017-02-15

    Graphical abstract: Photonic quasicrystal patterned in the surface of polydimethylsiloxane membrane (left) and radiation pattern of light emitting diode with patterned membrane applied in the surface (right). - Highlights: • We presented fabrication technique of PDMS membranes with patterned surface by photonic crystal (PhC) and photonic quasi-crystal (PQC). • Presented technique is effective for preparation PhC and PQC PDMS membranes easily implementing in the LED chip. • From the goniophotometer measurements, the membranes document effective angular emission due to the diffraction on patterned surfaces. • 12 fold symmetry PQC structure shows homogeneous radiation pattern, while the 2 fold symmetry of square PhC shows evident diffraction lobes. - Abstract: We present results of fabrication and implementation of thin polydimethylsiloxane (PDMS) membranes with patterned surface for the light emitting diode (LED). PDMS membranes were patterned by using the interference lithography in combination with embossing technique. Two-dimensional photonic crystal and photonic quasicrystal structures with different period were patterned in the surface of thin PDMS membranes with depth up to 550 nm. Patterned PDMS membranes placed on the LED chip effectively diffracted light and increased angular emission of LED radiation pattern. We presented effective technique for fabrication of patterned PDMS membranes, which could modify the emission properties of optoelectronic devices and can be applied directly on surface LEDs and small optical devices.

  20. Virtual Black Holes and Space-Time Structure

    Science.gov (United States)

    't Hooft, Gerard

    2018-01-01

    In the standard formalism of quantum gravity, black holes appear to form statistical distributions of quantum states. Now, however, we can present a theory that yields pure quantum states. It shows how particles entering a black hole can generate firewalls, which however can be removed, replacing them by the `footprints' they produce in the out-going particles. This procedure can preserve the quantum information stored inside and around the black hole. We then focus on a subtle but unavoidable modification of the topology of the Schwarzschild metric: antipodal identification of points on the horizon. If it is true that vacuum fluctuations include virtual black holes, then the structure of space-time is radically different from what is usually thought.

  1. HIV prevention for Black women: structural barriers and opportunities.

    Science.gov (United States)

    Newman, Peter A; Williams, Charmaine C; Massaquoi, Notisha; Brown, Marsha; Logie, Carmen

    2008-08-01

    Black women bear a disproportionate burden of HIV/AIDS in North America. The purpose of this investigation was to explore Black Canadian women's perspectives on HIV risk and prevention. Four 90-minute focus groups (n=26) and six key informant interviews were conducted in Toronto with Black women of African and Caribbean descent and low socioeconomic status. Data analysis revealed a number of potent barriers to existing HIV preventive interventions: stigma, cultural disconnections, lack of engagement of Black religious institutions, and multiple intersecting forms of discrimination. Recommended HIV prevention opportunities included the Black church, mainstreaming, health care providers, and ethno-specific agencies. HIV prevention strategies for North American Black women, rather than focusing on HIV and individual risk behaviors, may benefit from a primary focus on social and structural factors (e.g., promoting gender equality, economic opportunity, women-controlled prevention technologies and combating racism in health care) thereby integrating HIV prevention into the larger context of community health and survival.

  2. Constructing Black Titania with Unique Nanocage Structure for Solar Desalination.

    Science.gov (United States)

    Zhu, Guilian; Xu, Jijian; Zhao, Wenli; Huang, Fuqiang

    2016-11-23

    Solar desalination driven by solar radiation as heat source is freely available, however, hindered by low efficiency. Herein, we first design and synthesize black titania with a unique nanocage structure simultaneously with light trapping effect to enhance light harvesting, well-crystallized interconnected nanograins to accelerate the heat transfer from titania to water and with opening mesopores (4-10 nm) to facilitate the permeation of water vapor. Furthermore, the coated self-floating black titania nanocages film localizes the temperature increase at the water-air interface rather than uniformly heating the bulk of the water, which ultimately results in a solar-thermal conversion efficiency as high as 70.9% under a simulated solar light with an intensity of 1 kW m -2 (1 sun). This finding should inspire new black materials with rationally designed structure for superior solar desalination performance.

  3. Biofunctionalization of PDMS-based microfluidic systems

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Bergoi Ibarlucea, Cesar Fernández-Sánchez, Stefanie Demming, Stephanus Büttgenbach & Andreu Llobera ### Abstract Three simple approaches for the selective immobilization of biomolecules on the surface of poly(dimethylsiloxane) (PDMS) microfluidic systems that do not require any specific instrumentation, are described and compared. They are based in the introduction of hydroxyl groups on the PDMS surface by direct adsorption of either polyethylene glycol (PEG) or polyvinyl alc...

  4. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    2016-01-01

    properties. We applied reactive ion etching technology at -20ºC to create nano-structures on silicon samples and obtained an average reflectance below 0.5%. For passivation purposes, we used 37 nm ALD Al2O3 films. Lifetime measurements resulted in 1220 µs and to 4170 µs for p- and ntype CZ silicon wafers......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow...

  5. The causal structure of dynamical charged black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sungwook E; Hwang, Dong-il; Stewart, Ewan D; Yeom, Dong-han, E-mail: eostm@muon.kaist.ac.k, E-mail: enotsae@gmail.co, E-mail: innocent@muon.kaist.ac.k [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of)

    2010-02-21

    We study the causal structure of dynamical charged black holes, with a sufficient number of massless fields, using numerical simulations. Neglecting Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature singularity due to mass inflation. When we include Hawking radiation, the inner horizon becomes space-like and is separated from the Cauchy horizon, which is parallel to the out-going null direction. Since a charged black hole must eventually transit to a neutral black hole, we studied the neutralization of the black hole and observed that the inner horizon evolves into a space-like singularity, generating a Cauchy horizon which is parallel to the in-going null direction. Since the mass function is finite around the inner horizon, the inner horizon is regular and penetrable in a general relativistic sense. However, since the curvature functions become trans-Planckian, we cannot say more about the region beyond the inner horizon, and it is natural to say that there is a 'physical' space-like singularity. However, if we assume an exponentially large number of massless scalar fields, our results can be extended beyond the inner horizon. In this case, strong cosmic censorship and black hole complementarity can be violated.

  6. The causal structure of dynamical charged black holes

    International Nuclear Information System (INIS)

    Hong, Sungwook E; Hwang, Dong-il; Stewart, Ewan D; Yeom, Dong-han

    2010-01-01

    We study the causal structure of dynamical charged black holes, with a sufficient number of massless fields, using numerical simulations. Neglecting Hawking radiation, the inner horizon is a null Cauchy horizon and a curvature singularity due to mass inflation. When we include Hawking radiation, the inner horizon becomes space-like and is separated from the Cauchy horizon, which is parallel to the out-going null direction. Since a charged black hole must eventually transit to a neutral black hole, we studied the neutralization of the black hole and observed that the inner horizon evolves into a space-like singularity, generating a Cauchy horizon which is parallel to the in-going null direction. Since the mass function is finite around the inner horizon, the inner horizon is regular and penetrable in a general relativistic sense. However, since the curvature functions become trans-Planckian, we cannot say more about the region beyond the inner horizon, and it is natural to say that there is a 'physical' space-like singularity. However, if we assume an exponentially large number of massless scalar fields, our results can be extended beyond the inner horizon. In this case, strong cosmic censorship and black hole complementarity can be violated.

  7. Friction, adhesion and wear properties of PDMS films on silicon sidewalls

    International Nuclear Information System (INIS)

    Penskiy, I; Gerratt, A P; Bergbreiter, S

    2011-01-01

    This paper demonstrates the first tests of friction, adhesion and wear properties of thin poly(dimethylsiloxane) (PDMS) films on the sidewalls of silicon-on-insulator structures. The test devices were individually calibrated using a simple method that included optical and electrical measurements. The static coefficient of friction versus normal pressure curves were obtained for PDMS–PDMS, PDMS–silicon and silicon–silicon sidewall interfaces. The effects of aging on friction and adhesion properties of PDMS were also evaluated. The results of friction tests showed that the static coefficient of friction follows the JKR contact model, which means that the friction force depends on the apparent area of contact. The wear tests showed high resistance of PDMS to abrasion over millions of cycles.

  8. Study of Different Sol-Gel Coatings to Enhance the Lifetime of PDMS Devices: Evaluation of Their Biocompatibility

    Science.gov (United States)

    Aymerich, María; Gómez-Varela, Ana I.; Álvarez, Ezequiel; Flores-Arias, María T.

    2016-01-01

    A study of PDMS (polydimethylsiloxane) sol-gel–coated channels fabricated using soft lithography and a laser direct writing technique is presented. PDMS is a biocompatible material that presents a high versatility to reproduce several structures. It is widely employed in the fabrication of preclinical devices due to its advantages but it presents a rapid chemical deterioration to organic solvents. The use of sol-gel layers to cover the PDMS overcomes this problem since it provides the robustness of glass for the structures made with PDMS, decreasing its deterioration and changing the biocompatibility of the surface. In this work, PDMS channels are coated with three different kinds of sol-gel compositions (60MTES/40TEOS, 70MTES/30TISP and 80MTES/20TISP). The endothelial cell adhesion to the different coated devices is evaluated in order to determine the most suitable sol-gel preparation conditions to enhance cellular adhesion. PMID:28773848

  9. Monolithic PDMS passband filters for fluorescence detection.

    Science.gov (United States)

    Llobera, Andreu; Demming, Stefanie; Joensson, Haakan N; Vila-Planas, J; Andersson-Svahn, Helene; Büttgenbach, Stephanus

    2010-08-07

    We present the fabrication and characteristics of monolithically integrated ink dyed poly(dimethylsiloxane) (PDMS) filters for optical sensing in disposable lab-on-a-chip. This represents a migration of auxillary functions onto the disposable chip with the goal of producing truly portable systems. Filters made from commercially available ink (Pelikan) directly mixed into PDMS oligomer without the use of any additional solvents were patterned with standard soft lithography technologies. Furthermore, a fabrication process based on capillary forces is presented allowing PDMS coloration of arbitrary shapes. Different filters of varying thickness fabricated using red, green and blue ink in four different concentrations were characterized. The optimal performance was found with filter thicknesses of 250 microm and ink to PDMS ratios of 0.1 (mL ink : mL PDMS oligomer) resulting in a transmittance ranging from -15.1 dB to -12.3 dB in the stopband and from -4.0 dB to -2.5 dB in the passband. Additionally, we demonstrate the robustness of this approach as the ink dyed PDMS filters do not exhibit temporal ageing due to diffusion or autofluorescence. We also show that such filters can easily be integrated in fluorescence systems, with stopbands efficient enough to allow fluorescence measurements under non-optimal conditions (broadband excitation, 180 degrees configuration). Integrated ink dyed PDMS filters add robust optical functionalities to disposable microdevices at a low cost and will enable the use of these devices for a wide range of fluorescence and absorbance based biological and chemical analysis.

  10. Spacetime structure of an evaporating black hole in quantum gravity

    International Nuclear Information System (INIS)

    Bonanno, A.; Reuter, M.

    2006-01-01

    The impact of the leading quantum gravity effects on the dynamics of the Hawking evaporation process of a black hole is investigated. Its spacetime structure is described by a renormalization group improved Vaidya metric. Its event horizon, apparent horizon, and timelike limit surface are obtained by taking the scale dependence of Newton's constant into account. The emergence of a quantum ergosphere is discussed. The final state of the evaporation process is a cold, Planck size remnant

  11. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.

    Science.gov (United States)

    Hinton, Thomas J; Hudson, Andrew; Pusch, Kira; Lee, Andrew; Feinberg, Adam W

    2016-10-10

    Polydimethylsiloxane (PDMS) elastomer is used in a wide range of biomaterial applications including microfluidics, cell culture substrates, flexible electronics, and medical devices. However, it has proved challenging to 3D print PDMS in complex structures due to its low elastic modulus and need for support during the printing process. Here we demonstrate the 3D printing of hydrophobic PDMS prepolymer resins within a hydrophilic Carbopol gel support via freeform reversible embedding (FRE). In the FRE printing process, the Carbopol support acts as a Bingham plastic that yields and fluidizes when the syringe tip of the 3D printer moves through it, but acts as a solid for the PDMS extruded within it. This, in combination with the immiscibility of hydrophobic PDMS in the hydrophilic Carbopol, confines the PDMS prepolymer within the support for curing times up to 72 h while maintaining dimensional stability. After printing and curing, the Carbopol support gel releases the embedded PDMS prints by using phosphate buffered saline solution to reduce the Carbopol yield stress. As proof-of-concept, we used Sylgard 184 PDMS to 3D print linear and helical filaments via continuous extrusion and cylindrical and helical tubes via layer-by-layer fabrication. Importantly, we show that the 3D printed tubes were manifold and perfusable. The results demonstrate that hydrophobic polymers with low viscosity and long cure times can be 3D printed using a hydrophilic support, expanding the range of biomaterials that can be used in additive manufacturing. Further, by implementing the technology using low cost open-source hardware and software tools, the FRE printing technique can be rapidly implemented for research applications.

  12. Near horizon structure of extremal vanishing horizon black holes

    Directory of Open Access Journals (Sweden)

    S. Sadeghian

    2015-11-01

    Full Text Available We study the near horizon structure of Extremal Vanishing Horizon (EVH black holes, extremal black holes with vanishing horizon area with a vanishing one-cycle on the horizon. We construct the most general near horizon EVH and near-EVH ansatz for the metric and other fields, like dilaton and gauge fields which may be present in the theory. We prove that (1 the near horizon EVH geometry for generic gravity theory in generic dimension has a three dimensional maximally symmetric subspace; (2 if the matter fields of the theory satisfy strong energy condition either this 3d part is AdS3, or the solution is a direct product of a locally 3d flat space and a d−3 dimensional part; (3 these results extend to the near horizon geometry of near-EVH black holes, for which the AdS3 part is replaced with BTZ geometry. We present some specific near horizon EVH geometries in 3, 4 and 5 dimensions for which there is a classification. We also briefly discuss implications of these generic results for generic (gauged supergravity theories and also for the thermodynamics of near-EVH black holes and the EVH/CFT proposal.

  13. PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin

    2016-10-21

    Fouling in membrane distillation (MD) results in an increase in operation costs and deterioration in a water quality. In this work, a poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) electrospun (E-PH) membrane was fabricated by hybridizing polydimethylsiloxane (PDMS) polymeric microspheres with superhydrophobicity onto the E-PH membrane via electrospinning. The resulting hybrid PDMS with E-PH (E-PDMS) membrane showed a significant enhancement in surface hydrophobicity (contact angle, CA = 155.4°) and roughness (Ra = 1,285mm). The zeta potential of E-PDMS membrane surface showed a higher negative value than that of a commercial PVDF (C-PVDF) membrane. These properties of E-PDMS membrane provided an antifouling in treating of differently-charged dyes and generated a flake-like dye–dye (loosely bound foulant) structure on the membrane surface rather than in the membrane pores. This also led to a high productivity of E-PDMS membrane (34 Lm-2h-1, 50% higher than that of C-PVDF membrane) without fouling or wetting. In addition, complete color removal and pure water production were achieved during a long-term operation. An application of intermittent water flushing (WF) in direct contact MD (DCMD) operation led to a 99% CA recovery of E-PDMS membrane indicating its sustainability. Therefore, the E-PDMS membrane is a promising candidate for MD application in dyeing wastewater treatment.

  14. Lens array fabrication method with volume expansion property of PDMS

    Science.gov (United States)

    Jang, WonJae; Kim, Junoh; Lee, Muyoung; Lee, Jooho; Bang, Yousung; Won, Yong Hyub

    2016-03-01

    Conventionally, poly (dimethylsiloxane) lens array is fabricated by replica molding. In this paper, we describe simple method for fabricating lens array with expanding property of PDMS. The PDMS substrate is prepared by spin coating on cleaned glass. After spin coating PDMS, substrate is treated with O2 plasma to promote adhesion between PDMS substrate and photoresist pattern on it. Positive photoresist az-4330 and AZ 430K developer is used for patterning on PDMS. General photolithography process is used to patterning. Then patterned PDMS substrate is dipped to 1- Bromododecane bath. During this process, patterned photoresist work as a barrier and prevent blocked PDMS substrate from reaction with 1-Bromododecane. Unblocked part of PDMS directly react with 1-Bromododecane and results in expanded PDMS volume. The expansion of PDMS is depends on absorbed 1-Bromododecane volume, dipping time and ratio of block to open area. The focal length of lens array is controlled by those PDMS expansion factors. Scale of patterned photoresist determine a diameter of each lens. The expansion occurs symmetrically at center of unblocked PDMS and 1-Bromododecane interface. As a result, the PDMS lens array is achieved by this process.

  15. Rapid erasing of wettability patterns based on TiO2-PDMS composite films

    International Nuclear Information System (INIS)

    Nakata, Kazuya; Udagawa, Keizo; Ochiai, Tsuyoshi; Sakai, Hideki; Murakami, Taketoshi; Abe, Masahiko; Fujishima, Akira

    2011-01-01

    Research highlights: → TiO 2 -PDMS composite films are prepared using the sol-gel method. → The films show wettability conversion by irradiation with oxygen plasma. → Hydrophobic-superhydrophilic patterns based on the TiO 2 -PDMS films are fabricated. → The wettability patterns are rapidly erasable upon plasma irradiation for 1 s. - Abstract: TiO 2 -polydimethylsiloxane (TiO 2 -PDMS) composite films are prepared using the sol-gel method from a Ti(OBu) 4 -benzoylacetone solution containing PDMS. The prepared films are cured by irradiation with ultraviolet (UV) light. Structural changes in the films after UV irradiation are confirmed by UV-vis absorption experiments, which show that an absorption band characteristic of the benzoylacetonate chelate rings disappears. This finding is ascribed to structural changes associated with the dissociation of the chelate rings. The IR spectra of the thin films exhibit a broad absorption band after UV irradiation, indicating that a Ti-O-Ti network forms in the thin film. Contact angles are measured for the TiO 2 -PDMS thin films, showing wettability conversion from hydrophobic to superhydrophilic states by irradiation with oxygen plasma for 1 s. This phenomenon is explained by XPS experiments which reveal that the number of carbon atoms decreases, whereas the number of oxygen atoms increases on the surface of the TiO 2 -PDMS composite films. Finally, hydrophobic-superhydrophilic patterns are fabricated based on a patterned TiO 2 -PDMS composite film. The film displays a rapid change to superhydrophilicity over the whole film surface upon plasma irradiation for 1 s, which means that the wettability patterns are rapidly erasable.

  16. Improving dielectric permittivity by incorporating PDMS-PEG block copolymer into PDMS network

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    Polydimethylsiloxane (PDMS) based elastomers are well-known to actuate with large strain mainly due to their low modulus and their non-conducting nature. On the other hand, polyethyleneglycols(PEG) are not stretchable but they have high permittivity and are conductive. Combination of the two...... polymers as a block copolymer depicts a possibility for substantial improvement of properties such as high permittivity and non-conductivity – if carefully designed. The objective is to synthesize PDMS-PEG multiblock copolymer assembling into different morphologies1 such as lamellar,cylinder, gyroid...... and spheres based on variation of volume fractions of PDMS and PEG. The synthesisis amended from Klasner et al.2 and Jukarainen et al.3 Variation in the ratio between the two constituents introduces distinctive properties in terms of dielectric permittivity and rheological behaviour. PDMS-PEG multiblock...

  17. Fabrication of 3D high aspect ratio PDMS microfluidic networks with a hybrid stamp.

    Science.gov (United States)

    Kung, Yu-Chun; Huang, Kuo-Wei; Fan, Yu-Jui; Chiou, Pei-Yu

    2015-04-21

    We report a novel methodology for fabricating large-area, multilayer, thin-film, high aspect ratio, 3D microfluidic structures with through-layer vias and open channels that can be bonded between hard substrates. It is realized by utilizing a hybrid stamp with a thin plastic sheet embedded underneath a PDMS surface. This hybrid stamp solves an important edge protrusion issue during PDMS molding while maintaining necessary stamp elasticity to ensure the removal of PDMS residues at through-layer regions. Removing edge protrusion is a significant progress toward fabricating 3D structures since high aspect ratio PDMS structures with flat interfaces can be realized to facilitate multilayer stacking and bonding to hard substrates. Our method also allows for the fabrication of 3D deformable channels, which can lead to profound applications in electrokinetics, optofluidics, inertial microfluidics, and other fields where the shape of the channel cross section plays a key role in device physics. To demonstrate, as an example, we have fabricated a microfluidic channel by sandwiching two 20 μm wide, 80 μm tall PDMS membranes between two featureless ITO glass substrates. By applying electrical bias to the two ITO substrates and pressure to deform the thin membrane sidewalls, strong electric field enhancement can be generated in the center of a channel to enable 3D sheathless dielectrophoretic focusing of biological objects including mammalian cells and bacteria at a flow speed up to 14 cm s(-1).

  18. The phase structure of higher-dimensional black rings and black holes

    International Nuclear Information System (INIS)

    Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A.; RodrIguez, Maria J.

    2007-01-01

    We construct an approximate solution for an asymptotically flat, neutral, thin rotating black ring in any dimension D ≥ 5 by matching the near-horizon solution for a bent boosted black string, to a linearized gravity solution away from the horizon. The rotating black ring solution has a regular horizon of topology S 1 x S D-3 and incorporates the balancing condition of the ring as a zero-tension condition. For D = 5 our method reproduces the thin ring limit of the exact black ring solution. For D ≥ 6 we show that the black ring has a higher entropy than the Myers-Perry black hole in the ultra-spinning regime. By exploiting the correspondence between ultra-spinning black holes and black membranes on a two-torus, we take steps towards qualitatively completing the phase diagram of rotating blackfolds with a single angular momentum. We are led to propose a connection between MP black holes and black rings, and between MP black holes and black Saturns, through merger transitions involving two kinds of 'pinched' black holes. More generally, the analogy suggests an infinite number of pinched black holes of spherical topology leading to a complicated pattern of connections and mergers between phases

  19. Modulation of hepatocarcinoma cell morphology and activity by parylene-C coating on PDMS.

    Directory of Open Access Journals (Sweden)

    Nazaré Pereira-Rodrigues

    Full Text Available BACKGROUND: The ability to understand and locally control the morphogenesis of mammalian cells is a fundamental objective of cell and developmental biology as well as tissue engineering research. We present parylene-C (ParC deposited on polydimethylsiloxane (PDMS as a new substratum for in vitro advanced cell culture in the case of Human Hepatocarcinoma (HepG2 cells. PRINCIPAL FINDINGS: Our findings establish that the intrinsic properties of ParC-coated PDMS (ParC/PDMS influence and modulate initial extracellular matrix (ECM; here, type-I collagen surface architecture, as compared to non-coated PDMS substratum. Morphological changes induced by the presence of ParC on PDMS were shown to directly affect liver cell metabolic activity and the expression of transmembrane receptors implicated in cell adhesion and cell-cell interaction. These changes were characterized by atomic force microscopy (AFM, which elucidated differences in HepG2 cell adhesion, spreading, and reorganization into two- or three-dimensional structures by neosynthesis of ECM components. Local modulation of cell aggregation was successfully performed using ParC/PDMS micropatterns constructed by simple microfabrication. CONCLUSION/SIGNIFICANCE: We demonstrated for the first time the modulation of HepG2 cells' behavior in relation to the intrinsic physical properties of PDMS and ParC, enabling the local modulation of cell spreading in a 2D or 3D manner by simple microfabrication techniques. This work will provide promising insights into the development of cell-based platforms that have many applications in the field of in vitro liver tissue engineering, pharmacology and therapeutics.

  20. Development of a porous 3D graphene-PDMS scaffold for improved osseointegration.

    Science.gov (United States)

    Li, Jianfeng; Liu, Xiao; Crook, Jeremy M; Wallace, Gordon G

    2017-11-01

    Osseointegration in orthopedic surgery plays an important role for bone implantation success. Traditional treatment of implant surface aimed at improved osseointegration has limited capability for its poor performance in supporting cell growth and proliferation. Polydimethylsiloxane (PDMS) is a widely used silicon-based organic polymer material with properties that are useful in cosmetics, domestic applications and mechanical engineering. In addition, the biocompatibility of PDMS, in part due to the high solubility of oxygen, makes it an ideal material for cell-based implants. Notwithstanding its potential, a property that can inhibit PDMS bioactivity is the high hydrophobicity, limiting its use to date in tissue engineering. Here, we describe an efficient approach to produce porous, durable and cytocompatible PDMS-based 3D structures, coated with reduced graphene oxide (RGO). The RGO/PDMS scaffold has good mechanical strength and with pore sizes ranging from 10 to 600μm. Importantly, the scaffold is able to support growth and differentiation of human adipose stem cells (ADSCs) to an osteogenic cell lineage, indicative of its potential as a transition structure of an osseointegrated implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Broadband energy harvesting using acoustic black hole structural tailoring

    International Nuclear Information System (INIS)

    Zhao, Liuxian; Semperlotti, Fabio; Conlon, Stephen C

    2014-01-01

    This paper explores the concept of an acoustic black hole (ABH) as a main design framework for performing dynamic structural tailoring of mechanical systems for vibration energy harvesting applications. The ABH is an integral feature embedded in the host structure that allows for a smooth reduction of the phase velocity, theoretically approaching zero, while minimizing the reflected energy. This mechanism results in structural areas with high energy density that can be effectively exploited to develop enhanced vibration-based energy harvesting. Fully coupled electro-mechanical models of an ABH tapered structure with surface mounted piezo-transducers are developed to numerically simulate the response of the system to both steady state and transient excitations. The design performances are numerically evaluated using structural intensity data as well as the instantaneous voltage/power and energy output produced by the piezo-transducer network. Results show that the dynamically tailored structural design enables a drastic increase in the harvested energy as compared to traditional structures, both under steady state and transient excitation conditions. (papers)

  2. Softlithographic partial integration of surface-active nanoparticles in a PDMS matrix for microfluidic biodevices

    Energy Technology Data Exchange (ETDEWEB)

    Demming, Stefanie; Buettgenbach, Stephanus [Institute for Microtechnology (IMT), Technische Universitaet Braunschweig, Alte Salzdahlumer Strasse 203, 38124 Braunschweig (Germany); Hahn, Anne; Barcikowski, Stephan [Nanotechnology Department, Laser Zentrum Hannover e.V. (LZH), Hollerithallee 8, 30419 Hannover (Germany); Edlich, Astrid; Franco-Lara, Ezequiel; Krull, Rainer [Institute of Biochemical Engineering (IBVT), Technische Universitaet Braunschweig, Gaussstrasse 17, 38106 Braunschweig (Germany)

    2010-04-15

    The mergence of microfluidics and nanocomposite materials and their in situ structuring leads to a higher integration level within microsystems technology. Nanoparticles (Cu and Ag) produced via laser radiation were suspended in Poly(dimethylsiloxane) to permanently modify surface material. A microstructuring process was implemented which allows the incorporation of these nanomaterials globally or partially at defined locations within a microbioreactor (MBR) for the determination of their antiseptic and toxic effects on the growth of biomass. Partially structured PDMS with nanoparticle-PDMS composite. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Black Hole Mergers as Probes of Structure Formation

    Science.gov (United States)

    Alicea-Munoz, Emily

    2008-01-01

    Observations of gravitational waves from massive black hole (MBH) mergers can provide us with important clues about the era of structure formation in the early universe. Previous research in this field has been limited to calculating merger rates of MBHs using different models where many assumptions are made about the specific values of physical parameters of the mergers, resulting in merger rate estimates that span 5 to 6 orders of magnitude. We develop a semi-analytical, phenomenological model that includes plausible combinations of several physical parameters involved in the mergers. which we then turn around to determine how well LISA observations will be able to enhance our understanding of the universe during the critical z approximately equal to 5-30 structure formation era. We do this by generating synthetic LISA observable data (masses, redshifts, merger rates), which are then analyzed using a Markov Chain Monte Carlo (MCMC) method. This allows us to constrain the physical parameters of the mergers.

  4. Culture of bovine embryos on a polydimethylsiloxane (PDMS) microwell plate.

    Science.gov (United States)

    Akagi, Satoshi; Hosoe, Misa; Matsukawa, Kazutsugu; Ichikawa, Akihiko; Tanikawa, Tamio; Takahashi, Seiya

    2010-08-01

    We fabricated a polydimethylsiloxane (PDMS)-based microwell plate (PDMS-MP) containing 100 microwells with a rounded bottom and examined whether it can be used for culture of individual in vitro fertilized (IVF) embryos or parthenogenetically activated zona-free embryos in cattle. In Experiment 1, we examined the in vitro developmental ability of IVF embryos cultured individually on PDMS-MP. After IVF, 20 embryos were transferred into 100 microl drops on PDMS-MP and cultured individually in each well of PDMS-MP (PDMS group). After 7 days of culture, the embryos in the PDMS group developed to the blastocyst stage at the same rate of those in the control group cultured in a group of 20 embryos without PDMS-MP. There were no differences in total number of cells and the ratio of inner cell mass to total cells between the PDMS and control groups. In Experiment 2, we examined the in vitro developmental ability of parthenogenetically activated zona-free bovine embryos cultured individually on PDMS-MP. The zona-free embryos were cultured individually in each well of a PDMS-MP or in each well produced by pressing a darning needle onto the bottom of a culture dish (WOW group). After 7 days of culture, the blastocyst formation rate and cell number of blastocysts in the PDMS group did not differ from those of the zona-intact embryos in the control group. Also, there were no differences in the blastocyst formation rate and cell number of blastocysts between the WOW and PDMS groups. These results suggest that the culture system using PDMS-MP is useful for individual embryos or zona-free embryos in cattle.

  5. Using Black Hole Mergers to Explore Structure Formation

    Science.gov (United States)

    Alicea-Munoz, E.; Miller, M. Coleman

    2009-01-01

    Observations of gravitational waves from massive black hole mergers will open a new window into the era of structure formation in the early universe. Past efforts have concentrated on calculating merger rates using different physical assumptions, resulting in merger rate estimates that span a wide range (0.1 - 10(exp 4) mergers/year). We develop a semi-analytical, phenomenological model of massive black hole mergers that includes plausible combinations of several physical parameters, which we then turn around to determine how well observations with the Laser Interferometer Space Antenna (LISA) will be able to enhance our understanding of the universe during the critical z approximately equal to 5-30 epoch. Our approach involves generating synthetic LISA observable data (total BH masses, BH mass ratios, redshifts, merger rates), which are then analyzed using a Markov Chain Monte Carlo method, thus finding constraints for the physical parameters of the mergers. We find that our method works well at estimating merger parameters and that the number of merger events is a key discriminant among models, therefore making our method robust against observational uncertainties. Our approach can also be extended to more physically-driven models and more general problems in cosmology. This work is supported in part by the Cooperative Education Program at NASA/GSFC.

  6. Guiding and birefringent properties of a hybrid PDMS/silica photonic crystal fiber

    Science.gov (United States)

    Markos, Christos; Vlachos, Kyriakos; Kakarantzas, George

    2011-02-01

    In this work, we demonstrate a highly birefringent (Hi-Bi) photonic crystal fiber (PCF) infiltrated with PDMS elastomer in order to enhance the sensitivity of the fiber to external temperature variations. Index guiding mechanism of the new PDMS/Silica structure and birefringent properties were investigated numerically and experimentally. We investigated the temperature dependance of birefringence from 20-120°C. For the particular design of Hi-Bi PCF, the cut-off operating wavelength of the hybrid fiber was found to be around 750 nm. We also experimentally demonstrate the effect of the elastomer inclusions to the polarization of the fiber. The sensitivity of the PDMS/Silica Hi-Bi fiber was found to be ~ 0.37 rad/K/cm for temperatures ranging from 20 to 80°C. The total length of the hybrid PCF examined was about 1.4 cm.

  7. Preparation and evaluation of the bioinspired PS/PDMS photochromic films by the self-assembly dip-drawing method.

    Science.gov (United States)

    Shieh, Jen-Yu; Kuo, Jen-Yu; Weng, Hsueh-Ping; Yu, Hsin Her

    2013-01-15

    Emulsifier-free emulsion polymerization was employed to synthesize polystyrene (PS) microspheres, which were then self-assembled into an ordered periodic structure. A photochromic film was formed by adding polydimethylsiloxane (PDMS) around the self-assembly of PS microspheres on a PDMS substrate. During polymerization, the PS microspheres shrunk depending on the amount of the hydrophilic comonomer, sodium 4-styrenesulfonate (NaSS). Variation in structural color was strongly affected by the size of the PS microspheres. Scanning electron microscopy was used to observe the surface and cross sections of the self-assembled microspheres. Results showed that the order and stacking thickness of microspheres were dependent on the drawing rate of the substrate and suspension concentration. High-transmittance photochromic films could be prepared when the drawing rate was lower than 1 μm/s and the suspension concentration was 20 wt %. PDMS surrounding the vacant space between regularly arranged PS microspheres could not only protect them but also increase the degree of matching between the refractive indices of PS and PDMS. The stability of the reflected structural color increased, and the optical transmittance of the photochromic film approached 95% after PDMS was poured between the PS microspheres. A special pattern could be designed and embedded inside the photochromic film. The PS/PDMS photochromic films can also be applied in decorative painting as well as in security devices, color-changing false nails, and privacy filters.

  8. Black Resources and Black School Board Representation: Does Political Structure Matter?

    Science.gov (United States)

    Robinson, Ted P.; And Others

    1985-01-01

    Using data from 168 central city school boards, this study examines the impact of different selection plans (at-large, mixed/ward, and appointive) on the relationship between Blacks' resources (numbers, money, and organization) and Black electoral success. Findings suggest that the use of an "at-large" selection system impedes the conversion of…

  9. A Sensitivity Enhanced MWCNT/PDMS Tactile Sensor Using Micropillars and Low Energy Ar+ Ion Beam Treatment

    Directory of Open Access Journals (Sweden)

    Syed Azkar Ul Hasan

    2016-01-01

    Full Text Available High sensitive flexible and wearable devices which can detect delicate touches have attracted considerable attentions from researchers for various promising applications. This research was aimed at enhancing the sensitivity of a MWCNT/PDMS piezoresistive tactile sensor through modification of its surface texture in the form of micropillars on MWCNT/PDMS film and subsequent low energy Ar+ ion beam treatment of the micropillars. The introduction of straight micropillars on the MWCNT/PDMS surface increased the sensitivity under gentle touch. Low energy ion beam treatment was performed to induce a stiff layer on the exposed surface of the micropillar structured MWCNT/PDMS film. The low energy ion bombardment stabilized the electrical properties of the MWCNT/PDMS surface and tuned the curvature of micropillars according to the treatment conditions. The straight micropillars which were treated by Ar+ ion with an incident angle of 0° demonstrated the enhanced sensitivity under normal pressure and the curved micropillars which were treated with Ar+ ion with an incident angle of 60° differentiated the direction of an applied shear pressure. The ion beam treatment on micropillar structured MWCNT/PDMS tactile sensors can thus be applied to reliable sensing under gentle touch with directional discrimination.

  10. PDMS-on-silicon microsystems: Integration of polymer micro/nanostructures for new MEMS device functions

    Science.gov (United States)

    Tung, Yi-Chung

    2005-11-01

    grafting of the microstructure onto silicon MEMS devices with high accuracy. The SLLOG process is further extended to allow imprinting of nanoscale features on the surface of the 3D PDMS microstructure. Using SLLOG, this work fabricates two new MEMS devices: a PDMS-on-silicon hybrid actuator and a reconfigurable nanoimprinted PDMS optical grating device, and presents their performance. The developed devices have a simple structural design, yet exhibit very unique functions such as high-speed multi-axis actuation and dynamic optical wavelength tuning. These MEMS device functions originate from combining the high-strain elasticity and optical transparency of the PDMS micro/nanostructures and the fast dynamic response of silicon MEMS actuators. The results shown in this thesis successfully prove the presented technological concept. The concept and fabrication technique developed in this work are to be useful for development of a new type of MEMS devices with reduced manufacturing cost and complexity for future microsystems.

  11. Black Holes and Quantum Theory: The Fine Structure Constant Connection

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available The new dynamical theory of space is further confirmed by showing that the effective “black hole” masses M BH in 19 spherical star systems, from globular clusters to galaxies, with masses M , satisfy the prediction that M BH = α 2 M , where α is the fine structure constant. As well the necessary and unique generalisations of the Schr ̈ odinger and Dirac equations permit the first derivation of gravity from a deeper theory, showing that gravity is a quantum effect of quantum matter interacting with the dynamical space. As well the necessary generalisation of Maxwell’s equations displays the observed light bending effects. Finally it is shown from the generalised Dirac equation where the spacetime mathematical formalism, and the accompanying geodesic prescription for matter trajectories, comes from. The new theory of space is non-local and we see many parallels between this and quantum theory, in addition to the fine structure constant manifesting in both, so supporting the argument that space is a quantum foam system, as implied by the deeper information-theoretic theory known as Process Physics. The spatial dynamics also provides an explanation for the “dark matter” effect and as well the non-locality of the dynamics provides a mechanism for generating the uniformity of the universe, so explaining the cosmological horizon problem.

  12. PDMS Based Thermopnuematic Peristaltic Micropump for Microfluidic Systems

    International Nuclear Information System (INIS)

    Mamanee, W; Tuantranont, A; Afzulpurkar, N V; Porntheerapat, N; Rahong, S; Wisitsoraat, A

    2006-01-01

    A thermopnuematic peristaltic micropump for controlling micro litters of fluid was designed and fabricated from multi-stack PDMS structure on glass substrate. Pump structure consists of inlet and outlet, microchannel, three thermopneumatic actuation chambers, and three heaters. In microchannel, fluid is controlled and pumped by peristaltic motion of actuation diaphragm. Actuation diaphragm can bend up and down by exploiting air expansion that is induced by increasing heater temperature. The micropump characteristics were measured as a function of applied voltage and frequency. The flow rate was determined by periodically recording the motion of fluid at Nanoport output and computing flow volume from height difference between consecutive records. From the experiment, an optimum flow rate of 0.82 μl/min is obtained under 14 V three-phase input voltages at 0.033 Hz operating frequency

  13. Characterization of Piezoelectric PDMS-Nanoparticle Composites

    Science.gov (United States)

    Borsa, C. J.; Mionic Ebersold, M.; Bowen, P.; Farine, P.-A.; Briand, D.

    2015-12-01

    In this work, the novel fabrication and characterization of elastomeric piezoelectric nanocomposites are explored. Fabrication methods explored herein utilize ball milled barium titanate powder dispersions, along with double walled carbon nanotubes which are dispersed in toluene though the use of an ultrasonic probe. Test devices are then constructed with electrodes made from evaporated gold on polyimide foils and protective dielectrics of pristine PDMS. Two different device construction methods are explored utilizing both direct contact bonding and plasma bonding of the active composite layers to the dielectric/electrode. Test samples are evaluated through the use of a dedicated Berlincourt type piezoelectric d33 meter.

  14. Viscoelastic nature of Au nanoparticle–PDMS nanocomposite gels

    Indian Academy of Sciences (India)

    A stable gel of Au nanoparticles in polydimethylsiloxane (PDMS) nanocomposite is prepared by employing the curing agent of PDMS elastomer as a reducing agent for the formation of Au nanoparticles by an in-situ process. The viscoelastic nature of these gels is very sensitive to the Au nanoparticle loading and the ...

  15. Age structure and growth of California black oak (Quercus kelloggii) in the central Sierra Nevada, California

    Science.gov (United States)

    Barrett A. Garrison; Christopher D. otahal; Matthew L. Triggs

    2002-01-01

    Age structure and growth of California black oak (Quercus kelloggii) was determined from tagged trees at four 26.1-acre study stands in Placer County, California. Stands were dominated by large diameter (>20 inch dbh) California black oak and ponderosa pine (Pinus ponderosa). Randomly selected trees were tagged in June-August...

  16. Population structure of two black Venezuelan populations studied through their mating structure and other related variables.

    Science.gov (United States)

    Castro de Guerra, D; Arvelo, H; Pinto-Cisternas, J

    1999-01-01

    In order to obtain information about the population structure of two black Venezuelan populations with historical differences both in their origins and development, a variety of variables were utilized, especially on marital structure, including: frequency of surnames, isonymy, population genealogical consanguinity, multiple unions, and marital distances, all of which provided information and isolation, migration, endogamy, consanguinity, and patri-matrifocality. Results showed differences in the extent of isolation and endogamy, as well as differences in population structure, which can be directly related with historical conditions of each population. Results agree with those previously obtained with traditional genetic polymorphisms and with the historical information available. Thus, the usefulness of surnames for inferring about population structure is supported, as well as the usefulness of historical information for explaining genetic diversity.

  17. A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature.

    Science.gov (United States)

    Tang, Linzhi; Lee, Nae Yoon

    2010-05-21

    Plastic materials do not generally form irreversible bonds with poly(dimethylsiloxane) (PDMS) regardless of oxygen plasma treatment and a subsequent thermal process. In this paper, we perform plastic-PDMS bonding at room temperature, mediated by the formation of a chemically robust amine-epoxy bond at the interfaces. Various plastic materials, such as poly(methylmethacrylate) (PMMA), polycarbonate (PC), polyimide (PI), and poly(ethylene terephthalate) (PET) were adopted as choices for plastic materials. Irrespective of the plastic materials used, the surfaces were successfully modified with amine and epoxy functionalities, confirmed by the surface characterizations such as water contact angle measurements and X-ray photoelectron spectroscopy (XPS), and chemically robust and irreversible bonding was successfully achieved within 1 h at room temperature. The bonding strengths of PDMS with PMMA and PC sheets were measured to be 180 and 178 kPa, respectively, and their assemblies containing microchannel structures endured up to 74 and 84 psi (510 and 579 kPa) of introduced compressed air, respectively, without destroying the microdevices, representing a robust and highly stable interfacial bonding. In addition to microchannel-molded PDMS bonded with flat plastic substrates, microchannel-embossed plastics were also bonded with a flat PDMS sheet, and both types of bonded assemblies displayed sufficiently robust bonding, tolerating an intense influx of liquid whose per-minute injection volume was nearly 1000 to 2000 times higher than the total internal volume of the microchannel used. In addition to observing the bonding performance, we also investigated the potential of surface amine and epoxy functionalities as durable chemical adhesives by observing their storage-time-dependent bonding performances.

  18. Surface Modification of PDMS and Plastics with Zwitterionic Polymers.

    Science.gov (United States)

    Tanaka, Mutsuo; Kurosawa, Shigeru

    2017-07-01

    Surface modification of PDMS, polycarbonate, and acrylic resin was examined using various methacryl polymers bearing sulfobetaine, phosphoryl choline, and oligoethylene glycol units. We have found that zwitterionic polymers are adsorbed on the PDMS surface treated with plasma. The surface of PDMS is stable to keep high hydrophilicity after a month of the modification. On the other hand, one of sulfobetaine polymers showed distinguished adsorption behavior in the case of polycarbonate surface treated with plasma. Suppression effect for nonspecific adsorption of BSA was evaluated using polycarbonate and acrylic resin modified with the polymers. The modified surfaces showed suppression effect for nonspecific adsorption of BSA compared with the surface only treated with plasma.

  19. An Experimental and Theoretical Investigation of Ultrasound Transmission in Bubbly PDMS Phononic Crystals

    Science.gov (United States)

    Christianson, Caleb; Mukhopadhyay, Saikat; Sachse, Wolfgang; Stewart, Derek

    2014-03-01

    Phononic crystals are two- and three-dimensional structures with a periodic arrangement of two or more materials with different acoustic properties. Depending on the size, structure, and characteristics of the constituent materials, metamaterials with interesting acoustic properties can be formed. These crystals can be used to control the transmission of sound at selected frequencies, focus sound, or serve as waveguides. In this talk, we will focus on the transmission of ultrasonic waves through polydimethylsiloxane (PDMS) films with entrapped air bubbles. Two different theoretical models were used to predict ultrasonic transmission through air-PDMS crystals: (1) a simple scattering model for a series of partially reflective thin films and (2) the code MULTEL, which calculates the transmission using multiple scattering theory. A fabrication process was also developed to stack layers of the crystals with unprecedented alignment. We measured the ultrasonic transmission through the films using the ultrasonic through-transmission mode in a water bath and found an excellent agreement between the measured and calculated transmission. Additionally, we used these models to predict the performance of new phononic structures by scanning a large parameter space and showed how ultrasonic transmission through PDMS layers can be engineered by varying the dimensions, separation, and arrangement of air bubbles. This work was supported by the National Science Foundation.

  20. Features for Exploiting Black-Box Optimization Problem Structure

    DEFF Research Database (Denmark)

    Tierney, Kevin; Malitsky, Yuri; Abell, Tinus

    2013-01-01

    Black-box optimization (BBO) problems arise in numerous scientic and engineering applications and are characterized by compu- tationally intensive objective functions, which severely limit the number of evaluations that can be performed. We present a robust set of features that analyze the tness...... landscape of BBO problems and show how an algorithm portfolio approach can exploit these general, problem indepen- dent features and outperform the utilization of any single minimization search strategy. We test our methodology on data from the GECCO Workshop on BBO Benchmarking 2012, which contains 21...

  1. Controlled Contamination of Epoxy Composites with PDMS and Removal by Laser Ablation

    Science.gov (United States)

    Palmieri, Frank; Ledesma, Rodolfo; Cataldo, Daniel; Lin, Yi; Wohl, Christopher; Gupta, Mool; Connell, John

    2016-01-01

    Surface preparation is critical to the performance of adhesively bonded composites. During manufacturing, minute quantities of mold release compounds are inevitably deposited on faying surfaces and may compromise bond performance. To ensure safety, mechanical fasteners and other crack arrest features must be installed in the bondlines of primary structures, which negates some advantages of adhesively bonded construction. Laser ablation is an automated, repeatable, and scalable process with high potential for the surface preparation of metals and composites in critical applications such as primary airframe structures. In this study, laser ablation is evaluated on composite surfaces for the removal of polydimethylsiloxane (PDMS), a common mold release material. Composite panels were contaminated uniformly with PDMS film thicknesses as low as 6.0 nm as measured by variable angle spectroscopic ellipsometry. Bond performance was assessed by mechanical testing using a 250 F cure, epoxy adhesive and compared with pre-bond surface inspection results. Water contact angle, optically stimulated electron emission, and laser induced breakdown spectroscopy were used to characterize contaminated and laser ablated surfaces. The failure mode obtained from double cantilever beam tests correlated well with surface characterization data. The test results indicated that even low levels of PDMS were not completely removed by laser ablation.

  2. Mesomorphic phase behaviour of low molar mass PEP-PDMS diblock copolymers synthesized by anionic polymerization

    International Nuclear Information System (INIS)

    Vigild, M.E.

    1997-10-01

    The phase behaviour of low molar mass poly(ethylene-alt-propylene) -poly(dimethylsiloxane) (PEP-PDMS) is investigated in this thesis by the combination of dynamical mechanical spectroscopy (rheology) to measure phase transition temperatures, and small-angle x-ray scattering to identify the morphology of encountered phases. Samples of PEP-PDMS in the range of 0.2-0.7 in volume fraction of PEP are studied. This diblock copolymer system exhibits the three classical phases of lamellar sandwich structure (LAM), hexagonally packed cylinders (HEX), and spheres arranged on a body centered cubic lattice (BCC). Furthermore the gyroid phase (Ia3d symmetry) of two interpenetrating networks was also identified as a stable phase of the PEP-PDMS system. Time resolved measurements of small-angle neutron scattering in tandem with simultaneous in-situ rheological measurements are performed on samples showing transitions between different ordered phases. The identification of especially the BCC and gyroid phases from scattering experiments is treated. By performing mesoscopic crystallographic measurements using a custom built goniometer it was unambiguously shown that the application of shear to an unoriented powder-like sample introduces uniaxial orientation of the gyroid phase. The orientation of the ordered phase is otherwise random, causing a two-dimensional powder. Finally this dissertation presents a discussion of relevant parameters for the description of diblock copolymer phase behaviour together with descriptions of anionic polymerization for the synthesis of copolymers, and various experimental techniques for the characterization of diblocks. (au)

  3. Development of a conformable electronic skin based on silver nanowires and PDMS

    Science.gov (United States)

    Wang, Haopeng

    2017-06-01

    This paper presented the designed and tested a flexible and stretchable pressure sensor array that could be used to cover 3D surface to measure contact pressure. The sensor array is laminated into a thin film with 1 mm in thickness and can easily be stretched without losing its functionality. The fabricated sensor array contained 8×8 sensing elements, each could measure the pressure up to 180 kPa. An improved sandwich structure is used to build the sensor array. The upper and lower layers were PDMS thin films embedded with conductor strips formed by PDMS-based silver nanowires (AgNWs) networks covered with nano-scale thin metal film. The middle layer was formed a porous PDMS film inserted with circular conductive rubber. The sensor array could detect the contact pressure within 30% stretching rate. In this paper, the performance of the pressure sensor array was systematically studied. With the corresponding scanning power-supply circuit and data acquisition system, it is demonstrated that the system can successfully capture the tactile images induced by objects of different shapes. Such sensor system could be applied on complex surfaces in robots or medical devices for contact pressure detection and feedback.

  4. Acrylic acid grafted PDMS preliminary activated by Ar+beam plasma and cell observation

    International Nuclear Information System (INIS)

    Kostadinova, A.; Zaekov, N.; Keranov, I.

    2007-01-01

    Plasma based Ar + beam performed in RF (13.56 MHz) low-pressure (200 mTorr) glow discharge (at 100 W, 1200 W and 2500 W) with a serial capacitance was employed for surface modification of poly(dimethylsiloxane) (PDMS) aimed at improvement of its interactions with living cells. The presence of a serial capacitance ensures arise of an ion-flow inside the plasma volume directed toward the treated sample and the vary of the discharge power ensures varied density of the ion-flow The initial adhesion of human fibroblast cells was studied on the described above plasma based Ar + beam modified and acrylic acid (AA) grafted or not fibronectin (FN) pre-coated or ba resurfaces. The cell response seem sto be related with the peculiar structure and wettability of the modified PDMS surface layer after plasma based Ar + beam treatment followed or not by AA grafting. Key words: Biomaterials; Surface treatment of PDMS; Plasma based Ar + beam; Acrylic acid grafting; Fibroblast cells

  5. Fs-laser processing of medical grade polydimethylsiloxane (PDMS)

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, P.A., E-mail: paatanas@ie.bas.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Blvd., Sofia 1784 (Bulgaria); Stankova, N.E.; Nedyalkov, N.N. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Blvd., Sofia 1784 (Bulgaria); Fukata, N. [International Centre for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1Namiki, Tsukuba 305-0044 (Japan); Hirsch, D.; Rauschenbach, B. [Leibniz Institute of Surface Modification (IOM), Permoserstrasse 15, D-04318 Leipzig (Germany); Amoruso, S.; Wang, X. [Dipartimento di Fisica Università degli Studi di Napoli Federico II and CNR-SPIN, Complesso Universitario di Monte S.Angelo, Via Cintia, I-80126 Napoli (Italy); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria)

    2016-06-30

    Highlights: • Fs-laser (263, 527 and 1055 nm) processing of PDMS-elastomer is studied. • High quality trenches are produced on the PDMS surface. • The trenches are analyzed by Laser Microscope and by μ-Raman spectrometry. • Selective Ni metallization of the trenches is accomplished via electro-less plating. • The metalized trenches are studied by SEM. - Abstract: Medical grade polydimethylsiloxane (PDMS) elastomer is a biomaterial widely used in medicine and high-tech devices, e.g. MEMS and NEMS. In this work, we report an experimental investigation on femtosecond laser processing of PDMS-elastomer with near infrared (NIR), visible (VIS) and ultraviolet (UV) pulses. High definition trenches are produced by varying processing parameters as laser wavelength, pulse duration, fluence, scanning speed and overlap of the subsequent pulses. The sample surface morphology and chemical composition are investigated by Laser Microscopy, SEM and Raman spectroscopy, addressing the effects of the various processing parameters through comparison with the native materials characteristics. For all the laser pulse wavelengths used, the produced tracks are successfully metalized with Ni via electro-less plating method. We observe a negligible influence of the time interval elapsed between laser treatment and metallization process. Our experimental findings suggest promising perspectives of femtosecond laser pulses in micro- and nano-fabrication of hi-tech PDMS devices.

  6. The Canadian war on drugs: structural violence and unequal treatment of Black Canadians.

    Science.gov (United States)

    Khenti, Akwatu

    2014-03-01

    This paper examines the impact of Canada's war on drugs on segments of the Black community, specifically with respect to the impact of structural violence, over-policing, and high incarceration rates. It offers evidence of the systemic nature of these dynamics by examining the early context of the war, growing stigma against Blacks, globalizing influences, and the punitive focus of funding and policy. The paper also explores how Black men have been identified as the main enemy and how drug control efforts have served to diminish the health, well-being, and self-image of Black men via discriminatory and inequitable treatment before the law. The current high rates of imprisonment of Black men are an indicator of systematic deprivation of significant social capital, which will perpetuate socioeconomic harm and cycles of violence. This commentary calls for an immediate dissolution of policies regulating the war on drugs as the first step in remedying the injustices experienced by Black Canadians. Due to the lack of Canadian data in this important area, the paper also emphasizes the critical need for more research to shed more light on the Canadian-specific complexities. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.

    Science.gov (United States)

    Wei, Shao-Wen; Liu, Yu-Xiao

    2015-09-11

    Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole.

  8. Global Structure of Black Holes in String Theory with Gauss-Bonnet Correction in Various Dimensions

    Science.gov (United States)

    Ohta, N.; Torii, T.

    2010-08-01

    We study global structures of black hole solutions in Einstein gravity with Gauss-Bonnet term coupled to dilaton in various dimensions. In particular we focus on the problem whether the singularity is weakened due to the Gauss-Bonnet term and dilaton. We find that there appears the non-central singularity between horizon and the center in many cases, where the metric does not diverge but the Kretschmann invariant does diverge. Hence this is a singularity, but we find the singularity is much milder than the Schwarzschild solution and the non-dilatonic one. We discuss the origin of this ``fat'' singularity. In other cases, we encounter singularity at the center which is much stronger than the usual one. We find that our black hole solutions have three different types of the global structures; the Schwarzschild, Schwarzschild-AdS and ``regular AdS black hole" types.

  9. Bio-Inspired Bright Structurally Colored Colloidal Amorphous Array Enhanced by Controlling Thickness and Black Background.

    Science.gov (United States)

    Iwata, Masanori; Teshima, Midori; Seki, Takahiro; Yoshioka, Shinya; Takeoka, Yukikazu

    2017-07-01

    Inspired by Steller's jay, which displays angle-independent structural colors, angle-independent structurally colored materials are created, which are composed of amorphous arrays of submicrometer-sized fine spherical silica colloidal particles. When the colloidal amorphous arrays are thick, they do not appear colorful but almost white. However, the saturation of the structural color can be increased by (i) appropriately controlling the thickness of the array and (ii) placing the black background substrate. This is similar in the case of the blue feather of Steller's jay. Based on the knowledge gained through the biomimicry of structural colored materials, colloidal amorphous arrays on the surface of a black particle as the core particle are also prepared as colorful photonic pigments. Moreover, a structural color on-off system is successfully built by controlling the background brightness of the colloidal amorphous arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fs-laser processing of medical grade polydimethylsiloxane (PDMS)

    Science.gov (United States)

    Atanasov, P. A.; Stankova, N. E.; Nedyalkov, N. N.; Fukata, N.; Hirsch, D.; Rauschenbach, B.; Amoruso, S.; Wang, X.; Kolev, K. N.; Valova, E. I.; Georgieva, J. S.; Armyanov, St. A.

    2016-06-01

    Medical grade polydimethylsiloxane (PDMS) elastomer is a biomaterial widely used in medicine and high-tech devices, e.g. MEMS and NEMS. In this work, we report an experimental investigation on femtosecond laser processing of PDMS-elastomer with near infrared (NIR), visible (VIS) and ultraviolet (UV) pulses. High definition trenches are produced by varying processing parameters as laser wavelength, pulse duration, fluence, scanning speed and overlap of the subsequent pulses. The sample surface morphology and chemical composition are investigated by Laser Microscopy, SEM and Raman spectroscopy, addressing the effects of the various processing parameters through comparison with the native materials characteristics. For all the laser pulse wavelengths used, the produced tracks are successfully metalized with Ni via electro-less plating method. We observe a negligible influence of the time interval elapsed between laser treatment and metallization process. Our experimental findings suggest promising perspectives of femtosecond laser pulses in micro- and nano-fabrication of hi-tech PDMS devices.

  11. Modular microfluidic systems using reversibly attached PDMS fluid control modules

    DEFF Research Database (Denmark)

    Skafte-Pedersen, Peder; Sip, Christopher G.; Folch, Albert

    2013-01-01

    alternatives to integration because they can be tailored for different applications piecewise and without redesigning every element of the system. We present a method for reversibly coupling hard materials to soft lithography defined systems through self-aligning O-ring features thereby enabling easy...... interfacing of complex-valve-based systems with simpler detachable units. Using this scheme, we demonstrate the seamless interfacing of a PDMS-based fluid control module with hard polymer chips. In our system, 32 self-aligning O-ring features protruding from the PDMS fluid control module form chip......-to-control module interconnections which are sealed by tightening four screws. The interconnection method is robust and supports complex fluidic operations in the reversibly attached passive chip. In addition, we developed a double-sided molding method for fabricating PDMS devices with integrated through...

  12. Echoes from the abyss: Tentative evidence for Planck-scale structure at black hole horizons

    Science.gov (United States)

    Abedi, Jahed; Dykaar, Hannah; Afshordi, Niayesh

    2017-10-01

    In classical general relativity (GR), an observer falling into an astrophysical black hole is not expected to experience anything dramatic as she crosses the event horizon. However, tentative resolutions to problems in quantum gravity, such as the cosmological constant problem, or the black hole information paradox, invoke significant departures from classicality in the vicinity of the horizon. It was recently pointed out that such near-horizon structures can lead to late-time echoes in the black hole merger gravitational wave signals that are otherwise indistinguishable from GR. We search for observational signatures of these echoes in the gravitational wave data released by the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), following the three black hole merger events GW150914, GW151226, and LVT151012. In particular, we look for repeating damped echoes with time delays of 8 M log M (+spin corrections, in Planck units), corresponding to Planck-scale departures from GR near their respective horizons. Accounting for the "look elsewhere" effect due to uncertainty in the echo template, we find tentative evidence for Planck-scale structure near black hole horizons at false detection probability of 1% (corresponding to 2.5 σ

  13. Microfabrication of plastic-PDMS microfluidic devices using polyimide release layer and selective adhesive bonding

    Science.gov (United States)

    Wang, Shuyu; Yu, Shifeng; Lu, Ming; Zuo, Lei

    2017-05-01

    In this paper, we present an improved method to bond poly(dimethylsiloxane) (PDMS) with polyimide (PI) to develop flexible substrate microfluidic devices. The PI film was separately fabricated on a silicon wafer by spin coating followed by thermal treatment to avoid surface unevenness of the flexible substrate. In this way, we could also integrate flexible substrate into standard micro-electromechanical systems (MEMS) fabrication. Meanwhile, the adhesive epoxy was selectively transferred to the PDMS microfluidic device by a stamp-and-stick method to avoid epoxy clogging the microfluidic channels. To spread out the epoxy evenly on the transferring substrate, we used superhydrophilic vanadium oxide film coated glass as the transferring substrate. After the bonding process, the flexible substrate could easily be peeled off from the rigid substrate. Contact angle measurement was used to characterize the hydrophicity of the vanadium oxide film. X-ray photoelectron spectroscopy analysis was conducted to study the surface of the epoxy. We further evaluated the bonding quality by peeling tests, which showed a maximum bonding strength of 100 kPa. By injecting with black ink, the plastic microfluidic device was confirmed to be well bonded with no leakage for a day under 1 atm. This proposed versatile method could bond the microfluidic device and plastic substrate together and be applied in the fabrication of some biosensors and lab-on-a-chip systems.

  14. Truncated acoustic black hole structure with the optimized tapering shape and damping coating

    DEFF Research Database (Denmark)

    Ih, Jeong-Guon; Kim, Miseong; Lee, Ik Jin

    2016-01-01

    The acoustic black hole (ABH) structure can be an option as a vibration damper by providing a tapered wedge at the end of a beam or plate. However, not much work has been done on design to yield an effective ABH design for such a plate. We attempt to optimize the shape of the ABH to effectively...

  15. Factors affecting surface and release properties of thin PDMS films

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Junker, Michael Daniel; Skov, Anne Ladegaard

    2013-01-01

    Polydimethysiloxane (PDMS) elastomers are commonly used as dielectric electroactive polymers (DEAP). DEAP films are used in making actuators, generators and sensors. In the large scale manufacture of DEAP films, release of films from the substrate (carrier web) induces some defects and pre......-strain in the films which affect the overall performance of the films. The current research is directed towards investigating factors affecting the peel force and release of thin, corrugated polydimethylsiloxane films used in DEAP films. It has been shown that doping the PDMS films with small quantities...

  16. Left ventricular structure and function in black normotensive type 2 ...

    African Journals Online (AJOL)

    Significant myocardial injury before overt CVD in DM can be identified early using echocardiography. This study therefore aimed at evaluating left ventricular structure and function of patients with type 2 DM. Materials and Methods: One hundred and fifty adult type 2 DM patients were recruited with 150 age- and sexmatched ...

  17. Left ventricular structure and function in black normotensive type 2 ...

    African Journals Online (AJOL)

    Conclusion: There is high prevalence of alterations in LV structure and function in normotensive type 2 DM; and there is a ... randomly selected with 150 age- and sex-matched normal non-diabetic subjects. Type 2 DM patients and subjects with systemic hypertension, pregnancy, .... of 65 males and 85 females were studied.

  18. Black-hole horizons in modified spacetime structures arising from canonical quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Paily, George M; Reyes, Juan D; Tibrewala, Rakesh

    2011-01-01

    Several properties of canonical quantum gravity modify spacetime structures, sometimes to the degree that no effective line elements exist to describe the geometry. An analysis of solutions, for instance in the context of black holes, then requires new insights. In this paper, standard definitions of horizons in spherical symmetry are first reformulated canonically, and then evaluated for solutions of equations and constraints modified by inverse-triad corrections of loop quantum gravity. When possible, a spacetime analysis is performed which reveals a mass threshold for black holes and small changes to Hawking radiation. For more general conclusions, canonical perturbation theory is developed to second order to include back-reaction from matter. The results shed light on the questions of whether renormalization of Newton's constant or other modifications of horizon conditions should be taken into account in computations of black-hole entropy in loop quantum gravity.

  19. The Morpho-Acoustic Structure of Sakarya Canyon, Southwestern Black Sea

    Science.gov (United States)

    Nasıf, Aslıhan; Dondurur, Derman

    2017-04-01

    In this study, Black Sea outlet of Sakarya River in the western Black Sea continental margin is analyzed using a total of 1400 km multichannel seismics, Chirp sub-bottom profiler and multibeam bathymetric datasets. Three scientific cruises between 2012 and 2016 have been conducted in the area to map and reveal the morphological structure of the Sakarya Canyon along the southwestern Black Sea margin. The Western Black Sea Turkey coastal area is also home to many active canyons. These canyons extend from deep shallow shelf areas of about 100 m to deep water depths of 1800-2000 m. The largest and most active of the Western Black Sea canyons is the Sakarya Canyon, which is located at the exit of the Sakarya River. Research on submarine canyons are important for military submarine operations, positioning of marine engineering structures and understanding the sedimentology, ecological and oceanographic functions of canyons. The canyon systems observed on continental slopes lead to the most convenient sedimentary transportation from the shelf platform. The dataset from study area was analyzed to identify the acoustic structure of Sakarya Canyon, the morphology of which is not widely known. Bathymetric data shows that the canyon consists of two separate canyon heads in the shallow continental shelf to the south, both of which coalesce at 867 m water depth. This meandering canyon then deepens along the continental slope towards to north. Another wide canyon from west, named as Kefken Canyon, then conjoins this main canyon at approximately 1000 m water depths to form the deeper structure of the modern Sakarya Canyon. In the distal parts, canyon gets wider and wider, and its thalweg becomes significantly flat eroded by the present day activity of small scale turbidity channels. Multichannel seismic data indicate that the Sakarya Canyon was formed by the activity of hyperphycnal flows and also clearly show the extensive sediment erosion along the canyon.

  20. Viscoelastic nature of Au nanoparticle–PDMS nanocomposite gels

    Indian Academy of Sciences (India)

    Even a very low Au content of 0.09 wt% is sufficient enough to bring in the transition from sponge state to gel state at room temperature. ... gel properties can have direct influence on the processability of Au nanoparticle–PDMS nanocomposite gels, with interesting implications in electronic, optical and microfluidic devices.

  1. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil

    International Nuclear Information System (INIS)

    Wang Ping; Wang Haizhen; Wu Laosheng; Di Hongjie; He Yan; Xu Jianming

    2012-01-01

    Biodegradation processes and changes in microbial community structure were investigated in black carbon (BC) amended soils in a laboratory experiment using two soils (black soil and red soil). We applied different percentages of charcoal as BC (0%, 0.5% and 1% by weight) with 100 mg kg −1 of phenanthrene. Soil samples were collected at different incubation times (0, 7, 15, 30, 60, 120 d). The amendment with BC caused a marked decrease in the dissipation (ascribed to mainly degradation and/or sequestration) of phenanthrene residues from soil. Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil, 0.5% BC amendments were higher. There were significant changes in the PLFA pattern in phenanthrene-spiked soils with time but BC had little effect on the microbial community structure of phenanthrene-spiked soils, as indicated by principal component analysis (PCA) of the PLFA signatures. - Highlights: ► Extracted phenanthrene increased substantially as the BC amount increased. ► Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil. ► BC caused a marked decrease in the dissipation of phenanthrene from soil. ► PLFA pattern in phenanthrene-spiked soils with time had significant changes. - BC amendments on phenanthrene extraction were different for two soils and time was a more effective factor in microbial community changes.

  2. Analysis of internal structure changes in black human hair keratin fibers with aging using Raman spectroscopy.

    Science.gov (United States)

    Kuzuhara, Akio; Fujiwara, Nobuki; Hori, Teruo

    To investigate the internal structure changes in virgin black human hair keratin fibers due to aging, the structure of cross-sections at various depths of virgin black human hair (sections of new growth hair: 2 mm from the scalp) from a group of eight Japanese females in their twenties and another group of eight Japanese females in their fifties were analyzed using Raman spectroscopy. For the first time, we have succeeded in recording the Raman spectra of virgin black human hair, which had been impossible due to high melanin granule content. The key points of this method are to cross-section hair samples to a thickness of 1.50-microm, to select points at various depths of the cortex with the fewest possible melanin granules, and to optimize laser power, cross slit width as well as total acquisition time. The reproducibility of the Raman bands, namely the alpha-helix (alpha) content, the beta-sheet and/or random coil (beta/R) content, the disulfide (--SS--) content, and random coil content of two adjoining cross-sections of a single hair keratin fiber was clearly good. The --SS-- content of virgin black human hair from the Japanese females in their fifties for the cortex region decreased compared with that of the Japanese females in their twenties. On the other hand, the beta/R and alpha contents of the cortex region did not change.

  3. Air-spaced PDMS piezo-electret cantilevers for vibration energy harvesting

    Science.gov (United States)

    Kachroudi, A.; Basrour, S.; Rufer, L.; Jomni, F.

    2016-11-01

    This paper reports a design of a new prototype of air-spaced cantilevers made from a micro-structured PDMS piezo-electret material for accelerometer and energy harvesting applications. The test performed on these cantilevers in a sensor mode exhibits a stable sensitivity of 385 mV/g for a frequency ranging from 5 Hz to 200 Hz that encompass most macro-scale vibrations. In the energy harvesting mode, the cantilever generates a power of 103 nW with a load resistance of 217 MΩ.

  4. PDMS and MWCNT – How to Obtain an Efficient and Controlled Distribution of Conductive Fillers in PDMS

    DEFF Research Database (Denmark)

    Hassonueh, S. S.; Goswami, Kaustav; Skov, Anne Ladegaard

    .g. atom transfer radical polymerization (ATRP) using compatibilizing monomers. Through the surface initiated polymerization a thin coating of polymer is introduced on the MWCNT to prevent agglomeration and permit much easier dispersion into the targeted polymer such as a PDMS prepolymer. Through simple...

  5. Fabrication of Three Dimensional Tissue Engineering Polydimethylsiloxane ( PDMS) Microporous Scaffolds Integrated in a Bioreactor Using a 3D Printed Water Dissolvable Sacrificial Mould

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Mantis, Ioannis; Chetan, Aradhya Mallikarjunaiah

    2015-01-01

    We present a new scalable and general approach for manufacturing structured pores/channels in 3D polymer based scaffolds. The method involves 3D printing of a sacrificial polyvinyl alcohol (PVA) mould whose geometrical features are designed according to the required vascular channel network....... Polydimethylsiloxane (PDMS) polymer is cast around the PVA mould, cross-linked and then the mould is dissolved, leaving behind a structured porous PDMS scaffold. The fabrication method described here is demonstrated with silicone elastomer but various other natural and synthetic polymers are compatible...

  6. A quasi-static approach to structure formation in black hole universes

    Energy Technology Data Exchange (ETDEWEB)

    Durk, Jessie; Clifton, Timothy, E-mail: j.durk@qmul.ac.uk, E-mail: t.clifton@qmul.ac.uk [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London (United Kingdom)

    2017-10-01

    Motivated by the existence of hierarchies of structure in the Universe, we present four new families of exact initial data for inhomogeneous cosmological models at their maximum of expansion. These data generalise existing black hole lattice models to situations that contain clusters of masses, and hence allow the consequences of cosmological structures to be considered in a well-defined and non-perturbative fashion. The degree of clustering is controlled by a parameter λ, in such a way that for λ ∼ 0 or 1 we have very tightly clustered masses, whilst for λ ∼ 0.5 all masses are separated by cosmological distance scales. We study the consequences of structure formation on the total net mass in each of our clusters, as well as calculating the cosmological consequences of the interaction energies both within and between clusters. The locations of the shared horizons that appear around groups of black holes, when they are brought sufficiently close together, are also identified and studied. We find that clustering can have surprisingly large effects on the scale of the cosmology, with models that contain thousands of black holes sometimes being as little as 30% of the size of comparable Friedmann models with the same total proper mass. This deficit is comparable to what might be expected to occur from neglecting gravitational interaction energies in Friedmann cosmology, and suggests that these quantities may have a significant influence on the properties of the large-scale cosmology.

  7. A quasi-static approach to structure formation in black hole universes

    Science.gov (United States)

    Durk, Jessie; Clifton, Timothy

    2017-10-01

    Motivated by the existence of hierarchies of structure in the Universe, we present four new families of exact initial data for inhomogeneous cosmological models at their maximum of expansion. These data generalise existing black hole lattice models to situations that contain clusters of masses, and hence allow the consequences of cosmological structures to be considered in a well-defined and non-perturbative fashion. The degree of clustering is controlled by a parameter λ, in such a way that for λ ~ 0 or 1 we have very tightly clustered masses, whilst for λ ~ 0.5 all masses are separated by cosmological distance scales. We study the consequences of structure formation on the total net mass in each of our clusters, as well as calculating the cosmological consequences of the interaction energies both within and between clusters. The locations of the shared horizons that appear around groups of black holes, when they are brought sufficiently close together, are also identified and studied. We find that clustering can have surprisingly large effects on the scale of the cosmology, with models that contain thousands of black holes sometimes being as little as 30% of the size of comparable Friedmann models with the same total proper mass. This deficit is comparable to what might be expected to occur from neglecting gravitational interaction energies in Friedmann cosmology, and suggests that these quantities may have a significant influence on the properties of the large-scale cosmology.

  8. A quasi-static approach to structure formation in black hole universes

    International Nuclear Information System (INIS)

    Durk, Jessie; Clifton, Timothy

    2017-01-01

    Motivated by the existence of hierarchies of structure in the Universe, we present four new families of exact initial data for inhomogeneous cosmological models at their maximum of expansion. These data generalise existing black hole lattice models to situations that contain clusters of masses, and hence allow the consequences of cosmological structures to be considered in a well-defined and non-perturbative fashion. The degree of clustering is controlled by a parameter λ, in such a way that for λ ∼ 0 or 1 we have very tightly clustered masses, whilst for λ ∼ 0.5 all masses are separated by cosmological distance scales. We study the consequences of structure formation on the total net mass in each of our clusters, as well as calculating the cosmological consequences of the interaction energies both within and between clusters. The locations of the shared horizons that appear around groups of black holes, when they are brought sufficiently close together, are also identified and studied. We find that clustering can have surprisingly large effects on the scale of the cosmology, with models that contain thousands of black holes sometimes being as little as 30% of the size of comparable Friedmann models with the same total proper mass. This deficit is comparable to what might be expected to occur from neglecting gravitational interaction energies in Friedmann cosmology, and suggests that these quantities may have a significant influence on the properties of the large-scale cosmology.

  9. Osteogenic differentiation on DLC-PDMS-h surface.

    Science.gov (United States)

    Soininen, Antti; Kaivosoja, Emilia; Sillat, Tarvo; Virtanen, Sannakaisa; Konttinen, Yrjö T; Tiainen, Veli-Matti

    2014-10-01

    The hypothesis was that anti-fouling diamond-like carbon polydimethylsiloxane hybrid (DLC-PDMS-h) surface impairs early and late cellular adhesion and matrix-cell interactions. The effect of hybrid surface on cellular adhesion and cytoskeletal organization, important for osteogenesis of human mesenchymal stromal cells (hMSC), where therefore compared with plain DLC and titanium (Ti). hMSCs were induced to osteogenesis and followed over time using scanning electron microscopy (SEM), time-of-flight secondary ion mass spectrometry (ToF-SIMS), immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR), and hydroxyapatite (HA) staining. SEM at 7.5 hours showed that initial adherence and spreading of hMSC was poor on DLC-PDMS-h. At 5 days some hMSC were undergoing condensation and apoptotic fragmentation, whereas cells on DLC and Ti grew well. DAPI-actin-vinculin triple staining disclosed dwarfed cells with poorly organized actin cytoskeleton-focal complex/adhesion-growth substrate attachments on hybrid coating, whereas spread cells, organized microfilament bundles, and focal adhesions were seen on DLC and in particular on Ti. Accordingly, at day one ToF-SIMS mass peaks showed poor protein adhesion to DLC-PDMS-h compared with DLC and Ti. COL1A1, ALP, OP mRNA levels at days 0, 7, 14, 21, and/or 28 and lack of HA deposition at day 28 demonstrated delayed or failed osteogenesis on DLC-PDMS-h. Anti-fouling DLC-PDMS-h is a poor cell adhesion substrate during the early protein adsorption-dependent phase and extracellular matrix-dependent late phase. Accordingly, some hMSCs underwent anoikis-type apoptosis and failed to complete osteogenesis, due to few focal adhesions and poor cell-to-ECM contacts. DLC-PDMS-h seems to be a suitable coating for non-integrating implants/devices designed for temporary use. © 2014 Wiley Periodicals, Inc.

  10. Design and fabrication of microfluidic mixer from carbonyl iron–PDMS composite membrane

    KAUST Repository

    Li, Jiaxing

    2010-10-12

    This paper introduces a carbonyl iron-PDMS (CI-PDMS) composite magnetic elastomer in which carbonyl iron (CI) particles are uniformly distributed in a PDMS matrix. The CI particles and the PDMS were mixed at different weight ratios and tested to determine the influence of CI concentration. The magnetic and mechanical properties of the magnetic elastomers were characterized, respectively, by vibrating-sample magnetometer and by tensile testing using a mechanical analyzer. The elastomer was found to exhibit high magnetization and good mechanical flexibility. The morphology and deformation of the CI-PDMS membrane also were observed. A magnetically actuated microfluidic mixer (that is, a micromixer) integrated with CI-PDMS elastomer membranes was successfully designed and fabricated. The high efficiency and quality of the mixing makes possible the impressive potential applications of this unique CI-PDMS material in microfluidic systems. © Springer-Verlag 2010.

  11. Control of PDMS crosslinking by encapsulating a hydride crosslinker in a PMMA microcapsule

    DEFF Research Database (Denmark)

    Ma, Baoguang; Hansen, Jens Henrik; Hvilsted, Søren

    2014-01-01

    crosslinker in a PMMA shell. Microcapsules are mixed with vinyl-terminated PDMS to create a gelation system, which allows for storage at 50 °C, without premature gelation, and in addition allows for extensive crosslinking reaction at 120 °C. Both visual observations and rheological studies show that a robust...... PDMS elastomer is obtained upon heating the gelation system. Furthermore, the influence of stoichiometric imbalance on the equilibrium storage modulus of the PDMS network is investigated, by employing different amounts of microcapsules in vinyl-terminated PDMS. It has been found that adding...... microcapsules increases the equilibrium storage modulus of the PDMS elastomer until the diffusion of the hydride crosslinker is constricted. An optimum amount of crosslinker used in the control crosslinking reaction has also been found. However, compared to the pure PDMS elastomer, the modulus of the PDMS...

  12. Fabrication of a 3D active mixer based on deformable Fe-doped PDMS cones with magnetic actuation

    Science.gov (United States)

    Riahi, Mohammadreza; Alizadeh, Elaheh

    2012-11-01

    In this paper an active 3D mixer for lab-on-chip applications is presented. The micrometer size cone shape holes are ablated on a PMMA sheet utilizing a CO2 laser. The holes are filled with Fe micro-particles and the whole structure is molded with PDMS which cause the Fe micro-particles to be trapped in a PDMS cone structure. These Fe-doped PDMS cones are placed in a PMMA micro-channel structure fabricated by CO2 laser machining. By applying an external periodic magnetic field, the cones periodically bend in the micro-channel and stir the fluid. The fabrication method and the effect of the magnetic field on the bending of the cones with different aspect ratios is also discussed utilizing computer simulation. Doping the polymers with micro- and nano-metallic particles has been carried out by different research groups before, but according to our knowledge, application of such structures for the fabrication of a 3D active mixer has not been presented before.

  13. Fabrication of a 3D active mixer based on deformable Fe-doped PDMS cones with magnetic actuation

    International Nuclear Information System (INIS)

    Riahi, Mohammadreza; Alizadeh, Elaheh

    2012-01-01

    In this paper an active 3D mixer for lab-on-chip applications is presented. The micrometer size cone shape holes are ablated on a PMMA sheet utilizing a CO 2 laser. The holes are filled with Fe micro-particles and the whole structure is molded with PDMS which cause the Fe micro-particles to be trapped in a PDMS cone structure. These Fe-doped PDMS cones are placed in a PMMA micro-channel structure fabricated by CO 2 laser machining. By applying an external periodic magnetic field, the cones periodically bend in the micro-channel and stir the fluid. The fabrication method and the effect of the magnetic field on the bending of the cones with different aspect ratios is also discussed utilizing computer simulation. Doping the polymers with micro- and nano-metallic particles has been carried out by different research groups before, but according to our knowledge, application of such structures for the fabrication of a 3D active mixer has not been presented before. (paper)

  14. Mesomorphic phase behaviour of low molar mass PEP-PDMS diblock copolymers synthesized by anionic polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vigild, M.E.

    1997-10-01

    The phase behaviour of low molar mass poly(ethylene-alt-propylene) -poly(dimethylsiloxane) (PEP-PDMS) is investigated in this thesis by the combination of dynamical mechanical spectroscopy (rheology) to measure phase transition temperatures, and small-angle x-ray scattering to identify the morphology of encountered phases. Samples of PEP-PDMS in the range of 0.2-0.7 in volume fraction of PEP are studied. This diblock copolymer system exhibits the three classical phases of lamellar sandwich structure (LAM), hexagonally packed cylinders (HEX), and spheres arranged on a body centered cubic lattice (BCC). Furthermore the gyroid phase (Ia3d symmetry) of two interpenetrating networks was also identified as a stable phase of the PEP-PDMS system. Time resolved measurements of small-angle neutron scattering in tandem with simultaneous in-situ rheological measurements are performed on samples showing transitions between different ordered phases. The identification of especially the BCC and gyroid phases from scattering experiments is treated. By performing mesoscopic crystallographic measurements using a custom built goniometer it was unambiguously shown that the application of shear to an unoriented powder-like sample introduces uniaxial orientation of the gyroid phase. The orientation of the ordered phase is otherwise random, causing a two-dimensional powder. Finally this dissertation presents a discussion of relevant parameters for the description of diblock copolymer phase behaviour together with descriptions of anionic polymerization for the synthesis of copolymers, and various experimental techniques for the characterization of diblocks. (au). 9 tabs., 40 ills., 81 refs.

  15. Cleaning of nanopillar templates for nanoparticle collection using PDMS

    Science.gov (United States)

    Merzsch, S.; Wasisto, H. S.; Waag, A.; Kirsch, I.; Uhde, E.; Salthammer, T.; Peiner, E.

    2011-05-01

    Nanoparticles are easily attracted by surfaces. This sticking behavior makes it difficult to clean contaminated samples. Some complex approaches have already shown efficiencies in the range of 90%. However, a simple and cost efficient method was still missing. A commonly used silicone for soft lithography, PDMS, is able to mold a given surface. This property was used to cover surface-bonded particles from all other sides. After hardening the PDMS, particles are still embedded. A separation of silicone and sample disjoins also the particles from the surface. After this procedure, samples are clean again. This method was first tested with carbon particles on Si surfaces and Si pillar samples with aspect ratios up to 10. Experiments were done using 2 inch wafers, which, however, is not a size limitation for this method.

  16. Soft and flexible conductive PDMS/MWCNT composites

    DEFF Research Database (Denmark)

    Hassouneh, Suzan Sager; Yu, Liyun; Skov, Anne Ladegaard

    2017-01-01

    Conductive elastomers based on MWCNT in polydimethylsiloxane (PDMS) have been prepared by a range of dispersion methods such as ultrasonication, speedmixing and roll milling in combination with physical or covalent modification. The ionic liquid (IL), 1-ethyl-3-methylimidazolium bis...... in conductivity was observed, which was attributed to a change in morphology occurring between 4 and 5 wt % MWCNT. As an alternative to IL dispersing aids a novel functionalized MWCNT was prepared by free radical polymerization using α-methacryloxypropyl-polydimethylsiloxane, which could be used directly...... for preparation of MWCNT/PDMS composites. Composites prepared by use of the IL dispersion method, use of a roll mill or by use of the f-MWCNT all had conductivities around 0.005–0.01 s/cm and retained conductivity upon extension....

  17. Micropatterning on silicon elastomer (PDMS) with deep UVs

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Nicolas CARPI, Matthieu PIEL, Ammar Azioune, Damien Cuvelier & Jenny Fink ### Abstract This protocol describes a technique to imprint adhesive micropatterns on silicon elastomers like PDMS (poly-dimethyl siloxane). The micropatterns are stable for days (depending on the cell type) and regions outside the patterns prevent cell attachment. This technique is fast and easy and can be useful to combine cell stretching and micro-patterning. ### Introduction This protoco...

  18. Viscoelasticity of Brownian Carbon Nanotubes in PDMS Semidilute Regime

    OpenAIRE

    MARCEAU, Sandrine; DUBOIS, Philippe; FULCHIRON, René; CASSAGNAU, Philippe

    2009-01-01

    The objective of the present paper is to investigate the linear viscoelasticity of diluted suspension of MWNT spread in PDMS. Specifically, we focus our attention on both the CNT relaxation in semidilute conditions and the concept of percolation threshold for such system. Finally, the results, and mainly the concentration dependence of the zero-shear viscosity and mean relaxation time, will be discussed within the Doi−Edwards theory framework on molecular dynamic of rigid rods in a semi...

  19. Diameter structure modeling and the calculation of plantation volume of black poplar clones

    Directory of Open Access Journals (Sweden)

    Andrašev Siniša

    2004-01-01

    Full Text Available A method of diameter structure modeling was applied in the calculation of plantation (stand volume of two black poplar clones in the section Aigeiros (Duby: 618 (Lux and S1-8. Diameter structure modeling by Weibull function makes it possible to calculate the plantation volume by volume line. Based on the comparison of the proposed method with the existing methods, the obtained error of plantation volume was less than 2%. Diameter structure modeling and the calculation of plantation volume by diameter structure model, by the regularity of diameter distribution, enables a better analysis of the production level and assortment structure and it can be used in the construction of yield and increment tables.

  20. Super Black Material from Low-Density Carbon Aerogels with Subwavelength Structures.

    Science.gov (United States)

    Sun, Wei; Du, Ai; Feng, Yu; Shen, Jun; Huang, Shangming; Tang, Jun; Zhou, Bin

    2016-09-06

    Many scientists have devoted themselves to the study of the interaction between subwavelength structures and electromagnetic waves. These structures are commonly composed of regular arrays of subwavelength protuberances, which can be artificially designed. However, extending from 2D periodic patterns to 3D disordered subwavelength structures has not been studied yet. In this study, we studied the total diffuse reflectivity of carbon aerogels with various 3D networks of randomly oriented particle-like nanostructures by using normally incident visible light (430-675 nm). We observed that the different 3D network nanostructures of carbon aerogels, especially for the structures with the minimum size, reduced the reflectivity effectively. It was found that the key mechanism for the subwavelength-structure-induced ultralow reflectivity property is due to the decrease of the amplitude of electron vibration forced by the electromagnetic wave, which provides a simple method for designing perfect black materials.

  1. Brans-Dicke Theory with Λ>0: Black Holes and Large Scale Structures.

    Science.gov (United States)

    Bhattacharya, Sourav; Dialektopoulos, Konstantinos F; Romano, Antonio Enea; Tomaras, Theodore N

    2015-10-30

    A step-by-step approach is followed to study cosmic structures in the context of Brans-Dicke theory with positive cosmological constant Λ and parameter ω. First, it is shown that regular stationary black-hole solutions not only have constant Brans-Dicke field ϕ, but can exist only for ω=∞, which forces the theory to coincide with the general relativity. Generalizations of the theory in order to evade this black-hole no-hair theorem are presented. It is also shown that in the absence of a stationary cosmological event horizon in the asymptotic region, a stationary black-hole horizon can support a nontrivial Brans-Dicke hair. Even more importantly, it is shown next that the presence of a stationary cosmological event horizon rules out any regular stationary solution, appropriate for the description of a star. Thus, to describe a star one has to assume that there is no such stationary horizon in the faraway asymptotic region. Under this implicit assumption generic spherical cosmic structures are studied perturbatively and it is shown that only for ω>0 or ω≲-5 their predicted maximum sizes are consistent with observations. We also point out how, many of the conclusions of this work differ qualitatively from the Λ=0 spacetimes.

  2. Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing

    International Nuclear Information System (INIS)

    Liu, Chao-Xuan; Choi, Jin-Woo

    2009-01-01

    This paper introduces a simple method of embedding conductive and flexible elastomer micropatterns into a bulk elastomer. Employing microcontact printing and cast molding techniques, patterns consisting of conductive poly(dimethylsiloxane) (PDMS) composites mixed with multi-walled carbon nanotubes (MWCNTs) are embedded into bulk PDMS to form all-elastomer devices. To pattern conductive composites, a micromachined printing mold is utilized to transfer composite ink from a spin-coated thin layer to another substrate. Distinct from previously reported approaches, the printing mold in this technique, once fabricated, can be repeatedly used to generate new patterns and therefore greatly simplifies the device fabrication process and improves its efficiency. Manufactured devices with embedded conductive patterns exhibit excellent mechanical flexibility. With characterization of printing reliability, electrical conductivity of the composites is also shown with different loading percentages of MWCNTs. Furthermore, a simple strain gauge was fabricated and tested to demonstrate the potential applications of embedded conductive patterns. Overall, this approach demonstrates feasibility to be a simple method to pattern conductive elastomers that work as electrodes or sensing probes in PDMS-based devices. With further development, this technology yields many potential applications in lab-on-a-chip systems

  3. Hydrophilic Surface Modification of PDMS Using Atmospheric RF Plasma

    International Nuclear Information System (INIS)

    Hong, Sung M; Kim, Seong H; Kim, Jeong H; Hwang, Hak I

    2006-01-01

    Control of surface properties in microfluidics systems is an indispensable prerequisite for the success of bioanalytical applications. Poly(dimethylsiloxane) (PDMS) microfluidic devices are hampered from unwanted adsorption of biomolecules and the lack of methods to control electroosmotic flow(EOF). Among the various methods of hydrophilic treatment, a new cleaner technology was chosen to treat PDMS. By using atmospheric RF plasma, hydrophilic surfaces can be created. Thus, analysis was conducted with AFM, XPS, and contact angle before and after plasma treatment. Constructing hydrophilic surfaces without changing the true character of that surface has previously been costly and time consuming. But by using atmospheric plasma cost and time are both greatly reduced. There are many other benefits of hydrophilic surface treatment, including the capability to increase adhesion and capillary effects, etc. Also, with hydrophilic treatment of the micro channels on the PDMS surface, surface tension is reduced thus allowing fluids to move easily along those channels. However, the most important aim is to increase the capillary effects without any deposition or chemical treatment

  4. Surface buckling of black phosphorus: Determination, origin, and influence on electronic structure

    Science.gov (United States)

    Dai, Zhongwei; Jin, Wencan; Yu, Jie-Xiang; Grady, Maxwell; Sadowski, Jerzy T.; Kim, Young Duck; Hone, James; Dadap, Jerry I.; Zang, Jiadong; Osgood, Richard M.; Pohl, Karsten

    2017-12-01

    The surface structure of black phosphorus materials is determined using surface-sensitive dynamical microspot low energy electron diffraction (μ LEED ) analysis using a high spatial resolution low energy electron microscopy (LEEM) system. Samples of (i) crystalline cleaved black phosphorus (BP) at 300 K and (ii) exfoliated few-layer phosphorene (FLP) of about 10 nm thickness which were annealed at 573 K in vacuum were studied. In both samples, a significant surface buckling of 0.22 Å and 0.30 Å, respectively, is measured, which is one order of magnitude larger than previously reported. As direct evidence for large buckling, we observe a set of (for the flat surface forbidden) diffraction spots. Using first-principles calculations, we find that the presence of surface vacancies is responsible for the surface buckling in both BP and FLP, and is related to the intrinsic hole doping of phosphoresce materials previously reported.

  5. Study of the glow curve structure of the minerals separated from black pepper (Piper nigrum L.)

    Science.gov (United States)

    Guzmán, S.; Ruiz Gurrola, B.; Cruz-Zaragoza, E.; Tufiño, A.; Furetta, C.; Favalli, A.; Brown, F.

    2011-04-01

    The inorganic mineral fraction extracted from black pepper (Piper nigrum L.) has been analysed using a thermoluminescence (TL) method, investigating the glow curve structure, including an evaluation of the kinetic parameters. Different grain sizes, i.e. 10, 74, and 149 μm, were selected from commercial black pepper. The X-ray diffraction of the inorganic fraction shows that quartz is the main mineral present in it. The samples were exposed to 1-25 kGy doses by gamma rays of 60Co in order to analyse the thermally stimulated luminescence response as a function of the delivered dose. The glow curves show a complex structure for different grain sizes of the pepper mineral samples. The fading of the TL signal at room temperature was obtained after irradiation, and it was observed that the maximum peaks of the glow curves shift towards higher values of the temperature when the elapsed time from irradiation increases. It seems that the fading characteristic may be related to a continuous trap distribution responsible for the complex structure of the glow curve. Similar glow curves structure behaviour was found under ultraviolet irradiation of the samples. The activation energy and the frequency factor were determined from the glow curves of different grain sizes using a deconvolution programme because of the evident complexity of the structure.

  6. Stretchable Ag electrodes with mechanically tunable optical transmittance on wavy-patterned PDMS substrates

    Science.gov (United States)

    Ko, Eun-Hye; Kim, Hyo-Joong; Lee, Sang-Mok; Kim, Tae-Woong; Kim, Han-Ki

    2017-04-01

    We report on semi-transparent stretchable Ag films coated on a wavy-patterned polydimethylsiloxane (PDMS) substrate for use as stretchable electrodes for stretchable and transparent electronics. To improve the mechanical stretchability of the Ag films, we optimized the wavy-pattern of the PDMS substrate as a function of UV-ozone treatment time and pre-strain of the PDMS substrate. In addition, we investigated the effect of the Ag thickness on the mechanical stretchability of the Ag electrode formed on the wavy-patterned PDMS substrate. The semi-transparent Ag films formed on the wavy-patterned PDMS substrate showed better stretchability (strain 20%) than the Ag films formed on a flat PDMS substrate because the wavy pattern effectively relieved strain. In addition, the optical transmittance of the Ag electrode on the wavy-patterned PDMS substrate was tunable based on the degree of stretching for the PDMS substrate. In particular, it was found that the wavy-patterned PDMS with a smooth buckling was beneficial for a precise patterning of Ag interconnectors. Furthermore, we demonstrated the feasibility of semi-transparent Ag films on wavy-patterned PDMS as stretchable electrodes for the stretchable electronics based on bending tests, hysteresis tests, and dynamic fatigue tests.

  7. Internal structure changes in bleached black human hair resulting from chemical treatments: A Raman spectroscopic investigation

    Science.gov (United States)

    Kuzuhara, Akio

    2014-11-01

    In order to investigate in detail the influence of chemical treatments (reduction, hydrolyzed eggwhite protein (HEWP) treatment, and oxidation) on damaged hair keratin fibers, the structure of cross-sections at various depths of excessively bleached (damaged) black human hair resulting from a permanent waving process was directly analyzed using Raman spectroscopy. It was found that L-cysteine (CYS) largely reacted with the gauche-gauche-gauche (GGG) conformation of disulfide (-SS-) groups (while CYS did not react with the trans-gauche-trans (TGT) conformation). In particular, not only the GGG content, but also the cysteic acid content existing throughout the cortex region of the excessively bleached human hair remarkably decreased by performing the oxidation process after reduction. On the other hand, the GGG content of the excessively bleached black human hair increased, while the TGT content decreased by performing the oxidation process after reduction and then HEWP treatment processes. From these experiments, the authors concluded that some of the keratin associated protein (KAP), which has a rich -SS- content and cysteic acid content was eluted from the cortex region along with the disconnection of -SS- groups, thereby leading to the remarkable reduction in the reconnection of -SS- groups of the excessively bleached black human hair after the permanent waving process (the reduction and oxidation processes). Also, the authors concluded that the HEWP treatment process in the permanent waving process caused the reconstruction of the KAP, thereby contributing to the acceleration of the reconnection of -SS- groups during the oxidation process.

  8. Analysis of structural changes in bleached keratin fibers (black and white human hair) using Raman spectroscopy.

    Science.gov (United States)

    Kuzuhara, Akio

    2006-04-15

    To investigate the influence of bleaching treatments on keratin fibers, the structure of cross-sections at various depths of bleached human hair (black and white human hair) was directly analyzed without isolating the cuticle and cortex, using Raman spectroscopy. The S-S band intensity existing from the cuticle region to the center of cortex region of virgin white human hair decreased, while the S-O band intensity at 1040 cm(-1), assigned to cysteic acid, increased by performing the bleaching treatment. Especially, the S-O band intensity of the cuticle region increased remarkably compared with that of the cortex region. Also, the amide III (unordered) band intensity in the cortex region increased, indicating that some of the proteins existing throughout the cortex region changed to the random coil form. Moreover, it has been found that the S-S band intensity existing from the cuticle region to the center of the cortex region of the virgin black human hair decreased remarkably, while the S-O band intensity increased significantly compared with that of the virgin white human hair by performing the bleaching treatment. From these experiments, we concluded that the melanin granules including metal ions act as a decomposition accelerator for the oxidizing agent, thereby leading to a higher level of disulfide (-SS-) group cleavage in the black human hair compared with that of the white human hair. Copyright 2006 Wiley Periodicals, Inc.

  9. A PDMS-Based 2-Axis Waterproof Scanner for Photoacoustic Microscopy

    Directory of Open Access Journals (Sweden)

    Jin Young Kim

    2015-04-01

    Full Text Available Optical-resolution photoacoustic microscopy (OR-PAM is an imaging tool to provide in vivo optically sensitive images in biomedical research. To achieve a small size, fast imaging speed, wide scan range, and high signal-to-noise ratios (SNRs in a water environment, we introduce a polydimethylsiloxane (PDMS-based 2-axis scanner for a flexible and waterproof structure. The design, theoretical background, fabrication process and performance of the scanner are explained in details. The designed and fabricated scanner has dimensions of 15 × 15 × 15 mm along the X, Y and Z axes, respectively. The characteristics of the scanner are tested under DC and AC conditions. By pairing with electromagnetic forces, the maximum scanning angles in air and water are 18° and 13° along the X and Y axes, respectively. The measured resonance frequencies in air and water are 60 and 45 Hz along the X axis and 45 and 30 Hz along the Y axis, respectively. Finally, OR-PAM with high SNRs is demonstrated using the fabricated scanner, and the PA images of micro-patterned samples and microvasculatures of a mouse ear are successfully obtained with high-resolution and wide-field of view. OR-PAM equipped with the 2-axis PDMS based waterproof scanner has lateral and axial resolutions of 3.6 μm and 26 μm, respectively. This compact OR-PAM system could potentially and widely be used in preclinical and clinical applications.

  10. Geometric study of transparent superhydrophobic surfaces of molded and grid patterned polydimethylsiloxane (PDMS)

    Science.gov (United States)

    Davaasuren, Gaasuren; Ngo, Chi-Vinh; Oh, Hyun-Seok; Chun, Doo-Man

    2014-09-01

    Herein we describe an economical method to fabricate a transparent superhydrophobic surface that uses grid patterning, and we report on the effects of grid geometry in determining the wettability and transparency of the fabricated surfaces. A polymer casting method was utilized because of its applicability to economical manufacturing and mass production; the material polydimethylsiloxane (PDMS) was selected because of its moldability and transparency. PDMS was replicated from a laser textured mold fabricated by a UV nanosecond pulsed laser. Sapphire wafer was used for the mold because it has very low surface roughness (Ra ≤0.3 nm) and adequate mechanical properties. To study geometric effects, grid patterns of a series of step sizes were fabricated. The maximum water droplet contact angle (WDCA) observed was 171°. WDCAs depended on the wetting area and the wetting state. The experimental results of WDCA were analyzed with Wenzel and Cassie-Baxter equations. The designed grid pattern was suitably transparent and structurally stable. Transmittance of the optimal transparent superhydrophobic surface was measured by using a spectrophotometer. Transmittance loss due to the presence of the grid was around 2-4% over the wavelength region measured (300-1000 nm); the minimum transmittance observed was 83.1% at 300 nm. This study also demonstrates the possibility of using a nanosecond pulsed laser for the surface texturing of a superhydrophobic surface.

  11. Comparison of structural and chemical properties of black and red human hair melanosomes.

    Science.gov (United States)

    Liu, Yan; Hong, Lian; Wakamatsu, Kazumasa; Ito, Shosuke; Adhyaru, Bhavin; Cheng, Chi-Yuan; Bowers, Clifford R; Simon, John D

    2005-01-01

    Melanosomes in black and red human hair are isolated and characterized by various chemical and physical techniques. Different yields of 4-amino-hydroxyphenolanaline by HI hydrolysis (a marker for pheomelanin) and pyrrole-2,3,5-tricarboxylic acid by KMnO(4)/H(+) oxidation (a marker for eumelanin) indicate that the melanosomes in black hair are eumelanosomes, whereas those in red hair are mainly pheomelanosomes. Atomic force microscopy reveals that eumelanosomes and pheomelanosomes have ellipsoidal and spherical shapes, respectively. Eumelanosomes maintain structural integrity upon extraction from the keratin matrix, whereas pheomelanosomes tend to fall apart. The black-hair eumelanosomes have an average of 14.6 +/- 0.5% amino acids content, which is attributed to the internal proteins entrapped in the melanosomes granules. The red-hair melanosomes contain more than 44% of amino acid content even after extensive proteolytic digestion. This high content of amino acids and the poorly reserved integrity of red-hair melanosomes suggest that some proteins are possibly covalently bonded with the melanin constituents in addition to those that are entrapped inside the melanin species. Soluene solubilization assay indicates the absorbance of melanin per gram of sample, adjusted for the amino acid content, is a factor of 2.9 greater for the black-hair melanosomes than the red-hair melanosomes. Metal analysis reveals significant amounts of diverse heavy metal ions bound to the two types of melanosomes. The amount of Cu(II) and Zn(II) are similar but Fe(III) content is four times higher in the red-hair melanosomes. (13)C solid-state nuclear magnetic resonance spectra and infrared spectra are presented and are shown to be powerful techniques for discerning differences in the amino acid contents, the 5,6-dihydroxyindole-2-carboxylic acid:5,6-dihydroxyindole ratio, and the degree of cross-linking in the pigment. Excellent agreement is observed between these spectral results and the

  12. Are the program packages for molecular structure calculations really black boxes?

    Directory of Open Access Journals (Sweden)

    ANA MRAKOVIC

    2007-12-01

    Full Text Available In this communication it is shown that the widely held opinion that compact program packages for quantum–mechanical calculations of molecular structure can safely be used as black boxes is completely wrong. In order to illustrate this, the results of computations of equilibrium bond lengths, vibrational frequencies and dissociation energies for all homonuclear diatomic molecules involving the atoms from the first two rows of the Periodic Table, performed using the Gaussian program package are presented. It is demonstrated that the sensible use of the program requires a solid knowledge of quantum chemistry.

  13. [Cloning and structure of gene encoded alpha-latrocrustoxin from the Black widow spider venom].

    Science.gov (United States)

    Danilevich, V N; Luk'ianov, S A; Grishin, E V

    1999-07-01

    The primary structure of the crusta gene encoding alpha-latrocrustoxin (alpha-LCT), a high molecular mass neurotoxin specific to crustaceans, was determined in the black widow spider Latrodectus mactans tredicimguttatus genome. The total length of the sequenced DNA was 4693 bp. The structural part of the black widow spider chromosome gene encoding alpha-LCT does not contain introns. The sequenced DNA contains a single extended open reading frame (4185 bp) and encodes a protein precursor of alpha-LCT, comprising 1395 aa. We assume the Met residue at position -10 relative to the N-terminal residue of Glu1 of the mature toxin to be the first one in the protein precursor. The calculated molecular mass of the precursor (156147 Da) exceeds that of the mature toxin by approximately 30 kDa. These data are in agreement with the notion that over the course of maturation the protein precursor undergoes double processing--cleavage of a decapeptide from the N-terminal part and of a approximately 200-aa fragment from the C-terminal part. alpha-LCT displayed a number of imperfect ankyrin-like repeats and areas of structural homology with earlier studied latrotoxins; the highest homology degree (62%) was revealed with alpha-latroinsectotoxin (alpha-LIT).

  14. Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds

    International Nuclear Information System (INIS)

    Su, Bo; Zhang, Aijun; Meng, Junhu; Zhang, Zhaozhu

    2016-01-01

    Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μ m and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns. (paper)

  15. P(VDF-TrFE Film on PDMS Substrate for Energy Harvesting Applications

    Directory of Open Access Journals (Sweden)

    Soaram Kim

    2018-01-01

    Full Text Available We have developed and demonstrated a highly flexible P(VDF-TrFE film-based energy harvesting device on a PDMS substrate, avoiding any complex composites and patterned structures. The structural and electrical properties of the P(VDF-TrFE film was investigated using multiple characterization techniques and an optimized film of 7 µm thickness was used for the energy harvesting application. The device, with Ti/Ni metal contacts, was driven by a shaker providing an acceleration of 1.75 g, and frequencies varying from 5 to 30 Hz. The energy harvesting performance of the final fabricated device was tested using the shaker, and resulted in a maximum output capacitor voltage of 4.4 V, which successfully powered a set of 27 LEDs after several minutes of charging.

  16. PDMS membranes as sensing element in optical sensors for gas detection in water

    Directory of Open Access Journals (Sweden)

    Stefania Torino

    2017-11-01

    Full Text Available Polydimethylsiloxane (PDMS has been introduced the first time about 20years ago. This polymer is worldwide used for the rapid prototyping of microfluidic device through a replica molding process. However, the great popularity of PDMS is not only related to its easy processability, but also to its chemical and physical properties. For its interesting properties, the polymer has been implied for several applications, including sensing. In this work, we investigated how to use functionalized PDMS membranes as sensing elements in optical sensors for gas detection in water samples. Keywords: Polydimethylsiloxane (PDMS, Surface Plasmon Resonance (SPR sensors, Gas sensor

  17. Rapid selective metal patterning on polydimethylsiloxane (PDMS) fabricated by capillarity-assisted laser direct write

    International Nuclear Information System (INIS)

    Lee, Ming-Tsang; Lee, Daeho; Sherry, Alexander; Grigoropoulos, Costas P

    2011-01-01

    In this study we demonstrate a novel approach for the rapid fabricating micro scale metal (silver) patterning directly on a polydimethylsiloxane (PDMS) substrate. Silver nanoparticles were sintered on PDMS to form conductive metal films using laser direct write (LDW) technology. To achieve good metal film quality, a capillarity-assisted laser direct writing (CALDW) of nanoparticle suspensions on a low surface energy material (PDMS) was utilized. Experimental results showed controllable electrical conductivities and good film properties of the sintered silver patterns. This study reveals an advanced method of metal patterning on PDMS, and proposes a new research application of LDW in a nanoparticle colloidal environment

  18. Rapid selective metal patterning on polydimethylsiloxane (PDMS) fabricated by capillarity-assisted laser direct write

    KAUST Repository

    Lee, Ming-Tsang

    2011-08-12

    In this study we demonstrate a novel approach for the rapid fabricating micro scale metal (silver) patterning directly on a polydimethylsiloxane (PDMS) substrate. Silver nanoparticles were sintered on PDMS to form conductive metal films using laser direct write (LDW) technology. To achieve good metal film quality, a capillarity-assisted laser direct writing (CALDW) of nanoparticle suspensions on a low surface energy material (PDMS) was utilized. Experimental results showed controllable electrical conductivities and good film properties of the sintered silver patterns. This study reveals an advanced method of metal patterning on PDMS, and proposes a new research application of LDW in a nanoparticle colloidal environment. © 2011 IOP Publishing Ltd.

  19. Mechanically compliant electrodes and dielectric elastomers from PEG-PDMS copolymers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    2016-01-01

    Soft conducting elastomers have been prepared from polydimethylsiloxane-polyethyleneglycol (PDMS-PEG) copolymer and surfactant-stabilized multi-walled carbon nanotubes (MWCNTs). The copolymer was chain-extended with PDMS of molecular weight 17.2 kg mol-1 in order to obtain a crosslinkable PDMS...... showed high conductivity combined with inherent softness. The high conductivity and softness, PDMS-PEG copolymers with incorporated MWCNTs hold great promises as compliant and highly stretchable electrodes for stretchable devices such as electro-mechanical transducers....

  20. Investigation of PDMS as coating on CMUTs for Imaging

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Stuart, Matthias Bo; Laursen, Mads Bjerregaard

    2014-01-01

    A protective layer is necessary for Capacitive Mi- cromachined Ultrasonic Transducers (CMUTs) to be used for imaging purpose. The layer should both protect the device itself and the patient while maintaining the performance of the device. In this work Sylgard 170 PDMS is tested as coating material...... for CMUTs through comparison of transmit pressure and receive sensitivity in immersion of coated and uncoated elements. It is seen that the transmitted pressure decreases with 27% and the receive sensitivity decreases 35 % when applying the coating using a dam and fill principle. This matches well...

  1. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Atanasov, P.A.; Nikov, Ru.G.; Nikov, R.G.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Fukata, N. [International Center for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria)

    2016-06-30

    Highlights: • Ns-laser (266, 355, 532 and 1064 nm) processing of medical grade PDMS is performed. • Investigation of the optical transmittance as a function of the laser beam parameters. • Analyses of laser treated area by optical & laser microscope and μ-Raman spectrometry. • Application as (MEAs) neural interface for monitor and stimulation of neural activity. - Abstract: This article presents experimental investigations of effects of the process parameters on the medical grade polydimethylsiloxane (PDMS) elastomer processed by laser source with irradiation at UV (266 and 355 nm), VIS (532 nm) and NIR (1064 nm). Systematic experiments are done to characterize how the laser beam parameters (wavelength, fluence, and number of pulses) affect the optical properties and the chemical composition in the laser treated areas. Remarkable changes of the optical properties and the chemical composition are observed. Despite the low optical absorption of the native PDMS for UV, VIS and NIR wavelengths, successful laser treatment is accomplished due to the incubation process occurring below the polymer surface. With increasing of the fluence and the number of the pulses chemical transformations are revealed in the entire laser treated area and hence decreasing of the optical transmittance is observed. The incubation gets saturation after a certain number of pulses and the laser ablation of the material begins efficiently. At the UV and VIS wavelengths the number of the initial pulses, at which the optical transmittance begins to reduce, decreases from 16 up to 8 with increasing of the laser fluence up to 1.0, 2.5 and 10 J cm{sup −2} for 266, 355 and 532 nm, respectively. In the case of 1064 nm the optical transmittance begins to reduce at 11th pulse incident at a fluence of 13 J cm{sup −2} and the number of the pulses decreases to 8 when the fluence reaches value of 16 J cm{sup −2}. The threshold laser fluence needed to induce incubation process after certain

  2. The structure of carbon black-elastomer composites by small-angle neutron scattering and the method of contrast variation

    International Nuclear Information System (INIS)

    Hjelm, R.P.; Wampler, W.; Gerspacher, M.

    1996-01-01

    We have been exploring the use of small-angle neutron scattering and the method of contrast variation to give a new look at a very old problem: reinforcement of elastomers by carbon black in durable rubber products. Carbon black has a hierarchy of structures consisting of particles covalently bound into aggregates, which in turn associate by weak interactions into agglomerates. We found that in one carbon black, HSA, the aggregates are rodlike, containing an average of 4-6 particles. The aggregates have an outer graphitic shell and an inner core of lower density carbon. The core is continuous throughout the carbon black aggregate. Contrast variation of swollen HSA-polyisoprene gels shows that the HSA is completely embedded in polyisoprene and that the agglomerates are formed predominantly by end on associations of the rodlike aggregates. The surface structure of the carbon black appears smooth over length scales above about 10 angstrom. Further studies using production carbon blacks suggest that these structural characteristics are generally present in commercial rubber composites

  3. Structural and sensory characterization of key pungent and tingling compounds from black pepper (Piper nigrum L.).

    Science.gov (United States)

    Dawid, Corinna; Henze, Andrea; Frank, Oliver; Glabasnia, Anneke; Rupp, Mathias; Büning, Kirsten; Orlikowski, Diana; Bader, Matthias; Hofmann, Thomas

    2012-03-21

    To gain a more comprehensive knowledge on whether, besides the well-known piperine, other compounds are responsible for the pungent and tingling oral impression imparted by black pepper, an ethanol extract prepared from black pepper (Piper nigrum L.) was screened for its key sensory-active nonvolatiles by application of taste dilution analysis (TDA). Purification of the compounds perceived with the highest sensory impact, followed by LC-MS and 1D/2D NMR experiments as well as synthesis, led to the structure determination of 25 key pungent and tingling phytochemicals, among which the eight amides 1-(octadeca-2E,4E,13Z-trienyl)piperidine, 1-(octadeca-2E,4E,13Z-trienyl)pyrrolidine, (2E,4E,13Z)-N-isobutyl-octadeca-2,4,13-trienamide, 1-(octadeca-2E,4E,12Z-trienoyl)-pyrrolidine, 1-(eicosa-2E,4E,15Z-trienyl)piperidine, 1-(eicosa-2E,4E,15Z-trienyl)pyrrolidine, (2E,4E,15Z)-N-isobutyl-eicosa-2,4,15-trienamide, and 1-(eicosa-2E,4E,14Z-trienoyl)-pyrrolidine were not yet reported in literature. Sensory studies by means of a modified half-tongue test revealed recognition thresholds ranging from 3.0 to 1150.2 nmol/cm² for pungency and from 520.6 to 2162.1 nmol/cm² for the tingling orosensation depending on their chemical structure.

  4. Modeling angle-resolved photoemission of graphene and black phosphorus nano structures.

    Science.gov (United States)

    Park, Sang Han; Kwon, Soonnam

    2016-05-10

    Angle-resolved photoemission spectroscopy (ARPES) data on electronic structure are difficult to interpret, because various factors such as atomic structure and experimental setup influence the quantum mechanical effects during the measurement. Therefore, we simulated ARPES of nano-sized molecules to corroborate the interpretation of experimental results. Applying the independent atomic-center approximation, we used density functional theory calculations and custom-made simulation code to compute photoelectron intensity in given experimental setups for every atomic orbital in poly-aromatic hydrocarbons of various size, and in a molecule of black phosphorus. The simulation results were validated by comparing them to experimental ARPES for highly-oriented pyrolytic graphite. This database provides the calculation method and every file used during the work flow.

  5. Loss of acoustic black hole effect in a structure of finite size

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Liling; Cheng, Li, E-mail: li.cheng@polyu.edu.hk [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2016-07-04

    The Acoustic Black Hole (ABH) effect takes place in thin-walled structures with diminishing thickness as a result of the reduction in the bending wave speed. It was shown to exist as a broadband phenomenon, based on wave propagation theory in structures of semi-infinite size. The ABH effect exhibits appealing features for various applications, such as passive vibration control, energy harvesting, and sound radiation control. In this paper, we demonstrate the disappearance of the ABH effect in a finite beam at specific frequency ranges above the cut-on frequency, both experimentally and theoretically. Analyses show that the phenomenon takes place at frequencies which are close to the low order local resonant frequencies of the portion of the beam demarcated by the position of the excitation force. These frequencies can be predicted so that the phenomenon can be avoided for the targeted frequency ranges in ABH applications.

  6. Controlled Mechanical Cracking of Metal Films Deposited on Polydimethylsiloxane (PDMS

    Directory of Open Access Journals (Sweden)

    Andreas Polywka

    2016-09-01

    Full Text Available Stretchable large area electronics conform to arbitrarily-shaped 3D surfaces and enables comfortable contact to the human skin and other biological tissue. There are approaches allowing for large area thin films to be stretched by tens of percent without cracking. The approach presented here does not prevent cracking, rather it aims to precisely control the crack positions and their orientation. For this purpose, the polydimethylsiloxane (PDMS is hardened by exposure to ultraviolet radiation (172 nm through an exposure mask. Only well-defined patterns are kept untreated. With these soft islands cracks at the hardened surface can be controlled in terms of starting position, direction and end position. This approach is first investigated at the hardened PDMS surface itself. It is then applied to conductive silver films deposited from the liquid phase. It is found that statistical (uncontrolled cracking of the silver films can be avoided at strain below 35%. This enables metal interconnects to be integrated into stretchable networks. The combination of controlled cracks with wrinkling enables interconnects that are stretchable in arbitrary and changing directions. The deposition and patterning does not involve vacuum processing, photolithography, or solvents.

  7. Macromolecular Coating Enables Tunable Selectivity in a Porous PDMS Matrix.

    Science.gov (United States)

    Winkeljann, Benjamin; Käsdorf, Benjamin T; Boekhoven, Job; Lieleg, Oliver

    2018-02-01

    Whether for laboratory use or clinical practice, many fields in Life Sciences require selective filtering. However, most existing filter systems lack the ability to easily tune their filtration behavior. Two key elements for efficient filtering are a high surface-to-volume ratio and the presence of suitable chemical groups which establish selectivity. In this study, an artificial PDMS-based capillary system with highly tunable selectivity properties is presented. The high surface-to-volume ratio of this filter system is generated by first embedding sugar fibers into a synthetic polymer matrix and then dissolving these fibers from the cured polymer. To functionalize this filter, the inner surface of the capillaries is coated with purified or synthetic macromolecules. Depending on the type of macromolecule used for filter functionalization, selective sieving is observed based on steric hindrance, electrostatic binding, electrostatic repulsion, or specific binding interactions. Furthermore, it is demonstrated that enzymes can be immobilized in the capillary system which allows for performing multiple cycles of enzymatic reactions with the same batch of enzymes and without the need to separate the enzymes from their reaction products. In addition to lab-scale filtration and enzyme immobilization applications demonstrated here, the functionalized porous PDMS matrix may also be used to test binding interactions between different molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Analysis of internal structure changes in black human hair keratin fibers resulting from bleaching treatments using Raman spectroscopy

    Science.gov (United States)

    Kuzuhara, Akio

    2013-09-01

    In order to investigate in detail the internal structure changes in virgin black human hair keratin fibers resulting from bleaching treatments, the structure of cross-sections at various depths of black human hair, which had been impossible due to high melanin grande content, was directly analyzed using Raman spectroscopy. The gauche-gauche-gauche (GGG) content of the sbnd SSsbnd groups existing from the cuticle region to the center of cortex region of the virgin black human hair remarkably decreased, while the gauche-gauche-trans and trans-gauche-trans contents were not changed by performing the excessive bleaching treatment. In particular, it was found that not only the β-sheet and/or random coil content, but also the α-helix content existing throughout the cortex region of virgin black human hair decreased. In addition, the transmission electron microscope observation shows that the proteins in the cell membrane complex, the cuticle and cortex of the virgin black human hair were remarkably eluted by performing the excessive bleaching treatment. From these experiments, the author concluded that the sbnd SSsbnd groups, which have a GGG conformation were decomposed and finally converted to cysteic acid, and the α-helix structure of some of the proteins existing in the keratin was changed to the random coil structure, or eluted from the cortex region, thereby leading to the reduction in the protein density of the virgin human hair after the excessive bleaching treatment.

  9. Discovery of Black Dye Crystal Structure Polymorphs: Implications for Dye Conformational Variation in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Cole, Jacqueline M; Low, Kian Sing; Gong, Yun

    2015-12-23

    We present the discovery of a new crystal structure polymorph (1) and pseudopolymorph (2) of the Black Dye, one of the world's leading dyes for dye-sensitized solar cells, DSSCs (10.4% device performance efficiency). This reveals that Black Dye molecules can adopt multiple low-energy conformers. This is significant since it challenges existing models of the Black Dye···TiO2 adsorption process that renders a DSSC working electrode; these have assumed a single molecular conformation that refers to the previously reported Black Dye crystal structure (3). The marked structural differences observed between 1, 2, and 3 make the need for modeling multiple conformations more acute. Additionally, the ordered form of the Black Dye (1) provides a more appropriate depiction of its anionic structure, especially regarding its anchoring group and NCS bonding descriptions. The tendency toward NCS ligand isomerism, evidenced via the disordered form 2, has consequences for electron injection and electron recombination in Black Dye embedded DSSC devices. Dyes 2 and 3 differ primarily by the absence or presence of a solvent of crystallization, respectively; solvent environment effects on the dye are thereby elucidated. This discovery of multiple Black Dye conformers from diffraction, with atomic-level definition, complements recently reported nanoscopic evidence for multiple dye conformations existing at a dye···TiO2 interface, for a chemically similar DSSC dye; those results emanated from imaging and spectroscopy, but were unresolved at the submolecular level. Taken together, these findings lead to the general notion that multiple dye conformations should be explicitly considered when modeling dye···TiO2 interfaces in DSSCs, at least for ruthenium-based dye complexes.

  10. Preparation and Property Research of Strain Sensor Based on PDMS and Silver Nanomaterials

    Directory of Open Access Journals (Sweden)

    Lihua Liu

    2017-01-01

    Full Text Available Based on the advantages and broad applications of stretchable strain sensors, this study reports a simple method to fabricate a highly sensitive strain sensor with Ag nanomaterials-polydimethylsiloxane (AgNMs-PDMS to create a synergic conductive network and a sandwich-structure. Three Ag nanomaterial samples were synthesized by controlling the concentrations of the FeCl3 solution and reaction time via the heat polyols thermal method. The AgNMs network’s elastomer nanocomposite-based strain sensors show strong piezoresistivity with a high gauge factor of 547.8 and stretchability from 0.81% to 7.26%. The application of our high-performance strain sensors was demonstrated by the inducting finger of the motion detection. These highly sensitive sensors conform to the current trends of flexible electronics and have prospects for broad application.

  11. Social Structure and Black Family Life: An Analysis of Current Trends.

    Science.gov (United States)

    Staples, Robert

    1987-01-01

    The crisis of the Black family is actually the crisis of the Black male and his inability to carry out the normative responsibilities of husband and father in the nuclear family. The family's disintegration is a symptom of the institutional decimation of Black males, the legacy of institutional racism. (LHW)

  12. Differing patterns of brain structural abnormalities between black and white patients with their first episode of psychosis.

    LENUS (Irish Health Repository)

    Morgan, K D

    2010-07-01

    African-Caribbean and black African people living in the UK are reported to have a higher incidence of diagnosed psychosis compared with white British people. It has been argued that this may be a consequence of misdiagnosis. If this is true they might be less likely to show the patterns of structural brain abnormalities reported in white British patients. The aim of this study therefore was to investigate whether there are differences in the prevalence of structural brain abnormalities in white and black first-episode psychosis patients.

  13. Laser-induced superhydrophobic grid patterns on PDMS for droplet arrays formation

    International Nuclear Information System (INIS)

    Farshchian, Bahador; Gatabi, Javad R.; Bernick, Steven M.; Park, Sooyeon; Lee, Gwan-Hyoung; Droopad, Ravindranath; Kim, Namwon

    2017-01-01

    Highlights: • Superhydrophobic grid patterns were processed on the surface of PDMS using a pulsed nanosecond laser. • Droplet arrays form instantly on the laser-patterned PDMS with the superhydrophobic grid pattern when the PDMS sample is simply immersed in and withdrawn from water. • Droplet size can be controlled by controlling the pitch size of superhydrophobic grid and the withdrawal speed. - Abstract: We demonstrate a facile single step laser treatment process to render a polydimethylsiloxane (PDMS) surface superhydrophobic. By synchronizing a pulsed nanosecond laser source with a motorized stage, superhydrophobic grid patterns were written on the surface of PDMS. Hierarchical micro and nanostructures were formed in the irradiated areas while non-irradiated areas were covered by nanostructures due to deposition of ablated particles. Arrays of droplets form spontaneously on the laser-patterned PDMS with superhydrophobic grid pattern when the PDMS sample is simply immersed in and withdrawn from water due to different wetting properties of the irradiated and non-irradiated areas. The effects of withdrawal speed and pitch size of superhydrophobic grid on the size of formed droplets were investigated experimentally. The droplet size increases initially with increasing the withdrawal speed and then does not change significantly beyond certain points. Moreover, larger droplets are formed by increasing the pitch size of the superhydrophobic grid. The droplet arrays formed on the laser-patterned PDMS with wettability contrast can be used potentially for patterning of particles, chemicals, and bio-molecules and also for cell screening applications.

  14. Sub-15nm Silicon Lines Fabrication via PS-b-PDMS Block Copolymer Lithography

    DEFF Research Database (Denmark)

    Rasappa, Sozaraj; Schulte, Lars; Borah, Dipu

    2013-01-01

    -b-PDMS (33 k–17 k) was conditioned by applying solvent and solvothermal annealing techniques. BCP nanopatterns formed after the annealing process have been confirmed by scanning electron microscope (SEM) after removal of upper PDMS wetting layer by plasma etching. Silicon nanostructures were obtained...

  15. PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage

    DEFF Research Database (Denmark)

    Ziolkowska, K.; Jedrych, E.; Kwapiszewski, R.

    2010-01-01

    In this paper, hybrid (PDMS/glass) microfluidic cell culture system (MCCS) integrated with the concentration gradient generator (CGG) is presented. PDMS gas permeability enabled cells' respiration in the fabricated microdevices and excellent glass hydrophilicity allowed successful cells' seeding......' bioactivity, defining the lowest toxic level of tested substances etc....

  16. Physico-chemical properties of PDMS surfaces suitable as substrates for cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Raczkowska, Joanna, E-mail: joanna.raczkowska@uj.edu.pl [The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków (Poland); Prauzner-Bechcicki, Szymon [Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków (Poland); Lukes, Jaroslav; Sepitka, Josef [Czech Technical University in Prague, Faculty of Mechanical Engineering, Technicka 4, 16607 Prague (Czech Republic); Bernasik, Andrzej [Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Reymonta 19, 30-049 Kraków (Poland); Awsiuk, Kamil [The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków (Poland); Paluszkiewicz, Czesława; Pabijan, Joanna; Lekka, Małgorzata [Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków (Poland); Budkowski, Andrzej [The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków (Poland)

    2016-12-15

    Highlights: • Series of PDMS substrates with monotonically tuned elasticity were produced. • Method to estimate PDMS stiffness based on AFM force-distance curves was shown. • No change in surface properties of PDMS other than elasticity was demonstrated. • MTT performed for cancer cells showed impact of PDMS elasticity on cells behavior. - Abstract: Elastic properties of the substrate have profound effect on adhesion and proliferation of cells. Here, we introduce a method to produce polydimethylsiloxane (PDMS) substrates with stiffness tuned monotonically from 1.67 to 0.24 MPa, by the time of UV irradiation adjusted up to 5 h. The Young’s modulus (determined by using nanoindenter) scales linearly with stiffness calculated using AFM-based force spectroscopy data. Such a relation enables the determination of the Young modulus from AFM force – distance curves also when the Herz model is not applicable. Our findings demonstrate that surface properties of PDMS substrates are not affected by the applied methodology of tuning substrate elasticity. Finally, the colorimetric proliferation assay (MTT) carried out for non-malignant (HCV29) and cancerous (T24) bladder cancer cells depicted a significant contribution of PDMS substrate elasticity to the behavior of cells. The softer PDMS substrate demonstrated excellent cytocompatibility whereas the stiff one is more cell-repellent.

  17. Preparation and characterization of magnetite–PDMS composites by magnetic induction heating

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Mohamed S.A., E-mail: msa.darwish@gmail.com [Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec (Czech Republic); Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor Street, El Zohour Region, Nasr City, Cairo 11727 (Egypt); Stibor, Ivan [Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17 Liberec (Czech Republic)

    2015-08-15

    Magnetic induction heating was used to produce magnetite–Poly (dimethylsiloxane) (PDMS) composites in the presence of the magnetite nanoparticles. Magnetite nanoparticles under an AC magnetic field generate heat, which used to accelerate polymerization and curing of PDMS. Magnetite nanoparticles were prepared using co-precipitation process in the presence of the basic solution. Magnetite nanoparticle was characterized using Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), zeta potential, dynamic light scattering (DLS), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). Magnetite–PDMS composite morphology was characterized using scanning electron microscopy, while curing and thermal stability were assessed through infrared spectroscopy and thermogravimetric analysis, respectively. Heating properties and rate of heating of magnetite nanoparticles and magnetite–PDMS composites were studied as a function of time applied and magnetite content (20% and 30%). The improved thermal stability of magnetite–PDMS composite, which produced in a shorter time without using catalyst, compared with the conventional PDMS will offer potential as thermally stable elastomers. - Highlights: • Magnetic induction heating was used to produce magnetite–PDMS composites. • The composites produced in a shorter time without catalyst with improved in the thermal stability. • Magnetite–PDMS composites are promising as thermally stable elastomers.

  18. Tensile strength of oxygen plasma-created surface layer of PDMS

    Science.gov (United States)

    Ohishi, Taiki; Noda, Haruka; Matsui, Tsubasa S.; Jile, Huge; Deguchi, Shinji

    2017-01-01

    Polydimethylsiloxane (PDMS) is a commonly used silicone elastomer with broad applications. Particularly for bioengineering use, PDMS is treated with oxygen plasma with which its surface is oxidized to allow positive interaction with water and live cells. In exchange for the acquisition of hydrophilicity, the oxidized PDMS becomes mechanically brittle so that resulting formation of cracks affects the system in various ways. However, tensile strength (TS), which is an inherent capacity of a material to withstand tensile loads before breaking and is thus a key parameter limiting the use of the material, remains unclear regarding oxidized PDMS. Here we determine the TS of oxide layers created on the surface of PDMS based on micro-stretch experiments using a custom-made device. We show that the surface layer displays cracks upon tensile loading of small strains of within 10% to have a TS of ~10-100 kPa, which is approximately two orders of magnitude lower than that of unmodified PDMS. We further show that the TS sharply decreases with oxidation duration to become highly brittle, while the thickness of the resulting oxide layer finally reaches a plateau even with prolonged plasma treatment. Consequently, we suggest that gradual surface modification of PDMS takes place only within a finite region even with prolonged plasma treatment, as distinct from previously held assumptions. These quantitative data provide critical design information for the oxide layer of plasma-hydrophilized PDMS.

  19. Population genetic structure and demographic history of the black fly vector, Simulium nodosum in Thailand.

    Science.gov (United States)

    Chaiyasan, P; Pramual, P

    2016-09-01

    An understanding of the genetic structure and diversity of vector species is crucial for effective control and management. In this study, mitochondrial DNA sequences were used to examine the genetic structure, diversity and demographic history of a black fly vector, Simulium nodosum Puri (Diptera: Simuliidae), in Thailand. A total of 145 sequences were obtained from 10 sampling locations collected across geographical ranges in the country. Low genetic diversity was found in populations of S. nodosum that could be explained by the recent population history of this species. Demographic history analysis revealed a signature of demographic expansion dating back to only 2600-5200 years ago. Recent population expansion in S. nodosum possibly followed an increase in agriculture that enabled its hosts', humans and domestic animals, densities to increase. Alternatively, the Thai populations could be a derivative of an older expansion event in the more northern populations. Mitochondrial DNA genealogy revealed no genetically divergent lineages, which agrees with the previous cytogenetic study. Genetic structure analyses found that only 27% of the pairwise comparisons were significantly different. The most likely explanation for the pattern of genetic structuring is the effect of genetic drift because of recent colonization. © 2016 The Royal Entomological Society.

  20. Analysis of optical properties of special fibers of polydimethylsiloxane (PDMS) depending on the different methods of mixing PDMS and curing agent

    Science.gov (United States)

    Novak, M.; Nedoma, J.; Fajkus, M.; Jargus, J.; Vasinek, V.

    2017-05-01

    The authors focused on the problems of measurement of attenuation and homogeneity of special fibers of polydimethylsiloxane (PDMS) depending on three different procedures for mixing PDMS and curing agent. We used a two-component elastomer Sylgard 184. For mixing was used a defined ratio of 10:1 for PDMS, which was determined based on the datasheet. Curing of samples took place in a heat box at a constant temperature of 80 °C +/- 3 °C. Three procedures were defined for mixing PDMS and curing agent: manual, using a laboratory shaker and ultrasonic baths. For each method of mixing was carried out a total of 25 samples. The test samples have a defined shape in the form of a cylindrical waveguide with a diameter of 5 mm and a length of 50 mm. The whole process of production of cylindrical waveguides applied in the protective vacuum box. To verify the homogeneity of the samples were divided into 5 mm sections, measured was the attenuation constant in both directions. As a source of radiation was used LED (Light Emitting Diode) with a wavelength of 470 nm. The outcome of this study is the evaluation of the quality waveguides by the size of the total attenuation and the attenuation constant for analysis of spreading out in homogeneities depending on the procedure of mixing PDMS and curing agent. The analysis performed with regarding the use of PDMS for its optical properties.

  1. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  2. Comparison of the analytical performance of electrophoresis microchannels fabricated in PDMS, glass, and polyester-toner.

    Science.gov (United States)

    Coltro, Wendell Karlos Tomazelli; Lunte, Susan M; Carrilho, Emanuel

    2008-12-01

    This paper compares the analytical performance of microchannels fabricated in PDMS, glass, and polyester-toner for electrophoretic separations. Glass and PDMS chips were fabricated using well-established photolithographic and replica-molding procedures, respectively. PDMS channels were sealed against three different types of materials: native PDMS, plasma-oxidized PDMS, and glass. Polyester-toner chips were micromachined by a direct-printing process using an office laser printer. All microchannels were fabricated with similar dimensions according to the limitations of the direct-printing process (width/depth 150 microm/12 microm). LIF was employed for detection to rule out any losses in separation efficiency due to the detector configuration. Two fluorescent dyes, coumarin and fluorescein, were used as model analytes. Devices were evaluated for the following parameters related to electrophoretic separations: EOF, heat dissipation, injection reproducibility, separation efficiency, and adsorption to channel wall.

  3. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei

    2013-04-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  4. Tidal events and salt-marsh structure influence black mangrove (Avicennia germinans) recruitment across an ecotone.

    Science.gov (United States)

    Peterson, Jennifer M; Bell, Susan S

    2012-07-01

    Field experiments were conducted at a black mangrove-salt-marsh ecotone in southwest Florida (U.S.A.) to investigate retention of propagules of the black mangrove, Avicennia germinans, by salt-marsh plants as a mechanism of facilitation operating on recruitment success at landward boundaries. Buoyant A. germinans propagules are dispersed by tides, and stranding is required for establishment; therefore, processes that enable stranding should facilitate mangrove recruitment. We expected the physical structure of salt-marsh vegetation to define propagule retention capacity, and we predicted that salt-marsh plants with distinct growth forms would differentially retain propagules. Experimental monoculture plots (1 m2) of salt-marsh plants with different growth forms (Sporobolus virginicus [grass], Sesuvium portulacastrum [succulent forb], and Batis maritima [succulent scrub]) were created, and A. germinans propagules were emplaced into these plots and monitored over time. For comparison, propagules were also placed into natural polyculture plots (1 m2). Polyculture plots contained at least two of the salt-marsh plant taxa selected for monoculture treatments, and S. virginicus was always present within these polyculture plots. Natural polyculture plots retained 59.3% +/- 11.0% (mean +/- SE) of emplaced propagules. Monocultures varied in their propagule retention capacities with plots of S. virginicus retaining on average 65.7% +/- 11.5% of transplanted propagules compared to 7.2% +/- 1.8% by B. maritima and 5.0% +/- 1.9% by S. portulacastrum. Plots containing S. virginicus retained a significantly greater percentage of emplaced propagules relative to the two succulent salt-marsh taxa. Furthermore, propagule entrapment, across all treatments, was strongly correlated with salt-marsh structure (r2 = 0.6253, P = 0.00001), which was estimated using an indirect quantitative metric (lateral obstruction) calculated from digital images of plots. Overall, our findings imply that

  5. Abundance of Black-backed woodpeckers and other birds in relation to disturbance and forest structure in the Black Hills and Bear Lodge Mountains of South Dakota and Wyoming

    Science.gov (United States)

    Elizabeth A. Matseur

    2017-01-01

    Natural disturbances, such as wildfire and mountain pine beetle (Dentroctonus ponderosae, hereafter MPB) infestations, are two sources of large-scale disturbance that can significantly alter forest structure in the Black Hills. The Black Hills has recently experienced one of the largest MPB outbreaks in the last 100 years, along with varying levels of wildfires...

  6. Effects of long-term fertilization on soil humic acid composition and structure in Black Soil.

    Science.gov (United States)

    Zhang, Jiuming; Wang, Jingkuan; An, Tingting; Wei, Dan; Chi, Fengqin; Zhou, Baoku

    2017-01-01

    The composition and structure of humic acid (HA) can be affected by fertilization, but the short-term effects are difficult to detect using traditional analysis methods. Using a 35-year long-term experiment in Black Soil, the molecular structure of HA was analyzed with Fourier transform infrared spectroscopy (FTIR), 13C nuclear magnetic resonance spectroscopy (NMR), and fluorescence spectroscopy. Variation in HA was analyzed after long-term fertilization, including fertilization with manure (M), inorganic N, P and K fertilizer (NPK), manure combined with inorganic N, P, and K fertilizer (MNPK), and a no-fertilizer control (CK). The application of each fertilizer treatment increased crop yields compared with the CK treatment, and the MNPK treatment increased crop yield the most. The ratio of main IR absorption peak of HA at 2,920 cm-1 compared with the peak at 2,850 cm-1 (2920/2850) was higher in the NPK and MNPK treatments compared with the CK treatment. The application of manure (MNPK and M treatments) increased the ratio of hydrogen to carbon (H/C) in HA, and raised the ratio of the main IR absorption peak of HA at 2920 cm-1 to that at 1720 cm-1 (2920/1720). Manure treatments also raised the ratio of aliphatic carbon (C) to aromatic C, alkyl C to alkoxy C and hydrophobic C to hydrophilic C and the fluorescence index (f 450/500), but decreased the degree of aromatization of HA, when compared with the CK treatment. The ratio between each type of C in HA was similar among all the fertilizer treatments, but NPK had a lower ratio of H/C and a lower content of aliphatic C compared with the CK treatment. These results indicated that the molecular structure of HA in Black Soil tends to be aliphatic, simpler, and younger after the application of manure. While the application of inorganic fertilizers increased in the degree of condensation of HA and made HA structure complicated. The application of manure alone or combined with inorganic fertilizers may be an effective way

  7. CELL RESPONSE TO INTRAPERITONEAL PDMS/HAP COMPOSITE IMPLANT

    Directory of Open Access Journals (Sweden)

    Perica Vasiljević

    2005-07-01

    Full Text Available Siloxane polimers have been widely used in biomedicine and pharmacy due to their biocompatibility. Hydroxyapatite (HAp is a natural constituent of bones, and therefore widely used in maxillofacial and orthopedic surgery. HAp itself is amorphous and without elasticity, so its characteristics can be improved when combined with organic polymers. We evaluated the interaction of cells and composites made of polydimethylsiloxane (PDMS and HAp by scanning electron microscopy (SEM 10 days after their intraperitoneal implantation into Balb/c mice. Two composites which were different in the quantity of HAp were analyzed. Both of them showed high adhesive characteristics for different cell types. The erythrocytes in cell clusters could be seen on the surface of the composite with higher quantity of HAp.

  8. Biocompatible membrane of PDMS for the new chamber prosthesis stapes.

    Science.gov (United States)

    Banasik, Katarzyna; Kwacz, Monika

    2016-06-30

    Stapes protheses are designed for patients with otosclerosis resulting immobilization or significant reduction of the stapes mobility. All currently used prostheses are called - piston prosthesis. However, its use to stimulate the cochlea is still imperfect. New chamber stapes prosthesis allows the perilymph excitation more effective than the piston prothesis. Moreover, the chamber prosthesis eliminates the common causes of piston-stapedotomy failures. The most important element of the new prosthesis is a flexible membrane. The membrane stiffness should be close to the stiffness of normal annular ligament. This work presents the process of selection of the membrane's thickness and its manufacturing technology. Method A 3D model of the chamber stapes prosthesis was build using Autodesk Inventor 2015. The model was imported to Abacus 6.13 computing environment. During numerical simulations, displacements corresponding to applied loads were calculated and the membrane thickness was adjusted so that its stiffness was the same as the ligament stiffness (~ 120 N/m). The compliance ratios calculated from the load-displacement curves for the membrane and the annular ligament were verified using linear regression analysis. After determining the thickness, the manufacturing technology of the membrane was developed. Results The best similarity between the membrane's and annular ligament's stiffness was achieved for PDMS membrane with the 0,15- mm thickness (similarity ratio R2=0,997752). In this work, the technological parameters of spin-coating process for membrane manufacture are also presented. Summary The proper functioning of the chamber stapes prosthesis requires the PDMS membrane with a thickness of 0,15 mm. The 0,15-mm membrane has the tiffness close to the stiffness of the normal annular ligament. Therefore, the chamber stapes prosthesis provides the perilymph stimulation at the level comparable to the healthy ear. New prosthesis is currently under pre

  9. Self-organized, effective medium black silicon antireflection structures for silicon optics in the mid-infrared

    Science.gov (United States)

    Steglich, Martin; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2016-09-01

    Thanks to its high quality and low cost, silicon is the material of choice for optical devices operating in the mid-infrared (MIR; 2 μm to 6 μm wavelength). Unfortunately in this spectral region, the refractive index is comparably high (about 3.5) and leads to severe reflection losses of about 30% per interface. In this work, we demonstrate that self-organized, statistical Black Silicon structures, fabricated by Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE), can be used to effectively suppress interface reflection. More importantly, it is shown that antireflection can be achieved in an image-preserving, non-scattering way. This enables Black Silicon antireflection structures (ARS) for imaging applications in the MIR. It is demonstrated that specular transmittances of 97% can be easily achieved on both flat and curved substrates, e.g. lenses. Moreover, by a combined optical and morphological analysis of a multitude of different Black Silicon ARS, an effective medium criterion for the examined structures is derived that can also be used as a design rule for maximizing sample transmittance in a desired wavelength range. In addition, we show that the mechanical durability of the structures can be greatly enhanced by coating with hard dielectric materials like diamond-like carbon (DLC), hence enabling practical applications. Finally, the distinct advantages of statistical Black Silicon ARS over conventional AR layer stacks are discussed: simple applicability to topological substrates, absence of thermal stress and cost-effectiveness.

  10. The influence of the PDMS technique in the study of the induced modifications of polymers used in nuclear environment; Apport de la technique PDMS a l`etude des modifications induites dans des polymeres utilises en ambiance nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Nsouli, B. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire

    1995-07-20

    The PDMS technique (Particle Induced Desorption Mass Spectrometry) combined with a TOF detection (Time of Flight) is the main tool used in this study of polymer degradation in nuclear environment. Ar{sup 3+} ions with a 9 MeV energy have been used to induce the secondary ion emission, and the study was devoted to two stresses typical of this type of environment. The first part of the work concerned with the structural modifications induced by gamma irradiation on ion exchange resin, used for nuclear effluents reprocessing, namely the poly(4-vinylpyridine), or P-4PV. For such a material, the negative fragment emission is particularly sensitive to structural modifications. Difficult physical measurements in such an insoluble and infusible material (IR, UV - Vis, EPR, TGA, dielectric measurements) became consistent after the degradation mechanisms were elucidated. These effects, interpreted in terms of scissions and recombinations, enabled us to explicit different modes of energy deposition, and shed light on some discrepancies between SIMS and PDMS. The second part of the study is devoted to the thermal ageing of an elastomer, used in fabrication of valve gaskets submitted to high temperatures. First of all, we studied the constituents of the polymeric material, i. e. copolymer, homo polymers, and also additives. This last component proved useful to analyze, as a superficial lubricant layer can mask the conformational rearrangements which seem to occur after few hours of thermal treatment (PE blocks are prevailing at the surface). Here too, the PDMS information is important to account for static SIMS and ESCA results, as its probed layer thickness lies in-between. (author) 187 refs.

  11. Electric field modulation of electronic structures in InSe and black phosphorus heterostructure

    Science.gov (United States)

    Ding, Yi-min; Shi, Jun-jie; Zhang, Min; Xia, Congxin; Wu, Meng; Wang, Hui; Cen, Yu-lang; Pan, Shu-hang

    2018-01-01

    The electronic structures of InSe and black phosphorus (BP) heterostructure modulated by an external electric field (E⊥) have been investigated based on first-principles calculations. We find that InSe/BP has type II band offset with a direct band gap of 0.39 eV, and the electrons (holes) are spatially located in InSe (BP) layer. Meanwhile, the band structures of InSe/BP can be effectively modulated by E⊥. The band gap shows linear variation with E⊥ and its maximum of 0.69 eV is observed when E⊥ is 0.4 V / Å. The InSe/BP experiences a transition from semiconductor to metal with E⊥ of -0.6 and 0.8 V / Å. The band offsets are also modulated by E⊥, resulting in different spatial distribution of electron-hole pairs. Most importantly, the high carrier mobility can be preserved well under E⊥. Our results show that the novel InSe/BP heterostructure has great potential application in electronic and optoelectronic devices.

  12. Doppler HF Radar Application for the Study of Spatial Structure of Currents in the Black Sea

    Directory of Open Access Journals (Sweden)

    V.V. Gorbatskiy

    2017-06-01

    Full Text Available The results of the surface current spatial structure observations performed by SeaSonde Doppler HF radar (operating frequency is 25 MHz in the Black Sea region adjacent to the city of Gelendzhik are represented. The observations imply a special technique consisting in successive measurements at two selected points of the coastline. Initially, the measurements are carried out in the first of two selected coastal points during two hours. Then the radar system is transferred to the second point on the coast where the procedure is repeated. At that the velocity field is assumed to remain unchanged during the total measurement period (including the time of the radar displacement from both points. The measurement results are shown in a form of a spatial map of the current velocity vectors in the research region (with 20 × 20 km dimensions. Some features of the current spatial and temporal variability in the coastal waters are revealed. Particularly, the eddy-like formations (the diameter is a few kilometers which rapidly move and collapse. Since similar eddies are detected using the contact measurement methods, complex and variable structure of the surface currents measured by a radar does not seem to be an artifact. Nevertheless, reliability of the data resulted from the radar measurements of the surface current velocity field should be verified in future by comparing it with the results of the quasi-synchronous velocity field measurements performed by stationary, drifting and towed velocity meters.

  13. Proximity association in polygynous western black crested gibbons (Nomascus concolor jingdongensis): network structure and seasonality.

    Science.gov (United States)

    Guan, Zhen-Hua; Huang, Bei; Ning, Wen-He; Ni, Qing-Yong; Jiang, Xue-Long

    2013-01-01

    We investigated the structure and seasonality of the proximity network in a group of polygynous western black crested gibbons (Nomascus concolor) using social network analysis. The spatial proximity changed seasonally and was affected by temperature and rainfall. Preferred proximity association was not distributed randomly among individuals. Kinship was one explanation for the social structure, as offspring preferred to maintain close proximity with their mothers. The proximity of infants to mothers decreased with age, and independent offspring had lower proximity to mothers than dependent ones. We found that the adult male had different proximity relationships with two different adult females. The frequency of proximity between the male and the infant-carrying female was significantly higher than that between the male and the female who had immigrated carrying one offspring of uncertain paternity into the group. Infanticide avoidance and/or predation protection for dependent infants might explain the proximity relationship differences. Temperature influenced group proximity association, with individual proximity increasing in the cold months and decreasing in the hot months. Group proximity decreased in months with higher anthropogenic disturbance.

  14. The Fabrication and Application of a PDMS Micro Through-Holes Mask in Electrochemical Micromanufacturing

    Directory of Open Access Journals (Sweden)

    Xiaolei Chen

    2014-08-01

    Full Text Available The electrochemical micromanufacturing process, as a key micromanufacturing technology, plays an important role in diverse industries. In this paper, polydimethylsiloxane (PDMS is employed as a mask in the electrochemical micromanufacture of microstructures because of its chemical resistance, low cost, flexibility, and high molding capability. A new method for fabricating a PDMS micro through-holes mask is proposed. In this method, a thin resist film is employed to enhance the adhesion between the substrate and the SU-8 pillar array which is used as a mold. A vacuum-aided process is used to inject the PDMS gel into the SU-8 mold and the PDMS micro through-holes mask can be peeled off from the SU-8 mold when the gel is cured. Experiments were conducted to verify the feasibility of the proposed approach and PDMS microholes of various shapes were obtained. The PDMS mask can then be successfully applied in the electrochemical micromanufacturing process to generate microstructures and microdimple and embossment arrays have been successfully demonstrated. Furthermore, the PDMS mask can be reused, as it is not damaged during the manufacturing process.

  15. Population structure and genetic diversity of black redhorse (Moxostoma duquesnei) in a highly fragmented watershed

    Science.gov (United States)

    Reid, S.M.; Wilson, C.C.; Mandrak, N.E.; Carl, L.M.

    2008-01-01

    Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects. ?? 2007 Springer Science+Business Media B.V.

  16. Friction and adhesion of gecko-inspired PDMS flaps on rough surfaces.

    Science.gov (United States)

    Yu, Jing; Chary, Sathya; Das, Saurabh; Tamelier, John; Turner, Kimberly L; Israelachvili, Jacob N

    2012-08-07

    Geckos have developed a unique hierarchical structure to maintain climbing ability on surfaces with different roughness, one of the extremely important parameters that affect the friction and adhesion forces between two surfaces. Although much attention has been paid on fabricating various structures that mimic the hierarchical structure of a gecko foot, yet no systematic effort, in experiment or theory, has been made to quantify the effect of surface roughness on the performance of the fabricated structures that mimic the hierarchical structure of geckos. Using a modified surface forces apparatus (SFA), we measured the adhesion and friction forces between microfabricated tilted PDMS flaps and optically smooth SiO(2) and rough SiO(2) surfaces created by plasma etching. Anisotropic adhesion and friction forces were measured when sliding the top glass surface along (+y) and against (-y) the tilted direction of the flaps. Increasing the surface roughness first increased the adhesion and friction forces measured between the flaps and the rough surface due to topological matching of the two surfaces but then led to a rapid decrease in both of these forces. Our results demonstrate that the surface roughness significantly affects the performance of gecko mimetic adhesives and that different surface textures can either increase or decrease the adhesion and friction forces of the fabricated adhesives.

  17. The influence of the PDMS technique in the study of the induced modifications of polymers used in nuclear environment

    International Nuclear Information System (INIS)

    Nsouli, B.

    1995-01-01

    The PDMS technique (Particle Induced Desorption Mass Spectrometry) combined with a TOF detection (Time of Flight) is the main tool used in this study of polymer degradation in nuclear environment. Ar 3+ ions with a 9 MeV energy have been used to induce the secondary ion emission, and the study was devoted to two stresses typical of this type of environment. The first part of the work concerned with the structural modifications induced by gamma irradiation on ion exchange resin, used for nuclear effluents reprocessing, namely the poly(4-vinylpyridine), or P-4PV. For such a material, the negative fragment emission is particularly sensitive to structural modifications. Difficult physical measurements in such an insoluble and infusible material (IR, UV - Vis, EPR, TGA, dielectric measurements) became consistent after the degradation mechanisms were elucidated. These effects, interpreted in terms of scissions and recombinations, enabled us to explicit different modes of energy deposition, and shed light on some discrepancies between SIMS and PDMS. The second part of the study is devoted to the thermal ageing of an elastomer, used in fabrication of valve gaskets submitted to high temperatures. First of all, we studied the constituents of the polymeric material, i. e. copolymer, homo polymers, and also additives. This last component proved useful to analyze, as a superficial lubricant layer can mask the conformational rearrangements which seem to occur after few hours of thermal treatment (PE blocks are prevailing at the surface). Here too, the PDMS information is important to account for static SIMS and ESCA results, as its probed layer thickness lies in-between. (author)

  18. A confirmatory test of the underlying factor structure of scores on the collective self-esteem scale in two independent samples of Black Americans.

    Science.gov (United States)

    Utsey, Shawn O; Constantine, Madonna G

    2006-04-01

    In this study, we examined the factor structure of the Collective Self-Esteem Scale (CSES; Luhtanen & Crocker, 1992) across 2 separate samples of Black Americans. The CSES was administered to a sample of Black American adolescents (n = 538) and a community sample of Black American adults (n = 313). Results of confirmatory factor analyses (CFAs), however, did not support the original 4-factor model identified by Luhtanen and Crocker (1992) as providing an adequate fit to the data for these samples. Furthermore, an exploratory CFA procedure failed to find a CSES factor structure that could be replicated across the 2 samples of Black Americans. We present and discuss implications of the findings.

  19. Structural inequalities drive late HIV diagnosis: The role of black racial concentration, income inequality, socioeconomic deprivation, and HIV testing

    Science.gov (United States)

    Ransome, Yusuf; Kawachi, Ichiro; Braunstein, Sarah; Nash, Denis

    2017-01-01

    In the United States, research is limited on the mechanisms that link socioeconomic and structural factors to HIV diagnosis outcomes. We tested whether neighborhood income inequality, socioeconomic deprivation, and black racial concentration were associated with gender-specific rates of HIV in the advanced stages of AIDS (i.e., late HIV diagnosis). We then examined whether HIV testing prevalence and accessibility mediated any of the associations above. Neighborhoods with highest (relative to lowest) black racial concentration had higher relative risk of late HIV diagnosis among men (RR=1.86; 95%CI=1.15, 3.00) and women (RR=5.37; 95% CI=3.16, 10.43) independent of income inequality and socioeconomic deprivation. HIV testing prevalence and accessibility did not significantly mediate the associations above. Research should focus on mechanisms that link black racial concentration to HIV diagnosis outcomes. PMID:27770671

  20. Functional patterning of PDMS microfluidic devices using integrated chemo-masks.

    Science.gov (United States)

    Romanowsky, Mark B; Heymann, Michael; Abate, Adam R; Krummel, Amber T; Fraden, Seth; Weitz, David A

    2010-06-21

    Microfluidic devices can be molded easily from PDMS using soft lithography. However, the softness of the resulting microchannels makes it difficult to photolithographically pattern their surface properties, as is needed for applications such as double emulsification. We introduce a new patterning method for PDMS devices, using integrated oxygen reservoirs fabricated simultaneously with the microfluidic channels, which serve as "chemo-masks". Oxygen diffuses through the PDMS to the nearby channel segments and there inhibits functional polymer growth; by placement of the chemo-masks, we thus control the polymerization pattern. This patterning method is simple, scalable, and compatible with a variety of surface chemistries.

  1. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    Directory of Open Access Journals (Sweden)

    Liao Hsuan-Yu

    2016-01-01

    Full Text Available The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05. An empirical model, consisting of the molecular weight and the polarizability, was developed to appropriately predict the partition coefficients of organic compounds. The empirical model for estimating the PDMS-gas partition coefficient will contribute to the practical applications of the SPME technique.

  2. Low cost fabrication and assembly process for re-usable 3D polydimethylsiloxane (PDMS) microfluidic networks

    CSIR Research Space (South Africa)

    Land, K

    2011-09-01

    Full Text Available for a PDMS device of a day is greatly reduced. III. CONCLUSION A low cost, convenient fabrication process for PDMS casting and assembly has been shown. The casting process reduces PDMS usage by casting only the functional part and pro- duces parts.... Scherer, and S. R. Quake, Science 288, 113 (2000). 12F. J. Blanco, M. Agirregabiria, J. Garcia, J. Berganzo, M. Tijero, M. T. Arroyo, J. M. Ruano, I. Aramburu, and K. May- ora, J. Micromech. Microeng. 14, 1047 (2004). 13J. R. Anderson, D. T. Chiu, R. J...

  3. Enhancing relative permittivity by incorporating PDMS-PEG multiblock copolymers in binary polymer blends

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    Polydimethylsiloxane (PDMS) elastomers are well-known to be soft and highly stretchable, yet they never achieve maximum elongation when utilised as dielectric elastomers, simply because their dielectric permittivity remains rather low. Conversely, polyethyleneglycols (PEG) are not stretchable......, but they do possess high permittivity. Combining two such polymers in a block copolymer allows for further crosslinking and presents the possibility of substantial improvements in the actuation response of the resulting dielectric elastomer – if carefully designed. The objective is to synthesise a PDMS......, the discontinuity in PEG can be acquired and the relative permittivity (ε’) is significantly enhanced (60%) with 5wt% of PDMS-PEG block copolymer incorporated into the silicone elastomer....

  4. Novel silicone compatible cross-linkers for controlled functionalization of PDMS networks

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    2013-01-01

    Polydimethylsiloxane (PDMS) elastomers are excellent materials for dielectric electroactive polymers (DEAPs) due to their high efficiency and fast response. PDMS suffers, however, from low dielectric permittivity and high voltages are therefore required when the material is used for DEAP actuators...... functional cross-linker and fluorescence microscopy. The thermal, mechanical and electro-mechanical properties of PDMS elastomers of 0 wt% to 3.6 wt% of push-pull dipole cross-linker are investigated. An increase in the dielectric permittivity of 19 % at only 0.46 wt% of pure push-pull dipole is observed...

  5. Simple and fast polydimethylsiloxane (PDMS) patterning using a cutting plotter and vinyl adhesives to achieve etching results.

    Science.gov (United States)

    Hyun Kim; Sun-Young Yoo; Ji Sung Kim; Zihuan Wang; Woon Hee Lee; Kyo-In Koo; Jong-Mo Seo; Dong-Il Cho

    2017-07-01

    Inhibition of polydimethylsiloxane (PDMS) polymerization could be observed when spin-coated over vinyl substrates. The degree of polymerization, partially curing or fully curing, depended on the PDMS thickness coated over the vinyl substrate. This characteristic was exploited to achieve simple and fast PDMS patterning method using a vinyl adhesive layer patterned through a cutting plotter. The proposed patterning method showed results resembling PDMS etching. Therefore, patterning PDMS over PDMS, glass, silicon, and gold substrates were tested to compare the results with conventional etching methods. Vinyl stencils with widths ranging from 200μm to 1500μm were used for the procedure. To evaluate the accuracy of the cutting plotter, stencil designed on the AutoCAD software and the actual stencil widths were compared. Furthermore, this method's accuracy was also evaluated by comparing the widths of the actual stencils and etched PDMS results.

  6. Resolving the Spatial Structures of Bound Hole States in Black Phosphorus.

    Science.gov (United States)

    Qiu, Zhizhan; Fang, Hanyan; Carvalho, Alexandra; Rodin, A S; Liu, Yanpeng; Tan, Sherman J R; Telychko, Mykola; Lv, Pin; Su, Jie; Wang, Yewu; Castro Neto, A H; Lu, Jiong

    2017-11-08

    Understanding the local electronic properties of individual defects and dopants in black phosphorus (BP) is of great importance for both fundamental research and technological applications. Here, we employ low-temperature scanning tunnelling microscope (LT-STM) to probe the local electronic structures of single acceptors in BP. We demonstrate that the charge state of individual acceptors can be reversibly switched by controlling the tip-induced band bending. In addition, acceptor-related resonance features in the tunnelling spectra can be attributed to the formation of Rydberg-like bound hole states. The spatial mapping of the quantum bound states shows two distinct shapes evolving from an extended ellipse shape for the 1s ground state to a dumbbell shape for the 2p x excited state. The wave functions of bound hole states can be well-described using the hydrogen-like model with anisotropic effective mass, corroborated by our theoretical calculations. Our findings not only provide new insight into the many-body interactions around single dopants in this anisotropic two-dimensional material but also pave the way to the design of novel quantum devices.

  7. Electronic structures at the interface between CuPc and black phosphorus

    Science.gov (United States)

    Wang, Can; Niu, Dongmei; Xie, Haipeng; Liu, Baoxing; Wang, Shitan; Zhu, Menglong; Gao, Yongli

    2017-08-01

    The electronic structure at the organic-inorganic semiconductor interface of π -conjugated copper phthalocyanine (CuPc) on a black phosphorus (BP) crystal surface is studied with photoemission spectroscopy and density functional theory calculations. From the photoemission spectra, we observe a shift of about 0.7 eV for the highest occupied molecular orbital, which originates from the transition of phase in the organic molecular thin film (from the interface phase to the bulk phase). On the other hand, we find 0.2 eV band bending at the CuPc/BP interface while the formation of an interface dipole is very small. According to our photoemission spectrum and theoretical simulation, we also define that the interaction between CuPc and BP is physisorption via van der Waals forces, rather than chemisorption. Our results provide a fundamental understanding of CuPc/BP interfacial interactions that could be important for future two-dimensional organic/inorganic heterostructure devices.

  8. Multifunctional Moth-Eye TiO2/PDMS Pads with High Transmittance and UV Filtering.

    Science.gov (United States)

    Jang, Segeun; Kang, Seong Min; Choi, Mansoo

    2017-12-20

    This work reports a facile fabrication method for constructing multifunctional moth-eye TiO 2 /polydimethylsiloxane (PDMS) pads using soft nano-imprinting lithography and a gas-phase-deposited thin sacrificial layer. Mesoporous TiO 2 nanoparticles act as an effective UV filter, completely blocking high-energy UVB light and partially blocking UVA light and forming a robust TiO 2 /PDMS composite pad by allowing the PDMS solution to easily fill the porous TiO 2 network. The paraboloid-shaped moth-eye nanostructures provided high transparency in the visible spectrum and also have self-cleaning effects because of nanoroughness on the surface. Furthermore, we successfully achieved a desired multiscale-patterned surface by partially curing select regions using TiO 2 /PDMS pads with partial UVA ray blockers. The ability to fabricate multifunctional polymeric pads is advantageous for satisfying increasing demands for flexible and wearable electronics, displays, and solar cells.

  9. Contact angle studies on PDMS surfaces fouled by bovine serum albumin

    CSIR Research Space (South Africa)

    Windvoel, VT

    2010-01-01

    Full Text Available proteins. This is a limitation to microfluidic applications that require hydrophobic surfaces where proteins are involved. This study determines the change in wetting of PDMS after fouling by a protein, bovine serum albumin (BSA), by measuring contact...

  10. Trophic structure of the fouling community in Odessa Bay (Black Sea

    Directory of Open Access Journals (Sweden)

    A. Y. Varigin

    2016-06-01

    Full Text Available The trophic structure of the coastal fouling community of Odessa Bay (Black Sea, which was composed of 10 species of macrophytes, 57 invertebrate species and 4 species of fish, was determined. The basic trophic relationship between organisms composing the community is shown. A minimization of interspecific trophic competition within the community is noted. The main sources of food material entering the fouling community were determined. We show that a significant proportion of food in the form of detritus, dissolved organic matter and small planktonic organisms enters the community from the water column. Filtration and pumping activity of sestonophage-organisms, particularly mussels, helps to attract food material to the community. Primary producers of the community are macrophytes and microphytes, which develop on account of their photosynthetic activity and ensure the provision of food to herbivores. The trophic group of detritophages consumes different fractions of the detritus which accumulates in the byssus threads of bivalve molluscs. In this context, mussel druses act as sediment traps, collecting detritus. Numerous polyphages, which are essentially omnivores and do not usually lack food material, were noted in the community. A small group of carnivorous invertebrates, whose representatives actively attack small animals, was identified. The abundance of these species in the community was about 1%, and their biomass less than 0.6%. Fish living in macrophyte weeds are the consumers in the community. We determined that the highest relative abundance (over 36% in the fouling community was reached by sestonophages and polyphages. We found that the undisputed leader in the relative biomass (over 97% in the fouling community ofOdessaBaywas the sestonophages (mainly composed of mussels. We determined that the trophic structure index of the community was 0.94, which confirms the significant dominance in biomass of bivalves over other species in

  11. The study of PDMS surface treatment and it's applications by using proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Baek, J. Y.; Kim, J. Y.; Kwon, K. H.; Park, J. Y. [Korea Univ., Seoul (Korea, Republic of)

    2007-04-15

    PDMS(Polydimethylsiloxane) is mainly used as a material to do lab on a chip for biochemical analysis. PDMS has many applicability at the Bio-Technology(BT) field, because it is flexible, biocompatible and has good oxygen permeability. In this study, we have investigated to physical and chemical changes of PDMS surface by proton beam radiation conditions. The used kind of ion were Ar and N, beam energy was 30keV, 60keV, 80keV, total fluence was 1E10 to 1E16 [ions/cm{sup 2}]. PDMS membrane was produced as 150 {mu}m thick on the 3' silicon wafer. We inquired into physical and chemical changes up to beam radiation conditions through the investigate the change of surface roughness by AFM(Atomic Force Microscope), the change of surface morphology by SEM(Scanning Electron Microscope) and the change of chemical composition by FT-IR(Fourier Transform Infrared Raman spectroscopy) and XPS(X-ray Photoelectron Spectroscopy). From these basic data to we set up the proton beam radiation conditions to secure metal layer and PDMS adhesion. This enables to produce the electrode at the PDMS material lab on a chip. From now on, we'll investigate the cell patterning possibility after carry out of cell culture with mouse fibroblast at PDMS surface what is surface modification by using of proton beam radiation and apply this to produce lab on a chip. Physical property: Surface roughness of PDMS membrane was observed using AFM, after exposure of proton beam on it. The roughness increased as the power level of proton beam increase. This phenomena was caused by the kinetic energy of particle. Chemical property: Long term observation was conducted on the contact angles of the samples made by the proton beam exposure or oxygen plasma treatment; the hydrophilicity was found to be stronger in the samples made by the proton beam exposure. We found the reason of this was the destruction of polymer chains by proton beam. Feasibility of Through-hole: Considering that comparatively high

  12. The study of PDMS surface treatment and it's applications by using proton beam

    International Nuclear Information System (INIS)

    Baek, J. Y.; Kim, J. Y.; Kwon, K. H.; Park, J. Y.

    2007-04-01

    PDMS(Polydimethylsiloxane) is mainly used as a material to do lab on a chip for biochemical analysis. PDMS has many applicability at the Bio-Technology(BT) field, because it is flexible, biocompatible and has good oxygen permeability. In this study, we have investigated to physical and chemical changes of PDMS surface by proton beam radiation conditions. The used kind of ion were Ar and N, beam energy was 30keV, 60keV, 80keV, total fluence was 1E10 to 1E16 [ions/cm 2 ]. PDMS membrane was produced as 150 μm thick on the 3' silicon wafer. We inquired into physical and chemical changes up to beam radiation conditions through the investigate the change of surface roughness by AFM(Atomic Force Microscope), the change of surface morphology by SEM(Scanning Electron Microscope) and the change of chemical composition by FT-IR(Fourier Transform Infrared Raman spectroscopy) and XPS(X-ray Photoelectron Spectroscopy). From these basic data to we set up the proton beam radiation conditions to secure metal layer and PDMS adhesion. This enables to produce the electrode at the PDMS material lab on a chip. From now on, we'll investigate the cell patterning possibility after carry out of cell culture with mouse fibroblast at PDMS surface what is surface modification by using of proton beam radiation and apply this to produce lab on a chip. Physical property: Surface roughness of PDMS membrane was observed using AFM, after exposure of proton beam on it. The roughness increased as the power level of proton beam increase. This phenomena was caused by the kinetic energy of particle. Chemical property: Long term observation was conducted on the contact angles of the samples made by the proton beam exposure or oxygen plasma treatment; the hydrophilicity was found to be stronger in the samples made by the proton beam exposure. We found the reason of this was the destruction of polymer chains by proton beam. Feasibility of Through-hole: Considering that comparatively high level energy beam

  13. Characterizing the secondary protein structure of black widow dragline silk using solid-state NMR and X-ray diffraction.

    Science.gov (United States)

    Jenkins, Janelle E; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W; Holland, Gregory P; Yarger, Jeffery L

    2013-10-14

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) (13)C-(13)C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about the amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and, hence, to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 3(1)-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 3(1)-helical (poly(Gly-Gly-X(aa))) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 3(1)-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk.

  14. Tree Spatial Structure, Host Composition and Resource Availability Influence Mirid Density or Black Pod Prevalence in Cacao Agroforests in Cameroon

    Science.gov (United States)

    Gidoin, Cynthia; Babin, Régis; Bagny Beilhe, Leïla; Cilas, Christian; ten Hoopen, Gerben Martijn; Bieng, Marie Ange Ngo

    2014-01-01

    Combining crop plants with other plant species in agro-ecosystems is one way to enhance ecological pest and disease regulation mechanisms. Resource availability and microclimatic variation mechanisms affect processes related to pest and pathogen life cycles. These mechanisms are supported both by empirical research and by epidemiological models, yet their relative importance in a real complex agro-ecosystem is still not known. Our aim was thus to assess the independent effects and the relative importance of different variables related to resource availability and microclimatic variation that explain pest and disease occurrence at the plot scale in real complex agro-ecosystems. The study was conducted in cacao (Theobroma cacao) agroforests in Cameroon, where cocoa production is mainly impacted by the mirid bug, Sahlbergella singularis, and black pod disease, caused by Phytophthora megakarya. Vegetation composition and spatial structure, resource availability and pest and disease occurrence were characterized in 20 real agroforest plots. Hierarchical partitioning was used to identify the causal variables that explain mirid density and black pod prevalence. The results of this study show that cacao agroforests can be differentiated on the basis of vegetation composition and spatial structure. This original approach revealed that mirid density decreased when a minimum number of randomly distributed forest trees were present compared with the aggregated distribution of forest trees, or when forest tree density was low. Moreover, a decrease in mirid density was also related to decreased availability of sensitive tissue, independently of the effect of forest tree structure. Contrary to expectations, black pod prevalence decreased with increasing cacao tree abundance. By revealing the effects of vegetation composition and spatial structure on mirids and black pod, this study opens new perspectives for the joint agro-ecological management of cacao pests and diseases at the

  15. Tree spatial structure, host composition and resource availability influence mirid density or black pod prevalence in cacao agroforests in Cameroon.

    Science.gov (United States)

    Gidoin, Cynthia; Babin, Régis; Bagny Beilhe, Leïla; Cilas, Christian; ten Hoopen, Gerben Martijn; Bieng, Marie Ange Ngo

    2014-01-01

    Combining crop plants with other plant species in agro-ecosystems is one way to enhance ecological pest and disease regulation mechanisms. Resource availability and microclimatic variation mechanisms affect processes related to pest and pathogen life cycles. These mechanisms are supported both by empirical research and by epidemiological models, yet their relative importance in a real complex agro-ecosystem is still not known. Our aim was thus to assess the independent effects and the relative importance of different variables related to resource availability and microclimatic variation that explain pest and disease occurrence at the plot scale in real complex agro-ecosystems. The study was conducted in cacao (Theobroma cacao) agroforests in Cameroon, where cocoa production is mainly impacted by the mirid bug, Sahlbergella singularis, and black pod disease, caused by Phytophthora megakarya. Vegetation composition and spatial structure, resource availability and pest and disease occurrence were characterized in 20 real agroforest plots. Hierarchical partitioning was used to identify the causal variables that explain mirid density and black pod prevalence. The results of this study show that cacao agroforests can be differentiated on the basis of vegetation composition and spatial structure. This original approach revealed that mirid density decreased when a minimum number of randomly distributed forest trees were present compared with the aggregated distribution of forest trees, or when forest tree density was low. Moreover, a decrease in mirid density was also related to decreased availability of sensitive tissue, independently of the effect of forest tree structure. Contrary to expectations, black pod prevalence decreased with increasing cacao tree abundance. By revealing the effects of vegetation composition and spatial structure on mirids and black pod, this study opens new perspectives for the joint agro-ecological management of cacao pests and diseases at the

  16. The influence of climatic oscillations during the Quaternary Era on the genetic structure of Asian black bears in Japan.

    Science.gov (United States)

    Ohnishi, N; Uno, R; Ishibashi, Y; Tamate, H B; Oi, T

    2009-06-01

    The Asian black bear (Ursus thibetanus) inhabits two of the main islands, Honshu and Shikoku, in Japan. To determine how climatic oscillations during the Quaternary Era affected the genetic structure of the black bear populations in Japan, we examined their phylogeographic relationships and compared their genetic structure. We analysed an approximately 700-bp sequence in the D-loop region of mitochondrial DNA collected from 589 bears in this study with 108 bears from a previous study. We observed a total of 57 haplotypes and categorized them into three clusters (Eastern, Western and Southern) based on the spatial distribution of the haplotypes. All but 2 of the 41 haplotypes in the Eastern cluster were distributed locally. Genetic diversity was generally low in northern Japan and high in central Japan. Demographic tests rejected the expansion model in northern populations. Haplotypes of the Western and Southern clusters were unique to local populations. We conclude that the extant genetic structure of the Asian black bear populations arose as follows: first, populations became small and genetic drift decreased genetic diversity in the northern area during the last glacial period, whereas large continuous populations existed in the southern part of central Japan. These patterns were essentially maintained until the present time. In western and southern Japan, the effects of climatic oscillations were smaller, and thus, local structure was maintained.

  17. Phase structures of the black Dp-D(p+4)-brane system in various ensembles II: electrical and thermodynamic stability

    International Nuclear Information System (INIS)

    Xiao, Zhiguang; Zhou, Da

    2015-01-01

    By incorporating the electrical stability condition into the discussion, we continue the study on the thermodynamic phase structures of the Dp-D(p+4) black brane in GG, GC, CG, CC ensembles defined in our previous paper http://dx.doi.org/10.1007/JHEP07(2015)134. We find that including the electrical stability conditions in addition to the thermal stability conditions does not modify the phase structure of the GG ensemble but puts more constraints on the parameter space where black branes can stably exist in GC, CG, CC ensembles. In particular, the van der Waals-like phase structure which was supposed to be present in these ensembles when only thermal stability condition is considered would no longer be visible, since the phase of the small black brane is unstable under electrical fluctuations. However, the symmetry of the phase structure by interchanging the two kinds of brane charges and potentials is still preserved, which is argued to be the result of T-duality.

  18. PROPIEDADES INTERFACIALES DEL SURFACTANTE PDMS-PEGANHÍDRIDO MALÉICO-ÁCIDO FUMÁRICO (PDMS-PEG-AM-AF) EN SOLUCIÓN ACUOSA

    OpenAIRE

    Johana Rodríguez; Edgardo Meza Fuentes; Maria Cecilia Azevedo Espiridiao

    2011-01-01

    En este estudio se determinaron las propiedadesinterfaciales en solución acuosadel surfactante del tipo PDMS-éster quecontiene polidimetilsiloxano (PDMS),polietilenglicol (PEG), anhídrido maléicoy ácido fumárico. Para el estudio delas propiedades interfaciales se emplearonlas técnicas tensiometría y espectroscopiaen la región del UV-Vis. En soluciónacuosa este surfactante mostró uncomportamiento complejo, que es dependientede la concentración. En este surfactantese observó un cambio brusco en...

  19. Seismic crustal structure between the Transylvanian Basin and the Black Sea, Romania

    Science.gov (United States)

    Hauser, F.; Raileanu, V.; Fielitz, W.; Dinu, C.; Landes, M.; Bala, A.; Prodehl, C.

    2007-02-01

    In order to study the lithospheric structure in Romania a 450 km long WNW-ESE trending seismic refraction project was carried out in August/September 2001. It runs from the Transylvanian Basin across the East Carpathian Orogen and the Vrancea seismic region to the foreland areas with the very deep Neogene Focsani Basin and the North Dobrogea Orogen on the Black Sea. A total of ten shots with charge sizes 300-1500 kg were recorded by over 700 geophones. The data quality of the experiment was variable, depending primarily on charge size but also on local geological conditions. The data interpretation indicates a multi-layered structure with variable thicknesses and velocities. The sedimentary stack comprises up to 7 layers with seismic velocities of 2.0-5.9 km/s. It reaches a maximum thickness of about 22 km within the Focsani Basin area. The sedimentary succession is composed of (1) the Carpathian nappe pile, (2) the post-collisional Neogene Transylvanian Basin, which covers the local Late Cretaceous to Paleogene Tarnava Basin, (3) the Neogene Focsani Basin in the foredeep area, which covers autochthonous Mesozoic and Palaeozoic sedimentary rocks as well as a probably Permo-Triassic graben structure of the Moesian Platform, and (4) the Palaeozoic and Mesozoic rocks of the North Dobrogea Orogen. The underlying crystalline crust shows considerable thickness variations in total as well as in its individual subdivisions, which correlate well with the Tisza-Dacia, Moesian and North Dobrogea crustal blocks. The lateral velocity structure of these blocks along the seismic line remains constant with about 6.0 km/s along the basement top and 7.0 km/s above the Moho. The Tisza-Dacia block is about 33 to 37 km thick and shows low velocity zones in its uppermost 15 km, which are presumably due to basement thrusts imbricated with sedimentary successions related to the Carpathian Orogen. The crystalline crust of Moesia does not exceed 25 km and is covered by up to 22 km of

  20. Reversible Control in Surface Plasmon Resonance Wavelength of Gold Nanoparticles by Using Polydimethylsiloxane (PDMS)

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Yushi; Fudouzi, Hiroshi; Hayakawa, Tomokatsu; Nogami, Masayuki, E-mail: hayatomo@nitech.ac.jp [Field of Advenced Energy Conversion, Department of Frontier Materials, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan)

    2011-10-29

    In this paper, we demonstrate reversible control in surface plasomon resonance (SPR) wavelength of gold nanoparticles (GNPs) by changing their interparticle distance, which is dependent on the length of alkyl chain of alkanethiol adsorbed on GNPs and the swelling effect of polydimethylsiloxane (PDMS) used as a host material. A SPR wavelength was first positioned at a given wavelength dependent on the length of alkanethiol when GNPs were immobilized in PDMS. It was found that SPR wavelength red-shifted when the length of the carbon chain was shortened. On the other hand, when silicone oil was transfused to PDMS, SPR wavelength was blue-shifted by the swelling effect (volume expansion) of PDMS. And once silicone oil was volatilized, the particles returned to the original position and SPR did as well. Additionally, the coefficient of expansion of PDMS could be changed by changing the kind of silicon oils. From these results, it could be concluded that the SPR control due to their interparticle distance of GNPs was reversible and the varying degree of swelling of PDMS led to good controllability of SPR in a wide range of wavelength.

  1. Fabrication and simulation of glass micromachining using CO2 laser processing with PDMS protection

    Science.gov (United States)

    Chung, C. K.; Lin, S. L.; Wang, H. Y.; Tan, T. K.; Tu, K. Z.; Lung, H. F.

    2013-11-01

    Traditional glass micromachining using laser processing in air would produce many kinds of defects, such as bulges, debris, micro-cracks and scorches. In this article, a poly-dimethylsiloxane (PDMS) protection processing has been presented to reduce the temperature gradient and heat-affected zone (HAZ) to achieve crack-free Pyrex glass machining. A good quality of etched surface which is a clear and much-reduced bulge without crack and scorch is achieved using CO2 laser micromachining at 150 μm thick PDMS protection layer and the laser powers of 10-15 W and scanning speeds of 228-342 mm/s for five passes. The PDMS cover layer benefits feature size and bulge height reduction. The alpha-step measured profile shows that the much reduced bulge height around the rims of channel was about 1.2 μm at 150 μm thick PDMS about 13 times smaller than that in air. The ANSYS software was used to analyze the temperature distribution and thermal stress field of glass micromachining in air without and with PDMS cover layer. The smaller temperature gradient observed in PDMS protection processing has the smaller HAZ and diminishes the crack formation during the laser processing.

  2. Enhancing relative permittivity by incorporating PDMS-PEG multi block copolymers in binary polymer blends

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    Polydimethylsiloxanes (PDMS) are well-known to actuate with relatively large strains due to low modulus, but they possess lowpermittivity. Contrary, polyethyleneglycols (PEG) are not stretchable but possess high permittivity. Combination of the two polymers in a block copolymer depicts a possibil......Polydimethylsiloxanes (PDMS) are well-known to actuate with relatively large strains due to low modulus, but they possess lowpermittivity. Contrary, polyethyleneglycols (PEG) are not stretchable but possess high permittivity. Combination of the two polymers in a block copolymer depicts...... a possibility for substantial improvement of properties such as high permittivity, stretchability and non-conductivity – if carefully designed. The objective is to synthesize PDMS-PEG multiblock copolymer assembling into discontinuous morphologies in PEG based on variation of volume fractions of PDMS....... The utilized synthesis of PDMS-PEG multiblock copolymer is based on hydrosilylation reaction, which is amended from Klasner et al.1 and Jukarainen etal.2 Variation in the ratio between the two constituents introduces distinctive properties in terms of dielectric permittivity and rheological behaviour. PDMS...

  3. Proton beam lithography in negative tone liquid phase PDMS polymer resist

    International Nuclear Information System (INIS)

    Huszank, Robert; Rajta, István; Cserháti, Csaba

    2015-01-01

    In this work we investigated the applicability of liquid PDMS polymer as a negative resist material for direct proton beam writing technique. We irradiated the polymer in liquid phase, spin-coated on different substrate materials creating various microstructures. PDMS pre-polymer was cross-linked just by PBW. As the cross-linking process increases, the irradiated area becomes more solid. The rate of the solidification strongly depends on the deposited ion dose. The effects of fluence, beam current, substrate type and developer solvent was investigated. Furthermore, at the irradiated areas the adhesion, the wettability and Young’s modulus also changes due to the chemical change of the PDMS polymer. This effect makes the possibility to form microstructures in PDMS with tunable adhesion and wettability properties. In practical viewpoint, the PDMS resist can also have some advantages compared to other resists such as easy stripping, very fast developing (as the un-cross-linked PDMS is soluble in many organic solvents), not sensitive to light, high current or high fluence

  4. No evident spatial genetic structuring in the rapidly declining Black-tailed Godwit

    NARCIS (Netherlands)

    Trimbos, K.B.; Musters, C.J.M.; Verkuil, Y.I.; Kentie, R.; Piersma, T.; De Snoo, G.; Verkuil, Y.I.

    2011-01-01

    With 40% of the European Black-tailed Godwit population breeding in The Netherlands, this country harbours internationally significant numbers of this species. However, ongoing agricultural intensification has resulted in the fragmentation of the population and drastic population declines since

  5. A Projection on the Black Sea’s 21st Century Security Structure

    Science.gov (United States)

    2011-03-24

    Black Sea, on the pretext of maintaining the 1936 Montreux Convention, which gives Turkey a naval monopoly and privilege.23 In addition to being a...fervent adherent of the Montreux Convention of 1936, Turkey has initiated and participated in three major initiatives to reflect its decisiveness on...in the Black Sea area, will continue to observe the Montreux Convention, and acknowledges OBSH and BLACKSEAFOR as confidence-building measures in the

  6. Nonviolent unitarization: basic postulates to soft quantum structure of black holes

    Science.gov (United States)

    Giddings, Steven B.

    2017-12-01

    A first-principles approach to the unitarity problem for black holes is systematically explored, based on the postulates of 1) quantum mechanics 2) the ability to approximately locally divide quantum gravitational systems into subsystems 3) correspondence with quantum field theory predictions for appropriate observers and (optionally) 4) universality of new gravitational effects. Unitarity requires interactions between the internal state of a black hole and its surroundings that have not been identified in the field theory description; correspondence with field theory indicates that these are soft. A conjectured information-theoretic result for information transfer between subsystems, partly motivated by a perturbative argument, then constrains the minimum coupling size of these interactions of the quantum atmosphere of a black hole. While large couplings are potentially astronomically observable, given this conjecture one finds that the new couplings can be exponentially small in the black hole entropy, yet achieve the information transfer rate needed for unitarization, due to the large number of black hole internal states. This provides a new possible alternative to arguments for large effects near the horizon. If universality is assumed, these couplings can be described as small, soft, state-dependent fluctuations of the metric near the black hole. Open questions include that of the more fundamental basis for such an effective picture.

  7. Optimal use of resources structures home ranges and spatial distribution of black bears

    Science.gov (United States)

    Mitchell, M.S.; Powell, R.A.

    2007-01-01

    Research has shown that territories of animals are economical. Home ranges should be similarly efficient with respect to spatially distributed resources and this should structure their distribution on a landscape, although neither has been demonstrated empirically. To test these hypotheses, we used home range models that optimize resource use according to resource-maximizing and area-minimizing strategies to evaluate the home ranges of female black bears, Ursus americanus, living in the southern Appalachian Mountains. We tested general predictions of our models using 104 home ranges of adult female bears studied in the Pisgah Bear Sanctuary, North Carolina, U.S.A., from 1981 to 2001. We also used our models to estimate home ranges for each real home range under a variety of strategies and constraints and compared similarity of simulated to real home ranges. We found that home ranges of female bears were efficient with respect to the spatial distribution of resources and were best explained by an area-minimizing strategy with moderate resource thresholds and low levels of resource depression. Although resource depression probably influenced the spatial distribution of home ranges on the landscape, levels of resource depression were too low to quantify accurately. Home ranges of lactating females had higher resource thresholds and were more susceptible to resource depression than those of breeding females. We conclude that home ranges of animals, like territories, are economical with respect to resources, and that resource depression may be the mechanism behind ideal free or ideal preemptive distributions on complex, heterogeneous landscapes. ?? 2007 The Association for the Study of Animal Behaviour.

  8. Fabrication and characterization of a magnetic micro-actuator based on deformable Fe-doped PDMS artificial cilium using 3D printing

    International Nuclear Information System (INIS)

    Liu, Fengli; Alici, Gursel; Li, Weihua; Zhang, Binbin; Beirne, Stephen

    2015-01-01

    This paper proposes the use of a 3D extrusion printer to fabricate artificial magnetic cilium. The cilia are fabricated using polydimethylsiloxane (PDMS) doped with iron particles so that they remain slender and flexible. They can be driven by a magnetic field to closely mimic the behaviour of biological cilia. Doping iron particles to the polymers has already been done; however, to the best of our knowledge, printing such active and soft magnetic structures has not. The existing methods for manufacturing magnetic polymeric structures are complex and difficult to use for the fabrication of micro-sized high-aspect-ratio cilia. The 3D printing technique we propose here is simple and inexpensive compared to previously suggested fabrication methods. In this study, free-standing magnetic PDMS cilia were fabricated in different sizes up to 5 mm in length and 1 mm in width. The stress-strain curves of the PDMS cilia were experimentally obtained to quantify the effect of the concentration of the iron particles on the modulus of elasticity of the cilia. The higher the iron concentration, the higher the modulus of elasticity. We have quantified the characteristics of the cilia made of 40% w/w iron particles in PDMS. A single cilium (5 × 1 × 0.0035 mm) can output up to 27 μN blocking force under a magnetic field of 160 mT. These cilia can be used as a mixer in lap-on-chip applications and as the anchoring and propulsion legs of endoscopic capsule robots operating within the gastrointestinal tract of humans. Analytical expressions estimating the blocking force are established and compared with the experimental results. (paper)

  9. Influence of Carbon Black Structure and Specific Surface Area on the Mechanical and Dielectric Properties of Filled Rubber Composites

    Directory of Open Access Journals (Sweden)

    Omar A. Al-Hartomy

    2011-01-01

    Full Text Available Natural rubber based composites have been prepared using various amounts of two fillers: conventional Corax N220 carbon black or electrically conductive carbon black Printex XE-2B which has a very high specific surface area. The composites have been studied by dynamic mechanical thermal analysis, dielectric thermal analysis and SEM. It has been established that all vulcanizates investigated are in the glass state in the −80∘C to −40∘C interval. The storage modulus increases with the increasing filler content in the −40∘C to +80∘C interval when the vulcanizates are in the highly elastic state. DETA shows that the increase in filler content leads to an increase in the dielectric permittivity (ε′. ε′ also increases with temperature increasing. Higher frequency causes a decrease of ε′ values which becomes more pronounced with the increasing filler content. Obviously, when the content of Printex XE-2B carbon black in the vulcanizates is higher than 7.5 phr, the percolation threshold is reached and the ε′ values increase up to 102–104. The ε′ values for the vulcanizates comprising 20 and 50 phr Corax N220 carbon black are measurable with those for the vulcanizates comprising 5 and 10 phr Printex XE-2B carbon black respectively. The results obtained could be explained by the difference in the structure and specific surface area of the two types of carbon black—Printex XE-2B and Corax N220.

  10. Morphology, molecular structure, and stable carbon isotopic composition of black carbon (BC) in urban topsoils.

    Science.gov (United States)

    Zong, Yutong; Xiao, Qing; Lu, Shenggao

    2018-02-01

    Urban soils contain significant amounts of black carbon (BC) from biomass and fossil fuel combustion and regard to be a pool of BC. BC in urban soils has multiple effects on environmental processes in urban system, such as global climate change, air quality, and public health. Urban topsoil samples (0-10 cm) were collected from Anshan, Liaoning Province, northeast China, which is one of the most important old steel industrial bases in China. The BC in urban topsoils was extracted using the density method. Their chemical composition, morphology, molecular structure, and stable carbon isotopic composition were examined using elemental analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and stable carbon isotope (δ 13 C). Elemental analysis shows that carbon content in the BC of studied soils ranged from 64.5 to 78.4%, with the average more than 70%. The O/C atomic ratio of BC is on average 0.18. The BC particle displays different morphology, including porous spherical, irregular porous fragmentary, and blocky shapes. The porous spherical BC particles has atomic molar O/C ratio determined by SEM-EDS ranging from 0.04 to 0.37. XRD indicates that BC exists in mainly combining with mineral phases hematite (Fe 2 O 3 ), kaolinite (Al 2 Si 2 O 5 (OH) 4 ), quartz (SiO 2 ), and calcite (CaCO 3 ). The FTIR spectra of BC particles show major bands at approximately 3400 cm -1 (O-H), 2920 cm -1 (C = H), 1600 cm -1 (C = C), 1230 cm -1 (C = O), and 1070 cm -1 (C = O). The stable carbon isotope (δ 13 C) of BC ranges from -24.48 to -23.18‰ with the average of -23.79 ± 0.39‰. The concentration of BC in the industrial area is significantly (p fuel combustion. Results indicated that a combination of atomic O/C ratio, porous structure, and stable carbon isotopic (δ 13 C) of BC could reflect effectively the origin of BC

  11. Heroin in brown, black and white: structural factors and medical consequences in the US heroin market.

    Science.gov (United States)

    Ciccarone, Daniel

    2009-05-01

    Heroin coming into the United States historically comes from three widely dispersed geographical regions: Southwest Asia, Southeast Asia and Mexico. A fourth source of US-bound heroin, from Colombia, originated in the early 1990s. The fact that the four heroin sources produce differing morphologies and qualities of heroin has not been critically examined. In addition, it is not well established how the contemporary competing dynamics of interdiction, or restriction of heroin flows across international boundaries, and neoliberal, e.g., global expansion of free trade, policies are affecting heroin markets. This paper will highlight changes in the US heroin market, including source trends, the political economy of the now dominant source and the resultant effects on the heroin risk environment by US region. Using a structural and historical framework this paper examines two decades of secondary data sources, including government and drug control agency documents, on heroin flows together with published work on the political and economic dynamics in Latin America. Co-occurring neoliberal economic reforms may have contributed to paradoxical effects of US/Colombian interdiction efforts. Since entering the US market, heroin from Colombia has been distributed at a much higher quality and lower retail price. An increasingly exclusive market has developed with Mexican and Colombian heroin gaining market share and displacing Asian heroin. These trends have had dramatic effects on the risk environment for heroin consumers. An intriguing factor is that different global sources of heroin produce substantially different products. Plausible associations exist between heroin source/form and drug use behaviours and harms. For example, cold water-soluble powdered heroin (sources: Asia, Colombia) may be associated with higher HIV prevalence in the US, while low-solubility "black tar" heroin (BTH; source: Mexico) is historically used in areas with reduced HIV prevalence. BTH is

  12. Effects of warming on the structure and function of a boreal black spruce forest

    Energy Technology Data Exchange (ETDEWEB)

    Stith T.Gower

    2010-03-03

    A strong argument can be made that there is a greater need to study the effect of warming on boreal forests more than on any other terrestrial biome. Boreal forests, the second largest forest biome, are predicted to experience the greatest warming of any forest biome in the world, but a process-based understanding of how warming will affect the structure and function of this economically and ecologically important forest biome is lacking. The effects of warming on species composition, canopy structure and biogeochemical cycles are likely to be complex; elucidating the underlying mechanisms will require long-term whole-ecosystem manipulation to capture all the complex feedbacks (Shaver et al. 2000, Rustad et al. 2001, Stromgren 2001). The DOE Program for Ecosystem Research funded a three year project (2002-2005) to use replicated heated chambers on soil warming plots in northern Manitoba to examine the direct effects of whole-ecosystem warming. We are nearing completion of our first growing season of measurements (fall 2004). In spite of the unforeseen difficulty of installing the heating cable, our heating and irrigation systems worked extremely well, maintaining environmental conditions within 5-10% of the specified design 99% of the time. Preliminary data from these systems, all designed and built by our laboratory at the University of Wisconsin, support our overall hypothesis that warming will increase the carbon sink strength of upland boreal black spruce forests. I request an additional three years of funding to continue addressing the original objectives: (1) Examine the effect of warming on phenology of overstory, understory and bryophyte strata. Sap flux systems and dendrometer bands, monitored by data loggers, will be used to quantify changes in phenology and water use. (2) Quantify the effects of warming on nitrogen and water use by overstory, understory and bryophytes. (3) Compare effects of warming on autotrophic respiration and above- and belowground

  13. Probing the Magnetic Field Structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gold, Roman; McKinney, Jonathan C. [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States); Johnson, Michael D.; Doeleman, Sheperd S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-10

    Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford–Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.

  14. Probing the Magnetic Field Structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    International Nuclear Information System (INIS)

    Gold, Roman; McKinney, Jonathan C.; Johnson, Michael D.; Doeleman, Sheperd S.

    2017-01-01

    Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of the disk, funnel-wall jet, and Blandford–Znajek-driven funnel jet. Our comparisons between the simulations and observations favor models with ordered magnetic fields near the black hole event horizon in Sgr A*, though both disk- and jet-dominated emission can satisfactorily explain most of the current EHT data. We also discuss how the black hole shadow can be filled-in by jet emission or mimicked by the absence of funnel jet emission. We show that stronger model constraints should be possible with upcoming circular polarization and higher frequency (349 GHz) measurements.

  15. Phase structure of the Born-Infeld-anti-de Sitter black holes probed by non-local observables

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Xiong [Chongqing Jiaotong University, School of Material Science and Engineering, Chongqing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); Liu, Xian-Ming [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States); Hubei University for Nationalities, Center for Theoretical Physics, School of Sciences, Enshi, Hubei (China); Li, Li-Fang [Chinese Academy of Sciences, State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Beijing (China)

    2016-11-15

    With the non-local observables such as two point correlation function and holographic entanglement entropy, we probe the phase structure of the Born-Infeld-anti-de Sitter black holes. For the case bQ > 0.5, where b is the Born-Infeld parameter and Q is the charge of the black hole, the phase structure is found to be similar to that of the Van der Waals phase transition, namely the black hole undergoes a first order phase transition and a second order phase transition before it reaches a stable phase. While for the case bQ < 0.5, a new phase branch emerges besides the Van der Waals phase transition. For the first order phase transition, the equal area law is checked, and for the second order phase transition, the critical exponent of the heat capacity is obtained. All these results are found to be the same as that observed in the entropy-temperature plane. (orig.)

  16. Electronic structure and STM images simulation of defects on hBN/ black-phosphorene heterostructures: A theoretical study

    Science.gov (United States)

    Ospina, D. A.; Cisternas, E.; Duque, C. A.; Correa, J. D.

    2018-03-01

    By first principles calculations which include van der Waals interactions, we studied the electronic structure of hexagonal boron-nitride/black-phosphorene heterostructures (hBN/BP). In particular the role of several kind of defects on the electronic properties of black-phosphorene monolayer and hBN/BP heterostructure was analyzed. The defects under consideration were single and double vacancies, as well Stone-Wale type defects, all of them present in the phosphorene layer. In this way, we found that the electronic structure of the hBN/BP is modified according the type of defect that is introduced. As a remarkable feature, our results show occupied states at the Fermi Level introduced by a single vacancy in the energy gap of the hBN/BP heterostructure. Additionally, we performed simulations of scanning tunneling microscopy images. These simulations show that is possible to discriminate the kind of defect even when the black-phosphorene monolayer is part of the heterostructure hBN/BP. Our results may help to discriminate among several kind of defects during experimental characterization of these novel materials.

  17. Raman anomalies as signatures of pressure induced electronic topological and structural transitions in black phosphorus: Experiments and theory

    Science.gov (United States)

    Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik; Chakraborti, Biswanath; Muthu, D. V. S.; Waghmare, U. V.; Sood, A. K.

    2017-09-01

    We report high-pressure Raman experiments of black phosphorus up to 24 GPa. The linewidths of first-order Raman modes Ag1, B2 g, and Ag2 of the orthorhombic phase show a minimum at 1.1 GPa. Our first-principles density functional analysis reveals that this is associated with the anomalies in electron-phonon coupling at the semiconductor to topological insulator transition through inversion of valence and conduction bands marking a change from trivial to nontrivial electronic topology. The frequencies of B2 g and Ag2 modes become anomalous in the rhombohedral phase at 7.4 GPa, and new modes appearing in the rhombohedral phase show anomalous softening with pressure. This is shown to originate from unusual structural evolution of black phosphorous with pressure, based on first-principles theoretical analysis.

  18. Stratigraphy and structure of the northern and western flanks of the Black Hills Uplift, Wyoming, Montana, and South Dakota

    International Nuclear Information System (INIS)

    Robinson, C.S.; Mapel, W.J.; Bergendahl, M.H.

    1981-01-01

    This report describes the stratigraphy and structure of an area of about 5000 square miles in northeastern Wyoming and adjacent parts of Montana and South Dakota. The area includes the northern end and part of the western side of the Black Hills Uplift and the adjoining part of the Powder River Basin. About 11,000 ft of sedimentary rocks ranging in age from Mississippian to Early Tertiary are exposed in the area, not including surficial deposits of Tertiary (.) and Quaternary age. Oil is produced from several fields on the wet side of the Black Hills Uplift in Wyoming. Bentonite is mined at many places. The Fort Union and Wasatch Formations contain large reserves of sub-bituminous coal, and Lakota Formation contains some bituminous coal

  19. The Effects of Micromixing Two Solutions of Two Concentrations in a Two Tier PDMS Micromixer

    Science.gov (United States)

    Sundra, Sargunan; Fhong Soon, Chin; Zainal, Nurfarina; Sek Tee, Kian; Ahmad, Nornabihah; Gan, Siew Hua

    2017-08-01

    Micromixing technology has drastically advanced in the past few decades. Micromixers are one of the elements in integrated microfluidic systems for chemical, analytical chemistry, pharmaceutical, and biological applications. In this study, two tier micromixer was used to mix and dilute two solutions of similar and different concentration in order to investigate performance of micromixer’s mixing. This paper presents the fabrication of a designed micromixer using polydimethylsiloxane (PDMS) and vinyl tape methods which reduce time, cost and complexity of prototyping. The serpentine structure of the microchannels was designed to enhance both mixing and dilution. Two types of food dyes and distilled water were used to investigate the mixing performance of the micromixer followed by spectrophotometry analysis. It is observed that the single dye solution and distilled water shows better mixing performance compared to the micromixing of two dye solutions which was supported by the diffusion theory. 2.00 ml/min was the optimum flow rate that allow optimum mixing and dilution between two different concentrated liquids.

  20. Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Madhushree Bute; Shinde, Shashikant D. [Department of Physics, University of Pune, Pune 411007 (India); Bodas, Dhananjay [Centre for Nanobioscience, Agharkar Research Institute, Agharkar road, Pune 411004 (India); Patil, K.R. [Center for Materials Characterization, National Chemical Laboratories, Pune 411008 (India); Sathe, V.G. [UGC DAE Inter University Consortium, Indore 452017 (India); Adhi, K.P. [Department of Physics, University of Pune, Pune 411007 (India); Gosavi, S.W., E-mail: swg@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India)

    2014-09-30

    Graphical abstract: - Highlights: • Use of KrF Laser micromachining for Lab-On-Chip applications at lower fluence. • Addition of Benzophenone in PDMS enhances its self development sensitivity. • Benzophenone helps efficient energy transfer for equal density of bond scissioning. • Correlation of chemical composition with laser dose and microstructure. • Microstructures with well defined clean sidewalls. - Abstract: This paper discusses microfabrication process for benzophenone doped polydimethylsiloxane (PDMS) using laser lithography. KrF excimer laser of 248 nm with 20 ns pulse width at repetition rate of 1 Hz was used for microfabrication of undoped and benzophenone doped PDMS. The doped-PDMS shows sensitivity below 365 nm, permitting processing under ambient light. The analysis of etch depth revealed that doped PDMS shows self developable sensitivity at lower fluence of ∼250 mJ/cm{sup 2}. The unexposed and exposed surface was studied using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Scanning electron microscopy (SEM). Spectrocopic analysis indicated increase in C-O, C=O, Si-O{sub 3} and Si-O{sub 4} bonding at the expense of Si-C and Si-O{sub 2} bonds of PDMS. In case of laser exposed doped-PDMS, removal of benzophenone from probe depth of spectroscopy was observed. Whereas the surface morphology of exposed and unexposed doped-PDMS was observed to be same, indicating clean development of PDMS micropatterns. The present study indicates that addition of 3.0 wt.% benzophenone in PDMS enhance self development sensitivity of PDMS. The self developable results on doped-PDMS are quite encouraging for its potential use in point of care Lab-On-Chip applications, for fabricating micropatterns using direct write laser lithography technology.

  1. Rapid and low-cost fabrication of polystyrene-based molds for PDMS microfluidic devices using a CO2 laser

    KAUST Repository

    Li, Huawei

    2011-11-01

    In this article, we described a rapid and low-cost method to fabricate polystyrene molds for PDMS microfluidic devices using a CO2 laser system. It takes only several minutes to fabricate the polystyrene mold with bump pattern on top of it using a CO2 laser system. The bump pattern can be easily transferred to PDMS and fabricate microchannles as deep as 3μm on PDMS. © (2012) Trans Tech Publications, Switzerland.

  2. Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography

    International Nuclear Information System (INIS)

    Kant, Madhushree Bute; Shinde, Shashikant D.; Bodas, Dhananjay; Patil, K.R.; Sathe, V.G.; Adhi, K.P.; Gosavi, S.W.

    2014-01-01

    Graphical abstract: - Highlights: • Use of KrF Laser micromachining for Lab-On-Chip applications at lower fluence. • Addition of Benzophenone in PDMS enhances its self development sensitivity. • Benzophenone helps efficient energy transfer for equal density of bond scissioning. • Correlation of chemical composition with laser dose and microstructure. • Microstructures with well defined clean sidewalls. - Abstract: This paper discusses microfabrication process for benzophenone doped polydimethylsiloxane (PDMS) using laser lithography. KrF excimer laser of 248 nm with 20 ns pulse width at repetition rate of 1 Hz was used for microfabrication of undoped and benzophenone doped PDMS. The doped-PDMS shows sensitivity below 365 nm, permitting processing under ambient light. The analysis of etch depth revealed that doped PDMS shows self developable sensitivity at lower fluence of ∼250 mJ/cm 2 . The unexposed and exposed surface was studied using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Scanning electron microscopy (SEM). Spectrocopic analysis indicated increase in C-O, C=O, Si-O 3 and Si-O 4 bonding at the expense of Si-C and Si-O 2 bonds of PDMS. In case of laser exposed doped-PDMS, removal of benzophenone from probe depth of spectroscopy was observed. Whereas the surface morphology of exposed and unexposed doped-PDMS was observed to be same, indicating clean development of PDMS micropatterns. The present study indicates that addition of 3.0 wt.% benzophenone in PDMS enhance self development sensitivity of PDMS. The self developable results on doped-PDMS are quite encouraging for its potential use in point of care Lab-On-Chip applications, for fabricating micropatterns using direct write laser lithography technology

  3. Black to Black

    DEFF Research Database (Denmark)

    Langkjær, Michael Alexander

    2012-01-01

    Pop musicians performing in black stage costume take advantage of cultural traditions relating to matters black. Stylistically, black is a paradoxical color: although a symbol of melancholy, pessimism, and renunciation, black also expresses minimalist modernity and signifies exclusivity (as is hi...... suggested that appreciation of the highly personal motives of both Siouxsie Sioux and Janelle Monáe in wearing black may be achieved via analogies with the minimalist sublime of American artists Frank Stella’s and Ad Reinhardt’s black canvasses.......Pop musicians performing in black stage costume take advantage of cultural traditions relating to matters black. Stylistically, black is a paradoxical color: although a symbol of melancholy, pessimism, and renunciation, black also expresses minimalist modernity and signifies exclusivity (as...... is hinted by Rudyard Kipling’s illustration of ‘The [Black] Cat That Walked by Himself’ in his classic children’s tale). It was well understood by uniformed Anarchists, Fascists and the SS that there is an assertive presence connected with the black-clad figure. The paradox of black’s abstract elegance...

  4. Quantitative Analysis of Major Factors Affecting Black Carbon Transport and Concentrations in the Unique Atmospheric Structures of Urban Environment

    Science.gov (United States)

    Liang, Marissa Shuang

    Black carbon (BC) from vehicular emission in transportation is a principal component of particulate matters ≤ 2.5 mum (PM2.5). PM2.5 and other diesel emission pollutants (e.g., NOx) are regulated by the Clean Air Act (CAA) according to the National Ambient Air Quality standards (NAAQS). This doctoral dissertation details a study on transport behaviors of black carbon and PM2.5 from transportation routes, their relations with the atmospheric structure of an urban formation, and their relations with the use of biodiesel fuels. The results have implications to near-road risk assessment and to the development of sustainable transportation solutions in urban centers. The first part of study quantified near-roadside black carbon transport as a function of particulate matter (PM) size and composition, as well as microclimatic variables (temperature and wind fields) at the interstate highway I-75 in northern Cincinnati, Ohio. Among variables examined, wind speed and direction significantly affect the roadside transport of black carbon and hence its effective emission factor. Observed non-Gaussian dispersion occurred during low wind and for wind directions at acute angles or upwind to the receptors, mostly occurring in the morning hours. Meandering of air pollutant mass under thermal inversion is likely the driving force. In contrary, Gaussian distribution predominated in daytime of strong downwinds. The roles of urban atmospheric structure, wind fields, and the urban heat island (UHI) effects were further examined on pollutant dispersion and transport. Spatiotemporal variations of traffic flow, atmospheric structure, ambient temperature and PM2.5 concentration data from 14 EPA-certified NAAQS monitoring stations, were analyzed in relation to land-use in the Cincinnati metropolitan area. The results show a decade-long UHI effects with higher interior temperature than that in exurban, and a prominent nocturnal thermal inversion frequent in urban boundary layer. The

  5. Soil Structure and Mycorrhizae Encourage Black Walnut Growth on Old Fields

    Science.gov (United States)

    Felix Jr. Ponder

    1979-01-01

    Examination of black walnut seedlings grown in forest and field soils showed all root systems were infected with mycorrhizae; the amount of infection was influenced by treatments. Mean height and dry weight of tops and roots were greater for seedlings grown in forest than field soil. Seedling height growth was not increased by disturbing either soil; but, root dry...

  6. Dynamac molecular structure of plant biomass-derived black carbon (Biochar)

    Science.gov (United States)

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration (“biochar”). Here we present a molecular-level assessment o...

  7. Substantial molecular variation and low genetic structure in Kenya’s black rhinoceros: implications for conservation

    NARCIS (Netherlands)

    Muya, S.M.; Bruford, M.W.; Muigai, A.W.T.; Osiemo, Z.B.; Mwachiro, E.; Ouma, B.O.; Goossens, B.

    2011-01-01

    Kenya’s black rhinoceros population declined by more than 98% from 20,000 individuals in the 1970s to around 400 individuals in 1990 due to the effects of poaching, at which time the surviving individuals were isolated in a series of demographically inviable subpopulations. An initial management

  8. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus

    DEFF Research Database (Denmark)

    Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.

    2012-01-01

    constant is significantly larger than the C11 and C33 parameters, implying that black phosphorus is stiffer against strain along the a axis than along the b and c axes. From the calculated elastic constants, the mechanical properties, such as bulk modulus, shear modulus, Young's modulus, and Poisson...

  9. Irreversible bonding of polyimide and polydimethylsiloxane (PDMS) based on a thiol-epoxy click reaction

    International Nuclear Information System (INIS)

    Hoang, Michelle V; Chung, Hyun-Joong; Elias, Anastasia L

    2016-01-01

    Polyimide is one of the most popular substrate materials for the microfabrication of flexible electronics, while polydimethylsiloxane (PDMS) is the most widely used stretchable substrate/encapsulant material. These two polymers are essential in fabricating devices for microfluidics, bioelectronics, and the internet of things; bonding these materials together is a crucial challenge. In this work, we employ click chemistry at room temperature to irreversibly bond polyimide and PDMS through thiol-epoxy bonds using two different methods. In the first method, we functionalize the surfaces of the PDMS and polyimide substrates with mercaptosilanes and epoxysilanes, respectively, for the formation of a thiol-epoxy bond in the click reaction. In the second method, we functionalize one or both surfaces with mercaptosilane and introduce an epoxy adhesive layer between the two surfaces. When the surfaces are bonded using the epoxy adhesive without any surface functionalization, an extremely small peel strength (<0.01 N mm −1 ) is measured with a peel test, and adhesive failure occurs at the PDMS surface. With surface functionalization, however, remarkably higher peel strengths of ∼0.2 N mm −1 (method 1) and  >0.3 N mm −1 (method 2) are observed, and failure occurs by tearing of the PDMS layer. We envision that the novel processing route employing click chemistry can be utilized in various cases of stretchable and flexible device fabrication. (paper)

  10. Optical properties study of silicone polymer PDMS substrate surfaces modified by plasma treatment

    Science.gov (United States)

    Zahid, A.; Dai, B.; Hong, R.; Zhang, D.

    2017-10-01

    In this study, PDMS (polydimethylsiloxane) substrates with a half-plain, half-rough surface were prepared on a plain and rough fused silica glass substrate using a molding technique. The molded PDMS surface morphology was changed into a half-smooth and half-rough surface after peeling. The modified PDMS surfaces’ optical properties were inspected with and without treatment. The treatment is exposed by oxygen plasma (15 W) for 3 min in a vacuum, down to a pressure of six torr, using a vacuum pump. An atomic force microscope (AMF) and interferometer (white light) indicated that the plasma O2 treatment increased the formation of the plain surface and decreased the formation of the rough surface. The optical properties via a spectrophotometer (lambda) show the resonance from 300 nm to 1200 nm on the rough surface, which is considered to be a faithful reproduction for transmittance and reflectance. The Raman spectra and FDTD simulation results are in excellent agreement; not to be confused with metal local surface plasmon resonances (LSPRs). The Raman spectra peaks and hotspot are the results of the PDMS Si-O backbone. The PDMS substrate presented the diversity of the optical properties, which makes the substrate complementary to various optical applications.

  11. Free-Form Rapid Prototyped Porous PDMS Scaffolds Incorporating Growth Factors Promote Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Andrés Díaz Lantada

    2014-01-01

    Full Text Available In this study, we present a promising approach for the rapid development of porous polydimethylsiloxane (PDMS scaffold prototypes, with outer geometry defined from the design stage, according to the form of conventional implants or adapted to patients’ biostructures. The manufacture method is based on phase separation processes using materials obtained by casting within additive rapid prototyped molds. We include a comparative study of PDMS sponges obtained by different simple processes. Final in vitro assessment is carried out using hMSCs (bone marrow-derived human mesenchymal stem cells, cultured onto porous PDMS scaffolds functionalized with aminopropyltriethoxysilane (APTS and equilibrated with a trophic factors medium produced by the cells. Results show that porous PDMS scaffold prototypes are excellent 3D platforms for hMSCs adhesion. Furthermore, this PDMS-3D niche, seeded with hMSCs and chondrogenic incubation medium during three weeks, showed a successful chondrogenesis determined by collagen type II expression. Thus, results show a versatile method to produce a 3D niche to address questions about cartilage and endochondral bone formation or skeleton tissues clinical approaches.

  12. Three-dimensional structure of clumpy outflow from supercritical accretion flow onto black holes

    Science.gov (United States)

    Kobayashi, Hiroshi; Ohsuga, Ken; Takahashi, Hiroyuki R.; Kawashima, Tomohisa; Asahina, Yuta; Takeuchi, Shun; Mineshige, Shin

    2018-02-01

    We perform global three-dimensional (3D) radiation-hydrodynamic (RHD) simulations of outflow from supercritical accretion flow around a 10 M⊙ black hole. We only solve the outflow part, starting from the axisymmetric 2D simulation data in a nearly steady state but with small perturbations in a sinusoidal form being added in the azimuthal direction. The mass accretion rate onto the black hole is ˜102LE/c2 in the underlying 2D simulation data, and the outflow rate is ˜10 LE/c2 (with LE and c being the Eddington luminosity and speed of light, respectively). We first confirm the emergence of clumpy outflow, which was discovered by the 2D RHD simulations, above the photosphere located at a few hundreds of Schwarzschild radii (rS) from the central black hole. As prominent 3D features we find that the clumps have the shape of a torn sheet, rather than a cut string, and that they are rotating around the central black hole with a sub-Keplerian velocity at a distance of ˜103 rS from the center. The typical clump size is ˜30 rS or less in the radial direction, and is more elongated in the angular directions, ˜ hundreds of rS at most. The sheet separation ranges from 50 to 150 rS. We expect stochastic time variations when clumps pass across the line of the sight of a distant observer. Variation timescales are estimated to be several seconds for a black hole with mass of ten to several tens of M⊙, in rough agreement with the observations of some ultra-luminous X-ray sources.

  13. Association between family structure in childhood and lifetime depressive disorder in adulthood among a nationally representative sample of Blacks.

    Science.gov (United States)

    Gavin, Amelia R; Chae, David H; Takeuchi, David

    2009-01-01

    This study investigated whether there were associations between family structure in childhood and lifetime prevalence of major depressive disorder in adulthood in a representative national sample of 4918 Blacks in the United States. We explored whether the associations between family structure and depressive disorder differed based on four types of family structure: (1) the presence of both biological parents; (2) one biological parent and a nonbiological parent; (3) one biological parent and (4) neither biological parent. The data used were from the National Survey of American Life. In the adjusted analysis, among all respondents, higher odds of major depressive disorder in adulthood were associated with growing up with one biological parent and a nonbiological parent compared to those who grew up with both biological parents. In the analysis stratified by gender, only women who lived with one biological parent and a nonbiological parent during childhood had an increased risk of depressive disorder in adulthood. Growing up in a household with one biological parent and a nonbiological parent was positively associated with depressive disorder in adulthood among Black women. Future studies should continue to explore the pathways linking family structure in childhood to the long-term consequences of depressive disorder.

  14. Microanatomy of Passerine hard-cornified tissues: beak and claw structure of the Black-capped Chickadee (Poecile atricapillus)

    Science.gov (United States)

    Van Hemert, Caroline R.; Handel, Colleen M.; Blake, J.; Swor, Rhonda; O'Hara, Todd M.

    2012-01-01

    The microanatomy of healthy beaks and claws in passerine birds has not been well described in the literature, despite the importance of these structures in avian life. Histological processing of hard-cornified tissues is notoriously challenging and only a few reports on effective techniques have been published. An emerging epizootic of beak deformities among wild birds in Alaska and the Pacific Northwest region of North America recently highlighted the need for additional baseline information about avian hard-cornified structures. In this study, we examine the beak and claw of the Black-capped Chickadee (Poecile atricapillus), a common North American passerine that is affected by what has been described as “avian keratin disorder.” We use light and scanning electron microscopy and high-magnification radiography to document the healthy microanatomy of these tissues and identify features of functional importance. We also describe detailed methods for histological processing of avian hard-cornified structures and discuss the utility of special stains. Results from this study will assist in future research on the functional anatomy and pathology of hard-cornified structures and will provide a necessary reference for ongoing investigations of avian keratin disorder in Black-capped Chickadees and other wild passerine species.

  15. Landscape structure and plague occurrence in black-tailed prairie dogs on grasslands of the western USA

    Science.gov (United States)

    Collinge, S.K.; Johnson, W.C.; Ray, C.; Matchett, R.; Grensten, J.; Cully, J.F.; Gage, K.L.; Kosoy, M.Y.; Loye, J.E.; Martin, A.P.

    2005-01-01

    Landscape structure influences the abundance and distribution of many species, including pathogens that cause infectious diseases. Black-tailed prairie dogs in the western USA have declined precipitously over the past 100 years, most recently due to grassland conversion and their susceptibility to sylvatic plague. We assembled and analyzed two long-term data sets on plague occurrence in black-tailed prairie dogs to explore the hypotheses that plague occurrence is associated with colony characteristics and landscape context. Our two study areas (Boulder County, Colorado, and Phillips County, Montana) differed markedly in degree of urbanization and other landscape characteristics. In both study areas, we found associations between plague occurrence and landscape and colony characteristics such as the amount of roads, streams and lakes surrounding a prairie dog colony, the area covered by the colony and its neighbors, and the distance to the nearest plague-positive colony. Logistic regression models were similar between the two study areas, with the best models predicting positive effects of proximity to plague-positive colonies and negative effects of road, stream and lake cover on plague occurrence. Taken together, these results suggest that roads, streams and lakes may serve as barriers to plague in black-tailed prairie dog colonies by affecting movement of or habitat quality for plague hosts or for fleas that serve as vectors for the pathogen. The similarity in plague correlates between urban and rural study areas suggests that the correlates of plague are not altered by uniquely urban stressors. ?? Springer 2005.

  16. The mythic structure in the black dome of the Haftpeikar: Study of Hero's journey in the first dome

    Directory of Open Access Journals (Sweden)

    Seyed Kazem Mousavi

    2016-12-01

    Full Text Available Abstract In this paper the Vogler Hero's journey is used for analyzing the mythic structures and hero's journey of the first dome of the Haftpeikar. Vogler Released his founds in the Writer's Journey book. This book that is really dependent on Campbell's Single Myth Theory is a practical guidance for script writing and review of that. The levels of the hero's journey in his book are include: The normal world, invitation to the story, reject the invitation, visit the mentor, passing the first gate, the exams, the allies, the enemies, qualifying to the deepest cave, trial, the reward, the road back, resurrection, return with the elixir.  In this paper, at first the properties of each level of the hero's journey theory are matching with the journey's levels in the black dome story. After that seven useful archetypes including hero, mentor, threshold guardian, herald, shape shifter, the shadow and trickster, are determined in the text.  Black dome has several journeys' cycles. Journey's that are seen in this dome are: (Bahram's journey: A part of the internal journey of Bahram in black dome. (The king's maid journey: Internal journey of the king's maid that wears black clothes after hearing the story. (King of black clothes' journey: The king's journey to the Madhooshan city for exploring the mystery of the black alien. (The reader's journey: This internal journey belongs to the readers of the first dome that learn their lessons through traveling to the character's world. (Nezami's journey: The Nezami's internal journey with composing the text. Checking the reader's journey and black dome's composer is out of this text. While the first and second journey just saying some parts, the black king has completer levels and for affecting on the other journeys is the most important story of the first dome. Therefore at first we check the black king story and we explain the other journeys.  The goal of this paper in addition to the usage of the vogler

  17. Surface tension-induced PDMS micro-pillars with controllable tips and tilt angles

    KAUST Repository

    Li, Huawei

    2013-12-21

    This paper reports a novel method to fabricate three-dimensional (3D) polydimethylsiloxane (PDMS) micro-pillars using a CO2 laser-machined poly(methyl methacrylate) (PMMA) mold with through-holes. This method eliminates the requirements of expensive and complicated facilities to fabricate a 3D mold. The micro-pillars were formed by the capillary force that draws PDMS into the through-holes of the PMMA mold. The tilt angles of the micro-pillars depend on the tilt angles of the through-holes in the mold, and the concave and convex micro-lens tip shapes of the PDMS micro-pillars can be modified by changing the surface wettability of the PMMA through-holes.

  18. Fouling release nanostructured coatings based on PDMS-polyurea segmented copolymers

    KAUST Repository

    Fang, Jason

    2010-05-01

    The bulk and surface characteristics of a series of coatings based on PDMS-polyurea segmented copolymers were correlated to their fouling release performance. Incorporation of polyurea segments to PDMS backbone gives rise to phase separation with the extensively hydrogen bonded hard domains creating an interconnected network that imparts mechanical rigidity. Increasing the compositional complexity of the system by including fluorinated or POSS-functionalized chain extenders or through nanoclay intercalation, confers further thermomechanical improvements. In analogy to the bulk morphology, the surface topography also reflects the compositional complexity of the materials, displaying a wide range of motifs. Investigations on settlement and subsequent removal of Ulva sporelings on those nanostructured surfaces indicate that the work required to remove the microorganisms is significantly lower compared to coatings based on standard PDMS homopolymer. All in all, the series of materials considered in this study demonstrate advanced fouling release properties, while exhibiting superior mechanical properties and, thus, long term durability. © 2010 Elsevier Ltd.

  19. Novel biocompatible transversal pneumatic artificial muscles made of PDMS/PET satin composite

    Directory of Open Access Journals (Sweden)

    Szmechtyk Tomasz

    2016-06-01

    Full Text Available In this study novel transversal pneumatic artificial muscles (TPAM, made from composite – poly(dimethylsiloxane (PDMS matrix membrane and poly(ethylene terephthalate (PET satin reinforcement, are presented. Miniature TPAM consists of a flexible internal braid (IB reinforcing the membrane and the external braid (EB. EB, with fibers arranged transversely to the IB, is placed laterally. Differently prepared TPAMs were tested for their effectiveness as actuators for robot drive and the PDMS/PET composite suitability was evaluated for applications in human gastrointestinal tract (chemical resistance, thermal characteristic. FT-IR spectra of the composite were compared for study PDMS impregnation process of PET satin and effect of immersion in selected solution. The composite shows outstanding biocompatibility and the muscles have competitive static load characteristics in comparison with other pneumatic artificial muscles (PAM. These results lead to believe, that in the near future painless examination of the gastrointestinal tract using a secure robot will be possible.

  20. Polydimethylsiloxane (PDMS-Based Flexible Resistive Strain Sensors for Wearable Applications

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2018-02-01

    Full Text Available There is growing attention and rapid development on flexible electronic devices with electronic materials and sensing technology innovations. In particular, strain sensors with high elasticity and stretchability are needed for several potential applications including human entertainment technology, human–machine interface, personal healthcare, and sports performance monitoring, etc. This article presents recent advancements in the development of polydimethylsiloxane (PDMS-based flexible resistive strain sensors for wearable applications. First of all, the article shows that PDMS-based stretchable resistive strain sensors are successfully fabricated by different methods, such as the filtration method, printing technology, micromolding method, coating techniques, and liquid phase mixing. Next, strain sensing performances including stretchability, gauge factor, linearity, and durability are comprehensively demonstrated and compared. Finally, potential applications of PDMS-based flexible resistive strain sensors are also discussed. This review indicates that the era of wearable intelligent electronic systems has arrived.

  1. Influence of crosslinking process on the mechanical behavior of Poly(Dimethylsiloxane) (PDMS)

    International Nuclear Information System (INIS)

    Fernandes, Barbara Monteiro Pessoa; Weber, Ricardo Ponde; Elzubair, Amal; Suarez, Joao Carlos Miguez

    2010-01-01

    In the present work was studied the influence of the crosslinking process on the mechanical behavior of a composite with a poly(dimethylsiloxane) (PDMS) matrix filled with inorganic particles, used as dental impression material. The material was crosslinked chemically and by exposition to 400kGy gamma radiation dose. The material properties, before and after crosslinking, were analyzed through physical chemical and mechanical tests and microscopic exam. The results showed that the gamma irradiation, as compared to chemical cure process, produced higher degree of crosslinking, better wettability, adjusted hardness and low fragility. However, the microscopic exam showed that the gamma irradiated PDMS presents, as compared with the chemical cure, a greater number of defaults which resulted from the large concentration of released gases. The results allowed us to conclude that gamma irradiation is an adequate process to crosslink the studied PDMS composite, since we can reduce the quantity of gases formed in this process. (author)

  2. Comparison of structural health assessment capabilities in epoxy – carbon black and epoxy – carbon nanotube nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Inam

    2014-01-01

    Full Text Available A novel method for comparing structural health of different types of brittle epoxy nanocomposites filled with carbon nanostructured fillers is presented. Epoxy – 0.2 vol% carbon black (CB and epoxy – 0.2 vol% carbon nanotube (CNT nanocomposite bars were prepared by calendering and thermal curing. Nanocomposite bars were subjected to Vickers diamond indentation to produce sub-surface damage. Electrical conductivities were analysed by 4-point method to estimate the structural damage caused by indentation. For comprehensive comparison, fracture toughness and percolation threshold were analysed as well. Because of the systematically induced indentation damage, a sharp decrease of 89% was observed in the electrical conductivity of epoxy – CNT nanocomposite as compared to 25% in the electrical conductivity of epoxy – CB nanocomposite. CNTs impart superior damage sensing capability in brittle nanocomposite structures, in comparison to CB, due to their high aspect ratio (fibrous nature and high electrical conductivity.

  3. Optimization of the Surface Structure on Black Silicon for Surface Passivation

    Science.gov (United States)

    Jia, Xiaojie; Zhou, Chunlan; Wang, Wenjing

    2017-03-01

    Black silicon shows excellent anti-reflection and thus is extremely useful for photovoltaic applications. However, its high surface recombination velocity limits the efficiency of solar cells. In this paper, the effective minority carrier lifetime of black silicon is improved by optimizing metal-catalyzed chemical etching (MCCE) method, using an Al2O3 thin film deposited by atomic layer deposition (ALD) as a passivation layer. Using the spray method to eliminate the impact on the rear side, single-side black silicon was obtained on n-type solar grade silicon wafers. Post-etch treatment with NH4OH/H2O2/H2O mixed solution not only smoothes the surface but also increases the effective minority lifetime from 161 μs of as-prepared wafer to 333 μs after cleaning. Moreover, adding illumination during the etching process results in an improvement in both the numerical value and the uniformity of the effective minority carrier lifetime.

  4. Optimization of the Surface Structure on Black Silicon for Surface Passivation.

    Science.gov (United States)

    Jia, Xiaojie; Zhou, Chunlan; Wang, Wenjing

    2017-12-01

    Black silicon shows excellent anti-reflection and thus is extremely useful for photovoltaic applications. However, its high surface recombination velocity limits the efficiency of solar cells. In this paper, the effective minority carrier lifetime of black silicon is improved by optimizing metal-catalyzed chemical etching (MCCE) method, using an Al 2 O 3 thin film deposited by atomic layer deposition (ALD) as a passivation layer. Using the spray method to eliminate the impact on the rear side, single-side black silicon was obtained on n-type solar grade silicon wafers. Post-etch treatment with NH 4 OH/H 2 O 2 /H 2 O mixed solution not only smoothes the surface but also increases the effective minority lifetime from 161 μs of as-prepared wafer to 333 μs after cleaning. Moreover, adding illumination during the etching process results in an improvement in both the numerical value and the uniformity of the effective minority carrier lifetime.

  5. Labor Market Structure, Intragenerational Mobility, and Discrimination: Black Male Advancement out of Low-Paying Occupations, 1962-1973

    Science.gov (United States)

    Power, Marshall I.

    1986-01-01

    Comparison of intragenerational mobility of black and white men shows the following: (1) black upward mobility is less frequent and more restricted; (2) blacks within the public sector have substantial rates of upward mobility to nonmanagerial positions; and (3) discrimination against blacks in the labor market has not disappeared. (Author/PS)

  6. Online single particle measurements of black carbon coatings, structure and optical properties

    Science.gov (United States)

    Allan, James; Liu, Dantong; Taylor, Jonathan; Flynn, Michael; Williams, Paul; Morgan, William; Whitehead, James; Alfarra, Rami; McFiggans, Gordon; Coe, Hugh

    2016-04-01

    The impacts of black carbon on meteorology and climate remain a major source of uncertainty, owing in part to the complex relationship between the bulk composition of the particulates and their optical properties. A particular complication stems from how light interacts with particles in response to the microphysical configuration and any 'coatings', i.e. non-black carbon material that is either co-emitted or subsequently obtained through atmospheric processing. This may cause the particle to more efficiently absorb or scatter light and may even change the sign of its radiative forcing potential. While much insight has been gained through measurements of bulk aerosol properties, either while suspended or after collection on a filter or impactor substrate, this does not provide a complete picture and thus may not adequately constrain the system. Here we present an overview of recent work to better constrain the properties of black carbon using online, in situ measurements of single particles, primarily using a Single Particle Soot Photometer (SP2). We have developed novel methods of inverting the data produced and combining the different metrics derived so as to give the most effective insights into black carbon sources, processes and properties. We have also used this measurement in conjunction with other instruments (sometimes in series) and used the data to challenge many commonly used models of optical properties such as core-shell Mie, Rayleigh-Debeye-Gans and effective medium. This work has been carried out in a variety of atmospheric environments and with laboratory-produced soots, e.g. from a diesel engine rig. Highlights include the finding that with real-world atmospheric aerosols, bulk optical measurements may be insufficient to derive brown carbon parameters without detailed morphological data. We also show that the enhancement of absorption for both ambient and laboratory generated particles only occurs after the coating mass fraction reaches a certain

  7. Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Dimitrov, Ivaylo; Daugaard, Anders Egede

    2013-01-01

    -methyl-umbelliferone containing cross-linker. TGA showed that a ferrocene functionality increased the thermal degradation temperature of PDMS. It was furthermore shown that the incorporation of only 0.25 wt% of the push-pull dipole, ethynyl-4-nitrobenzene, increased the dielectric permittivity of PDMS...

  8. Geodesic structure of Lifshitz black holes in 2+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Universidad de Santiago de Chile, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Olivares, Marco [Pontificia Universidad de Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Villanueva, J.R. [Universidad de Valparaiso, Departamento de Fisica y Astronomia, Facultad de Ciencias, Valparaiso (Chile); Centro de Astrofisica de Valparaiso, Valparaiso (Chile)

    2013-07-15

    We present a study of the geodesic equations of a black hole space-time which is a solution of the three-dimensional NMG theory and is asymptotically Lifshitz with z=3 and d=1 as found in Ayon-Beato et al. (Phys. Rev. D 80:104029, 2009). By means of the corresponding effective potentials for massive particles and photons we find the allowed motions by the energy levels. Exact solutions for radial and non-radial geodesics are given in terms of the Weierstrass elliptic p, {sigma}, and {zeta} functions. (orig.)

  9. Does introduction of a Patient Data Management System (PDMS) improve the financial situation of an intensive care unit?

    Science.gov (United States)

    Castellanos, Ixchel; Schüttler, Jürgen; Prokosch, Hans-Ulrich; Bürkle, Thomas

    2013-09-16

    Patient Data Management Systems (PDMS) support clinical documentation at the bedside and have demonstrated effects on completeness of patient charting and the time spent on documentation. These systems are costly and raise the question if such a major investment pays off. We tried to answer the following questions: How do costs and revenues of an intensive care unit develop before and after introduction of a PDMS? Can higher revenues be obtained with improved PDMS documentation? Can we present cost savings attributable to the PDMS? Retrospective analysis of cost and reimbursement data of a 25 bed Intensive Care Unit at a German University Hospital, three years before (2004-2006) and three years after (2007-2009) PDMS implementation. Costs and revenues increased continuously over the years. The profit of the investigated ICU was fluctuating over the years and seemingly depending on other factors as well. We found a small increase in profit in the year after the introduction of the PDMS, but not in the following years. Profit per case peaked at 1039 € in 2007, but dropped subsequently to 639 € per case. We found no clear evidence for cost savings after the PDMS introduction. Our cautious calculation did not consider additional labour costs for IT staff needed for system maintenance. The introduction of a PDMS has probably minimal or no effect on reimbursement. In our case the observed increase in profit was too small to amortize the total investment for PDMS implementation.This may add some counterweight to the literature, where expectations for tools such as the PDMS can be quite unreasonable.

  10. Structural, mechanical and electrical characterization of epoxy-amine/carbon black nanonocomposites

    Directory of Open Access Journals (Sweden)

    2008-05-01

    Full Text Available This work presents an insight into the effect of preparation procedure and the filler content on both electrical and mechanical properties of a nanocomposite system. For the preparation of the nanocomposites diglycidyl ether of bisphenol A (DGEBA was used with triethylenetetramine (TETA as a curing agent. As fillers carbon black (CB nanoparticles with size from 25 to 75 nm were used. The characterization was done using Dynamic Mechanical Analysis (DMA, Dielectric Relaxation Spectroscopy (DRS, Differential Scanning Calorimetry (DSC, Wide Angle X-ray Diffraction (WAXD and electrical conductivity measurements. The dependence of the dynamic mechanical and dielectric parameters (E′, E″, tanδ, ε', ε″, σ and Tg is associated with the filler content and is controlled by the employed curing conditions. An increase in electrical conductivity, which is observed at about 1% w/w of carbon black, indicates the creation of conducting paths and is associated with the Maxwell Wagner Sillars (MWS relaxation, probably due to the formation of aggregated microstructures in the bulk composite..

  11. Stretchable conducting gold films prepared with composite MWNT/PDMS substrates

    Directory of Open Access Journals (Sweden)

    M. U. Manzoor

    2015-10-01

    Full Text Available Novel stretchable conducting films were prepared by depositing gold layers onto polymer nano-composites substrates formed by in-situ crosslinking of polydimethylsiloxane (PDMS in the presence of multiwall carbon nanotubes (MWNT. The MWNT content interferes with the PDMS cure reaction giving variations in thermal degradation, solvent swelling, mechanical and electrical properties. Tensile cycling experiments were carried out on the gold-coated PDMS and nano-composite substrates SEM analysis and electrical measurements demonstrated that the crack widening and increased electrical resistance observed during strain cycling were reversible. The inclusion of 8 % MWNT into PDMS brought more micro-cracking in the gold layer yet reduced the electrical resistance of the gold-coated samples by 172X at 5 % strain, 38X at 10 % strain and 19X at 20 %. Hence, this improvement in conduction is attributed to assisted-conduction through the MWNT loaded substrate. This mechanism results in a more stable and reproducible electrical behaviour, making electrical conduction less critically dependent on defects in the gold layer.

  12. LEO resistant PI-B-PDMS block copolymer films for solar array applications

    NARCIS (Netherlands)

    Lonkhuyzen, H. van; Bongers, E.; Fischer, H.R.; Dingemans, T.J.; Semprimoschnig, C.

    2013-01-01

    Due to their low atomic oxygen erosion yields PI-b-PDMS block copolymer films have considerable potential for application onto space exposed surfaces of satellites in low earth orbit. On solar arrays these materials might be used as electrical electrical insulation film, flexprint outer layer,

  13. Scale Effect on the Interface Reaction between PDMS-E Emulsion Droplets and Gelatin.

    Science.gov (United States)

    Zhu, Cong; Xu, Jing; Hou, Zhaosheng; Liu, Suqing; Li, Tianduo

    2017-09-26

    In this study, the scale effect on the interface reaction between PDMS-E emulsion droplets and gelatin was studied systematically. The monodisperse α-[3-(2,3-epoxy-propoxy)propyl]-ω-butyl-polydimethylsiloxane (PDMS-E) emulsion droplets on different scales were prepared using a Shirasu porous glass (SPG) membrane with a 0.5 μm pore size. The zeta potential results showed that the surface charge density of PDMS-E droplets decreased with the droplet scale, and the variation went through three stages, which corresponded to the diameter ranges of 100-450, 450-680, and 670-800 nm, respectively. The results of Raman spectra indicated that the distribution concentration of head groups in surfactants decreased but the polar epoxy groups tend to be exposed on the interface with the increase in the droplet scale. This was conducive to the nucleophilic attack of amino groups in gelatin on the epoxy group. Thus, the conversion of amino groups was related to the scale of the PDMS-E droplet. This study might provide a proper way to control the rate of interfacial reaction between immiscible macromolecule monomers.

  14. Bulk and surface morphologies of ABC miktoarm star terpolymers comprised of PDMS, PI and PMMA arms

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Kirkensgaard, Jacob Judas Kain; Mahalik, Jyoti P.

    2018-01-01

    . The thin film morphologies, which differ from those found in the bulk, were identified by scanning electron microscopy, coupled with oxygen plasma etching. Square arrays of the PDMS nanodots and empty core cylinders were formed on silica after oxygen plasma removal of the poly(1,4-isoprene) and poly...

  15. Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay

    DEFF Research Database (Denmark)

    Skafte-Pedersen, Peder; Sabourin, David; Dufva, Martin

    2009-01-01

    flow. Both use a monolithic PDMS pumping inlay featuring three-dimensional geometries favourable to pumping applications and 12 wholly integrated circular channels. Flow rates in the sub-µL min-1 to µL min-1 range were obtained. Channel-to-channel flow rate variability was comparable to a commercial...

  16. A soft and conductive PDMS-PEG block copolymer as a compliant electrode for dielectric elastomers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    -methyl pyrrolidinone) with 1 wt% of surfactant (Triton X-100). The dispersion of MWCNTs in PDMS-PEG systemis shown in figure 2 where MWCNTs (dark areas) are well-distributed in the system indicating an acceptable dispersional though some big clusters appear in the optical microscope image. The conductivity of 4 phr...

  17. Green silicone elastomer obtained from a counterintuitively stable mixture of glycerol and PDMS

    DEFF Research Database (Denmark)

    Mazurek, P.; Hvilsted, S.; Skov, A. L.

    2016-01-01

    and scanning electron microscopy. The materials were proven additionally to exhibit a strong affinity to water, which was investigated by simple water absorption tests. Incorporating glycerol into PDMS decreased the Young's modulus of the composites yet the ultimate strain of the elastomer was not compromised...

  18. P.D.M.S. a cad software for the design of new power plants

    International Nuclear Information System (INIS)

    Le Lous, Y.

    1982-01-01

    P.D.M.S. (''Plant Design Management System'') is a computer based management system designed to assist the engineer, with no previous computer knowledge, to solve the problems associated with plant and piping design. The essential feature of P.D.M.S. is that it provides the user with the ability to create a 3D model of his complete plant, by making use of a graphic terminal connected to a computer. The system gives the engineer the powerful advantage over existing techniques that any part of the plant information, which may be required for a specific function, may be retrieved and presented to him in the form most suited to his requirements (i.e. lists of items or fully annotated drawings). P.D.M.S. incorporates advanced facilities to enable engineers to analyse the information for design accuracy and consistency. The project manager can ensure that no errors in the total design due to integration of disciplines within the project, or due to the amalgamation of the work of many designers, who possibly operate in different design centres. P.D.M.S., implemented on an IBM machine of the computer center of Clamart, is being used by the equipment Direction of EDF for the design of new power plants [fr

  19. Graphene—vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes

    Science.gov (United States)

    Ding, Junjun; Fu, Shichen; Zhang, Runzhi; Boon, Eric; Lee, Woo; Fisher, Frank T.; Yang, Eui-Hyeok

    2017-11-01

    Stretchable electrodes are a critical component for flexible electronics such as displays, energy devices, and wearable sensors. Carbon nanotubes (CNTs) and graphene have been considered for flexible electrode applications, due to their mechanical strength, high carrier mobility, and excellent thermal conductivity. Vertically aligned carbon nanotubes (VACNTs) provide the possibility to serve as interconnects to graphene sheets as stretchable electrodes that could maintain high electrical conductivity under large tensile strain. In this work, a graphene oxide (GO)-VACNT hybrid on a PDMS substrate was demonstrated. Here, 50 μm long VACNTs were grown on a Si/SiO2 wafer substrate via atmospheric pressure chemical vapor deposition. VACNTs were directly transferred by delamination from the Si/SiO2 to a semi-cured PDMS substrate, ensuring strong adhesion between VACNTs and PDMS upon full curing of the PDMS. GO ink was then printed on the surface of the VACNT carpet and thermally reduced to reduced graphene oxide (rGO). The sheet resistance of the rGO-VACNT hybrid was measured under uniaxial tensile strains up to 300% applied to the substrate. Under applied strain, the rGO-VACNT hybrid maintained a sheet resistant of 386 ± 55 Ω/sq. Cyclic stretching of the rGO-VACNT hybrid was performed with up to 50 cycles at 100% maximum tensile strain, showing no increase in sheet resistance. These results demonstrate promising performance of the rGO-VACNT hybrid for flexible electronics applications.

  20. Interaction between two solid surfaces across PDMS : influence of chain length and end group

    NARCIS (Netherlands)

    Sun, G.X.; Stark, R.; Kappl, M.; Leermakers, F.A.M.; Butt, H.J.

    2005-01-01

    Forces between solid surfaces across polymer melts are poorly understood despite their importance for adhesion and composite materials. Using an atomic force microscope (AFM) this force was measured for poly(dimethyl siloxane) (PDMS) on silicon oxide. The influence of molecular weight (4.0-40 kDa)

  1. Rapid, Brushless Self-assembly of a PS-b-PDMS Block Copolymer for Nanolithography

    DEFF Research Database (Denmark)

    Rasappa, Sozaraj; Schulte, Lars; Borah, Dipu

    2014-01-01

    by grafting of a brush layer that renders the surface energy neutral relative to the constituent blocks. We provide here a first study on rapid, low temperature self-assembly of PS-b-PDMS (polystyrene-block-polydimethylsiloxane) on silicon substrates without a brush layer. We show that it forms line...

  2. Stress-strain relationship of PDMS micropillar for force measurement application

    Science.gov (United States)

    Johari, Shazlina; Shyan, L. Y.

    2017-11-01

    There is an increasing interest to use polydimethylsiloxane (PDMS) based materials as bio-transducers for force measurements in the order of micro to nano Newton. The accuracy of these devices relies on appropriate material characterization of PDMS and modelling to convert the micropillar deformations into the corresponding forces. Previously, we have reported on fabricated PDMS micropillar that acts as a cylindrical cantilever and was experimentally used to measure the force of the nematode C. elegans. In this research, similar PDMS micropillars are designed and simulated using ANSYS software. The simulation involves investigating two main factors that is expected to affect the force measurement performance; pillar height and diameter. Results show that the deformation increases when pillar height is increased and the deformation is inversely proportional to the pillar diameter. The maximum deformation obtained is 713 um with pillar diameter of 20 um and pillar height of 100 um. Results of stress and strain show similar pattern, where their values decreases as pillar diameter and height is increased. The simulated results are also compared with the calculated displacement. The trend for both calculated and simulated values are similar with 13% average difference.

  3. Stress-strain relationship of PDMS micropillar for force measurement application

    Directory of Open Access Journals (Sweden)

    Johari Shazlina

    2017-01-01

    Full Text Available There is an increasing interest to use polydimethylsiloxane (PDMS based materials as bio-transducers for force measurements in the order of micro to nano Newton. The accuracy of these devices relies on appropriate material characterization of PDMS and modelling to convert the micropillar deformations into the corresponding forces. Previously, we have reported on fabricated PDMS micropillar that acts as a cylindrical cantilever and was experimentally used to measure the force of the nematode C. elegans. In this research, similar PDMS micropillars are designed and simulated using ANSYS software. The simulation involves investigating two main factors that is expected to affect the force measurement performance; pillar height and diameter. Results show that the deformation increases when pillar height is increased and the deformation is inversely proportional to the pillar diameter. The maximum deformation obtained is 713 um with pillar diameter of 20 um and pillar height of 100 um. Results of stress and strain show similar pattern, where their values decreases as pillar diameter and height is increased. The simulated results are also compared with the calculated displacement. The trend for both calculated and simulated values are similar with 13% average difference.

  4. Monolithic PDMS Laminates for Dielectric Elastomer Transducers through Open-Air PlasmATreatment

    DEFF Research Database (Denmark)

    Hassouneh, Suzan Sager; Oubæk, Jakob; Daugaard, Anders Egede

    2016-01-01

    -treatment, and it is performed at different speeds and distances away from the nozzle, to investigate how these two parameters influence the resulting interfacial layer of two fully cured PDMS films. The plasma-treatment is determined not to alter mechanical properties compared to the single film, while peel forces...

  5. Visualization of the distribution of surface-active block copolymers in PDMS-based coatings

    DEFF Research Database (Denmark)

    Noguer, A. Camós; Latipov, R.; Madsen, F. B.

    2018-01-01

    and added to a PDMS coating for visualization purposes. The surface-activity and biofouling resistance of the synthesized copolymer was confirmed by water contact angle measurements and seawater immersion experiments. Confocal laser scanning microscopy (CLSM) images showed that the triblock copolymer...

  6. Flexible Piezoelectric Touch Sensor by Alignment of Lead-Free Alkaline Niobate Microcubes in PDMS

    NARCIS (Netherlands)

    Deutz, D.B.; Mascarenhas, N.T.; Schelen, J.B.J.; Leeuw, D.M. de; Zwaag, S. van der; Groen, P.

    2017-01-01

    A highly sensitive, lead-free, and flexible piezoelectric touch sensor is reported based on composite films of alkaline niobate K0.485Na0.485Li0.03NbO3 (KNLN) powders aligned in a polydimethylsiloxane (PDMS) matrix. KNLN powder is fabricated by solid-state sintering and consists of microcubes. The

  7. Flexible Piezoelectric Touch Sensor by Alignment of Lead-Free Alkaline Niobate Microcubes in PDMS

    NARCIS (Netherlands)

    Deutz, D.B.; Mascarenhas, N.T.; Schelen, J.B.J.; de Leeuw, D.M.; van der Zwaag, S.; Groen, W.A.

    2017-01-01

    A highly sensitive, lead-free, and flexible piezoelectric touch sensor is reported based on composite films of alkaline niobate K0.485Na0.485Li0.03NbO3 (KNLN) powders aligned in a polydimethylsiloxane (PDMS) matrix. KNLN powder is fabricated by

  8. Seguimiento por espectroscopia infrarroja (FT-IR de la copolimerización de TEOS (tetraetilortosilicato y PDMS (polidimetilsiloxano en presencia de tbt (tetrabutiltitanio

    Directory of Open Access Journals (Sweden)

    Téllez, L.

    2004-10-01

    Full Text Available Hybrid materials have been prepared in this work through the reactions of Si and Ti alkoxides (TEOS and TBT, respectively and polydimethil siloxane (PDMS. These reactions have been studied by means of FT-IR spectroscopy during the whole reaction time. The hydrolysis of TEOS molecule has been followed by the 880 cm-1 band, and the self-condensation reactions through the 1180 and 1150 cm-1 bands. Polycondesation reaction between Si-OH groups and PDMS molecules has been followed by the 850 cm-1 band. On the other hand, the hydrolysis reaction of TBT and the self-condensation of Ti-OH groups have been followed by the 1130 and 770-510 cm-1 bands, respectively. Finally the condensation reaction between Si-OH and Ti-OH groups have been studied by the 936 cm-1 band. Results have shown that hydrolysis and condensation reactions are depending on TBT concentration. The formation of Si-O-Si cross-linked structures increases with the TBT concentrations in the reaction. The selfcondensation reaction of Si-OH grups or Ti-OH grous is very reapid forming Si-O-Si and Ti-O-Ti bonds, respectively. However, the Si-O-Ti bonds which are formed during the first moments of reaction are also rapidly broken due to H2O molecules or the reaction medium. The evolution of PDMS linear and cyclic molecules is also studied.

    Se han preparado materiales híbridos por medio de reacciones de hidrólisis y condensación de alcóxidos de Si y Ti (TEOS y TBT, respectivamente y de reacciones de copolimerización de éstos con polidimetilsiloxano (PDMS. Se han estudiado las citadas reacciones mediante espectroscopia FT-IR, desde el mismo comienzo hasta la obtención del material final. La hidrólisis del TEOS así como la autocondensación del os grupos Si-OH generados tanto para formar cadenas entrecruzadas como lineales se han seguido mediante las bandas situadas a 880, 1180 y 1150 cm-1, respectivamente. La policondensación de dichos grupos con PDMS se ha seguido por la banda a

  9. Enhanced protection of PDMS-embedded palladium catalysts by co-embedding of sulphide-scavengers.

    Science.gov (United States)

    Comandella, Daniele; Ahn, Min Hyung; Kim, Hojeong; Mackenzie, Katrin

    2017-12-01

    For Pd-containing hydrodechlorination catalysts, coating with poly(dimethyl siloxane) (PDMS) was proposed earlier as promising protection scheme against poisoning. The PDMS coating can effectively repel non-permeating poisons (such as SO 3 2- ) retaining the hydrodechlorination Pd activity. In the present study, the previously achieved protection efficiency was enhanced by incorporation of sulphide scavengers into the polymer. The embedded scavengers were able to bind permeating non-ionic poisons (such as H 2 S) during their passage through PDMS prior to Pd contact which ensured an extended catalyst lifetime. Three scavenger types forming non-permeable sulphur species from H 2 S - alkaline, oxidative or iron-based compounds - were either incorporated into single-layer coats around individual Pd/Al 2 O 3 particles or into a second layer above Pd-containing PDMS films (Pd-PDMS). Hydrodechlorination and hydrogenation were chosen as model reactions, carried out in batch and continuous-flow reactors. Batch tests with all scavenger-containing catalysts showed extended Pd protection compared to scavenger-free catalysts. Solid alkaline compounds (Ca(OH) 2 , NaOH, CaO) and MnO 2 showed the highest instantaneous scavenger efficiencies (retained Pd activity=30-60%), while iron-based catalysts, such as nano zero-valent iron (nZVI) or ferrocene (FeCp 2 ), proved less efficient (1-10%). When stepwise poisoning was applied, the protection efficiency of iron-based and oxidizing compounds was higher in the long term than that of alkaline solids. Long-term experiments in mixed-flow reactors were performed with selected scavengers, revealing the following trend of protection efficiency: CaO 2 >Ca(OH) 2 >FeCp 2 . Under field-simulating conditions using a fixed-bed reactor, the combination of sulphide pre-oxidation in the water phase by H 2 O 2 and local scavenger-enhanced Pd protection was successful. The oxidizing agent H 2 O 2 does not disturb the Pd-catalysed reduction, while the

  10. PCL-PDMS-PCL copolymer-based microspheres mediate cardiovascular differentiation from embryonic stem cells

    Science.gov (United States)

    Song, Liqing

    Poly-epsilon-caprolactone (PCL) based copolymers have received much attention as drug or growth factor delivery carriers and tissue engineering scaffolds due to their biocompatibility, biodegradability, and tunable biophysical properties. Copolymers of PCL and polydimethylsiloxane (PDMS) also have shape memory behaviors and can be made into thermoresponsive shape memory polymers for various biomedical applications such as smart sutures and vascular stents. However, the influence of biophysical properties of PCL-PDMS-PCL copolymers on stem cell lineage commitment is not well understood. In this study, PDMS was used as soft segments of varying length to tailor the biophysical properties of PCL-based co-polymers. While low elastic modulus (embryonic stem cells, the range of 60-100 MPa PCL-PDMS-PCL showed little influence on the differentiation. Then different size (30-140 mum) of microspheres were fabricated from PCL-PDMS-PCL copolymers and incorporated within embryoid bodies (EBs). Mesoderm differentiation was induced using bone morphogenetic protein (BMP)-4 for cardiovascular differentiation. Differential expressions of mesoderm progenitor marker KDR and vascular markers CD31 and VE-cadherin were observed for the cells differentiated from EBs incorporated with microspheres of different size, while little difference was observed for cardiac marker alpha-actinin expression. Small size of microspheres (30 mum) resulted in higher expression of KDR while medium size of microspheres (94 mum) resulted in higher CD31 and VE-cadherin expression. This study indicated that the biophysical properties of PCL-based copolymers impacted stem cell lineage commitment, which should be considered for drug delivery and tissue engineering applications.

  11. Finite element analysis on deformation of stretchable electronic interconnect substrate using polydimethylsiloxanes (PDMS)

    Science.gov (United States)

    Roslan, M. F.; Shaffiar, N. M.; Khairusshima, M. K. N.; Sharifah, I. S. S.

    2018-01-01

    Over the years, the technology of electronic industry has growth tremendously. Open ended research on how to make a better concept of electronic circuit is ongoing especially on the stretchable electronic devices. There are many designs to achieve stretchability in electronic circuits. The problem occurs when deformation applied to the stretchable electronic circuit, it cannot maintain its functionality. Fracture may happen on the conductor. In this research, the study on deformation of stretchable electronic interconnects substrate using Polydimethlysiloxanes is carried out. The purpose of this research are to study the axial deformation occur, to determine the optimum shape of the conductor designs (horseshoe, rectangular and u-shape design) for the stretchable electronic interconnect and to compare the mechanical properties of Polydimethlysiloxanes (PDMS) with Polyurethane (PU) using Finite Element Analysis (FEA). The simulation was done on the FE model of the stretchable circuit with dimension of 2.4 X 2.4 X 0.5 mm. The stretching of the FE model was simulated with the range of elongation at 10, 20 and 30 percent from its original length in order to find the strain value for all three of the conductor designs. The best conductor design is used to simulate with different types of substrate (PDMS and PU). From the simulation result, Horseshoe design record the lowest strain value for each elongation, followed by rectangular and U-shape design. Thus, Horseshoe is considered as the optimum design for the conductor compared to the other two designs. From the result also, it shows that PDMS substrate will offer more maximum allowable stretchability compared to PU substrates. Thus PDMS is considered as a better substrate compare to PU. PDMS is a good material to replace PU since it can perform under tension much better mechanically.

  12. Disposable Polydimethylsiloxane (PDMS-Coated Fused Silica Optical Fibers for Sampling Pheromones of Moths.

    Directory of Open Access Journals (Sweden)

    Rik Lievers

    Full Text Available In the past decades, the sex pheromone composition in female moths has been analyzed by different methods, ranging from volatile collections to gland extractions, which all have some disadvantage: volatile collections can generally only be conducted on (small groups of females to detect the minor pheromone compounds, whereas gland extractions are destructive. Direct-contact SPME overcomes some of these disadvantages, but is expensive, the SPME fiber coating can be damaged due to repeated usage, and samples need to be analyzed relatively quickly after sampling. In this study, we assessed the suitability of cheap and disposable fused silica optical fibers coated with 100 μm polydimethylsiloxane (PDMS by sampling the pheromone of two noctuid moths, Heliothis virescens and Heliothis subflexa. By rubbing the disposable PDMS fibers over the pheromone glands of females that had called for at least 15 minutes and subsequently extracting the PDMS fibers in hexane, we collected all known pheromone compounds, and we found a strong positive correlation for most pheromone compounds between the disposable PDMS fiber rubs and the corresponding gland extracts of the same females. When comparing this method to volatile collections and the corresponding gland extracts, we generally found comparable percentages between the three techniques, with some differences that likely stem from the chemical properties of the individual pheromone compounds. Hexane extraction of cheap, disposable, PDMS coated fused silica optical fibers allows for sampling large quantities of individual females in a short time, eliminates the need for immediate sample analysis, and enables to use the same sample for multiple chemical analyses.

  13. Phytosociological and ecological structure of Mediterranean enclaves along the stream valleys in inner parts of Black Sea region.

    Science.gov (United States)

    Karaer, Fergan; Kilinc, Mahmut; Korkmaz, Hasan; Kutbay, Hamdi Guray; Yalcin, Erkan; Bilgin, Ali

    2010-01-01

    In this study phytosociological structure of Mediterranean enclaves which occured along the stream valleys in inner parts of Black sea region was investigated. Pinus brutia var. brutia and Quercus coccifera are the most widespread communities in the study area. Pinus pinea, Arbutus andrachne, Arbutus unedo, Fontanesia philliraeoides subsp. philliraeoides and Olea europaea L. var sylvestris have a restricted distribution in inner parts of Black sea region as compared to P. brutia and Q. coccifera. The following associations were described in the study area. Siderito dichotomae -Quercetum cocciferae, Spiraeo crenatae-Oleetum sylvestns ass. nov, Cotino coggyreae- Arbutetum andrachnes, Buxo sempervirenti-Arbutetum unedonis ass. nov, Paliuro spinae-christi-Fontanesietum philliraeoidis, Querco infectoriae-Pinetum brutiae and Crucianello ponticae-Pinetum pinae. The highest species diversity was found in Crucienello ponticae- Pinetum pinae, while the lowest species diversity was found in Spiraeo crenatae-Oleetum sylvestris. Evenness values were much similar to each other among all of the associations. According to CA Paliurus spinae-christi-Fontanesietum philliraeoidis, Spiraeo crenatae- Oleetum sylvestris and Crucienello ponticae-Pinetum pinae occured in the negative zone. The other four associations occured in the positive zone.

  14. Structural controls on fractured coal reservoirs in the southern Appalachian Black Warrior foreland basin

    Energy Technology Data Exchange (ETDEWEB)

    Groshong, R.H.; Pashin, J.C.; McIntyre, M.R. [University of Alabama, Tuscaloosa, AL (United States). Dept. of Geological Science

    2009-09-15

    Coal is a nearly impermeable rock type for which the production of fluids requires the presence of open fractures. Basin-wide controls on the fractured coal reservoirs of the Black Warrior foreland basin are demonstrated by the variability of maximum production rates from coalbed methane wells. Reservoir behavior depends on distance from the thrust front. Far from the thrust front, normal faults are barriers to fluid migration and compartmentalize the reservoirs. Close to the thrust front, rates are enhanced along some normal faults, and a new trend is developed. The two trends have the geometry of conjugate strike-slip faults with the same sigma(1) direction as the Appalachian fold-thrust belt and are inferred to be the result of late pure-shear deformation of the foreland. Face cleat causes significant permeability anisotropy in some shallow coal seams but does not produce a map-scale production trend.

  15. Structural controls on fractured coal reservoirs in the southern Appalachian Black Warrior foreland basin

    Science.gov (United States)

    Groshong, Richard H., Jr.; Pashin, Jack C.; McIntyre, Marcella R.

    2009-09-01

    Coal is a nearly impermeable rock type for which the production of fluids requires the presence of open fractures. Basin-wide controls on the fractured coal reservoirs of the Black Warrior foreland basin are demonstrated by the variability of maximum production rates from coalbed methane wells. Reservoir behavior depends on distance from the thrust front. Far from the thrust front, normal faults are barriers to fluid migration and compartmentalize the reservoirs. Close to the thrust front, rates are enhanced along some normal faults, and a new trend is developed. The two trends have the geometry of conjugate strike-slip faults with the same σ1 direction as the Appalachian fold-thrust belt and are inferred to be the result of late pure-shear deformation of the foreland. Face cleat causes significant permeability anisotropy in some shallow coal seams but does not produce a map-scale production trend.

  16. Blacks' Diminished Health Return of Family Structure and Socioeconomic Status; 15 Years of Follow-up of a National Urban Sample of Youth.

    Science.gov (United States)

    Assari, Shervin; Thomas, Alvin; Caldwell, Cleopatra H; Mincy, Ronald B

    2018-02-01

    The protective effect of family structure and socioeconomic status (SES) on physical and mental health is well established. There are reports, however, documenting a smaller return of SES among Blacks compared to Whites, also known as Blacks' diminished return. Using a national sample, this study investigated race by gender differences in the effects of family structure and family SES on subsequent body mass index (BMI) over a 15-year period. This 15-year longitudinal study used data from the Fragile Families and Child Wellbeing Study (FFCWS), in-home survey. This study followed 1781 youth from birth to age 15. The sample was composed of White males (n = 241, 13.5%), White females (n = 224, 12.6%), Black males (n = 667, 37.5%), and Black females (n = 649, 36.4%). Family structure and family SES (maternal education and income to need ratio) at birth were the independent variables. BMI at age 15 was the outcome. Race and gender were the moderators. Linear regression models were run in the pooled sample, in addition to race by gender groups. In the pooled sample, married parents, more maternal education, and income to need ratio were all protective against high BMI of youth at 15 years of age. Race interacted with family structure, maternal education, and income to need ratio on BMI, indicating smaller effects for Blacks compared to Whites. Gender did not interact with SES indicators on BMI. Race by gender stratified regressions showed the most consistent associations between family SES and future BMI for White females followed by White males. Family structure, maternal education, and income to need ratio were not associated with lower BMI in Black males or females. The health gain received from family economic resources over time is smaller for male and female Black youth than for male and female White youth. Equalizing access to economic resources may not be enough to eliminate health disparities in obesity. Policies should address qualitative differences

  17. Novel method to prepare multiwalled carbon nanotube/poly(dimethyl siloxane) (MWCNT/PDMS) non-conducting composites

    DEFF Research Database (Denmark)

    Goswami, Kaustav; Daugaard, Anders Egede; Skov, Anne Ladegaard

    In this study a new method of carbon nanotube (CNT) incorporation was employed for the preparation of ultraviolet (UV) curable CNT filled poly (dimethyl siloxane) (PDMS) composites. The composites were designed to contain loadings of CNT above the percolation threshold without becoming conductive...... due to a localized distribution of CNT. Ultrasonicated and dispersed multiwalled CNTs were mixed with short chain ,- vinyl terminated PDMS. When the whole mixture containing dispersed CNT and short chain PDMS was irradiated with UV radiation in presence of deficient amount of hexa functional thiol...

  18. [Structure of tryptic fragments of a neurotoxin from black widow spider venom].

    Science.gov (United States)

    Volkova, T M; Galkina, T G; Kudelin, A B; Grishin, E V

    1991-04-01

    The N-terminal amino acid sequence of a neurotoxin from the venom of Latrodectus mactans tredecimguttatus (alpha-latrotoxin) was determined. Latrotoxin was subjected to the tryptic cleavage and total or partial amino acid sequences of 25 peptides were established. In total the tryptic fragments contained 252 amino acid residues. Essential structural information on cloning of the latrotoxin structural gene was obtained.

  19. Special structure of mitochondrial DNA control region and phylogenetic relationship among individuals of the black rockfish, Sebastes schlegelii.

    Science.gov (United States)

    Zhang, Hui; Zhang, Yan; Zhang, Xiumei; Song, Na; Gao, Tianxiang

    2013-04-01

    This study deals with the structure of mitochondrial DNA (mtDNA) control region (CR) of the black rockfish, Sebastes schlegelii. Two termination-associated sequences (TASs), two complementary termination-associated sequences (cTASs), and conserved sequence block (CSB), such as CSB-F, CSB-E, CSB-D, CSB1, CSB2, and CSB3, were detected in S. schlegelii. The results indicated that the structures of these blocks are similar to most marine fishes, but it is special that there are two TASs and two cTASs in the CR of S. schlegelii. One conserved region was found from 450 bp to the end of the CR, which is also a special feature of S. schlegelii. All sequences of CSB1, CSB2, and CSB3 blocks are the consensus among different individuals, which is quite different from most vertebrates. In addition, the complete mtDNA CR sequences and the first 449 bp of the CR are used to analyze the phylogenetic relationships of S. schlegelii. The phylogenetic trees show a lack of genetic structure among individuals. This study also indicated a signal that the genetic diversity might be similar between the wild and cultured individuals, which may be helpful to the fisheries management.

  20. Chemical Bonding and Structural Information of Black CarbonReference Materials and Individual Carbonaceous AtmosphericAerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

    2007-04-25

    The carbon-to-oxygen ratios and graphitic nature of a rangeof black carbon standard reference materials (BC SRMs), high molecularmass humic-like substances (HULIS) and atmospheric particles are examinedusing scanning transmission X-ray microscopy (STXM) coupled with nearedge X-ray absorption fine structure (NEXAFS) spectroscopy. UsingSTXM/NEXAFS, individual particles with diameter>100 nm are studied,thus the diversity of atmospheric particles collected during a variety offield missions is assessed. Applying a semi-quantitative peak fittingmethod to the NEXAFS spectra enables a comparison of BC SRMs and HULIS toparticles originating from anthropogenic combustion and biomass burns,thus allowing determination of the suitability of these materials forrepresenting atmospheric particles. Anthropogenic combustion and biomassburn particles can be distinguished from one another using both chemicalbonding and structural ordering information. While anthropogeniccombustion particles are characterized by a high proportion ofaromatic-C, the presence of benzoquinone and are highly structurallyordered, biomass burn particles exhibit lower structural ordering, asmaller proportion of aromatic-C and contain a much higher proportion ofoxygenated functional groups.

  1. STRUCTURE AND EVOLUTION OF CIRCUMBINARY DISKS AROUND SUPERMASSIVE BLACK HOLE BINARIES

    International Nuclear Information System (INIS)

    Rafikov, Roman R.

    2013-01-01

    We explore properties of circumbinary disks around supermassive black hole (SMBH) binaries in centers of galaxies by reformulating standard viscous disk evolution in terms of the viscous angular momentum flux F J . If the binary stops gas inflow and opens a cavity in the disk, then the inner disk evolves toward a constant-F J (rather than a constant M-dot ) state. We compute disk properties in different physical regimes relevant for SMBH binaries, focusing on the gas-assisted evolution of systems starting at separations 10 –4 – 10 –2 pc, and find the following. (1) Mass pileup at the inner disk edge caused by the tidal barrier accelerates binary inspiral. (2) Binaries can be forced to merge even by a disk with a mass below that of the secondary. (3) Torque on the binary is set non-locally, at radii far larger than the binary semi-major axis; its magnitude does not reflect disk properties in the vicinity of the binary. (4) Binary inspiral exhibits hysteresis—it depends on the past evolution of the disk. (5) The Eddington limit can be important for circumbinary disks even if they accrete at sub-Eddington rates, but only at late stages of the inspiral. (6) Gas overflow across the orbit of the secondary can be important for low secondary mass, high- M-dot systems, but mainly during the inspiral phase dominated by the gravitational wave emission. (7) Circumbinary disks emit more power and have harder spectra than constant M-dot disks; their spectra are very sensitive to the amount of overflow across the secondary orbit

  2. A structural homologue of colipase in black mamba venom revealed by NMR floating disulphide bridge analysis.

    Science.gov (United States)

    Boisbouvier, J; Albrand, J P; Blackledge, M; Jaquinod, M; Schweitz, H; Lazdunski, M; Marion, D

    1998-01-01

    The solution structure of mamba intestinal toxin 1 (MIT1), isolated from Dendroaspis polylepis polylepis venom, has been determined. This molecule is a cysteine-rich polypeptide exhibiting no recognised family membership. Resistance to MIT1 to classical specific endoproteases produced contradictory NMR and biochemical information concerning disulphide-bridge topology. We have used distance restraints allowing ambiguous partners between S atoms in combination with NMR-derived structural information, to correctly determine the disulphide-bridge topology. The resultant solution structure of MIT1, determined to a resolution of 0.5 A, reveals an unexpectedly similar global fold with respect to colipase, a protein involved in fatty acid digestion. Colipase exhibits an analogous resistance to endoprotease activity, indicating for the first time the possible topological origins of this biochemical property. The biochemical and structural homology permitted us to propose a mechanically related digestive function for MIT1 and provides novel information concerning snake venom protein evolution. Copyright 1998 Academic Press.

  3. Black holes

    International Nuclear Information System (INIS)

    Feast, M.W.

    1981-01-01

    This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied

  4. A small-angle neutron scattering study of the structure of graphitized carbon black aggregates in Triton X-100/water solutions

    DEFF Research Database (Denmark)

    Garamus, V.M.; Pedersen, J.S.

    1998-01-01

    The structure of graphitized carbon black (CB) aggregates dispersed in water solutions with a non-ionic surfactant are studied by small-angle neutron scattering using contrast variation by heavy/light water mixing. The addition of CB to Triton X-100/water mixtures shifts the critical micelle...

  5. Changes in forest structure after a large, mixed-severity wildfire in ponderosa pine forests of the Black Hills, South Dakota, USA

    Science.gov (United States)

    Tara L. Keyser; Leigh B. Lentile; Frederick W. Smith; Wayne D. Shepperd

    2008-01-01

    We evaluated changes in forest structure related to fire severity after a wildfire in ponderosa pine forests of the Black Hills, South Dakota, where 25% burned at low, 48% at moderate, and 27% at high severity. We compared tree mortality, fine (FWD) and coarse woody debris (CWD) and tree regeneration in areas burned under different severity. With low severity,...

  6. Polymer (PDMS-Fe3O4) magneto-dielectric substrate for a MIMO antenna array

    Science.gov (United States)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Kamarudin, Muhammad Ramlee

    2016-01-01

    This paper presents the design of a 2 × 4 multiple-input multiple-output (MIMO) antenna array fabricated on a nanocomposite magneto-dielectric polymer substrate. The 10-nm iron oxide (Fe3O4) nanoparticles and polydimethylsiloxane (PDMS) composite is used as substrate to enhance the performance of a MIMO antenna array. The measured results showed up to 40.8 % enhancement in terms of bandwidth, 9.95 dB gain, and 57 % of radiation efficiency. Furthermore, it is found that the proposed magneto-dielectric (PDMS-Fe3O4) composite substrate provides excellent MIMO parameters such as correlation coefficient, diversity gain, and mutual coupling. The prototype of the proposed antenna is transparent, flexible, lightweight, and resistant against dust and corrosion. Measured results indicate that the proposed antenna is suitable for WLAN and ultra-wideband biomedical applications within frequency range of 5.33-7.70 GHz.

  7. An Ultraviolet-Visible (UV Photometry System Based on the PDMS-based Microfluidic Chip

    Directory of Open Access Journals (Sweden)

    Xiang Changhua

    2017-01-01

    Full Text Available In order to avoid a problem remains with the low accuracy and poor portability of the photometry system, the system based on the photometry method and microfluidic chip technology was built. As the characteristics of cheap, solid and good transmission, Polydimethylsiloxane (PDMS was chosen as the material of the designed chip in the paper. To the designed UV photometry system, the light-emitting diode with wavelength of 580m is chosen as the light source. The experimental result indicates that there is no significant deviation between the designed UV photometry system and the conventional immuneturbidimetric assay, the correlation coefficient is 0.95 obtained by adopting the linear regression analysis. The linearity of the designed UV photometry system based on the PDMS-based microfluidic chip has increased by 17.3% in comparison with the system based on the silicon-based microfluidic chip.

  8. Hydrophilic Surface Modification of PDMS Microchannel for O/W and W/O/W Emulsions

    Directory of Open Access Journals (Sweden)

    Shazia Bashir

    2015-09-01

    Full Text Available A surface modification method for bonded polydimethylsiloxane (PDMS microchannels is presented herein. Polymerization of acrylic acid was performed on the surface of a microchannel using an inline atmospheric pressure dielectric barrier microplasma technique. The surface treatment changes the wettability of the microchannel from hydrophobic to hydrophilic. This is a challenging task due to the fast hydrophobic recovery of the PDMS surface after modification. This modification allows the formation of highly monodisperse oil-in-water (O/W droplets. The generation of water-in-oil-in-water (W/O/W double emulsions was successfully achieved by connecting in series a hydrophobic microchip with a modified hydrophilic microchip. An original channel blocking technique to pattern the surface wettability of a specific section of a microchip using a viscous liquid comprising a mixture of honey and glycerol, is also presented for generating W/O/W emulsions on a single chip.

  9. A Janus-paper PDMS platform for air-liquid interface cell culture applications

    Science.gov (United States)

    Rahimi, Rahim; Ochoa, Manuel; Donaldson, Amy; Parupudi, Tejasvi; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ghaemmaghami, Amir; Ziaie, Babak

    2015-05-01

    A commercially available Janus paper with one hydrophobic (polyethylene-coated) face and a hygroscopic/hydrophilic one is irreversibly bonded to a polydimethylsiloxane (PDMS) substrate incorporating microfluidic channels via corona discharge surface treatment. The bond strength between the polymer-coated side and PDMS is characterized as a function of corona treatment time and annealing temperature/time. A maximum strength of 392 kPa is obtained with a 2 min corona treatment followed by 60 min of annealing at 120 °C. The water contact angle of the corona-treated polymer side decreases with increased discharge duration from 98° to 22°. The hygroscopic/hydrophilic side is seeded with human lung fibroblast cells encapsulated in a methacrylated gelatin (GelMA) hydrogel to show the potential of this technology for nutrient and chemical delivery in an air-liquid interface cell culture.

  10. Poly(Dimethylsiloxane) (PDMS) Affects Gene Expression in PC12 Cells Differentiating into Neuronal-Like Cells

    DEFF Research Database (Denmark)

    Lopacinska, Joanna M.; Emnéus, Jenny; Dufva, Martin

    2013-01-01

    into neuronal-like cells was investigated using cell viability, cell cycle distribution, morphology, and gene expression analysis. Results/Conclusions: After differentiation, the morphology, viability and cell cycle distribution of PC12 cells grown on PS, PMMA with and without PDMS underneath was the same....... By contrast, 41 genes showed different expression for PC12 cells differentiating on PMMA as compared to on PS. In contrast, 677 genes showed different expression on PMMA with PDMS underneath as compared with PC12 cells on PS. The differentially expressed genes are involved in neuronal cell development...... and function. However, there were also many markers for neuronal cell development and functions that were expressed similarly in cells differentiating on PS, PMMA and PMMA with PDMS underneath. In conclusion, it was shown that PMMA has a minor impact and PDMS a major impact on gene expression in PC12 cells....

  11. Enhancement of dielectric permittivity by incorporating PDMS-PEG multiblock copolymers in silicone elastomers

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    2015-01-01

    A silicone elastomer from PDMS-PEG multiblock copolymer has been prepared by use of silylation reactions for both copolymer preparation and crosslinking. The dielectric and mechanical properties of the silicone elastomers were carefully investigated, as well as the morphology of the elastomers wa...... to a significantly increased dielectric permittivity. The conductivity also remained low due to the resulting discontinuity in PEG within the silicone matrix....

  12. Facile fabrication of functional PDMS surfaces with tunable wettablity and high adhesive force via femtosecond laser textured templating

    Directory of Open Access Journals (Sweden)

    Yanlei Hu

    2014-12-01

    Full Text Available Femtosecond laser processing is emerged as a promising tool to functionalize surfaces of various materials, including metals, semiconductors, and polymers. However, the productivity of this technique is limited by the low efficiency of laser raster scanning. Here we report a facile approach for efficiently producing large-area functional polymer surfaces, by which metal is firstly textured by a femtosecond laser, and the as-prepared hierarchical structures are subsequently transferred onto polydimethylsiloxane (PDMS surfaces. Aluminum pieces covered by laser induced micro/nano-structures act as template masters and their performance of displaying diverse colors are investigated. Polymer replicas are endowed with tunable wetting properties, which are mainly attributed to the multi-scale surface structures. Furthermore, the surfaces are found to have extremely high adhesive force for water drops because of the high water penetration depth and the resultant high contact angle hysteresis. This characteristic facilitates many potential applications like loss-free tiny water droplets transportation. The reusability of metal master and easiness of soft lithography make it to be a very simple, fast and cost-efficient way for mass production of functional polymeric surfaces.

  13. Influence of drought conditions on brown trout biomass and size structure in the Black Hills, South Dakota

    Science.gov (United States)

    James, Daniel A.; Wilhite, Jerry W.; Chipps, Steven R.

    2010-01-01

    We evaluated the influence of drought conditions on the biomass of brown trout Salmo trutta in Spearfish Creek, upper Rapid Creek, and lower Rapid Creek in the Black Hills of western South Dakota. Stream discharge, mean summer water temperature, the biomass of juvenile and adult brown trout, and brown trout size structure were compared between two time periods: early (2000–2002) and late drought (2005–2007). Mean summer water temperatures were similar between the early- and late-drought periods in Spearfish Creek (12.4°C versus 11.5°C), lower Rapid Creek (19.2°C versus 19.3°C), and upper Rapid Creek (9.8°C in both periods). In contrast, mean annual discharge differed significantly between the two time periods in Spearfish Creek (1.95 versus 1.50 m3/s), lower Rapid Creek (2.01 versus 0.94 m3/s), and upper Rapid Creek (1.41 versus 0.84 m3/s). The mean biomass of adult brown trout in all three stream sections was significantly higher in the early-drought than in the late-drought period (238 versus 69 kg/ha in Spearfish Creek, 272 versus 91 kg/ha in lower Rapid Creek, and 159 versus 32 kg/ha in upper Rapid Creek). The biomass of juvenile brown trout was similar (43 versus 23 kg/ha) in Spearfish Creek in the two periods, declined from 136 to 45 kg/ha in lower Rapid Creek, and increased from 14 to 73 kg/ha in upper Rapid Creek. Size structure did not differ between the early- and late-drought periods in lower Rapid and Spearfish creeks, but it did in upper Rapid Creek. In addition to drought conditions, factors such as angler harvest, fish movements, and the nuisance algal species Didymosphenia geminata are discussed as possible contributors to the observed changes in brown trout biomass and size structure in Black Hills streams.

  14. Formation of biodegradable microcapsules utilizing 3D, selectively surface-modified PDMS microfluidic devices.

    Science.gov (United States)

    Liao, Chung-Yu; Su, Yu-Chuan

    2010-02-01

    We have successfully demonstrated the formation of biodegradable microcapsules utilizing PDMS double-emulsification devices. Specially designed 3D PDMS microchannels with surfaces selectively modified by a self-aligned photografting process are employed to generate monodisperse water-in-organic-solvent-in-water (W/O/W) emulsions in a controlled manner. Mainly by varying the outer and inner fluid flow-rates, the dimensions of resulting double emulsions can be adjusted as desired. Meanwhile, biodegradable materials are dissolved in the middle organic solvent (in this work ethyl acetate is used), and solidified into microcapsules once the solvent is extracted. In the prototype demonstration, microcapsules made up of poly(L-lactic acid), trilaurin, and phosphocholine were successfully fabricated. In addition, it was also demonstrated that gamma-Fe(2)O(3) nanoparticles can be simultaneously embedded into the microcapsules, which consequently become responsive to electromagnetic stimulation. As such, the presented PDMS microfluidic devices could potentially serve as versatile encapsulation apparatus, and the fabricated biodegradable microcapsules could function as controlled delivery systems, which are desired for a variety of biological and pharmaceutical applications.

  15. Functionalized PDMS with versatile and scalable surface roughness gradients for cell culture

    KAUST Repository

    Zhou, Bingpu

    2015-07-21

    This manuscript describes a simple and versatile approach to engineering surface roughness gradients via combination of microfluidics and photo-polymerization. Through UV-mediated polymerization, N-isopropylacrylamide with concentration gradients are successfully grafted onto PDMS surface, leading to diverse roughness degrees on the obtained PDMS substrate. Furthermore, the extent of surface roughness can be controllably regulated via tuning the flow rate ratio between the monomer solution and deionized water. Average roughness ranging from 8.050 nm to 151.68 nm has well been achieved in this work. Such PDMS samples are also demonstrated to be capable of working as supporting substrates for controlling cell adhesion or detachment. Due to the different degrees of surface roughness on a single substrate, our method provides an effective approach for designing advanced surafecs for cell culture. Finally, the thermosensitive property of N-isopropylacrylamide makes our sample furnish as another means for controlling the cell detachment from the substrates with correspondence to the surrounding temperature.

  16. THE EMULSIFICATION OF HUMAN SERUM ALBUMIN AND HYALURONIC ACID SOLUTIONS IN POLYDIMETHYLSILOXANE PDMS-1000

    Directory of Open Access Journals (Sweden)

    А. M. Ruban

    2014-04-01

    Full Text Available To create a biologically inert material suitable for use in a wide range of temperatures and in corrosive environments, the methods of optical microscopy and NMR-cryometry were used for investigation of emulsification of solutions of human serum albumin and hyaluronic acid in polymethylsiloxane PDMS-1000. Unlike hyaluronic acid, human serum albumin forms persistent emulsions in the silicon matrix, whose size of the droplets varies from 100 to 10 000 nm. The presence of dispersed phase (human serum albumin or hyaluronic acid increases significantly melting temperature of polydimethylsiloxane. It is probably due to ordering influence of micro- and nanodrops of biopolymers on PDMS crystals localized between them. In case of dispersion of hyaluronic acid solution in liquid silicone only microdroplets of the aqueous phase are observed and nanosized droplets either didn’t form or were in amount not sufficient to be detected by NMR cryometry. The possibility of a significant influence of human serum albumin emulsified solution on PDMS-1000 defrosting temperature is revealed, that is impacted on its optical parameters. This effect is recorded both in the low temperature region and at temperature close to human body, which might influence on silicone state when it is used as implant.

  17. A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Andrea Rinaldi

    2016-12-01

    Full Text Available The demand for high performance multifunctional wearable devices is more and more pushing towards the development of novel low-cost, soft and flexible sensors with high sensitivity. In the present work, we describe the fabrication process and the properties of new polydimethylsiloxane (PDMS foams loaded with multilayer graphene nanoplatelets (MLGs for application as high sensitive piezoresistive pressure sensors. The effective DC conductivity of the produced foams is measured as a function of MLG loading. The piezoresistive response of the MLG-PDMS foam-based sensor at different strain rates is assessed through quasi-static pressure tests. The results of the experimental investigations demonstrated that sensor loaded with 0.96 wt.% of MLGs is characterized by a highly repeatable pressure-dependent conductance after a few stabilization cycles and it is suitable for detecting compressive stresses as low as 10 kPa, with a sensitivity of 0.23 kPa−1, corresponding to an applied pressure of 70 kPa. Moreover, it is estimated that the sensor is able to detect pressure variations of ~1 Pa. Therefore, the new graphene-PDMS composite foam is a lightweight cost-effective material, suitable for sensing applications in the subtle or low and medium pressure ranges.

  18. A PDMS Device Coupled with Culture Dish for In Vitro Cell Migration Assay.

    Science.gov (United States)

    Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Pei, WeiHua; Chen, Hongda

    2018-04-30

    Cell migration and invasion are important factors during tumor progression and metastasis. Wound-healing assay and the Boyden chamber assay are efficient tools to investigate tumor development because both of them could be applied to measure cell migration rate. Therefore, a simple and integrated polydimethylsiloxane (PDMS) device was developed for cell migration assay, which could perform quantitative evaluation of cell migration behaviors, especially for the wound-healing assay. The integrated device was composed of three units, which included cell culture dish, PDMS chamber, and wound generation mold. The PDMS chamber was integrated with cell culture chamber and could perform six experiments under different conditions of stimuli simultaneously. To verify the function of this device, it was utilized to explore the tumor cell migration behaviors under different concentrations of fetal bovine serum (FBS) and transforming growth factor (TGF-β) at different time points. This device has the unique capability to create the "wound" area in parallel during cell migration assay and provides a simple and efficient platform for investigating cell migration assay in biomedical application.

  19. PCL-based Shape Memory Polymers with Variable PDMS Soft Segment Lengths

    Science.gov (United States)

    Zhang, Dawei; Giese, Melissa L.; Prukop, Stacy L.; Grunlan, Melissa A.

    2012-01-01

    Thermoresponsive shape memory polymers (SMPs) are stimuli-responsive materials that return to their permanent shape from a temporary shape in response to heating. The design of new SMPs which obtain a broader range of properties including mechanical behavior is critical to realize their potential in biomedical as well as industrial and aerospace applications. To tailor the properties of SMPs, “AB networks” comprised of two distinct polymer components have been investigated but are overwhelmingly limited to those in which both components are organic. In this present work, we prepared inorganic-organic SMPs comprised of inorganic polydimethyl-siloxane (PDMS) segments of varying lengths and organic poly(ε-caprolactone) (PCL) segments. PDMS has a particularly low Tg (−125 °C) which makes it a particularly effective soft segment to tailor the mechanical properties of PCL-based SMPs. The SMPs were prepared via the rapid photocure of solutions of diacrylated PCL40-block-PDMSm-block-PCL40 macromers (m = 20, 37, 66 and 130). The resulting inorganic-organic SMP networks exhibited excellent shape fixity and recovery. By changing the PDMS segment length, the thermal, mechanical, and surface properties were systematically altered. PMID:22904597

  20. Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization

    International Nuclear Information System (INIS)

    Adrega, T; Lacour, S P

    2010-01-01

    Stretchable gold conductors embedded in polydimethylsiloxane (PDMS) films were successfully prepared using standard photolithography. The minimum feature sizes patterned in the metal film and PDMS encapsulation are 10 µm and 20 µm, respectively. The micro-patterned conductors are robust to uni-axial (1D) and radial (2D) stretching with applied strains of tens of percent. The electrical response of the conductors follows a nonlinear increase with strain, and is reversible. The extensive stretchability of the conductors relies on a randomly and independently distributed network of micro-cracks (∼100 nm long) in the metal film on PDMS. The micro-cracks elongate to a few microns length both in the stretching and normal directions in 1D stretching but during 2D stretching, the micro-cracks grow and form 'dry mud' islands leaving the gold microstructure inside the islands intact. Patterning metallic thin films directly onto elastomeric substrates opens a promising route for microelectrodes and interconnects for soft and ultra-compliant MEMS and electronic devices.

  1. Truncated acoustic black hole structure with the optimized tapering shape and damping coating

    DEFF Research Database (Denmark)

    Ih, Jeong-Guon; Kim, Miseong; Lee, Ik Jin

    2016-01-01

    the general behavior of an ABH structure. With constraints on the range of flare constant, truncated length of the ABH thin end, and thickness of damping material, the wedge profile and parameters are optimized. All computations are based on the three-dimensional finite element modeling of finite plates...... having ABH structure, and a surrogate model is employed to facilitate the optimization. The results show that the optimized ABH shape without damping is not much better than the non-optimized one, but that with damping exhibits a significant improvement compared to the non-optimized ones...

  2. [Effects of heavy machinery operation on the structural characters of cultivated soils in black soil region of Northeast China].

    Science.gov (United States)

    Wang, En-Heng; Chai, Ya-Fan; Chen, Xiang-Wei

    2008-02-01

    With the cultivated soils in black soil region of Northeast China as test objects, this paper measured their structural characters such as soil strength, bulk density, and non-capillary porosity/capillary porosity (NCP/CP) ratio before and after heavy and medium-sized machinery operation, aimed to study the effects of machinery operation on the physical properties of test soils. The results showed that after machinery operation, there existed three distinct layers from top to bottom in the soil profiles, i.e., plowed layer, cumulative compacted layer, and non-affected layer, according to the changes of soil strength. Under medium-sized machinery operation, these three layers were shallower, and there was a new plow pan at the depth between 17.5 and 30 cm. Heavy machinery operation had significant positive effects on the improvement of topsoil structure (P heavy machinery, the bulk density of topsoil decreased by 7.2% and 3.5%, respectively, and NCP/CP increased by 556.6% after subsoiling, which would benefit water infiltration, reinforce water storage, and weaken the threat of soil erosion. The main action of heavy machinery operation was soil loosening, while that of medium-sized machinery operation was soil compacting.

  3. Structure of a shear-thickening polysaccharide extracted from the New Zealand black tree fern, Cyathea medullaris.

    Science.gov (United States)

    Wee, May S M; Matia-Merino, Lara; Carnachan, Susan M; Sims, Ian M; Goh, Kelvin K T

    2014-09-01

    A shear-thickening water-soluble polysaccharide was purified from mucilage extracted from the fronds of the New Zealand black tree fern (Cyathea medullaris or 'mamaku' in Māori) and its structure characterised. Constituent sugar analysis by three complementary methods, combined with linkage analysis (of carboxyl reduced samples) and 1H and 13C nuclear magnetic resonance spectroscopy (NMR) revealed a glucuronomannan comprising a backbone of 4-linked methylesterified glucopyranosyl uronic acid and 2-linked mannopyranosyl residues, branched at O-3 of 45% and at both O-3 and O-4 of 53% of the mannopyranosyl residues with side chains likely comprising terminal xylopyranosyl, terminal galactopyranosyl, non-methylesterified terminal glucopyranosyl uronic acid and 3-linked glucopyranosyl uronic acid residues. The weight-average molecular weight of the purified polysaccharide was ∼1.9×10(6) Da as determined by size-exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS). The distinctive rheological properties of this polysaccharide are discussed in relation to its structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Genetic structure and diversity of the black and rufous sengiin Tanzanian coastal forests

    Czech Academy of Sciences Publication Activity Database

    Sabuni, C. A.; Van Houtte, N.; Gryseels, S.; Maganga, S. L. S.; Makundi, R. H.; Leirs, H.; Goüy de Bellocq, Joëlle

    2016-01-01

    Roč. 300, č. 4 (2016), s. 305-313 ISSN 0952-8369 Institutional support: RVO:68081766 Keywords : Rhynchocyon petersi * vulnerable * conservation genetics * coastal forests * Beamys hindei * genetic structure * genetic diversity * habitat fragmentation Subject RIV: EH - Ecology, Behaviour Impact factor: 2.186, year: 2016

  5. Femtosecond laser surface structuring and oxidation of chromium thin coatings: black chromium.

    CSIR Research Space (South Africa)

    Kotsedi, L

    2014-12-01

    Full Text Available In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra...

  6. Structural annotation and elucidation of conjugated phenolic compounds in black, green, and white tea extracts

    NARCIS (Netherlands)

    Hooft, van der J.J.J.; Akermi, M.; Yelda Ünlü, F.; Mihaleva, V.; Gomez Roldan, V.; Bino, R.J.; Vos, de R.C.H.; Vervoort, J.J.M.

    2012-01-01

    Advanced analytical approaches consisting of both LC-LTQ-Orbitrap Fourier transformed (FT)-MS and LC-time-of-flight-(TOF)-MS coupled to solid-phase extraction (SPE) NMR were used to obtain more insight into the complex phenolic composition of tea. On the basis of the combined structural information

  7. Black holes

    International Nuclear Information System (INIS)

    Carter, B.

    1980-01-01

    In years 1920 as a result of quantum mechanics principles governing the structure of ordinary matter, a sudden importance for a problem raised a long time ago by Laplace: what happens when a massive body becomes so dense that even light cannot escape from its gravitational field. It is difficult to conceive how could be avoided in the actual universe the accumulation of important masses of cold matter having been submitted to gravitational breaking down followed by the formation of what is called to day a black hole [fr

  8. Cancer Research Participation Beliefs and Behaviors of a Southern Black Population: A Quantitative Analysis of the Role of Structural Factors in Cancer Research Participation.

    Science.gov (United States)

    Farr, Deeonna E; Brandt, Heather M; Comer, Kimberly D; Jackson, Dawnyéa D; Pandya, Kinjal; Friedman, Daniela B; Ureda, John R; Williams, Deloris G; Scott, Dolores B; Green, Wanda; Hébert, James R

    2015-09-01

    Increasing the participation of Blacks in cancer research is a vital component of a strategy to reduce racial inequities in cancer burden. Community-based participatory research (CBPR) is especially well-suited to advancing our knowledge of factors that influence research participation to ultimately address cancer-related health inequities. A paucity of literature focuses on the role of structural factors limiting participation in cancer research. As part of a larger CBPR project, we used survey data from a statewide cancer needs assessment of a Black faith community to examine the influence of structural factors on attitudes toward research and the contributions of both structural and attitudinal factors on whether individuals participate in research. Regression analyses and non-parametric statistics were conducted on data from 727 adult survey respondents. Structural factors, such as having health insurance coverage, experiencing discrimination during health care encounters, and locale, predicted belief in the benefits, but not the risks, of research participation. Positive attitudes toward research predicted intention to participate in cancer research. Significant differences in structural and attitudinal factors were found between cancer research participants and non-participants; however, directionality is confounded by the cross-sectional survey design and causality cannot be determined. This study points to complex interplay of structural and attitudinal factors on research participation as well as need for additional quantitative examinations of the various types of factors that influence research participation in Black communities.

  9. Black Alcoholism.

    Science.gov (United States)

    Watts, Thomas D.; Wright, Roosevelt

    1988-01-01

    Examines some aspects of the problem of alcoholism among Blacks, asserting that Black alcoholism can best be considered in an ecological, environmental, sociocultural, and public health context. Notes need for further research on alcoholism among Blacks and for action to reduce the problem of Black alcoholism. (NB)

  10. Black Culture

    Science.gov (United States)

    Brown, Angela Khristin

    2013-01-01

    The migration of blacks in North America through slavery became united. The population of blacks passed down a tradition of artist through art to native born citizens. The art tradition involved telling stories to each generation in black families. The black culture elevated by tradition created hope to determine their personal freedom to escape…

  11. Three-Layered Atmospheric Structure in Accretion Disks Around Stellar-Mass Black Holes

    Science.gov (United States)

    Zhang, S. N.; Cui, Wei; Chen, Wan; Yao, Yangsen; Zhang, Xiaoling; Sun, Xuejun; Wu, Xue-Bing; Xu, Haiguang

    2000-01-01

    Modeling of the x-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40 reveals a three-layered atmospheric structure in the inner region of the inner accretion disks. Above the cold and optically thick disk with a temperature of 0.2 to 0.5 kiloelectron volts, there is a warm layer with a temperature of 1.0 to 1.5 kiloelectron volts and an optical depth around 10. Sometimes there is also a much hotter, optically thin corona above the warm layer, with a temperature of 100 kiloelectron volts or higher and an optical depth around unity. The structural similarity between the accretion disks and the solar atmosphere suggests that similar physical processes may be operating in these different systems.

  12. Effect of surface free energy on PDMS transfer in microcontact printing and its application to ToF-SIMS to probe surface energies.

    Science.gov (United States)

    Yang, Li; Shirahata, Naoto; Saini, Gaurav; Zhang, Feng; Pei, Lei; Asplund, Matthew C; Kurth, Dirk G; Ariga, Katsuhiko; Sautter, Ken; Nakanishi, Takashi; Smentkowski, Vincent; Linford, Matthew R

    2009-05-19

    Although polydimethylsiloxane (PDMS) transfer during microcontact printing (microCP) has been observed in previous reports, which generally focused on only one or a few different substrates, in this work we investigate the extent of PDMS transfer onto a series of surfaces with a wide range of hydrophobicities using an uninked, unpatterned PDMS stamp. These surfaces include clean silicon, clean titanium, clean gold, "dirty" silicon, polystyrene, Teflon, surfaces modified with PEG, amino, dodecyl, and hexadecyl monolayers, and also two loose molecular materials. The PDMS transferred onto planar surfaces is, in general, easily detected by wetting and spectroscopic ellipsometry. More importantly, it is detected by time-of-flight secondary ion mass spectrometry (ToF-SIMS) because of the sensitivity of this technique to PDMS. The effect of surface free energy on PDMS transfer in microcontact printing is investigated, and the relationship between the amount of PDMS in ToF-SIMS spectra and the surface tensions of initial surfaces is revealed. We show that PDMS transfer can be applied as a probe of surface free energies using ToF-SIMS, where PDMS preferentially transfers onto more hydrophilic surface features during stamping, with little being transferred onto very hydrophobic surface features. Multivariate curve resolution (MCR) analysis of the ToF-SIMS image data further confirms and clarifies these results. Our data lend themselves to the hypothesis that it is the free energy of the surface that plays a major role in determining the degree of PDMS transfer during microCP.

  13. Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The effects of carbon blacks on vulcanization and mechanical properties of filled ethylene-propylene-diene rubber (EPDM are investigated, by comparing with five types of rubber-grade carbon blacks. Curing kinetics is studied by rheometer and the results indicate that the curing characteristics are influenced by combination of surface area of carbon black and sulphur content on the filler surface, because the former one enhances the physical cross-linking and the latter one introduces the additional chemical cross-linking. Both the degree of cross-linking and cure rate increase with increasing surface area and sulphur content, whereas the optimum cure time and scorch time decrease. The reinforcing nature of the carbon black is assessed from mechanical measurements. It is suggested that the surface area of carbon blacks strongly affects the physical properties of EPDM/carbon black composites. Conductive carbon black (N472 can be used as desirable reinforcing filler due to the higher degree of cross-linking of EPDM with N472 than other EPDM/carbon black composites. The morphology and distribution of particles are studied by using scanning electron microscope. The sound reinforcing ability of N472 is also supported by scanning electron microscope due to the notable dispersibility of N472 within EPDM matrix. N472 ensures the EPDM/N472 composite the most conductive sample among the five composites.

  14. Underground riparian wood: Buried stem and coarse root structures of Black Poplar (Populus nigra L.)

    Science.gov (United States)

    Holloway, James V.; Rillig, Matthias C.; Gurnell, Angela M.

    2017-02-01

    Despite the potential importance of tree species in influencing the processes of wood recruitment, transport, retention, and decay that control river wood budgets, focus has been relatively limited on this theme within fluvial wood research. Furthermore, one of the least investigated topics is the belowground living wood component of riparian trees. This paper presents observations of the morphology and age of buried stem and coarse root structures of eight Populus nigra individuals located in the riparian woodland of two sites on the middle to lower Tagliamento River, Italy. This species was selected because of its wide distribution along European rivers and its frequent dominance of riparian woodland. Each tree was excavated by hand to expose a minimum of half of the root system with complete exposure of the main axis. Smaller roots were then removed and larger protruding roots cut back to permit access to the main axis. The excavated structures were photographed from multiple angles for photogrammetric modelling; the structure and character of the exposed sediments around the tree's main axis were recorded; and wood samples were taken from the main aboveground stem(s), sections of the main buried axis, and major roots for dendrochronological analysis. Results from these field observations and laboratory dating of the wood samples were combined to describe the belowground morphology of each tree and to draw inferences concerning the impact of fluvial disturbances. Common features of these excavated structures included: (i) rooting depths to below the bar surface where the original tree established, with many young roots also existing at depth; (ii) translocation of the main buried axis in a downstream direction; (iii) a main buried axis comprised mainly of stems that have become buried and then generated new shoots, including multistem patches, and adventitious roots; (iv) the presence of steps and bends in the main buried axis associated with the generation of

  15. Evaluation and characterization of ceramic membranes based on Pdms/SiC containing phosphotungstic acid as electrolytes for PEM-FC

    International Nuclear Information System (INIS)

    Lima, Marcelo de Oliveira; Guimaraes, Danilo Hansen; Boaventura Filho, Jaime Soares; Jose, Nadia Mamede; Barbosa, Diego Augusto Batista; Paschoal, Carlos William de Araujo; Almeida, Rafael Mendonca; Tanaka, Auro Atsushi

    2009-01-01

    This work presents the development of membranes with potential use in Proton Exchange Fuel Cells (PEM-FC), consisting of hybrid materials based on poly(dimethylsiloxane), crosslinked with tetraethyl orthosilicate (TEOS), and reinforced with silicon carbide and phosphotungstic acid. The membrane series PDMS/TEOS/SiC/PWA were prepared by the reaction of PDMS and TEOS, 70/30% proportions in mass, catalyzed by dibutyltin dilaurate. SiC was incorporated in a 25% proportion, and PWA in varied proportions (5, 10, 15 and 20%), by weight. The membranes were characterized by Thermo-Gravimetric Analysis (TGA), X-ray Diffraction, Scanning Electron Microscopy and impedance spectroscopy. SiC and PWA addition to the membrane increased both structure organization and material crystallinity. The insertion of PWA provided an increase in the conductivity. However, maximum conductivity was obtained with concentration levels above 10%. The insertion of SiC associated with the PWA did not influence the conductivity for concentrations between 10 and 20%. (author)

  16. Preservation of bone mass and structure in hibernating black bears (Ursus americanus) through elevated expression of anabolic genes.

    Science.gov (United States)

    Fedorov, Vadim B; Goropashnaya, Anna V; Tøien, Øivind; Stewart, Nathan C; Chang, Celia; Wang, Haifang; Yan, Jun; Showe, Louise C; Showe, Michael K; Donahue, Seth W; Barnes, Brian M

    2012-06-01

    Physical inactivity reduces mechanical load on the skeleton, which leads to losses of bone mass and strength in non-hibernating mammalian species. Although bears are largely inactive during hibernation, they show no loss in bone mass and strength. To obtain insight into molecular mechanisms preventing disuse bone loss, we conducted a large-scale screen of transcriptional changes in trabecular bone comparing winter hibernating and summer non-hibernating black bears using a custom 12,800 probe cDNA microarray. A total of 241 genes were differentially expressed (P 1.4) in the ilium bone of bears between winter and summer. The Gene Ontology and Gene Set Enrichment Analysis showed an elevated proportion in hibernating bears of overexpressed genes in six functional sets of genes involved in anabolic processes of tissue morphogenesis and development including skeletal development, cartilage development, and bone biosynthesis. Apoptosis genes demonstrated a tendency for downregulation during hibernation. No coordinated directional changes were detected for genes involved in bone resorption, although some genes responsible for osteoclast formation and differentiation (Ostf1, Rab9a, and c-Fos) were significantly underexpressed in bone of hibernating bears. Elevated expression of multiple anabolic genes without induction of bone resorption genes, and the down regulation of apoptosis-related genes, likely contribute to the adaptive mechanism that preserves bone mass and structure through prolonged periods of immobility during hibernation.

  17. Femtosecond laser surface structuring and oxidation of chromium thin coatings: Black chromium

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Mthunzi, P. [National Laser Centre, Council for Scientific and Industrial Research, 0001 Pretoria (South Africa); Muller, T.F.G. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Julies, B. [University of the Western Cape, Physics Department, Bellville, 7535 Cape Town (South Africa); Manikandan, E. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa); Ramponi, R. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, P.O. Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape (South Africa)

    2014-12-01

    Highlights: • Oxidation of the chromium thin film to chromium oxide by femtosecond laser with a fundamental wavelength of 1064 nm. • Solar absorber from chromium oxide that low percentage reflectance. • Femtosecond laser oxidation, with a de-focused laser. • Chromium oxide formation by femtosecond laser in normal ambient. - Abstract: In view of their potential applications as selective solar absorbers, chromium coatings on float glass substrates were nano/micro structured by femtosecond laser in air. Raman and X-rays diffraction investigations confirmed the formation of an ultra-porous α-Cr{sub 2}O{sub 3} layer at the surface; higher is the input laser power, enhanced is the crystallinity of the α-Cr{sub 2}O{sub 3} layer. The α-Cr{sub 2}O{sub 3} layer with the Cr underneath it in addition to the photo-induced porosity acted as a classical ceramic–metal nano-composite making the reflectance to decrease significantly within the spectral range of 190–1100 nm. The average reflectance decreased from 70 to 2%.

  18. The twisted radio structure of PSO J334.2028+01.4075, still a supermassive binary black hole candidate

    Science.gov (United States)

    Mooley, K. P.; Wrobel, J. M.; Anderson, M. M.; Hallinan, G.

    2018-01-01

    Supermassive binary black holes (BBHs) on sub-parsec scales are prime targets for gravitational wave experiments. They also provide insights on close binary evolution and hierarchical structure formation. Sub-parsec BBHs cannot be spatially resolved but indirect methods can identify candidates. In 2015 Liu et al. reported an optical-continuum periodicity in the quasar PSO J334.2028+01.4075, with the estimated mass and rest-frame period suggesting an orbital separation of about 0.006 pc (0.7 μ arcsec). The persistence of the quasar's optical periodicity has recently been disfavoured over an extended baseline. However, if a radio jet is launched from a sub-parsec BBH, the binary's properties can influence the radio structure on larger scales. Here, we use the Very Long Baseline Array (VLBA) and Karl G. Jansky Very Large Array (VLA) to study the parsec- and kiloparsec-scale emission energized by the quasar's putative BBH. We find two VLBA components separated by 3.6 mas (30 pc), tentatively identifying one as the VLBA 'core' from which the other was ejected. The VLBA components contribute to a point-like, time-variable VLA source that is straddled by lobes spanning 8 arcsec (66 kpc). We classify PSO J334.2028+01.4075 as a lobe-dominated quasar, albeit with an atypically large twist of 39° between its elongation position angles on parsec- and kiloparsec-scales. By analogy with 3C 207, a well-studied lobe-dominated quasar with a similarly-rare twist, we speculate that PSO J334.2028+01.4075 could be ejecting jet components over an inner cone that traces a precessing jet in a BBH system.

  19. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating.

    Science.gov (United States)

    Villegas, Martin; Cetinic, Zachary; Shakeri, Amid; Didar, Tohid F

    2018-02-13

    The advent of 3D printing has allowed for rapid bench-top fabrication of molds for casting polydimethylsiloxane (PDMS) chips, a widely-used polymer in prototyping microfluidic devices. While fabricating PDMS devices from 3D printed molds is fast and cost-effective, creating smooth surface topology is highly dependent on the printer's quality. To produce smooth PDMS channels from these molds, we propose a novel technique in which a lubricant is tethered to the surface of a 3D printed mold, which results in a smooth interface for casting PDMS. Fabricating the omniphobic-lubricant-infused molds (OLIMs) was accomplished by coating the mold with a fluorinated-silane to produce a high affinity for the lubricant, which tethers it to the mold. PDMS devices cast onto OLIMs produced significantly smoother topology and can be further utilized to fabricate smooth-channeled PDMS devices. Using this method, we reduced the surface roughness of PDMS microfluidic channels from 2 to 0.2 μm (10-fold decrease), as well as demonstrated proper operation of the fabricated devices with superior optical properties compared to the rough devices. Furthermore, a COMSOL simulation was performed to investigate how the distinct surface topographies compare regarding their volumetric velocity profile and the shear rate produced. Simulation results showed that, near the channel's surface, variations in flow regime and shear stress is significantly reduced for the microfluidic channels cast on OLIM compared to the ones cast on uncoated 3D printed molds. The proposed fabrication method produces high surface-quality microfluidic devices, comparable to the ones cast on photolithographically fabricated molds while eliminating its costly and time-consuming fabrication process. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A novel assessment of the traction forces upon settlement of two typical marine fouling invertebrates using PDMS micropost arrays

    Directory of Open Access Journals (Sweden)

    Kang Xiao

    2018-01-01

    Full Text Available Marine biofouling poses a severe threat to maritime and aquaculture industries. To prevent the attachment of marine biofouling organisms on man-made structures, countless cost and effort was spent annually. In particular, most attention has been paid on the development of efficient and environmentally friendly fouling-resistant coatings, as well as larval settlement mechanism of several major biofouling invertebrates. In this study, polydimethylsiloxane (PDMS micropost arrays were utilized as the settlement substrata and opposite tractions were identified during early settlement of the barnacle Amphibalanus amphitrite and the bryozoan Bugula neritina. The settling A. amphitrite pushed the periphery microposts with an average traction force of 376.2 nN, while settling B. neritina pulled the periphery microposts with an average traction force of 205.9 nN. These micropost displacements are consistent with the body expansion of A. amphitrite during early post-settlement metamorphosis stage and elevation of wall epithelium of B. neritina during early pre-ancestrula stage, respectively. As such, the usage of micropost array may supplement the traditional histological approach to indicate the early settlement stages or even the initiation of larval settlement of marine fouling organisms, and could finally aid in the development of automatic monitoring platform for the real-time analysis on this complex biological process.

  1. No evident spatial genetic structuring in the rapidly declining Black-tailed Godwit Limosa limosa in the Netherlands

    NARCIS (Netherlands)

    Trimbos, K.B.; Kentie, R.; Verkuil, Y.; Musters, C.J.M.; Piersma, Th.; Snoo, de G.R.

    2011-01-01

    With 40% of the European Black-tailed Godwit population breeding in The Netherlands, this country harbours internationally significant numbers of this species. However, ongoing agricultural intensification has resulted in the fragmentation of the population and drastic population declines since

  2. No evident spatial genetic structuring in the rapidly declining Black-tailed Godwit Limosa limosa limosa in the Netherlands

    NARCIS (Netherlands)

    Trimbos, Krijn B.; Musters, C. J. M.; Verkuil, Yvonne I.; Kentie, Rosemarie; Piersma, Theunis; de Snoo, Geert R.

    With 40% of the European Black-tailed Godwit population breeding in The Netherlands, this country harbours internationally significant numbers of this species. However, ongoing agricultural intensification has resulted in the fragmentation of the population and drastic population declines since

  3. Fabrication and characterization of Aerogel-Polydimethyl siloxane (PDMS) Insulation Film

    Science.gov (United States)

    Noh, Yeoung ah; Song, Sinae; Taik Kim, Hee

    2018-03-01

    The building has a large impact on the space heating demand and the indoor environment is affected by climate or daylight. Hence, silica aerogel has generally used as a film to reduce the coefficient of the window in the building. Silica aerogel is a suitable material to apply for insulation material with lower thermal conductivity than that of air to save interior energy. However expensive precursor and drying process were the main issue of the silica aerogel synthesis and practical usage. We attempt to fabricate aerogel insulation film for energy saving through the economic process under ambient pressure. Silica aerogel was synthesized from rice husk ash, which was an agricultural waste to be able to recycle. Taguchi design was used to optimize the parameters (amount of rice husk ash, pH, aging time) controlling the surface area of silica aerogel. The silica aerogel is prepared by sol-gel processing through acidic treatment and aging. The silica aerogel was obtained by modification of silica hydrogel surface and dry at ambient pressure. Finally, aerogel film was respectively fabricated by the different content of aerogel in polydimethylsiloxane (PDMS). Silica aerogel obtained 21 – 24nm average particle size was analyzed by SEM and silica aerogel with high surface area (832.26 m2/g), pore size ( 3.30nm ) was characterized by BET. Then silica Aerogel – PDMS insulation film with thermal conductivity (0.002 W/mK) was analyzed by thermal wave system. The study demonstrates an eco-friendly and low-cost route toward silica – PDMS insulation film with low thermal conductivity (0.002 W/mK).

  4. Structural analysis of a polysaccharide isolated from the aqueous extract of an edible mushroom, Pleurotus sajor-caju, cultivar Black Japan.

    Science.gov (United States)

    Roy, Sadhan K; Maiti, Debabrata; Mondal, Subhas; Das, Debsankar; Islam, Syed S

    2008-05-05

    A water-soluble polysaccharide, isolated from the aqueous extract of an edible mushroom Pleurotus sajor-caju, cultivar Black Japan was found to consist of D-glucose and D-galactose in a molar ratio of 3:1. On the basis of total acid hydrolysis, methylation analysis, and NMR experiments (1H, 13C, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC) the structure of the polysaccharide was established as [Formula: see text].

  5. Visualizing tissue molecular structure of a black type of canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way.

    Science.gov (United States)

    Yu, Peiqiang

    2013-02-20

    Heat-related processing of cereal grains, legume seeds, and oil seeds could be used to improve nutrient availability in ruminants. However, different types of processing may have a different impact on intrinsic structure of tissues. To date, there is little research on structure changes after processing within intact tissues. The synchrotron-based molecular imaging technique enables us to detect inherent structure change on a molecular level. The objective of this study was to visualize tissue of black-type canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way using the synchrotron imaging technique. The results showed that the chemical images of protein amides were obtained through the imaging technique for the raw, wet, and dry heated black type of canola seed tissues. It seems that different types of processing have a different impact on the protein spectral profile in the black type of canola tissues. Wet heating had a greater impact on the protein α-helix to β-sheet ratio than dry heating. Both dry and wet heating resulted in different patterns in amide I, the second derivative, and FSD spectra. However, the exact differences in the tissue images are relatively difficult to be obtained through visual comparison. Future studies should focus on (1) comparing the response and sensitivity of canola seeds to various processing methods between the yellow-type and black-type of canola seeds; (2) developing a sensitive method to compare the image difference between tissues and between treatments; (3) developing a method to link images to nutrient digestion, and (4) revealing how structure changes affect nutrient absorption in humans and animals.

  6. Dipolar cross-linkers for PDMS networks with enhanced dielectric permittivity and low dielectric loss

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Hvilsted, Søren

    2013-01-01

    -(4-((4-nitrophenyl)diazenyl)phenoxy)-prop-1-yn-1-ylium, with a synthesized silicone compatible azide-functional cross-linker by click chemistry. The thermal, mechanical and electromechanical properties were investigated for PDMS films with 0 to 3.6 wt% of dipole-cross-linker. The relative dielectric permittivity...... was found to increase by ∼20% at only 0.46 wt% of incorporated dipole without significant changes in the mechanical properties. Furthermore, the dielectric losses were proved to be remarkably low while the electrical breakdown strengths were high....

  7. Improvement of a block co-polymer (PS-b-PDMS) template etch profile using amorphous carbon layer

    Science.gov (United States)

    Oh, JiSoo; Oh, Jong Sik; Sung, DaIn; Yim, SoonMin; Song, SeungWon; Yeom, GeunYoung

    2017-03-01

    Block copolymers (BCPs) are consisted of at least two types of monomers which have covalent bonding. One of the widely investigated BCPs is polystyrene-block-polydimethylsiloxane (PS-b-PDMS), which is used as an alternative patterning method for various deep nanoscale devices due to its high Flory-Huggins interaction parameter (χ), such as optical devices and transistors, replacing conventional photolithography. As an alternate or supplementary nextgeneration lithography technology to extreme ultraviolet lithography (EUVL), BCP lithography utilizing the DSA of BCP has been actively studied. However, the nanoscale BCP mask material is easily damaged by the plasma and has a very low etch selectivity over bottom semiconductor materials, because it is composed of polymeric materials even though it contains Si in PDMS. In this study, an amorphous carbon layer (ACL) was inserted as a hardmask material between BCP and materials to be patterned, and, by using O2 plasmas, the characteristics of dry etching of ACL for high aspect ratio (HAR) using a 10 nm PDMS pattern were investigated. The results showed that, by using a PS-b-PDMS pattern with an aspect ratio of 0.3 0.9:1, a HAR PDMS/ACL double layer mask with an aspect ratio of 10:1 could be fabricated. In addition, by the optimization of the plasma etch process, ACL masks with excellent sidewall roughness (SWR,1.35 nm) and sidewall angle (SWA, 87.9˚) could be fabricated.

  8. Surface modification of PDMS microfluidic devices by controlled sulfuric acid treatment and the application in chip electrophoresis.

    Science.gov (United States)

    Gitlin, Leonid; Schulze, Philipp; Ohla, Stefan; Bongard, Hans-Josef; Belder, Detlev

    2015-02-01

    Herein, we present a straightforward surface modification technique for PDMS-based microfluidic devices. The method takes advantage of the high reactivity of concentrated sulfuric acid to enhance the surface properties of PDMS bulk material. This results in alteration of the surface morphology and chemical composition that is in-depth characterized by ATR-FTIR, EDX, SEM, and XPS. In comparison to untreated PDMS, modified substrates exhibit a significantly reduced diffusive uptake of small organic molecules while retaining its low electroosmotic properties. This was demonstrated by exposing the channels of a microfluidic device to concentrated rhodamine B solution followed by fluorescence microscopy. The surface modification procedure was used to improve chip-based electrophoretic separations. Separation efficiencies of FITC-labeled amines/amino acids obtained in treated and untreated PDMS-devices as well as in glass chips were compared. We obtained higher efficiencies in H2 SO4 treated PDMS chips compared to untreated ones but lower efficiencies than those obtained in commercial microfluidic glass devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural Properties and Antifungal Activity against Candida albicans Biofilm of Different Composite Layers Based on Ag/Zn Doped Hydroxyapatite-Polydimethylsiloxanes

    Directory of Open Access Journals (Sweden)

    Andreea Groza

    2016-04-01

    Full Text Available Modern medicine is still struggling to find new and more effective methods for fighting off viruses, bacteria and fungi. Among the most dangerous and at times life-threatening fungi is Candida albicans. Our work is focused on surface and structural characterization of hydroxyapatite, silver doped hydroxyapatite and zinc doped hydroxyapatite deposited on a titanium substrate previously coated with polydimethylsiloxane (HAp-PDMS, Ag:HAp-PDMS, Zn:HAp-PDMS by different techniques: Scanning Electron Microscopy (SEM, Glow Discharge Optical Emission Spectroscopy (GDOES and Fourier Transform Infrared Spectroscopy (FTIR. The morphological studies revealed that the use of the PDMS polymer as an interlayer improves the quality of the coatings. The structural characterizations of the thin films revealed the basic constituents of both apatitic and PDMS structure. In addition, the GD depth profiles indicated the formation of a composite material as well as the successful embedding of the HAp, Zn:HAp and Ag:HAp into the polymer. On the other hand, in vitro evaluation of the antifungal properties of Ag:HAp-PDMS and Zn:HAp-PDMS demonstrated the fungicidal effects of Ag:HAp-PDMS and the potential antifungal effect of Zn:HAp-PDMS composite layers against C. albicans biofilm. The results acquired in this research complete previous research on the potential use of new complex materials produced by nanotechnology in biomedicine.

  10. Large-area, high-aspect-ratio SU-8 molds for the fabrication of PDMS microfluidic devices

    International Nuclear Information System (INIS)

    Natarajan, S; Chang-Yen, D A; Gale, B K

    2008-01-01

    A relatively low-cost fabrication method using soft lithography and molding for large-area, high-aspect-ratio microfluidic devices, which have traditionally been difficult to fabricate, has been developed and is presented in this work. The fabrication process includes novel but simple modifications of conventional microfabrication steps and can be performed in any standard microfabrication facility. Specifically, the fabrication and testing of a microfluidic device for continuous flow deposition of bio-molecules in an array format are presented. The array layout requires high-aspect-ratio elastomeric channels that are 350 µm tall, extend more than 10 cm across the substrate and are separated by as little as 20 µm. The mold from which these channels were fabricated consisted of high-quality, 335 µm tall SU-8 structures with a high-negative aspect ratio of 17 on a 150 mm silicon wafer and was produced using spin coating and UV-lithography. Several unique processing steps are introduced into the lithographic patterning to eliminate many of the problems experienced when fabricating tall, high-aspect-ratio SU-8 structures. In particular, techniques are used to ensure uniform molds, both in height and quality, that are fully developed even in the deep negative-aspect-ratio areas, have no leftover films at the top of the structures caused by overexposure and no bowing or angled sidewalls from diffraction of the applied UV light. Successful microfluidic device creation was demonstrated using these molds by casting, curing and bonding a polydimethylsiloxane (PDMS) elastomer. A unique microfluidic device, requiring these stringent geometries, for continuous flow printing of a linear array of 16 protein and antibody spots has been demonstrated and validated by using surface plasmon resonance imaging of printed arrays

  11. Critical behavior and microscopic structure of charged AdS black holes via an alternative phase space

    Directory of Open Access Journals (Sweden)

    Amin Dehyadegari

    2017-05-01

    Full Text Available It has been argued that charged Anti-de Sitter (AdS black holes have similar thermodynamic behavior as the Van der Waals fluid system, provided one treats the cosmological constant as a thermodynamic variable (pressure in an extended phase space. In this paper, we disclose the deep connection between charged AdS black holes and Van der Waals fluid system from an alternative point of view. We consider the mass of an AdS black hole as a function of square of the charge Q2 instead of the standard Q, i.e. M=M(S,Q2,P. We first justify such a change of view mathematically and then ask if a phase transition can occur as a function of Q2 for fixed P. Therefore, we write the equation of state as Q2=Q2(T,Ψ where Ψ (conjugate of Q2 is the inverse of the specific volume, Ψ=1/v. This allows us to complete the analogy of charged AdS black holes with Van der Waals fluid system and derive the phase transition as well as critical exponents of the system. We identify a thermodynamic instability in this new picture with real analogy to Van der Waals fluid with physically relevant Maxwell construction. We therefore study the critical behavior of isotherms in Q2–Ψ diagram and deduce all the critical exponents of the system and determine that the system exhibits a small–large black hole phase transition at the critical point (Tc,Qc2,Ψc. This alternative view is important as one can imagine such a change for a given single black hole i.e. acquiring charge which induces the phase transition. Finally, we disclose the microscopic properties of charged AdS black holes by using thermodynamic geometry. Interestingly, we find that scalar curvature has a gap between small and large black holes, and this gap becomes exceedingly large as one moves away from the critical point along the transition line. Therefore, we are able to attribute the sudden enlargement of the black hole to the strong repulsive nature of the internal constituents at the phase transition.

  12. Novel Conductive Carbon Black and Polydimethlysiloxane ECG Electrode: A Comparison with Commercial Electrodes in Fresh, Chlorinated, and Salt Water.

    Science.gov (United States)

    Noh, Yeonsik; Bales, Justin R; Reyes, Bersain A; Molignano, Jennifer; Clement, Amanda L; Pins, George D; Florian, John P; Chon, Ki H

    2016-08-01

    In this study, we evaluated the performance of two novel conductive carbon black (CB) and polydimethlysiloxane (PDMS) bio-potential electrodes, with and without an integrated flexible copper mesh, against commercially available electrodes (Polar(®) textile, Silver-coated textile, and carbon rubber). The electrodes were tested in three types of water (fresh/unfiltered, chlorinated, and salt water). Our testing revealed that our CB/PDMS electrode with integrated copper mesh provided a high-fidelity ECG signal morphologies without any amplitude degradation in all of the types of water tested (N = 10). The non-meshed CB/PDMS electrodes were also subjected to a long-term durability test by the US Navy SCUBA divers during which the electrodes maintained ECG signal quality for a 6 h period of continuous use. The results of a material degradation analysis revealed the CB/PDMS composite material does not exhibit significant changes in physical integrity after prolonged exposure to the test conditions. The newly developed meshed CB/PDMS electrodes have the potential to be used in a wide variety of both dry and wet environments including the challenge of obtaining ECG signals in salt water environments.

  13. Photocatalysis of composite film PDMS-PMN-PT@TiO2 greatly improved via spatial electric field

    Science.gov (United States)

    Dai, Baoying; Zhang, Ling; Huang, Hengming; Lu, Chunhua; Kou, Jiahui; Xu, Zhongzi

    2017-05-01

    Efficient charge separation is quite significant to obtain high photocatalytic performance. In this work, piezoelectric-based composite photocatalyst film PDMS-PMN-PT@TiO2 possessing high recoverability was prepared. The spatial electric field of PMN-PT was introduced into photocatalyst system by ultrasonic wave vibration to accelerate charge separation. Compared with magnetic stirring, ultrasonic wave vibration greatly improved the photocatalytic degradation efficiency of rhodamine B (RhB) over PDMS-PMN-PT@TiO2 film by about 55%. A possible improvement mechanism that spatial electric field promotes charge separation was presented herein. The piezoelectric potential output demonstrated the piezoelectricity of composite film. The durability experiments of PDMS-PMN-PT@TiO2 film indicated its great stability over several runs.

  14. A robust and stretchable superhydrophobic PDMS/PVDF@KNFs membrane for oil/water separation and flame retardancy.

    Science.gov (United States)

    Li, Deke; Gou, Xuelian; Wu, Daheng; Guo, Zhiguang

    2018-04-05

    The wide application of superhydrophobic membranes has been limited due to their complicated preparation technology and weak durability. Inspired by the mechanical flexibility of nanofibrous biomaterials, nanofibrils have been successfully generated from Kevlar, which is one of the strongest synthetic fibers, by appropriate hydrothermal treatment. In this study, a robust superhydrophobic PDMS/PVDF@KNFs membrane is prepared via a simple one-step process and subsequent curing without combination with inorganic fillers. The as-prepared PDMS/PVDF@KNFs membrane not only shows efficient oil/water separation ability and oil absorption capacity but also has excellent superhydrophobicity stability after deformation. The resultant membrane shows stretchability, flexibility and flame retardance because of the reinforcing effect and the excellent flame retardancy of Kevlar. We believe that this simple fabrication of PDMS/PVDF@KNFs has promising applications in filtering membranes and wearable devices.

  15. Thermodynamical structure of AdS black holes in massive gravity with stringy gauge-gravity corrections

    Science.gov (United States)

    Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.

    2016-12-01

    Motivated by gauge/gravity group in the low energy effective theory of the heterotic string theory and novel aspects of massive gravity in the context of lattice physics, the minimal coupling of Gauss-Bonnet-massive gravity with Born-Infeld electrodynamics is considered. At first, the metric function is calculated and then the geometrical properties of the solutions are investigated. It is found that there is an essential singularity at the origin and the intrinsic curvature is regular elsewhere. In addition, the effects of massive parameters are studied and black hole solutions with multi horizons are found in this gravity. Also, the conserved and thermodynamic quantities are calculated, and it is shown that the solutions satisfy the first law of thermodynamics. Furthermore, using heat capacity of these black holes, thermal stability and phase transitions are investigated. The variation of different parameters and related modifications on the (number of) phase transition are examined. Next, the critical behavior of the Gauss-Bonnet-Born-Infeld-massive black holes in the context of extended phase space is studied. It is shown how the variation of the different parameters affects the existence and absence of phase transition. Also, it is found that for specific values of different parameters, these black holes may enjoy the existence of a new type of phase transition which to our knowledge was not observed in black hole physics before.

  16. Coating of TPU-PDMS-TMS on Polycotton Fabrics for Versatile Protection

    Directory of Open Access Journals (Sweden)

    Arsheen Moiz

    2017-11-01

    Full Text Available This research aims to develop a non-fluorine based and durable coating technology that brings excellent hydrophobic, oleophobic and aqueous liquid repellent properties to polycotton fabrics (blend ratio 80/20 for cotton/polyester while maintaining comfort to an acceptable level. A crosslinked network from thermoplastic polyurethane (TPU, polydimethylsiloxane (PDMS and trimethylated silica (TMS has been formed on the surface of polycotton fabrics by the conventional padding-knife coating-padding-curing technique. A series of characterizations have been conducted to understand the chemical components, morphology, versatile protection and comfort of the coated fabrics. The TPU-PDMS-TMS (TPT coated fabrics showed a high hydrophobic surface with a high water contact angle of 142°, and the coating was durable against different cycles of laundering and crocking. The coated fabrics also showed excellent repellency against oils, liquids and chemicals for a long period of time. The coating has affected the air permeability and water vapor permeability together with the moisture management property of the polycotton fabrics, and the thermal resistance of the polycotton fabric has been enhanced at the same time. The coating technology developed can be further applied in protective clothing and functional textiles in different areas including military, mining and outdoor protection gear.

  17. Amphiphilic block copolymer/poly(dimethylsiloxane) (PDMS) blends and nanocomposites for improved fouling-release.

    Science.gov (United States)

    Martinelli, Elisa; Suffredini, Marianna; Galli, Giancarlo; Glisenti, Antonella; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Williams, David; Lyall, Graeme

    2011-05-01

    Amphiphilic diblock copolymers, Sz6 and Sz12, consisting of a poly(dimethylsiloxane) block (average degree of polymerisation = 132) and a PEGylated-fluoroalkyl modified polystyrene block (Sz, average degree of polymerisation = 6, 12) were prepared by atom transfer radical polymerization (ATRP). Coatings were obtained from blends of either block copolymer (1-10 wt%) with a poly(dimethylsiloxane) (PDMS) matrix. The coating surface presented a simultaneous hydrophobic and lipophobic character, owing to the strong surface segregation of the lowest surface energy fluoroalkyl chains of the block copolymer. Surface chemical composition and wettability of the films were affected by exposure to water. Block copolymer Sz6 was also blended with PDMS and a 0.1 wt% amount of multiwall carbon nanotubes (CNT). The excellent fouling-release (FR) properties of these new coatings against the macroalga Ulva linza essentially resulted from the inclusion of the amphiphilic block copolymer, while the addition of CNT did not appear to improve the FR properties.

  18. Preparation of superhydrophobic coating on graphite channel with silica particle/poly(dimethylsiloxane) (PDMS) composite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Shakhshir, A.S. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering; Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering; Chen, P. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering; Li, X. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering

    2010-07-01

    The performance of polymer electrolyte membrane fuel cells (PEMFCs) is affected by many factors, including water management. This study investigated the relationship between surface wettability and surface configurations. The original rough surface on the graphite gas flow field channel was adjusted in order to attain graphite with superhydrophobic surface property. The surface roughness was adjusted using a silica particle/poly(dimethylsiloxane) (PDMS) composite. This paper provided the measured surface water static contact angle (CA), sliding angle (SA) and CA hysteresis on a graphite sample coated with this composite. A water droplet could easily move on the surface and bounce like an elastic ball on this surface. Scanning Electron Microscopy (SEM) images showed that silica particles aggregated on the surface and appeared as a two-tiered micro-/nano-particles configuration. Profilometry measurements showed that the surface roughness decreased significantly after the surface was coated with the silica particle/PDMS composite. These surface features may explain the superhydrophobic property. The air/water two-phase flow inside the coated channel was visualized and the pressure through the channel was measured. 31 refs., 3 tabs., 5 figs.

  19. Selected Data for Wells and Test Holes Used in Structure-Contour Maps of the Inyan Kara Group, Minnekahta Limestone, Minnelusa Formation, Madison Limestone, and Deadwood Formation in the Black Hills Area, South Dakota

    National Research Council Canada - National Science Library

    Carter, Janet M

    1999-01-01

    This report presents selected data on wells and test holes that were used in the construction of structure-contour maps of selected formations that contain major aquifers in the Black Hills area of western South Dakota...

  20. Social and structural determinants of HIV treatment and care among black women living with HIV infection: a systematic review: 2005-2016.

    Science.gov (United States)

    Geter, Angelica; Sutton, Madeline Y; Hubbard McCree, Donna

    2018-04-01

    Black/African American (black) women comprised 59% of women living with HIV at the end of 2014 and 61% of HIV diagnoses among women in 2015. Black women living with HIV infection (BWLH) have poorer health outcomes compared with women of other races/ethnicities; social and structural determinants are often cited as barriers and facilitators of care. The objective of this qualitative review was to identify social and structural barriers and facilitators of HIV treatment and care among BWLH. The systematic review was conducted in six-stages using databases such as PubMed, PsycINFO, and Google Scholar: 1) searched for studies that enrolled BWLH published between January 2005 and December 2016, 2) excluded unpublished reports and commentaries, 3) limited the search to our primary keywords, 4) limited our search to studies that included participants living with HIV infection that were >60% black and 100% female, 5) extracted and summarized the data, and 6) conducted a contextual review to identify common themes. Of 534 studies retrieved, 16 were included in the final review. Studies focused on: ART medication adherence (n = 5), engagement/retention in care (n = 4), HIV care and treatment services (n = 3), viral suppression (n = 1), and addressing multiple HIV care outcomes (n = 3). Main barrier themes included lack of family and/or social support, poor quality HIV services, and HIV-related stigma, particularly from healthcare providers; facilitator themes included resilience, positive relationships between case management and support services, high racial consciousness, and addressing mental health. Interventions that decrease these noted barriers and strengthen facilitators may help improve care outcomes for BWLH. Also, more HIV stigma-reduction training for healthcare providers may be warranted.

  1. A Structural Equation Model of HIV-Related Stigma, Racial Discrimination, Housing Insecurity and Wellbeing among African and Caribbean Black Women Living with HIV in Ontario, Canada.

    Directory of Open Access Journals (Sweden)

    Carmen H Logie

    Full Text Available African and Caribbean Black women in Canada have new HIV infection rates 7 times higher than their white counterparts. This overrepresentation is situated in structural contexts of inequities that result in social, economic and health disparities among African and Caribbean Black populations. Economic insecurity is a distal driver of HIV vulnerability, reducing access to HIV testing, prevention and care. Less is known about how economic insecurity indicators, such as housing security, continue to influence the lives of women living with HIV following HIV-positive diagnoses. The aim of this study was to test a conceptual model of the pathways linking HIV-related stigma, racial discrimination, housing insecurity, and wellbeing (depression, social support, self-rated health. We implemented a cross-sectional survey with African and Caribbean Black women living with HIV in 5 Ontario cities, and included 157 participants with complete data in the analyses. We conducted structural equation modeling using maximum likelihood estimation to evaluate the hypothesized conceptual model. One-fifth (22.5%; n = 39 of participants reported housing insecurity. As hypothesized, racial discrimination had significant direct effects on: HIV-related stigma, depression and social support, and an indirect effect on self-rated health via HIV-related stigma. HIV-related stigma and housing insecurity had direct effects on depression and social support, and HIV-related stigma had a direct effect on self-rated health. The model fit the data well: χ2 (45, n = 154 = 54.28, p = 0.387; CFI = 0.997; TLI = 0.996; RMSEA = 0.016. Findings highlight the need to address housing insecurity and intersecting forms of stigma and discrimination among African and Caribbean Black women living with HIV. Understanding the complex relationships between housing insecurity, HIV-related stigma, racial discrimination, and wellbeing can inform multi-level interventions to reduce stigma and enhance

  2. A Structural Equation Model of HIV-Related Stigma, Racial Discrimination, Housing Insecurity and Wellbeing among African and Caribbean Black Women Living with HIV in Ontario, Canada.

    Science.gov (United States)

    Logie, Carmen H; Jenkinson, Jesse I R; Earnshaw, Valerie; Tharao, Wangari; Loutfy, Mona R

    African and Caribbean Black women in Canada have new HIV infection rates 7 times higher than their white counterparts. This overrepresentation is situated in structural contexts of inequities that result in social, economic and health disparities among African and Caribbean Black populations. Economic insecurity is a distal driver of HIV vulnerability, reducing access to HIV testing, prevention and care. Less is known about how economic insecurity indicators, such as housing security, continue to influence the lives of women living with HIV following HIV-positive diagnoses. The aim of this study was to test a conceptual model of the pathways linking HIV-related stigma, racial discrimination, housing insecurity, and wellbeing (depression, social support, self-rated health). We implemented a cross-sectional survey with African and Caribbean Black women living with HIV in 5 Ontario cities, and included 157 participants with complete data in the analyses. We conducted structural equation modeling using maximum likelihood estimation to evaluate the hypothesized conceptual model. One-fifth (22.5%; n = 39) of participants reported housing insecurity. As hypothesized, racial discrimination had significant direct effects on: HIV-related stigma, depression and social support, and an indirect effect on self-rated health via HIV-related stigma. HIV-related stigma and housing insecurity had direct effects on depression and social support, and HIV-related stigma had a direct effect on self-rated health. The model fit the data well: χ2 (45, n = 154) = 54.28, p = 0.387; CFI = 0.997; TLI = 0.996; RMSEA = 0.016. Findings highlight the need to address housing insecurity and intersecting forms of stigma and discrimination among African and Caribbean Black women living with HIV. Understanding the complex relationships between housing insecurity, HIV-related stigma, racial discrimination, and wellbeing can inform multi-level interventions to reduce stigma and enhance health.

  3. A Structural Equation Model of HIV-Related Stigma, Racial Discrimination, Housing Insecurity and Wellbeing among African and Caribbean Black Women Living with HIV in Ontario, Canada

    Science.gov (United States)

    Logie, Carmen H.; Jenkinson, Jesse I. R.; Earnshaw, Valerie; Tharao, Wangari; Loutfy, Mona R.

    2016-01-01

    African and Caribbean Black women in Canada have new HIV infection rates 7 times higher than their white counterparts. This overrepresentation is situated in structural contexts of inequities that result in social, economic and health disparities among African and Caribbean Black populations. Economic insecurity is a distal driver of HIV vulnerability, reducing access to HIV testing, prevention and care. Less is known about how economic insecurity indicators, such as housing security, continue to influence the lives of women living with HIV following HIV-positive diagnoses. The aim of this study was to test a conceptual model of the pathways linking HIV-related stigma, racial discrimination, housing insecurity, and wellbeing (depression, social support, self-rated health). We implemented a cross-sectional survey with African and Caribbean Black women living with HIV in 5 Ontario cities, and included 157 participants with complete data in the analyses. We conducted structural equation modeling using maximum likelihood estimation to evaluate the hypothesized conceptual model. One-fifth (22.5%; n = 39) of participants reported housing insecurity. As hypothesized, racial discrimination had significant direct effects on: HIV-related stigma, depression and social support, and an indirect effect on self-rated health via HIV-related stigma. HIV-related stigma and housing insecurity had direct effects on depression and social support, and HIV-related stigma had a direct effect on self-rated health. The model fit the data well: χ2 (45, n = 154) = 54.28, p = 0.387; CFI = 0.997; TLI = 0.996; RMSEA = 0.016. Findings highlight the need to address housing insecurity and intersecting forms of stigma and discrimination among African and Caribbean Black women living with HIV. Understanding the complex relationships between housing insecurity, HIV-related stigma, racial discrimination, and wellbeing can inform multi-level interventions to reduce stigma and enhance health. PMID

  4. Microfibrillated cellulose sheets coating oxygen-permeable PDMS membranes induce rat hepatocytes 3D aggregation into stably-attached 3D hemispheroids.

    Science.gov (United States)

    Evenou, Fanny; Couderc, Sandrine; Kim, Beomjoon; Fujii, Teruo; Sakai, Yasuyuki

    2011-01-01

    Here we report the use of natural, chemically-unmodified, microfibrillated cellulose (MFC) as a matrix for hepatocyte culture. We developed an original cell-culture design composed of a thin 3D-microstructured fibrous substrate consisting of a MFC sheet coating a highly O(2)-permeable polydimethylsiloxane (PDMS) membrane. The MFC-coated PDMS membranes were obtained according to a simple process where cellulose fibres were deposited from an aqueous suspension on the PDMS surfaces and the films were dried under mild conditions. To enable oxygen diffusion through the membranes, they were assembled on bottomless frames ('O(2)+' condition). Rat hepatocytes primary-cultured on such MFC-PDMS membranes quickly organized themselves into large hemispherical 3D aggregates which were tightly anchored to the MFC sheets. In contrast, hepatocytes cultured on smooth PDMS membranes in the O(2)+ system (O(2)+, PDMS) organized into unstable 2D monolayers which easily detached from the surfaces. Hepatocyte 3D cultures obtained on MFC-PDMS membranes exhibited higher liver-specific functions over a 2-week culture period, as assessed by both the higher albumin secretion and urea synthesis rate. The MFC-PDMS membranes appear suitable for obtaining stably-attached and functional hepatocyte 3D cultures and appear interesting for drug/chemical screenings in a microplate format, but also for microfluidic applications.

  5. Does Parenting Explain the Effects of Structural Conditions on Children's Antisocial Behavior? A Comparison of Blacks and Whites.

    Science.gov (United States)

    McLeod, Jane D.; And Others

    1994-01-01

    Data on black children and white children over age six and their mothers (from National Longitudinal Survey of Youth) indicate no racial differences in total effects of poverty and single parenthood on parenting practices (affection and spanking). Parenting practices were reciprocally related to child's antisocial behavior for whites, but did not…

  6. Homophobia, hypermasculinity and the US black church.

    Science.gov (United States)

    Ward, Elijah G

    2005-01-01

    Black churches in the USA constitute a significant source of the homophobia that pervades black communities. This theologically-driven homophobia is reinforced by the anti-homosexual rhetoric of black nationalism. Drawing on a variety of sources, this paper discusses the sources of homophobia within black communities, and its impact upon self-esteem, social relationships and physical health. Religion-based homophobia and black nationalism point to wider structures which have influenced their emergence, including racism, patriarchy and capitalism. It is vital for US black churches and communities to understand and transcend their longstanding resistance to openly addressing complex, painful issues of sexuality and embrace healthier definitions of black manhood.

  7. Black Culture

    Directory of Open Access Journals (Sweden)

    Angela Khristin Brown

    2013-07-01

    Full Text Available The migration of blacks in North America through slavery became united.  The population of blacks past downs a tradition of artist through art to native born citizens. The art tradition involved telling stories to each generation in black families. The black culture elevated by tradition created hope to determine their personal freedom to escape from poverty of enslavement and to establish a way of life through tradition. A way of personal freedoms was through getting a good education that lead to a better foundation and a better way of life.

  8. Changes in composition, structure and aboveground biomass over seventy-six years (1930-2006) in the Black Rock Forest, Hudson Highlands, southeastern New York state

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, W.S.F. [Black Rock Forest Consortium, Cornwall, NY (United States); Griffin, K.L. [Colombia Univ., Palisades, NY (United States). Lamont-Doherty Earth Observatory; Roth, H. [Barnard College, New York, NY (United States). Dept. of Environmental Science; Turnbull, M.H. [Canterbury Univ., Christchurch (New Zealand). School of Biological Sciences; Whitehead, D. [Landcare Research, Lincoln (New Zealand); Tissue, D.T. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Biology

    2008-04-15

    This study measured changes in tree species composition and structures over a period of 76 years in the Black Rock Forest in southeastern New York. The study used data from periodic forest inventories and long-term plots as well as species-specific allometric equations to estimate aboveground forest biomass (AGB) and carbon content. Sixteen long-term plots were monitored at various forest elevations. Density, basal area, and aboveground biomass were calculated. Allometric regression equations were used to estimate live aboveground tree biomass. Results of the review showed that paper birch, black spruce, and American elm species were extirpated from the forest between the early 1930s and the year 2000. Species that invaded the forest included white poplar, red mulberry, eastern cottonwood, and slippery elm. Red oak and chestnut oaks dominated the forest canopy. The forest understory changed over the period from mixed oak to red maple and black birch. Red oak canopy trees stored carbon at twice the rate of similar-sized canopy trees in the forest. A significant loss of live tree biomass was attributed to canopy tree mortality since 1999. It was concluded that insect outbreaks and droughts are important constraints on long-term biomass growth. 87 refs., 2 tabs., 5 figs.

  9. Study on the Optimum Cutting Parameters of an Aluminum Mold for Effective Bonding Strength of a PDMS Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Caffiyar Mohamed Yousuff

    2017-08-01

    Full Text Available Master mold fabricated using micro milling is an easy way to develop the polydimethylsiloxane (PDMS based microfluidic device. Achieving high-quality micro-milled surface is important for excellent bonding strength between PDMS and glass slide. The aim of our experiment is to study the optimal cutting parameters for micro milling an aluminum mold insert for the production of a fine resolution microstructure with the minimum surface roughness using conventional computer numerical control (CNC machine systems; we also aim to measure the bonding strength of PDMS with different surface roughnesses. Response surface methodology was employed to optimize the cutting parameters in order to obtain high surface smoothness. The cutting parameters were demonstrated with the following combinations: 20,000 rpm spindle speed, 50 mm/min feed rate, depth of cut 5 µm with tool size 200 µm or less; this gives a fine resolution microstructure with the minimum surface roughness and strong bonding strength between PDMS–PDMS and PDMS–glass.

  10. Facile Fabrication of a PDMS@Stearic Acid-Kaolin Coating on Lignocellulose Composites with Superhydrophobicity and Flame Retardancy

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2018-05-01

    Full Text Available The disadvantages such as swelling after absorbing water and flammability restrict the widespread applications of lignocellulose composites (LC. Herein, a facile and effective method to fabricate superhydrophobic surfaces with flame retardancy on LC has been investigated by coating polydimethylsiloxane (PDMS and stearic acid (STA modified kaolin (KL particles. The as-prepared coatings on the LC exhibited a good repellency to water (a contact angle = 156°. Owing to the excellent flame retardancy of kaolin particles, the LC coated with PDMS@STA-KL displayed a good flame retardancy during limiting oxygen index and cone calorimeter tests. After the coating treatment, the limiting oxygen index value of the LC increased to 41.0. Cone calorimetry results indicated that the ignition time of the LC coated with PDMS@STA-KL increased by 40 s compared with that of uncoated LC. Moreover, the peak heat release rate (PHRR and the total heat release (THR of LC coated with PDMS@STA-KL reduced by 18.7% and 19.2% compared with those of uncoated LC, respectively. This LC coating with improved water repellency and flame retardancy can be considered as a potential alternative to protect the lignocellulose composite.

  11. Fabrication of Graphene Oxide Dispersed DLC/PDMS Substrates and Human Mesenchymal Stem Cell Culture(Researches)

    OpenAIRE

    伴, 雅人; Masahito, Ban

    2016-01-01

    Graphene Oxide (GO) dispersed DLC (diamond-like carbon) thin film deposited PDMS substrates were fabricated with plasma treatments and dip coating methods. It was found from cell culture tests using the substrates as scaffolds human mesenchymal stem cells (hMSCs) indicated larger F-actin areas compared with the substrates without GO and/or DLC.

  12. Facile Fabrication and Characterization of a PDMS-Derived Candle Soot Coated Stable Biocompatible Superhydrophobic and Superhemophobic Surface.

    Science.gov (United States)

    Iqbal, R; Majhy, B; Sen, A K

    2017-09-13

    We report a simple, inexpensive, rapid, and one-step method for the fabrication of a stable and biocompatible superhydrophobic and superhemophobic surface. The proposed surface comprises candle soot particles embedded in a mixture of PDMS+n-hexane serving as the base material. The mechanism responsible for the superhydrophobic behavior of the surface is explained, and the surface is characterized based on its morphology and elemental composition, wetting properties, mechanical and chemical stability, and biocompatibility. The effect of %n-hexane in PDMS, the thickness of the PDMS+n-hexane layer (in terms of spin coating speed) and sooting time on the wetting property of the surface is studied. The proposed surface exhibits nanoscale surface asperities (average roughness of 187 nm), chemical compositions of soot particles, very high water and blood repellency along with excellent mechanical and chemical stability and excellent biocompatibility against blood sample and biological cells. The water contact angle and roll-off angle is measured as 160° ± 1° and 2°, respectively, and the blood contact angle is found to be 154° ± 1°, which indicates that the surface is superhydrophobic and superhemophobic. The proposed superhydrophobic and superhemophobic surface offers significantly improved (>40%) cell viability as compared to glass and PDMS surfaces.

  13. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    Science.gov (United States)

    Pervaporation is potentially a cost-effective means of recovering biofuels, such as ethanol, from biomass fermentation broths for small- to medium-scale applications (~2 - 20 million liters per year). Hydrophobic zeolite-filled polydimethylsiloxane (PDMS) membranes have been sho...

  14. Preparation and characterization of polymers based on PDMS and PEG-DMA as potential scaffold for cell growth.

    Science.gov (United States)

    Adiguzel, Zelal; Sagnic, Servet A; Aroguz, Ayse Z

    2017-09-01

    This work describes a soft lithographic method for the generation of patterned both biopolymer and silver with each covered on microscope glass. Because of their biocompatible nature and permeability to gases the biopolymers are convenient for cell culture studies. The microscope glass was covered by polyethylene glycol dimethyl acrylate (PEG-DMA), as biopolymer and patterned by the UV light passing through the printed photomask for the preparation of the PDMS stamps. PDMS stamps were originally fabricated in this work for pattern transfer. Ag and polymer covered on the microscope glass were patterned by using these PDMS stamps. The patterned Ag, PDMS mold and PEG-DMA biopolymer were used as scaffolds and cell growth experiments have been performed on these materials. The degree of cell viability was measured by seeding them with L929 mouse fibroblasts and the number of the cells was measured by neutral red uptake assay. An increase in the number of cells on the material surfaces was observed. The pattern and the cell growth properties were followed by optic microscope. The results obtained from the cell growth was subjected to student's t-test. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A new water absorbable mechanical Epidermal skin equivalent: the combination of hydrophobic PDMS and hydrophilic PVA hydrogel.

    Science.gov (United States)

    Morales-Hurtado, M; Zeng, X; Gonzalez-Rodriguez, P; Ten Elshof, J E; van der Heide, E

    2015-06-01

    Research on human skin interactions with healthcare and lifestyle products is a topic continuously attracting scientific studies over the past years. It is possible to evaluate skin mechanical properties based on human or animal experimentation, yet in addition to possible ethical issues, these samples are hard to obtain, expensive and give rise to highly variable results. Therefore, the design of a skin equivalent is essential. This paper describes the design and characterization of a new Epidermal Skin Equivalent (ESE). The material resembles the properties of epidermis and is a first approach to mimic the mechanical properties of the human skin structure, variable with the length scale. The ESE is based on a mixture of Polydimethyl Siloxane (PDMS) and Polyvinyl Alcohol (PVA) hydrogel cross-linked with Glutaraldehyde (GA). It was chemically characterized by XPS and FTIR measurements and its cross section was observed by macroscopy and cryoSEM. Confocal Microscope analysis on the surface of the ESE showed an arithmetic roughness (Ra) between 14-16 μm and contact angle (CA) values between 50-60°, both of which are close to the values of in vivo human skins reported in the literature. The Equilibrium Water Content (ECW) was around 33.8% and Thermo Gravimetric Analysis (TGA) confirmed the composition of the ESE samples. Moreover, the mechanical performance was determined by indentation tests and Dynamo Thermo Mechanical Analysis (DTMA) shear measurements. The indentation results were in good agreement with that of the target epidermis reported in the literature with an elastic modulus between 0.1-1.5 MPa and it showed dependency on the water content. According to the DTMA measurements, the ESE exhibits a viscoelastic behavior, with a shear modulus between 1-2.5MPa variable with temperature, frequency and the hydration of the samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Analysis of using PDMS polymer as the sensors of the pressure or weight

    Science.gov (United States)

    Jargus, Jan; Nedoma, Jan; Fajkus, Marcel; Novak, Martin; Mec, Pavel; Cvejn, Daniel; Bujdos, David; Vasinek, Vladimir

    2017-10-01

    Polydimethylsiloxane (PDMS) can be used for its optical properties, and its composition offers the possibility of use in the diverse environments (industry, photonics, medicine applications, security devices and etc.). Therefore authors of this article focused on more detailed working with this material. This material could be use for the sensory applications such as the sensor of pressure or weight, which may find use also in the field of security and defense. The article describes the process of making the prototype of the sensor and its verification based on laboratory results. Measurement methodology is based on the determination of the change of optical power at the output of the sensor prototype depending on the change in pressure or weight. We estimate the maximum load of the sensor on the basis of the laboratory results in the units of tons. Using a calibration measurement can determine the amount of pressure and weight with an accuracy of +/- 2 %.

  17. Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay.

    Science.gov (United States)

    Skafte-Pedersen, Peder; Sabourin, David; Dufva, Martin; Snakenborg, Detlef

    2009-10-21

    The design, fabrication and characterization of a miniaturized, mechanically-actuated 12-channel peristaltic pump for microfluidic applications and built from simple, low-cost materials and fabrication methods is presented. Two pump configurations are tested, including one which reduces pulsating flow. Both use a monolithic PDMS pumping inlay featuring three-dimensional geometries favourable to pumping applications and 12 wholly integrated circular channels. Flow rates in the sub-microL min(-1) to microL min(-1) range were obtained. Channel-to-channel flow rate variability was comparable to a commercial pumping system at lower flow rates. The small footprint, 40 mm by 80 mm, of the micropump renders it portable, and allows its use on microscope stages adjacent to microfluidic devices, thus reducing system dead volumes. The micropump's design allows potential use in remote and resource-limited locations.

  18. Large-Area and High-Throughput PDMS Microfluidic Chip Fabrication Assisted by Vacuum Airbag Laminator

    Directory of Open Access Journals (Sweden)

    Shuting Xie

    2017-07-01

    Full Text Available One of the key fabrication steps of large-area microfluidic devices is the flexible-to-hard sheet alignment and pre-bonding. In this work, the vacuum airbag laminator (VAL which is commonly used for liquid crystal display (LCD production has been applied for large-area microfluidic device fabrication. A straightforward, efficient, and low-cost method has been achieved for 400 × 500 mm2 microfluidic device fabrication. VAL provides the advantages of precise alignment and lamination without bubbles. Thermal treatment has been applied to achieve strong PDMS–glass and PDMS–PDMS bonding with maximum breakup pressure of 739 kPa, which is comparable to interference-assisted thermal bonding method. The fabricated 152 × 152 mm2 microfluidic chip has been successfully applied for droplet generation and splitting.

  19. Patterned Fibers Embedded Microfluidic Chips Based on PLA and PDMS for Ag Nanoparticle Safety Testing

    Directory of Open Access Journals (Sweden)

    Yaowen Liu

    2016-11-01

    Full Text Available A new method to integrate poly-dl-lactide (PLA patterned electrospun fibers with a polydimethylsiloxane (PDMS microfluidic chip was successfully developed via lithography. Hepatocyte behavior under static and dynamic conditions was investigated. Immunohistochemical analyses indicated good hepatocyte survival under the dynamic culture system with effective hepatocyte spheroid formation in the patterned microfluidic chip vs. static culture conditions and tissue culture plate (TCP. In particular, hepatocytes seeded in this microfluidic chip under a flow rate of 10 μL/min could re-establish hepatocyte polarity to support biliary excretion and were able to maintain high levels of albumin and urea secretion over 15 days. Furthermore, the optimized system could produce sensitive and consistent responses to nano-Ag-induced hepatotoxicity during culture. Thus, this microfluidic chip device provides a new means of fabricating complex liver tissue-engineered scaffolds, and may be of considerable utility in the toxicity screening of nanoparticles.

  20. Performance evaluation of carbon black based electrodes for underwater ECG monitoring.

    Science.gov (United States)

    Reyes, Bersain A; Posada-Quintero, Hugo F; Bales, Justin R; Chon, Ki H

    2014-01-01

    Underwater electrocardiogram (ECG) monitoring currently uses Ag/AgCl electrodes and requires sealing of the electrodes to avoid water intrusion, but this procedure is time consuming and often results in severe irritations or even tearing of the skin. To alleviate these problems, our research team developed hydrophobic electrodes comprised of a mixture of carbon black powder (CB) and polydimethylsiloxane (PDMS) that provide all morphological waveforms without distortion of an ECG signal for dry and water-immersed conditions. Performance comparison of CB/PDMS electrodes to adhesive Ag/AgCl hydrogel electrodes was carried out in three different scenarios which included recordings from a dry surface, water immersion, and post-water immersion conditions. CB/PDMS electrodes were able to acquire ECG signals highly correlated with those from adhesive Ag/AgCl electrodes during all conditions. Statistical reduction in ECG amplitude (pelectrodes when compared to Ag/AgCl electrodes sealed with their waterproof adhesive tape. Besides this reduction readability of the recordings was not obscured and all morphological waveforms of the ECG signal were discernible. The advantages of our CB/PDMS electrodes are that they are reusable, can be fabricated economically, and most importantly, high-fidelity underwater ECG signals can be acquired without relying on the heavy use of waterproof sealing.

  1. Black Holes from the Dark Ages:. Exploring the Reionization ERA and Early Structure Formation with Quasars and Gamma-Ray Bursts

    Science.gov (United States)

    Djorgovski, S. G.

    2006-02-01

    The cosmic reionization era, which includes formation of the first stars, galaxies, and AGN, is now one of the most active frontiers of cosmological research. We review briefly our current understanding of the early structure formation, and use the ideas about a joint formation of massive black holes (which power the early QSOs) and their host galaxies to employ high-redshift QSOs as probes of the early galaxy formation and primordial large-scale structure. There is a growing evidence for a strong biasing in the formation of the first luminous sources, which would lead to a clumpy reionization. Absorption spectroscopy of QSOs at z ≥ 6 indicates the end of the reionization era at z 6; yet measurements from the WMAP satellite suggest and early reionization at z 10 - 20. The first generation of massive stars, perhaps aided by the early mini-quasars, may have reionized the universe at such high redshifts, but their feedback may have disrupted the subsequent star and galaxy formation, leading to an extended and perhaps multimodal reionization history ending by z 6. Observations of γ-ray bursts from the death events of these putative Population III stars may provide essential insight into the primordial structure formation, reionization, early chemical enrichment, and formation of seed black holes which may grow to become central engines of luminous quasars.

  2. A preliminary factor analytic investigation into the firstorder factor structure of the Fifteen Factor Plus (15FQ+ on a sample of Black South African managers

    Directory of Open Access Journals (Sweden)

    Seretse Moyo

    2011-10-01

    Research purpose: The primary objective of this study was to undertake a factor analytic investigation of the first-order factor structure of the 15FQ+. Motivation for the study: The construct validity of the 15FQ+, as a measure of personality, is necessary even though it is insufficient to justify its use in personnel selection. Research design, approach and method: The researchers evaluated the fit of the measurement model, which the structure and scoring key of the 15FQ+ implies, in a quantitative study that used an ex post facto correlation design through structural equation modelling. They conducted a secondary data analysis. They selected a sample of 241 Black South African managers from a large 15FQ+ database. Main findings: The researchers found good measurement model fit. The measurement model parameter estimates were worrying. The magnitude of the estimated model parameters suggests that the items generally do not reflect the latent personality dimensions the designers intended them to with a great degree of precision. The items are reasonably noisy measures of the latent variables they represent. Practical/managerial implications: Organisations should use the 15FQ+ carefully on Black South African managers until further local research evidence becomes available. Contribution/value-add: The study is a catalyst to trigger the necessary additional research we need to establish convincingly the psychometric credentials of the 15FQ+ as a valuable assessment tool in South Africa.

  3. Black Cohosh

    Science.gov (United States)

    ... who have had hormone-sensitive conditions such as breast cancer or for pregnant women or nursing mothers. Black cohosh should not be confused with blue cohosh (Caulophyllum thalictroides) , which has different effects and may not be safe. Black cohosh has ...

  4. Meta-analysis of Black vs. White racial disparity in schizophrenia diagnosis in the United States: Do structured assessments attenuate racial disparities?

    Science.gov (United States)

    Olbert, Charles M; Nagendra, Arundati; Buck, Benjamin

    2018-01-01

    Researchers have repeatedly observed that clinicians diagnose Black individuals with schizophrenia at greater rates than White individuals. We conducted a meta-analytic review to quantify the extent of racial diagnostic disparities in schizophrenia, examine whether structured-interview assessments attenuate these disparities, and assess for moderating factors. Studies were included that presented original probability-sample data and reported data sufficient to derive odds ratios and 95% confidence intervals (CIs) for schizophrenia diagnosis by race. In total, 14 studies using structured-interview diagnostic assessments and 41 studies using unstructured assessments met our inclusion criteria. Substantial heterogeneity was observed, but there was little evidence of publication bias. Inverse heterogeneity models showed that Black individuals were diagnosed with schizophrenia at greater rates than White individuals across all studies (OR = 2.42, 95% CI [1.59, 3.66]) as well as in studies using unstructured (OR = 2.43, 95% CI [1.59, 3.72]) and structured-instrument (OR = 1.77, 95% CI [1.31, 2.38]) diagnostic assessments. Studies using structured-instrument diagnostic assessments did not show statistically attenuated odds ratios compared with studies using unstructured assessments. Metaregression analyses indicated higher disparities in studies with higher proportions of White patients or lower average patient age; evidence was equivocal as to the effect of study setting (e.g., hospital vs. community clinic) and geographic region on racial disparities. Overall, racial diagnostic disparity in schizophrenia represents a robust albeit heterogeneous clinical phenomenon that has been stable over the past 3 decades; structured-instrument assessments do not fully mitigate these disparities, but power analysis suggests they may have a small effect. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Near-horizon Structure of Escape Zones of Electrically Charged Particles around Weakly Magnetized Rotating Black Hole

    Science.gov (United States)

    Kopáček, Ondřej; Karas, Vladimír

    2018-01-01

    An interplay of magnetic fields and gravitation drives accretion and outflows near black holes. However, a specific mechanism is still a matter of debate; it is very likely that different processes dominate under various conditions. In particular, for the acceleration of particles and their collimation in jets, an ordered component of the magnetic field seems to be essential. Here we discuss the role of large-scale magnetic fields in transporting the charged particles and dust grains from the bound orbits in the equatorial plane of a rotating (Kerr) black hole and the resulting acceleration along trajectories escaping the system in a direction parallel to the symmetry axis (perpendicular to the accretion disk). We consider a specific scenario of destabilization of circular geodesics of initially neutral matter by charging (e.g., due to photoionization). Some particles may be set on escaping trajectories and attain relativistic velocity. The case of charged particles differs from charged dust grains by their charge-to-mass ratio, but the acceleration mechanism operates in a similar manner. It appears that the chaotic dynamics controls the outflow and supports the formation of near-horizon escape zones. We employ the technique of recurrence plots to characterize the onset of chaos in the outflowing medium. We investigate the system numerically and construct the basin-boundary plots, which show the location and the extent of the escape zones. The effects of black hole spin and magnetic field strength on the formation and location of escape zones are discussed, and the maximal escape velocity is computed.

  6. On black hole horizon fluctuations

    International Nuclear Information System (INIS)

    Tuchin, K.L.

    1999-01-01

    A study of the high angular momentum particles 'atmosphere' near the Schwarzschild black hole horizon suggested that strong gravitational interactions occur at invariant distance of the order of 3 √M [2]. We present a generalization of this result to the Kerr-Newman black hole case. It is shown that the larger charge and angular momentum black hole bears, the larger invariant distance at which strong gravitational interactions occur becomes. This invariant distance is of order 3 √((r + 2 )/((r + - r - ))). This implies that the Planckian structure of the Hawking radiation of extreme black holes is completely broken

  7. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  8. Quantum black holes

    International Nuclear Information System (INIS)

    't Hooft, G.

    1987-01-01

    No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references

  9. Electrospun black titania nanofibers: Influence of hydrogen plasma-induced disorder on the electronic structure and photoelectrochemical performance

    OpenAIRE

    Lepcha, A.; Maccato, C.; Mettenbörger, A.; Andreu, T.; Mayrhofer, L.; Walter, M.; Olthof, S.; Ruoko, T.P.; Klein, A.; Moseler, M.; Meerholz, K.; Morante, J.R.; Barreca, D.; Mathur, S.

    2015-01-01

    This work encompasses a facile method for tailoring surface defects in electrospun TiO2 nanofibers by employing hydrogen plasma treatments. This amiable processing method was proven with SQUID, EPR, and XPS to be highly effective in generating oxygen vacancies, accompanied by the reduction of Ti4+ centers to Ti3+, resulting in the formation of black titania. The treatment temperature was found to affect the Ti3+/Ti4+ ratios and surface valence, while preserving the original 1D morphology of t...

  10. Ground beetles (Coleoptera: Carabidae from the region of Cape Emine (central Bulgarian Black sea coast. Part II. Ecological parameters and community structure

    Directory of Open Access Journals (Sweden)

    Teodora Teofilova

    2015-02-01

    Full Text Available For the first time an ecological study of the carabid fauna of the area of Cape Emine (Bulgarian Black sea coast was conducted. Over the period 2010 – 2011 adult carabid beetles were collected. The investigation was carried out at 7 sampling sites and pitfall traps were used. During the study altogether 6245 specimens were captured. The greatest number of both species and specimens was found in the steppe-like habitat, least – in the pine (Pinus nigra J. F. Arnold plantation. Indices for α- and β-diversity were calculated. The dominant structure of the whole carabid complex showed the presence of two eudominant, three dominant, two subdominant, eleven recedent and 85 subrecedent species. The analysis of the sex structure showed the total prevalence of males over females. Cluster analysis indicated a low percentage of taxonomic similarity between the communities, which reflected the diversity of the landscape.

  11. Black holes and the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028 Spain (Spain); Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu [Institute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 (United States)

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  12. Black Tea

    Science.gov (United States)

    ... leaves of the same plant, has some different properties. Black tea is used for improving mental alertness ... that slow blood clotting include aspirin, clopidogrel (Plavix), diclofenac (Voltaren, Cataflam, others), ibuprofen (Advil, Motrin, others), naproxen ( ...

  13. Why Blue-Collar Blacks Help Less

    OpenAIRE

    Smith, Sandra Susan; Young, Kara Alexis

    2013-01-01

    Why are blue-collar blacks less likely to help jobseekers than jobholders from other ethnoracial groups or even than more affluent blacks? Drawing from in-depth, semi-structured interviews with 97 black and Latino workers at one large, public sector employer, we find that blue-collar black workers both helped less proactively and rejected more requests for assistance than did blue-collar Latino and white-collar black workers. We attribute blue-collar blacks’ more passive engagement to their...

  14. Black Hole Monodromy and Conformal Field Theory

    NARCIS (Netherlands)

    Castro, A.; Lapan, J.M.; Maloney, A.; Rodriguez, M.J.

    2013-01-01

    The analytic structure of solutions to the Klein-Gordon equation in a black hole background, as represented by monodromy data, is intimately related to black hole thermodynamics. It encodes the "hidden conformal symmetry" of a nonextremal black hole, and it explains why features of the inner event

  15. A route for industry compatible directed self-assembly of high-chi PS-PDMS block copolymers

    Science.gov (United States)

    Böhme, S.; Girardot, C.; Garnier, J.; Arias-Zapata, J.; Arnaud, S.; Tiron, R.; Marconot, O.; Buttard, D.; Zelsmann, M.

    2016-04-01

    In this work, we present completely industry adapted processes for high-chi PS-PDMS block copolymers. DSA was performed on trenches fabricated within standard photolithography stacks and pattern transfer was made by using etching processes similar to those used for gate etching in industry. We propose the alignment of two different PS-PDMS (45.5kg/mol, 16kg/mol) solely by thermal annealing. By adding plasticizer molecules in the high molecular weight BCP (45.5k), we have not only avoided solvent vapor annealing but also reduced significantly the processing time. The properties of the guiding lines and the quality of the final BCP hard mask (CD uniformity, LWR, LER) were investigated.

  16. Virtual Black Holes

    OpenAIRE

    Hawking, Stephen W.

    1995-01-01

    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of $S^2\\times S^2$ and $K3$ bubbles. Comparison with the instantons for pair creation of black holes shows that the $S^2\\times S^2$ bubbles can be interpreted as closed loops of virtual black holes. It is ...

  17. The research and development of module 3D designing system for nuclear power project based on the PDMS

    International Nuclear Information System (INIS)

    Lu Qinwu; Li Yi; Wu Xiangyong

    2012-01-01

    In order to meet the demand of implementing Modularization design in CPR1000 nuclear power projects, this study aims to develop, relying on CPR1000 nuclear power project, the self-reliant module 3D design system based on the PDMS. so as to offer a convenient and effective module 3D design tool for the designers. Satisfactory results have been achieved through the test and application of two design projects. The research and application have entered the domestic advanced level. (authors)

  18. Novel Method for Adhesion between PI-PDMS Using Butyl Rubber for Large Area Flexible Body Patches

    OpenAIRE

    Joshi, S.; Bagani, R.; Beckers, Lucas; Dekker, R.

    2017-01-01

    This paper reports the use of rubber—Polybutadiene as an intermediate adhesive layer for improving the adhesion between polyimide (PI) and silicone polydimethylsiloxane (PDMS) which is required for a reliable fabrication of flexible/stretchable body patches for various applications. The adhesive bond initiated by the butyl rubber (BR), apart from being extremely strong, is also chemically resistant and mechanically stable as compared to the state of the art processes of improving adhesion bet...

  19. An agar gel membrane-PDMS hybrid microfluidic device for long term single cell dynamic study.

    Science.gov (United States)

    Wong, Ieong; Atsumi, Shota; Huang, Wei-Chih; Wu, Tung-Yun; Hanai, Taizo; Lam, Miu-Ling; Tang, Ping; Yang, Jian; Liao, James C; Ho, Chih-Ming

    2010-10-21

    Significance of single cell measurements stems from the substantial temporal fluctuations and cell-cell variability possessed by individual cells. A major difficulty in monitoring surface non-adherent cells such as bacteria and yeast is that these cells tend to aggregate into clumps during growth, obstructing the tracking or identification of single-cells over long time periods. Here, we developed a microfluidic platform for long term single-cell tracking and cultivation with continuous media refreshing and dynamic chemical perturbation capability. The design highlights a simple device-assembly process between PDMS microchannel and agar membrane through conformal contact, and can be easily adapted by microbiologists for their routine laboratory use. The device confines cell growth in monolayer between an agar membrane and a glass surface. Efficient nutrient diffusion through the membrane and reliable temperature maintenance provide optimal growth condition for the cells, which exhibited fast exponential growth and constant distribution of cell sizes. More than 24 h of single-cell tracking was demonstrated on a transcription-metabolism integrated synthetic biological model, the gene-metabolic oscillator. Single cell morphology study under alcohol toxicity allowed us to discover and characterize cell filamentation exhibited by different E. coli isobutanol tolerant strains. We believe this novel device will bring new capabilities to quantitative microbiology, providing a versatile platform for single cell dynamic studies.

  20. Experimental Investigation of the Magnetorheological Behavior of PDMS Elastomer Reinforced with Iron Micro/Nanoparticles

    Directory of Open Access Journals (Sweden)

    Luis Manuel Palacios-Pineda

    2017-12-01

    Full Text Available The aim of this article focuses on identifying how the addition of iron micro- and nanoparticles influences the physical properties of magnetorheological composite materials developed with a polydimethylsiloxane (PDMS matrix with different contents of silicone oil used as additive. A number of characterization techniques have been performed in order to fully characterize the samples, such as cyclic and uniaxial extension, rheology, swelling, Vibrating sample magnetometer (VSM, X-ray Diffraction (XRD, Scanning electron microscopy (SEM, Fourier-Transform Infrared (FTIR, X-ray photoelectronic spectroscopy (XPS and Thermogravimetric analysis (TGA. The comparison between two matrices with different shore hardnesses and their mechanical and chemical properties are elucidated by swelling and tensile tests. In fact, swelling tests showed that higher crosslink density leads to increasing elongation at break and tensile strength values for the composite materials. The best mechanical performance in the magnetorheological material was observed for those samples manufactured using a higher silicone oil content in a hard polymeric matrix. Furthermore, it has been found that the magnetic properties are enhanced when nanoparticles are used as fillers instead of microparticles.

  1. Transient deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS) microfluidics.

    Science.gov (United States)

    Anderson, Ryan R; Hu, Weisheng; Noh, Jong Wook; Dahlquist, William C; Ness, Stanley J; Gustafson, Timothy M; Richards, Danny C; Kim, Seunghyun; Mazzeo, Brian A; Woolley, Adam T; Nordin, Gregory P

    2011-06-21

    We report the integration of a nanomechanical sensor consisting of 16 silicon microcantilevers with polydimethylsiloxane (PDMS) microfluidics. For microcantilevers positioned near the bottom of a microfluidic flow channel, a transient differential analyte concentration for the top versus bottom surface of each microcantilever is created when an analyte-bearing fluid is introduced into the flow channel (which is initially filled with a non-analyte containing solution). We use this effect to characterize a bare (nonfunctionalized) microcantilever array in which the microcantilevers are simultaneously read out with our recently developed high sensitivity in-plane photonic transduction method. We first examine the case of non-specific binding of bovine serum albumin (BSA) to silicon. The average maximum transient microcantilever deflection in the array is -1.6 nm, which corresponds to a differential surface stress of only -0.23 mN m(-1). This is in excellent agreement with the maximum differential surface stress calculated based on a modified rate equation in conjunction with finite element simulation. Following BSA adsorption, buffer solutions with different pH are introduced to further study microcantilever array transient response. Deflections of 20-100 nm are observed (2-14 mN m(-1) differential surface stress). At a flow rate of 5 μL min(-1), the average measured temporal width (FWHM) of the transient response is 5.3 s for BSA non-specific binding and 0.74 s for pH changes.

  2. Analyzing of chromaticity temperature of novel bulb composed of PDMS and phosphor

    Science.gov (United States)

    Novak, M.; Fajkus, M.; Jargus, J.; Bednarek, L.; Cubik, J.; Cvejn, D.; Vasinek, V.

    2017-10-01

    The authors of this article focused on the issue of measurement of the chromaticity temperature of proposed bulbs made from polydimethylsiloxane, depending on the temperature of proposed bulbs. The advantage of this solution is the immunity to electromagnetic interference (EMI) and the ability to use, for example in dangerous environments (such as mines, factories, etc.). For the realization of incandescent bulbs was used transparent two-component elastomer Sylgard 184. A mixture of polydimethylsiloxane (PDMS) and a curing agent in a defined ratio (10:1) and admixture with garnet phosphor YAG: Ce was cured in the temperature box at temperature 90°C +/- 3°C in the shape of the bulbs. All experiments were realized with eight different weight ratios of phosphor and Sylgard 184. Optical power (5 W) from a laser with a wavelength of 455 nm was fed to the proposed bulbs using the cylindrical waveguide of polydimethylsiloxane with a diameter of 5 mm. Chromaticity temperature was measured by two temperature sensors for 12h. The outcome of this study is the evaluation of the chromaticity temperature of output light depending on temperature variations of proposed bulbs due to the conversion of optical power into heat.

  3. New Magnetic Microactuator Design Based on PDMS Elastomer and MEMS Technologies for Tactile Display.

    Science.gov (United States)

    Streque, Jeremy; Talbi, Abdelkrim; Pernod, Philippe; Preobrazhensky, Vladimir

    2010-01-01

    Highly efficient tactile display devices must fulfill technical requirements for tactile stimulation, all the while preserving the lightness and compactness needed for handheld operation. This paper focuses on the elaboration of highly integrated magnetic microactuators for tactile display devices. FEM simulation, conception, fabrication, and characterization of these microactuators are presented in this paper. The current demonstrator offers a 4 × 4 flexible microactuator array with a resolution of 2 mm. Each actuator is composed of a Poly (Dimethyl-Siloxane) (PDMS) elastomeric membrane, magnetically actuated by coil-magnet interaction. It represents a proof of concept for fully integrated MEMS tactile devices, with fair actuation forces provided for a power consumption up to 100 mW per microactuator. The prototypes are destined to provide both static and dynamic tactile sensations, with an optimized membrane geometry for actuation frequencies between DC and 350 Hz. On the basis of preliminary experiments, this display device can offer skin stimulations for various tactile stimuli for applications in the fields of Virtual Reality or Human-Computer Interaction (HCI). Moreover, the elastomeric material used in this device and its global compactness offer great advantages in matter of comfort of use and capabilities of integration in haptic devices.

  4. Characterization of PDMS samples with variation of its synthesis parameters for tunable optics applications

    Science.gov (United States)

    Marquez-Garcia, Josimar; Cruz-Félix, Angel S.; Santiago-Alvarado, Agustin; González-García, Jorge

    2017-09-01

    Nowadays the elastomer known as polydimethylsiloxane (PDMS, Sylgard 184), due to its physical properties, low cost and easy handle, have become a frequently used material for the elaboration of optical components such as: variable focal length liquid lenses, optical waveguides, solid elastic lenses, etc. In recent years, we have been working in the characterization of this material for applications in visual sciences; in this work, we describe the elaboration of PDMSmade samples, also, we present physical and optical properties of the samples by varying its synthesis parameters such as base: curing agent ratio, and both, curing time and temperature. In the case of mechanical properties, tensile and compression tests were carried out through a universal testing machine to obtain the respective stress-strain curves, and to obtain information regarding its optical properties, UV-vis spectroscopy is applied to the samples to obtain transmittance and absorbance curves. Index of refraction variation was obtained through an Abbe refractometer. Results from the characterization will determine the proper synthesis parameters for the elaboration of tunable refractive surfaces for potential applications in robotics.

  5. Primary Hepatocytes Cultured on a Fiber-Embedded PDMS Chip to Study Drug Metabolism

    Directory of Open Access Journals (Sweden)

    Yaowen Liu

    2017-06-01

    Full Text Available In vitro drug screening using reliable and predictable liver models remains a challenge. The identification of an ideal biological substrate is essential to maintain hepatocyte functions during in vitro culture. Here, we developed a fiber-embedded polydimethylsiloxane (PDMS chip to culture hepatocytes. Hepatocyte spheroids formed in this device were subjected to different flow rates, of which a flow rate of 50 μL/min provided the optimal microenvironment for spheroid formation, maintained significantly higher rates of albumin and urea synthesis, yielded higher CYP3A1 (cytochrome P450 3A1 and CYP2C11 (cytochrome P450 2C11 enzyme activities for metabolism, and demonstrated higher expression levels of liver-specific genes. In vitro metabolism tests on tolbutamide and testosterone by hepatocytes indicated predicted clearance rates of 1.98 ± 0.43 and 40.80 ± 10.13 mL/min/kg, respectively, which showed a good in vitro–in vivo correspondence. These results indicate that this system provides a strategy for the construction of functional engineered liver tissue that can be used to study drug metabolism.

  6. Influence of the PDMS substrate stiffness on the adhesion of Acanthamoeba castellanii

    Directory of Open Access Journals (Sweden)

    Sören B. Gutekunst

    2014-08-01

    Full Text Available Background: Mechanosensing of cells, particularly the cellular response to substrates with different elastic properties, has been discovered in recent years, but almost exclusively in mammalian cells. Much less attention has been paid to mechanosensing in other cell systems, such as in eukaryotic human pathogens.Results: We report here on the influence of substrate stiffness on the adhesion of the human pathogen Acanthamoebae castellanii (A. castellanii. By comparing the cell adhesion area of A. castellanii trophozoites on polydimethylsiloxane (PDMS substrates with different Young’s moduli (4 kPa, 29 kPa, and 128 kPa, we find significant differences in cell adhesion area as a function of substrate stiffness. In particular, the cell adhesion area of A. castellanii increases with a decreasing Young’s modulus of the substrate.Conclusion: The dependence of A. castellanii adhesion on the elastic properties of the substrate is the first study suggesting a mechanosensory effect for a eukaryotic human pathogen. Interestingly, the main targets of A. castellanii infections in the human body are the eye and the brain, i.e., very soft environments. Thus, our study provides first hints towards the relevance of mechanical aspects for the pathogenicity of eukaryotic parasites.

  7. Ultrahigh Flux Composite Hollow Fiber Membrane via Highly Crosslinked PDMS for Recovery of Hydrocarbons: Propane and Propene.

    Science.gov (United States)

    Liang, Can Zeng; Chung, Tai-Shung

    2018-03-01

    In order to make membrane separation technologies more cost-competitive with the well-established processes that are energy intensive for gas/vapor separation, a defect-free membrane with a high gas permeance is necessary. However, it remains challenging to meet these needs because of the difficulties in developing a suitable material and process that are economical and practical. Herein, a novel and straightforward strategy is presented to produce a defect-free hollow fiber composite membrane using a highly crosslinked polydimethylsiloxane (PDMS) synthesized by using a postcrosslinking method. The PDMS can be directly coated on a polyacrylonitrile (PAN) membrane substrate, and the resultant PDMS/PAN composite membrane has ultrahigh C 3 H 8 and C 3 H 6 permeances that are higher than 10 000 and 11 000 GPU, respectively, and the corresponding permselectivity of C 3 H 8 /N 2 and C 3 H 6 /N 2 are about 21 and 24, respectively. The newly developed methods and materials may open up a new cost-effective method to fabricate next-generation composite membranes for the recovery of hydrocarbons, organic vapors, and gases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fabrication of a roller type PDMS stamp using SU-8 concave molds and its application for roll contact printing

    International Nuclear Information System (INIS)

    Park, Jongho; Kim, Beomjoon

    2016-01-01

    Continuous fabrication of micropatterns at low-cost is attracting attention in various applications within industrial fields. To meet such demands, we have demonstrated a roll contact printing technique, using roller type polydimethylsiloxane (PDMS) stamps with roll-to-flat and roll-to-roll stages. Roller type PDMS stamps for roll contact printing were fabricated using a custom-made metal support and SU-8 microstructures fabricated on concave substrates as a mold. The molding/casting method which we developed here provided faster and easier fabrication than conventional methods for roller type stamps. Next, roll contact printing was performed using fabricated roller type PDMS stamps with roll-to-flat and roll-to-roll stages. Patterns with minimum widths of 3 μm and 2.1 μm were continuously fabricated for each stage, respectively. In addition, the relationship between applied pressures and dimensional changes of roll contact printed patterns was investigated. Finally, we confirmed that roll contact printing and the new fabrication method for roller stamps presented in this study demonstrated the feasibility for industrial applications. (paper)

  9. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    International Nuclear Information System (INIS)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar; Grunwald, Ingo

    2013-01-01

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  10. Investigations on the Structure Tectonics, Geophysics, Geochemistry, and Hydrocarbon Potential of the Black Mesa Basin, Northeastern Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Colin; Carroll, Herbert; Erickson, Richard; George, Steve; Guo, Genliang; Reeves,T.K.; Sharma, Bijon; Szpakiewicz, Michael; Volk, Len

    1999-04-27

    The U.S. Department of Energy (DOE) has instituted a basin-analysis study program to encourage drilling in underexplored and unexplored areas and increase discovery rates for hydrocarbons by independent oil companies within the continental United States. The work is being performed at the DOE's National Institute for Petroleum and Energy Research (NIPER) in Bartlesville, Oklahoma, by the Exploration and Drilling Group within BDM-Oklahoma (BDM), the manager of the facility for DOE. Several low-activity areas in the Mid-Continent, west, and southwest were considered for the initial study area (Reeves and Carroll 1994a). The Black Mesa region in northwestern Arizona is shown on the U.S. Geological Survey 1995 oil and gas map of the United States as an undrilled area, adapted from Takahashi and Gautier 1995. This basin was selected by DOE s the site for the initial NIPER-BDM survey to develop prospects within the Lower-48 states (Reeves and Carroll 1994b).

  11. Modeling distinct vertical biogeochemical structure of the Black Sea: Dynamical coupling of the oxic, suboxic, and anoxic layers

    Science.gov (United States)

    Oguz, Temel; Ducklow, Hugh W.; Malanotte-Rizzoli, Paola

    2000-12-01

    A one-dimensional, vertically resolved, physical-biogeochemical model is used to provide a unified representation of the dynamically coupled oxic-suboxic-anoxic system for the interior Black Sea. The model relates the annual cycle of plankton production in the form of a series of successive phytoplankton, mesozooplankton, and higher consumer blooms to organic matter generation and to the remineralization-ammonification-nitrification-denitrification chain of the nitrogen cycle as well as to anaerobic sulfide oxidation in the suboxic-anoxic interface zone. The simulations indicate that oxygen consumption during remineralization and nitrification, together with a lack of ventilation of subsurface waters due to the presence of strong stratification, are the two main factors limiting aerobic biogeochemical activity to the upper ˜75 m of the water column, which approximately corresponds to the level of nitrate maximum. The position of the upper boundary and thus the thickness of the suboxic layer are controlled by upper layer biological processes. The quasi-permanent character of this layer and the stability of the suboxic-anoxic interface within the last several decades are maintained by a constant rate of nitrate supply from the nitrate maximum zone. Nitrate is consumed to oxidize sinking particulate organic matter as well as hydrogen sulfide and ammonium transported upward from deeper levels.

  12. Low-temperature plasma etching of high aspect-ratio densely packed 15 to sub-10 nm silicon features derived from PS-PDMS block copolymer patterns

    International Nuclear Information System (INIS)

    Liu, Zuwei; Sassolini, Simone; Olynick, Deirdre L; Gu, Xiaodan; Hwu, Justin

    2014-01-01

    The combination of block copolymer (BCP) lithography and plasma etching offers a gateway to densely packed sub-10 nm features for advanced nanotechnology. Despite the advances in BCP lithography, plasma pattern transfer remains a major challenge. We use controlled and low substrate temperatures during plasma etching of a chromium hard mask and then the underlying substrate as a route to high aspect ratio sub-10 nm silicon features derived from BCP lithography. Siloxane masks were fabricated using poly(styrene-b-siloxane) (PS-PDMS) BCP to create either line-type masks or, with the addition of low molecular weight PS-OH homopolymer, dot-type masks. Temperature control was essential for preventing mask migration and controlling the etched feature’s shape. Vertical silicon wire features (15 nm with feature-to-feature spacing of 26 nm) were etched with aspect ratios up to 17 : 1; higher aspect ratios were limited by the collapse of nanoscale silicon structures. Sub-10 nm fin structures were etched with aspect ratios greater than 10 : 1. Transmission electron microscopy images of the wires reveal a crystalline silicon core with an amorphous surface layer, just slightly thicker than a native oxide. (paper)

  13. Microwave irradiation on carbon black: Studies on the transformation of particles into nano-balls, nano-sticks and nano-onion like structures

    Science.gov (United States)

    Asokan, Vijayshankar; Venkatachalapathy, Vishnukanthan; Rajavel, Krishnamoorthy; Madsen, Dorte Nørgaard

    2016-12-01

    The solid-state transformation behavior of carbon black (CB) nanoparticles after irradiated with microwave energy was studied with and without influence of a metal catalyst. The CB sample was exposed to microwave radiation at power of 900 W from the oven and collected after 15 min and after 30 min and 45 min of irradiation. The samples were characterized using X-ray diffraction measurements, Raman spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM) and thermogravimetric analysis. Characterization of the samples prepared without catalyst shows that microwave irradiation can transform CB nanoparticles into nano-balls and nano-stick like structures. While nanoballs of almost 300-500 nm diameter are visible in all the samples irrespective of microwave irradiation time, amorphous nano-stick like structure are present only in the sample collected after 30 min of microwave irradiation. CB irradiated together with a metal catalyst resulted in metal-encapsulated onion like structures with perfectly arranged graphene layers.

  14. String-Corrected Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, V.

    2005-01-12

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.

  15. Capillary microextraction of volatiles device for enhanced BTEX vapors sampling based on a phenyl modified PDMS sol-gel adsorption phase.

    Science.gov (United States)

    Gura, Sigalit; Tarifa, Anamary; Mulloor, Jerome; Torres, Michelle N; Almirall, José R

    2018-07-19

    A novel phenyl modified PDMS (PhPDMS) sol-gel adsorption phase was developed for use with the capillary microextraction of volatiles (CMV) device, and determined to provide significant enhancement in BTEX recoveries when sampling trace (ng) amounts of these volatiles at ambient conditions. The previously reported reusable PDMS-CMV device has been demonstrated to rapidly and efficiently extract target compound's vapors in forensic and environmental applications. An improved recovery for VOCs was achieved with a cryofocusing system while extracting at -10  ° C, but it was found to be impractical for field sampling. This report details a modification to the CMV's chemistry, by the successful introduction of phenyl groups to the PDMS sol-gel adsorption phase, allowing enhanced performance at ambient extraction conditions. Higher average recoveries, determined through a broad concentration range, were demonstrated for PhPDMS-CMV over its original PDMS-CMV, from cans simulating a closed space set-up. Within 7.8 (±10%) and 3.5 (±6%) folds higher for benzene and toluene, respectively and 2 (±2%) folds for ethylbenzene and xylenes. Significant higher retaining capabilities were demonstrated also at the more challenging set-up, simulating an open space environment. Whereas, benzene had completely breakthrough the PDMS-CMV, its reliable detection was still confirmed with PhPDMS-CMV pumping at 2 L or 6 L air, concentration dependent. At least 50 folds (±26%) more toluene was retained with PhPDMS-CMV at 6 L air than with PDMS-CMV. The enhanced overall performance lead to determination of trace LODs with the new CMV of 0.002, 0.00035 and 0.00015 ppm for benzene, toluene, ethyl benzene and xylenes, respectively. As proof of concept, for the first time solvent extraction is presented for the new CMV as an alternative to thermal desorption extraction. Extraction efficiencies of 60% for TEX, and lower concentration dependent for benzene, were demonstrated with the

  16. PIXE, 252Cf-PDMS and radiochemistry applied for soil and vegetable analysis

    International Nuclear Information System (INIS)

    Dias da Cunha, K.; Cazicava, J.; Coelho, M.J.; Barros Leite, C.V.

    2006-01-01

    The aim of this work is to identify the elements present in vegetables and soils using PIXE (particle induced X-rays emission) and 252 Cf-PDMS ( 252 Cf plasma desorption mass spectrometry) techniques in order to estimate the possible influence of soil and agricultural techniques in the metal absorption by the vegetables. In this work, metal concentrations were evaluated in soil and vegetable samples from several regions, where different agricultural techniques were employed. Si, Zr, Ce, Th, Sc and Pb identified in the soil samples were not biologically available. Ga, Ge, As and Br identified in the tubercles indicate that spray pesticide used on the vegetable leaves was absorbed by them. 232 Th and 238 U present in the soil were not absorbed by the vegetables. The airborne particles from anthropogenic sources (as CF n , VC n ) were absorbed by the vegetables. Compounds from mineral sources present in soil as V + , VCO 3 , HPO 4 , Cr + , CrOH + , Mn + , FeH + , Fe(OH) n and in the bioorganic compounds as N + , Ca(China) n + and C n H + were identified in vegetables. The metal absorption by the vegetables is not dependent of the metal concentration in soil. Different tubercles cultivated in the same soil show similar metal absorption. The exogenous contributions such as the elements present in water irrigation, pesticides, fertilizers and airborne particles deposited on leaves can be absorbed by vegetables. The absorption by the roots depends on the chemical compound of the elements. The use of pesticide sprays and air pollution can cause more contamination in the vegetables than in soil. The use of this methodology allows the identification of possible sources of metals in soils and in vegetables and the metal speciation

  17. Sub-surface Elasticity Imaging Sensor based on Bio-Optics with Polydimethylsiloxane (PDMS

    Directory of Open Access Journals (Sweden)

    Jong-Ha LEE

    2015-03-01

    Full Text Available A novel tactile sensor capable of measuring material constants of the sensed object has been fabricated and demonstrated in the current study. Although many tactile sensors have been previously developed, the resolution of these measurements is still fairly low compared to the sensation of human touch. The tactile sensor we propose is comprised of an elastic optical waveguide unit, a high resolution CCD camera unit, and an LED light source. The sensing element is formed on Polydimethylsiloxane (PDMS and is illuminated along its four edges by LED light sources. The sensor operates on the principle of total internal reflection within an optical waveguide. Since the waveguide is surrounded by air, having a lower refractive index than the waveguide, the incident light directed into the waveguide remains contained within it. When an object compresses the waveguide, the contact area of the waveguide deforms and causes the light to scatter. Since the scattered light is directly captured by a CCD camera, the tactile resolution of the proposed sensor is based on the resolution of the camera. The normal force is detected from the integrated gray scale values of bright pixels emitted from the deformed area of the optical waveguide. Non-rigid point matching algorithm with Laplacian smoothing spline is used to estimate the displacement of control points between 3D rendered tactile images captured under different compression ratios. The strain experienced through the sensed object is derived from a function of the associated displacement. Experiments were conducted to demonstrate the ability of the proposed sensing strategy in measuring Young’s modulus of polymer samples within 4.23 % error.

  18. Black Willow

    Science.gov (United States)

    R. M. Krinard

    1980-01-01

    Black willow and other species of Salix together comprise a majority of the stocking. Cottonwood is the chief associate, particularly in the early stages, but green ash, sycamore, pecan, persimmon, waterlocust, American elm, baldcypress, red maple, sugarberry, box-elder, and in some areas, silver maple are invaders preceding the next successional stage.

  19. Counseling Blacks

    Science.gov (United States)

    Vontress, Clemmont E.

    1970-01-01

    Blacks have developed unique environmental perceptions, values, and attitudes, making it difficult for counselors to establish and maintain positive rapport. This article examines attitudinal ingredients posited by Carl Rogers for relevance to this problem, and suggests in-service training to help counselors and other professionals relate…

  20. Black Psyllium

    Science.gov (United States)

    ... by mouth for up to 6 weeks reduces blood sugar in people with type 2 diabetes. Cancer. Diarrhea. Irritable bowel syndrome (IBS). Other conditions. ... with the dose. Diabetes: Black psyllium can lower blood sugar levels ... with type 2 diabetes by slowing down absorption of carbohydrates. Monitor blood ...

  1. Black hole astrophysics

    International Nuclear Information System (INIS)

    Blandford, R.D.; Thorne, K.S.

    1979-01-01

    Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)

  2. Quantum black holes

    CERN Document Server

    Calmet, Xavier; Winstanley, Elizabeth

    2014-01-01

    Written by foremost experts, this short book gives a clear description of the physics of quantum black holes. The reader will learn about quantum black holes in four and higher dimensions, primordial black holes, the production of black holes in high energy particle collisions, Hawking radiation, black holes in models of low scale quantum gravity and quantum gravitational aspects of black holes.

  3. The effects of surfactant on the structure of ZnCr2O4 dendrimer like nanostructures used in degradation of Eriochrome Black T

    Science.gov (United States)

    Sabet, Mohammad; Jahangiri, Hasan

    2018-01-01

    In this experimental work, we synthesized ZnCr2O4 nano dendrimer-like structures via a simple hydrothermal method. Different parameters such as the reaction time and temperature and the surfactant kind were changed to obtain different particle sizes and morphologies. Scanning electron microscopy was utilized to obtain the products morphologies. The results showed the product is mainly composed of dendrimer-like structures. Also, it was found the mentioned parameters had significant effects on the product sizes and morphologies. Furthermore, it was found key parameters that determine the morphology of the product is surfactant type and each surfactant creates a unique morphology. The crystallinity and crystallite size were studied by x-ray diffraction pattern. Also, the composition of the product was determined by energy dispersive x-ray analysis. Diffuse reflectance spectroscopy (DRS) was used to the investigation of the optical properties of the product. The results obtained from DRS spectra showed the product has about 3.3 eV band gap. The photocatalytic activity of the product showed that ZnCr2O4 has a significant photocatalytic activity and it can decompose Eriochrome Black T about 91% under ultra violet radiation.

  4. Population genetic structure and its implications for adaptive variation in memory and the hippocampus on a continental scale in food-caching black-capped chickadees.

    Science.gov (United States)

    Pravosudov, V V; Roth, T C; Forister, M L; Ladage, L D; Burg, T M; Braun, M J; Davidson, B S

    2012-09-01

    Food-caching birds rely on stored food to survive the winter, and spatial memory has been shown to be critical in successful cache recovery. Both spatial memory and the hippocampus, an area of the brain involved in spatial memory, exhibit significant geographic variation linked to climate-based environmental harshness and the potential reliance on food caches for survival. Such geographic variation has been suggested to have a heritable basis associated with differential selection. Here, we ask whether population genetic differentiation and potential isolation among multiple populations of food-caching black-capped chickadees is associated with differences in memory and hippocampal morphology by exploring population genetic structure within and among groups of populations that are divergent to different degrees in hippocampal morphology. Using mitochondrial DNA and 583 AFLP loci, we found that population divergence in hippocampal morphology is not significantly associated with neutral genetic divergence or geographic distance, but instead is significantly associated with differences in winter climate. These results are consistent with variation in a history of natural selection on memory and hippocampal morphology that creates and maintains differences in these traits regardless of population genetic structure and likely associated gene flow. Published 2012. This article is a US Government work and is in the public domain in the USA.

  5. Tunnelling from Goedel black holes

    International Nuclear Information System (INIS)

    Kerner, Ryan; Mann, R. B.

    2007-01-01

    We consider the spacetime structure of Kerr-Goedel black holes, analyzing their parameter space in detail. We apply the tunnelling method to compute their temperature and compare the results to previous calculations obtained via other methods. We claim that it is not possible to have the closed timelike curve (CTC) horizon in between the two black hole horizons and include a discussion of issues that occur when the radius of the CTC horizon is smaller than the radius of both black hole horizons

  6. Black Holes: A Traveler's Guide

    Science.gov (United States)

    Pickover, Clifford A.

    1998-03-01

    BLACK HOLES A TRAVELER'S GUIDE Clifford Pickover's inventive and entertaining excursion beyond the curves of space and time. "I've enjoyed Clifford Pickover's earlier books . . . now he has ventured into the exploration of black holes. All would-be tourists are strongly advised to read his traveler's guide." -Arthur C. Clarke. "Many books have been written about black holes, but none surpass this one in arousing emotions of awe and wonder towards the mysterious structure of the universe." -Martin Gardner. "Bucky Fuller thought big. Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." -Wired. "The book is fun, zany, in-your-face, and refreshingly addictive." -Times Higher Education Supplement.

  7. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  8. PDMS-SiO{sub 2}-TiO{sub 2}-CaO hybrid materials – Cytocompatibility and nanoscale surface features

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. Carlos [CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Wacha, András [Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest 1117 (Hungary); Gomes, Pedro S.; Fernandes, M. Helena R. [Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto (Portugal); Fernandes, M. Helena Vaz [CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Salvado, Isabel M. Miranda, E-mail: isabelmsalvado@ua.pt [CICECO - Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro (Portugal)

    2016-07-01

    Two PDMS-SiO{sub 2}-TiO{sub 2}-CaO porous hybrid materials were prepared using the same base composition, precursors, and solvents, but following two different sol-gel procedures, based on the authors' previous works where for the first time, in this hybrid system, calcium acetate was used as calcium source. The two different procedures resulted in monolithic materials with different structures, microstructures, and surface wettability. Even though both are highly hydrophobic (contact angles of 127.2° and 150.6°), and present different filling regimes due to different surface topographies, they have demonstrated to be cytocompatible when tested with human osteoblastic cells, against the accepted idea that high-hydrophobic surfaces are not suitable to cell adhesion and proliferation. At the nanoscale, the existence of hydrophilic silica domains containing calcium, where water molecules are physisorbed, is assumed to support this capability, as discussed. - Highlights: • Two hybrid materials were prepared following two different sol-gel procedures. • Both are highly hydrophobic but demonstrated to be cytocompatible. • Different filling regimes were observed.

  9. Fine-scale spatial genetic structure analysis of the black truffle Tuber aestivum and its link to aroma variability.

    Science.gov (United States)

    Molinier, Virginie; Murat, Claude; Frochot, Henri; Wipf, Daniel; Splivallo, Richard

    2015-08-01

    Truffles are symbiotic fungi in high demand by food connoisseurs. Improving yield and product quality requires a better understanding of truffle genetics and aroma biosynthesis. One aim here was to investigate the diversity and fine-scale spatial genetic structure of the Burgundy truffle Tuber aestivum. The second aim was to assess how genetic structuring along with fruiting body maturation and geographical origin influenced single constituents of truffle aroma. A total of 39 Burgundy truffles collected in two orchards were characterized in terms of aroma profile (SPME-GC/MS) and genotype (microsatellites). A moderate genetic differentiation was observed between the populations of the two orchards. An important seasonal and spatial genetic structuring was detected. Within one orchard, individuals belonging to the same genet were generally collected during a single season and in the close vicinity from each other. Maximum genet size nevertheless ranged from 46 to 92 m. Geographical origin or maturity only had minor effects on aroma profiles but genetic structuring, specifically clonal identity, had a pronounced influence on the concentrations of C8 - and C4 -VOCs. Our results highlight a high seasonal genetic turnover and indicate that the aroma of Burgundy truffle is influenced by the identity of single clones/genets. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Bark beetles responses to stand structure and prescribed fire at Black Mountain Experimental Forest, California, USA: 5-year data

    Science.gov (United States)

    C.J. Fettig; S.R. McKelvey

    2010-01-01

    Highly effective fire suppression and selective harvesting of large-diameter, fire-tolerant tree species, such as ponderosa pine (Pinus ponderosa C. Lawson) and Jeffrey pine (P. jeffreyi Balf.), have resulted in substantial changes to the structure and composition of interior ponderosa pine forests. Mechanical thinning and the...

  11. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.

    Science.gov (United States)

    Lima, Rui; Wada, Shigeo; Tanaka, Shuji; Takeda, Motohiro; Ishikawa, Takuji; Tsubota, Ken-ichi; Imai, Yohsuke; Yamaguchi, Takami

    2008-04-01

    Progress in microfabricated technologies has attracted the attention of researchers in several areas, including microcirculation. Microfluidic devices are expected to provide powerful tools not only to better understand the biophysical behavior of blood flow in microvessels, but also for disease diagnosis. Such microfluidic devices for biomedical applications must be compatible with state-of-the-art flow measuring techniques, such as confocal microparticle image velocimetry (PIV). This confocal system has the ability to not only quantify flow patterns inside microchannels with high spatial and temporal resolution, but can also be used to obtain velocity measurements for several optically sectioned images along the depth of the microchannel. In this study, we investigated the ability to obtain velocity measurements using physiological saline (PS) and in vitro blood in a rectangular polydimethysiloxane (PDMS) microchannel (300 microm wide, 45 microm deep) using a confocal micro-PIV system. Applying this combination, measurements of trace particles seeded in the flow were performed for both fluids at a constant flow rate (Re = 0.02). Velocity profiles were acquired by successive measurements at different depth positions to obtain three-dimensional (3-D) information on the behavior of both fluid flows. Generally, the velocity profiles were found to be markedly blunt in the central region, mainly due to the low aspect ratio (h/w = 0.15) of the rectangular microchannel. Predictions using a theoretical model for the rectangular microchannel corresponded quite well with the experimental micro-PIV results for the PS fluid. However, for the in vitro blood with 20% hematocrit, small fluctuations were found in the velocity profiles. The present study clearly shows that confocal micro-PIV can be effectively integrated with a PDMS microchannel and used to obtain blood velocity profiles along the full depth of the microchannel because of its unique 3-D optical sectioning ability

  12. Uniform droplet splitting and detection using Lab-on-Chip flow cytometry on a microfluidic PDMS device

    DEFF Research Database (Denmark)

    Kunstmann-Olsen, Casper; Hanczyc, Martin; Hoyland, James

    2016-01-01

    A PDMS chip is fabricated using soft lithography and applied to investigate the formation and division of nitrobenzene (NB) droplets in a two-phase system stabilized by oleic acid. Using an integrated on-chip flow cytometer setup, effected with optical fibers, droplet size distributions...... are analyzed in situ based on optical signal intensities. By controlling the hydrodynamic flow focusing, uniform droplets of sizes between 100 μm and 300 μm are created with precise size control. Cross-flow shearing allows one to divide these droplets into anything from 2 to 9 individual droplets, depending...... on flow parameters....

  13. Integration of a zero dead-volume PDMS rotary switch valve in a miniaturised (bio)electroanalytical system

    DEFF Research Database (Denmark)

    Godino, Neus; del Campo, Francisco Javier; Munoz, Francesc Xavier

    2010-01-01

    reaction products. The system is built using mainly polymeric materials such as PMMA and PDMS and fast prototyping techniques such as milling and moulding. The system also includes a set of microelectrodes, photo-lithographed on a silicon chip. The novelty lies in the design of the rotary microvalve, which...... contains a microreactor so that various reaction and incubation steps can be carried out in isolation from the detection event with zero dead volume. This avoids contamination and fouling of the electrodes by proteins or other organic matter, and extends the useful lifetime of the detector. The system...

  14. Separación de mezclas agua-propanol usando membranas de preevaporación PDMS

    Directory of Open Access Journals (Sweden)

    Mahacine Amrani

    2008-05-01

    Full Text Available La recuperación y purificación de disolventes orgánicos en la química farmacéutica resulta de gran importancia pa-ra la economía y el medio ambiente. La separación de mezclas de agua/alcohol por el proceso de pervaporación se llevó a cabo a través de membranas hidrofóbicas. En este trabajo se estudia el rendimiento de las membranas de polidimetilsiloxano (PDMS para la deshidratación de mezclas agua/propanol por el proceso de preevaporación. El PDMS es reconocido por su selectividad de permeabilidad al alcohol preferentemente en mezclas de agua/alcohol durante el preevaporación debido a su tamaño molecular, aunque aún se presente penetración de agua a través de la membrana hidrofóbica. Se utilizó una unidad de preevaporación a escala de laboratorio para el estudio de esta membrana de separación evaluando características en términos de pervaporación como el flujo y la selectivi-dad de los canales con un contenido máximo de masa de agua y de 30 °C a 50 °C. El flujo de propanol/agua fue observado al variar la temperatura. A pesar que el PDMS presentó buenas características para la separación de mezclas de agua/propanol, el factor de separación y el flujo de pervaporación disminuyen a medida que el contenido de agua en la carga aumenta. La membrana PDMS resultó ser muy eficiente para concentraciones de a-gua de menos de 0.3, lo que corresponde al total del flujo de transferencia máxima.

  15. Increased adhesion of polydimethylsiloxane (PDMS) to acrylic adhesive tape for medical use by surface treatment with an atmospheric pressure rotating plasma jet

    Science.gov (United States)

    Jofre-Reche, José Antonio; Pulpytel, Jérôme; Arefi-Khonsari, Farzaneh; Martín-Martínez, José Miguel

    2016-08-01

    The surface properties of polydimethylsiloxane (PDMS) were modified by treatment with an atmospheric pressure rotating plasma jet (APPJ) and the surface modifications were studied to assess its hydrophilicity and adhesion to acrylic adhesive tape intended for medical applications. Furthermore, the extent of hydrophobic recovery under different storage conditions was studied. The surface treatment of PDMS with the APPJ under optimal conditions noticeably increased the oxygen content and most of the surface silicon species were fully oxidized. A brittle silica-like layer on the outermost surface was created showing changes in topography due to the formation of grooves and cracks. A huge improvement in T-peel and the shear adhesive strength of the APPJ-treated PDMS surface/acrylic tape joints was obtained. On the other hand, the hydrophilicity of the PDMS surface increased noticeably after the APPJ treatment, but 24 h after treatment almost 80% hydrophobicity was recovered and the adhesive strength was markedly reduced with time after the APPJ treatment. However, the application of an acrylic adhesive layer on the just-APPJ-treated PDMS surface retained the adhesive strength, limiting the extent of hydrophobic recovery.

  16. Increased adhesion of polydimethylsiloxane (PDMS) to acrylic adhesive tape for medical use by surface treatment with an atmospheric pressure rotating plasma jet

    International Nuclear Information System (INIS)

    Jofre-Reche, José Antonio; Martín-Martínez, José Miguel; Pulpytel, Jérôme; Arefi-Khonsari, Farzaneh

    2016-01-01

    The surface properties of polydimethylsiloxane (PDMS) were modified by treatment with an atmospheric pressure rotating plasma jet (APPJ) and the surface modifications were studied to assess its hydrophilicity and adhesion to acrylic adhesive tape intended for medical applications. Furthermore, the extent of hydrophobic recovery under different storage conditions was studied. The surface treatment of PDMS with the APPJ under optimal conditions noticeably increased the oxygen content and most of the surface silicon species were fully oxidized. A brittle silica-like layer on the outermost surface was created showing changes in topography due to the formation of grooves and cracks. A huge improvement in T-peel and the shear adhesive strength of the APPJ-treated PDMS surface/acrylic tape joints was obtained. On the other hand, the hydrophilicity of the PDMS surface increased noticeably after the APPJ treatment, but 24 h after treatment almost 80% hydrophobicity was recovered and the adhesive strength was markedly reduced with time after the APPJ treatment. However, the application of an acrylic adhesive layer on the just-APPJ-treated PDMS surface retained the adhesive strength, limiting the extent of hydrophobic recovery. (paper)

  17. Imagine the Universe! The Anatomy of Black Holes. Probing the Structure & Evolution of the Cosmos. An Information and Activity Booklet. Grades 9-12, 1998-1999.

    Science.gov (United States)

    Whitlock, Laura A.; Granger, Kara C.; Mahon, Jane D.

    The information provided in this booklet is meant to give the necessary background information so that the science of black holes can be taught confidently to secondary students. The featured activities can be used to engage and excite students about the topic of black holes in different disciplines and in a number of ways. Activities include: (1)…

  18. Discovery of a Three-Layered Atmospheric Structure in Accretion Disks around Stellar-Mass Black Holes

    Science.gov (United States)

    Zhang, S. N.; Zhang, Xiaoling; Sun, Xuejun; Yao, Yangsen; Cui, Wei; Chen, Wan; Wu, Xuebing; Xu, Haiguang

    1999-01-01

    We have carried out systematic modeling of the X-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40, using our newly developed spectral fitting methods. Our results reveal, for the first time, a three-layered structure of the atmosphere in the inner region of the accretion disks. Above the conanonly known, cold and optically thick disk of a blackbody temperature 0.2-0.5 keV, there is a layer of warm gas with a temperature of 1.0-1.5 keV and an optical depth of around 10. Compton scattering of the underlying disk blackbody photons produces the soft X-ray component we comonly observe. Under certain conditions, there is also a much hotter, optically thin corona above the warm layer, characterized by a temperature of 100 keV or higher and an optical depth of unity or less. The corona produces the hard X-ray component typically seen in these sources. We emphasize that the existence of the warm layer seem to be independent of the presence of the hot corona and, therefore, it is not due to irradiation of the disk by hard X-rays from the corona. Our results suggest a striking structural similarity between the accretion disks and the solar atmosphere, which may provide a new stimulus to study the common underlying physical processes operating in these vastly different systems. We also report the first unambiguous detection of an emission line around 6.4 keV in GRO J1655-40, which may allow further constraining of the accretion disk structure. We acknowledge NASA GSFC and MFC for partial financial support. (copyright) 1999: American Astronomical Society. All rights reverved.

  19. Underground riparian wood: Reconstructing the processes influencing buried stem and coarse root structures of Black Poplar (Populus nigra L.)

    Science.gov (United States)

    Holloway, James V.; Rillig, Matthias C.; Gurnell, Angela M.

    2017-02-01

    Following analysis of morphological (including dendrochronological and sedimentological) aspects of buried stem and coarse root structures of eight mature P. nigra individuals located within two sites along the middle to lower Tagliamento River, Italy (Holloway et al., 2017), this paper introduces information on the historical processes of vegetation development and river flow and links this to the form of these eight trees. Aerial images and flow time series are assembled to reconstruct the flood history, potential recruitment periods, and vegetation cover development in the vicinity of the studied trees. This information is combined with previous morphological evidence to reconstruct the development history of each tree via three-element summary diagrams showing (i) a time series of floods, aerial imagery dates, and potential recruitment periods, with colour-coded bars indicating likely key stages in the development of the tree; (ii) colour-coded overlays on an SfM photogrammetric model of each tree; and (iii) colour-coded text boxes providing explanatory annotations. The combined morphology-process analysis reveals complex three-dimensional underground structures, incorporating buried stems, shoots, and adventitious roots that are sometimes joined by grafting, linking the standing tree with the buried gravel surface on which it was recruited. Analysis of process data provides a firm basis for identifying and dating influential flow disturbance events and recruitment windows and shows that a relatively small number of flood events have significantly impacted the studied trees, which are mainly but not exclusively the largest floods in the record. Nevertheless, we stress that all suggested dates are best estimates in the light of the combined evidence. There is undoubted potential for building different interpretations of belowground woody structure development in light of such evidence, but we feel that the form and timing of the developmental trajectories we

  20. Distribution of free gas and 3D mirror image structures beneath Sevastopol mud volcano, Black sea, from 3D high resolution wide-angle seismic data

    Science.gov (United States)

    Krabbenhoeft, A.; Papenberg, C. A.; Klaeschen, D.; Bialas, J.

    2016-12-01

    The goal of this study is to image the sub-seafloor structure beneath the Sevastopol mud volcano (SMV), Sorokin Trough, SE of the Crimean peninsula, Black Sea. The focus lies on structures of/within the feeder channel, the distribution of gas and gas hydrates, and their relation to fluid migration zones in sediments. This study concentrates on a 3D high resolution seismic grid (7 km x 2.5 km) recorded with 13 ocean bottom stations (OBS). The 3D nature of the experiment results from the geometry of 68 densely spaced (25/50 m) profiles, as well as the cubical configuration of the densely spaced receivers on the seafloor ( 300 m station spacing). The seismic profiles are typically longer than 6 km which results in large offsets for the reflections of the OBS. This enables the study of the seismic velocities of the sub-seafloor sediments and additionally large offset incident analysis.The 3D Kirchhoff mirror image time migration, applied to all OBS sections including all shots from all profiles, leads to a spatial image of the sub-seafloor. Here, the migration was applied with the velocity distribution of 1.49 km/s in the water column, 1.5 km/s below the seafloor (bsf) increasing to 2 km/s for the deeper sediments at 2 s bsf. Acoustic blanking occurs beneath the south-easterly located OBS and is associated with the feeder channel of the mud volcano. There, gas from depth can vertically migrate to the seafloor and on its way to the surface horizontally distribute patchily within sediment layers. High amplitude reflections are not observed as continuous reflections, but in a patchy distribution. They are associated with accumulations of gas. Also structures exist within the feeder channel of the SMV.3D mirror imaging proves to be a good tool to seismically image structures compared with 2D streamer seismics, especially steep dipping reflectors and structures which are otherwise obscured by signal scattering, i.e structures associated with fluid migration paths.

  1. The renaissance of black phosphorus.

    Science.gov (United States)

    Ling, Xi; Wang, Han; Huang, Shengxi; Xia, Fengnian; Dresselhaus, Mildred S

    2015-04-14

    One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field.

  2. Embryonic staging system for the Black Mastiff Bat, Molossus rufus (Molossidae), correlated with structure-function relationships in the adult.

    Science.gov (United States)

    Nolte, Mark J; Hockman, Dorit; Cretekos, Chris J; Behringer, Richard R; Rasweiler, John J

    2009-02-01

    An embryonic staging system for Molossus rufus (also widely known as Molossus ater) was devised using 17 reference specimens obtained during the postimplantation period of pregnancy from wild-caught, captive-bred females. This was done in part by comparing the embryos to a developmental staging system that had been created for another, relatively unrelated bat, Carollia perspicillata (family Phyllostomidae). Particular attention was paid to the development of species-specific features, such as wing and ear morphology, and these are discussed in light of the adaptive significance of these structures in the adult. M. rufus can be maintained and bred in captivity and is relatively abundant in the wild. This embryonic staging system will facilitate further developmental studies of M. rufus, a model species for one of the largest and most successful chiropteran families, the Molossidae. (c) 2008 Wiley-Liss, Inc.

  3. Interior design of a two-dimensional semiclassical black hole

    International Nuclear Information System (INIS)

    Levanony, Dana; Ori, Amos

    2009-01-01

    We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.

  4. Interior design of a two-dimensional semiclassical black hole

    Science.gov (United States)

    Levanony, Dana; Ori, Amos

    2009-10-01

    We look into the inner structure of a two-dimensional dilatonic evaporating black hole. We establish and employ the homogenous approximation for the black-hole interior. Two kinds of spacelike singularities are found inside the black hole, and their structure is investigated. We also study the evolution of spacetime from the horizon to the singularity.

  5. Detection and sizing of nanoparticles and DNA on PDMS nanofluidic chips based on differential resistive pulse sensing.

    Science.gov (United States)

    Peng, Ran; Li, Dongqing

    2017-05-11

    The RPS (Resistive Pulse Sensing) technique is a popular tool for the label-free detection of particles. This paper describes a simple, cost-effective PDMS nanofluidic chip for the detection and characterization of nanoparticles based on the differential RPS technique with high resolution and sensitivity. The chip is composed of two layers of PDMS slabs. Microchannel systems fabricated by the photolithography method on the top layer are used for sample loading and differential signal acquisition, and a straight nanochannel on the bottom layer fabricated by an unconventional approach bridging the gap between the microchannels works as an RPS sensing gate. A single-stage differential amplifier is used to amplify the RPS signals when particles or DNA pass through the sensing gate. It was demonstrated that this nanofluidic RPS chip can detect nanoparticles as small as 23 nm with a high SNR (Signal-to-Noise Ratio). The experimental results also show that the device is able to distinguish nanoparticles of smaller size differences such as 60 nm and 83 nm with high resolution, showing superior performance in comparison with the results obtained from DLS (Dynamic Light Scattering). This differential nano-RPS chip was also applied to detect the translocation of dsDNA molecules.

  6. ZnO–PDMS Nanohybrids: A Novel Optical Sensing Platform for Ethanol Vapor Detection at Room Temperature

    KAUST Repository

    Klini, Argyro

    2015-01-08

    © 2014 American Chemical Society. A new optical gas sensor platform based on highly luminescent ZnO-polymer nanohybrids is demonstrated. The nanohybrids consist of ZnO nanoparticles, typically 125 (±25) nm in size, dispersed in an inert cross-linked polydimethylsiloxane (PDMS) matrix. Upon exposure to ethanol-enriched air at room temperature, the nanocomposites exhibit a clear increase in their photoluminescence (PL) emission, which shows a nearly Langmuir dependence on the alcohol vapor pressure. The response time is on the order of 50 s, particularly at low ethanol concentrations. The limit of ethanol vapor detection (LOD) is as low as 0.4 Torr, while the sensor remains unaffected by the presence of water vapor, demonstrating the potential of the ZnO-PDMS system as an optical gas sensing device. The interaction of the ZnO nanoparticles with molecular oxygen plays an essential role on the overall performance of the sensor, as shown in comparative experiments performed in the presence and absence of atmospheric air. Notably, O2 was found to be quite effective in accelerating the sensor recovery process compared to N2 or vacuum.

  7. Pengaruh Jenis Katalis terhadap Kekuatan Tarik dan Stabilitas Termal Polidimetilsiloksan (PDMS untuk Lapisan Pelindung Baja AISI 1050

    Directory of Open Access Journals (Sweden)

    Muhammad Atha Illah

    2013-03-01

    Full Text Available Polisiloksan adalah polimer yang paling banyak digunakan sebagai lapisan pelindung pada baja karena memiliki sifat yang unggul dibandingkan polimer lain. Polidimetilsiloksan (PDMS adalah salah satu  keluarga polisiloksan yang paling banyak digunakan dalam bentuk karet Room-Temperature Vulcanization (RTV. Pada penelitian ini, PDMS divulkanisir menggunakan katalis Bluesil Catalyst 60R (komersial, NaOH 2 M, H2SO4 2 M, Poli aminoamid, dan Red 683 (komersial dengan variasi komposisi masing-masing katalis 2 - 10 wt%. Katalis yang bisa membentuk karet silikon hanyalah Bluesil Catalyst 60R dan Red 683. Pada percobaannya, waktu pematangan semakin cepat seiring bertambahnya komposisi katalis yang diberikan. Elastisitas karet silikon sangat tinggi, karena sifat inilah karet silikon tidak pecah ketika diuji fleksural hingga 180o. Hasil pengujian tarik menunjukkan karet dengan Bluesil Catalyst 60R 6wt% memiliki kekuatan tarik paling optimum yaitu 1,625 MPa. Penambahan Bluesil Catalyst 60R 10wt% juga memberikan nilai kestabilan termal  karet silikon yang paling baik, berat sisanya adalah 39,172 % pada temperatur 800oC.

  8. Relationship of Cure Temperature to Mechanical, Physical, and Dielectric Performance of PDMS Glass Composite for Electric Motor Insulation

    Science.gov (United States)

    Miller, Sandi G.; Becker, Kathleen; Williams, Tiffany S.; Scheiman, Daniel A.; McCorkle, Linda S.; Heimann, Paula J.; Ring, Andrew; Woodworth, Andrew

    2017-01-01

    Achieving NASAs aggressive fuel burn and emission reduction for N-plus-3 aircraft will require hybrid electric propulsion system in which electric motors driven by either power generated from turbine or energy storage system will power the fan for propulsion. Motors designed for hybrid electric aircraft are expected to operate at medium to high voltages over long durations in a high altitude service environment. Such conditions have driven research toward the development of wire insulation with improved mechanical strength, thermal stability and increased breakdown voltage. The silicone class of materials has been considered for electric wire insulation due to its inherent thermal stability, dielectric strength and mechanical integrity. This paper evaluates the dependence of these properties on the cure conditions of a polydimethyl-siloxane (PDMS) elastomer; where both cure temperature and base-to-catalyst ratio were varied. The PDMS elastomer was evaluated as a bulk material and an impregnation matrix within a lightweight glass veil support. The E-glass support was selected for mechanical stiffness and dielectric strength. This work has shown a correlation between cure conditions and material physical properties. Tensile strength increased with cure temperature whereas breakdown voltage tended to be independent of process variations. The results will be used to direct material formulation based on specific insulation requirements.

  9. Recycling of phenol from aqueous solutions by pervaporation with ZSM-5/PDMS/PVDF hollow fiber composite membrane

    Science.gov (United States)

    Li, Dan; Yao, Jie; Sun, Hao; Liu, Bing; van Agtmaal, Sjack; Feng, Chunhui

    2018-01-01

    Zeolite (ZSM-5)/polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) hollow fiber composite membrane was prepared by dynamic negative pressure. The influence of ZSM-5 silanization, coating time and concentration of ZSM-5 on the resulting pervaporation (PV) performance of composite membranes was investigated. The contact angle (CA) was used to measure surface hydrophobic property and it was found that the water contact angle of the membrane was increased significantly from 99° to 132° when the concentration of ZSM-5 increased from 0% to 50%. The morphology of the membrane was characterized by scanning electron microscope (SEM) and those SEM images illustrated that the thickness of the separating layer has obvious differences at varying coating times. Furthermore, the membranes were investigated in PV process to recycle phenol from aqueous solutions as feed mixtures. The impact of phenol concentration in feed, temperature and pressure of penetration side on the PV performance of membrane was studied systematically. When the ZSM-5 concentration was 40% and the coating time was 60 min, separation factor and phenol permeability were 4.56 and 5.78 g/(m2 h), respectively. ZSM-5/PDMS/PVDF membrane significantly improved the recovery efficiency of phenols.

  10. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dague, E; Jauvert, E; Laplatine, L; Thibault, C [CNRS, LAAS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4 (France); Viallet, B; Ressier, L, E-mail: edague@laas.fr, E-mail: laurence.ressier@insa-toulouse.fr [Universite de Toulouse, LPCNO, INSA-CNRS-UPS, 135 Avenue de Rangueil, F-31077 Toulouse (France)

    2011-09-30

    Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.

  11. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments

    Science.gov (United States)

    Dague, E.; Jauvert, E.; Laplatine, L.; Viallet, B.; Thibault, C.; Ressier, L.

    2011-09-01

    Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.

  12. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments

    International Nuclear Information System (INIS)

    Dague, E; Jauvert, E; Laplatine, L; Thibault, C; Viallet, B; Ressier, L

    2011-01-01

    Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.

  13. Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices.

    Science.gov (United States)

    Carlborg, Carl Fredrik; Haraldsson, Tommy; Öberg, Kim; Malkoch, Michael; van der Wijngaart, Wouter

    2011-09-21

    In this article we introduce a novel polymer platform based on off-stoichiometry thiol-enes (OSTEs), aiming to bridge the gap between research prototyping and commercial production of microfluidic devices. The polymers are based on the versatile UV-curable thiol-ene chemistry but takes advantage of off-stoichiometry ratios to enable important features for a prototyping system, such as one-step surface modifications, tuneable mechanical properties and leakage free sealing through direct UV-bonding. The platform exhibits many similarities with PDMS, such as rapid prototyping and uncomplicated processing but can at the same time mirror the mechanical and chemical properties of both PDMS as well as commercial grade thermoplastics. The OSTE-prepolymer can be cast using standard SU-8 on silicon masters and a table-top UV-lamp, the surface modifications are precisely grafted using a stencil mask and the bonding requires only a single UV-exposure. To illustrate the potential of the material we demonstrate key concepts important in microfluidic chip fabrication such as patterned surface modifications for hydrophobic stops, pneumatic valves using UV-lamination of stiff and rubbery materials as well as micromachining of chip-to-world connectors in the OSTE-materials. This journal is © The Royal Society of Chemistry 2011

  14. An ecotoxicological study on tin- and bismuth-catalysed PDMS based coatings containing a surface-active polymer.

    Science.gov (United States)

    Pretti, Carlo; Oliva, Matteo; Mennillo, Elvira; Barbaglia, Martina; Funel, Marco; Reddy Yasani, Bhaskar; Martinelli, Elisa; Galli, Giancarlo

    2013-12-01

    Novel films were prepared by condensation curing reaction of a poly(dimethyl siloxane) (PDMS) matrix with bismuth neodecanoate and dibutyltin diacetate catalysts. An ecotoxicological study was performed on the leachates of the coatings using the bacterium Vibrio fischeri, the unicellular alga Dunaliella tertiolecta, the crustacean Artemia salina and the fish Sparus aurata (larvae) as testing organisms. A copper-based self-polishing commercial paint was also tested as reference. The results showed that the tin-catalysed coatings and the copper paint were highly toxic against at least two of the four test organisms, whereas bismuth-catalysed coatings did not show any toxic effect. Moreover, the same biological assessment was also carried out on PDMS coatings containing a surface-active fluorinated polymer. The toxicity of the entire polymeric system resulted only from the tin catalyst used for the condensation curing reaction, as the bismuth catalysed coatings incorporating the surface-active polymer remained atoxic toward all the tested organisms. © 2013 Elsevier Inc. All rights reserved.

  15. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Bojowald, Martin

    2005-01-01

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  16. Black Paul: a soul music no Brasil nos anos 1970

    OpenAIRE

    Paiva, Carlos Eduardo Amaral de [UNESP

    2015-01-01

    This thesis investigates the acclimatisation of soul music genres in Brazil in the 70's by the analysing the songs of important black musicians of the era: Tim Maia, Jorge Ben and Tony Tornado as well as the movement called Black Rio. We suggest an inflection on the formation of the black identity in the country that represented the emergence of a black structure of feelings in transnational levels. This structure of feelings is chacacterised by its ethinic affirmation and its internationalis...

  17. Geothermal structure of the eastern Black Sea basin and the eastern Pontides orogenic belt: Implications for subduction polarity of Tethys oceanic lithosphere

    Directory of Open Access Journals (Sweden)

    Nafiz Maden

    2013-07-01

    Full Text Available The numerical results of thermal modeling studies indicate that the lithosphere is cold and strong beneath the Black Sea basin. The thermal lithospheric thickness increases southward from the eastern Pontides orogenic belt (49.4 km to Black Sea basin (152.2 km. The Moho temperature increases from 367 °C in the trench to 978 °C in the arc region. The heat flow values for the Moho surface change between 16.4 mW m−2 in the Black Sea basin and 56.9 mW m−2 in the eastern Pontides orogenic belt. Along the southern Black Sea coast, the trench region has a relatively low geothermal potential with respect to the arc and back-arc region. The numerical studies support the existence of southward subduction beneath the Pontides during the late Mesozoic–Cenozoic.

  18. Making Blackness, Making Policy

    OpenAIRE

    Geller, Peter

    2012-01-01

    Too often the acknowledgment that race is a social construction ignores exactly how this construction occurs. By illuminating the way in which the category of blackness and black individuals are made, we can better see how race matters in America. Antidiscrimination policy, social science research, and the state's support of its citizens can all be improved by an accurate and concrete definition of blackness. Making Blackness, Making Policy argues that blackness and black people are literally...

  19. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    Black holes; numerical relativity; nonlinear sigma. Abstract. Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. ... Theoretical and Computational Studies Group, Southampton College, Long Island University, Southampton, NY 11968, USA ...

  20. Selected data for wells and test holes used in structure-contour maps of the Inyan Kara Group, Minnekahta Limestone, Minnelusa Formation, Madison Limestone, and Deadwood Formation in the Black Hills area, South Dakota

    Science.gov (United States)

    Carter, J.M.

    1999-01-01

    This report presents selected data on wells and test holes that were used in the construction of structure-contour maps of selected formations that contain major aquifers in the Black Hills area of western South Dakota. Altitudes of the top of the Inyan Kara Group, Minnekahta Limestone, Minnelusa Formation, Madison Limestone, and Deadwood Formation are presented for the wells and test holes presented in this report.

  1. Black Urine

    Directory of Open Access Journals (Sweden)

    Rahim Vakili

    2016-06-01

    Full Text Available A 2-year-old boy was born at term of healthy, non-consanguineous Iranian parents. His mother attended in the clinic with the history of sometimes discoloration of diapers after passing urine. She noticed that first at the age of one month with intensified in recent months. His Physical examination and growth parameters were normal. His mother denied taking any medication (sorbitol, nitrofurantoin, metronidazole, methocarbamol, sena and methyldopa (5. Qualitative urine examination showed dark black discoloration. By this history, alkaptonuria was the most clinical suspicious. A 24-hour-urine sample was collected and sent for quantitative measurements. The urine sample was highly positive for homogentisic acid and negative for porphyrin metabolites.

  2. Determination of and evidence for non-core-shell structure of particles containing black carbon using the Single-Particle Soot Photometer (SP2)

    Science.gov (United States)

    Sedlacek, Arthur J., III; Lewis, Ernie R.; Kleinman, Lawrence; Xu, Jianzhong; Zhang, Qi

    2012-03-01

    The large uncertainty associated with black carbon (BC) direct forcing is due, in part, to the dependence of light absorption of BC-containing particles on the position of the BC within the particle. It is predicted that this absorption will be greatest for an idealized core-shell configuration in which the BC is a sphere at the center of the particle whereas much less absorption should be observed for particles in which the BC is located near or on the surface. Such microphysical information on BC-containing particles has previously been provided only by labor-intensive microscopy techniques, thus often requiring that climate modelers make assumptions about the location of the BC within the particle that are based more on mathematical simplicity than physical reality. The present paper describes a novel analysis method that utilizes the temporal behavior of the scattering and incandescence signals from individual particles containing refractory BC (rBC) measured by the Single-Particle Soot Photometer (SP2) to distinguish particles with rBC near the surface from those that have structures more closely resembling the core-shell configuration. This approach permits collection of a high-time-resolution data set of the fraction of rBC-containing particles with rBC near the surface. By application of this method to a plume containing tracers for biomass burning, it was determined that this fraction was greater than 60%. Such a data set will not only provide previously unavailable information to the climate modeling community, allowing greater accuracy in calculating rBC radiative forcing, but also will yield insight into aerosol processes.

  3. Phases of Kaluza-Klein Black Holes

    DEFF Research Database (Denmark)

    Harmark, Troels; Obers, N. A.

    2005-01-01

    We review the latest progress in understanding the phase structure of static and neutral Kaluza-Klein black holes, i.e. static and neutral solutions of pure gravity with an event horizon that asymptote to a d-dimensional Minkowski-space times a circle. We start by reviewing the (mu,n) phase diagram...... and the split-up of the phase structure into solutions with an internal SO(d-1) symmetry and solutions with Kaluza-Klein bubbles. We then discuss the uniform black string, non-uniform black string and localized black hole phases, and how those three phases are connected, involving issues such as classical...... instability and horizon-topology changing transitions. Finally, we review the bubble-black hole sequences, their place in the phase structure and interesting aspects such as the continuously infinite non-uniqueness of solutions for a given mass and relative tension....

  4. Black America in the 1980s.

    Science.gov (United States)

    Reid, John

    1982-01-01

    In this bulletin, recent demographic and socioeconomic trends among American blacks are reviewed and compared with trends among whites. The report includes information on black population growth and composition; rural-urban distribution; fertility and family planning practice; mortality; migration; family structure and marital status; education;…

  5. Post Curing as an Effective Means of Ensuring the Long-term Reliability of PDMS Thin Films for Dielectric Elastomer Applications

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Madsen, Frederikke Bahrt; Skov, Anne Ladegaard

    2017-01-01

    ’s moduli at 5% strain increase with post curing. Furthermore, the determined dielectric breakdown parameters from Weibull analyses showed that greater electrical stability and reliability could be achieved by post curing the PDMS films before usage, and this method therefore paves a way toward more...

  6. Two-component transparent TiO2/SiO2 and TiO2/PDMS films as efficient photocatalysts for environmental cleaning

    Czech Academy of Sciences Publication Activity Database

    Novotná, P.; Zita, J.; Krýsa, J.; Kalousek, Vít; Rathouský, Jiří

    2007-01-01

    Roč. 79, č. 2 (2007), s. 179-185 ISSN 0926-3373 R&D Projects: GA MŠk 1M0577 Institutional research plan: CEZ:AV0Z40400503 Keywords : TiO2 * SiO2 * PDMS * thin film Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.651, year: 2007

  7. Preparing mono-dispersed liquid core PDMS microcapsules from thiol–ene–epoxy-tailored flow-focusing microfluidic devices

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Daugaard, Anders Egede; Skolimowski, Maciej

    2015-01-01

    An applied dual-cure system based on thiol–ene and thiol–epoxy “click chemistry” reactions was proved to be an extremely effective and easy to use tool for preparing microfluidic chips, thereby allowing for precise control over material properties and providing the possibility of covalently bonding...... chip wafers. Different thiol–ene–epoxy-based polymer compositions were tested with the help of DSC and ATR FTIR, in order to investigate their physical and chemical properties. Water contact angles were determined, thus verifying the high efficiency and selectivity of the chemical surface modification...... of compositions in relation to high hydrophilicity and hydrophobicity. An obtained microfluidic device was subsequently used in order to produce PDMS microcapsules of very narrow size distribution and which contained various common liquids, such as water and ethanol, as well as an ionic liquid 2...

  8. Morphology evolution of PS-b-PDMS block copolymer and its hierarchical directed self-assembly on block copolymer templates

    DEFF Research Database (Denmark)

    Rasappa, Sozaraj; Schulte, Lars; Borah, Dipu

    2018-01-01

    Cylinder-forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS, 27.2k-b-11.7k, SD39) block copolymer having a total molecular weight of 39 kg mol−1 was exploited to achieve in-plane morphologies of lines, dots and antidots. Brush-free self-assembly of the SD39 on silicon substrates was invest...... substrates provides a simplified method for surface nanopatterning, templated growth of nanomaterials and nanofabrication....... the pattern into the underlying substrate. Directed self-assembly and hierarchical directed self-assembly on block copolymer templates for confinement of dots was successfully demonstrated. The strategy for achieving multiple morphologies using one BCP by mere choice of the annealing solvents on unmodified...

  9. Black Feminism: An Integrated Review of Literature.

    Science.gov (United States)

    Love, Katie L

    2016-01-01

    This study presents a systematic literature review exploring the uses and potential benefits of Black Feminism in nursing research. Black Feminism may benefit knowledge development for nursing in a variety of ways, such as illuminating the multifaceted factors of Black women's identities in helping scholars move away from generalization of experiences, to improve understanding of health disparities, and making such changes by broadening the social consciousness of the nurse researchers, who are predominantly White. Discrimination in health disparities may be deconstructed if the focus is placed on asking different research questions and offering different interventions with the social structures that contributes to such actions. When Black Feminism guides the research method (including research questions and analysis), the accuracy of representing the experiences of Black women is increased. In this research, Black Feminism highlights experience, coping mechanisms, spiritual values, a tradition of strength, and a holistic view of identity.

  10. Swell-based in situ oxide removal methods for PDMS-copper particle composite corrosion sensing elements

    Science.gov (United States)

    Yang, Teng; Pan, Feng; Hutson, Jeremy; Srinivas, Keerthi; King, Jerry; Spearot, Douglas; Huang, Adam

    2012-04-01

    A micro-corrosion sensor technology utilizing PDMS (polydimethylsiloxane) and micro/nano -metal particles, as the sensing element, was proposed and currently under-development. One of the key challenges encountered is the removal of the native oxides inherently existing on the metal particles. Numerous techniques were experimented to counter this problem, with swell-based protocols being identified as the most promising solution. Swelling of the composite enhances the diffusion of oxide etchants into and etched oxides out of the material matrix. Two different swelling characterizations, utilizing liquid-based solvents and supercritical CO2 emersions, will be presented here. In terms of compatibility, common microfabrication solvents were used to evaluate the former, while supercritical CO2 is often used in the release of stiction sensitive microstructures. Both methods are classified as low temperature techniques (less than 100 degrees Celcius). Commonly, the composite exhibits a swelling ratio of 10-20%, exhibiting more sensitive to the percentage content of the metal particles albeit well below those reported in literature for pure cross -linked PDMS. The swelling time-constant is found to be on the order of minutes (CO2) to tens of minutes (liquid solvent) while oxide removal for cubed coupons with 6.35mm on each side is on the order of hours. Also in both cases, the oxide etching performance is dependent on the amount of dilation of the material and the mixing compatibility between the swelling agent and the etchant (such as acetic acid and hexafluoroacetylacetone, respectively for copper oxides). The etch

  11. Black Silicon Solar Cells with Black Ribbons

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....

  12. Black Silicon Solar Cells with Black Ribbons

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...

  13. Black holes. Chapter 6

    International Nuclear Information System (INIS)

    Penrose, R.

    1980-01-01

    Conditions for the formation of a black hole are considered, and the properties of black holes. The possibility of Cygnus X-1 as a black hole is discussed. Einstein's theory of general relativity in relation to the formation of black holes is discussed. (U.K.)

  14. Black Eye: First Aid

    Science.gov (United States)

    First aid Black eye Black eye: First aid By Mayo Clinic Staff A black eye is caused by bleeding under the skin around the eye. Most injuries that cause a ... 13, 2018 Original article: http://www.mayoclinic.org/first-aid/first-aid-black-eye/basics/ART-20056675 . Mayo ...

  15. Search for black holes

    International Nuclear Information System (INIS)

    Cherepashchuk, Anatolii M

    2003-01-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed. (reviews of topical problems)

  16. Predictive Modeling of Black Spruce (Picea mariana (Mill. B.S.P. Wood Density Using Stand Structure Variables Derived from Airborne LiDAR Data in Boreal Forests of Ontario

    Directory of Open Access Journals (Sweden)

    Bharat Pokharel

    2016-12-01

    Full Text Available Our objective was to model the average wood density in black spruce trees in representative stands across a boreal forest landscape based on relationships with predictor variables extracted from airborne light detection and ranging (LiDAR point cloud data. Increment core samples were collected from dominant or co-dominant black spruce trees in a network of 400 m2 plots distributed among forest stands representing the full range of species composition and stand development across a 1,231,707 ha forest management unit in northeastern Ontario, Canada. Wood quality data were generated from optical microscopy, image analysis, X-ray densitometry and diffractometry as employed in SilviScan™. Each increment core was associated with a set of field measurements at the plot level as well as a suite of LiDAR-derived variables calculated on a 20 × 20 m raster from a wall-to-wall coverage at a resolution of ~1 point m−2. We used a multiple linear regression approach to identify important predictor variables and describe relationships between stand structure and wood density for average black spruce trees in the stands we observed. A hierarchical classification model was then fitted using random forests to make spatial predictions of mean wood density for average trees in black spruce stands. The model explained 39 percent of the variance in the response variable, with an estimated root mean square error of 38.8 (kg·m−3. Among the predictor variables, P20 (second decile LiDAR height in m and quadratic mean diameter were most important. Other predictors describing canopy depth and cover were of secondary importance and differed according to the modeling approach. LiDAR-derived variables appear to capture differences in stand structure that reflect different constraints on growth rates, determining the proportion of thin-walled earlywood cells in black spruce stems, and ultimately influencing the pattern of variation in important wood quality attributes

  17. Black Holes and Exotic Spinors

    Directory of Open Access Journals (Sweden)

    J. M. Hoff da Silva

    2016-05-01

    Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.

  18. Dynamical black rings with a positive cosmological constant

    International Nuclear Information System (INIS)

    Kimura, Masashi

    2009-01-01

    We construct dynamical black ring solutions in the five-dimensional Einstein-Maxwell system with a positive cosmological constant and investigate the geometrical structure. The solutions describe the physical process such that a thin black ring at early time shrinks and changes into a single black hole as time increases. We also discuss the multiblack rings and the coalescence of them.

  19. Joint Formation of Supermassive Black Holes and Galaxies

    OpenAIRE

    Haehnelt, Martin G.

    2003-01-01

    The tight correlation between black hole mass and velocity dispersion of galactic bulges is strong evidence that the formation of galaxies and supermassive black holes are closely linked. I review the modeling of the joint formation of galaxies and their central supermassive black holes in the context of the hierarchical structure formation paradigm.

  20. Black holes with surrounding matter in scalar-tensor theories.

    Science.gov (United States)

    Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P

    2013-09-13

    We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories.

  1. Racial and Socioeconomic Status Differences in Depressive Symptoms among Black and White Youth: An Examination of the Mediating Effects of Family Structure, Stress and Support

    Science.gov (United States)

    Miller, Byron; Taylor, John

    2012-01-01

    Stress research shows that race, socioeconomic status (SES), and family context significantly impact an adolescent's psychological well-being, yet little is known about the mediating effects of family context on racial and SES differences in depressive symptoms among Black and White youth. We investigate these associations using a sample of 875…

  2. We've Been Post-Raced: An Examination of Negotiations between Race, Agency, and School Structures Black Families Experience within "Post-Racial" Schools

    Science.gov (United States)

    Reynolds, Rema E.

    2015-01-01

    In light of the current mainstream contention that the United States has entered a post-racial epoch with the election of the first African American president, this work posits that post-racial rhetoric obfuscates the continued racialized experiences of Black families regardless of class status.

  3. Black holes, qubits and octonions

    International Nuclear Information System (INIS)

    Borsten, L.; Dahanayake, D.; Duff, M.J.; Ebrahim, H.; Rubens, W.

    2009-01-01

    We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)] 3 invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T 6 provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E 7 contains [SL(2)] 7 invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E 7 has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of three qutrits (3-state systems

  4. Massive Binary Black Holes in the Cosmic Landscape

    OpenAIRE

    Colpi, M.; Dotti, M.

    2009-01-01

    Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly. But, if the black holes reach coalescence, then they become the loudest sources of gravitational waves ever in the universe. Nature seems to provide a pathway for the formation of these ex...

  5. Single particle studies of black liquor gasification under pressurized conditions

    Energy Technology Data Exchange (ETDEWEB)

    Whitty, K.; Backman, R.; Hupa, M.; Backman, P.; Ek, P.; Hulden, S.T.; Kullberg, M.; Sorvari, V.

    1997-10-01

    The purpose of this project is to provide experimental data relevant to pressurized black liquor gasification concepts. Specifically, the following two goals will be achieved: Data on swelling, char yields and component release during pressurized pyrolysis of small samples of black liquor will be obtained. The reactivity and physical behavior of single black liquor droplets during simultaneous pyrolysis and gasification will be investigated. The structure and composition of black liquor char during formation and conversion will be studied. (orig.)

  6. Brane world black rings

    International Nuclear Information System (INIS)

    Sahay, Anurag; Sengupta, Gautam

    2007-01-01

    Five dimensional neutral rotating black rings are described from a Randall-Sundrum brane world perspective in the bulk black string framework. To this end we consider a rotating black string extension of a five dimensional black ring into the bulk of a six dimensional Randall-Sundrum brane world with a single four brane. The bulk solution intercepts the four brane in a five dimensional black ring with the usual curvature singularity on the brane. The bulk geodesics restricted to the plane of rotation of the black ring are constructed and their projections on the four brane match with the usual black ring geodesics restricted to the same plane. The asymptotic nature of the bulk geodesics are elucidated with reference to a bulk singularity at the AdS horizon. We further discuss the description of a brane world black ring as a limit of a boosted bulk black 2 brane with periodic identification

  7. Black Hole Universe Model and Dark Energy

    Science.gov (United States)

    Zhang, Tianxi

    2011-01-01

    Considering black hole as spacetime and slightly modifying the big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach principle and Einsteinian general relativity and self consistently explains various observations of the universe without difficulties. According to this model, the universe originated from a hot star-like black hole and gradually grew through a supermassive black hole to the present universe by accreting ambient material and merging with other black holes. The entire space is infinitely and hierarchically layered and evolves iteratively. The innermost three layers are the universe that we lives, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and zero limits for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general relativity with the Robertson-Walker metric of spacetime, and tend to expand outward physically. When one universe expands out, a new similar universe grows up from its inside black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published in peer-review journals. This study will show how this new model explains the acceleration of the universe and why dark energy is not required. We will also compare the black hole universe model with the big bang cosmology.

  8. Measuring the spins of accreting black holes

    International Nuclear Information System (INIS)

    McClintock, Jeffrey E; Narayan, Ramesh; Gou, Lijun; Kulkarni, Akshay; Penna, Robert F; Steiner, James F; Davis, Shane W; Orosz, Jerome A; Remillard, Ronald A

    2011-01-01

    A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accreting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the x-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit, whose radius depends only on the mass and spin of the black hole. In the Fe Kα method, which applies to both classes of black holes, one models the profile of the relativistically broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting (CF) method, which has so far only been applied to stellar-mass black holes, one models the thermal x-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the CF method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.

  9. Spacetime and orbits of bumpy black holes

    International Nuclear Information System (INIS)

    Vigeland, Sarah J.; Hughes, Scott A.

    2010-01-01

    Our Universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure that general relativity demands. As a means of formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced ''bumpy black holes'': objects that are almost, but not quite, general relativity's black holes. The spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing to black holes when the deviation is zero. In this paper, we extend this work in two ways. First, we show how to introduce bumps which are smoother and lead to better behaved orbits than those in the original presentation. Second, we show how to make bumpy Kerr black holes--objects which reduce to the Kerr solution when the deviation goes to zero. This greatly extends the astrophysical applicability of bumpy black holes. Using Hamilton-Jacobi techniques, we show how a spacetime's bumps are imprinted on orbital frequencies, and thus can be determined by measurements which coherently track the orbital phase of a small orbiting body. We find that in the weak field, orbits of bumpy black holes are modified exactly as expected from a Newtonian analysis of a body with a prescribed multipolar structure, reproducing well-known results from the celestial mechanics literature. The impact of bumps on strong-field orbits is many times greater than would be predicted from a Newtonian analysis, suggesting that this framework will allow observations to set robust limits on the extent to which a spacetime's multipoles deviate from the black hole expectation.

  10. Black hole hair removal

    International Nuclear Information System (INIS)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair - degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  11. The Black Studies Boondoggle

    Science.gov (United States)

    Long, Richard A.

    1970-01-01

    Indicates tendencies dangerous to the basic purpose of Black Studies, and identifies four external challeges--imperialism, paternalism, nihilism, and materialism. An internal challenge is considered to be the use of European and Establishment constructs to analyze black reality. (DM)

  12. Black-Body Radiation

    Indian Academy of Sciences (India)

    Keywords. Black-body radiation; thermal radiation; heat; electromagnetic radiation; Stefan's Law; Stefan–Boltzmann Law; Wien's Law; Rayleigh–Jeans Law; black-body spectrum; ultraviolet catastrophe; zero point energy; photon.

  13. Supermassive Black Holes and Galaxy Evolution

    Science.gov (United States)

    Merritt, D.

    2004-01-01

    Supermassive black holes appear to be generic components of galactic nuclei. The formation and growth of black holes is intimately connected with the evolution of galaxies on a wide range of scales. For instance, mergers between galaxies containing nuclear black holes would produce supermassive binaries which eventually coalesce via the emission of gravitational radiation. The formation and decay of these binaries is expected to produce a number of observable signatures in the stellar distribution. Black holes can also affect the large-scale structure of galaxies by perturbing the orbits of stars that pass through the nucleus. Large-scale N-body simulations are beginning to generate testable predictions about these processes which will allow us to draw inferences about the formation history of supermassive black holes.

  14. Dynamics of black holes

    OpenAIRE

    Hayward, Sean A.

    2008-01-01

    This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...

  15. Black holes are hot

    International Nuclear Information System (INIS)

    Gibbons, G.

    1976-01-01

    Recent work, which has been investigating the use of the concept of entropy with respect to gravitating systems, black holes and the universe as a whole, is discussed. The resulting theory of black holes assigns a finite temperature to them -about 10 -7 K for ordinary black holes of stellar mass -which is in complete agreement with thermodynamical concepts. It is also shown that black holes must continuously emit particles just like ordinary bodies which have a certain temperature. (U.K.)

  16. Simple and cost-effective fabrication of microvalve arrays in PDMS using laser cut molds with application to C. elegans manipulation in microfluidics

    Science.gov (United States)

    Samuel, R.; Thacker, C. M.; Maricq, A. V.; Gale, B. K.

    2014-09-01

    We present a new fabrication protocol for fabricating pneumatically controlled microvalve arrays (consisting of 100 s of microvalves) in PDMS substrates. The protocol utilizes rapid and cost-effective fabrication of molds using laser cutting of adhesive vinyl tapes and replica molding of PDMS. Hence the protocol is fast, simple and avoids cleanroom use. The results show that effective doormat-style microvalves can be easily fabricated in arrays by manipulating the stiffness of the actuating membrane through varying the valve-chamber area/shape. Three frequently used valve-chamber shapes (circle, square and capsule) were tested and all showed advantages in different situations. Circular valve chambers were best for small valves, square valves were best for medium-sized valves, and the capsule valves were best for larger valves. An application of this protocol has been demonstrated in the fabrication of a microfluidic 32-well plate for high-throughput manipulation of C. elegans for biomedical research.

  17. Synthesis, morphological, electromechanical characterization of (CaMgFex)Fe1-xTi3O12-δ/PDMS nanocomposite thin films for energy storage application

    Science.gov (United States)

    Tripathy, Ashis; Sharma, Priyaranjan; Sahoo, Narayan

    2018-03-01

    At the present time, flexible and stretchable electronics has intended to use the new cutting-edge technologies for advanced electronic application. Currently, Polymers are being employed for such applications but they are not effective due to their low dielectric constant. To enhance the dielectric properties of polymer for energy storage application, it is necessary to add ceramic material of high dielectric constant to synthesize a polymer-ceramic composite. Therefore, a novel attempt has been made to enhance the dielectric properties of the Polydimethylsiloxane (PDMS) polymer by adding (CaMgFex)Fe1-xTi3O12-δ(0ceramic powder. The newly developed CMFTO2/PDMS composite based thin film shows a higher dielectric constant (ε‧) value (~350), extremely low tangent loss (tanδ) ( 90%), which can make it a potential material for advanced flexible electronic devices, energy storage and biomedical applications.

  18. Simple and cost-effective fabrication of microvalve arrays in PDMS using laser cut molds with application to C. elegans manipulation in microfluidics

    International Nuclear Information System (INIS)

    Samuel, R; Gale, B K; Thacker, C M; Maricq, A V

    2014-01-01

    We present a new fabrication protocol for fabricating pneumatically controlled microvalve arrays (consisting of 100 s of microvalves) in PDMS substrates. The protocol utilizes rapid and cost-effective fabrication of molds using laser cutting of adhesive vinyl tapes and replica molding of PDMS. Hence the protocol is fast, simple and avoids cleanroom use. The results show that effective doormat-style microvalves can be easily fabricated in arrays by manipulating the stiffness of the actuating membrane through varying the valve-chamber area/shape. Three frequently used valve-chamber shapes (circle, square and capsule) were tested and all showed advantages in different situations. Circular valve chambers were best for small valves, square valves were best for medium-sized valves, and the capsule valves were best for larger valves. An application of this protocol has been demonstrated in the fabrication of a microfluidic 32-well plate for high-throughput manipulation of C. elegans for biomedical research. (paper)

  19. Time-dependent adhesion of a polydimethylsiloxane (PDMS) elastomer film to a flat indenter tip characterized using a cohesive-zone law

    Science.gov (United States)

    Trong Mai, Nghia; Choi, Seung Tae; Chung, Koo-Hyun; Ryoon Lee, Seung; Shin, Dong Kil; Earmme, Youn Young

    2014-04-01

    The work of adhesion between a polydimethylsiloxane (PDMS) elastomer film and a flat diamond tip was measured by instrumented indentation. The results showed that the apparent work of adhesion between the tip and the PDMS film increases with increasing dwell time and retreating velocity; on the other hand, the indentation depth has no significant effect on adhesion. The indentation experiment was analysed with viscoelastic finite element simulations with rate-dependent cohesive elements, from which the time evolution of adhesion was quantitatively implemented into a rate-dependent cohesive-zone law. This article was originally published with errors. This version has been corrected. Please see Erratum (http://dx.doi.org/10.1080/09500839.2014.909179).

  20. Monopole black hole skyrmions

    OpenAIRE

    Moss, I.G.; Shiiki, N.; Winstanley, E.

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  1. Alcoholism and Blacks.

    Science.gov (United States)

    Mosley, Bertha; And Others

    1988-01-01

    Notes that in America, knowledge base concerning alcoholism is concentrated on drinking patterns of Whites, and that Black Americans often differ in their drinking behavior, resulting in a need to clarify issues regarding alcoholism and Blacks. Provides theoretical information useful in better discerning drinking behavior of Blacks. (Author/NB)

  2. What is black hole?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is black hole? Possible end phase of a star: A star is a massive, luminous ball of plasma having continuous nuclear burning. Star exhausts nuclear fuel →. White Dwarf, Neutron Star, Black Hole. Black hole's gravitational field is so powerful that even ...

  3. Genocide and Black Ecology

    Science.gov (United States)

    Sinnette, Calvin H.

    1972-01-01

    Contends that the survival of black people is in serious jeopardy as is evidenced in contemporary discussions on the worldwide plight of black people, and that an exhaustive study of the problem in its many dimensions is seriously lacking; the moral and ethical issues of genocide require examination from a black perspective. (JW)

  4. Violent flickering in Black Holes

    Science.gov (United States)

    2008-10-01

    intense energy flows of electrically charged matter in its vicinity. The environment of a black hole is constantly being reshaped by a riotous mêlée of strong and competing forces such as gravity, magnetism and explosive pressure. As a result, light emitted by the hot flows of matter varies in brightness in a muddled and haphazard way. "But the pattern found in this new study possesses a stable structure that stands out amidst an otherwise chaotic variability, and so, it can yield vital clues about the dominant underlying physical processes in action," says team member Andy Fabian. The visible-light emission from the neighbourhoods of black holes was widely thought to be a secondary effect, with a primary X-ray outburst illuminating the surrounding gas that subsequently shone in the visible range. But if this were so, any visible-light variations would lag behind the X-ray variability, and would be much slower to peak and fade away. "The rapid visible-light flickering now discovered immediately rules out this scenario for both systems studied," asserts Gandhi. "Instead the variations in the X-ray and visible light output must have some common origin, and one very close to the black hole itself." Strong magnetic fields represent the best candidate for the dominant physical process. Acting as a reservoir, they can soak up the energy released close to the black hole, storing it until it can be discharged either as hot (multi-million degree) X-ray emitting plasma, or as streams of charged particles travelling at close to the speed of light. The division of energy into these two components can result in the characteristic pattern of X-ray and visible-light variability.

  5. Use of statistical design of experiments in the optimization of Ar-O2 low-pressure plasma treatment conditions of polydimethylsiloxane (PDMS) for increasing polarity and adhesion, and inhibiting hydrophobic recovery

    Science.gov (United States)

    Butrón-García, María Isabel; Jofre-Reche, José Antonio; Martín-Martínez, José Miguel

    2015-03-01

    Polydimethylsiloxane (PDMS) film was treated with RF low-pressure plasmas (LPPs) made of mixtures of oxygen and argon for increasing surface polarity, minimizing hydrophobic recovery (i.e. retard ageing) and increasing adhesion to acrylic adhesive tape for medical use. Statistical design of experiments has been used for determining the most influencing experimental parameters of the LPP treatment of PDMS. Water contact angle values (measured 24 h after treatment) and the O/C ratio obtained from XPS experiments were used as response variables. Working pressure was the most influencing parameter in LPP treatment of PDMS, and the duration of the treatment, the power and the oxygen-argon mixture composition determined noticeably its effectiveness. The optimal surface properties in PDMS and inhibited hydrophobic recovery were achieved by treatment with 93 vol% oxygen + 7 vol% argon LLP at low working pressure (300 mTorr), low power (25 W) and long duration of treatment (120 s).

  6. New organic photo-curable nanoimprint resist ≪mr-NIL210≫ for high volume fabrication applying soft PDMS-based stamps

    OpenAIRE

    Messerschmidt, Martin; Greer, Andrew; Schlachter, Florian; Barnett, Julian; Thesen, Manuel W.; Gadegaard, Nikolaj; Grutzner, Gabi; Schleunitz, Arne

    2017-01-01

    Herein, we report on a newly developed and commercialized organic photo-curable Nanoimprint Lithography (NIL) resist, namely mr-NIL210. Since this new NIL resist follows an innovative design concept and contains solely specific monomers with a characteristic chemistry and molecular design, an extended longevity of applied polydimethyl siloxane (PDMS) stamps is enabled addressing a crucial key metric for industrial high-volume manufacturing processes. Moreover, the mr-NIL210 is characterized b...

  7. Low-cost fabrication and performance testing of Polydimethylsiloxane (PDMS) micromixers using an improved print-and-Peel (PAP) method

    Science.gov (United States)

    Abagon, Ma. Victoria; Buendia, Neil Daniel; Jasper Caracas, Corine; July Yap, Kristian

    2018-03-01

    The research presents different configurations of microfluidic mixers made from polydimethylsiloxane (PDMS) fabricated using an improved, low-cost print-and-peel (PAP) method. Processes, such as mixing, operated in the micro scale allow decreased equipment size-to-production capacity ratio and decreased energy consumption per unit product. In the study, saturated solutions of blue and yellow food dyes were introduced inside the channels using a LEGO® improvised microsyringe pump. Scanning Electron Microscopy (SEM) was used to determine the average depth of the fabricated micromixers which was found to be around 14 ¼m. The flows were observed and images were taken using a light microscope. The color intensities of the images were then measured using MATLAB®. From the relationship between color intensity and concentration, the mixing indices were calculated and found to be 0.9435 to 0.9941, which falls within the standard mixing index range (0.8 - 1.0) regardless of the flow rate and the configuration of the micromixer as verified through the two-way ANOVA. From the cost analysis, the cost of the device fabricated in this study is a hundred-fold less than expenses from standard fabrication procedures. Hence, the fabricated device provides an alternative for micromixers produced from expensive and conventional lithographic methods.

  8. Long-term PAH monitoring results from the Anacostia River active capping demonstration using polydimethylsiloxane (PDMS) fibers.

    Science.gov (United States)

    Lampert, David J; Lu, Xiaoxia; Reible, Danny D

    2013-03-01

    In this paper, the long-term monitoring results for hydrophobic organic compounds, specifically polycyclic aromatic hydrocarbons (PAHs), from a field demonstration of capping contaminated sediments at the Anacostia River in Washington DC are presented and analyzed. In situ pore water concentrations in field-contaminated sediments in the demonstration caps were quantified using a polydimethylsiloxane (PDMS)-based passive sampling device. High resolution vertical pore water concentration profiles were measured using the device and were used to infer fate and transport of polycyclic aromatics hydrocarbons (PAHs) at the site. The derived pore water concentrations were compared with observed bioaccumulation and solid-phase concentration profiles to infer contaminant migration rates and mechanisms. Observed pore water concentrations were found to be a better predictor of bioaccumulation than solid-phase concentrations. Solid-phase concentrations were low in cores which implied containment of contamination; however pore water profiles showed that contaminant migration had occurred in the first few years after cap placement. The discrepancy is the result of the low sorption capacity of the sand. Because of surface re-contamination, low sorption capacity in the demonstration caps and strong tidal pumping effects, steady state contaminant profiles were reached in the caps several years after placement. Despite re-contamination at the surface, steady state concentrations in the capped areas showed decreased contamination levels relative to the control area.

  9. Black Phosphorus: Critical Review and Potential for Water Splitting Photocatalyst

    Directory of Open Access Journals (Sweden)

    Tae Hyung Lee

    2016-10-01

    Full Text Available A century after its first synthesis in 1914, black phosphorus has been attracting significant attention as a promising two-dimensional material in recent years due to its unique properties. Nowadays, with the development of its exfoliation method, there are extensive applications of black phosphorus in transistors, batteries and optoelectronics. Though, because of its hardship in mass production and stability problems, the potential of the black phosphorus in various fields is left unexplored. Here, we provide a comprehensive review of crystal structure, electronic, optical properties and synthesis of black phosphorus. Recent research works about the applications of black phosphorus is summarized. Among them, the possibility of black phosphorous as a solar water splitting photocatalyst is mainly discussed and the feasible novel structure of photocatalysts based on black phosphorous is proposed.

  10. A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer

    KAUST Repository

    Li, Ming

    2011-12-03

    We report a simple and cost-effective method for fabricating integrated electronic-microfluidic devices with multilayer configurations. A CO 2 laser plotter was employed to directly write patterns on a transferred polydimethylsiloxane (PDMS) layer, which served as both a bonding and a working layer. The integration of electronics in microfluidic devices was achieved by an alignment bonding of top and bottom electrode-patterned substrates fabricated with conventional lithography, sputtering and lift-off techniques. Processes of the developed fabrication method were illustrated. Major issues associated with this method as PDMS surface treatment and characterization, thickness-control of the transferred PDMS layer, and laser parameters optimization were discussed, along with the examination and testing of bonding with two representative materials (glass and silicon). The capability of this method was further demonstrated by fabricating a microfluidic chip with sputter-coated electrodes on the top and bottom substrates. The device functioning as a microparticle focusing and trapping chip was experimentally verified. It is confirmed that the proposed method has many advantages, including simple and fast fabrication process, low cost, easy integration of electronics, strong bonding strength, chemical and biological compatibility, etc. © Springer-Verlag 2011.

  11. Flow-through PCR on a 3D qiandu-shaped polydimethylsiloxane (PDMS) microdevice employing a single heater: toward microscale multiplex PCR.

    Science.gov (United States)

    Wu, Wenming; Loan, Kieu The Loan; Lee, Nae Yoon

    2012-05-07

    Consistent temperature control in an on-chip flow-through polymerase chain reaction (PCR) employing two or more heaters is one of the main obstacles for device miniaturization and integration when realizing micro total analysis systems (μTAS), and also leads to operational complexity. In this study, we propose a qiandu (right triangular prism)-shaped polydimethylsiloxane (PDMS) microdevice with serpentine microchannels fabricated on its slanted plane, and apply the device for an on-chip flow-through PCR employing a single heater. The inclined nature of the qiandu-shaped microdevice enables the formation of a surface temperature gradient along the slanted plane of the microdevice in a height-dependent manner by the use of a single heater, and enables liquid to traverse over wide ranges of temperatures, including the three temperature zones--denaturation, annealing, and extension temperatures--required in a typical PCR. The feasibility of the qiandu-shaped PDMS microdevice as a versatile platform for performing a flow-through PCR was examined by employing multiple templates and varying the inclination angle of the device. In addition, the potential of performing a multiplex PCR using a single qiandu-shaped PDMS microdevice was explored. A 409 bp long gene fragment effective as a marker for diagnosing lung cancer and a 230 bp long gene fragment from a plasmid vector were simultaneously amplified in less than 25 min on a single microdevice, paving the way for a microscale, multiplex PCR on a single device employing a single heater.

  12. Fracto-mechanoluminescent light emission of EuD4TEA-PDMS composites subjected to high strain-rate compressive loading

    Science.gov (United States)

    Ryu, Donghyeon; Castaño, Nicolas; Bhakta, Raj; Kimberley, Jamie

    2017-08-01

    The objective of this study is to understand light emission characteristics of fracto-mechanoluminescent (FML) europium tetrakis(dibenzoylmethide)-triethylammonium (EuD4TEA) crystals under high strain-rate compressive loading. As a sensing material that can play a pivotal role for the self-powered impact sensor technology, it is important to understand transformative light emission characteristics of the FML EuD4TEA crystals under high strain-rate compressive loading. First, EuD4TEA crystals were synthesized and embedded into polydimethylsiloxane (PDMS) elastomer to fabricate EuD4TEA-PDMS composite test specimens. Second, the prepared EuD4TEA-PDMS composites were tested using the modified Kolsky bar setup equipped with a high-speed camera. Third, FML light emission was captured to yield 12 bit grayscale video footage, which was processed to quantify the FML light emission. Finally, quantitative parameters were generated by taking into account pixel values and population of pixels of the 12 bit grayscale images to represent FML light intensity. The FML light intensity was correlated with high strain-rate compressive strain and strain rate to understand the FML light emission characteristics under high strain-rate compressive loading that can result from impact occurrences.

  13. Black hole as a wormhole factory

    Directory of Open Access Journals (Sweden)

    Sung-Won Kim

    2015-12-01

    Full Text Available There have been lots of debates about the final fate of an evaporating black hole and the singularity hidden by an event horizon in quantum gravity. However, on general grounds, one may argue that a black hole stops radiation at the Planck mass (ħc/G1/2∼10−5 g, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a wormhole-like structure, known as “spacetime foam”, due to large fluctuations below the Planck length (ħG/c31/2∼10−33 cm. In this paper, as an explicit example, we consider an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called “Black Wormhole”, consists of two different states, depending on its mass parameter M and an IR parameter ω: For the black hole state (with ωM2>1/2, a non-traversable wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state (with ωM2<1/2, the interior wormhole is exposed to an outside observer as the black hole horizon is disappearing from evaporation. The black hole state becomes thermodynamically stable as it approaches the merging point where the interior wormhole throat and the black hole horizon merges, and the Hawking temperature vanishes at the exact merge point (with ωM2=1/2. This solution suggests the “Generalized Cosmic Censorship” by the existence of a wormhole-like structure which protects the naked singularity even after the black hole evaporation. One could understand the would-be wormhole inside the black hole horizon as the result of microscopic wormholes created by “negative” energy quanta which have entered the black hole horizon in Hawking radiation process; the quantum black hole could be a wormhole factory! It is found that this speculative picture may be consistent with the

  14. Cosmic microwave background radiation of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2010-11-01

    Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.

  15. Regular phantom black holes.

    Science.gov (United States)

    Bronnikov, K A; Fabris, J C

    2006-06-30

    We study self-gravitating, static, spherically symmetric phantom scalar fields with arbitrary potentials (favored by cosmological observations) and single out 16 classes of possible regular configurations with flat, de Sitter, and anti-de Sitter asymptotics. Among them are traversable wormholes, bouncing Kantowski-Sachs (KS) cosmologies, and asymptotically flat black holes (BHs). A regular BH has a Schwarzschild-like causal structure, but the singularity is replaced by a de Sitter infinity, giving a hypothetic BH explorer a chance to survive. It also looks possible that our Universe has originated in a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations include k-essence type scalar fields (with a potential) and scalar-tensor gravity.

  16. Black hole levitron

    International Nuclear Information System (INIS)

    Arsiwalla, Xerxes D.; Verlinde, Erik P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.'s multicenter supersymmetric black hole solutions provides a supergravity description of such backgrounds within which a black hole can be trapped within a confined volume. This construction is realized by solving for a levitating black hole over a magnetic dipole base. We comment on how such a construction is akin to a mechanical levitron.

  17. Magnitude Differences in Bioactive Compounds, Chemical Functional Groups, Fatty Acid Profiles, Nutrient Degradation and Digestion, Molecular Structure, and Metabolic Characteristics of Protein in Newly Developed Yellow-Seeded and Black-Seeded Canola Lines.

    Science.gov (United States)

    Theodoridou, Katerina; Zhang, Xuewei; Vail, Sally; Yu, Peiqiang

    2015-06-10

    Recently, new lines of yellow-seeded (CS-Y) and black-seeded canola (CS-B) have been developed with chemical and structural alteration through modern breeding technology. However, no systematic study was found on the bioactive compounds, chemical functional groups, fatty acid profiles, inherent structure, nutrient degradation and absorption, or metabolic characteristics between the newly developed yellow- and black-seeded canola lines. This study aimed to systematically characterize chemical, structural, and nutritional features in these canola lines. The parameters accessed include bioactive compounds and antinutrition factors, chemical functional groups, detailed chemical and nutrient profiles, energy value, nutrient fractions, protein structure, degradation kinetics, intestinal digestion, true intestinal protein supply, and feed milk value. The results showed that the CS-Y line was lower (P ≤ 0.05) in neutral detergent fiber (122 vs 154 g/kg DM), acid detergent fiber (61 vs 99 g/kg DM), lignin (58 vs 77 g/kg DM), nonprotein nitrogen (56 vs 68 g/kg DM), and acid detergent insoluble protein (11 vs 35 g/kg DM) than the CS-B line. There was no difference in fatty acid profiles except C20:1 eicosenoic acid content (omega-9) which was in lower in the CS-Y line (P makeup and conformation between the two lines. In terms of energy values, there were significant differences in total digestible nutrient (TDN; 149 vs 133 g/kg DM), metabolizable energy (ME; 58 vs 52 MJ/kg DM), and net energy for lactation (NEL; 42 vs 37 MJ/kg DM) between CS-Y and CS-B lines. For in situ rumen degradation kinetics, the two lines differed in soluble fraction (S; 284 vs 341 g/kg CP), potential degradation fraction (D; 672 vs 590 g/kg CP), and effective degraded organic matter (EDOM; 710 vs 684 g/kg OM), but no difference in degradation rate. CS-Y had higher digestibility of rumen bypass protein in the intestine than CS-B (566 vs 446 g/kg of RUP, P < 0.05). Modeling nutrient supply results

  18. Fabrication of a zirconia MEMS-based microthruster by gel casting on PDMS soft molds

    International Nuclear Information System (INIS)

    Cheah, K H; Khiew, P S; Chin, J K

    2012-01-01

    A zirconia microelectromechanical-system-based microthruster was fabricated through a newly developed fabrication route. Gel casting of homogenously dispersed zirconia suspension on polydimethylsiloxane soft mold was utilized to replicate the geometries of microthruster design onto a ceramic layer of about 1.2 mm thick. Lamination of the patterned ceramic layer to another flat ceramic layer and subsequent sintering produced the microthruster. Characterizations on the fabricated prototype showed good shape retention on the replicated geometries and good quality of lamination. Shrinkage of about 10–15% was noted after sintering. The current fabrication route is particularly promising for the development of high-performance micropropulsion systems which require their structural material to survive in an extreme environment which is corrosive, of high temperature and highly oxidative. (paper)

  19. The effect of artificial accelerated weathering on the mechanical properties of maxillofacial polymers PDMS and CPE.

    Science.gov (United States)

    Eleni, P N; Krokida, M K; Polyzois, G L

    2009-06-01

    The effect of UVA-UVB irradiation on the mechanical properties of three different industrial types of polydimethylsiloxane and chlorinated polyethylene samples, used in maxillofacial prostheses, was investigated in this study. Mechanical properties and thermal analysis are commonly used to determine the structural changes and mechanical strength. An aging chamber was used in order to simulate the solar radiation and assess natural aging. Compression and tensile tests were conducted on a Zwick testing machine. Durometer Shore A hardness measurements were carried out in a CV digital Shore A durometer according to ASTM D 2240. Glass transition temperature was evaluated with a differential scanning calorimeter. Simple mathematical models were developed to correlate the measured properties with irradiation time. The effect of UVA-UVB irradiation on compressive behavior affected model parameters. Significant deterioration seems to occur due to irradiation in samples.

  20. The Causes of the Worsening Employment Situation of Black Youth.

    Science.gov (United States)

    Osterman, Paul

    A study was conducted to examine why black youth unemployment has increased and participation rates decreased. The study was conducted in three parts. The first employs 1960 and 1970 census data to examine the impact of local labor market structure and changes in the structure upon the employment growth of black and white youth. The second part…