WorldWideScience

Sample records for black light trap

  1. Wave optical simulation of the light trapping properties of black silicon surface textures.

    Science.gov (United States)

    Bett, Alexander Jürgen; Eisenlohr, Johannes; Höhn, Oliver; Repo, Päivikki; Savin, Hele; Bläsi, Benedikt; Goldschmidt, Jan Christoph

    2016-03-21

    Due to their low reflectivity and effective light trapping properties black silicon nanostructured surfaces are promising front side structures for thin crystalline silicon solar cells. For further optimization of the light trapping effect, particularly in combination with rear side structures, it is necessary to simulate the optical properties of black silicon. Especially, the angular distribution of light in the silicon bulk after passage through the front side structure is relevant. In this paper, a rigorous coupled wave analysis of black silicon is presented, where the black silicon needle shaped structure is approximated by a randomized cone structure. The simulated absorptance agrees well with measurement data. Furthermore, the simulated angular light distribution within the silicon bulk shows that about 70% of the light can be subjected to internal reflection, highlighting the good light trapping properties.

  2. Seasonal Flight Activity of the Sugarcane Beetle (Coleoptera: Scarabaeidae) in North Carolina Using Black Light Traps.

    Science.gov (United States)

    Billeisen, T L; Brandenburg, R L

    2016-04-01

    Seasonal flight activity, adult beetle sex count, and egg production were examined in sugarcane beetles Euetheola rugiceps (LeConte) caught in light traps in North Carolina from the fall of 2009 through the summer of 2014. A regression model using variable environmental conditions as predictive parameters was developed to examine the impact of these conditions on flight activity. Depending on flight trap location and sampling years, beetles exhibited an inconsistent flight pattern, with the majority of adults flying in the spring (April-June) and intermittently in the fall (September-October). Our model indicated that larger numbers of adults collected from traps coincided with an increase in average soil temperature. Sugarcane beetles also exhibit a synchronous emergence during both periods of flight activity. Eggs were detected in females collected from light traps every week throughout the entire sampling period. The majority of females produced 7-12 eggs, with most egg production occurring between 15 May and 1 August. The findings of this research provide adult sugarcane beetle emergence and flight behavior information necessary to determine optimal pesticide application timing.

  3. Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination

    Science.gov (United States)

    Zheng, Buxiang; Wang, Wenjun; Jiang, Gedong; Mei, Xuesong

    2016-06-01

    A hybrid method consisting of ultrafast laser-assisted texturing and chemical fluorination treatment was applied for efficiently enhancing the surface broadband antireflection to fabricate black titanium alloy surface with ultra-light-trapping micro-nanostructure. Based on the theoretical analysis of surface antireflective principle of micro-nanostructures and fluoride film, the ultra-light-trapping micro-nanostructures have been processed using a picosecond pulsed ultrafast laser on titanium alloy surfaces. Then fluorination treatment has been performed by using fluoroalkyl silane solution. According to X-ray diffraction phase analysis of the surface compositions and measurement of the surface reflectance using spectrophotometer, the broadband antireflective properties of titanium alloy surface with micro-nano structural characteristics were investigated before and after fluorination treatment. The results show that the surface morphology of micro-nanostructures processed by picosecond laser has significant effects on the antireflection of light waves to reduce the surface reflectance, which can be further reduced using chemical fluorination treatment. The high antireflection of over 98 % in a broad spectral range from ultraviolet to infrared on the surface of metal material has been achieved for the surface structures, and the broadband antireflective black metal surfaces with an extremely low reflectance of ultra-light-trapping structures have been obtained in the wavelength range from ultraviolet-visible to near-infrared, middle-wave infrared. The average reflectance of microgroove groups structured surface reaches as low as 2.43 % over a broad wavelength range from 200 to 2600 nm. It indicates that the hybrid method comprising of picosecond laser texturing and chemical fluorination can effectively induce the broadband antireflective black metal surface. This method has a potential application for fabricating antireflective surface used to improve the

  4. Attractiveness of black Shannon trap for phlebotomines.

    Science.gov (United States)

    Galati, E A; Nunes, V L; Dorval, M E; Cristaldo, G; Rocha, H C; Gonçalves-Andrade, R M; Naufel, G

    2001-07-01

    A white Shannon-type trap was used for captures of female sand flies in the search for natural infection with flagellates, however, due to its low productivity and as a large number of phlebotomines settled on the researchers' black clothes, we decided to compare the relative attractiveness of black and white Shannon-type traps for sand flies. Several pairs of black and white traps were placed side by side in front of caves in four areas in the Serra da Bodoquena, Bonito county, State of Mato Grosso do Sul, Brazil, for a total of 12 observations and 44 h of capture. The experiment resulted in 889 phlebotomines captured, 801 on the black and 88 on the white trap, representing 13 species. The hourly Williams' means were 8.67 and 1.24, respectively, and the black/white ratio was 7.0:1.0. Lutzomyia almerioi, an anthropophilic species closely associated with caves, was predominant (89%). Only two other species, Nyssomyia whitmani and Psathyromyia punctigeniculata, also anthropophilic, were significantly attracted to the black rather than to the white trap (chi(2) test; p < or = 0.01). The difference between the diversity index of the two traps was not significant at level 0.05. The black trap in these circumstances was much more productive than the white, especially for anthropophilic species.

  5. Attractiveness of black Shannon trap for phlebotomines

    Directory of Open Access Journals (Sweden)

    Galati EAB

    2001-01-01

    Full Text Available A white Shannon-type trap was used for captures of female sand flies in the search for natural infection with flagellates, however, due to its low productivity and as a large number of phlebotomines settled on the researchers' black clothes, we decided to compare the relative attractiveness of black and white Shannon-type traps for sand flies. Several pairs of black and white traps were placed side by side in front of caves in four areas in the Serra da Bodoquena, Bonito county, State of Mato Grosso do Sul, Brazil, for a total of 12 observations and 44 h of capture. The experiment resulted in 889 phlebotomines captured, 801 on the black and 88 on the white trap, representing 13 species. The hourly Williams' means were 8.67 and 1.24, respectively, and the black/white ratio was 7.0:1.0. Lutzomyia almerioi, an anthropophilic species closely associated with caves, was predominant (89%. Only two other species, Nyssomyia whitmani and Psathyromyia punctigeniculata, also anthropophilic, were significantly attracted to the black rather than to the white trap (chi2 test; p <= 0.01. The difference between the diversity index of the two traps was not significant at level 0.05. The black trap in these circumstances was much more productive than the white, especially for anthropophilic species.

  6. Attractiveness of black Shannon trap for phlebotomines

    OpenAIRE

    Galati EAB; VLB Nunes; MEC Dorval; Cristaldo,G; HC Rocha; RM Gonçalves-Andrade; Naufel,G

    2001-01-01

    A white Shannon-type trap was used for captures of female sand flies in the search for natural infection with flagellates, however, due to its low productivity and as a large number of phlebotomines settled on the researchers' black clothes, we decided to compare the relative attractiveness of black and white Shannon-type traps for sand flies. Several pairs of black and white traps were placed side by side in front of caves in four areas in the Serra da Bodoquena, Bonito county, State of Mato...

  7. About Black Holes Without Trapping Interior

    CERN Document Server

    Cabo-Montes de Oca, Alejandro; Cabo, Alejandro; Ayon, Eloy

    1999-01-01

    Physical arguments related with the existence of black hole solutions having a non trapping interior are discussed. Massive scalar fields interacting with gravity are considered. Interior asymptotic solutions showing a scalar field approaching a constant value at the horizon are given. It is argued that the coupled Einstein-Klein-Gordon equations can be satisfied in the sense of the generalized functions after removing a particular regularization designed for matching the interior solution with an external Scwartzschild spacetime. The scalar field appears as just avoiding the appearance of closed trapped surfaces while coming from the exterior region. It also follows that the usual space integral over the temporal- temporal components of energy-momnetum tensor in the internal region just gives the total proper mass associated to the external Schwartzschild solution, as it should be expected.

  8. Light trapping for flexible organic photovoltaics

    Science.gov (United States)

    Park, Yoonseok; Berger, Jana; Will, Paul-Anton; Soldera, Marcos; Glatz, Bernhard; Müller-Meskamp, Lars; Taretto, Kurt; Fery, Andreas; Lasagni, Andrés. Fabián.; Vandewal, Koen; Leo, Karl

    2016-09-01

    Here we investigate light trapping substrates and electrodes for enhancing the performance of organic photovoltaics (OPVs). Their power conversion efficiency (PCE) can be improved by a factor of 1.16 using laser patterned PET substrates and by a factor of 1.13 using commercial, structured display films. Furthermore, we prepare light trapping electrodes using as flexible conductive polymer with embedded TiO2 nanoparticles, improving the PCE by a factor of 1.08 as compared to a neat polymer electrode. However, nano-imprinted conductive polymer electrodes does not provide light trapping effect due to the small size (50 nm) of the structures. Moreover flexible OPV devices, integrating the above light trapping elements, show non-degraded performance after bending tests.

  9. Eliminating light shifts for single atom trapping

    Science.gov (United States)

    Hutzler, Nicholas R.; Liu, Lee R.; Yu, Yichao; Ni, Kang-Kuen

    2017-02-01

    Microscopically controlled neutral atoms in optical tweezers and lattices have led to exciting advances in the study of quantum information and quantum many-body systems. The light shifts of atomic levels from the trapping potential in these systems can result in detrimental effects such as fluctuating dipole force heating, inhomogeneous detunings, and inhibition of laser cooling, which limits the atomic species that can be manipulated. In particular, these light shifts can be large enough to prevent loading into optical tweezers directly from a magneto-optical trap. We implement a general solution to these limitations by loading, as well as cooling and imaging the atoms with temporally alternating beams, and present an analysis of the role of heating and required cooling for single atom tweezer loading. Because this technique does not depend on any specific spectral properties, it should enable the optical tweezer platform to be extended to nearly any atomic or molecular species that can be laser cooled and optically trapped.

  10. Laser trapping and spatial light modulators

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2012-01-01

    INVITED: Robotics at the macro-scale typically uses light for carrying information in machine vision for monitoring and feedback in intelligent robotic guidance systems. With light’s miniscule momentum, shrinking robots down to the micro-scale regime creates opportunities for exploiting optical...... optimization of the underlying light-matter interaction. The requirement of having tightly focused beams in optical tweezer systems exemplifies the need for optimal light-shaping in optical trapping. On the other hand, the recent report on stable optical lift shows that optical manipulation can be achieved...

  11. Flexible, light trapping substrates for organic photovoltaics

    Science.gov (United States)

    Park, Yoonseok; Berger, Jana; Tang, Zheng; Müller-Meskamp, Lars; Lasagni, Andrés Fabián; Vandewal, Koen; Leo, Karl

    2016-08-01

    Micro-structured organic photovoltaic (OPV) devices on polyethylene terephthalate substrates are produced using direct laser interference patterning (DLIP). The performance of organic solar cells on these substrates is improved by a factor of 1.16, and a power conversion efficiency of 7.70% is achieved. We show that a shorter spatial period of the pattern allows for a stronger light trapping effect in solar cell, as it leads to a longer light path. Moreover, since the patterned structures are located on the outside of the fully encapsulated OPV devices, there are no problems with the roughness induced shunts.

  12. Trapping light by mimicking gravitational lensing

    CERN Document Server

    Sheng, C; Wang, Y; Zhu, S N; Genov, D A

    2013-01-01

    One of the most fascinating predictions of the theory of general relativity is the effect of gravitational lensing, the bending of light in close proximity to massive stellar objects. Recently, artificial optical materials have been proposed to study the various aspects of curved spacetimes, including light trapping and Hawking's radiation. However, the development of experimental toy models that simulate gravitational lensing in curved spacetimes remains a challenge, especially for visible light. Here, by utilizing a microstructured optical waveguide around a microsphere, we propose to mimic curved spacetimes caused by gravity, with high precision. We experimentally demonstrate both far-field gravitational lensing effects and the critical phenomenon in close proximity to the photon sphere of astrophysical objects under hydrostatic equilibrium. The proposed microstructured waveguide can be used as an omnidirectional absorber, with potential light harvesting and microcavity applications.

  13. Trapping Horizons as inner boundary conditions for black hole spacetimes

    CERN Document Server

    Jaramillo, J L; Cordero-Carrion, I; Ibáñez, J M

    2007-01-01

    We present a set of inner boundary conditions for the numerical construction of dynamical black hole space-times, when employing a 3+1 constrained evolution scheme and an excision technique. These inner boundary conditions are heuristically motivated by the dynamical trapping horizon framework and are enforced in an elliptic subsystem of the full Einstein equation. In the stationary limit they reduce to existing isolated horizon boundary conditions. A characteristic analysis completes the discussion of inner boundary conditions for the radiative modes.

  14. 3D-printed external light trap for solar cells.

    Science.gov (United States)

    van Dijk, Lourens; Paetzold, Ulrich W; Blab, Gerhard A; Schropp, Ruud E I; di Vece, Marcel

    2016-05-01

    We present a universally applicable 3D-printed external light trap for enhanced absorption in solar cells. The macroscopic external light trap is placed at the sun-facing surface of the solar cell and retro-reflects the light that would otherwise escape. The light trap consists of a reflective parabolic concentrator placed on top of a reflective cage. Upon placement of the light trap, an improvement of 15% of both the photocurrent and the power conversion efficiency in a thin-film nanocrystalline silicon (nc-Si:H) solar cell is measured. The trapped light traverses the solar cell several times within the reflective cage thereby increasing the total absorption in the cell. Consequently, the trap reduces optical losses and enhances the absorption over the entire spectrum. The components of the light trap are 3D printed and made of smoothened, silver-coated thermoplastic. In contrast to conventional light trapping methods, external light trapping leaves the material quality and the electrical properties of the solar cell unaffected. To explain the theoretical operation of the external light trap, we introduce a model that predicts the absorption enhancement in the solar cell by the external light trap. The corresponding calculated path length enhancement shows good agreement with the empirically derived value from the opto-electrical data of the solar cell. Moreover, we analyze the influence of the angle of incidence on the parasitic absorptance to obtain full understanding of the trap performance. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons, Ltd.

  15. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry; Ford, K. E. Saavik [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, NY 10024 (United States)

    2016-03-10

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.

  16. Comparison of different light sources for trapping Culicoides biting midges, mosquitoes and other dipterans.

    Science.gov (United States)

    González, Mikel; Alarcón-Elbal, Pedro María; Valle-Mora, Javier; Goldarazena, Arturo

    2016-08-15

    The response of Culicoides biting midges, mosquitoes and other dipterans to different wavelengths was evaluated in a farm meadow in northern Spain. A total of 9449 specimens of 23 species of Culicoides, 5495 other ceratopogonids (non-biting midges), 602 culicids and 12428 other mixed dipterans were captured. Centers for Disease Control and Prevention (CDC) suction light traps fitted with five light emitting diodes (LEDs) (white, green, red, blue, ultraviolet) were run for 15 consecutive nights. Significantly more Culicoides were collected in those traps fitted with green, blue or ultraviolet (UV) lights than in red and white-baited LED traps for the most abundant species captured: C. punctatus (37.5%), C. cataneii (26.5%) and C. obsoletus/C. scoticus (20.4%). Similar results were obtained for non-Culicoides ceratopogonids, mosquitoes and other mixed dipterans. Wavelengths in green (570nm) resulted effective for targeting some Culicoides species, culicids and other midges. In a second trial, the effectiveness of 4-W white and UV tubes was compared to traps fitted with UV LED and a standard incandescent light bulb. More specimens of all taxa were collected with fluorescent black light (UV) traps than with the other light sources, except culicids, which were recovered in high numbers from fluorescent white light traps.

  17. Monitoring Spruce Budworm with Light Traps: The Effect of Trap Position

    Directory of Open Access Journals (Sweden)

    Marc Rhainds

    2014-01-01

    Full Text Available Daily records of adult spruce budworms, Choristoneura fumiferana (Clemens (Lepidoptera: Tortricidae, captured at light traps at multiple locations in New Brunswick in the 1970s, are analyzed in relation to the physical position of light traps (tree canopies or forest clearings. Captures at light traps deployed in tree canopies were 4–400 times greater than those in forest clearings, especially for males. The phenology of captures (median date or duration of flight period did not differ in relation to trap location. Captures of both males and females in tree canopies were highly correlated with egg densities, whereas no significant relationship was observed for either sex in forest clearings. Monitoring programs for spruce budworm adults using light traps should be standardized by deploying traps in tree canopies.

  18. Light trapping structures in wing scales of butterfly Trogonoptera brookiana

    Science.gov (United States)

    Han, Zhiwu; Niu, Shichao; Shang, Chunhui; Liu, Zhenning; Ren, Luquan

    2012-04-01

    The fine optical structures in wing scales of Trogonoptera brookiana, a tropical butterfly exhibiting efficient light trapping effect, were carefully examined and the reflectivity was measured using reflectance spectrometry. The optimized 3D configuration of the coupling structure was determined using SEM and TEM data, and the light trapping mechanism of butterfly scales was studied. It is found that the front and back sides of butterfly wings possess different light trapping structures, but both can significantly increase the optical path and thus result in almost total absorption of all incident light. An optical model was created to check the properties of this light trapping structure. The simulated reflectance spectra are in concordance with the experimental ones. The results reliably confirm that these structures induce efficient light trapping effect. This functional ``biomimetic structure'' would have a potential value in wide engineering and optical applications.

  19. Light geodesics near an evaporating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, Thiago, E-mail: thiago.barbosa@unige.ch; Monteiro, Fernando, E-mail: fernando.monteiro@unige.ch

    2015-10-16

    Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed. - Highlights: • We calculate the in-falling light geodesics in an evaporating black hole. • For our calculation we use a non-static metric called Vaydia metric. • We show that in-falling light cannot cross the event horizon. • In this case there is no information paradox.

  20. Hybrid ion, atom and light trap

    CERN Document Server

    Jyothi, S; Ram, N Bhargava; Rangwala, S A

    2013-01-01

    We present an unique experimental arrangement which permits the simultaneous trapping and cooling of ions and neutral atoms, within a Fabry-Perot (FP) cavity. The versatility of this hybrid trap experiment enables a variety of studies with trapped mixtures. The motivations behind the production of such a hybrid trap system are explained, followed by details of how the experiment is put together. Several experiments that have been performed with this system are presented and some opportunities with this system are discussed. However the primary emphasis is focussed on the aspects that pertain to the trapped ions, in this hybrid system.

  1. Nanoantennas for enhanced light trapping in transparent organic solar cells

    CERN Document Server

    Voroshilov, Pavel M; Belov, Pavel A

    2014-01-01

    We propose a light-trapping structure offering a significant enhancement of photovoltaic absorption in transparent organic solar cells operating at infrared while the visible light transmission keeps sufficiently high. The main mechanism of light trapping is related with the excitation of collective oscillations of the metal nanoantenna arrays, characterized by advantageous field distribution in the volume of the solar cell. It allows more than triple increase of infrared photovoltaic absorption.

  2. Photonic crystals for light trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gjessing, Jo

    2012-07-25

    Solar energy is an abundant and non-polluting source of energy. Nevertheless, the installation of solar cells for energy production is still dependent on subsidies in most parts of the world. One way of reducing the costs of solar cells is to decrease their thickness. This will reduce material consumption and, at the same time, unlock the possibility of using cheaper lower quality solar cell material. However, a thinner solar cell will have a higher optical loss due to insufficient absorption of long wavelength light. Therefore, light-trapping must be improved in order to make thin solar cells economically viable. In this thesis I investigate the potential for light-trapping in thin silicon solar cells by the use of various photonic crystal back-side structures. The first structure I study consists of a periodic array of cylinders in a configuration with a layer of silicon oxide separating the periodic structure from the rear metal reflector. This configuration reduces unwanted parasitic absorption in the reflector and the thickness of the oxide layer provides a new degree of freedom for improving light trapping from the structure. I use a large-period and a small-period approximation to analyze the cylinder structure and to identify criteria that contributes to successful light-trapping. I explore the light-trapping potential of various periodic structures including dimples, inverted pyramids, and cones. The structures are compared in an optical model using a 20 m thick Si slab. I find that the light trapping potential differs between the structures, that the unit cell dimensions for the given structure is more important for light trapping than the type of structure, and that the optimum lattice period does not differ significantly between the different structures. The light-trapping effect of the structures is investigated as a function on incidence angle. The structures provide good light trapping also under angles of incidence up to 60 degrees. The behavior

  3. Photonic crystals for light trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gjessing, Jo

    2012-07-25

    Solar energy is an abundant and non-polluting source of energy. Nevertheless, the installation of solar cells for energy production is still dependent on subsidies in most parts of the world. One way of reducing the costs of solar cells is to decrease their thickness. This will reduce material consumption and, at the same time, unlock the possibility of using cheaper lower quality solar cell material. However, a thinner solar cell will have a higher optical loss due to insufficient absorption of long wavelength light. Therefore, light-trapping must be improved in order to make thin solar cells economically viable. In this thesis I investigate the potential for light-trapping in thin silicon solar cells by the use of various photonic crystal back-side structures. The first structure I study consists of a periodic array of cylinders in a configuration with a layer of silicon oxide separating the periodic structure from the rear metal reflector. This configuration reduces unwanted parasitic absorption in the reflector and the thickness of the oxide layer provides a new degree of freedom for improving light trapping from the structure. I use a large-period and a small-period approximation to analyze the cylinder structure and to identify criteria that contributes to successful light-trapping. I explore the light-trapping potential of various periodic structures including dimples, inverted pyramids, and cones. The structures are compared in an optical model using a 20 m thick Si slab. I find that the light trapping potential differs between the structures, that the unit cell dimensions for the given structure is more important for light trapping than the type of structure, and that the optimum lattice period does not differ significantly between the different structures. The light-trapping effect of the structures is investigated as a function on incidence angle. The structures provide good light trapping also under angles of incidence up to 60 degrees. The behavior

  4. Light, Gravity and Black Holes

    Science.gov (United States)

    Falla, David

    2012-01-01

    The nature of light and how it is affected by gravity is discussed. Einstein's prediction of the deflection of light as it passes near the Sun was verified by observations made during the solar eclipse of 1919. Another prediction was that of gravitational redshift, which occurs when light emitted by a star loses energy in the gravitational field…

  5. Light Trapping, Absorption and Solar Energy Harvesting by Artificial Materials

    Energy Technology Data Exchange (ETDEWEB)

    John, Sajeev [Univ. of Toronto, ON (Canada)

    2014-06-04

    We have studied light trapping in conical pore silicon photonic crystal architectures. We find considerable improvement in solar absorption (relative to nanowires) in a square lattice of conical nano-pores.

  6. HUBBLE FINDS A BARE BLACK HOLE POURING OUT LIGHT

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has provided a never-before-seen view of a warped disk flooded with a torrent of ultraviolet light from hot gas trapped around a suspected massive black hole. [Right] This composite image of the core of the galaxy was constructed by combining a visible light image taken with Hubble's Wide Field Planetary Camera 2 (WFPC2), with a separate image taken in ultraviolet light with the Faint Object Camera (FOC). While the visible light image shows a dark dust disk, the ultraviolet image (color-coded blue) shows a bright feature along one side of the disk. Because Hubble sees ultraviolet light reflected from only one side of the disk, astronomers conclude the disk must be warped like the brim of a hat. The bright white spot at the image's center is light from the vicinity of the black hole which is illuminating the disk. [Left] A ground-based telescopic view of the core of the elliptical galaxy NGC 6251. The inset box shows Hubble Space Telescope's field of view. The galaxy is 300 million light-years away in the constellation Ursa Minor. Photo Credit: Philippe Crane (European Southern Observatory), and NASA

  7. Optical particle trapping and dynamic manipulation using spatial light modulation

    DEFF Research Database (Denmark)

    Eriksen, René Lynge

    This thesis deals with the spatial phase-control of light and its application for optical trapping and manipulation of micron-scale objects. Utilizing the radiation pressure, light exerts on dielectric micron-scale particles, functionality of optical tweezers can be obtained. Multiple intensity...... suitable for optical trapping. A phaseonly spatial light modulator (SLM) is used for the phase encoding of the laser beam. The SLM is controlled directly from a standard computer where phase information is represented as gray-scale image information. Experimentally, both linear and angular movements...... of trapped colloidal micron-sized polystyrene particles and cell structures were accomplished. Furthermore, fixed arrays consisting of up to 25-trapped particles have been generated. Experimentally, ternary phase encoding has been demonstrated, supporting the GPC theory. Binary intensity patterns having...

  8. Geometric light trapping with a V-trap for efficient organic solar cells

    KAUST Repository

    Kim, Soo Jin

    2013-03-14

    The efficiency of today’s most efficient organic solar cells is primarily limited by the ability of the active layer to absorb all the sunlight. While internal quantum efficiencies exceeding 90% are common, the external quantum efficiency rarely exceeds 70%. Light trapping techniques that increase the ability of a given active layer to absorb light are common in inorganic solar cells but have only been applied to organic solar cells with limited success. Here, we analyze the light trapping mechanism for a cell with a V-shape substrate configuration and demonstrate significantly improved photon absorption in an 5.3%-efficient PCDTBT:PC70BM bulk heterojunction polymer solar cell. The measured short circuit current density improves by 29%, in agreement with model predictions, and the power conversion efficiency increases to 7.2%, a 35% improvement over the performance in the absence of a light trap.

  9. Light trapping in thin film organic solar cells

    Directory of Open Access Journals (Sweden)

    Zheng Tang

    2014-10-01

    Full Text Available A major issue in organic solar cells is the poor mobility and recombination of the photogenerated charge carriers. The active layer has to be kept thin to facilitate charge transport and minimize recombination losses. However, optical losses due to inefficient light absorption in the thin active layers can be considerable in organic solar cells. Therefore, light trapping schemes are critically important for efficient organic solar cells. Traditional light trapping schemes for thick solar cells need to be modified for organic thin film solar cells in which coherent optics and wave effects play a significant role. In this review, we discuss the light trapping schemes for organic thin film solar cells, which includes geometric engineering of the structure of the solar cell at the micro and nanoscale, plasmonic structures, and more.

  10. Fundamental limit of light trapping in grating structures

    KAUST Repository

    Yu, Zongfu

    2010-08-11

    We use a rigorous electromagnetic approach to analyze the fundamental limit of light-trapping enhancement in grating structures. This limit can exceed the bulk limit of 4n 2, but has significant angular dependency. We explicitly show that 2D gratings provide more enhancement than 1D gratings. We also show the effects of the grating profile’s symmetry on the absorption enhancement limit. Numerical simulations are applied to support the theory. Our findings provide general guidance for the design of grating structures for light-trapping solar cells.

  11. Eliminating light shifts in single-atom optical traps

    CERN Document Server

    Hutzler, Nicholas R; Yu, Yichao; Ni, Kang-Kuen

    2016-01-01

    Microscopically controlled neutral atoms in optical tweezers and lattices have led to exciting advances in the study of quantum information and quantum many-body systems. The light shifts of atomic levels from the trapping potential in these systems can result in detrimental effects such as fluctuating dipole force heating, inhomogeneous detunings, and inhibition of laser cooling, which limits the atomic species that can be manipulated. In particular, these light shifts can be large enough to prevent loading into optical tweezers directly from a magneto-optical trap. We present a general solution to these limitations by loading, cooling, and imaging single atoms with temporally alternating beams. Because this technique does not depend on any specific spectral properties, we expect it to enable the optical tweezer method to control nearly any atomic or molecular species that can be laser cooled and optically trapped. Furthermore, we present an analysis of the role of heating and required cooling for single ato...

  12. Modeling light trapping in nanostructured solar cells.

    Science.gov (United States)

    Ferry, Vivian E; Polman, Albert; Atwater, Harry A

    2011-12-27

    The integration of nanophotonic and plasmonic structures with solar cells offers the ability to control and confine light in nanoscale dimensions. These nanostructures can be used to couple incident sunlight into both localized and guided modes, enhancing absorption while reducing the quantity of material. Here we use electromagnetic modeling to study the resonances in a solar cell containing both plasmonic metal back contacts and nanostructured semiconductor top contacts, identify the local and guided modes contributing to enhanced absorption, and optimize the design. We then study the role of the different interfaces and show that Al is a viable plasmonic back contact material.

  13. Introduction to light forces, atom cooling, and atom trapping

    OpenAIRE

    Savage, Craig,

    1995-01-01

    This paper introduces and reviews light forces, atom cooling and atom trapping. The emphasis is on the physics of the basic processes. In discussing conservative forces the semi-classical dressed states are used rather than the usual quantized field dressed states.

  14. On the existence of black holes in distorted Schwarzschild spacetime using marginally trapped surfaces

    Science.gov (United States)

    Pilkington, Terry

    The classical definition of a black hole in terms of an event horizon relies on global properties of the spacetime. Realistic black holes have matter distributions surrounding them, which negates the asymptotic flatness needed for an event horizon. Using the (quasi-)local concept of marginally trapped surfaces, we investigate the Schwarzschild spacetime distorted by an axisymmetric matter distribution. We determine that it is possible to locate a future outer trapping horizon for a given foliation within certain value ranges of multipole moments. Furthermore, we show that there are no marginally trapped surfaces for arbitrary values of the multipole moment magnitudes. KEYWORDS: SCHWARZSCHILD; BLACK HOLE; DISTORTED SPACETIME; MARGINALLY TRAPPED SURFACE; FUTURE OUTER TRAPPING HORIZON

  15. Optical cavity integrated surface ion trap for enhanced light collection

    Science.gov (United States)

    Benito, Francisco M.

    Ion trap systems allow the faithful storage and manipulation of qubits encoded in the energy levels of the ions, and can be interfaced with photonic qubits that can be transmitted to connect remote quantum systems. Single photons transmitted from two remote sites, each entangled with one quantum memory, can be used to entangle distant quantum memories by interfering on a beam splitter. Efficient remote entanglement generation relies upon efficient light collection from single ions into a single mode fiber. This can be realized by integrating an ion trap with an optical cavity and employing the Purcell effect for enhancing the light collection. Remote entanglement can be used as a resource for a quantum repeater for provably secure long-distance communication or as a method for communicating within a distributed quantum information processor. We present the integration of a 1 mm optical cavity with a micro-fabricated surface ion trap. The plano-concave cavity is oriented normal to the chip surface where the planar mirror is attached underneath the trap chip. The cavity is locked using a 780 nm laser which is stabilized to Rubidium and shifted to match the 369 nm Doppler transition in Ytterbium. The linear ion trap allows ions to be shuttled in and out of the cavity mode. The Purcell enhancement of spontaneous emission into the cavity mode would then allow efficient collection of the emitted photons, enabling faster remote entanglement generation.

  16. Effect of light trapping in an amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Iftiquar, S.M., E-mail: iftiquar@skku.edu [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jung, Juyeon; Park, Hyeongsik [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Cho, Jaehyun; Shin, Chonghoon [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Jinjoo [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jung, Junhee [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Bong, Sungjae [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Sunbo [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-31

    Light trapping in amorphous silicon based solar cell has been investigated theoretically. The substrate for these cells can be textured, including pyramidally textured c-Si wafer, to improve capture of incident light. A thin silver layer, deposited on the substrate of an n–i–p cell, ultimately goes at the back of the cell structure and can act a back reflector to improve light trapping. The two physical solar cells we investigated had open circuit voltages (V{sub oc}) of 0.87, 0.90 V, short circuit current densities (J{sub sc}) of 14.2, 15.36 mA/cm{sup 2} respectively. The first cell was investigated for the effect on its performance while having and not having light trapping scheme (LT), when thickness of the active layer (d{sub i}) was changed in the range of 100 nm to 800 nm. In both the approaches, for having or not having LT, the short circuit current density increases with d{sub i} while the V{sub oc} and fill factor, decreases steadily. However, maximum cell efficiency can be obtained when d{sub i} = 400 nm, and hence it was considered optimized thickness of the active layer, that was used for further investigation. With the introduction of light trapping to the second cell, it shows a further enhancement in J{sub sc} and red response of the external quantum efficiency to 16.6 mA/cm{sup 2} and by 11.1% respectively. Considering multiple passages of light inside the cell, we obtained an improvement in cell efficiency from 9.7% to 10.6%. - Highlights: • A theoretical analysis of light trapping in p–i–n and n–i–p type solar cells • J{sub sc} increases and V{sub oc} decreases with the increase in i-layer thickness. • Observed optimized thickness of i-layer as 400 nm • J{sub sc} improved from 15.4 mA/cm{sup 2} to 16.6 mA/cm{sup 2} due to the light trapping. • Efficiency (η) improved from 9.7% to 10.6% due to better red response of the EQE.

  17. Photovoltaic cell with light trapping for enhanced efficiency

    Science.gov (United States)

    Brener, Igal; Fofang, Nche Tumasang; Luk, Ting S.

    2015-11-19

    The efficiency of a photovoltaic cell is enhanced by light trapping using Mie-scattering nanostructures. In one embodiment, an array of nanocylinders is formed on the front surface of a silicon film to enhance forward scattering into the film, and an array of nanocylinders is formed on the back surface to enhance backscattering so that more light is absorbed within the silicon film. In an alternate embodiment, a mirror layer is formed on the back surface of the silicon film to reflect light within the film back toward the front-surface nanocylinder array.

  18. Light Trapping: Light Manipulation in Organic Photovoltaics (Adv. Sci. 7/2016)

    OpenAIRE

    Ou, Qing‐Dong; Li, Yan‐Qing; Tang, Jian‐Xin

    2016-01-01

    Light manipulation is becoming a general strategy for further enhancing the performance of organic photovoltaic cells. In article 1600123, various light trapping schemes are reviewed from the viewpoint of plasmonic and photonic resonances, addressing the external antireflection coatings, substrate geometry‐induced trapping, the role of electrode design in optical enhancement, as well as optically modifying charge extraction and photoactive layers by Jian‐Xin Tang and co‐workers.

  19. Causal Nature and Dynamics of Trapping Horizons in Black Hole Collapse and Cosmology

    CERN Document Server

    Helou, Alexis; Miller, John C

    2016-01-01

    In calculations of gravitational collapse to form black holes, trapping horizons (foliated by marginally trapped surfaces) make their first appearance either within the collapsing matter or where it joins on to a vacuum exterior. Those which then move outwards with respect to the matter have been proposed for use in defining black holes, replacing the global concept of an "event horizon" which has some serious drawbacks for practical applications. We focus here on studying the properties of trapping horizons within spherical symmetry (which gives some simplifications while retaining the most essential general features). Their locations are then given by exactly the same condition ($R=2M$) as for the event horizon in the vacuum Schwarzschild metric, and the same condition also applies for cosmological trapping horizons. We have investigated the causal nature of these horizons (i.e. whether they are spacelike, timelike or null), making contact with the Misner-Sharp formalism, which has often been used for numer...

  20. Light Loop Echoes and Blinking Black Holes

    CERN Document Server

    Boyle, Latham

    2011-01-01

    Radiation emitted near a black hole reaches the observer by multiple paths; and when this radiation varies in time, the time-delays between the various paths generate a "blinking" effect in the observed light curve L(t) or its auto-correlation function xi(T)= . For the particularly important "face-on" configuration (in which the hole is viewed roughly along its spin axis, while the emission comes roughly from its equatorial plane -- e.g. from the inner edge of its accretion disk, or from the violent flash of a nearby/infalling star) we calculate the blinking in detail by computing the time delay Delta t_{j}(r,a) and magnification mu_{j}(r,a) of the jth path (j=1,2,3,...), relative to the primary path (j=0), as a function of the emission radius r and black hole spin 0

  1. Asymptotic behavior of marginally trapped tubes in spherically symmetric black hole spacetimes

    Science.gov (United States)

    Williams, Catherine M.

    We begin by reviewing some fundamental features of general relativity, then outline the mathematical definitions of black holes, trapped surfaces, and marginally trapped tubes, first in general terms, then rigorously in the context of spherical symmetry. We describe explicitly the reduction of Einstein's equation on a spherically symmetric 4-dimensional Lorentzian manifold to a system of partial differential equations on a subset of 2-dimensional Minkowski space. We discuss the asymptotic behavior of marginally trapped tubes in the Schwarzschild, Vaidya, and Reisner-Nordstrom solutions to Einstein's equations in spherical symmetry, as well as in Einstein-Maxwell-scalar field black hole spacetimes generated by evolving certain classes of asymptotically flat initial data. Our first main result gives conditions on a general stress-energy tensor Talphabeta in a spherically symmetric black hole spacetime that are sufficient to guarantee that the black hole will contain a marginally trapped tube which is eventually achronal, connected, and asymptotic to the event horizon. Here "general" means that the matter model is arbitrary, subject only to a certain positive energy condition. A certain matter field decay rate, known as Price law decay in the literature, is not required per se for this asymptotic result, but such decay does imply that the marginally trapped tube has finite length with respect to the induced metric. In our second main result, we give two separate applications of the first theorem to self-gravitating Higgs field spacetimes, one using weak Price law decay, the other certain strong smallness and monotonicity assumptions.

  2. Application of initial data sequences to the study of Black Hole dynamical trapping horizons

    CERN Document Server

    Jaramillo, José Luis; Vasset, Nicolas; 10.1063/1.3141305

    2011-01-01

    Non-continuous "jumps" of Apparent Horizons occur generically in 3+1 (binary) black hole evolutions. The dynamical trapping horizon framework suggests a spacetime picture in which these "Apparent Horizon jumps" are understood as spatial cuts of a single spacetime hypersurface foliated by (compact) marginally outer trapped surfaces. We present here some work in progress which makes use of uni-parametric sequences of (axisymmetric) binary black hole initial data for exploring the plausibility of this spacetime picture. The modelling of Einstein evolutions by sequences of initial data has proved to be a successful methodological tool in other settings for the understanding of certain qualitative features of evolutions in restricted physical regimes.

  3. Colloidal plasmonic back reflectors for light trapping in solar cells

    Science.gov (United States)

    Mendes, Manuel J.; Morawiec, Seweryn; Simone, Francesca; Priolo, Francesco; Crupi, Isodiana

    2014-04-01

    A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhibit high diffuse reflectance (up to 75%) in the red and near-infrared spectrum, which can pronouncedly enhance the near-bandgap photocurrent generated by the cells. Furthermore, the colloidal PBRs are fabricated by low-temperature (<120 °C) processes that allow their implementation, as a final step of the cell construction, in typical commercial thin film devices generally fabricated in a superstrate configuration.

  4. Black Holes Shed Light on Galaxy Formation

    Science.gov (United States)

    2000-01-01

    This videotape is comprised of several segments of animations on black holes and galaxy formation, and several segments of an interview with Dr. John Kormendy. The animation segments are: (1) a super massive black hole, (2) Centarus A active black hole found in a collision, (3) galaxy NGC-4261 (active black hole and jet model), (4) galaxy M-32 (orbits of stars are effected by the gravity of the black hole), (5) galaxy M-37 (motion of stars increases as mass of black hole increases), (6) Birth of active galactic nuclei, (7) the collision of two galaxy leads to merger of the black holes, (8) Centarus A and simulation of the collision of 2 galaxies. There are also several segments of an interview with John Kormendy. In these segments he discusses the two most important aspects of his recent black hole work: (1) the correlations between galaxies speed and the mass of the black holes, and (2) the existence of black holes and galactic formation. He also discusses the importance of the Hubble Space Telescope and the Space Telescope Imaging Spectrograph to the study of black holes. He also shows the methodology of processing images from the spectrograph in his office.

  5. Enhancement of light trapping in thin-film solar cells through Ag

    Institute of Scientific and Technical Information of China (English)

    Yiming Bai; Han Zhang; Jun Wang; Nuofu Chen; Jianxi Yao; Tianmao Huang; Xingwang Zhang; Zhigang Yin; Zhen Fu

    2011-01-01

    Forward-scattering efficiency (FSE) is first proposed when an Ag nanoparticle serves as the light-trapping structure for thin-film (TF) solar cells because the Ag nanoparticle's light-trapping efficiency lies on the light-scattering direction of metal nanoparticles. Based on FSE analysis of Ag nanoparticles with radii of 53 and 88 nm, the forward-scattering spectra and light-trapping efficiencies are calculated. The contributions of dipole and quadrupole modes to light-trapping effect are also analyzed quantitatively. When the surface coverage of Ag nanoparticles is 5%, light-trapping efficiencies are 15.5% and 32.3%, respectively, for 53- and 88-nm Ag nanoparticles. Results indicate that the plasmon quadrupole mode resonance of Ag nanoparticles could further enhance the light-trapping effect for TF solar cells.%@@ Forward-scattering efficiency (FSE) is first proposed when an Ag nanoparticle serves as the light-trapping structure for thin-film (TF) solar cells because the Ag nanoparticle's light-trapping efficiency lies on the light-scattering direction of metal nanoparticles.Based on FSE analysis of Ag nanoparticles with radii of 53 and 88 nm, the forward-scattering spectra and light-trapping efficiencies are calculated.The contributions of dipole and quadrupole modes to light-trapping effect are also analyzed quantitatively.When the surface coverage of Ag nanoparticles is 5%, light-trapping efficiencies are 15.5% and 32.3%, respectively, for 53- and 88-nm Ag nanoparticles.Results indicate that the plasmon quadrupole mode resonance of Ag nanoparticles could further enhance the light-trapping effect for TF solar cells.

  6. Light propagation through black-hole lattices

    CERN Document Server

    Bentivegna, Eloisa; Hinder, Ian; Gerlicher, Daniel

    2016-01-01

    The apparent properties of distant objects encode information about the way the light they emit propagates to an observer, and therefore about the curvature of the underlying spacetime. Measuring the relationship between the redshift $z$ and the luminosity distance $D_{\\rm L}$ of a standard candle, for example, yields information on the Universe's matter content. In practice, however, in order to decode this information the observer needs to make an assumption about the functional form of the $D_{\\rm L}(z)$ relation; in other words, a cosmological model needs to be assumed. In this work, we use numerical-relativity simulations, equipped with a new ray-tracing module, to numerically obtain this relation for a few black-hole--lattice cosmologies and compare it to the well-known Friedmann-Lema\\^itre-Robertson-Walker case, as well as to other relevant cosmologies and to the Empty-Beam Approximation. We find that the latter provides the best estimate of the luminosity distance and formulate a simple argument to ac...

  7. Graphene plasmonics for light trapping and absorption engineering

    CERN Document Server

    Zhang, Jianfa; Liu, Wei; Yuan, Xiaodong; Qin, Shiqiao

    2015-01-01

    Plasmonics can be used to improve absorption in optoelectronic devices and has been intensively studied for solar cells and photodetectors. Graphene has recently emerged as a powerful plasmonic material. It shows significantly less losses compared to traditional plasmonic materials such as gold and silver and its plasmons can be tuned by changing the Fermi energy with chemical or electrical doping. Here we propose the usage of graphene plasmonics for light trapping in optoelectronic devices and show that the excitation of localized plasmons in doped, nanostructured graphene can enhance optical absorption in its surrounding media including both bulky and two-dimensional materials by tens of times, which may lead to a new generation of highly efficient, spectrally selective photodetectors in mid-infrared and THz ranges. The proposed concept could even revolutionize the field of plasmonic solar cells if graphene plasmons in the visible and near-infrared are realized.

  8. Three-dimensional grating nanowires for enhanced light trapping.

    Science.gov (United States)

    Lee, Hoo-Cheol; Na, Jin-Young; Moon, Yoon-Jong; Park, Jin-Sung; Ee, Ho-Seok; Park, Hong-Gyu; Kim, Sun-Kyung

    2016-04-01

    We propose rationally designed 3D grating nanowires for boosting light-matter interactions. Full-vectorial simulations show that grating nanowires sustain high-amplitude waveguide modes and induce a strong optical antenna effect, which leads to an enhancement in nanowire absorption at specific or broadband wavelengths. Analyses of mode profiles and scattering spectra verify that periodic shells convert a normal plane wave into trapped waveguide modes, thus giving rise to scattering dips. A 200 nm diameter crystalline Si nanowire with designed periodic shells yields an enormously large current density of ∼28  mA/cm2 together with an absorption efficiency exceeding unity at infrared wavelengths. The grating nanowires studied herein will provide an extremely efficient absorption platform for photovoltaic devices and color-sensitive photodetectors.

  9. Light trapping architecture for photovoltaic and photodector applications

    Science.gov (United States)

    Forrest, Stephen R.; Lunt, Richard R.; Slootsky, Michael

    2016-08-09

    There is disclosed photovoltaic device structures which trap admitted light and recycle it through the contained photosensitive materials to maximize photoabsorption. For example, there is disclosed a photosensitive optoelectronic device comprising: a first reflective layer comprising a thermoplastic resin; a second reflective layer substantially parallel to the first reflective layer; a first transparent electrode layer on at least one of the first and second reflective layer; and a photosensitive region adjacent to the first electrode, wherein the first transparent electrode layer is substantially parallel to the first reflective layer and adjacent to the photosensitive region, and wherein the device has an exterior face transverse to the planes of the reflective layers where the exterior face has an aperture for admission of incident radiation to the interior of the device.

  10. Escaped and Trapped Emission of Organic Light-Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    LIANG Shi-Xiong; WU Zhao-Xin; ZHAO Xuan-Ke; HOU Xun

    2012-01-01

    By locating the emitters around the first and second antinode of the metal electrode, the escaped and trapped emission of small molecule based bottom emission organic light-emitting diodes is investigated by using an integrating sphere, a fiber spectrometer and a glass hemisphere. It is found that the external coupling ratio by locating the emitters at the second antinode (at a distance of 220 nm from the cathode) is 70%, which is higher than that of an emitter at the first antinode (60 nm from the cathode) in theory and experiment. Extending the "half-space" dipole model by taking the dipole radiation pattern into account, we also calculate the optical coupling efficiency for the emitter at both the first and second antinode. Our experimental and theoretical results will benefit the optimization of device structures for the higher out-coupling efficiency.%By locating the emitters around the first and second antinode of the metal electrode,the escaped and trapped emission of small molecule based bottom emission organic light-emitting diodes is investigated by using an integrating sphere,a fiber spectrometer and a glass hemisphere.It is found that the external coupling ratio by locating the emitters at the second antinode (at a distance of 220 nm from the cathode) is 70%,which is higher than that of an emitter at the first antinode (60nm from the cathode) in theory and experiment.Extending the "half-space" dipole model by taking the dipole radiation pattern into account,we also calculate the optical coupling efficiency for the emitter at both the first and second antinode.Our experimental and theoretical results will benefit the optimization of device structures for the higher out-coupling efficiency.

  11. How can horseflies be captured by solar panels? A new concept of tabanid traps using light polarization and electricity produced by photovoltaics.

    Science.gov (United States)

    Blahó, Miklós; Egri, Ádám; Barta, András; Antoni, Györgyi; Kriska, György; Horváth, Gábor

    2012-10-26

    Horseflies (Diptera: Tabanidae) can cause severe problems for humans and livestock because of the continuous annoyance performed and the diseases vectored by the haematophagous females. Therefore, effective horsefly traps are in large demand, especially for stock-breeders. To catch horseflies, several kinds of traps have been developed, many of them attracting these insects visually with the aid of a black ball. The recently discovered positive polarotaxis (attraction to horizontally polarized light) in several horsefly species can be used to design traps that capture female and male horseflies. The aim of this work is to present the concept of such a trap based on two novel principles: (1) the visual target of the trap is a horizontal solar panel (photovoltaics) attracting polarotactic horseflies by means of the highly and horizontally polarized light reflected from the photovoltaic surface. (2) The horseflies trying to touch or land on the photovoltaic trap surface are perished by the mechanical hit of a wire rotated quickly with an electromotor supplied by the photovoltaics-produced electricity. Thus, the photovoltaics is bifunctional: its horizontally polarized reflected light signal attracts water-seeking, polarotactic horseflies, and it produces the electricity necessary to rotate the wire. We describe here the concept and design of this new horsefly trap, the effectiveness of which was demonstrated in field experiments. The advantages and disadvantages of the trap are discussed. Using imaging polarimetry, we measured the reflection-polarization characteristics of the photovoltaic trap surface demonstrating the optical reason for the polarotactic attractiveness to horseflies.

  12. Light fields with an axially expanded intensity distribution for stable three-dimensional optical trapping.

    Science.gov (United States)

    Zwick, Susanne; Schaub, Christian; Haist, Tobias; Osten, Wolfgang

    2010-09-13

    We introduce a new kind of light field to improve and simplify the trapping process of axially displaced particles. To this end we employ a light field with an axially expanded intensity distribution, which at the same time enables stable axial trapping. We present simulations of the axial intensity distribution of the novel trapping field and first experimental results, which demonstrate the improvement of the reliability of the axial trapping process. The method can be used to automate trapping of particles that are located outside of the focal plane of the microscope.

  13. Plastic cup traps equipped with light-emitting diodes for monitoring adult Bemisia tabaci (Homoptera: Aleyrodidae).

    Science.gov (United States)

    Chu, Chang-Chi; Jackson, Charles G; Alexander, Patrick J; Karut, Kamil; Henneberry, Thomas J

    2003-06-01

    Equipping the standard plastic cup trap, also known as the CC trap, with lime-green light-emitting diodes (LED-plastic cup trap) increased its efficacy for catching Bemisia tabaci by 100%. Few Eretmocerus eremicus Rose and Zolnerowich and Encarsia formosa Gahan were caught in LED-plastic cup traps. The LED-plastic cup traps are less expensive than yellow sticky card traps for monitoring adult whiteflies in greenhouse crop production systems and are more compatible with whitefly parasitoids releases for Bemisia nymph control.

  14. Black Hole Ringing, Quasinormal Modes, and Light Rings

    CERN Document Server

    Khanna, Gaurav

    2016-01-01

    Modelling of gravitational waves from binary black hole inspiral has played an important role in the recent observations of such signals. The late-stage ringdown phase of the gravitational waveform is often associated with the null particle orbit (\\light ring") of the black hole spacetime. With simple models we show that this link between the light ring and spacetime ringing is based more on the history of applications than on an actual constraining relationship. We also show, in particular, that a better understanding of the disassociation between the two, may be relevant to the astrophysically interesting case of rotating (Kerr) black holes.

  15. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    2015-01-01

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the so

  16. Self-induced light trapping in nonlinear Fabry-Perot resonators

    Science.gov (United States)

    Pichugin, K. N.; Sadreev, A. F.

    2016-10-01

    In the framework of the coupled mode theory we consider light trapping between two off-channel resonators which serve as self-adjusted Fano mirrors due to the Kerr effect. By inserting an auxiliary nonlinear resonator between the mirrors we achieve self-tuning of phase shift between the mirrors. That allows for the light trapping for arbitrary distance between the mirrors.

  17. Dielectric nanostructures for broadband light trapping in organic solar cells

    KAUST Repository

    Raman, Aaswath

    2011-09-15

    Organic bulk heterojunction solar cells are a promising candidate for low-cost next-generation photovoltaic systems. However, carrier extraction limitations necessitate thin active layers that sacrifice absorption for internal quantum efficiency or vice versa. Motivated by recent theoretical developments, we show that dielectric wavelength-scale grating structures can produce significant absorption resonances in a realistic organic cell architecture. We numerically demonstrate that 1D, 2D and multi-level ITO-air gratings lying on top of the organic solar cell stack produce a 8-15% increase in photocurrent for a model organic solar cell where PCDTBT:PC71BM is the organic semiconductor. Specific to this approach, the active layer itself remains untouched yet receives the benefit of light trapping by nanostructuring the top surface below which it lies. The techniques developed here are broadly applicable to organic semiconductors in general, and enable partial decoupling between active layer thickness and photocurrent generation. © 2011 Optical Society of America.

  18. On Slow Light as a Black Hole Analogue

    CERN Document Server

    Unruh, W G

    2003-01-01

    Although slow light (electromagnetically induced transparency) would seem an ideal medium in which to institute a ``dumb hole'' (black hole analog), it suffers from a number of problems. We show that the high phase velocity in the slow light regime ensures that the system cannot be used as an analog displaying Hawking radiation. Even though an appropriately designed slow-light set-up may simulate classical features of black holes -- such as horizon, mode mixing, Bogoliubov coefficients, etc. -- it does not reproduce the related quantum effects. PACS: 04.70.Dy, 04.80.-y, 42.50.Gy, 04.60.-m.

  19. The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae)

    DEFF Research Database (Denmark)

    Kirkeby, Carsten; Græsbøll, Kaare; Stockmarr, Anders;

    2013-01-01

    Background Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light...... traps. Methods Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas...... collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups...

  20. Systematic analysis of diffuse rear reflectors for enhanced light trapping in silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, Florian; Eisenlohr, Johannes; Basch, Angelika; Hermle, Martin; Lee, Benjamin G.; Goldschmidt, Jan Christoph

    2016-08-01

    Simple diffuse rear reflectors can enhance the light path length of weakly absorbed near infrared light in silicon solar cells and set a benchmark for more complex and expensive light trapping structures like dielectric gratings or plasmonic particles. We analyzed such simple diffuse rear reflectors systematically by optical and electrical measurements. We applied white paint, TiO2 nanoparticles, white backsheets and a silver mirror to bifacial silicon solar cells and measured the enhancement of the external quantum efficiency for three different solar cell geometries: planar front and rear side, textured front and planar rear side, and textured front and rear side. We showed that an air-gap between the solar cell and the reflector decreases the absorption enhancement significantly, thus white paint and TiO2 nanoparticles directly applied to the rear cell surface lead to the highest short circuit current density enhancements. The short circuit current density gains for a 200 um thick planar solar cell reached up to 1.8 mA/cm2, compared to a non-reflecting black rear side and up to 0.8 mA/cm2 compared to a high-quality silver mirror rear side. For solar cells with textured front side the short circuit current density gains are in the range between 0.5 and 1.0 mA/cm2 compared to a non-reflecting black rear side and do not significantly depend on the angular characteristic of the rear side reflector but mainly on its absolute reflectance.

  1. Black holes in Varying Speed of Light Theory

    CERN Document Server

    Shojaie, H

    2002-01-01

    We consider the effect of \\emph{``Varying Speed of Light''} (VSL) theory on the no-charge and non-rotating black holes. We show that in any varying-$c$ theory, the Schwarzschild solution is no more static and even stationary. Also the singularity in the Schwarzschild horizon can not be removed by coordinate transformation. So except initial mass of star, no matter can enter the horizon and the interior part of the black hole separates from the whole manifold. If $\\dot{c}<0$, then the size of Schwarzschild radius increases in time and since the entropy of the black hole is proportional to its surface area of event horizon, it increases in this case. The higher value of speed of light in the early universe may cause the creation probability of primordial black holes and their population nowadays decreases enormously.

  2. Traps and attractants for wood-boring insects in ponderosa pine stands in the Black Hills, South Dakota.

    Science.gov (United States)

    Costello, Sheryl L; Negrón, José F; Jacobi, William R

    2008-04-01

    Recent large-scale wildfires have increased populations of wood-boring insects in the Black Hills of South Dakota. Because little is known about possible impacts of wood-boring insects in the Black Hills, land managers are interested in developing monitoring techniques such as flight trapping with semiochemical baits. Two trap designs and four semiochemical attractants were tested in a recently burned ponderosa pine, Pinus ponderosa Dougl. ex Laws., forest in the Black Hills. Modified panel and funnel traps were tested in combination with the attractants, which included a woodborer standard (ethanol and alpha-pinene), standard plus 3-carene, standard plus ipsenol, and standard plus ipsdienol. We found that funnel traps were equally efficient or more efficient in capturing wood-boring insects than modified panel traps. Trap catches of cerambycids increased when we added the Ips spp. pheromone components (ipsenol or ipsdienol) or the host monoterpene (3-carene) to the woodborer standard. During the summers of 2003 and 2004, 18 cerambycid, 14 buprestid, and five siricid species were collected. One species of cerambycid, Monochamus clamator (LeConte), composed 49 and 40% of the 2003 and 2004 trap catches, respectively. Two other cerambycids, Acanthocinus obliquus (LeConte) and Acmaeops proteus (Kirby), also were frequently collected. Flight trap data indicated that some species were present throughout the summer, whereas others were caught only at the beginning or end of the summer.

  3. Disorder improves nanophotonic light trapping in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, U. W., E-mail: u.paetzold@fz-juelich.de; Smeets, M.; Meier, M.; Bittkau, K.; Merdzhanova, T.; Smirnov, V.; Carius, R.; Rau, U. [IEK5—Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Michaelis, D.; Waechter, C. [Fraunhofer Institut für Angewandte Optik und Feinmechanik, Albert Einstein Str. 7, D-07745 Jena (Germany)

    2014-03-31

    We present a systematic experimental study on the impact of disorder in advanced nanophotonic light-trapping concepts of thin-film solar cells. Thin-film solar cells made of hydrogenated amorphous silicon were prepared on imprint-textured glass superstrates. For periodically textured superstrates of periods below 500 nm, the nanophotonic light-trapping effect is already superior to state-of-the-art randomly textured front contacts. The nanophotonic light-trapping effect can be associated to light coupling to leaky waveguide modes causing resonances in the external quantum efficiency of only a few nanometer widths for wavelengths longer than 500 nm. With increasing disorder of the nanotextured front contact, these resonances broaden and their relative altitude decreases. Moreover, overall the external quantum efficiency, i.e., the light-trapping effect, increases incrementally with increasing disorder. Thereby, our study is a systematic experimental proof that disorder is conceptually an advantage for nanophotonic light-trapping concepts employing grating couplers in thin-film solar cells. The result is relevant for the large field of research on nanophotonic light trapping in thin-film solar cells which currently investigates and prototypes a number of new concepts including disordered periodic and quasi periodic textures.

  4. Natural evolution inspired design of light trapping structure in thin film organic solar cells

    Science.gov (United States)

    Wang, Chen; Yu, Shuangcheng; Chen, Wei; Sun, Cheng

    2013-09-01

    Light trapping has been developed to effectively enhance the efficiency of the thin film solar cell by extending the pathlength for light interacting with the active materials. Searching for optimal light trapping design requires a delicate balance among all the competing physical processes, including light refraction, reflection, and absorption. The existing design methods mainly depend on engineers' intuition to predefine the topology of the light-trapping structure. However, these methods are not capable of handling the topological variation in reaching the optimal design. In this work, a systematic approach based on Genetic Algorithm is introduced to design the scattering pattern for effective light trapping. Inspired by natural evolution, this method can gradually improve the performance of light trapping structure through iterative procedures, producing the most favorable structure with minimized reflection and substantial enhancement in light absorption. Both slot waveguide based solar cell and a more realistic organic solar with a scattering layer consisting of nano-scale patterned front layer is optimized to maximize absorption by strongly coupling incident sun light into the localized photonic modes supported by the multilayer system. Rigorous coupled wave analysis (RCWA) is implemented to evaluate the absorbance. The optimized slot waveguide cell achieves a broadband absorption efficiency of 48.1% and more than 3-fold increase over the Yablonovitch limit and the optimized realistic organic cell exhibits nearly 50% average absorbance over the solar spectrum with short circuit current density five times larger than the control case using planar ITO layer.

  5. Highly efficient light-trapping structure design inspired by natural evolution.

    Science.gov (United States)

    Wang, Chen; Yu, Shuangcheng; Chen, Wei; Sun, Cheng

    2013-01-01

    Recent advances in nanophotonic light trapping open up the new gateway to enhance the absorption of solar energy beyond the so called Yablonovitch Limit. It addresses the urgent needs in developing low cost thin-film solar photovoltaic technologies. However, current design strategy mainly relies on the parametric approach that is subject to the predefined topological design concepts based on physical intuition. Incapable of dealing with the topological variation severely constrains the design of optimal light trapping structure. Inspired by natural evolution process, here we report a design framework driven by topology optimization based on genetic algorithms to achieve a highly efficient light trapping structure. It has been demonstrated that the optimal light trapping structures obtained in this study exhibit more than 3-fold increase over the Yablonovitch Limit with the broadband absorption efficiency of 48.1%, beyond the reach of intuitive designs.

  6. Trapping of light in solitonic cavities and its role in the supercontinuum generation

    CERN Document Server

    Driben, R; Efimov, A; Malomed, B A

    2013-01-01

    We demonstrate that the fission of higher-order N-solitons with a subsequent ejection of fundamental quasi-solitons creates solitonic cavities, formed by a pair of solitons with dispersive light trapped between them. As a result of multiple reflections of the trapped light from the bounding solitons which act as mirrors, they bend their trajectories and collide. In the spectral-domain, the two solitons receive blue and red wavelength shifts, respectively. The spectrum of the bouncing trapped light alters as well. This phenomenon strongly affect spectral characteristics of the generated supercontinuum. Studies of the system's parameters, which are responsible for the creation of the cavities, reveal possibilities of predicting and controlling soliton-soliton collisions induced by multiple reflections of the trapped light.

  7. Post passivation light trapping back contacts for silicon heterojunction solar cells.

    Science.gov (United States)

    Smeets, M; Bittkau, K; Lentz, F; Richter, A; Ding, K; Carius, R; Rau, U; Paetzold, U W

    2016-11-10

    Light trapping in crystalline silicon (c-Si) solar cells is an essential building block for high efficiency solar cells targeting low material consumption and low costs. In this study, we present the successful implementation of highly efficient light-trapping back contacts, subsequent to the passivation of Si heterojunction solar cells. The back contacts are realized by texturing an amorphous silicon layer with a refractive index close to the one of crystalline silicon at the back side of the silicon wafer. As a result, decoupling of optically active and electrically active layers is introduced. In the long run, the presented concept has the potential to improve light trapping in monolithic Si multijunction solar cells as well as solar cell configurations where texturing of the Si absorber surfaces usually results in a deterioration of the electrical properties. As part of this study, different light-trapping textures were applied to prototype silicon heterojunction solar cells. The best path length enhancement factors, at high passivation quality, were obtained with light-trapping textures based on randomly distributed craters. Comparing a planar reference solar cell with an absorber thickness of 280 μm and additional anti-reflection coating, the short-circuit current density (JSC) improves for a similar solar cell with light-trapping back contact. Due to the light trapping back contact, the JSC is enhanced around 1.8 mA cm(-2) to 38.5 mA cm(-2) due to light trapping in the wavelength range between 1000 nm and 1150 nm.

  8. Ultraviolet Photodissociation Induced by Light-Emitting Diodes in a Planar Ion Trap.

    Science.gov (United States)

    Holden, Dustin D; Makarov, Alexander; Schwartz, Jae C; Sanders, James D; Zhuk, Eugene; Brodbelt, Jennifer S

    2016-09-26

    The first application of light-emitting diodes (LEDs) for ultraviolet photodissociation (UVPD) mass spectrometry is reported. LEDs provide a compact, low cost light source and have been incorporated directly into the trapping cell of an Orbitrap mass spectrometer. MS/MS efficiencies of over 50 % were obtained using an extended irradiation period, and UVPD was optimized by modulating the ion trapping parameters to maximize the overlap between the ion cloud and the irradiation volume.

  9. Light propagation through black-hole lattices

    OpenAIRE

    Bentivegna, Eloisa; Korzyński, Mikołaj; Hinder, Ian; Gerlicher, Daniel

    2016-01-01

    The apparent properties of distant objects encode information about the way the light they emit propagates to an observer, and therefore about the curvature of the underlying spacetime. Measuring the relationship between the redshift $z$ and the luminosity distance $D_{\\rm L}$ of a standard candle, for example, yields information on the Universe's matter content. In practice, however, in order to decode this information the observer needs to make an assumption about the functional form of the...

  10. Development of Laser Light Sources for Trapping Radioactive Francium Atoms Toward Tests of Fundamental Symmetries

    Science.gov (United States)

    Harada, Ken-ichi; Ezure, Saki; Hayamizu, Tomohiro; Kato, Ko; Kawamura, Hirokazu; Inoue, Takeshi; Arikawa, Hiroshi; Ishikawa, Taisuke; Aoki, Takahiro; Uchiyama, Aiko; Itoh, Masatoshi; Ando, Shun; Aoki, Takatoshi; Hatakeyama, Atsushi; Hatanaka, Kichiji; Imai, Kenichi; Murakami, Tetsuya; Shimizu, Yasuhiro; Sato, Tomoya; Wakasa, Tomotsugu; Yoshida, Hidetomo P.; Sakemi, Yasuhiro

    We have developed laser light sources and a magneto-optical trap system for cooling and trapping radioactive francium (Fr) atoms. Because Fr is the heaviest alkali element, a Fr atom exhibits high sensitivity to symmetry violation effects such as atomic parity nonconservation (APNC) and the electron electric dipole moment (eEDM). A laser cooling and trapping technique reduces the systematic errors due to the Doppler effect and the motion-induced magnetic field effect caused by the velocity of atoms. Thus, optically cooled and trapped Fr atoms are among a few promising candidates considered for APNC and eEDM measurements. Frequency stabilization of laser light is required for any stable measurement involving trapped radioactive atoms, including Fr. Since the hyperfine splitting in iodine molecules (127I2) is close to the resonance frequency of the Fr D2 line, we performed frequency modulation spectroscopy of hyperfine structures of I2.

  11. Spin squeezing and light entanglement in Coherent Population Trapping

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Cviklinski, Jean; Giacobino, Elisabeth;

    2006-01-01

    We show that strong squeezing and entanglement can be generated at the output of a cavity containing atoms interacting with two fields in a coherent population trapping situation, on account of a nonlinear Faraday effect experienced by the fields close to a dark-state resonance in a cavity...

  12. Plasmonic light trapping in thin-film Si solar cells

    NARCIS (Netherlands)

    Spinelli, P.; Ferry, V.E.; van de Groep, J.; van Lare, M.; Verschuuren, M.A.; Schropp, R.E.I.; Atwater, H.A.; Polman, A.

    2011-01-01

    Plasmonic nanostructures have been recently investigated as a possible way to improve absorption of light in solar cells. The strong interaction of small metal nanostructures with light allows control over the propagation of light at the nanoscale and thus the design of ultrathin solar cells in whic

  13. Quantifying the effectiveness of SiO2/Au light trapping nanoshells for thin film poly-Si solar cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to enhance light absorption of thin film poly-crystalline silicon(TF poly-Si)solar cells over a broad spectral range, and quantify the effectiveness of nanoshell light trapping structure over the full solar spectrum in theory,the effective photon trapping flux(EPTF)and effective photon trapping efficiency(EPTE)were firstly proposed by considering both the external quantum efficiency of TF poly-Si solar cell and scattering properties of light trapping structures.The EPTF,EPTE and scattering spectrum exhibit different behaviors depending on the geometric size and density of nanoshells that form the light trapping layer.With an optimum size and density of SiO2/Au nanoshell light trapping layer,the EPTE could reach up to 40%due to the enhancement of light trapping over a broad spectral range,especially from 500 to 800 nm.

  14. Towards lightweight and flexible high performance nanocrystalline silicon solar cells through light trapping and transport layers

    Science.gov (United States)

    Gray, Zachary R.

    This thesis investigates ways to enhance the efficiency of thin film solar cells through the application of both novel nano-element array light trapping architectures and nickel oxide hole transport/electron blocking layers. Experimental results independently demonstrate a 22% enhancement in short circuit current density (JSC) resulting from a nano-element array light trapping architecture and a ˜23% enhancement in fill factor (FF) and ˜16% enhancement in open circuit voltage (VOC) resulting from a nickel oxide transport layer. In each case, the overall efficiency of the device employing the light trapping or transport layer was superior to that of the corresponding control device. Since the efficiency of a solar cell scales with the product of JSC, FF, and VOC, it follows that the results of this thesis suggest high performance thin film solar cells can be realized in the event light trapping architectures and transport layers can be simultaneously optimized. The realizations of these performance enhancements stem from extensive process optimization for numerous light trapping and transport layer fabrication approaches. These approaches were guided by numerical modeling techniques which will also be discussed. Key developments in this thesis include (1) the fabrication of nano-element topographies conducive to light trapping using various fabrication approaches, (2) the deposition of defect free nc-Si:H onto structured topographies by switching from SiH4 to SiF 4 PECVD gas chemistry, and (3) the development of the atomic layer deposition (ALD) growth conditions for NiO. Keywords: light trapping, nano-element array, hole transport layer, electron blocking layer, nickel oxide, nanocrystalline silicon, aluminum doped zinc oxide, atomic layer deposition, plasma enhanced chemical vapor deposition, electron beam lithography, ANSYS HFSS.

  15. Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells.

    Science.gov (United States)

    Zhang, Y; Jia, B; Gu, M

    2016-03-21

    Designing effective light-trapping structures for the insufficiently absorbed long-wavelength light in ultrathin silicon solar cells represents a key challenge to achieve low cost and highly efficient solar cells. We propose a hybrid structure based on the biomimetic silicon moth-eye structure combined with Ag nanoparticles to achieve advanced light trapping in 2 μm thick crystalline silicon solar cells approaching the Yablonovitch limit. By synergistically using the Mie resonances of the silicon moth-eye structure and the plasmonic resonances of the Ag nanoparticles, the integrated absorption enhancement achieved across the usable solar spectrum is 69% compared with the cells with the conventional light trapping design. This is significantly larger than both the silicon moth-eye structure (58%) and Ag nanoparticle (41%) individual light trapping. The generated photocurrent in the 2 μm thick silicon layer is as large as 33.4 mA/cm2, which is equivalent to that generated by a 30 μm single-pass absorption in the silicon. The research paves the way for designing highly efficient light trapping structures in ultrathin silicon solar cells.

  16. Collisional cooling of light ions by co-trapped heavy atoms

    CERN Document Server

    Dutta, Sourav; Rangwala, S A

    2015-01-01

    The most generic cooling and thermalization pathway at the lowest temperatures is via elastic collisions. In hybrid ion-atom traps, ion cooling to temperatures where low partial wave collisions dominate require the collisional cooling mechanism to be well understood and controlled. There exists great uncertainty on whether cooling of light ions by heavier neutral atoms is possible. Here we experimentally demonstrate the cooling of light ions by co-trapped heavy atoms for the first time. We show that trapped 39K+ ions are cooled by localized ultracold neutral 85Rb atoms for an ion-atom mass ratio where most theoretical models predict ion heating. We demonstrate, based on detailed numerical simulation of our ion-cooling model, which is in excellent agreement with experiments, that cooling of ions by localized cold atoms is possible for any mass ratio. Our result opens up the possibility of studying quantum collisions and chemistry in trapped atom-ion systems.

  17. Light Trapping Effect in Wing Scales of Butterfly Papilio peranthus and Its Simulations

    Institute of Scientific and Technical Information of China (English)

    Zhiwu Han; Shichao Niu; Lufeng Zhang; Zhenning Liu; Luquan Ren

    2013-01-01

    Broadband light trapping ettect and arrays of sub-wavelength textured sructures based on the butterfly wing scales are applicable to solar cells and stealth technologies.In this paper,the fine optical structures in wing scales of butterfly Papilio peranthus,exhibiting efficient light trapping effect,were carefully examined.First,the reflectivity was measured by reflectance spectrum.Field Emission Scanning Electronic Microscope (FESEM) and Transmission Electron Microscope (TEM) were used to observe the coupling morphologies and structures of the scales.Then,the optimized 3D model of the coupling structure was created combining Scanning Electron Microscope (SEM) and TEM data.Afterwards,the mechanism of the light trapping effect of these structures was analyzed by simulation and theoretical calculations.A multilayer nano-structure of chitin and air was found.These structures are effective in increasing optical path,resulting in that most of the incident light can be trapped and adsorbed within the structure at last.Furthermore,the simulated optical results are consistent with the experimental and calculated ones.This result reliably confirms that these structures induce an efficient light trapping effect.This work can be used as a reference for in-depth study on the fabrication of highly efficient bionic optical devices,such as solar cells,photo detectors,high-contrast,antiglare,and so forth.

  18. Broadband perfect light trapping in the thinnest monolayer graphene-MoS$_{2}$ photovoltaic cell

    CERN Document Server

    Wu, Yun-Beng; Wang, Tong-Biao; Deng, Xin-Hua; Liu, Jiang-Tao

    2015-01-01

    The light absorption of a monolayer graphene-molybdenum disulfide photovoltaic (GM-PV) cell in a wedge-shaped microcavity with a spectrum-splitting structure is investigated theoretically. The GM-PV cell, which is three times thinner than the traditional photovoltaic cell, exhibits up to 98\\% light absorptivity in a wide wavelength range. This rate exceeds the fundamental limit of nanophotonic light trapping in solar cells. The effects of defect layer thickness, GM-PV cell position in the microcavity, incident angle, and lens aberration on the light absorption rate of the GM-PV cell is explored. Regardless of errors, the GM-PV cell can still achieve at least 90\\% light absorptivity with the current technology. Our proposal provides different methods to design light-trapping structures and apply spectrum-splitting systems.

  19. Investigation of 3-dimensional structural morphology for enhancing light trapping with control of surface haze

    Science.gov (United States)

    Park, Hyeongsik; Shin, Myunghun; Kim, Hyeongseok; Kim, Sunbo; Le, Anh Huy Tuan; Kang, Junyoung; Kim, Yongjun; Pham, Duy Phong; Jung, Junhee; Yi, Junsin

    2017-04-01

    A comparative study of 3-dimensional textured glass morphologies with variable haze value and chemical texturing of the glass substrates was conducted to enhance light trapping in silicon (Si) thin film solar cells (TFSCs). The light trapping characteristics of periodic honeycomb structures show enhanced transmittance and haze ratio in numerical and experimental approaches. The periodic honeycomb structure of notched textures is better than a random or periodic carved structure. It has high transmittance of ∼95%, and haze ratio of ∼52.8%, and the haze property of the angular distribution function of transmittance shows wide scattering angles in the long wavelength region because of the wide spacing and aspect ratio of the texture. The numerical and experimental approaches of the 3-D texture structures in this work will be useful in developing high-performance Si TFSCs with light trapping.

  20. An Ingenious Super Light Trapping Surface Templated from Butterfly Wing Scales

    Science.gov (United States)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-08-01

    Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching. Firstly, the reflectivity of butterfly wing scales was carefully examined. It was found that the whole reflectance spectroscopy of the butterfly wings showed a lower level (less than 10 %) in the visible spectrum. Thus, it was confirmed that the butterfly wings possessed a super light trapping effect. Afterwards, the morphologies and detailed architectures of the butterfly wing scales were carefully investigated using the ultra-depth three-dimensional (3D) microscope and field emission scanning electronic microscopy (FESEM). It was composed by the parallel ridges and quasi-honeycomb-like structure between them. Based on the biological properties and function above, an exact SiO2 negative replica was fabricated through a synthesis method combining a sol-gel process and subsequent selective etching. At last, the comparative analysis of morphology feature size and the reflectance spectroscopy between the SiO2 negative replica and the flat plate was conducted. It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template. This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature.

  1. Photonic antenna system for light harvesting, transport and trapping

    NARCIS (Netherlands)

    Calzaferri, G.; Pauchard, M.; Maas, H.; Huber, S.; Khatyr, A.; Schaafsma, T.J.

    2002-01-01

    Host¿guest composites with photonic antenna properties are described. The material consists of cylindrical zeolite L crystals the channels of which are filled with chains of joined but electronically non-interacting dye molecules. Light shining on a crystal is first absorbed and the energy is then t

  2. Trapping of Rift Valley Fever (RVF vectors using Light Emitting Diode (LED CDC traps in two arboviral disease hot spots in Kenya

    Directory of Open Access Journals (Sweden)

    Tchouassi David P

    2012-05-01

    Full Text Available Abstract Background Mosquitoes’ response to artificial lights including color has been exploited in trap designs for improved sampling of mosquito vectors. Earlier studies suggest that mosquitoes are attracted to specific wavelengths of light and thus the need to refine techniques to increase mosquito captures following the development of super-bright light-emitting diodes (LEDs which emit narrow wavelengths of light or very specific colors. Therefore, we investigated if LEDs can be effective substitutes for incandescent lamps used in CDC light traps for mosquito surveillance, and if so, determine the best color for attraction of important Rift Valley Fever (RFV vectors. Methods The efficiency of selected colored LED CDC light traps (red, green, blue, violet, combination of blue-green-red (BGR to sample RVF vectors was evaluated relative to incandescent light (as control in a CDC light trap in two RVF hotspots (Marigat and Ijara districts in Kenya. In field experiments, traps were baited with dry ice and captures evaluated for Aedes tricholabis, Ae. mcintoshi, Ae. ochraceus, Mansonia uniformis, Mn. africana and Culex pipiens, following Latin square design with days as replicates. Daily mosquito counts per treatment were analyzed using a generalized linear model with Negative Binomial error structure and log link using R. The incidence rate ratios (IRR that mosquito species chose other treatments instead of the control, were estimated. Results Seasonal preference of Ae.mcintoshi and Ae. ochraceus at Ijara was evident with a bias towards BGR and blue traps respectively in one trapping period but this pattern waned during another period at same site with significantly low numbers recorded in all colored traps except blue relative to the control. Overall results showed that higher captures of all species were recorded in control traps compared to the other LED traps (IRR  Conclusion Based on our trapping design and color, none of the LEDs

  3. Assessment of vector/host contact: comparison of animal-baited traps and UV-light/suction trap for collecting Culicoides biting midges (Diptera: Ceratopogonidae, vectors of Orbiviruses

    Directory of Open Access Journals (Sweden)

    Delécolle Jean-Claude

    2011-06-01

    Full Text Available Abstract Background The emergence and massive spread of bluetongue in Western Europe during 2006-2008 had disastrous consequences for sheep and cattle production and confirmed the ability of Palaearctic Culicoides (Diptera: Ceratopogonidae to transmit the virus. Some aspects of Culicoides ecology, especially host-seeking and feeding behaviors, remain insufficiently described due to the difficulty of collecting them directly on a bait animal, the most reliable method to evaluate biting rates. Our aim was to compare typical animal-baited traps (drop trap and direct aspiration to both a new sticky cover trap and a UV-light/suction trap (the most commonly used method to collect Culicoides. Methods/results Collections were made from 1.45 hours before sunset to 1.45 hours after sunset in June/July 2009 at an experimental sheep farm (INRA, Nouzilly, Western France, with 3 replicates of a 4 sites × 4 traps randomized Latin square using one sheep per site. Collected Culicoides individuals were sorted morphologically to species, sex and physiological stages for females. Sibling species were identified using a molecular assay. A total of 534 Culicoides belonging to 17 species was collected. Abundance was maximal in the drop trap (232 females and 4 males from 10 species whereas the diversity was the highest in the UV-light/suction trap (136 females and 5 males from 15 species. Significant between-trap differences abundance and parity rates were observed. Conclusions Only the direct aspiration collected exclusively host-seeking females, despite a concern that human manipulation may influence estimation of the biting rate. The sticky cover trap assessed accurately the biting rate of abundant species even if it might act as an interception trap. The drop trap collected the highest abundance of Culicoides and may have caught individuals not attracted by sheep but by its structure. Finally, abundances obtained using the UV-light/suction trap did not estimate

  4. Trapping of light pulses in ensembles of stationary Lambda atoms

    OpenAIRE

    Hansen, Kristian Rymann; Molmer, Klaus

    2007-01-01

    We present a detailed theoretical description of the generation of stationary light pulses by standing wave electromagnetically induced transparency in media comprised of stationary atoms. We show that, contrary to thermal gas media, the achievable storage times are limited only by the ground state dephasing rate of the atoms, making such media ideally suited for nonlinear optical interactions between stored pulses. Furthermore, we find significant quantitative and qualitative differences bet...

  5. Experimental determination of the light-trapping-induced absorption enhancement factor in DSSC photoanodes

    Directory of Open Access Journals (Sweden)

    Serena Gagliardi

    2015-04-01

    Full Text Available For dye-sensitized solar cells (DSSC, the fundamental process that determines the maximum short-circuit current is the absorption of light. In such devices, this is produced by the concurrent phenomena of light absorption by dye molecules and light trapping in the mesoporous, titania photoanode structure. The decoupling of these two phenomena is important for device characterization and the design of novel photoelectrode geometries with increased optical performance. In this paper, this task is addressed by introducing a spectral absorption enhancement factor as a parameter to quantify the light trapping effect. The experimental value of this parameter was obtained by comparing the experimentally determined fraction of absorbed light by a dye-sensitized photoanode with the light absorbed by the dye without the mesoporous titania structure. In order to gain more insight from this result, the fraction of light absorbed in the photoanode (on the basis of the dye loading capacity of the titania nanospheres was also calculated by an optical model for the two extreme cases of the absence of light trapping and maximum light trapping. Accordingly, the photocurrent was calculated under the assumption of solar irradiation, which defined two useful boundaries. Using the experimentally derived values of the spectral absorption enhancement factor in the photoanode optical model, the DSSC short-circuit current can be calculated with good agreement with the value measured in practical devices based on the same photoanode structures. Therefore, our approach provides a realistic description of a practical device and can be exploited as an useful tool to assess the optical functionality of novel photoanode structures.

  6. Light-induced evaporative cooling in a magneto-optical trap

    Institute of Scientific and Technical Information of China (English)

    Ma Hong-Yu; Cheng Hua-Dong; Wang Yu-Zhu; Liu Liang

    2008-01-01

    This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap.An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap.These atoms get an additional force and evaporated away from the trap by both the magnetic field and laser fields.The remaining atoms have lower kinetic energy and thus are cooled.It reports the measurements on the temperature and atomic number after the evaporative cooling with different parameters including the distance between the laser and the centre of the atomic cloud,the detuning,the intensity.The results show that the light-induced evaporative cooling is a way to generate an ultra-cold atom source.

  7. Temporal tweezing of light: trapping and manipulation of temporal cavity solitons

    CERN Document Server

    Jang, Jae K; Coen, Stephane; Murdoch, Stuart G

    2014-01-01

    Optical tweezers use laser light to trap and move microscopic particles in space. Here we demonstrate a similar control over ultrashort light pulses, but in time. Our experiment involves temporal cavity solitons that are stored in a passive loop of optical fiber pumped by a continuous-wave "holding" laser beam. The cavity solitons are trapped into specific time slots through a phase-modulation of the holding beam, and moved around in time by manipulating the phase profile. We report both continuous and discrete manipulations of the temporal positions of picosecond light pulses, with the ability to simultaneously and independently control several pulses within a train. We also study the transient drifting dynamics and show complete agreement with theoretical predictions. Our study demonstrates how the unique particle-like characteristics of cavity solitons can be leveraged to achieve unprecedented control over light. These results could have significant ramifications for optical information processing.

  8. Light trapping in thin-film solar cells with randomly rough and hybrid textures.

    Science.gov (United States)

    Kowalczewski, Piotr; Liscidini, Marco; Andreani, Lucio Claudio

    2013-09-09

    We study light-trapping in thin-film silicon solar cells with rough interfaces. We consider solar cells made of different materials (c-Si and μc-Si) to investigate the role of size and nature (direct/indirect) of the energy band gap in light trapping. By means of rigorous calculations we demonstrate that the Lambertian Limit of absorption can be obtained in a structure with an optimized rough interface. We gain insight into the light trapping mechanisms by analysing the optical properties of rough interfaces in terms of Angular Intensity Distribution (AID) and haze. Finally, we show the benefits of merging ordered and disordered photonic structures for light trapping by studying a hybrid interface, which is a combination of a rough interface and a diffraction grating. This approach gives a significant absorption enhancement for a roughness with a modest size of spatial features, assuring good electrical properties of the interface. All the structures presented in this work are compatible with present-day technologies, giving recent progress in fabrication of thin monocrystalline silicon films and nanoimprint lithography.

  9. Three-dimensional photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Uepping, Johannes; Bielawny, Andreas; Wehrspohn, Ralf B. [Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany); Fraunhofer-Institute for Mechanics of Materials, Halle (Germany); Beckers, Thomas; Carius, Reinhard; Rau, Uwe [Institute of Energy and Climate Research 5 - Photovoltaics, Forschungszentrum Juelich GmbH, Juelich (Germany); Fahr, Stefan; Rockstuhl, Carsten; Lederer, Falk [Institute of Condensed Matter Theory and Solid State Optics and Abbe Center of Photonics, Friedrich-Schiller-Universitaet Jena (Germany); Kroll, Matthias; Pertsch, Thomas [Institute of Applied Physics, Friedrich-Schiller-Universitaet Jena (Germany); Steidl, Lorenz; Zentel, Rudolf [Institute of Organic Chemistry, Johannes Gutenberg-Universitaet Mainz (Germany)

    2011-09-08

    A three-dimensional photonic crystal intermediate reflector for enhanced light trapping in tandem solar cells is presented. The intermediate reflector consists of a transparent and conductive ZnO:Al inverted opal sandwiched in between the top amorphous silicon and bottom microcrystalline silicon cell. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. The Chaotic Light Curves of Accreting Black Holes

    Science.gov (United States)

    Kazanas, Demosthenes

    2007-01-01

    We present model light curves for accreting Black Hole Candidates (BHC) based on a recently developed model of these sources. According to this model, the observed light curves and aperiodic variability of BHC are due to a series of soft photon injections at random (Poisson) intervals and the stochastic nature of the Comptonization process in converting these soft photons to the observed high energy radiation. The additional assumption of our model is that the Comptonization process takes place in an extended but non-uniform hot plasma corona surrounding the compact object. We compute the corresponding Power Spectral Densities (PSD), autocorrelation functions, time skewness of the light curves and time lags between the light curves of the sources at different photon energies and compare our results to observation. Our model reproduces the observed light curves well, in that it provides good fits to their overall morphology (as manifest by the autocorrelation and time skewness) and also to their PSDs and time lags, by producing most of the variability power at time scales 2 a few seconds, while at the same time allowing for shots of a few msec in duration, in accordance with observation. We suggest that refinement of this type of model along with spectral and phase lag information can be used to probe the structure of this class of high energy sources.

  11. Modeling nanostructure-enhanced light trapping in organic solar cells

    DEFF Research Database (Denmark)

    Adam, Jost

    A promising approach for improving the power conversion efficiencies of organic solar cells (OSCs) is by incorporating nanostructures in their thin film architecture to improve the light absorption in the device’s active polymer layers. Here, we present a modelling framework for the prediction...... of optical and plasmonic field enhancement by nanostructures in (or close to) the active layers and electrodes in OSCs. We incorporate finite-difference time-domain (FDTD) calculations alongside semi- analytical approaches, as the rigorous coupled-wave analysis (RCWA) and mode-coupling theory. Our simulation......-compatible method for non-periodic electrode structuring by pores of controlled dimensions, formed through anodic oxidation of sputter-deposited high-purity aluminium films [3]. [1] Kluge, C., et al. Multi-periodic nanostructures for photon control. Optics Express, 22 (S5), A1363. (2014) [2] Skigin, D., et al...

  12. Stars and black holes in varying speed of light theories

    CERN Document Server

    Magueijo, J

    2001-01-01

    We investigate spherically symmetric solutions to a recently proposed covariant and locally Lorentz-invariant varying speed of light theory. We find the metrics and variations in $c$ associated with the counterpart of black holes, the outside of a star, and stellar collapse. The remarkable novelty is that $c$ goes to zero or infinity (depending on parameter signs) at the horizon. We show how this implies that, with appropriate parameters, observers are prevented from entering the horizon. Concomitantly stellar collapse must end in a ``Schwarzchild radius'' remnant. We then find formulae for gravitational light deflection, gravitational redshift, radar echo delay, and the precession of the perihelion of Mercury, highlighting how these may differ distinctly from their Einstein counterparts but still evade experimental constraints. The main tell-tale signature of this theory is the prediction of the observation of a different value for the fine structure constant, $\\alpha$, in spectral lines formed in the surfac...

  13. Trapping of quantum particles and light beams by switchable potential wells

    CERN Document Server

    Sonkin, Eduard; Granot, Er'el; Marchewka, Avi

    2010-01-01

    We consider basic dynamical effects in settings based on a pair of local potential traps that may be effectively switched on and off, or suddenly displaced, by means of appropriate control mechanisms, such as the scanning tunneling microscopy (STM) or photo-switchable quantum dots. The same models, based on the linear Schrodinger equation with time-dependent trapping potentials, apply to the description of optical planar systems designed for the switching of trapped light beams. The analysis is carried out in the analytical form, using exact solutions of the Schrodinger equation. The first dynamical problem considered in this work is the retention of a particle released from a trap which was suddenly turned off, while another local trap was switched on at a distance - immediately or with a delay. In this case, we demonstrate that the maximum of the retention rate is achieved at a specific finite value of the strength of the new trap, and at a finite value of the temporal delay, depending on the distance betwe...

  14. Trapping of Atoms by the Counter-Propagating Stochastic Light Waves

    CERN Document Server

    Romanenko, Victor I

    2016-01-01

    We show that the field of counter-propagating stochastic light waves, one of which repeats the other, can form an one-dimension trap for atoms. The confinement of an ensemble of atoms in the trap and their simultaneous cooling can be achieved without using auxiliary fields. The temperature of the atomic ensemble depends on the autocorrelation time of the waves, their intensity and the detuning of the carrier frequency of the waves from the atomic transition frequency. The numerical simulation is carried out for sodium atoms.

  15. Broadband light-trapping in ultra-thin nano-structured solar cells

    Science.gov (United States)

    Colin, Clément; Massiot, Inès.; Cattoni, Andrea; Vandamme, Nicolas; Dupuis, Christophe; Bardou, Nathalie; Gerard, Isabelle; Naghavi, Negar; Guillemoles, Jean-François; Pelouard, Jean-Luc; Collin, Stéphane

    2013-03-01

    Conventional light trapping techniques are inefficient at the sub-wavelength scale. This is the main limitation for the thickness reduction of thin-film solar cells below 500nm. We propose a novel architecture for broadband light absorption in ultra-thin active layers based on plasmonic nano-cavities and multi-resonant mechanism. Strong light enhancement will be shown numerically for photovoltaic materials such as CIGSe and GaAs. First experiments on ultrathin nano-patterned CIGSe solar cells will be presented.

  16. Low cost and high performance light trapping structure for thin-film solar cells

    CERN Document Server

    Wang, DongLin; Su, Gang

    2015-01-01

    Nano-scaled dielectric and metallic structures are popular light tapping structures in thin-film solar cells. However, a large parasitic absorption in those structures is unavoidable. Most schemes based on such structures also involve the textured active layers that may bring undesirable degradation of the material quality. Here we propose a novel and cheap light trapping structure based on the prism structured SiO2 for thin-film solar cells, and a flat active layer is introduced purposefully. Such a light trapping structure is imposed by the geometrical shape optimization to gain the best optical benefit. By examining our scheme, it is disclosed that the conversion efficiency of the flat a-Si:H thin-film solar cell can be promoted to exceed the currently certified highest value. As the cost of SiO2-based light trapping structure is much cheaper and easier to fabricate than other materials, this proposal would have essential impact and wide applications in thin-film solar cells.

  17. Trapped-ion probing of light-induced charging effects on dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Harlander, M; Brownnutt, M; Haensel, W; Blatt, R, E-mail: max.harlander@uibk.ac.a [Institut fuer Experimentalphysik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria)

    2010-09-15

    We use a string of confined {sup 40}Ca{sup +} ions to measure perturbations to a trapping potential which are caused by the light-induced charging of an antireflection-coated window and of insulating patches on the ion-trap electrodes. The electric fields induced at the ions' position are characterized as a function of distance to the dielectric and as a function of the incident optical power and wavelength. The measurement of the ion-string position is sensitive to as few as 40 elementary charges per {radical}(Hz) on the dielectric at distances of the order of millimetres, and perturbations are observed for illuminations with light of wavelengths as large as 729 nm. This has important implications for the future of miniaturized ion-trap experiments, notably with regard to the choice of electrode material and the optics that must be integrated in the vicinity of the ion. The method presented here can be readily applied to the investigation of charging effects beyond the context of ion-trap experiments.

  18. The effect of high frequency sound on Culicoides numbers collected with suction light traps

    Directory of Open Access Journals (Sweden)

    Gert J. Venter

    2012-04-01

    Full Text Available Culicoides midges (Diptera: Ceratopogonidae, are involved in the transmission of various pathogens that cause important diseases of livestock worldwide. The use of insect repellents to reduce the attack rate of these insects on livestock could play an important role as part of an integrated control programme against diseases transmitted by these midges. The objective of this study was to determine whether high frequency sound has any repellent effect on Culicoides midges. The number of midges collected with 220 V Onderstepoort white light traps fitted with electronic mosquito repellents (EMRs, emitting 5-20 KHz multi-frequency sound waves, was compared with that of two untreated traps. Treatments were rotated in two replicates of a 4 x 4 randomised Latin square design. Although fewer midges were collected in the two traps fitted with EMRs, the average number collected over eight consecutive nights was not significantly different. The EMRs also had no influence on any of the physiological groups of Culicoides imicola Kieffer or the species composition of the Culicoides population as determined with light traps. The results indicate that high frequency sound has no repellent effect on Culicoides midges. There is therefore no evidence to support their promotion or use in the protection of animals against pathogens transmitted by Culicoides midges.

  19. Light Trapping Textures Designed by Electromagnetic Optimization for Sub-Wavelength Thick Solar Cells

    CERN Document Server

    Ganapati, Vidya; Yablonovitch, Eli

    2013-01-01

    Light trapping in solar cells allows for increased current and voltage, as well as reduced materials cost. It is known that in geometrical optics, a maximum 4n^2 absorption enhancement factor can be achieved by randomly texturing the surface of the solar cell, where n is the material refractive index. This ray-optics absorption enhancement limit only holds when the thickness of the solar cell is much greater than the optical wavelength. In sub-wavelength thin films, the fundamental questions remain unanswered: (1) what is the sub-wavelength absorption enhancement limit and (2) what surface texture realizes this optimal absorption enhancement? We turn to computational electromagnetic optimization in order to design nanoscale textures for light trapping in sub-wavelength thin films. For high-index thin films, in the weakly absorbing limit, our optimized surface textures yield an angle- and frequency-averaged enhancement factor ~39. They perform roughly 30% better than randomly textured structures, but they fall...

  20. Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping.

    Science.gov (United States)

    Gaucher, Alexandre; Cattoni, Andrea; Dupuis, Christophe; Chen, Wanghua; Cariou, Romain; Foldyna, Martin; Lalouat, Loı̈c; Drouard, Emmanuel; Seassal, Christian; Roca I Cabarrocas, Pere; Collin, Stéphane

    2016-09-14

    Ultrathin c-Si solar cells have the potential to drastically reduce costs by saving raw material while maintaining good efficiencies thanks to the excellent quality of monocrystalline silicon. However, efficient light trapping strategies must be implemented to achieve high short-circuit currents. We report on the fabrication of both planar and patterned ultrathin c-Si solar cells on glass using low temperature (T optimization are discussed.

  1. Light-trapping in solar cells by photonic nanostructures. The need for benchmarking and fabrication assessments

    Energy Technology Data Exchange (ETDEWEB)

    Lenzmann, F.O.; Salpakari, J.; Weeber, A.W.; Olson, C.L. [ECN Solar Energy, Petten (Netherlands)

    2013-07-15

    Light-trapping in solar cells by photonic nanostructures, e.g., nano-textured surfaces or metallic and nonmetallic nanoparticles is a research area of great promise. A large multitude of configurations is being explored and there is a rising need for (a set of) assessment elements that help to narrow in on the most viable ones. This paper discusses two examples: benchmark devices and the assessment of fabrication aspects for the nanostructures.

  2. Fabrication of the replica templated from butterfly wing scales with complex light trapping structures

    Science.gov (United States)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-11-01

    The polydimethylsiloxane (PDMS) positive replica templated twice from the excellent light trapping surface of butterfly Trogonoptera brookiana wing scales was fabricated by a simple and promising route. The exact SiO2 negative replica was fabricated by using a synthesis method combining a sol-gel process and subsequent selective etching. Afterwards, a vacuum-aided process was introduced to make PDMS gel fill into the SiO2 negative replica, and the PDMS gel was solidified in an oven. Then, the SiO2 negative replica was used as secondary template and the structures in its surface was transcribed onto the surface of PDMS. At last, the PDMS positive replica was obtained. After comparing the PDMS positive replica and the original bio-template in terms of morphology, dimensions and reflectance spectra and so on, it is evident that the excellent light trapping structures of butterfly wing scales were inherited by the PDMS positive replica faithfully. This bio-inspired route could facilitate the preparation of complex light trapping nanostructure surfaces without any assistance from other power-wasting and expensive nanofabrication technologies.

  3. Light-trap Catch of the Common Cockchafer (Melolontha melolontha L. Depending on the Atmospheric Ozone Concentration

    Directory of Open Access Journals (Sweden)

    NOWINSZKY, László

    2011-01-01

    Full Text Available The study deals the efficiency of light trapping of the Common Cockchafer (Melolonthamelolontha L. (Coleoptera: Melolonthidae in connection with the ozone concentration of air. Thedata of the Hungarian forestry light trap network were used for the years 1997 through 2006. Wecalculated relative catch values of from the number of caught insects. We assigned these to the ozonevalues of the respective days. For the classified date pairs regression equations were calculated. Weestablished that the light trapping is most effective if the ozone concentration is high. As opposed tothis, low ozone concentration reduces the success of the catch. Our results may be utilized in plantprotection and forest protection prognoses.

  4. Monitoring mosquitoes in urban Dar es Salaam: Evaluation of resting boxes, window exit traps, CDC light traps, Ifakara tent traps and human landing catches

    Directory of Open Access Journals (Sweden)

    Mpangile John M

    2011-03-01

    Full Text Available Abstract Background Ifakara tent traps (ITT are currently the only sufficiently sensitive, safe, affordable and practical method for routine monitoring host-seeking mosquito densities in Dar es Salaam. However, it is not clear whether ITT catches represent indoors or outdoors biting densities. ITT do not yield samples of resting, fed mosquitoes for blood meal analysis. Methods Outdoors mosquito sampling methods, namely human landing catch (HLC, ITT (Design B and resting boxes (RB were conducted in parallel with indoors sampling using HLC, Centers for Disease Control and Prevention miniature light traps (LT and RB as well as window exit traps (WET in urban Dar es Salaam, rotating them thirteen times through a 3 × 3 Latin Square experimental design replicated in four blocks of three houses. This study was conducted between 6th May and 2rd July 2008, during the main rainy season when mosquito biting densities reach their annual peak. Results The mean sensitivities of indoor RB, outdoor RB, WET, LT, ITT (Design B and HLC placed outdoor relative to HLC placed indoor were 0.01, 0.005, 0.036, 0.052, 0.374, and 1.294 for Anopheles gambiae sensu lato (96% An. gambiae s.s and 4% An. arabiensis, respectively, and 0.017, 0.053, 0.125, 0.423, 0.372 and 1.140 for Culex spp, respectively. The ITT (Design B catches correlated slightly better to indoor HLC (r2 = 0.619, P 2 = 0.231, P = 0.001 than outdoor HLC (r2 = 0.423, P 2 = 0.228, P = 0.001 for An. gambiae s.l. and Culex spp respectively but the taxonomic composition of mosquitoes caught by ITT does not match those of the indoor HLC (χ2 = 607.408, degrees of freedom = 18, P An. gambiae caught indoors was unaffected by the use of an LLIN in that house. Conclusion The RB, WET and LT are poor methods for surveillance of malaria vector densities in urban Dar es Salaam compared to ITT and HLC but there is still uncertainty over whether the ITT best reflects indoor or outdoor biting densities. The particular LLIN

  5. Active control of light trapping by means of local magnetic coupling.pdf

    CERN Document Server

    Burresi, Matteo; van Oosten, Dries; Prangsma, Jord C; Song, Bong-Shik; Noda, Susumo; Kuipers, Laurens

    2009-01-01

    The ability to actively tune the properties of a nanocavity is crucial for future applications in photonics and quantum information. Two important man-made classes of materials have emerged to mold the flow of electromagnetic waves. Firstly, photonic crystals are dielectric nanostructures that can be used to confine and slow down light and control its emission. They act primarily on the electric component of the light field. More recently, a novel class of metallo-dielectric nanostructures has emerged. These so-called metamaterials enable fascinating phenomena, such as negative refraction, super-focusing and cloaking. This second class of materials realizes light control through effective interactions with both electric and magnetic component. In this work, we combine both concepts to gain an active and reversible control of light trapping on subwavelength length scales. By actuating a nanoscale magnetic coil close to a photonic crystal nanocavity, we interact with the rapidly varying magnetic field and accom...

  6. Joint influence of meteorological events on light trapping of turnip moth (Scotia segetum Schiff

    Directory of Open Access Journals (Sweden)

    Puskas János

    2006-01-01

    Full Text Available The light-trap collecting results, showing its flight activity, of turnip moth (Scotia segetum S c h i f f was examined connected with meteorological events. These factors were instability line, the convergence zone, the cyclogenesis, the country-wide rain, the cold- and warm weather fronts, the maritime- and continental moderate, arctic and subtropical air masses used the data published in "Calendar of Weather Phenomena" between 1967 and 1990 by National Meteorological Service. There were 29832 moths caught during 3232 night by 64 light-trap stations in the examined period. During one night more light-traps operated, therefore 25.021 observing data were worked up. We mean that the observing data are the same as the catching data at one night, at one observing station. The data of meteorological events were collected into groups according to their occurrence on one day alone or together with other ones. They were collected into separated groups according to arriving after a day without any meteorological events or if there were any of them on the previous day. The values of relative catch (RC were calculated daily for each observing stations and generations used the catching data. There was made a comparison between the relative catch (RC values and the meteorological events belonging to the data and on previous and following days. Then the relative catch values were summarized and averaged daily. The differences of daily average values of significance levels were controlled with t-test in all the groups. More than 95% significance levels were found in 36 groups. The favourable and infavourable influences of each event are the strongest at that time, when have influence not only alone but also with other effects simultaneously or they follow one another in a short time. Our results prove clearly, it is not enough to examine exclusively the modifying influence of each meteorological event on light-trap collecting. The success of light trapping is

  7. Light Absorption in Arctic Sea Ice - Black Carbon vs Chlorophyll

    Science.gov (United States)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.

    2015-12-01

    The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea ice extent has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea ice surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-ice physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic ice predictions. Here we develop a dynamic ice system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea Ice Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea ice and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the ice-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea ice by the bottom microbial community, and also within the columnar pack wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in areas where the total deposition rates are decreasing with time on interannual timescale. We expect a continuous increase in

  8. Broadband light trapping based on periodically textured ZnO thin films

    Science.gov (United States)

    Liu, Bofei; Liang, Xuejiao; Liang, Junhui; Bai, Lisha; Gao, Haibo; Chen, Ze; Zhao, Ying; Zhang, Xiaodan

    2015-05-01

    Transparent conductive front electrodes (TCFEs) deployed in photovoltaic devices have been extensively studied for their significance in transporting carriers, coupling and trapping the incident photons in high-performing solar cells. The trade-off between the light-transmission, electrical, and scattering properties for TCFEs to achieve a broadband improvement in light absorption in solar cells while maintaining a high electrical performance has become the key issue to be tackled. In this paper, we employ self-assembled polystyrene (PS) spheres based on a sauna-like method as a template, followed by a double-layer deposition and then successfully fabricate highly-transparent, well-conductive, and large-scale periodically-textured ZnO TCFEs with broadband light trapping properties. A sheet resistance below 15 Ω sq-1 was achieved for the periodically-textured ZnO TCFEs, with a concomitant average transmission of 81% (including the glass substrate) in the 400-1100 nm spectral range, a haze improvement in a broadband spectral range, and a wider scattering angular domain. The proposed approach affords a promising alternative method to prepare periodically-textured TCFEs, which are essential for many optoelectronic device semiconductors, such as photovoltaic and display applications.Transparent conductive front electrodes (TCFEs) deployed in photovoltaic devices have been extensively studied for their significance in transporting carriers, coupling and trapping the incident photons in high-performing solar cells. The trade-off between the light-transmission, electrical, and scattering properties for TCFEs to achieve a broadband improvement in light absorption in solar cells while maintaining a high electrical performance has become the key issue to be tackled. In this paper, we employ self-assembled polystyrene (PS) spheres based on a sauna-like method as a template, followed by a double-layer deposition and then successfully fabricate highly-transparent, well

  9. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  10. Light trapping in a 30-nm organic photovoltaic cell for efficient carrier collection and light absorption

    CERN Document Server

    Tsai, Cheng-Chia; Banerjee, Ashish; Osgood, Richard M; Englund, Dirk

    2012-01-01

    We describe surface patterning strategies that permit high photon-collection efficiency together with high carrier-collection efficiency in an ultra-thin planar heterojunction organic photovoltaic cell. Optimized designs reach up to 50% photon collection efficiency in a P3HT layer of only 30 nm, representing a 3- to 5-fold improvement over an unpatterned cell of the same thickness. We compare the enhancement of light confinement in the active layer with an ITO top layer for TE and TM polarized light, and demonstrate that the light absorption can increase by a factor of 2 due to a gap-plasmon mode in the active layer.

  11. Development of a novel trap for the collection of black flies of the Simulium ochraceum complex.

    Directory of Open Access Journals (Sweden)

    Mario A Rodríguez-Pérez

    Full Text Available BACKGROUND: Human landing collections are currently the standard method for collecting onchocerciasis vectors in Africa and Latin America. As part of the efforts to develop a trap to replace human landing collections for the monitoring and surveillance of onchocerciasis transmission, comprehensive evaluations of several trap types were conducted to assess their ability to collect Simulium ochraceum sensu lato, one of the principal vectors of Onchocerca volvulus in Latin America. METHODOLOGY/PRINCIPAL FINDINGS: Diverse trap designs with numerous modifications and bait variations were evaluated for their abilities to collect S. Ochraceum s.l. females. These traps targeted mostly host seeking flies. A novel trap dubbed the "Esperanza window trap" showed particular promise over other designs. When baited with CO2 and BG-lure (a synthetic blend of human odor components a pair of Esperanza window traps collected numbers of S. Ochraceum s.l. females similar to those collected by a team of vector collectors. CONCLUSIONS/SIGNIFICANCE: The Esperanza window trap, when baited with chemical lures and CO2 can be used to collect epidemiologically significant numbers of Simulium ochraceum s.l., potentially serving as a replacement for human landing collections for evaluation of the transmission of O. volvulus.

  12. Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells.

    Science.gov (United States)

    Pala, Ragip A; Liu, John S Q; Barnard, Edward S; Askarov, Daulet; Garnett, Erik C; Fan, Shanhui; Brongersma, Mark L

    2013-01-01

    Non-periodic arrangements of nanoscale light scatterers allow for the realization of extremely effective broadband light-trapping layers for solar cells. However, their optimization is challenging given the massive number of degrees of freedom. Brute-force, full-field electromagnetic simulations are computationally too time intensive to identify high-performance solutions in a vast design space. Here we illustrate how a semi-analytical model can be used to quickly identify promising non-periodic spatial arrangements of nanoscale scatterers. This model only requires basic knowledge of the scattering behaviour of a chosen nanostructure and the waveguiding properties of the semiconductor layer in a cell. Due to its simplicity, it provides new intuition into the ideal amount of disorder in high-performance light-trapping layers. Using simulations and experiments, we demonstrate that arrays of nanometallic stripes featuring a limited amount of disorder, for example, following a quasi-periodic or Fibonacci sequence, can substantially enhance solar absorption over perfectly periodic and random arrays.

  13. Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells

    Science.gov (United States)

    Pala, Ragip A.; Liu, John S. Q.; Barnard, Edward S.; Askarov, Daulet; Garnett, Erik C.; Fan, Shanhui; Brongersma, Mark L.

    2013-07-01

    Non-periodic arrangements of nanoscale light scatterers allow for the realization of extremely effective broadband light-trapping layers for solar cells. However, their optimization is challenging given the massive number of degrees of freedom. Brute-force, full-field electromagnetic simulations are computationally too time intensive to identify high-performance solutions in a vast design space. Here we illustrate how a semi-analytical model can be used to quickly identify promising non-periodic spatial arrangements of nanoscale scatterers. This model only requires basic knowledge of the scattering behaviour of a chosen nanostructure and the waveguiding properties of the semiconductor layer in a cell. Due to its simplicity, it provides new intuition into the ideal amount of disorder in high-performance light-trapping layers. Using simulations and experiments, we demonstrate that arrays of nanometallic stripes featuring a limited amount of disorder, for example, following a quasi-periodic or Fibonacci sequence, can substantially enhance solar absorption over perfectly periodic and random arrays.

  14. Simplifying the calculation of light scattering properties for black carbon fractal aggregates

    Directory of Open Access Journals (Sweden)

    A. J. A. Smith

    2014-08-01

    Full Text Available Black carbon fractal aggregates have complicated shapes that make the calculation of their optical properties particularly computationally expensive. Here, a method is presented to estimate fractal aggregate light scattering properties by optimising simplified models to full light scattering calculations. It is found that there are no possible spherical models (at any size or refractive index that well represent the light scattering in the visible or near-thermal infrared. As such, parameterisations of the light scattering as a function of the number of aggregate particles is presented as the most pragmatic choice for modelling distributions of black carbon when the large computational overheads of rigorous scattering calculations cannot be justified. This parameterisation can be analytically integrated to provide light scattering properties for lognormal distributions of black carbon fractal aggregates and return extinction cross sections with 0.1% accuracy for typical black carbon size distributions. Scattering cross sections and the asymmetry parameter can be obtained to within 3%.

  15. Simplifying the calculation of light scattering properties for black carbon fractal aggregates

    Science.gov (United States)

    Smith, A. J. A.; Grainger, R. G.

    2014-02-01

    Black carbon fractal aggregates have complicated shapes that make the calculation of their optical properties particularly computationally expensive. Here, a method is presented to estimate fractal aggregate light scattering properties by optimising simplified models to full light scattering calculations. It is found that there are no possible spherical models (at any size or refractive index) that well represent the light scattering in the visible, or near-thermal infrared. As such, parameterisations of the light scattering as a function of the number of aggregate particles is presented as the most pragmatic choice for modelling distributions of black carbon when the large computational overheads of rigorous scattering calculations cannot be justified. This parameterisation can be analytically integrated to provide light scattering properties for log-normal distributions of black carbon fractal aggregates and return extinction cross-sections with 0.1% accuracy for typical black carbon size distributions. Scattering cross-sections and the asymmetry parameter can be obtained to within 3%.

  16. Light trapping and near-unity solar absorption in a three-dimensional photonic-crystal.

    Science.gov (United States)

    Kuang, Ping; Deinega, Alexei; Hsieh, Mei-Li; John, Sajeev; Lin, Shawn-Yu

    2013-10-15

    We report what is to our knowledge the first observation of the effect of parallel-to-interface-refraction (PIR) in a three-dimensional, simple-cubic photonic-crystal. PIR is an acutely negative refraction of light inside a photonic-crystal, leading to light-bending by nearly 90 deg over broad wavelengths (λ). The consequence is a longer path length of light in the medium and an improved light absorption beyond the Lambertian limit. As an illustration of the effect, we show near-unity total absorption (≥98%) in λ=520-620 nm and an average absorption of ~94% over λ=400-700 nm for our α-Si:H photonic-crystal sample of an equivalent bulk thickness of t˜=450 nm. Furthermore, we have achieved an ultra-wide angular acceptance of light over θ=0°-80°. This demonstration opens up a new door for light trapping and near-unity solar absorption over broad λs and wide angles.

  17. Realization of effective light trapping and omnidirectional antireflection in smooth surface silicon nanowire arrays.

    Science.gov (United States)

    Xie, W Q; Oh, J I; Shen, W Z

    2011-02-11

    We have successfully fabricated well-ordered silicon nanowire (SiNW) arrays of smooth surface by using a low-cost and facile Ag-assisted chemical etching technique. We have experimentally found that the reflectance can be significantly suppressed (absorption in SiNW arrays, we have obtained a photocurrent enhancement of up to 425% per unit volume of material as compared to crystalline Si, implying that effective light trapping can be realized in the as-grown samples. In addition, we have demonstrated experimentally and theoretically that the as-grown samples have an omnidirectional high-efficiency antireflection property.

  18. Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping

    Directory of Open Access Journals (Sweden)

    Wenbin Liu

    2016-08-01

    Full Text Available In this paper, anisotropic graphene plasmonic structures are explored for light trapping and absorption enhancement in surrounding media. It is shown that electrically tunable and versatile spectral and polarization selectivity can be realized. Particularly, it is possible to control absorption of the incident light’s polarization component at a specific wavelength by varying the Fermi energy with suitable geometric designs. It may find applications for new types of infrared and THz photodetectors and will promote the research of other novel polarization devices.

  19. An ingenious replica templated from the light trapping structure in butterfly wing scales

    Science.gov (United States)

    Han, Zhiwu; Niu, Shichao; Yang, Meng; Zhang, Junqiu; Yin, Wei; Ren, Luquan

    2013-08-01

    Although the physical mechanism of light trapping property of butterfly wings is well understood, it remains a challenge to create artificial replicas of these natural functional structures. Here, we synthesized a SiO2 inverse replica of a light trapping structure in butterfly wing scales using a method combining a sol-gel process and subsequent selective etching. First, the reflectance spectrum was taken to measure the reflectivity. Then, FESEM and TEM were used to observe the coupling structure of scales and the replicas. Afterwards, assisted by SEM and TEM data, 3D optimized models of the structures and fabrication process were generated by software. Finally, the parametric comparisons of the morphologies and structures between the original template and the inverse SiO2 replica were carefully conducted, and it was found that the original structures of bio-templates were well inherited by the structures of the inverse replica. This work would open up possibilities for an extensive study of mimicking novel bio-inspired functional materials, and the reported biomimetic technique confirms the feasibility of extending the functional structures in butterfly wings to particular optical devices in the field of space exploration, space equipment, photoelectrical devices and photo-induced sensors.Although the physical mechanism of light trapping property of butterfly wings is well understood, it remains a challenge to create artificial replicas of these natural functional structures. Here, we synthesized a SiO2 inverse replica of a light trapping structure in butterfly wing scales using a method combining a sol-gel process and subsequent selective etching. First, the reflectance spectrum was taken to measure the reflectivity. Then, FESEM and TEM were used to observe the coupling structure of scales and the replicas. Afterwards, assisted by SEM and TEM data, 3D optimized models of the structures and fabrication process were generated by software. Finally, the parametric

  20. Testing and optical modeling of novel concentrating solar receiver geometries to increase light trapping and effective solar absorptance

    Science.gov (United States)

    Yellowhair, Julius; Ho, Clifford K.; Ortega, Jesus D.; Christian, Joshua M.; Andraka, Charles E.

    2015-09-01

    Concentrating solar power receivers are comprised of panels of tubes arranged in a cylindrical or cubical shape on top of a tower. The tubes contain heat-transfer fluid that absorbs energy from the concentrated sunlight incident on the tubes. To increase the solar absorptance, black paint or a solar selective coating is applied to the surface of the tubes. However, these coatings degrade over time and must be reapplied, which reduces the system performance and increases costs. This paper presents an evaluation of novel receiver shapes and geometries that create a light-trapping effect, thereby increasing the effective solar absorptance and efficiency of the solar receiver. Several prototype shapes were fabricated from Inconel 718 and tested in Sandia's solar furnace at an irradiance of ~30 W/cm2. Photographic methods were used to capture the irradiance distribution on the receiver surfaces. The irradiance profiles were compared to results from raytracing models. The effective solar absorptance was also evaluated using the ray-tracing models. Results showed that relative to a flat plate, the new geometries could increase the effective solar absorptance from 86% to 92% for an intrinsic material absorptance of 86%, and from 60% to 73% for an intrinsic material absorptance of 60%.

  1. Physics and Chemistry in Laser—Trapped Single Microparticles Studied by Light Scattering

    Institute of Scientific and Technical Information of China (English)

    W.Kiefer; M.Lankers; 等

    1995-01-01

    In this lecture various physical and chemical aspects are discussed when single particles of the size of the faserwavelength are trapped in strongly focused laser beams.First,we describe varius possibilities for the trapping techniques and micro-Raman setups.Then we discuss Raman-Mie-scattering and morphology dependent resonances which occur in dielectric spherical microparticles.These particles react as microresonators and influence the Raman spectra senerating input and output resonances.The electric field distribution inside and outside the dielectric microsphere in and out of resonance have been calcuated quantitatively to explain the input resonances.We also report on observed fast temperature jumps when microdroplets undergo an input resonance.Applications of these combined inelastic/elastic light scattring studies will be shown for microdroplet evaporation and for chemical studies such as simple acid/base reactions in a microdroplet,Furthermore we show results of recent studies on the emulsion polymerization process of styrene by applying a gradient force trap in a microscope.

  2. Control of light trapping in a large atomic system by a static magnetic field

    CERN Document Server

    Skipetrov, S E; Havey, M D

    2016-01-01

    We propose to control light trapping in a large ensemble of cold atoms by an external, static magnetic field. For an appropriate choice of frequency and polarization of the exciting pulse, the field is expected to speed up the fluorescence of a dilute atomic system but can significantly slow it down in a dense ensemble. The slowing down of fluorescence is due to the excitation of spatially localized collective atomic states that appear only under a strong magnetic field and have exponentially long lifetimes. The control of fluorescence by the magnetic field may be of interest for use in future quantum-information processing devices. It also paves a way towards the experimental observation of the disorder-induced localization of light in cold atomic systems.

  3. Control of light trapping in a large atomic system by a static magnetic field

    Science.gov (United States)

    Skipetrov, S. E.; Sokolov, I. M.; Havey, M. D.

    2016-07-01

    We propose to control light trapping in a large ensemble of cold atoms by an external, static magnetic field. For an appropriate choice of frequency and polarization of the exciting pulse, the field is expected to speed up the fluorescence of a dilute atomic system. In a dense ensemble, the field does not affect the early-time superradiant signal but amplifies intensity oscillations at intermediate times and induces a very slow, nonexponential long-time decay. The slowing down of fluorescence is due to the excitation of spatially localized collective atomic states that appear only under a strong magnetic field and have exponentially long lifetimes. Our results therefore pave a way towards experimental observation of the disorder-induced localization of light in cold atomic systems.

  4. Plasmonic Light Trapping in an Ultrathin Photovoltaic Layer with Film-Coupled Metamaterial Structures

    CERN Document Server

    Wang, Hao

    2014-01-01

    A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above the bandgap, but also practically serve as electrical contacts for photon-generated charge collection. The energy absorbed by the active layer is greatly enhanced in the film-coupled metamaterial structure, resulting in significant enhancement on the short-circuit current density by three times over a free-standing GaAs layer at the same thickness. The results would facilitate the development of next-generation ultrathin solar cells with lower cost and higher efficiency.

  5. Efficient illumination of spatial light modulators for optical trapping and manipulation

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Kopylov, Oleksii; Raaby, Peter

    Energy efficiency is always desirable. This is particularly true with lasers that find many applications in research and industry. Combined with spatial light modulators (SLMs) lasers are used for optical trapping and manipulation, sorting, microscopy or biological stimulation1. Besides efficiency......, one wants to uniformly illuminate a specific shape such as the addressable area of an SLM. The common practice of truncating an expanded Gaussian source, however, is inefficient2. The Generalized Phase Contrast (GPC) enables illumination that inherits the efficiency advantages of phase-only light...... be addressed. This allows better response or increased parallel addressing for e.g. optical manipulation and sorting. Simple yet effective, a GPC-LS could save substantial power in applications that truncate lasers to a specific shape....

  6. Efficient nanorod-based amorphous silicon solar cells with advanced light trapping

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Y. [Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, High Tech Campus, Building 21, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Plasma & Materials Processing, Eindhoven University of Technology (TUE), P.O. Box 513, 5600 MB Eindhoven (Netherlands); Lare, M. C. van; Polman, A. [Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Veldhuizen, L. W.; Schropp, R. E. I., E-mail: r.e.i.schropp@tue.nl [Department of Applied Physics, Plasma & Materials Processing, Eindhoven University of Technology (TUE), P.O. Box 513, 5600 MB Eindhoven (Netherlands); Rath, J. K. [Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, High Tech Campus, Building 21, 5656 AE Eindhoven (Netherlands)

    2015-11-14

    We present a simple, low-cost, and scalable approach for the fabrication of efficient nanorod-based solar cells. Templates with arrays of self-assembled ZnO nanorods with tunable morphology are synthesized by chemical bath deposition using a low process temperature at 80 °C. The nanorod templates are conformally coated with hydrogenated amorphous silicon light absorber layers of 100 nm and 200 nm thickness. An initial efficiency of up to 9.0% is achieved for the optimized design. External quantum efficiency measurements on the nanorod cells show a substantial photocurrent enhancement both in the red and the blue parts of the solar spectrum. Key insights in the light trapping mechanisms in these arrays are obtained via a combination of three-dimensional finite-difference time-domain simulations, optical absorption, and external quantum efficiency measurements. Front surface patterns enhance the light incoupling in the blue, while rear side patterns lead to enhanced light trapping in the red. The red response in the nanorod cells is limited by absorption in the patterned Ag back contact. With these findings, we develop and experimentally realize a further advanced design with patterned front and back sides while keeping the Ag reflector flat, showing significantly enhanced scattering from the back reflector with reduced parasitic absorption in the Ag and thus higher photocurrent generation. Many of the findings in this work can serve to provide insights for further optimization of nanostructures for thin-film solar cells in a broad range of materials.

  7. Comparative attractiveness of CO2-baited CDC light traps and animal baits to Phlebotomus duboscqi sandflies

    Directory of Open Access Journals (Sweden)

    Sichangi Kasili

    2009-09-01

    Full Text Available Background & objectives: In order to understand sandfly bionomics, vector species identification,and to develop methods for sandfly control, there is a need to sample sandflies in any particularhabitat. This survey was aimed at determining the best method of sampling Phlebotomus(Phlebotomus duboscqi (Diptera: Psychodidae in the field.Methods: Different animal baits and CO2-baited CDC light traps were used to attract sandfliesreleased in an insect-proof screen-house located in the sandfly’s natural habitat in Marigat, Baringodistrict of Kenya.Results: Attraction of hungry P. duboscqi female sandflies by the goat (Capra hircis wassignificantly higher than that of hamster (Mesocricetus auretus, Nile grass rat (Arvicanthisniloticus, gerbil (Tatera robusta and chicken (Gallus domestica. However, two rodent species,A. niloticus and T. robusta did not differ significantly. A linear regression analysis of weights ofanimal baits and number of sandflies attracted revealed an insignificant result. The fluorescentdyes used to distinguish sandflies of different day experiments seemed not to influence the sandflynumbers in relation to the studied sandfly behaviour.Interpretation & conclusion: The similar attraction pattern of P. duboscqi in semi-field environmentby CO2-baited CDC light trap and the goat provides hope for solution to the problem of fastdissipating dry ice (CO2 source in the field. Goats can, therefore, also be utilized as deflectors ofvectors of cutaneous leishmaniasis from humans in zooprophylaxis in Leishmania major endemicareas where the sandfly is found.

  8. Superior light trapping in thin film silicon solar cells through nano imprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Soppe, W.J.; Dorenkamper, M.S.; Schropp, R.E.I.; Pex, P.P.A.C.

    2013-10-15

    ECN and partners have developed a fabrication process based on nanoimprint lithography (NIL) of textures for light trapping in thin film solar cells such as thin-film silicon, OPV, CIGS and CdTe. The process can be applied in roll-to-roll mode when using a foil substrate or in roll-to-plate mode when using a glass substrate. The lacquer also serves as an electrically insulating layer for cells if steel foil is used as substrate, to enable monolithic series interconnection. In this paper we will show the superior light trapping in thin film silicon solar cells made on steel foil with nanotextured back contacts. We have made single junction a-Si and {mu}c-Si and a-Si/{mu}c-Si tandem cells, where we applied several types of nano-imprints with random and periodic structures. We will show that the nano-imprinted back contact enables more than 30% increase of current in comparison with non-textured back contacts and that optimized periodic textures outperform state-of-the-art random textures. For a-Si cells we obtained Jsc of 18 mA/cm{sup 2} and for {mu}c-Si cells more than 24 mA/cm{sup 2}. Tandem cells with a total Si absorber layer thickness of only 1350 nm have an initial efficiency of 11%.

  9. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells

    Science.gov (United States)

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-01

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping. PMID:28336851

  10. Light trapping above the light cone in one-dimensional array of dielectric spheres

    CERN Document Server

    Bulgakov, Evgeny N

    2015-01-01

    We demonstrate bound states in the first TE and TM diffraction continua (BSC) in a linear periodic array of dielectric spheres in air above the light cone. We classify the BSCs according to the symmetry specified by the azimuthal number $m$, the Bloch wave vector $\\beta$ directed along the array, and polarization. The most simple symmetry protected TE and TM polarized BSCs have $m=0$ and $\\beta=0$ and occur in a wide range of the radius of the spheres and dielectric constant. More complicated BSCs with $m\

  11. Spectral and directional dependence of light-trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, Carolin

    2011-02-17

    This thesis investigates the directional and spectral dependence of light-incoupling and light-trapping in solar cells. The light-trapping does not notably change under increased angles of incidence. To enhance the incoupling at the front of the solar cell, the effects of a textured surface structure on the cover glass of the solar cell are investigated. The texture reduces the reflectance at the air-glass interface and, additionally, reduces the reflection losses originating at the interface between the glass and the transparent conductive oxide (TCO) as well as the TCO and the silicon (Si) absorber due to the randomization of light. On samples without a textured TCO/Si interface, the textured foil induces additional light-trapping in the photovoltaically active absorber material. This effect is not observed for samples with a textured TCO/Si interface. In this case, using tandem solar cells, a redistribution of light absorption in the top and bottom subcells is detected. The antireflective texture increases the short circuit current density in thin film silicon tandem solar cells by up to 1 mA/cm{sup 2}, and the conversion efficiency by up to 0.7 % absolute. The increase in the annual yield of solar cells is estimated to be up to 10 %. Further, the spectral dependence of the efficiency and annual yield of a tandem solar cell was investigated. The daily variation of the incident spectrum causes a change in the current matching of the serial connected subcells. Simulations determine the optimum subcell layer thicknesses of tandem solar cells. The thicknesses optimized in respect to the annual yield overlap in a wide range for both investigated locations with those for the AM1.5g standard spectrum. Though, a slight top limitation is favorable. Matching the short circuit currents of the subcells maximizes the overall current, but minimizes the fill factor. This thesis introduces a new definition for the matching condition of tandem solar cells. This definition

  12. Resonant scattering of light in a near-black-hole metric

    CERN Document Server

    Stadnik, Y V; Flambaum, V V; Berengut, J C

    2012-01-01

    We show that low-energy photon scattering from a body with radius $R$ slightly larger than its Schwarzschild radius $r_s$ resembles black-hole absorption. This absorption occurs via capture to one of the many long-lived, densely packed resonances that populate the continuum. The lifetimes and density of these meta-stable states tend to infinity in the limit $r_s \\to R$. We determine the energy averaged cross-section for particle capture into these resonances and show that it is equal to the absorption cross-section for a Schwarzschild black hole. Thus, a non-singular static metric may trap photons for arbitrarily long times, making it appear completely `black' before the actual formation of a black hole.

  13. Designing dye-nanochannel antenna hybrid materials for light harvesting, transport and trapping.

    Science.gov (United States)

    Calzaferri, Gion; Méallet-Renault, Rachel; Brühwiler, Dominik; Pansu, Robert; Dolamic, Igor; Dienel, Thomas; Adler, Pauline; Li, Huanrong; Kunzmann, Andreas

    2011-02-25

    We discuss artificial photonic antenna systems that are built by incorporating chromophores into one-dimensional nanochannel materials and by organizing the latter in specific ways. Zeolite L (ZL) is an excellent host for the supramolecular organization of different kinds of molecules and complexes. The range of possibilities for filling its one-dimensional channels with suitable guests has been shown to be much larger than one might expect. Geometrical constraints imposed by the host structure lead to supramolecular organization of the guests in the channels. The arrangement of dyes inside the ZL channels is what we call the first stage of organization. It allows light harvesting within the volume of a dye-loaded ZL crystal and also the radiationless transport of energy to either the channel ends or center. One-dimensional FRET transport can be realized in these guest-host materials. The second stage of organization is realized by coupling either an external acceptor or donor stopcock fluorophore at the ends of the ZL channels, which can then trap or inject electronic excitation energy. The third stage of organization is obtained by interfacing the material to an external device via a stopcock intermediate. A possibility to achieve higher levels of organization is by controlled assembly of the host into ordered structures and preparation of monodirectional materials. The usually strong light scattering of ZL can be suppressed by refractive-index matching and avoidance of microphase separation in hybrid polymer/dye-ZL materials. The concepts are illustrated and discussed in detail on a bidirectional dye antenna system. Experimental results of two materials with a donor-to-acceptor ratio of 33:1 and 52:1, respectively, and a three-dye system illustrate the validity and challenges of this approach for synthesizing dye-nanochannel hybrid materials for light harvesting, transport, and trapping.

  14. Dipolar and Quadrupolar Modes of Si02/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    BAI Yi-Ming; WANG Jun; CHEN Nuo-Fu; YAO Jian-Xi; ZHANG Xing-Wang; YIN Zhi-Gang; ZHANG Han; HUANG Tian-Mao

    2011-01-01

    @@ Dipolar and quadrupolar resonance wavelengths of SiO2/Au nanoshell surface plasmons are designed at 560nm to enhance the light trapping in thin film solar cells.In order to quantitatively describe the light trapping effect,the forward-scattering efficiency(FSE)and the light trapping efficiency(LTE) are proposed by considering the light scattering direction of SiO2/Au nanoshells.Based on the Mie theory, the FSE and the LTE are calculated for SiO2/Au nanoshells of different dimensions, and the contributions of the dipolar and quadrupolar modes to the light trapping effect are analyzed in detail.When the surface coverage of nanoshells is 5%, the LTEs are 21.7% and 46.9% for SiO2/Au nanoshells with sizes of(31 nm, 69nm) and(53nm, 141 nm), respectively.The results indicate that the SiO2/Au nanoshell whose quadrupolar mode peak is designed to the strongest solar energy flux density of the solar spectrum facilitates the further enhancement of light harvesting in thin film solar cells.

  15. Optical black hole lasers

    CERN Document Server

    Faccio, Daniele; Lamperti, Marco; Leonhardt, Ulf

    2012-01-01

    Using numerical simulations we show how to realise an optical black hole laser, i.e. an amplifier formed by travelling refractive index perturbations arranged so as to trap light between a white and a black hole horizon. The simulations highlight the main features of these lasers: the growth inside the cavity of positive and negative frequency modes accompanied by a weaker emission of modes that occurs in periodic bursts corresponding to the cavity round trips of the trapped modes. We then highlight a new regime in which the trapped mode spectra broaden until the zero-frequency points on the dispersion curve are reached. Amplification at the horizon is highest for zero-frequencies, therefore leading to a strong modification of the structure of the trapped light. For sufficiently long propagation times, lasing ensues only at the zero-frequency modes.

  16. Controlled transportation of mesoscopic particles by enhanced spin orbit interaction of light in an optical trap

    CERN Document Server

    Roy, Basudev; Panigrahi, Prasanta K; Roy, Soumyajit; Banerjee, Ayan

    2012-01-01

    Optical spin orbit interaction (SOI) causes an intrinsic coupling between the polarization and position of light and is manifested as a sub-wavelength effect in isotropic and inhomogeneous (stratified) media. We investigate the effects of SOI in an optical trap and demonstrate that the SOI for a tightly focused polarized laser beam in stratified media (as is found in an optical trap) depends on the thickness of the media, and can be magnified significantly by choosing slightly thicker cover slips than that used conventionally. A polarization analysis of the stratified media in the sample chamber shows the presence of spatially varying linear diattenuation terms in the Mueller matrix that result in a polarization dependent intensity profile. It is thus possible to controllably transport asymmetric particles having a well-defined optic axis by simply changing the polarization angle of a linearly polarized input beam. Pea-pod shaped single soft oxometalate (SOM) particles of dimension around 1 $\\mu$m have been m...

  17. Trapping polarization of light in nonlinear optical fibers: An ideal Raman polarizer

    CERN Document Server

    Kozlov, Victor V; Ania-Castanon, Juan Diego; Wabnitz, Stefan

    2012-01-01

    The main subject of this contribution is the all-optical control over the state of polarization (SOP) of light, understood as the control over the SOP of a signal beam by the SOP of a pump beam. We will show how the possibility of such control arises naturally from a vectorial study of pump-probe Raman interactions in optical fibers. Most studies on the Raman effect in optical fibers assume a scalar model, which is only valid for high-PMD fibers (here, PMD stands for the polarization-mode dispersion). Modern technology enables manufacturing of low-PMD fibers, the description of which requires a full vectorial model. Within this model we gain full control over the SOP of the signal beam. In particular we show how the signal SOP is pulled towards and trapped by the pump SOP. The isotropic symmetry of the fiber is broken by the presence of the polarized pump. This trapping effect is used in experiments for the design of new nonlinear optical devices named Raman polarizers. Along with the property of improved sig...

  18. Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells.

    Science.gov (United States)

    van Lare, Claire; Lenzmann, Frank; Verschuuren, Marc A; Polman, Albert

    2015-08-12

    We demonstrate an effective light trapping geometry for thin-film solar cells that is composed of dielectric light scattering nanocavities at the interface between the metal back contact and the semiconductor absorber layer. The geometry is based on resonant Mie scattering. It avoids the Ohmic losses found in metallic (plasmonic) nanopatterns, and the dielectric scatterers are well compatible with nearly all types of thin-film solar cells, including cells produced using high temperature processes. The external quantum efficiency of thin-film a-Si:H solar cells grown on top of a nanopatterned Al-doped ZnO, made using soft imprint lithography, is strongly enhanced in the 550-800 nm spectral band by the dielectric nanoscatterers. Numerical simulations are in good agreement with experimental data and show that resonant light scattering from both the AZO nanostructures and the embedded Si nanostructures are important. The results are generic and can be applied on nearly all thin-film solar cells.

  19. Morphology-dependent light trapping in thin-film organic solar cells.

    Science.gov (United States)

    Grote, Richard R; Brown, Steven J; Driscoll, Jeffrey B; Osgood, Richard M; Schuller, Jon A

    2013-09-09

    The active layer materials used in organic photovoltaic (OPV) cells often self-assemble into highly ordered morphologies, resulting in significant optical anisotropies. However, the impact of these anisotropies on light trapping in nanophotonic OPV architectures has not been considered. In this paper, we show that optical anisotropies in a canonical OPV material, P3HT, strongly affect absorption enhancements in ultra-thin textured OPV cells. In particular we show that plasmonic and gap-mode solar cell architectures redistribute electromagnetic energy into the out-of-plane field component, independent of the active layer orientation. Using analytical and numerical calculations, we demonstrate how the absorption in these solar cell designs can be significantly increased by reorienting polymer domains such that strongly absorbing axes align with the direction of maximum field enhancement.

  20. Light trapping in an ensemble of pointlike impurity centers in a Fabry-Perot cavity

    Science.gov (United States)

    Kuraptsev, A. S.; Sokolov, I. M.

    2016-08-01

    We report the development of quantum microscopic theory of quasiresonant dipole-dipole interaction in the ensembles of impurity atoms imbedded into transparent dielectric and located in a Fabry-Perot cavity. On the basis of the general approach we study the simultaneous influence of the cavity and resonant dipole-dipole interaction on the shape of the line of atomic transition as well as on light trapping in dense impurity ensembles. We analyze this influence depending on the size of the ensemble, its density, as well as on rms deviation of the transition frequency shifts caused by the symmetry disturbance of the internal fields of the dielectric medium. Obtained results are compared with the case when the cavity is absent. We show that the cavity can essentially modify cooperative polyatomic effects.

  1. Light trapping in an ensemble of point-like impurity centers in Fabry-Perot cavity

    CERN Document Server

    Kuraptsev, A S

    2016-01-01

    We report the development of quantum microscopic theory of quasi-resonant dipole-dipole interaction in the ensembles of impurity atoms imbedded into transparent dielectric and located into Fabry-Perot cavity. On the basis of the general approach we study the simultaneous influence of the cavity and resonant dipole-dipole interaction on the shape of the line of atomic transition as well as on light trapping in dense impurity ensembles. We analyze this influence depending on the size of the ensemble, its density, as well as on r.m.s. deviation of the transition frequency shifts caused by the symmetry disturbance of the internal fields of the dielectric medium. Obtained results are compared with the case when the cavity is absent. We show that the cavity can essentially modify cooperative polyatomic effects.

  2. Light-trapping design for thin-film silicon-perovskite tandem solar cells

    Science.gov (United States)

    Foster, Stephen; John, Sajeev

    2016-09-01

    Using finite-difference time-domain simulations, we investigate the optical properties of tandem silicon/perovskite solar cells with a photonic crystal architecture, consisting of a square-lattice array of inverted pyramids with a center-to-center spacing of 2.5 μm. We demonstrate that near-perfect light-trapping and absorption can be achieved over the 300-1100 nm wavelength range with this architecture, using less than 10 μm (equivalent bulk thickness) of crystalline silicon. Using a one-diode model, we obtain projected efficiencies of over 30% for the two-terminal tandem cell under a current-matching condition, well beyond the current record for single-junction silicon solar cells. The architecture is amenable to mass fabrication through wet-etching and uses a fraction of the silicon of traditional designs, making it an attractive alternative to other silicon-perovskite tandem designs.

  3. Perfect light trapping in nanoscale thickness semiconductor films with resonant back reflector and spectrum-splitting structures

    CERN Document Server

    Liu, Jiang-Tao; Yang, Wen; Li, Jun

    2014-01-01

    The optical absorption of nanoscale thickness semiconductor films on top of light-trapping structures based on optical interference effects combined with spectrum-splitting structures is theoretically investigated. Nearly perfect absorption over a broad spectrum range can be achieved in $<100$ nm thick films on top of one-dimensional photonic crystal or metal films. This phenomenon can be attributed to interference induced photonic localization, which enhances the absorption and reduces the reflection of the films. Perfect solar absorption and low carrier thermalization loss can be achieved when the light-trapping structures with wedge-shaped spacer layer or semiconductor films are combined with spectrum-splitting structures.

  4. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    Science.gov (United States)

    de Jong, M. M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic substrates can be a solution. In this thesis, we investigate the possibilities of depositing thin film solar cells directly onto cheap plastic substrates. Micro-textured glass and sheets, which have a wide range of applications, such as in green house, lighting etc, are applied in these solar cells for light trapping. Thin silicon films can be produced by decomposing silane gas, using a plasma process. In these types of processes, the temperature of the growing surface has a large influence on the quality of the grown films. Because plastic substrates limit the maximum tolerable substrate temperature, new methods have to be developed to produce device-grade silicon layers. At low temperature, polysilanes can form in the plasma, eventually forming dust particles, which can deteriorate device performance. By studying the spatially resolved optical emission from the plasma between the electrodes, we can identify whether we have a dusty plasma. Furthermore, we found an explanation for the temperature dependence of dust formation; Monitoring the formation of polysilanes as a function of temperature using a mass-spectrometer, we observed that the polymerization rate is indeed influenced by the substrate temperature. For solar cell substrate material, our choice was polycarbonate (PC), because of its low cost, its excellent transparency and its relatively high glass transition temperature of 130-140°C. At 130°C we searched for deposition recipes for device quality silicon, using a very high frequency plasma enhanced chemical deposition process. By diluting the feedstock silane with hydrogen gas, the silicon quality can be improved for amorphous silicon (a-Si), until we reach the

  5. Glad nanostructured arrays with enhanced carrier collection and light trapping for photoconductive and photovoltaic device applications

    Science.gov (United States)

    Cansizoglu, Hilal

    Solar energy harvesting has been of great interest for researchers over the past 50 years. Main emphasis has been on developing high quality materials with low defect density and proper band gaps. However, high cost of bulk materials and insufficient light absorption in thin films led to utilization of semiconductor nanostructures in photovoltaics and photonics. Light trapping abilities of nanostructures can provide high optical absorption whereas core/shell nanostructured arrays can allow enhanced charge carrier collection. However, most of the nanofabrication methods that can produce uniform nanostructure geometries are limited in materials, dimensions, and not compatible with industrial production systems. Therefore, it is essential to develop innovative low-cost fabrication approaches that can address these issues. The primary goal of this project is to investigate light trapping and carrier collection properties of glancing angle deposited (GLAD) nanostructured arrays for high-efficiency, low-cost photoconductive and photovoltaic devices using characterization techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy and time resolved photocurrent measurements. Indium sulfide (In2S3) has been chosen as a model material system in this study. GLAD nanostructured arrays of vertical rods, screws, springs, zigzags and tilted rods were fabricated and characterized. A strong dependence of optical absorption on the shapes of nanostructures is observed from UV-vis-NIR spectroscopy. A simulation study using finite difference time domain (FDTD) shows that introducing 3D geometry results in diffuse scattering of light and leads to high optical absorption. Monte Carlo simulations were conducted to determine a simple and scalable fabrication technique for conformal and uniform shell coatings. The results suggest that an atomic flux with angular distribution, which can be

  6. Aedes japonicus japonicus and associated woodland species attracted to Centers for Disease Control and Prevention miniature light traps baited with carbon dioxide and the Traptech mosquito lure.

    Science.gov (United States)

    Anderson, John F; McKnight, Susan; Ferrandino, Francis J

    2012-09-01

    Twelve reported mosquito attractants, alone or in combination, and 3 different types of traps were evaluated under field conditions for their attractiveness to host-seeking and oviposition-seeking female Aedes japonicus japonicus and associated woodland species in Windsor, CT, in 2010 and 2011. This study highlights the effectiveness of combining CO2 with the TrapTech Mosquito Lure in a Centers for Disease Control and Prevention (CDC) miniature light trap for collection of Ae. j. japonicus and associated woodland mammalian-feeding mosquitoes. The TrapTech Mosquito Lure is a proprietary blend of Bedoukian Research, Inc. It contained 250 mg of R-1-octen-3-ol and 1900 mg of ammonium bicarbonate, which were slowly released from a plastic disperser. On average, 567 Ae. j. japonicus individuals were collected per trap per night in the CDC miniature light traps baited with CO2 plus TrapTech Mosquito Lure. The numbers collected in this trap were 28 times and 100 times greater than the numbers of Ae. j. japonicus collected in the CDC miniature light trap baited only with CO2 and the gravid trap baited with hay infusion, 2 commonly used traps to assess abundance of Ae. j. japonicus. The average catches of other mammalian-biting species, Ae. cinereus, Ae. triseriatus, Ae. trivittatus, Ae. vexans, Anopheles punctipennis, An. quadrimaculatus, Coquillettidia perturbans, and Culex salinarius, were all significantly greater in the CDC miniature light trap baited with CO2 plus TrapTech Mosquito Lure than in traps with CO2 alone, but their average numbers were not as large as were those of Ae. j. japonicus. These data demonstrate that the TrapTech Mosquito Lure used in combination with CO2 in a CDC miniature light trap has potential to be a versatile and simple surveillance method for Ae. j. japonicus and other species.

  7. Coupled optical-thermal-fluid and structural analyses of novel light-trapping tubular panels for concentrating solar power receivers

    Science.gov (United States)

    Ortega, Jesus D.; Christian, Joshua M.; Yellowhair, Julius E.; Ho, Clifford K.

    2015-09-01

    Traditional tubular receivers used in concentrating solar power are formed using tubes connected to manifolds to form panels; which in turn are arranged in cylindrical or rectangular shapes. Previous and current tubular receivers, such as the ones used in Solar One, Solar Two, and most recently the Ivanpah solar plants, have used a black paint coating to increase the solar absorptance of the receiver. However, these coatings degrade over time and must be reapplied, increasing the receiver maintenance cost. This paper presents the thermal efficiency evaluation of novel receiver tubular panels that have a higher effective solar absorptance due to a light-trapping effect created by arranging the tubes in each panel into unique geometric configurations. Similarly, the impact of the incidence angle on the effective solar absorptance and thermal efficiency is evaluated. The overarching goal of this work is to achieve effective solar absorptances of ~90% and thermal efficiencies above 85% without using an absorptance coating. Several panel geometries were initially proposed and were down-selected based on structural analyses considering the thermal and pressure loading requirements of molten salt and supercritical carbon-dioxide receivers. The effective solar absorptance of the chosen tube geometries and panel configurations were evaluated using the ray-tracing modeling capabilities of SolTrace. The thermal efficiency was then evaluated by coupling computational fluid dynamics with the ray-tracing results using ANSYS Fluent. Compared to the base case analysis (flat tubular panel), the novel tubular panels have shown an increase in effective solar absorptance and thermal efficiency by several percentage points.

  8. Enhancing the absorption capabilities of thin-film solar cells using sandwiched light trapping structures.

    Science.gov (United States)

    Abdellatif, S; Kirah, K; Ghannam, R; Khalil, A S G; Anis, W

    2015-06-10

    A novel structure for thin-film solar cells is simulated with the purpose of maximizing the absorption of light in the active layer and of reducing the parasitic absorption in other layers. In the proposed structure, the active layer is formed from an amorphous silicon thin film sandwiched between silicon nanowires from above and photonic crystal structures from below. The upper electrical contact consists of an indium tin oxide layer, which serves also as an antireflection coating. A metal backreflector works additionally as the other contact. The simulation was done using a new reliable, efficient and generic optoelectronic approach. The suggested multiscale simulation model integrates the finite-difference time-domain algorithm used in solving Maxwell's equation in three dimensions with a commercial simulation platform based on the finite element method for carrier transport modeling. The absorption profile, the external quantum efficient, and the power conversion efficiency of the suggested solar cell are calculated. A noticeable enhancement is found in all the characteristics of the novel structure with an estimated 32% increase in the total conversion efficiency over a cell without any light trapping mechanisms.

  9. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light

    Science.gov (United States)

    Zhang, Jianfa; Liu, Wenbin; Zhu, Zhihong; Yuan, Xiaodong; Qin, Shiqiao

    2016-12-01

    Graphene plasmons are rapidly emerging as a versatile platform for manipulating light at the deep subwavelength scale. Here we show numerically that strong optical near-field forces can be generated under the illumination of mid-IR light when dielectric nanoparticles are located in the vicinity of a nanostructured graphene film. These near-field forces are attributed to the excitation of the graphene’s plasmonic mode. The optical forces can generate an efficient optical trapping potential for a 10-nm-diameter dielectric particle when the light intensity is only about about 4.4 mW/μm2 and provide possibilities for a new type of plasmonic nano-tweezers. Graphene plasmonic tweezers can be potentially exploited for optical manipulation of nanometric biomolecules and particles. Moreover, the optical trapping/tweezing can be combined with biosensing and provide a versatile platform for studing biology and chemistry with mid-IR light.

  10. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk;

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping pro......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow...

  11. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk;

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow...

  12. Black lead molybdate nanoparticles: Facile synthesis and photocatalytic properties responding to visible light

    Energy Technology Data Exchange (ETDEWEB)

    Du, Weimin, E-mail: duweimin75@gmail.com [College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000 (China); Liu, Lixin; Zhou, Keke; Ma, Xiaodan; Hao, Yaming [College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000 (China); Qian, Xuefeng [School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-02-15

    Graphical abstract: - Highlights: • Black lead molybdate (PbMoO{sub 4}) nanoparticles were first synthesized. • A novel energy band structure leads to better absorption of visible light. • Black PbMoO{sub 4} nanoparticles have better visible-light-responsive photocatalytic activities. • It has better applied prospects in conversion and utilization of solar energy. - Abstract: Black lead molybdate (PbMoO{sub 4}) nanoparticles were first synthesized by the glycol–solvothermal method. Phase, morphology, crystal lattice, and specific surface of products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller nitrogen adsorption–desorption, respectively. Results revealed that the as-synthesized PbMoO{sub 4} nanoparticles are the scheelite-type tetragonal structure with 30–50 nm in size. Also, glycol played a dual function in present synthetic system: solvent and surface modification agent. Optical properties reveal glycol-modification on the surface of PbMoO{sub 4} nanoparticles can generate new energy level between the original conduction band and valence band, leading to better absorption of visible light and the black appearance. Photocatalytic experimental results demonstrate that black PbMoO{sub 4} nanoparticles synthesized in glycol medium have pretty visible-light-responsive photocatalytic degradation performance on methylene blue and phenol solution. Reaction mechanism investigations show that the excellent photocatalytic activities of black PbMoO{sub 4} nanoparticles derive from the novel energy band structure, smaller size, and larger specific surface area. Hence one can see that black PbMoO{sub 4} nanoparticles are a type of visible-light-responsive photocatalysts with excellent photocatalytic activities and potentially applied prospects in dye wastewater treatment and environmental protection. Meanwhile, the present work provides an innovative strategy for adjusting

  13. Novel light trapping scheme for thin crystalline cells utilizing deep structures on both wafer sides [solar cells

    DEFF Research Database (Denmark)

    Jørgensen, Anders Michael; Clausen, Thomas; Leistiko, Otto

    1998-01-01

    (IPA). A process for creating thin solar cells with this light trapping scheme is described. The process includes only two main photolithographic steps and features a self-aligned front metallization. The process uses 250 μm wafers to create cells that on average are about 70 μm thick...

  14. Evolution of light trapped by a soliton in a microstructured fiber

    CERN Document Server

    Hill, S; Leonhardt, U; Koenig, F

    2009-01-01

    We observe the dynamics of pulse trapping in a microstructured fiber. Few-cycle pulses create a system of two pulses: a Raman shifting soliton traps a pulse in the normal dispersion regime. When the soliton approaches a wavelength of zero group velocity dispersion the Raman shifting abruptly terminates and the trapped pulse is released. In particular, the trap is less than 4ps long and contains a 1ps pulse. After being released, this pulse asymmetrically expands to more than 10ps. Additionally, there is no disturbance of the trapping dynamics at high input pulse energies as the supercontinuum develops further.

  15. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    Directory of Open Access Journals (Sweden)

    Miklos Blaho

    Full Text Available The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt and species (mayflies, dolichopodids, tabanids. (ii Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries than matt black finish. (iii The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a matt car-paints are highly polarization reflecting, and (b these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  16. Simplifying the calculation of light scattering properties for black carbon fractal aggregates

    Directory of Open Access Journals (Sweden)

    A. J. A. Smith

    2014-02-01

    Full Text Available Black carbon fractal aggregates have complicated shapes that make the calculation of their optical properties particularly computationally expensive. Here, a method is presented to estimate fractal aggregate light scattering properties by optimising simplified models to full light scattering calculations. It is found that there are no possible spherical models (at any size or refractive index that well represent the light scattering in the visible, or near-thermal infrared. As such, parameterisations of the light scattering as a function of the number of aggregate particles is presented as the most pragmatic choice for modelling distributions of black carbon when the large computational overheads of rigorous scattering calculations cannot be justified. This parameterisation can be analytically integrated to provide light scattering properties for log-normal distributions of black carbon fractal aggregates and return extinction cross-sections with 0.1% accuracy for typical black carbon size distributions. Scattering cross-sections and the asymmetry parameter can be obtained to within 3%.

  17. Light trapping considerations in self-assembled ZnO nanorod arrays for quantum dot sensitized solar cells

    Science.gov (United States)

    Luan, ChunYan; Cheung, King Tai; Foo, Yishu; Yu, Li Yu; Shen, Qing; Zapien, Juan Antonio

    2014-03-01

    We study light absorption in ZnO nanorod arrays sensitized with CdSe quantum dots as one of the factors affecting solar cell performance in need of improvement given their current performance well below expectations. Light trapping in nanorod arrays (NRAs) as it relates to array density and length as well as quantum dot (QD) loading is studied using the Finite Difference Time Domain model. It is shown that light absorption in such solar cell architecture is a sensitive function of the morphological dimensions and that a higher NRA density does not necessarily correspond to large absorption in the solar cell. Instead, light trapping efficiency depends significantly on the array density, QD axial distribution and refractive index contrast between NR and QDs thus suggesting strategies for improved quantum dot solar cell (QDSC) fabrication. In addition, we present experimental data showing dramatic improvement in photo conversion efficiency performance for relatively short ZnO NRAs (~1 μm) of low NRA density, but whose efficiency improvement can not be solely explained based on our current light trapping estimates from the numerical simulations.

  18. Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique.

    Science.gov (United States)

    Schuster, Christian S; Kowalczewski, Piotr; Martins, Emiliano R; Patrini, Maddalena; Scullion, Mark G; Liscidini, Marco; Lewis, Liam; Reardon, Christopher; Andreani, Lucio C; Krauss, Thomas F

    2013-05-01

    Thin film solar cells benefit significantly from the enhanced light trapping offered by photonic nanostructures. The thin film is typically patterned on one side only due to technological constraints. The ability to independently pattern both sides of the thin film increases the degrees of freedom available to the designer, as different functions can be combined, such as the reduction of surface reflection and the excitation of quasiguided modes for enhanced light absorption. Here, we demonstrate a technique based on simple layer transfer that allows us to independently pattern both sides of the thin film leading to enhanced light trapping. We used a 400 nm thin film of amorphous hydrogenated silicon and two simple 2D gratings for this proof-of-principle demonstration. Since the technique imposes no restrictions on the design parameters, any type of structure can be made.

  19. Modeling of triangular-shaped substrates for light trapping in microcrystalline silicon solar cells

    Science.gov (United States)

    Zi, Wei; Hu, Jian; Ren, Xiaodong; Ren, Xianpei; Wei, QingBo; Liu, Shengzhong (Frank)

    2017-01-01

    The influence of triangular grating used as a light trapping structure on the optical wave propagation within thin-film microcrystalline silicon (μc-Si:H) solar cells is investigated. A finite difference time domain (FDTD) approach is used to rigorously solve the Maxwell's equations in three dimensions. We apply two parameters of mean surface roughness (Sa) and slope (k) to define triangular structure and study their influence on the absorption of μc-Si:H. When Sa and k are set to 400 nm and 1, respectively, a largest enhancement of absorption is achieved. The optimum short circuit photocurrent (Jsc) of a 1-μm thick μc-Si:H solar cell made on such a textured substrate can reach 27.0 mA/cm2. The carrier generation rate in the μc-Si:H material is also rigorously analyzed. Finally, we identify some key optical losses in μc-Si:H solar cells and propose for further optimizing the device design.

  20. E-beam addressed Spatial Light Modulator employing electron trapping materials. Phase 1

    Science.gov (United States)

    Lu, Xiaojing; Yang, Xiangyang; Wrigley, Charles Y.; Bradley, Richard; Meszaros, Janos

    1995-03-01

    Spatial light modulators (SLM's) play a critically important role in optical signal processing and optical computing. A novel electron beam addressed emissive SLM which combines high performance polycrystalline electron trapping (ET) materials with an advanced field-emitter array is being developed. The proposed SLM combines high resolution (greater than 100 lplmm), high SBP (greater than 1000 x 1000), high frame rate (greater than or equal 1 KHz), high contrast ratio (greater than l03:l) and low drive voltage (less than 15 V) in a single device. The additional features of the proposed SLM are its wide variety of operation modes and electrical and optical dual-addressability. Such a SLM, if successfully developed, will surely have substantial impact on optical processing technology. During the Phase-1 efforts, a review of field emitter arrays has been done to show that it has the merits of electrical-addressability, high space-bandwidth product (SBP), low drive voltage compatible with IC driving circuitry, and high update speed. The device architecture has been investigated and the design of two prototype devices has been provided.

  1. Light trapping in amorphous silicon solar cells with periodic grating structures

    Energy Technology Data Exchange (ETDEWEB)

    Lia, Haihua; Wang, Qingkang; Chen, Jian [National Key Laboratory of Micro /Nano Fabrication Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Krc, J. [University of Ljubljana, Faculty of Electrical Engineering, Trzaska25, 1000 Ljubljana (Slovenia); Soppe, W.J. [Energy research Center of the Netherlands ECN, P. O. Box 1, 1755 ZG Pettern (Netherlands)

    2012-03-15

    We report on the design of amorphous silicon solar cells with the periodic grating structures. It is a combination of an anti-reflection structure and the metallic reflection grating. Optical coupling and light trapping in thin-film solar cells are studied numerically using the Rigorous Coupled Wave Analysis enhanced by the Modal Transmission Line theory. The impact of the structure parameters of the gratings is investigated. The results revealed that within the incident angles of - 40{sup 0} to + 40{sup 0} the reflectivity of the cell with a period of 0.5 {mu}m, a filling factor of 0.1 and a groove depth of 0.4 {mu}m is 4%-22.7% in the wavelength range of 0.3-0.6 {mu}m and 1%-20.8% in the wavelength range of 0.6-0.84 {mu}m, the absorption enhancement of the a-Si layer is 0.4%-10.8% and 20%-385%, respectively.

  2. Numerical Analysis of Lamellar Gratings for Light-Trapping in Amorphous Silicon Solar Cells

    CERN Document Server

    Gablinger, David I

    2015-01-01

    In this paper, we calculate the material specific absorption accurately using a modal method by determining the integral of the Poynting vector around the boundary of a specific material. Given that the accuracy of our method is only determined by the number of modes included, the material specific absorption can be used as a quality measure for the light-trapping performance. We use this method to investigate metallic gratings and find nearly degenerate plasmons at the interface between metal and amorphous silicon (a-Si). The plasmons cause large undesired absorption in the metal part of a grating as used in a-Si cells. We explore ways to alleviate the parasitic absorption in the metal by appropriate choice of the geometry. Separating the diffraction grating from the back reflector helps, lining silver or aluminum with a dielectric helps as well. Gratings with depth > 60nm are preferred, and periods > 600nm are not useful. Maximum absorption in silicon can occur for less thick a-Si than is standard. We also ...

  3. Fractal-like receiver geometries and features for increased light trapping and thermal efficiency

    Science.gov (United States)

    Ho, Clifford K.; Christian, Joshua M.; Yellowhair, Julius; Ortega, Jesus; Andraka, Charles

    2016-05-01

    Novel designs to increase light trapping and thermal efficiency of concentrating solar receivers at multiple length scales have been conceived and tested. The fractal-like geometries and features are introduced at both macro (meters) and meso (millimeters to centimeters) scales. Advantages include increased solar absorptance, reduced thermal emittance, and increased thermal efficiency. Radial and linear structures at the meso (tube shape and geometry) and macro (total receiver geometry and configuration) scales redirect reflected solar radiation toward the interior of the receiver for increased absorptance. Hotter regions within the interior of the receiver can reduce thermal emittance due to reduced local view factors to the environment, and higher concentration ratios can be employed with similar surface irradiances to reduce the effective optical aperture, footprint, and thermal losses. Coupled optical/fluid/thermal models have been developed to evaluate the performance of these designs relative to conventional designs, and meso-scale tests have been performed. Results show that fractal-like structures and geometries can increase the thermal efficiency by several percentage points at both the meso and macro scales, depending on factors such as intrinsic absorptance. The impact was more pronounced for materials with lower intrinsic solar absorptances (<0.9). The goal of this work is to increase the effective solar absorptance of oxidized substrate materials from ~0.9 to 0.95 or greater using these fractal-like geometries without the need for coatings.

  4. Non-occurrence of trapped surfaces and Black Holes in spherical gravitational collapse An abridged version

    CERN Document Server

    Mitra, A

    2000-01-01

    We have shown in an absolutely exact manner that for arbitrary EOS and radiation transport properties, (even) the idealized spherical gravitational collapse DOES NOT lead to the formation of trapped surfaces: 2GM(r,t)/R 0 if indeed R->0. Actually, this M,R->0 state would occur only after infinite proper time indicating that GTR is indeed the only naturally singularity free theory (as was cherished by Einstein). This M->0 state would materialize after the body radiates its entire initial mass-energy. We have shown that the final state corresponds to a zero mass BH state which may also be called a ``marginally naked'' singularity. Thus there is no event horizon at any finite R or M, and, therefore all the great theoretical confusions like whether there could be (i) White Holes, (ii) whether t (R) becomes spacelike (timelike) inside the EH (iii) Worm Holes, (iv) Time Machines, (v) Loss of information in gravitational collapse, get resolved. At any finite proper time, the collapsed object would be either static (...

  5. Shedding light on the black hole mass spectrum

    CERN Document Server

    Spera, Mario; Mapelli, Michela

    2016-01-01

    The mass spectrum of stellar black holes (BHs) is highly uncertain. Theoretical models of BH formation strongly depend on the efficiency of stellar winds of the progenitor star and on the supernova (SN) explosion mechanism. We discuss the BH mass spectrum we obtain using SEVN, a new public population-synthesis code that includes up-to-date stellar-wind prescriptions and several SN explosion models. Our models indicate a sub-solar metallicity environment for the progenitors of the gravitational wave source GW150914. We show that our models predict substantially larger BH masses (up to ~100 Msun) than other population synthesis codes, at low metallicity. In this proceeding, we also discuss the impact of pair-instability SNe on our previously published models.

  6. Magneto-optical trap formed by elliptically polarised light waves for Mg atoms

    Science.gov (United States)

    Prudnikov, O. N.; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I.; Goncharov, A. N.

    2016-07-01

    We consider a magneto-optical trap (MOT) formed by elliptically polarised waves for 24Mg atoms on a closed optical 3P2 → 3D3 (λ = 383.8 nm) transition in the ɛ - θ - ɛ¯ configuration of the field. Compared with a known MOT formed by circularly polarised waves (σ+ - σ- configuration), the suggested configuration of the trap formed by fields of ɛ - θ - ɛ¯ configuration allows deeper sub-Doppler cooling of trapped 24Mg atoms, which cannot be implemented in a conventional trap formed by fields of σ+ - σ- configuration.

  7. Optical Trapping-Formed Colloidal Assembly with Horns Extended to the Outside of a Focus through Light Propagation.

    Science.gov (United States)

    Kudo, Tetsuhiro; Wang, Shun-Fa; Yuyama, Ken-Ichi; Masuhara, Hiroshi

    2016-05-11

    We report optical trapping and assembling of colloidal particles at a glass/solution interface with a tightly focused laser beam of high intensity. It is generally believed that the particles are gathered only in an irradiated area where optical force is exerted on the particles by laser beam. Here we demonstrate that, the propagation of trapping laser from the focus to the outside of the formed assembly leads to expansion of the assembly much larger than the irradiated area with sticking out rows of linearly aligned particles like horns. The shape of the assembly, its structure, and the number of horns can be controlled by laser polarization. Optical trapping study utilizing the light propagation will open a new avenue for assembling and crystallizing quantum dots, metal nanoparticles, molecular clusters, proteins, and DNA.

  8. Observation of Trapped Light Isotopes By The Detectors Nina and Nina-2

    Science.gov (United States)

    Sparvoli, R.; Wizard/NINA Collaboration

    The detector NINA aboard the satellite Resurs-01-N4, and the following experiment NINA-2 aboard the spacecraft MITA, detected hydrogen and helium isotopes geomag- netically trapped, while crossing the South Atlantic Anomaly. Deuterium and tritium at L-shellMITA altitudes (respectively 800 km and 400 km), and for energy greater than 10 MeV/n, is the interaction of trapped protons with residual atmospheric helium. In addition, the comparison between NINA and NINA-2 data shows how the flux of trapped particles decreases with the increase of the solar activity.

  9. Comparative performance of the Mbita trap, CDC light trap and the human landing catch in the sampling of Anopheles arabiensis, An. funestus and culicine species in a rice irrigation in western Kenya

    Directory of Open Access Journals (Sweden)

    Ndegwa Paul N

    2005-01-01

    Full Text Available Abstract Background Mosquitoes sampling is an important component in malaria control. However, most of the methods used have several shortcomings and hence there is a need to develop and calibrate new methods. The Mbita trap for capturing host-seeking mosquitoes was recently developed and successfully tested in Kenya. However, the Mbita trap is less effective at catching outdoor-biting Anopheles funestus and Anopheles arabiensis in Madagascar and, thus, there is need to further evaluate this trap in diverse epidemiological settings. This study reports a field evaluation of the Mbita trap in a rice irrigation scheme in Kenya Methods The mosquito sampling efficiency of the Mbita trap was compared to that of the CDC light trap and the human landing catch in western Kenya. Data was analysed by Bayesian regression of linear and non-linear models. Results The Mbita trap caught about 17%, 60%, and 20% of the number of An. arabiensis, An. funestus, and culicine species caught in the human landing collections respectively. There was consistency in sampling proportionality between the Mbita trap and the human landing catch for both An. arabiensis and the culicine species. For An. funestus, the Mbita trap portrayed some density-dependent sampling efficiency that suggested lowered sampling efficiency of human landing catch at low densities. The CDC light trap caught about 60%, 120%, and 552% of the number of An. arabiensis, An. funestus, and culicine species caught in the human landing collections respectively. There was consistency in the sampling proportionality between the CDC light trap and the human landing catch for both An. arabiensis and An. funestus, whereas for the culicines, there was no simple relationship between the two methods. Conclusions The Mbita trap is less sensitive than either the human landing catch or the CDC light trap. However, for a given investment of time and money, it is likely to catch more mosquitoes over a longer (and hence

  10. Light-trapping optimization in wet-etched silicon photonic crystal solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Eyderman, Sergey, E-mail: sergey.eyderman@utoronto.ca [Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7 (Canada); John, Sajeev [Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7 (Canada); Department of Physics, King Abdul-Aziz University, Jeddah (Saudi Arabia); Hafez, M.; Al-Ameer, S. S.; Al-Harby, T. S.; Al-Hadeethi, Y. [Department of Physics, King Abdul-Aziz University, Jeddah (Saudi Arabia); Bouwes, D. M. [iX-factory GmbH, Konrad Adenauer–Allee 11, 44263 Dortmund (Germany)

    2015-07-14

    We demonstrate, by numerical solution of Maxwell's equations, near-perfect solar light-trapping and absorption over the 300–1100 nm wavelength band in silicon photonic crystal (PhC) architectures, amenable to fabrication by wet-etching and requiring less than 10 μm (equivalent bulk thickness) of crystalline silicon. These PhC's consist of square lattices of inverted pyramids with sides comprised of various (111) silicon facets and pyramid center-to-center spacing in the range of 1.3–2.5 μm. For a wet-etched slab with overall height H = 10 μm and lattice constant a = 2.5 μm, we find a maximum achievable photo-current density (MAPD) of 42.5 mA/cm{sup 2}, falling not far from 43.5 mA/cm{sup 2}, corresponding to 100% solar absorption in the range of 300–1100 nm. We also demonstrate a MAPD of 37.8 mA/cm{sup 2} for a thinner silicon PhC slab of overall height H = 5 μm and lattice constant a = 1.9 μm. When H is further reduced to 3 μm, the optimal lattice constant for inverted pyramids reduces to a = 1.3 μm and provides the MAPD of 35.5 mA/cm{sup 2}. These wet-etched structures require more than double the volume of silicon, in comparison to the overall mathematically optimum PhC structure (consisting of slanted conical pores), to achieve the same degree of solar absorption. It is suggested these 3–10 μm thick structures are valuable alternatives to currently utilized 300 μm-thick textured solar cells and are suitable for large-scale fabrication by wet-etching.

  11. Arbitrary multibeam laser scanning and trapping by use of a spatial light modulator and manual scripting interface

    Science.gov (United States)

    Xun, Xiaodong; Chang, Xiaoguang; Cho, Doo Jin; Cohn, Robert W.

    2004-10-01

    A multi-beam, variable footprint, laser beam steering and shaping system is described and used with a microscope to demonstrate multi-particle laser trapping. It is built around a computer-interfaced 512x512 pixel analog phase-only spatial light modulator (SLM) and a 1 W, 1064 nm wavelength laser. Hand sketches on paper made with a digital pen are used to prescribe the footprints, velocities and trajectories of multiple, independently-controlled diffracted spots. Continuous scanning is approximated by automatically designing a sequence of phase-patterns that are run through and diffracted by the SLM. Very complex scanning sequences of dozens of independently controlled spots can be quickly designed and run. The number of beams that we can trap with is necessarily limited due to the low throughput (~23 mW) of the IR light through the microscope optics. Among the trapping experiments done with the system a triangular shaped vortex ring tends to stop single particles at the apexes of the triangle. However, collision with a second particle pushes the first particle past the apex and sets it into motion, leaving the second particle stopped until collision with a third particle. The discrete motion conditioned on collisions is suggestive of a queuing process or a Markov chain.

  12. Observation of trapped light induced by Dwarf Dirac-cone in out-of-plane condition for photonic crystals

    Science.gov (United States)

    Majumder, Subir; Biswas, Tushar; Bhadra, Shaymal K.

    2016-10-01

    Existence of out-of-plane conical dispersion for a triangular photonic crystal lattice is reported. It is observed that conical dispersion is maintained for a number of out-of-plane wave vectors (k z ). We study a case where Dirac like linear dispersion exists but the photonic density of states is not vanishing, called Dwarf Dirac cone (DDC) which does not support localized modes. We demonstrate the trapping of such modes by introducing defects in the crystal. Interestingly, we find by k-point sampling as well as by tuning trapped frequency that such a conical dispersion has an inherent light confining property and it is governed by neither of the known wave confining mechanisms like total internal reflection, band gap guidance. Our study reveals that such a conical dispersion in a non-vanishing photonic density of states induces unexpected intense trapping of light compared with those at other points in the continuum. Such studies provoke fabrication of new devices with exciting properties and new functionalities. Project supported by Director, CSIR-CGCRI, the DST, Government of India, and the CSIR 12th Plan Project (GLASSFIB), India.

  13. Development of nanopatterned fluorine-doped tin oxide electrodes for dye-sensitized solar cells with improved light trapping.

    Science.gov (United States)

    Wang, Fengli; Subbaiyan, Navaneetha K; Wang, Qian; Rochford, Caitlin; Xu, Guowei; Lu, Rongtao; Elliot, Alan; D'Souza, Francis; Hui, Rongqing; Wu, Judy

    2012-03-01

    Transparent conductors (TCs) are an important component of optoelectronic devices and nanoscale engineering of TCs is important for optimization of the device performance through improved light trapping. In this work, patterned periodic arrays of nanopillars and nanolines of pitch size of ~700 nm were created on fluorine-doped tin oxide (FTO) using nanoimprint lithography and reactive ion etching using environmentally friendly gases. The patterned FTO exhibits enhanced light trapping as compared to the unpatterned FTO, which agrees well with simulations based on Finite-Difference Time-Domain method for up to a distance of 4 μm. Dye sensitized solar cells (DSSCs) fabricated on the patterned FTO exhibited improved performance (fill factor and power conversion efficiency), which can be attributed to enhanced light absorption in the range 400-650 nm. Further, electrochemical impedance measurements revealed lower recombination resistance for the patterned FTO/TiO(2) electrode compared to the unpatterned FTO electrode/TiO(2) electrode as a result of better light capturing properties of patterned FTO. The direct fabrication of nanopatterns on TCs developed in the present study is expected to be a viable scheme for achieving improved performance in many other optoelectronic devices.

  14. Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns.

    Science.gov (United States)

    van Lare, Claire; Yin, Guanchao; Polman, Albert; Schmid, Martina

    2015-10-27

    We experimentally demonstrate photocurrent enhancement in ultrathin Cu(In,Ga)Se2 (CIGSe) solar cells with absorber layers of 460 nm by nanoscale dielectric light scattering patterns printed by substrate conformal imprint lithography. We show that patterning the front side of the device with TiO2 nanoparticle arrays results in a small photocurrent enhancement in almost the entire 400-1200 nm spectral range due to enhanced light coupling into the cell. Three-dimensional finite-difference time-domain simulations are in good agreement with external quantum efficiency measurements. Patterning the Mo/CIGSe back interface using SiO2 nanoparticles leads to strongly enhanced light trapping, increasing the efficiency from 11.1% for a flat to 12.3% for a patterned cell. Simulations show that optimizing the array geometry could further improve light trapping. Including nanoparticles at the Mo/CIGSe interface leads to substantially reduced parasitic absorption in the Mo back contact. Parasitic absorption in the back contact can be further reduced by fabricating CIGSe cells on top of a SiO2-patterned In2O3:Sn (ITO) back contact. Simulations show that these semitransparent cells have similar spectrally averaged reflection and absorption in the CIGSe active layer as a Mo-based patterned cell, demonstrating that the absorption losses in the Mo can be partially turned into transmission through the semitransparent geometry.

  15. INFLUENCE OF FILM STRUCTURE AND LIGHT ON CHARGE TRAPPING AND DISSIPATION DYNAMICS IN SPUN-CAST ORGANIC THIN-FILM TRANSISTORS MEASURED BY SCANNING KELVIN PROBE MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Teague, L.; Moth, M.; Anthony, J.

    2012-05-03

    Herein, time-dependent scanning Kelvin probe microscopy of solution processed organic thin film transistors (OTFTs) reveals a correlation between film microstructure and OTFT device performance with the location of trapped charge within the device channel. The accumulation of the observed trapped charge is concurrent with the decrease in I{sub SD} during operation (V{sub G}=-40 V, V{sub SD}= -10 V). We discuss the charge trapping and dissipation dynamics as they relate to the film structure and show that application of light quickly dissipates the observed trapped charge.

  16. Field Responses of Anopheles gambiae Complex (Diptera: Culicidae) in Liberia using Yeast-Generated Carbon Dioxide and Synthetic Lure-Baited Light Traps

    Science.gov (United States)

    2013-07-01

    VECTOR-BORNE DISEASES, SURVEILLANCE, PREVENTION Field Responses of Anopheles gambiae Complex (Diptera: Culicidae) in Liberia using Yeast-Generated...and light, bed-net, tent, andodor-baited traps (Mboera 2005). TheCenters forDiseaseControl and Prevention (CDC) light trap with its typical 4Ð6 W...using paper- clips. Although primarily developed and used to attract day ßying Stegomyia ( Aedes ) mosquitoes, blends of this lureÕs primary ingredients

  17. Local relaxation and light-cone-like propagation of correlations in a trapped one-dimensional Bose gas

    CERN Document Server

    Geiger, Remi; Mazets, Igor; Schmiedmayer, Jörg

    2013-01-01

    We describe the relaxation dynamics of a coherently split one-dimensional (1D) Bose gas in the harmonic approximation. A dephased, prethermalized state emerges in a light-cone-like evolution which is connected to the spreading of correlations with a characteristic velocity. In our description we put special emphasis on the influence of the longitudinal trapping potential and the finite size of the system, both of which are highly relevant in experiments. In particular, we quantify their influence on the phase correlation properties and the characteristic velocity with which the prethermalized state is established. Finally, we show that the trapping potential has an important effect on the recurrences of coherence which are expected to appear in a finite size system.

  18. Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps.

    Science.gov (United States)

    Belgio, Erica; Kapitonova, Ekaterina; Chmeliov, Jevgenij; Duffy, Christopher D P; Ungerer, Petra; Valkunas, Leonas; Ruban, Alexander V

    2014-07-11

    The light-harvesting antenna of higher plant photosystem II has an intrinsic capability for self-defence against intense sunlight. The thermal dissipation of excess energy can be measured as the non-photochemical quenching of chlorophyll fluorescence. It has recently been proposed that the transition between the light-harvesting and self-defensive modes is associated with a reorganization of light-harvesting complexes. Here we show that despite structural changes, the photosystem II cross-section does not decrease. Our study reveals that the efficiency of energy trapping by the non-photochemical quencher(s) is lower than the efficiency of energy capture by the reaction centres. Consequently, the photoprotective mechanism works effectively for closed rather than open centres. This type of defence preserves the exceptional efficiency of electron transport in a broad range of light intensities, simultaneously ensuring high photosynthetic productivity and, under hazardous light conditions, sufficient photoprotection for both the reaction centre and the light-harvesting pigments of the antenna.

  19. Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps

    Science.gov (United States)

    Belgio, Erica; Kapitonova, Ekaterina; Chmeliov, Jevgenij; Duffy, Christopher D. P.; Ungerer, Petra; Valkunas, Leonas; Ruban, Alexander V.

    2014-07-01

    The light-harvesting antenna of higher plant photosystem II has an intrinsic capability for self-defence against intense sunlight. The thermal dissipation of excess energy can be measured as the non-photochemical quenching of chlorophyll fluorescence. It has recently been proposed that the transition between the light-harvesting and self-defensive modes is associated with a reorganization of light-harvesting complexes. Here we show that despite structural changes, the photosystem II cross-section does not decrease. Our study reveals that the efficiency of energy trapping by the non-photochemical quencher(s) is lower than the efficiency of energy capture by the reaction centres. Consequently, the photoprotective mechanism works effectively for closed rather than open centres. This type of defence preserves the exceptional efficiency of electron transport in a broad range of light intensities, simultaneously ensuring high photosynthetic productivity and, under hazardous light conditions, sufficient photoprotection for both the reaction centre and the light-harvesting pigments of the antenna.

  20. Inelastic scattering of light by a cold trapped atom: Effects of the quantum center-of-mass motion

    CERN Document Server

    Bienert, M; Morigi, G; Bienert, Marc; Merkel, Wolfgang; Morigi, Giovanna

    2005-01-01

    The light scattered by a cold trapped ion, which is in the stationary state of laser cooling, presents features due to the mechanical effects of atom-photon interaction. These features appear as additional peaks (sidebands) in the spectrum of resonance fluorescence. Among these sidebands the literature has discussed the Stokes and anti-Stokes components, namely the sidebands of the elastic peak. In this manuscript we show that the motion also gives rise to sidebands of the inelastic peaks. These are not always visible, but, as we show, can be measured in parameter regimes which are experimentally accessible.

  1. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2006-01-01

    Full Text Available Although the definition and measurement techniques for atmospheric 'black carbon' ('BC' or 'elemental carbon'' ('EC' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ('brown carbon, Cbrown' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes from (1 spectral aerosol light absorption measurements near specific combustion sources, (2 observations of spectral properties of water extracts of continental aerosol, (3 laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4 indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of 'BC' and 'EC' over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of Cbrown is high relative to that of soot carbon. Chemical measurements to determine 'EC' are biased by the refractory nature of Cbrown as well as by complex matrix interferences. Optical measurements of 'BC' suffer from a number of problems: (1 many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2 there is no unique conversion factor between light absorption and 'EC' or 'BC' concentration in ambient aerosols, and (3 the difference in spectral properties between the different types of LAC, as well as the chemical complexity of Cbrown, lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our

  2. LFN, QPO and fractal dimension of X-ray light curves from black hole binaries

    Science.gov (United States)

    Prosvetov, Art; Grebenev, Sergey

    The origin of the low frequency noise (LFN) and quasi-periodic oscillations (QPO) observed in X-ray flux of Galactic black hole binaries is still not recognized in spite of multiple studies and attempts to model this phenomenon. There are known correlations between the QPO frequency, X-ray power density, X-ray flux and spectral state of the system, but there is no model that can do these dependences understandable. For the low frequency (~1 Hz) QPO we still have no even an idea capable to explain their production and don't know even what part of an accretion disc is responsible for them. Here we attempted to measure the fractal dimension of X-ray light curves of several black hole X-ray binaries and to study its correlation with the frequency of quasi periodic oscillations observed in their X-ray light-curves. The fractal dimension is a measure of the space-filling capacity of the light curves' profile. To measure the fractal dimension we used R/S method, which is fast enough and has good reputation in financial analytic and materials sciences. We found that if no QPO were observed in X-ray flux from the particular source, the fractal dimension is equal to the unique value which is independent on the source, its luminosity or its spectral state. On the other hand if QPO were detected in the flux, the fractal dimension deviated from its usual value. Also, we found a clear correlation between the QPO frequency and the fractal dimension of the emission. The relationship between these two parameters is solid but nonlinear. We believe that the analysis of X-ray light curves of black hole binaries using the fractal dimension has a good scientific potential and may provide an addition information on the geometry of accretion flow and fundamental physical parameters of the system.

  3. Optical pumping of deep traps in AlGaN/GaN-on-Si HEMTs using an on-chip Schottky-on-heterojunction light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baikui; Tang, Xi; Chen, Kevin J., E-mail: eekjchen@ust.hk [Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-03-02

    In this work, by using an on-chip integrated Schottky-on-heterojunction light-emitting diode (SoH-LED) which is seamlessly integrated with the AlGaN/GaN high electron mobility transistor (HEMT), we studied the effect of on-chip light illumination on the de-trapping processes of electrons from both surface and bulk traps. Surface trapping was generated by applying OFF-state drain bias stress, while bulk trapping was generated by applying positive substrate bias stress. The de-trapping processes of surface and/or bulk traps were monitored by measuring the recovery of dynamic on-resistance R{sub on} and/or threshold voltage V{sub th} of the HEMT. The results show that the recovery processes of both dynamic R{sub on} and threshold voltage V{sub th} of the HEMT can be accelerated by the on-chip SoH-LED light illumination, demonstrating the potentiality of on-chip hybrid opto-HEMTs to minimize the influences of traps during dynamic operation of AlGaN/GaN power HEMTs.

  4. A novel photocatalytic conversion of Tryptophan to Kynurenine using black light as a light source

    NARCIS (Netherlands)

    Hamdy Mohamed Saad, M.S.; Scott, E.L.; Carr, R.H.; Sanders, J.P.M.

    2012-01-01

    The photocatalytic conversion of an aqueous solution of l-tryptophan (Trp) to kynurenine (KN) was investigated under the illumination of different light sources. Results show that Trp converted to KN with a selectivity of 64% under the illumination of a medium pressure (MP) Hg lamp. KN selectivity w

  5. 黑箱法应用于蚊虫监测的效果研究%Mosquito-trapping effects of black box method for mosquito surveillance

    Institute of Scientific and Technical Information of China (English)

    任文军; 熊建菁; 冷培恩; 刘洪霞; 黄瑾; 陈天民; 陈仁朝; 张锦生

    2012-01-01

    Objective To compare the mosquito-trapping effects of black boxes with different opening directions, and to explore the operation guidelines for black box method in mosquito surveillance. Methods The black boxes with different opening directions were used, and 24 h night-and-day observation method was adopted. Results There were significant differences in trapped mosquito number among the black boxes with different opening directions (f2=44.82, P0.05), but there was significant difference in mosquito sex (f2= 121.13, P<0.05). Conclusion The black box toward the west is the best for trapping mosquitoes, and can be used for regular mosquito surveillance and the evaluation of mosquito control in special areas.%目的 比较不同开口方向放置黑箱的捕蚊效果,探讨蚊虫黑箱法的操作规范.方法 不同开口朝向放置法以及24h昼夜观察法.结果 不同开口朝向黑箱的捕蚊数差异有统计学意义(f2=44.82,P<0.05),开口朝西的黑箱捕蚊最多;24 h昼夜观察捕获结果表明,蚊虫入箱高峰主要出现在清晨(05:00--07:00)和傍晚(18:00--20:00),各个时段均以开口朝西的黑箱捕获蚊虫最多,且差异有统计学意义(f2=259.56,P<0.05);人工小时法和黑箱法成蚊季节消长趋势一致,具有相关性和一致性(r=0.696,P<0.01);黑箱法和人工小时法监测的蚊种构成差异无统计学意义(f2=4.54,P>0.05),蚊虫性别比差异有统计学意义(f2=121.13,P<0.05).结论 黑箱开口朝西具有较好的诱捕效果,可适用于常规蚊虫监测以及特定场所蚊虫控制评估.

  6. Development of a Novel Trap for the Collection of Black Flies of the Simulium ochraceum Complex

    Science.gov (United States)

    Rodríguez-Pérez, Mario A.; Adeleke, Monsuru A.; Burkett-Cadena, Nathan D.; Garza-Hernández, Javier A.; Reyes-Villanueva, Filiberto; Cupp, Eddie W.; Toé, Laurent; Salinas-Carmona, Mario C.; Rodríguez-Ramírez, Américo D.; Katholi, Charles R.; Unnasch, Thomas R.

    2013-01-01

    Background Human landing collections are currently the standard method for collecting onchocerciasis vectors in Africa and Latin America. As part of the efforts to develop a trap to replace human landing collections for the monitoring and surveillance of onchocerciasis transmission, comprehensive evaluations of several trap types were conducted to assess their ability to collect Simulium ochraceum sensu lato, one of the principal vectors of Onchocerca volvulus in Latin America. Methodology/Principal Findings Diverse trap designs with numerous modifications and bait variations were evaluated for their abilities to collect S. Ochraceum s.l. females. These traps targeted mostly host seeking flies. A novel trap dubbed the “Esperanza window trap” showed particular promise over other designs. When baited with CO2 and BG-lure (a synthetic blend of human odor components) a pair of Esperanza window traps collected numbers of S. Ochraceum s.l. females similar to those collected by a team of vector collectors. Conclusions/Significance The Esperanza window trap, when baited with chemical lures and CO2 can be used to collect epidemiologically significant numbers of Simulium ochraceum s.l., potentially serving as a replacement for human landing collections for evaluation of the transmission of O. volvulus. PMID:24116169

  7. Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range

    CERN Document Server

    Oskooi, Ardavan; Noda, Susumu

    2013-01-01

    The maximum absorption of solar radiation over the broadest range of frequencies and incident angles using the thinnest material possible has important applications for renewable-energy generation. Complete random texturing of an optically-thick film's surface to increase the path length of scattered light rays, first proposed nearly thirty years ago, has thus far remained the most effective approach for photon absorption over the widest set of conditions. Recent thin-film nanostructured designs involving resonant wave effects of photons have explored the possibility of superior performance though as of yet no proposal satisfying the dual requirements of enhanced and robust absorption over a large fraction of the solar spectrum has been made. Here using recent advances in computational electrodynamics we describe a general strategy for the design of a silicon thin film applicable to photovoltaic cells based on a quasi-resonant approach to light trapping where two partially-disordered photonic-crystal slabs, s...

  8. Self-rolling and light-trapping in flexible quantum well-embedded nanomembranes for wide-angle infrared photodetectors.

    Science.gov (United States)

    Wang, Han; Zhen, Honglou; Li, Shilong; Jing, Youliang; Huang, Gaoshan; Mei, Yongfeng; Lu, Wei

    2016-08-01

    Three-dimensional (3D) design and manufacturing enable flexible nanomembranes to deliver unique properties and applications in flexible electronics, photovoltaics, and photonics. We demonstrate that a quantum well (QW)-embedded nanomembrane in a rolled-up geometry facilitates a 3D QW infrared photodetector (QWIP) device with enhanced responsivity and detectivity. Circular geometry of nanomembrane rolls provides the light coupling route; thus, there are no external light coupling structures, which are normally necessary for QWIPs. This 3D QWIP device under tube-based light-trapping mode presents broadband enhancement of coupling efficiency and omnidirectional detection under a wide incident angle (±70°), offering a unique solution to high-performance focal plane array. The winding number of these rolled-up QWIPs provides well-tunable blackbody photocurrents and responsivity. 3D self-assembly of functional nanomembranes offers a new path for high conversion efficiency between light and electricity in photodetectors, solar cells, and light-emitting diodes.

  9. Self-rolling and light-trapping in flexible quantum well–embedded nanomembranes for wide-angle infrared photodetectors

    Science.gov (United States)

    Wang, Han; Zhen, Honglou; Li, Shilong; Jing, Youliang; Huang, Gaoshan; Mei, Yongfeng; Lu, Wei

    2016-01-01

    Three-dimensional (3D) design and manufacturing enable flexible nanomembranes to deliver unique properties and applications in flexible electronics, photovoltaics, and photonics. We demonstrate that a quantum well (QW)–embedded nanomembrane in a rolled-up geometry facilitates a 3D QW infrared photodetector (QWIP) device with enhanced responsivity and detectivity. Circular geometry of nanomembrane rolls provides the light coupling route; thus, there are no external light coupling structures, which are normally necessary for QWIPs. This 3D QWIP device under tube-based light-trapping mode presents broadband enhancement of coupling efficiency and omnidirectional detection under a wide incident angle (±70°), offering a unique solution to high-performance focal plane array. The winding number of these rolled-up QWIPs provides well-tunable blackbody photocurrents and responsivity. 3D self-assembly of functional nanomembranes offers a new path for high conversion efficiency between light and electricity in photodetectors, solar cells, and light-emitting diodes. PMID:27536723

  10. Response of Phlebotomine Sand Flies to Light-Emitting Diode-Modified Light Traps in Southern Egypt

    Science.gov (United States)

    2007-04-01

    over incandescent light bulbs include greatly reduced power consumption, cooler operating temperatures , extended operational life, less susceptibility...or two stories high and covered with thatch or brick roofs. Summers are very hot with daily temperatures typically ranging from 24 to 45 C; it seldom...light. Only one study has been performed on a New World sand fly ( Lutzomyia Iongipalpis) measuring spectral sensitivity with an electroretinogram

  11. Optimal structure of light trapping in thin-film solar cells: dielectric nanoparticles or multilayer antireflection coatings?

    Science.gov (United States)

    Zhao, Yongxiang; Chen, Fei; Shen, Qiang; Zhang, Lianmeng

    2014-08-10

    Recent research has found an alternative way to enhance light trapping of thin-film solar cells by using dielectric nanoparticles deposited on the cell surface. To improve the performance of light trapping, a systematic study on the influence of dielectric nanoparticles on enhancement efficiency is performed in this paper. We prove that the optimal dielectric nanoparticles are substantially equivalent to the multilayer antireflection coatings (ARCs) with a "low-high-low" dielectric constant profile. Moreover, it is demonstrated that the use of a simple two-layer SiO2/SiC ARC can reach 34.15% enhancement, which has exceeded the ideal limit of 32% of nanoparticles structure including plasmonic Ag nanoparticles, dielectric SiC, and TiO2 nanoparticles. That means the optimal multilayer ARCs structure is obviously superior to the optimal dielectric nanoparticles structure, and the deposition of a simple two-layer SiO2/SiC structure on top of a thin-film silicon solar cell can significantly enhance photoelectron generation and hence, result in superior performance of thin-film solar cells.

  12. Ultra-broadband Tunable Resonant Light Trapping in a Two-dimensional Randomly Microstructured Plasmonic-photonic Absorber

    Science.gov (United States)

    Liu, Zhengqi; Liu, Long; Lu, Haiyang; Zhan, Peng; Du, Wei; Wan, Mingjie; Wang, Zhenlin

    2017-03-01

    Recently, techniques involving random patterns have made it possible to control the light trapping of microstructures over broad spectral and angular ranges, which provides a powerful approach for photon management in energy efficiency technologies. Here, we demonstrate a simple method to create a wideband near-unity light absorber by introducing a dense and random pattern of metal-capped monodispersed dielectric microspheres onto an opaque metal film; the absorber works due to the excitation of multiple optical and plasmonic resonant modes. To further expand the absorption bandwidth, two different-sized metal-capped dielectric microspheres were integrated into a densely packed monolayer on a metal back-reflector. This proposed ultra-broadband plasmonic-photonic super absorber demonstrates desirable optical trapping in dielectric region and slight dispersion over a large incident angle range. Without any effort to strictly control the spatial arrangement of the resonant elements, our absorber, which is based on a simple self-assembly process, has the critical merits of high reproducibility and scalability and represents a viable strategy for efficient energy technologies.

  13. 光诱技术在害虫治理中的应用%The Application of Light Trap Technique in Pest Control

    Institute of Scientific and Technical Information of China (English)

    曹宇; 郅军锐; 杨茂发

    2012-01-01

    随着害虫综合治理水平的不断提高,光诱技术应用越来越广泛.本文简要介绍了光对昆虫的生态效应和光谤技术的原理,着重讲述了光诱挂术在害虫综合防治中的应用情况,指出了其优点和不足,展望了光诱技术在害虫综合防治中的应用前景.%Ecological effects of light on insects and the principle of light-trap technique application were briefly introduced herein. The article focused on the application of light-trap technique in the integrated pest management , and sumarized its advantages and disadvantages, the prospect of light-trap technique in the integrated pest management was also presented.

  14. Energy Spectra of Geomagnetically Trapped Light Isotopes Measured by NINA-2 Instrument

    Science.gov (United States)

    Mikhailov, V. V.; Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Voronov, S.; Bidoli, V.; Caoslino, M.; De Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Boezio, M.; Bonvincini, V.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Adriani, O.; Papini, P.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Ricci, M.; Castellini, G.

    2003-07-01

    This paper reports about the energy spectrum of geomagnetically trapped protons, deuterons, tritons and He isotop es measured by the instrument NINA2 at the low boundary of the South Atlantic Anomaly. NINA-2 on board the satellite MITA has been in orbit from 15 July 2000 to 10 August 2001, flying with circular polar orbit (87° inclination), at an altitude between 300-440 km. Differential energy spectra were measured at L-shell ˜ 1.2 and local magnetic field b< 0.22 G. Data from NINA-2 are compared with measurements made onboard Resurs-01 N4 satellite with NINA instrument. Possible solar modulation effects are discussed.

  15. Black-light continuum generation in a silica-core photonic crystal fiber.

    Science.gov (United States)

    Sylvestre, T; Ragueh, A R; Lee, M W; Stiller, B; Fanjoux, G; Barviau, B; Mussot, A; Kudlinski, A

    2012-01-15

    We report the observation of a broadband continuum spanning from 350 to 470 nm in the black-light region of the electromagnetic spectrum as a result of picosecond pumping a solid-core silica photonic crystal fiber at 355 nm. This was achieved despite strong absorption and a large normal dispersion of silica glass in the UV. Further investigations reveal that the continuum generation results from the interplay of intermodally phase-matched four-wave mixing and cascaded Raman scattering. We also discuss the main limitations in terms of bandwidth and power due to temporal walk-off, fiber absorption, and the photo darkening effect, and we suggest simple solutions.

  16. Light trapping efficiency of periodic and quasiperiodic back-reflectors for thin film solar cells: A comparative study

    Science.gov (United States)

    Micco, A.; Ricciardi, A.; Pisco, M.; La Ferrara, V.; Mercaldo, L. V.; Delli Veneri, P.; Cutolo, A.; Cusano, A.

    2013-08-01

    Recently, great efforts have been carried out to design optimized metallic nano-grating back-reflectors to improve the light absorption in thin film solar cells. In this work, we compare the performances of deterministic aperiodic backreflectors in the form of 1-D nanogratings based on the generalized Fibonacci deterministic aperiodic sequence with a standard periodic one. The case of study here analyzed relies on a realistic solar cell model, where light absorption is evaluated only in the intrinsic region of an amorphous silicon P-I-N junction. We found that the results of comparison are strongly influenced by the amorphous silicon extinction coefficient within the near-infrared wavelength range, where most photonic-plasmonic modes (responsible for the light absorption enhancement typically observed when structured metal nanogratings are employed) are excited. In particular, with device-grade hydrogenated amorphous silicon, we demonstrate that Fibonacci-like backreflectors are able to provide an absorption enhancement of about 4% and 20% with respect to periodic and flat metallic backreflectors, respectively. We also found that aperiodic gratings guarantee better results in terms of robustness to the incident angle of the incoming radiation. Overall, our results confirm that aperiodic geometries are effectively able to offer some intriguing perspectives to enhance light trapping capability in thin film solar cells especially thanks to the large set of patterns employable to enable a proper design of resonant modes number and their spectral locations.

  17. Nobel Prize in Physics 1997 "for development of methods to cool and trap atoms with laser light" : Steven Chu, Claude Cohen-Tannoudji and William D. Phillips

    CERN Multimedia

    1998-01-01

    Prof.S. Chu presents "the manipulation of atoms and bio-molecules by laser light" : a brief history of the laser cooling and trapping of atoms developed over the past 15 years will be presented. The cooling and trapping technology is already being applied in numerous areas of science and engineering. Applications to be discussed include atomic clocks, atom interferometers, as well as studies in polymer dynamics and protein motion.

  18. Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure.

    Science.gov (United States)

    Wu, Yun-Ben; Yang, Wen; Wang, Tong-Biao; Deng, Xin-Hua; Liu, Jiang-Tao

    2016-02-11

    The light absorption of a monolayer graphene-molybdenum disulfide photovoltaic (GM-PV) cell in a wedge-shaped microcavity with a spectrum-splitting structure is investigated theoretically. The GM-PV cell, which is three times thinner than the traditional photovoltaic cell, exhibits up to 98% light absorptance in a wide wavelength range. This rate exceeds the fundamental limit of nanophotonic light trapping in solar cells. The effects of defect layer thickness, GM-PV cell position in the microcavity, incident angle, and lens aberration on the light absorptance of the GM-PV cell are explored. Despite these effects, the GM-PV cell can still achieve at least 90% light absorptance with the current technology. Our proposal provides different methods to design light-trapping structures and apply spectrum-splitting systems.

  19. Effective Light Trapping in Thin Film Silicon Solar Cells with Nano- and Microscale Structures on Glass Substrate.

    Science.gov (United States)

    Bong, Sungjae; Ahn, Shihyun; Anh, Le Huy Tuan; Kim, Sunbo; Park, Hyeongsik; Shin, Chonghoon; Park, Jinjoo; Lee, Younjung; Yi, Junsin

    2016-05-01

    For thin film silicon-based solar cells, effective light trapping at a broad range of wavelengths (400-1100 nm) is necessary. Normally, etching is only carried out with TCOs, such as SnO2:F and impurity doped ZnO, to form nano-sized craters in the surface morphology to confer a light trapping effect. However, in this study, prior to ZnO:Al etching, periodic structures on the glass substrates were made by photolithography and wet etching to increase the light scattering and internal reflection. The use of periodic structures on the glass substrate resulted in higher haze ratios in the range from 550 nm to 1100 nm, which is the optical absorption wavelength region for thin film silicon solar cells, than obtained by simple ZnO:Al etching. The periodically textured glass with micro-sized structures compensates for the low haze ratio at the middle and long wavelengths of wet etched ZnO:Al. ZnO:Al was deposited on the periodically textured glass, after which the ZnO:Al surface was also etched randomly using a mixed acid solution to form nano-sized craters. The thin film silicon solar cells with 350-nm-thick amorphous silicon absorber layer deposited on the periodic structured glass and etched ZnO:Al generated up to 10.68% more photocurrent, with 11.2% increase of the conversion efficiency compared to the cell deposited on flat glass and etched ZnO:Al.

  20. Photoluminescence study of time- and spatial-dependent light induced trap de-activation in CH3NH3PbI3 perovskite films.

    Science.gov (United States)

    Fu, Xiao; Jacobs, Daniel A; Beck, Fiona J; Duong, The; Shen, Heping; Catchpole, Kylie R; White, Thomas P

    2016-08-10

    Organometal halide perovskite-based solar cells have rapidly achieved high efficiency in recent years. However, many fundamental recombination mechanisms underlying the excellent performance are still not well understood. Here we apply confocal photoluminescence microscopy to investigate the time and spatial characteristics of light-induced trap de-activation in CH3NH3PbI3 perovskite films. Trap de-activation is characterized by a dramatic increase in PL emission during continuous laser illumination accompanied by a lateral expansion of the PL enhancement far beyond the laser spot. These observations are attributed to an oxygen-assisted trap de-activation process associated with carrier diffusion. To model this effect, we add a trap de-activation term to the standard semiconductor carrier recombination and diffusion models. With this approach we are able to reproduce the observed temporal and spatial dependence of laser induced PL enhancement using realistic physical parameters. Furthermore, we experimentally investigate the role of trap diffusion in this process, and demonstrate that the trap de-activation is not permanent, with the traps appearing again once the illumination is turned off. This study provides new insights into recombination and trap dynamics in perovskite films that could offer a better understanding of perovskite solar cell performance.

  1. Gravity-like potential traps light and stretches supercontinuum in photonic crystal fibers

    CERN Document Server

    Gorbach, A V

    2007-01-01

    Spectral broadening of femtosecond pulses into a supercontinuum has been one of the most striking discoveries in modern day nonlinear optics. It has enabled applications ranging from spectroscopy and metrology to telecommunication and medicine. Amongst the physical principles underlying supercontinuum generation the commonly used list includes a variety of four-wave mixing processes, soliton fission, Raman induced soliton self-frequency shift, and dispersive wave generation mediated by solitons. Though all of the above effects contribute to supercontinuum generation none of them determines the final spectral width. In this work we argue that the most profound role in shaping the spectrum is played by the effect of radiation trapping by a gravity like potential created by accelerated solitons. The underlying physics of this effect has a straightforward analogy with the equivalence between the gravitational force and the inertial force acting on an observer moving with a constant acceleration.

  2. Self-trapping mechanism in green phosphorescent dye-doped polymer light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Madhwal, Devinder; Rait, S S; Verma, A; Kumar, A; Bhatnagar, P K; Mathur, P C [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India); Onoda, M, E-mail: devindermadhwal@gmail.co [Department of Electrical Engineering and Computer Science, University of Hyogo, Himeji (Japan)

    2010-06-01

    The mechanism for exciting electroluminescence (EL) in a green phosphorescent dye, iridium(III)tris(2-(4-tolyl)pyridinato-N,C{sup 2}) (Ir(mppy){sub 3}), doped in a host blue-emitting conducting polymer, poly[9,9-di-n-hexyl-fluorenyl-2,7-diyl] (PFO), has been studied. Photoluminescence measurements have been made on PFO/Ir(mppy){sub 3} (0-12%) composites to rule out the possibility of singlet exciton energy transfer from the host polymer to the green dye. EL measurements have also been made to study the behavior of the composites in the presence of dc bias. The dominant mechanism for energy transfer from PFO to Ir(mppy){sub 3} is found to be self-trapping of the charge carriers in the dye molecules, due to the extremely low LUMO and high HOMO levels as compared with PFO, thereby producing EL in the green region.

  3. Constraining Black Holes with Light Boson Hair and Boson Stars using Quasi Periodic Oscillations

    CERN Document Server

    Franchini, Nicola; Maselli, Andrea; Gualtieri, Leonardo; Herdeiro, Carlos A R; Radu, Eugen; Ferrari, Valeria

    2016-01-01

    Light bosonic fields are ubiquitous in extensions of the Standard Model. Even when minimally coupled to gravity, these fields might evade the assumptions of the black-hole no-hair theorems and give rise to spinning black holes which can be drastically different from the Kerr metric. Furthermore, they allow for self-gravitating compact solitons, known as (scalar or Proca) boson stars. The quasi-periodic oscillations (QPOs) observed in the X-ray flux emitted by accreting compact objects carry information about the strong-field region, thus providing a powerful tool to constrain deviations from Kerr's geometry and to search for exotic compact objects. By using the relativistic precession model, we investigate how the QPO frequencies could be used to test the no-hair theorem and the existence of light bosonic fields near accreting compact objects. We show that a detection of two QPO triplets with current sensitivity can already constrain these models, and that the future eXTP mission or a LOFT-like mission can se...

  4. The Enhanced Light Absorptance and Device Application of Nanostructured Black Silicon Fabricated by Metal-assisted Chemical Etching

    Science.gov (United States)

    Zhong, Hao; Guo, Anran; Guo, Guohui; Li, Wei; Jiang, Yadong

    2016-07-01

    We use metal-assisted chemical etching (MCE) method to fabricate nanostructured black silicon on the surface of C-Si. The Si-PIN photoelectronic detector based on this type of black silicon shows excellent device performance with a responsivity of 0.57 A/W at 1060 nm. Silicon nanocone arrays can be created using MCE treatment. These modified surfaces show higher light absorptance in the near-infrared range (800 to 2500 nm) compared to that of C-Si with polished surfaces, and the variations in the absorption spectra of the nanostructured black silicon with different etching processes are obtained. The maximum light absorptance increases significantly up to 95 % in the wavelength range of 400 to 2500 nm. Our recent novel results clearly indicate that nanostructured black silicon made by MCE has potential application in near-infrared photoelectronic detectors.

  5. A novel approach for enhanced visible light activity in doped nanosize titanium dioxide through the excitons trapping

    Science.gov (United States)

    Jaimy, Kanakkanmavudi B.; Baiju, K. V.; Ghosh, Swapankumar; Warrier, K. G. K.

    2012-02-01

    Titanium dioxide doped with iron oxide (0-10 mol%) has been synthesized by an aqueous sol-gel method. The extent of phase transformation is higher in presence of up to 1 mol% of Fe3+ ions in doped titania. A further increase in Fe3+ content was found to decrease the phase transformation. A composition which contains ∼90% rutile and the remaining anatase phase shows the highest photocatalytic activity. Even though surface area values are dramatically decreased by the modification of TiO2 by Fe3+ doping, crystallinity plays a major role in photocatalytic activity enhancement. UV-vis reflectance spectra indicate a red-shift in band gap energy and thus an enhanced photoactivity in visible light, suitable for application in photodegradation of toxic industrial effluents as well as other organic contaminants, is achieved. Low concentrations of Fe3+ ions act as excitons trapping centers, while higher concentrations act as recombination centers. The synergy between the rutile-anatase ratios and optimum amount of Fe3+ ions improve the interfacial charge transfer and trapping which enhanced the photochemical degradation of MB dye. The Fe3+ doped TiO2 composition has the highest photoactivity, having an apparent rate constant of 11.1×10-3 min-1, which is much higher than that of commercial P25 Degussa titania (6.03×10-3 min-1).

  6. Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells

    Science.gov (United States)

    Hsu, Wei-Chun; Tong, Jonathan K.; Branham, Matthew S.; Huang, Yi; Yerci, Selçuk; Boriskina, Svetlana V.; Chen, Gang

    2016-10-01

    The implementation of a front and back grating in ultra-thin photovoltaic cells is a promising approach towards improving light trapping. A simple design rule was developed using the least common multiple (LCM) of the front and back grating periods. From this design rule, several optimal period combinations can be found, providing greater design flexibility for absorbers of indirect band gap materials. Using numerical simulations, the photo-generated current (Jph) for a 10-μm-thick crystalline silicon absorber was predicted to be as high as 38 mA/cm2, which is 11.74% higher than that of a single front grating (Jph=34 mA/cm2).

  7. High Stability White Organic Light-Emitting Diode (WOLED Using Nano-Double-Ultra Thin Carrier Trapping Materials

    Directory of Open Access Journals (Sweden)

    Kan-Lin Chen

    2014-01-01

    Full Text Available The structure of indium tin oxide (ITO (100 nm/molybdenum trioxide (MoO3 (15 nm/N,N0-bis-(1-naphthyl-N,N0-biphenyl-1,10-biphenyl-4,40-diamine (NPB (40 nm/4,4′-Bis(2,2-diphenylvinyl-1,1′-biphenyl (DPVBi (10 nm/5,6,11,12-tetraphenylnaphthacene (Rubrene (0.2 nm/DPVBi (24 nm/Rubrene (0.2 nm/DPVBi (6 nm/4,7-diphenyl-1,10-phenanthroline (BPhen: cesium carbonate (Cs2Co3 (10 nm/Al (120 nm with high color purity and stability white organic light-emitting diode (WOLED was fabricated. The function of the multiple-ultra-thin material (MUTM, such as Rubrene, is as the yellow light-emitting layer and trapping layer. The results show that the MUTM has an excellent carrier capture effect, resulting in high color stability of the device at different applied voltages. The Commissions Internationale De L’Eclairage (CIE coordinate of this device at 3~7 V is few displacement and shows a very slight variation of (±0.01, ±0.01. The maximum brightness of 9986 cd/m2 and CIE coordinates of (0.346, 0.339 are obtained at 7 V. The enhanced performance of the device may result from the direct charge trapping in MUTM and it can be found in the electroluminescence (EL process.

  8. Comparison of male and female emerald ash borer (Coleoptera: Buprestidae) responses to phoebe oil and (Z)-3-hexenol lures in light green prism traps.

    Science.gov (United States)

    Grant, Gary G; Poland, Therese M; Ciaramitaro, Tina; Lyons, D Barry; Jones, Gene C

    2011-02-01

    We conducted trapping experiments for the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) in Michigan, U.S.A., and Ontario, Canada, to compare unbaited light green sticky prism traps with traps baited with phoebe oil, (Z)-3-hexenol (Z3-6:OH), or blends of other green leaf volatiles (GLVs) with Z3-6:OH. Traps were placed in the lower canopy of ash trees (Fraxinus spp.). Catches with Z3-6:OH-baited traps showed a significant male bias and these traps caught significantly more males than the unbaited controls at both sites. They were also superior to phoebe oil-baited traps and those baited with GLV blends. Catches with phoebe oil showed a significant female bias but there was no difference in the number of females captured between traps baited with phoebe oil or Z3-6:OH lures. Catches were analyzed at regular time intervals to examine the response of A. planipennis to the lures over the course of the flight season. Z3-6:OH-baited traps consistently caught more males than the controls at each interval throughout the flight season. Catches of females with Z3-6:OH and phoebe oil were significantly better than the controls early in the flight season but declined to control levels by midseason. Our results suggest that Z3-6:OH-baited green traps placed in the ash canopy would be a superior lure for detecting and monitoring A. planipennis throughout the flight season.

  9. Photonic light trapping in silicon nanowire arrays: deriving and overcoming the physical limitations

    CERN Document Server

    Schmitt, Sebastian W

    2016-01-01

    Hexagonally aligned, free-standing silicon nanowire (SiNW) arrays serve as photonic resonators which, as compared to a silicon (Si) thin film, do not only absorb more visible (VIS) and near-infrared (NIR) light, but also show an inherent photonic light concentration that enhances their performance as solar absorbers. Using numerical simulations we show, how light concentration is induced by high optical cross sections of the individual SiNWs but cannot be optimized independently of the SiNW array absorption. While an ideal spatial density exists, for which the SiNW array absorption for VIS and NIR wavelengths reaches a maximum, the spatial correlation of SiNWs in an array suppresses the formation of optical Mie modes responsible for light concentration. We show that different from SiNWs with straight sidewalls, arrays of inverted silicon nanocones (SiNCs) permit to avoid the mode suppression. In fact they give rise to an altered set of photonic modes which is induced by the spatial correlation of SiNCs in the...

  10. Comparison of surveillance efficacy between black box and lamp trap methods%黑箱法与灯诱法蚊虫监测结果比较

    Institute of Scientific and Technical Information of China (English)

    冷培恩; 除友祥; 武峥嵘; 刘洪霞; 徐仁权

    2011-01-01

    Objective To evaluate the application of black box method in mosquito surveillance by comparing the results from black box and lamp trap methods. Methods Two lamps were set at each surveillance site and one black box was put at a 10 m interval from each lamp. Surveillance was conducted twice every month. Results The total number of captured mosquitoes and the number of female mosquitoes by the lamp trap method was 3.50 times and 3.75 times higer than those monitored by black box method, respectively. The seasonal fluctuation curves reflected by both methods were unimodal, with a peak in July. The monthly calculations of mosquitoes of the two methods were highly correlated. Mosquitoes captured by the black box method included Culex pipens pollens (84.64%), Cx. Tritaeriorhynchus (10.02%), and Anopheles sinensis (3.34%), and those by the lamp trap method were Cx. Pipens pollens (80.47%), Cx. Tritaeriorhynchw (11.79%), and An. Sinensis (6.88%). Only a few Aedes albopictus and Armigeres subalbatus were trapped. The male-female ratios were similar between the two methods, whereas great difference in the mosquito number was found in distinct environments. Black box method was more effective in parks and hospitals than the other, while lamp trap was more effective in pasture lands and farms. Two peaks of mosquito density were shown on 05: 00 and 19: 00 with environmental difference between day and night. The day and night peaks of density were also present in parks, farms and pasture lands except hospitals and residential areas where only one night peak was shown. Conclusion With fewer requirements for equipment, operation skills and power supply, the black box method is an effective alternative to the lamp trap approach. Deployment before the night peak of density and collection after the early morning peak is recommended for mosquito monitoring.%目的 比较黑箱法与灯诱法监测蚊虫密度的差异,探讨黑箱法在蚊虫监测中的作用.方法 在7个

  11. Investigations on struggling with Ricania simulans (Walker 1851 (Hemiptera: Ricaniidae an important pest of the Eastern Black Sea Coastlines

    Directory of Open Access Journals (Sweden)

    Temel Göktürk

    2015-04-01

    Full Text Available Ricania simulans has been causing damage in agricultural areas in the Eastern Black Sea coastline since 2006. Due to the lack of studies on struggling against this harmful species, it continues to spread day after another. In this study, which was carried out in Kemalpaşa region of Hopa town in Artvin province of Turkey in 2013-2014, the mature Ricania simulans population density was aimed to be decreased using light traps and sticky traps in agricultural areas in 2013-2014. The results of statistical analysis conducted based on the numbers of captured Ricania simulans in each trap, it was found that there were significant differences between light traps and sticky traps. Light traps captured more mature individual than sticky traps. As a result, we suggest that light traps can be used as important tools in the fight against R. simulans

  12. Real-time black carbon emission factor measurements from light duty vehicles.

    Science.gov (United States)

    Forestieri, Sara D; Collier, Sonya; Kuwayama, Toshihiro; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D

    2013-11-19

    Eight light-duty gasoline low emission vehicles (LEV I) were tested on a Chassis dynamometer using the California Unified Cycle (UC) at the Haagen-Smit vehicle test facility at the California Air Resources Board in El Monte, CA during September 2011. The UC includes a cold start phase followed by a hot stabilized running phase. In addition, a light-duty gasoline LEV vehicle and ultralow emission vehicle (ULEV), and a light-duty diesel passenger vehicle and gasoline direct injection (GDI) vehicle were tested on a constant velocity driving cycle. A variety of instruments with response times ≥0.1 Hz were used to characterize how the emissions of the major particulate matter components varied for the LEVs during a typical driving cycle. This study focuses primarily on emissions of black carbon (BC). These measurements allowed for the determination of BC emission factors throughout the driving cycle, providing insights into the temporal variability of BC emission factors during different phases of a typical driving cycle.

  13. A Near Infrared Light Triggered Hydrogenated Black TiO2 for Cancer Photothermal Therapy.

    Science.gov (United States)

    Ren, Wenzhi; Yan, Yong; Zeng, Leyong; Shi, Zhenzhi; Gong, An; Schaaf, Peter; Wang, Dong; Zhao, Jinshun; Zou, Baobo; Yu, Hongsheng; Chen, Ge; Brown, Eric Michael Bratsolias; Wu, Aiguo

    2015-07-15

    White TiO2 nanoparticles (NPs) have been widely used for cancer photodynamic therapy based on their ultraviolet light-triggered properties. To date, biomedical applications using white TiO2 NPs have been limited, since ultraviolet light is a well-known mutagen and shallow penetration. This work is the first report about hydrogenated black TiO2 (H-TiO2 ) NPs with near infrared absorption explored as photothermal agent for cancer photothermal therapy to circumvent the obstacle of ultraviolet light excitation. Here, it is shown that photothermal effect of H-TiO2 NPs can be attributed to their dramatically enhanced nonradiative recombination. After polyethylene glycol (PEG) coating, H-TiO2 -PEG NPs exhibit high photothermal conversion efficiency of 40.8%, and stable size distribution in serum solution. The toxicity and cancer therapy effect of H-TiO2 -PEG NPs are relative systemically evaluated in vitro and in vivo. The findings herein demonstrate that infrared-irradiated H-TiO2 -PEG NPs exhibit low toxicity, high efficiency as a photothermal agent for cancer therapy, and are promising for further biomedical applications.

  14. Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping

    Science.gov (United States)

    Shi, Dai; Zeng, Yang; Shen, Wenzhong

    2015-11-01

    Perovskite/c-Si tandem solar cells (TSCs) have become a promising candidate in recent years for achieving efficiency over 30%. Although general analysis has shown very high upper limits for such TSCs, it remains largely unclear what specific optical structures could best approach these limits. Here we propose the combination of perovskite/c-Si tandem structure with inverted nanopyramid morphology as a practical way of achieving efficiency above 31% based on realistic solar cell parameters. By full-field simulation, we have shown that an ultra-low surface reflectance can be achieved by tuning the pyramid geometry within the range of experimental feasibility. More importantly, we have demonstrated that the index-guided modes can be excited within the top cell layer by introducing a TCO interlayer that prevents coupling of guided light energy into the bottom cell. This light trapping scheme has shown superior performance over the Bragg stack intermediate reflector utilized in previous micropyramid-based TSCs. Finally, by controlling the coupling between the top and bottom cell through the thickness of the interlayer, current generation within the tandem can be optimized for both two- and four-terminal configurations, yielding efficiencies of 31.9% and 32.0%, respectively. These results have provided useful guidelines for the fabrication of perovskite/c-Si TSCs.

  15. Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping

    Science.gov (United States)

    Shi, Dai; Zeng, Yang; Shen, Wenzhong

    2015-01-01

    Perovskite/c-Si tandem solar cells (TSCs) have become a promising candidate in recent years for achieving efficiency over 30%. Although general analysis has shown very high upper limits for such TSCs, it remains largely unclear what specific optical structures could best approach these limits. Here we propose the combination of perovskite/c-Si tandem structure with inverted nanopyramid morphology as a practical way of achieving efficiency above 31% based on realistic solar cell parameters. By full-field simulation, we have shown that an ultra-low surface reflectance can be achieved by tuning the pyramid geometry within the range of experimental feasibility. More importantly, we have demonstrated that the index-guided modes can be excited within the top cell layer by introducing a TCO interlayer that prevents coupling of guided light energy into the bottom cell. This light trapping scheme has shown superior performance over the Bragg stack intermediate reflector utilized in previous micropyramid-based TSCs. Finally, by controlling the coupling between the top and bottom cell through the thickness of the interlayer, current generation within the tandem can be optimized for both two- and four-terminal configurations, yielding efficiencies of 31.9% and 32.0%, respectively. These results have provided useful guidelines for the fabrication of perovskite/c-Si TSCs. PMID:26566176

  16. Nanoscale aluminum concaves for light-trapping in organic thin-films

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Adam, Jost; Cielecki, Pawel Piotr;

    2016-01-01

    Anodic aluminum oxide (AAO) templates, fabricated from oxalic acid and phosphoric acid, lead to non-periodic nanoscale concave structures in their underlying aluminum layer, which are investigated for their field-enhancement properties by applying a thin-film polymer coating based laser ablation...... technique. Local ablation spots, corresponding to field enhancement on the ridge edges of the aluminum concave nanostructures, are observed in surface-covering polymer films, and confirmed with FDTD studies. The field enhancement leads to improved light absorption in the applied polymer layers, which may...

  17. Nanoscale aluminum concaves for light-trapping in organic thin-films

    Science.gov (United States)

    Goszczak, Arkadiusz Jarosław; Adam, Jost; Cielecki, Paweł Piotr; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2016-07-01

    Anodic aluminum oxide (AAO) templates, fabricated from oxalic acid and phosphoric acid, lead to non-periodic nanoscale concave structures in their underlying aluminum layer, which are investigated for their field-enhancement properties by applying a thin-film polymer coating based laser ablation technique. Local ablation spots, corresponding to field enhancement on the ridge edges of the aluminum concave nanostructures, are observed in surface-covering polymer films, and confirmed with FDTD studies. The field enhancement leads to improved light absorption in the applied polymer layers, which may be used as an efficient method for enhancing the power conversion efficiency of organic solar cells.

  18. Light Curves from an MHD Simulation of a Black Hole Accretion Disk

    CERN Document Server

    Schnittman, J D; Hawley, J F; Schnittman, Jeremy D.; Krolik, Julian H.; Hawley, John F.

    2006-01-01

    We use a relativistic ray-tracing code to calculate the light curves observed from a global general relativistic magneto-hydrodynamic simulation of an accretion flow onto a Schwarzschild black hole. We apply three basic emission models to sample different properties of the time-dependent accretion disk. With one of these models, which assumes thermal blackbody emission and free-free absorption, we can predict qualitative features of the high-frequency power spectrum from stellar-mass black holes in the "Thermal Dominant" state. The simulated power spectrum is characterized by a power law of index Gamma ~ 3 and total rms fractional variance of ~ 1 % near the orbital frequency at the inner-most stable orbit. Initial results indicate the existence of transient QPO peaks with frequency ratios of nearly 2:3 at a 99.9% confidence limit, but they are not generic features because at any given time they are seen only from certain observer directions. Additionally, we present detailed analysis of the azimuthal structur...

  19. Light Curves from an MHD Simulation of a Black Hole Accretion Disk

    Science.gov (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Hawley, John F.

    2006-11-01

    We use a relativistic ray-tracing code to calculate the light curves observed from a global, general relativistic, magnetohydrodynamic simulation of an accretion flow onto a Schwarzschild black hole. We apply three basic emission models to sample different properties of the time-dependent accretion disk. With one of these models, which assumes thermal blackbody emission and free-free absorption, we can predict qualitative features of the high-frequency power spectrum from stellar-mass black holes in the ``thermal dominant'' state. The simulated power spectrum is characterized by a power law of index Γ~3 and total rms fractional variance of ~1% near the orbital frequency at the innermost stable orbit. Initial results indicate the existence of transient QPO peaks with frequency ratios of nearly 2:3 at a 99.9% confidence limit, but they are not generic features, because at any given time they are seen only from certain observer directions. In addition, we present detailed analysis of the azimuthal structure of the accretion disk and the evolution of density perturbations in the inner disk. These ``hot-spot'' structures appear to be roughly self-similar over a range of disk radii, with a single characteristic size δφ=25deg and δr/r=0.3, and typical lifetimes Tl~0.3Torb.

  20. Correlation Between Hue-angle and Colour Lightness of Steamed Black locust Wood

    Directory of Open Access Journals (Sweden)

    NÉMETH, Károly

    2008-01-01

    Full Text Available Black locust (Robinia pseudoacacia L. wood was steamed at wide range of temperature(75-130°C applying long (22 days steaming time. The colour change was monitored by CIE L*a*b*and L*h*c* colour co-ordinate systems. A wide range of colours from greenish yellow up to chocolatebrown were created by steaming in function of the steaming time and temperature. In spite of this widecolour range a good linear correlation was found between the lightness and the colour hue. Thislinearity had little distortion only above 100°C at a long steaming time. Accordingly, this linearcorrelation gives the possibility to follow the colour change during steaming by measuring only thelightness.

  1. Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures.

    Science.gov (United States)

    Biswas, Rana; Timmons, Erik

    2013-09-09

    A critical step to achieving higher efficiency solar cells is the broad band harvesting of solar photons. Although considerable progress has recently been achieved in improving the power conversion efficiency of organic solar cells, these cells still do not absorb upto ~50% of the solar spectrum. We have designed and developed an organic solar cell architecture that can boost the absorption of photons by 40% and the photo-current by 50% for organic P3HT-PCBM absorber layers of typical device thicknesses. Our solar cell architecture is based on all layers of the solar cell being patterned in a conformal two-dimensionally periodic photonic crystal architecture. This results in very strong diffraction of photons- that increases the photon path length in the absorber layer, and plasmonic light concentration near the patterned organic-metal cathode interface. The absorption approaches the Lambertian limit. The simulations utilize a rigorous scattering matrix approach and provide bounds of the fundamental limits of nano-photonic light absorption in periodically textured organic solar cells. This solar cell architecture has the potential to increase the power conversion efficiency to 10% for single band gap organic solar cells utilizing long-wavelength absorbers.

  2. Vortical light bullets in second-harmonic-generating media supported by a trapping potential

    CERN Document Server

    Sakaguchi, Hidetsugu

    2013-01-01

    We introduce a three-dimensional (3D) model of optical media with the quadratic ($\\chi ^{(2)}$) nonlinearity and an effective 2D isotropic harmonic-oscillator (HO) potential. While it is well known that 3D \\chi^2 solitons with embedded vorticity ("vortical light bullets") are unstable in the free space, we demonstrate that they have a broad stability region in the present model, being supported by the HO potential against the splitting instability. The shape of the vortical solitons may be accurately predicted by the variational approximation (VA). They exist above a threshold value of the total energy (norm) and below another critical value, which determines a stability boundary. The existence threshold vanishes is a part of the parameter space, depending on the mismatch parameter, which is explained by means of the comparison with the 2D counterpart of the system. Above the stability boundary, the vortex features shape oscillations, periodically breaking its axisymmetric form and restoring it. Collisions be...

  3. Tailoring broadband light trapping of GaAs and Si substrates by self-organised nanopatterning

    Energy Technology Data Exchange (ETDEWEB)

    Martella, C.; Chiappe, D.; Mennucci, C.; Buatier de Mongeot, F. [Dipartimento di Fisica, Università di Genova, via Dodecaneso 33, I-16146 Genova (Italy)

    2014-05-21

    We report on the formation of high aspect ratio anisotropic nanopatterns on crystalline GaAs (100) and Si (100) substrates exploiting defocused Ion Beam Sputtering assisted by a sacrificial self-organised Au stencil mask. The tailored optical properties of the substrates are characterised in terms of total reflectivity and haze by means of integrating sphere measurements as a function of the morphological modification at increasing ion fluence. Refractive index grading from sub-wavelength surface features induces polarisation dependent anti-reflection behaviour in the visible-near infrared (VIS-NIR) range, while light scattering at off-specular angles from larger structures leads to very high values of the haze functions in reflection. The results, obtained for an important class of technologically relevant materials, are appealing in view of photovoltaic and photonic applications aiming at photon harvesting in ultrathin crystalline solar cells.

  4. Generation of Antibunched Light by Excited Molecules in a Microcavity Trap

    Science.gov (United States)

    DeMartini, F.; DiGiuseppe, G.; Marrocco, M.

    1996-01-01

    The active microcavity is adopted as an efficient source of non-classical light. By this device, excited by a mode-locked laser at a rate of 100 MHz, single-photons are generated over a single field mode with a nonclassical sub-poissonian distribution. The process of adiabatic recycling within a multi-step Franck-Condon molecular optical-pumping mechanism, characterized in our case by a quantum efficiency very close to one, implies a pump self-regularization process leading to a striking n-squeezing effect. By a replication of the basic single-atom excitation process a beam of quantum photon (Fock states) can be created. The new process represents a significant advance in the modern fields of basic quantum-mechanical investigation, quantum communication and quantum cryptography.

  5. Light-Trap: a SiPM upgrade for VHE astronomy and beyond

    Science.gov (United States)

    Ward, J. E.; Cortina, J.; Guberman, D.

    2016-11-01

    Ground-based gamma-ray astronomy in the Very High Energy (VHE, E > 100 GeV) regime has fast become one of the most interesting and productive sub-fields of astrophysics today. Utilizing the Imaging Atmospheric Cherenkov Technique (IACT) to reconstruct the energy and direction of incoming gamma-ray photons from the universe, several source-classes have been revealed by previous and current generations of IACT telescopes (e.g. Whipple, MAGIC, HESS and VERITAS). The next generation pointing IACT experiment, the Cherenkov Telescope Array (CTA), will provide increased sensitivity across a wider energy range and with better angular resolution. With the development of CTA, the future of IACT pointing arrays is being directed towards having more and more telescopes (and hence cameras), and therefore the need to develop low-cost pixels with acceptable light-collection efficiency is clear. One of the primary paths to the above goal is to replace Photomultiplier Tubes (PMTs) with Silicon-PMs (SiPMs) as the pixels in IACT telescope cameras. However SiPMs are not yet mature enough to replace PMTs for several reasons: sensitivity to unwanted longer wavelengths while lacking sensitivity at short wavelengths, small physical area, high cost, optical cross-talk and dark rates. Here we propose a novel method to build relatively low-cost SiPM-based pixels utilising a disk of wavelength-shifting material, which overcomes some of these drawbacks by collecting light over a larger area than standard SiPMs and improving sensitivity to shorter wavelengths while reducing background. We aim to optimise the design of such pixels, integrating them into an actual 7-pixel cluster which will be inserted into a MAGIC camera and tested during real observations. Results of simulations, laboratory measurements and the current status of the cluster design and development will be presented.

  6. Black Holes

    Science.gov (United States)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  7. Estimating particulate black carbon concentrations using two offline light absorption methods applied to four types of filter media

    Science.gov (United States)

    Davy, Pamela M.; Tremper, Anja H.; Nicolosi, Eleonora M. G.; Quincey, Paul; Fuller, Gary W.

    2017-03-01

    Atmospheric particulate black carbon has been linked to adverse health outcomes. Additional black carbon measurements would aid a better understanding of population exposure in epidemiological studies as well as the success, or otherwise, of relevant abatement technologies and policies. Two light absorption measurement methods of particles collected on filters have been applied to four different types of filters to provide estimations of particulate black carbon concentrations. The ratio of transmittance (lnI0/I) to reflectance (lnR0/R) varied by filter type and ranged from close to 0.5 (as expected from simple theory) to 1.35 between the four filter types tested. The relationship between light absorption and black carbon, measured by the thermal EC(TOT) method, was nonlinear and differed between filter type and measurement method. This is particularly relevant to epidemiological studies that use light absorption as an exposure metric. An extensive archive of filters was used to derive loading factors and mass extinction coefficients for each filter type. Particulate black carbon time series were then calculated at locations where such measurements were not previously available. When applied to two roads in London, black carbon concentrations were found to have increased between 2011 and 2013, by 0.3 (CI: -0.1, 0.5) and 0.4 (CI: 0.1, 0.9) μg m-3 year-1, in contrast to the expectation from exhaust abatement policies. New opportunities using archived or bespoke filter collections for studies on the health effects of black carbon and the efficacy of abatement strategies are created.

  8. Preferential pathways for light-trapping involving beta-ligated chlorophylls.

    Science.gov (United States)

    Balaban, Teodor Silviu; Braun, Paula; Hättig, Christof; Hellweg, Arnim; Kern, Jan; Saenger, Wolfram; Zouni, Athina

    2009-10-01

    The magnesium atom of chlorophylls (Chls) is always five- or six-coordinated within chlorophyll-protein complexes which are the main light-harvesting systems of plants, algae and most photosynthetic bacteria. Due to the presence of stereocenters and the axial ligation of magnesium the two faces of Chls are diastereotopic. It has been previously recognized that the alpha-configuration having the magnesium ligand on the opposite face of the 17-propionic acid moiety is more frequently encountered and is more stable than the more seldom beta-configuration that has the magnesium ligand on the same face [T.S. Balaban, P. Fromme, A.R. Holzwarth, N. Kraubeta, V.I. Prokhorenko, Relevance of the diastereotopic ligation of magnesium atoms in chlorophylls in Photosystem I, Biochim. Biophys. Acta (Bioenergetics), 1556 (2002) 197-207; T. Oba, H. Tamiaki, Which side of the pi-macrocycle plane of (bacterio)chlorophylls is favored for binding of the fifth ligand? Photosynth. Res. 74 (2002) 1-10]. In photosystem I only 14 Chls out of a total of 96 are in a beta-configuration and these occupy preferential positions around the reaction center. We have now analyzed the alpha/beta dichotomy in the homodimeric photosystem II based on the 2.9 A resolution crystal structure [A. Guskov, J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni, W. Saenger, Cyanobacterial photosystem II at 2.9 A resolution: role of quinones, lipids, channels and chloride, Nature Struct. Mol. Biol. 16 (2009) 334-342] and find that out of 35 Chls in each monomer only 9 are definitively in the beta-configuration, while 4 are uncertain. Ab initio calculations using the approximate coupled-cluster singles-and-doubles model CC2 [O. Christiansen, H. Koch, P. Jørgensen, The second-order approximate coupled cluster singles and doubles model CC2, Chem. Phys. Lett. 243 (1995) 409-418] now correctly predict the absorption spectra of Chls a and b and conclusively show for histidine, which is the most frequent axial ligand of

  9. Performance enhancement of pc-Si solar cells through combination of anti-reflection and light-trapping: Functions of AAO nano-grating

    Science.gov (United States)

    Wu, Lei; Zhang, Haiming; Qin, Feifei; Bai, Xiaogang; Ji, Ziye; Huang, Dan

    2017-02-01

    Anodic aluminium oxide (AAO) nanogratings are experimentally applied to polycrystalline silicon (pc-Si) solar cells at front surface to improve the light coupling. On the basis of the Fresnel Reflection Principle, the primary reflection loss can be reduced by multi-layer dielectric film with varing refactive index. And this multi-layer film is regarded as anti-reflection coating. An efficient light-trapping structure is significant in absorption enhancement of long wavelength band (around 900-1100 nm) for silicon solar cells. In this paper, we put AAO nanogratings on the front side of pc-Si solar cells to serve as anti-reflecting coating and light-trapping structure. The operation leads to light absorption enhancement eventually. Thanks to AAO nano-grating's structure parameters, the anti-reflecting and light-trapping effects are changeable. This is discussed in three aspects: AAO lattice period, AAO thickness and its pore diameter. Optical interaction between AAO nanograting and Ag electrodes is also discussed. We find an increase of short-circuit current density (1.32 mA/cm2) with SiNx:H/AAO complex coating. The relative power conversion efficiency obtains a growth about 2.2% points. Additionally, AAO nanogratings may facilitate carrier separation. This improves the performance of pc-Si solar cells in electrical aspect.

  10. DEET (N,N-diethyl-meta-toluamide)/PMD (para-menthane-3,8-diol) repellent-treated mesh increases Culicoides catches in light traps.

    Science.gov (United States)

    Murchie, A K; Clawson, S; Rea, I; Forsythe, I W N; Gordon, A W; Jess, S

    2016-09-01

    Biting midges (Culicoides spp.) are vectors of bluetongue and Schmallenberg viruses. Treatment of mesh barriers is a common method for preventing insect-vectored diseases and has been proposed as a means of limiting Culicoides ingression into buildings or livestock transporters. Assessments using animals are costly, logistically difficult and subject to ethical approval. Therefore, initial screening of test repellents/insecticides was made by applying treatments to mesh (2 mm) cages surrounding Onderstepoort light traps. Five commercial treatments were applied to cages as per manufacturers' application rates: control (water), bendiocarb, DEET/p-menthane-3,8-diol (PMD) repellent, Flygo (a terpenoid based repellent) and lambda-cyhalothrin. The experimental design was a 5 × 5 Latin square, replicated in time and repeated twice. Incongruously, the traps surrounded by DEET/PMD repellent-treated mesh caught three to four times more Obsoletus group Culicoides (the commonest midge group) than the other treatments. A proposed hypothesis is that Obsoletus group Culicoides are showing a dose response to DEET/PMD, being attracted at low concentrations and repelled at higher concentrations but that the strong light attraction from the Onderstepoort trap was sufficient to overcome close-range repellence. This study does not imply that DEET/PMD is an ineffective repellent for Culicoides midges in the presence of an animal but rather that caution should be applied to the interpretation of light trap bioassays.

  11. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.

    Science.gov (United States)

    Vasudev, Pranai; Jiang, Jian-Hua; John, Sajeev

    2016-06-27

    , the strong light confinement results in light-matter coupling strength of ℏΩ = 13.7 meV. Assuming an exciton density per QW of (15aB)-2, well below the saturation density, in a 2-D box-trap with a side length of 10 to 500 µm, we predict thermal equilibrium Bose-Einstein condensation well above room temperature.

  12. PIXE and light element analysis (C,N) in glass inclusions trapped in meteorites with the nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Varela, M.E.; Mosbah, M. E-mail: mosbah@drecam.cea.fr; Metrich, N.; Duraud, J.P.; Kurat, G

    1999-09-02

    Proton-induced X-ray emission (PIXE) and light element analysis have been performed with the nuclear microprobe at the Laboratoire Pierre Suee (Saclay-France) in glass inclusions of the carbonaceous chondrites: Allende, Kaba and Renazzo, and in the achondrite meteorite: Chassigny. Carbon contents in olivine of chondrules are below the nuclear reactions analysis (NRA) detection limit, however, glasses from glass inclusions hosted by these grains, contain an appreciable and highly variable quantities of carbon (200-1600 ppm). This could indicate variable amounts of C trapped during glass inclusion formation. On the other hand, nitrogen is present in highly variable amounts in glasses of both, chondrites and achondrites minerals. Its abundance, correlated with depth from the section surface which suggests loss of N during analyses and therefore the possible existence of a very mobile (volatile?) species. A chondritic Rb/Sr and K/Rb ratio obtained by PIXE analyses in the glass-bearing inclusions of the Chassigny meteorite points towards a primitive source for the glass precursor of Chassigny inclusions.

  13. Black Carbon and Kerosene Lighting: An Opportunity for Rapid Action on Climate Change and Clean Energy for Development

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Arne [Humboldt State Univ., MN (United States). Schatz Energy Research Center; Bond, Tami C. [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Civil and Environmental Engineering; Lam, Nicholoas L. [Univ. of California, Berkeley, CA (United States). Dept. of Environmental Health Sciences; Hultman, Nathan [The Brookings Institution, Washington, DC (United States)

    2013-04-15

    Replacing inefficient kerosene lighting with electric lighting or other clean alternatives can rapidly achieve development and energy access goals, save money and reduce climate warming. Many of the 250 million households that lack reliable access to electricity rely on inefficient and dangerous simple wick lamps and other kerosene-fueled light sources, using 4 to 25 billion liters of kerosene annually to meet basic lighting needs. Kerosene costs can be a significant household expense and subsidies are expensive. New information on kerosene lamp emissions reveals that their climate impacts are substantial. Eliminating current annual black carbon emissions would provide a climate benefit equivalent to 5 gigatons of carbon dioxide reductions over the next 20 years. Robust and low-cost technologies for supplanting simple wick and other kerosene-fueled lamps exist and are easily distributed and scalable. Improving household lighting offers a low-cost opportunity to improve development, cool the climate and reduce costs.

  14. Light Fraction Carbon and Water-Stable Aggregates in Black Soils

    Institute of Scientific and Technical Information of China (English)

    SHI Yi; CHEN Xin; SHEN Shan-Min

    2007-01-01

    The distribution of light fraction carbon (LF-C) in the various size classes of aggregates and its relationship to waterstable aggregates as well as the influence of cultivation on the organic components in virgin and cultivated black soils were studied by wet sieving and density separation methods. The total organic carbon (TOC) and LF-C were significantly higher (P ≤ 0.05) in the virgin soils than in the cultivated soils. The LF-C in aggregates of different size classes varied from 0.9 to 2.5 g kg-1 in the cultivated soils and from 2.5 to 7.1 g kg-1 in the virgin soils, whereas the ratio of LF-C to TOC varied from 1.9% to 7.3% and from 5.0% to 12.2%, respectively. After being incubated under constant temperature and controlled humidity for three months, the contribution of LF-C to TOC sharply decreased to an amount (1.7%-8.5%)close to the level in soils that had been cultivated for 20 to 25 years (1.3%-8.8%). As a result, the larger water-stable macro-aggregates (especially > 1 mm) decreased sharply, indicating that the LF-C pool in virgin soils declined quickly after cultivation, which reduced the water stability of soil aggregates.

  15. CAPTURE OF Tuta absoluta (Meyrick (LEPIDOPTERA: GELECHIIDAE WITH LIGHT TRAP IN TOMATO CROP CAPTURA DE Tuta absoluta (Meyrick (LEPIDOPTERA: GELECHIIDAE COM ARMADILHA LUMINOSA NA CULTURA DO TOMATEIRO TUTORADO

    Directory of Open Access Journals (Sweden)

    Aline Cavalcante Rodrigues de Oliveira

    2008-09-01

    Full Text Available

    The tomato leafminer (Tuta absoluta represents a serious problem for the tomato crop, not only due to the intensity of its attack, but also to its occurrence during all the crop cycle. In Brazil, this pest has been controlled almost exclusively with insecticides, what is undesirable for economic and environmental reasons. In order to get more information on the control of this pest this research was carried out, in Ouro Verde (Goiás State, Brazil, from September through October 2002, to evaluate the use of light  traps for capture of adult T. absoluta specimens. The treatments used were: 1 black lamp; 2 BLB lamp; 3 Grolux lamp; and 4 fluorescent daylight lamp. The experimental design used was randomized complete blocks with four replications. The parameter to evaluate treatment capture efficiency was the counting of the adult T. absoluta specimens trapped. The results showed that the BLB and ultraviolet lamps were the most efficient treatments. Therefore, both can help to control the tomato leafminer in integrated pest management programs.

    KEY-WORDS: Tomato pinworm; integrated pest management; tomato.

    A traça-do-tomateiro (Tuta absoluta representa um sério problema à tomaticultura, não somente pela intensidade de ataque, mas também por sua ocorrência durante todo o ciclo da cultura. No Brasil, esta praga tem sido controlada, quase exclusivamente, com inseticidas, o que é indesejável, tanto por motivos econômicos, quanto ambientais. Visando a obter maiores informa

  16. Efficacy of light and nonlighted carbon dioxide-baited traps for adult sand fly (Diptera: Psychodidae) surveillance in three counties of Mesrata, Libya.

    Science.gov (United States)

    Obenauer, P J; Annajar, B B; Hanafi, H A; Abdel-Dayem, M S; El-Hossary, S S; Villinski, J

    2012-09-01

    ABSTRACT. Sand flies are important vectors of cutaneous leishmaniasis, especially along coastal towns of northwestern Libya where an estimated 20,000 cases have occurred from 2004 to 2009. Host-seeking traps are an important tool for sampling sand fly populations and surveying the incidence of Leishmania major and L. tropica within a given population. We evaluated the capture efficiency of CO2-baited BG-Sentinel, Centers for Disease Control and Prevention (CDC) light, CDC ultraviolet light, and nonbaited CO2 CDC light traps in 3 coastal townships during June, August, September, and November 2010. A total of 3,248 sand flies, representing 8 species from 2 genera, were collected; most sand flies were identified as either Phlebotomus papatasi or P. longicuspis. Three of the traps captured significantly more sand flies compared to the BG-Sentinel baited with CO2 (P < 0.001). Three of 456 DNA pools extracted from sand flies were positive for Leishmania DNA, indicating a minimum estimated infection rate of 0.83% and 0.47% for P. papatasi and P. longicuspis, respectively.

  17. Screening of LED light source of the adapter solar trap lamp for trapping the citrus psyllid%适配太阳能诱虫器诱杀柑橘木虱LED光源的筛选

    Institute of Scientific and Technical Information of China (English)

    林雄杰; 范国成; 胡菡青; 阮传清; 蔡子坚; Xia Yulu; 杜云贵; 刘波

    2013-01-01

    The citrus psyllid is the vector of Huanglongbing.In order to control citrus psyllid and prevent disease,screening of LED light source adapter solar trap lamp for citrus psyllid by using reaction vessel of insect behavior was carried out in the laboratory.The results showed that the phototaxis of 1 800 1x and 4 310 lx blue and green light sources (wavelength 460 nm and 531 nm) were best on the illumination duration of 17 h.It was also found that the phototaxis of citrus psyllid adults was positively correlated with light intensity and light duration under the same wavelength condition.It might provide an effective theoretical basis for the LED light source for forecasting and trapping citrus psyllid in the field in the future.%柑橘木虱(Dia phorina citri)是柑橘黄龙病的传播媒介.为达到治虫防病的目的,在室内利用昆虫行为反应器开展适配太阳能诱虫器的LED光源筛选,结果表明:柑橘木虱成虫对光照强度分别为1 800 lx和4 310 lx的蓝光和绿光(波长分别为460 nm和531 nm)在光照时长为17 h时的趋光性最佳,相同波长条件下,其趋光性与光照强度和光照时长成正相关.该研究结果为进一步探索适宜田间柑橘木虱测报和高效诱杀的LED光源提供理论依据.

  18. Flebotomíneos (Diptera, Psychodidae) na Amazônia: II. Listagem das espécies coletadas na bacia petrolífera no Rio Urucu, Amazonas, Brasil, utilizando diferentes armadilhas e iscas Sandflies (Diptera, Psychodidae) in the Amazon: II. Cheek list of the species collected in the petroleum basin of the Urucu River, Amazonas, Brazil using differents traps and baits

    OpenAIRE

    CASTELLÓN,Eloy G; Fé,Nelson F; Buhrnheim,Paulo F.; Flavio A. Fé

    2000-01-01

    A sandfly survey was carried out in 100 x 150 m patches of primary forest submitted to recent deforestation in order to determine its species composition 10-30 days after clearing. The following collecting methods were used: CDC traps whit black light; Malaise traps placed at 0.5, 1, 5 and 10m up from the the soil surface; Pennsylvania traps whit black light; Malaise traps, tree-base catches and human baits. A total of 2810 specimens of Lutzomyia França, 1924 and one species of Brumptomyia Fr...

  19. Aerosol light absorption, black carbon, and elemental carbon at the Fresno Supersite, California

    Science.gov (United States)

    Chow, Judith C.; Watson, John G.; Doraiswamy, Prakash; Chen, Lung-Wen Antony; Sodeman, David A.; Lowenthal, Douglas H.; Park, Kihong; Arnott, W. Patrick; Motallebi, Nehzat

    2009-08-01

    Particle light absorption ( bap), black carbon (BC), and elemental carbon (EC) measurements at the Fresno Supersite during the summer of 2005 were compared to examine the equivalency of current techniques, evaluate filter-based bap correction methods, and determine the EC mass absorption efficiency (σ ap) and the spectral dependence of bap. The photoacoustic analyzer (PA) was used as a benchmark for in-situ bap. Most bap measurement techniques were well correlated ( r ≥ 0.95). Unadjusted Aethalometer (AE) and Particle Soot Absorption Photometer (PSAP) bap were up to seven times higher than PA bap at similar wavelengths because of absorption enhancement by backscattering and multiple scattering. Applying published algorithms to correct for these effects reduced the differences to 24 and 17% for the AE and PSAP, respectively, at 532 nm. The Multi-Angle Absorption Photometer (MAAP), which accounts for backscattering effects, overestimated bap relative to the PA by 51%. BC concentrations determined by the AE, MAAP, and Sunset Laboratory semi-continuous carbon analyzer were also highly correlated ( r ≥ 0.93) but differed by up to 57%. EC measured with the IMPROVE/STN thermal/optical protocols, and the French two-step thermal protocol agreed to within 29%. Absorption efficiencies determined from PA bap and EC measured with different analytical protocols averaged 7.9 ± 1.5, 5.4 ± 1.1, and 2.8 ± 0.6 m 2/g at 532, 670, and 1047 nm, respectively. The Angström exponent (α) determined from adjusted AE and PA bap ranged from 1.19 to 1.46. The largest values of α occurred during the afternoon hours when the organic fraction of total carbon was highest. Significant biases associated with filter-based measurements of bap, BC, and EC are method-specific. Correcting for these biases must take into account differences in aerosol concentration, composition, and sources.

  20. Factors affecting the efficacy of a vinegar trap for Drosophila suzukii (Diptera: Drosophilidae)

    Science.gov (United States)

    Studies were conducted to develop an optimized, economical trap for monitoring the spotted wing fruit fly, Drosophila suzukii Matsumura. Flies were attracted to dark colors ranging from red to black compared with low attraction to white, yellow, and light blue. Similarly, fly catches in 237 ml plast...

  1. Microlensing of Sub-parsec Massive Binary Black Holes in Lensed QSOs: Light Curves and Size-Wavelength Relation

    Science.gov (United States)

    Yan, Chang-Shuo; Lu, Youjun; Yu, Qingjuan; Mao, Shude; Wambsganss, Joachim

    2014-04-01

    Sub-parsec binary massive black holes (BBHs) have long been thought to exist in many QSOs but remain observationally elusive. In this paper, we propose a novel method to probe sub-parsec BBHs through microlensing of lensed QSOs. If a QSO hosts a sub-parsec BBH in its center, it is expected that the BBH is surrounded by a circumbinary disk, each component of the BBH is surrounded by a small accretion disk, and a gap is opened by the secondary component in between the circumbinary disk and the two small disks. Assuming such a BBH structure, we generate mock microlensing light curves for some QSO systems that host BBHs with typical physical parameters. We show that microlensing light curves of a BBH QSO system at the infrared-optical-UV bands can be significantly different from those of corresponding QSO system with a single massive black hole (MBH), mainly because of the existence of the gap and the rotation of the BBH (and its associated small disks) around the center of mass. We estimate the half-light radii of the emission region at different wavelengths from mock light curves and find that the obtained half-light radius versus wavelength relations of BBH QSO systems can be much flatter than those of single MBH QSO systems at a wavelength range determined by the BBH parameters, such as the total mass, mass ratio, separation, accretion rates, etc. The difference is primarily due to the existence of the gap. Such unique features on the light curves and half-light radius-wavelength relations of BBH QSO systems can be used to select and probe sub-parsec BBHs in a large number of lensed QSOs to be discovered by current and future surveys, including the Panoramic Survey Telescope and Rapid Response System, the Large Synoptic Survey telescope, and Euclid.

  2. A Comparison of Carbon Dioxide Sources for Mosquito Capture in Centers for Disease Control and Prevention Light Traps on the Florida Gulf Coast (1).

    Science.gov (United States)

    Hoel, David F; Dunford, James C; Kline, Daniel L; Irish, Seth R; Weber, Michael; Richardson, Alec G; Doud, Carl W; Wirtz, Robert A

    2015-09-01

    Traditional sources of carbon dioxide (CO₂), dry ice, and compressed gas, were tested against 3 combinations of food-grade reagents known to generate CO₂using a compact, lightweight generator delivery system with Centers for Disease Control and Prevention light traps. Three 6 × 6 Latin square trials were completed near the Florida Gulf Coast in the Lower Suwannee Wildlife Refuge during the summer of 2013, collecting a total of 31,632 female mosquitoes. Treatments included dry ice, compressed CO₂gas, a control trap (no CO₂), citric acid + sodium bicarbonate, vinegar + sodium bicarbonate, and yeast + sugar. Decreasing order of trap collections (treatment mean number of mosquitoes per trap night ± standard error) were dry ice 773.5 (± 110.1) > compressed gas 440.7 (± 42.3) > citric acid + sodium bicarbonate 197.6 (± 30.4), yeast + sugar 153.6 (± 27.4) > vinegar + sodium bicarbonate 109.6 (± 16.2) > control 82.4 (± 14.0). A 2-way Kruskal-Wallis analysis by treatment, site, and treatment × site interaction identified significant differences between all treatments. Although dry ice and compressed CO₂gas collected significantly more mosquitoes than other combinations (P < 0.05), use of citric acid and sodium bicarbonate or yeast and sugar greatly outperformed unbaited traps and offer a good alternative to dry ice and compressed gas in areas where these agents are not readily available or are difficult to obtain due to logistical constraints. An inexpensive, portable CO₂generator for use with food-grade reagents is described.

  3. Microlensing of Sub-parsec Massive Binary Black Holes in Lensed QSOs: Light Curves and Size-Wavelength Relation

    CERN Document Server

    Yan, Chang-Shuo; Yu, Qingjuan; Mao, Shude; Wambsganss, Joachim

    2014-01-01

    Sub-parsec binary massive black holes (BBHs) are long anticipated to exist in many QSOs but remain observationally elusive. In this paper, we propose a novel method to probe sub-parsec BBHs through microlensing of lensed QSOs. If a QSO hosts a sub-parsec BBH in its center, it is expected that the BBH is surrounded by a circum-binary disk, each component of the BBH is surrounded by a small accretion disk, and a gap is opened by the secondary component in between the circum-binary disk and the two small disks. Assuming such a BBH structure, we generate mock microlensing light curves for some QSO systems that host BBHs with typical physical parameters. We show that microlensing light curves of a BBH QSO system at the infrared-optical-UV bands can be significantly different from those of corresponding QSO system with a single massive black hole (MBH), mainly because of the existence of the gap and the rotation of the BBH (and its associated small disks) around the center of mass. We estimate the half-light radii ...

  4. N -body modelling of globular clusters: masses, mass-to-light ratios and intermediate-mass black holes

    Science.gov (United States)

    Baumgardt, H.

    2017-01-01

    We have determined the masses and mass-to-light ratios of 50 Galactic globular clusters by comparing their velocity dispersion and surface brightness profiles against a large grid of 900 N-body simulations of star clusters of varying initial concentration, size and central black hole mass fraction. Our models follow the evolution of the clusters under the combined effects of stellar evolution and two-body relaxation allowing us to take the effects of mass segregation and energy equipartition between stars self-consistently into account. For a subset of 16 well-observed clusters, we also derive their kinematic distances. We find an average mass-to-light ratio of Galactic globular clusters of =1.98 ± 0.03, which agrees very well with the expected M/L ratio if the initial mass function (IMF) of the clusters was a standard Kroupa or Chabrier mass function. We do not find evidence for a decrease in the average mass-to-light ratio with metallicity. The surface brightness and velocity dispersion profiles of most globular clusters are incompatible with the presence of intermediate-mass black holes (IMBHs) with more than a few thousand M⊙ in them. The only clear exception is ω Cen, where the velocity dispersion profile provides strong evidence for the presence of a ˜40 000 M⊙ IMBH in the centre of the cluster.

  5. N-body modeling of globular clusters: Masses, mass-to-light ratios and intermediate-mass black holes

    Science.gov (United States)

    Baumgardt, H.

    2016-10-01

    We have determined the masses and mass-to-light ratios of 50 Galactic globular clusters by comparing their velocity dispersion and surface brightness profiles against a large grid of 900 N-body simulations of star clusters of varying initial concentration, size and central black hole mass fraction. Our models follow the evolution of the clusters under the combined effects of stellar evolution and two-body relaxation allowing us to take the effects of mass segregation and energy equipartition between stars self-consistently into account. For a subset of 16 well observed clusters we also derive their kinematic distances. We find an average mass-to-light ratio of Galactic globular clusters of =1.98 ± 0.03, which agrees very well with the expected M/L ratio if the initial mass function (IMF) of the clusters was a standard Kroupa or Chabrier mass function. We do not find evidence for a decrease of the average mass-to-light ratio with metallicity. The surface brightness and velocity dispersion profiles of most globular clusters are incompatible with the presence of intermediate-mass black holes (IMBHs) with more than a few thousand M⊙ in them. The only clear exception is ω Cen, where the velocity dispersion profile provides strong evidence for the presence of a ˜40,000 M⊙ IMBH in the centre of the cluster.

  6. Nonlinear time series analysis of the light curves from the black hole system GRS1915+105

    Institute of Scientific and Technical Information of China (English)

    K.P Harikrishnan; Ranjeev Misra; G.Ambika

    2011-01-01

    GRS 1915+105 is a prominent black hole system exhibiting variability over a wide range of time scales and its observed light curves have been classified into 12 temporal states. Here we undertake a complete analysis of these light curves from all the states using various quantifiers from nonlinear time series analysis, such as the correlation dimension (D2), the correlation entropy (K2), singular value decomposition (SVD) and the multifractal spectrum (f(α) spectrum). An important aspect of our analysis is that, for estimating these quantifiers, we use algorithmic schemes which we have recently proposed and successfully tested on synthetic as well as practical time series from various fields. Though the schemes are based on the conventional delay embedding technique, they are automated so that the above quantitative measures can be computed using conditions prescribed by the algorithm and without any intermediate subjective analysis. We show that nearly half of the 12 temporal states exhibit deviation from randomness and their complex temporal behavior could be approximated by a few (three or four) coupled ordinary nonlinear differential equations. These results could be important for a better understanding of the processes that generate the light curves and hence for modeling the temporal behavior of such complex systems.To our knowledge, this is the first complete analysis of an astrophysical object (let alone a black hole system) using various techniques from nonlinear dynamics.

  7. Shining Light on Quantum Gravity with Pulsar-Black Hole Binaries

    CERN Document Server

    Estes, John; Lippert, Matthew; Simonetti, John H

    2016-01-01

    Pulsars are some of the most accurate clocks found in nature, while black holes offer a unique arena for the study of quantum gravity. As such, pulsar-black hole (PSR-BH) binaries provide ideal astrophysical systems for detecting effects of quantum gravity. With the success of aLIGO and the advent of instruments like the SKA and eLISA, the prospects for discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed resolutions to the black hole information paradox. We propose using timing signals from a pulsar beam passing through the region near a BH event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a black hole lead to an increase in the measured root-mean-square deviation of arrival times of pulsar pulses traveling near the horizon. This allows for a clear observational test of the nonviolent nonlocality proposal for black hole information escape. For a ...

  8. Nobel Prize in Physics 1997 "for development of methods to cool and trap atoms with laser light" : Steven Chu, Claude Cohen-Tannoudji and William D. Phillips

    CERN Multimedia

    Audiovideo service

    1998-01-01

    Prof. C. Cohen-Tannoudji presents "manipulating atoms with light" . By using quasi-resonant exchanges of energy, linear and angular momentum between atoms and photons, it is possible to polarize atoms, to displace their energy levels and to control their position and their velocity. A few physical mechanisms allowing one to trap atoms and to cool them in the microKelvin, and even in the nanoKelvin range, will be described. Various possible applications of such ultracold atoms will be also reviewed.

  9. Stellar disruption by a supermassive black hole: is the light curve really proportional to t-5/3?

    Science.gov (United States)

    Lodato, G.; King, A. R.; Pringle, J. E.

    2009-01-01

    In this paper, we revisit the arguments for the basis of the time evolution of the flares expected to arise when a star is disrupted by a supermassive black hole. We present a simple analytic model relating the light curve to the internal density structure of the star. We thus show that the standard light curve proportional to t-5/3 only holds at late times. Close to the peak luminosity the light curve is shallower, deviating more strongly from t-5/3 for more centrally concentrated (e.g. solar type) stars. We test our model numerically by simulating the tidal disruption of several stellar models, described by simple polytropic spheres with index γ. The simulations agree with the analytical model given two considerations. First, the stars are somewhat inflated on reaching pericentre because of the effective reduction of gravity in the tidal field of the black hole. This is well described by a homologous expansion by a factor which becomes smaller as the polytropic index becomes larger. Secondly, for large polytropic indices wings appear in the tails of the energy distribution, indicating that some material is pushed further away from parabolic orbits by shocks in the tidal tails. In all our simulations, the t-5/3 light curve is achieved only at late stages. In particular, we predict that for solar-type stars, this happens only after the luminosity has dropped by at least 2mag from the peak. We discuss our results in the light of recent observations of flares in otherwise quiescent galaxies and note the dependence of these results on further parameters, such as the star/hole mass ratio and the stellar orbit.

  10. Cygnus X-1: shedding light on the spectral variability of a black hole

    CERN Document Server

    Grinberg, V; Wilms, J; Rodriguez, J; Pottschmidt, K; Nowak, M A; Böck, M; Bodaghee, A; Bel, M Cadolle; Fürst, F; Hanke, M; Kühnel, M; Laurent, P; Markoff, S B; Markowitz, A; Marcu, D M; Pooley, G G; Popp, A; Rothschild, R E; Tomsick, J A

    2013-01-01

    The knowledge of the spectral state of a black hole is essential for the interpretation of data from black holes in terms of their emission models. Based on pointed observations of Cyg X-1 with the Rossi X-ray timing Explorer (RXTE) that are used to classify simultaneous RXTE-ASM observations, we develop a scheme based on RXTE -ASM colors and count rates that can be used to classify all observations of this canonical black hole that were performed between 1996 and 2011. We show that a simple count rate criterion, as used previously, leads to a significantly higher fraction of misclassified observations. This scheme enables us to classify single INTEGRAL-IBIS science windows and to obtain summed spectra for the soft, intermediate and hard state with low contamination by other states.

  11. Optimization of generalized dielectric nanostructures for enhanced light trapping in thin-film photovoltaics via boosting the local density of optical states.

    Science.gov (United States)

    Wang, Peng; Menon, Rajesh

    2014-01-13

    Recent work has shown that using a high-index cladding atop a lower-index photovoltaic absorber enables absorption of light beyond the ergodic (4n2) limit. In this paper, we propose a generalized optimization method for deriving optimal geometries that allow for such enhancement. Specifically, we adapted the direct-binary-search algorithm to optimize a complex 2-D multi-layer structure with the explicit goal of increasing photocurrent. We show that such an optimization results in enhancing the local density of optical states in an ultra-thin absorber, which forms a slot-waveguide geometry in the presence of a higher-index overcladding. Numerical simulations confirmed optical absorption approaching 100% and absorption-enhancement beyond the ergodic (4n2) limit for specific spectral bands of interest. Our method provides a direct, intuitive and computationally scalable approach for designing light-trapping nanostructures.

  12. An efficient light trapping scheme based on textured conductive photonic crystal back reflector for performance improvement of amorphous silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Peizhuan; Hou, Guofu, E-mail: gfhou@nankai.edu.cn; Huang, Qian; Zhao, Jing; Zhang, Jianjun, E-mail: jjzhang@nankai.edu.cn; Ni, Jian; Zhang, Xiaodan; Zhao, Ying [Tianjin Key Laboratory of Photoelectronic Thin-Film Devices and Technique, Institute of Photoelectronics, Nankai University, Tianjin 300071 (China); Fan, QiHua [Department of Electrical Engineering and Computer Science, South Dakota State University, Brookings, South Dakota 57007 (United States)

    2014-08-18

    An efficient light trapping scheme named as textured conductive photonic crystal (TCPC) has been proposed and then applied as a back-reflector (BR) in n-i-p hydrogenated amorphous silicon (a-Si:H) solar cell. This TCPC BR combined a flat one-dimensional photonic crystal and a randomly textured surface of chemically etched ZnO:Al. Total efficiency enhancement was obtained thanks to the sufficient conductivity, high reflectivity and strong light scattering of the TCPC BR. Unwanted intrinsic losses of surface plasmon modes are avoided. An initial efficiency of 9.66% for a-Si:H solar cell was obtained with short-circuit current density of 14.74 mA/cm{sup 2}, fill factor of 70.3%, and open-circuit voltage of 0.932 V.

  13. Multi-scale and angular analysis of ray-optical light trapping schemes in thin-film solar cells: micro lens array, V-shaped configuration, and double parabolic trapper.

    Science.gov (United States)

    Cho, Changsoon; Lee, Jung-Yong

    2013-03-11

    An efficient light trapping scheme is a key to enhancing the power conversion efficiency (PCE) of thin-film photovoltaic (PV) cells by compensating for the insufficient light absorption. To handle optical components from nano-scale to micro-scale seamlessly, a multi-scale optical simulation is carefully designed in this study and is used to qualitatively analyze the light trapping performances of a micro lens array (MLA), a V-shaped configuration, and the newly proposed scheme, which is termed a double parabolic trapper (DPT) according to both daily and annual movement of the sun. DPT has the potential to enhance the PCE significantly, from 5.9% to 8.9%, for PCDTBT:PC(70)BM-based polymer solar cells by perfectly trapping the incident light between two parabolic PV cells.

  14. MT-1二氧化碳诱蚊器诱捕白纹伊蚊效果观察%Evaluation of the trapping effect of MT-1 carbon dioxide light-trap on adult Aedes albopictus

    Institute of Scientific and Technical Information of China (English)

    葛军旗; 张洪江; 王晨; 李书明

    2011-01-01

    Objective To evaluate the trapping effect of MT-1 carbon dioxide light-traps on adult Aedes albopictus. Methods A factorial design was conducted to compare six CO2 flow groups and one blank control at 7 sampled sites during 10 surveillance periods. The traps were placed at each sample site to collect mosquitoes, and were replaced with new devices with the flow rate adjusted every two hours between 02:00-22:00. Results (1) A total of 1122 adult mosquitoes were collected and identified as two species, including 939 Ae. Albopictus; (2) Mosquitoes were collected more efficiently in the CO2 flow groups (F=3.05, P=0.01), and the highest number of collected mosquitoes was observed at a flow rate of 6 L/min; (3) The numbers of captured Ae. Albopictus were statistically different in distinct surveillance periods (F=2.98, P=0.03), and most of them were captured during 18:00-20:00 and 04:00-06:00; (4) No difference was found in the captured Ae. Albopictus at the sample sites (F=0.47, P=0.80). Conclusion The MT-1 carbon dioxide light-traps could be used to collect adult Ae. Albopictus at a recommended CO2 flow rate of 6 L/min at dusk.%目的 评估MT-1二氧化碳(CO2)诱蚊器诱捕白纹伊蚊的效果.方法 采用析因设计方案,设6个CO2流量组和1个CO2空白对照组、10个监测时段和7个取样点,在每个取样点布放诱蚊灯,每2h调整诱蚊器的CO2流量并更换捕蚊笼,将采集到的蚊虫分类并计数,监测时间为02:00-22:00,探讨CO2流量、监测时段和取样点对MT-1 CO2诱蚊器诱捕白纹伊蚊效果的影响.结果 (1)共捕获蚊类1122只,其中白纹伊蚊占83.69%;(2)CO2流量组对白纹伊蚊的诱捕效果高于对照组(F=3.05,P=0.01),流量为6 L/min时捕获的白纹伊蚊最多;(3)不同监测时段对白纹伊蚊捕获数量的影响差异有统计学意义(F=2.98,P=0.03),18:00-20:00和04:00-06:00两个时段捕获的白纹伊蚊数量较多;(4)各取样点捕获的白纹伊蚊差异无统计学意义(F=0.47,P

  15. Synergistic effect of single-electron-trapped oxygen vacancies and carbon species on the visible light photocatalytic activity of carbon-modified TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaodong, E-mail: donguser@henu.edu.cn; Xue, Xiaoxiao; Liu, Xiaogang; Xing, Xing; Li, Qiuye; Yang, Jianjun

    2015-03-01

    Carbon-modified TiO{sub 2} (CT) nanoparticles were prepared via a two-step method of heat treatment without the resorcinol-formaldehyde (RF) polymer. As-prepared CT nanoparticles were characterized by means of X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UV–Vis/DRS), transmission electron microscopy (TEM), N{sub 2} adsorption–desorption isotherms, thermal analysis (TA), electron spin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activities were evaluated on the basis of the degradation of methyl orange (MO). The synergistic effect of single-electron-trapped oxygen vacancies (SETOVs) and the carbon species on the visible light photocatalytic activities of the CT nanoparticles were discussed. It was found that the crystalline phase, the morphology, and particle size of the CT nanoparticles depended on the second heat-treatment temperature instead of the first heat-treatment temperature. The visible light photocatalytic activities were attributed to the synergistic effect of SETOVs and the carbon species, and also depended on the specific surface area of the photocatalysts. - Highlights: • Carbon-modified TiO{sub 2} particles have been prepared without RF polymer. • The visible light photocatalytic activities of the particles have been evaluated. • The band gap energy structure of the carbon-modified TiO{sub 2} has been proposed. • Synergistic effect of SETOVs and carbon species has been discussed. • The activities also depend on the specific surface area of the catalysts.

  16. Lamp-lit bridges as dual light-traps for the night-swarming mayfly, Ephoron virgo: interaction of polarized and unpolarized light pollution.

    Science.gov (United States)

    Szaz, Denes; Horvath, Gabor; Barta, Andras; Robertson, Bruce A; Farkas, Alexandra; Egri, Adam; Tarjanyi, Nikolett; Racz, Gergely; Kriska, Gyorgy

    2015-01-01

    Ecological photopollution created by artificial night lighting can alter animal behavior and lead to population declines and biodiversity loss. Polarized light pollution is a second type of photopollution that triggers water-seeking insects to ovisposit on smooth and dark man-made objects, because they simulate the polarization signatures of natural water bodies. We document a case study of the interaction of these two forms of photopollution by conducting observations and experiments near a lamp-lit bridge over the river Danube that attracts mass swarms of the mayfly Ephoron virgo away from the river to oviposit on the asphalt road of the bridge. Millions of mayflies swarmed near bridge-lights for two weeks. We found these swarms to be composed of 99% adult females performing their upstream compensatory flight and were attracted upward toward unpolarized bridge-lamp light, and away from the horizontally polarized light trail of the river. Imaging polarimetry confirmed that the asphalt surface of the bridge was strongly and horizontally polarized, providing a supernormal ovipositional cue to Ephoron virgo, while other parts of the bridge were poor polarizers of lamplight. Collectively, we confirm that Ephoron virgo is independently attracted to both unpolarized and polarized light sources, that both types of photopollution are being produced at the bridge, and that spatial patterns of swarming and oviposition are consistent with evolved behaviors being triggered maladaptively by these two types of light pollution. We suggest solutions to bridge and lighting design that should prevent or mitigate the impacts of such scenarios in the future. The detrimental impacts of such scenarios may extend beyond Ephoron virgo.

  17. Lamp-lit bridges as dual light-traps for the night-swarming mayfly, Ephoron virgo: interaction of polarized and unpolarized light pollution.

    Directory of Open Access Journals (Sweden)

    Denes Szaz

    Full Text Available Ecological photopollution created by artificial night lighting can alter animal behavior and lead to population declines and biodiversity loss. Polarized light pollution is a second type of photopollution that triggers water-seeking insects to ovisposit on smooth and dark man-made objects, because they simulate the polarization signatures of natural water bodies. We document a case study of the interaction of these two forms of photopollution by conducting observations and experiments near a lamp-lit bridge over the river Danube that attracts mass swarms of the mayfly Ephoron virgo away from the river to oviposit on the asphalt road of the bridge. Millions of mayflies swarmed near bridge-lights for two weeks. We found these swarms to be composed of 99% adult females performing their upstream compensatory flight and were attracted upward toward unpolarized bridge-lamp light, and away from the horizontally polarized light trail of the river. Imaging polarimetry confirmed that the asphalt surface of the bridge was strongly and horizontally polarized, providing a supernormal ovipositional cue to Ephoron virgo, while other parts of the bridge were poor polarizers of lamplight. Collectively, we confirm that Ephoron virgo is independently attracted to both unpolarized and polarized light sources, that both types of photopollution are being produced at the bridge, and that spatial patterns of swarming and oviposition are consistent with evolved behaviors being triggered maladaptively by these two types of light pollution. We suggest solutions to bridge and lighting design that should prevent or mitigate the impacts of such scenarios in the future. The detrimental impacts of such scenarios may extend beyond Ephoron virgo.

  18. N-body modeling of globular clusters: Masses, mass-to-light ratios and intermediate-mass black holes

    CERN Document Server

    Baumgardt, Holger

    2016-01-01

    We have determined the masses and mass-to-light ratios of 50 Galactic globular clusters by comparing their velocity dispersion and surface brightness profiles against a large grid of 900 N-body simulations of star clusters of varying initial concentration, size and central black hole mass fraction. Our models follow the evolution of the clusters under the combined effects of stellar evolution and two-body relaxation allowing us to take the effects of mass segregation and energy equipartition between stars self-consistently into account. For a subset of 16 well observed clusters we also derive their kinematic distances. We find an average mass-to-light ratio of Galactic globular clusters of $=1.98 \\pm 0.03$, which agrees very well with the expected M/L ratio if the initial mass function of the clusters was a standard Kroupa or Chabrier mass function. We do not find evidence for a decrease of the average mass-to-light ratio with metallicity. The surface brightness and velocity dispersion profiles of most globul...

  19. Chemically modified amino porphyrin/TiO2 for the degradation of Acid Black 1 under day light illumination.

    Science.gov (United States)

    Krishnakumar, Balu; Balakrishna, Avula; Arranja, Cláudia T; Dias, Carlos M F; Sobral, Abilio J F N

    2017-04-05

    In this paper, for the first time, chemically modified 5,10,15,20-meso-tetra-(para-amino)-phenyl-porphyrin/TiO2 (TPAPP/TiO2) was prepared and used for the degradation of an azo dye Acid Black 1 (AB 1) under direct sunlight. Initially, TiO2 was prepared by sol-gel method. Before making a TPAPP/TiO2 composite, the surface modification of TiO2 was carried out with glycidoxypropyltrimethoxy silane (GPTMS) which acts as a coupling agent. This is an epoxy terminated silane and could easily bond to the amino group of TPAPP through epoxy cleavage. The formation of TPAPP/TiO2 was confirmed by different characterization techniques such as FT-IR, XRD, SEM and DRS. The photocatalytic activity of TiO2 was highly influenced by TPAPP. A mechanism was proposed for AB 1 degradation by TPAPP/TiO2 under sun light.

  20. Characterizing optical dipole trap via fluorescence of trapped cesium atoms

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; GENG Tao; YAN Shubin; LI Gang; ZHANG Jing; WANG Junmin; PENG Kunchi; ZHANG Tiancai

    2006-01-01

    Optical dipole trap (ODT) is becoming an important tool of manipulating neutral atoms. In this paper ODT is realized with a far-off resonant laser beam strongly focused in the magneto-optical trap (MOT) of cesium atoms. The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the optical dipole trap simultaneously. The advantages of our experimental scheme are discussed, and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.

  1. Optical and Magnetic Trapping of Potassium 39

    Science.gov (United States)

    Ensher, Jason; Cornell, Eric; Cataliotti, Francesco; Fort, Chiara; Marin, Francesco; Prevedelli, Marco; Inguscio, Massimo; Ricci, Leonardo; Tino, Guglielmo

    1998-05-01

    We present measurments of optical trapping and cooling and magnetic trapping of ^39K in a double-MOT apparatus. (Optics Lett. 21, 290(1996)) We have measured light-assisted collisional loss rates from our second MOT over a range of trap light intensities. At an intensity of 10 mW/cm^2 we find a loss rate parameter β of 2 x 10-11 cc/s. β increases with trap light intensity and is consistent with the values measured by Williamson and Walker (JOSA B 12, 1393 (1995)). We also present studies of the temperature of atoms in a MOT of ^39K. Under certain conditions of repump light intensity and trap light detuning we measure temperatures nearly as low as the Doppler Limit. Finally, we report on prelimiary results of magnetic trapping in which we have trapped several 10^7 atoms in a quadrupole magnetic trap.

  2. Using chemical wet-etching methods of textured AZO films on a-Si:H solar cells for efficient light trapping

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guo-Sheng; Li, Chien-Yu; Huang, Kuo-Chan; Houng, Mau-Phon, E-mail: mphoung@eembox.ncku.edu.tw

    2015-06-15

    In this paper, Al-doped ZnO (AZO) films are deposited on glasses substrate by RF magnetron sputtering. The optical, electrical and morphological properties of AZO films textured by wet-etching with different etchants, H{sub 3}PO{sub 4}, HCl, and HNO{sub 3} are studied. It is found that the textured structure could enhance the light scattering and light trapping ability of amorphous silicon solar cells. The textured AZO film etched with HNO{sub 3} exhibits optimized optical properties (T% ≧ 80% over entire wavelength, haze ratio > 40% at 550 nm wavelength) and excellent electrical properties (ρ = 5.86 × 10{sup −4} Ωcm). Scanning electron microscopy and Atomic force microscopy are used to observe surface morphology and average roughness of each textured AZO films. Finally, the textured AZO films etched by H{sub 3}PO{sub 4}, HCl and HNO{sub 3} were applied to front electrode layer for p–i–n amorphous silicon solar cells. The highest conversion efficiency of amorphous silicon solar cell fabricated on HNO{sub 3}-etched AZO film was 7.08% with open-circuit voltage, short-circuit current density and fill factor of 895 mV, 14.92 mA/cm{sup 2} and 0.56, respectively. It shows a significantly enhancement in the short-circuit current density and conversion efficiency by 16.2% and 20.2%, respectively, compared with the solar cell fabricated on as-grown AZO film. - Highlights: • The textured surface enhances light scattering and light trapping ability. • The HNO{sub 3}-etched AZO film exhibits excellent optical and electrical properties. • The efficiency of a-Si:H solar cell fabricated on HNO{sub 3}-etched AZO film was 7.08%. • The short-circuit current density enhances to 16.2%. • The conversion efficiency enhances to 20.2%.

  3. Angle-Resolved Light-Matter Interaction in Anisotropic Layered Black Phosphorus

    Science.gov (United States)

    Huang, Shengxi; Ling, Xi; Hasdeo, Eddwi; Liang, Liangbo; Parkin, William; Tatsumi, Yuki; Nugraha, Ahmad; Puretzky, Alexander; Das, Paul; Sumpter, Bobby; Geohegan, David; Kong, Jing; Saito, Riichiro; Drndic, Marija; Meunier, Vincent; Dresselhaus, Mildred

    Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride and tin selenide, stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to-date, as shown by a number of inconsistencies in the recent literature. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron-photon and electron-phonon interactions in BP. We highlight, both experimentally and theoretically, a non-trivial dependence between anisotropies and flake thickness, photon and phonon energies. We show that the anisotropic optical absorption is a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness.

  4. Unpolarized, incoherent repumping light for prevention of dark states in a trapped and laser-cooled single ion

    CERN Document Server

    Lindvall, T; Tittonen, I; Merimaa, M

    2013-01-01

    Many ion species commonly used for laser-cooled ion trapping studies have a low-lying metastable 2D3/2 state that can become populated due to spontaneous emission from the 2P1/2 excited state. This requires a repumper laser to maintain the ion in the Doppler cooling cycle. Typically the 2D3/2 state, or some of its hyperfine components if the ion has nuclear spin, has a higher multiplicity than the upper state of the repumping transition. This can lead to dark states, which have to be destabilized by an external magnetic field or by modulating the polarization of the repumper laser. We propose using unpolarized, incoherent amplified spontaneous emission (ASE) to drive the repumping transition. An ASE source offers several advantages compared to a laser. It prevents the buildup of dark states without external polarization modulation even in zero magnetic field, it can drive multiple hyperfine transitions simultaneously, and it requires no frequency stabilization. These features make it very compact and robust, ...

  5. Constructing and Using a Light Trap Harvester: Rural Technology for Mass Collection of Agoro Termites (Macrotermes subhylanus

    Directory of Open Access Journals (Sweden)

    M.A. Ayieko

    2011-02-01

    Full Text Available Entomophagy is now a growing industry in many parts of the world especially in the developing countries. Entrepreneurs in several parts of the world are making edible insects both palatable and marketable for income generation. The traditional use of insects as food continues to be widespread in tropical and subtropical countries and to provide significant nutritional, economic and ecological benefits for rural communities. Consumption of insects is considered to be a more efficient use of the world's resources to feed the growing population. Insect consumption is growing in many parts of the world and the winged termite in particular is consumed widely in various part of East Africa especially in the western part of Kenya. The traditional methods of collecting these termites vary considerably from one region to another. This paper highlights the indigenous ways of collecting Macrotermes subhylanus locally known as Agoro in the Lake Victoria region. The method was developed by integrating modern technology and the indigenous technological knowledge. The variation in the yield of the sample of Agoro mounds selected and the traps used are presented and discussed.

  6. 某国四发动机冒黑烟市场问题攻关%China four light truck black smoke problem research

    Institute of Scientific and Technical Information of China (English)

    许高杰

    2016-01-01

    Four emissions of light trucks in particular conditions will appear black smoke. After investigation, research, and successfully solve the market problems.%某国四排放的轻卡在特定工况时会出现冒黑烟的情况。经过调查,攻关,顺利解决市场问题。

  7. Kinetics of Light-Induced cis-trans Isomerization of Four Piperines and their Levels in Ground Black Peppers as Determined by HPLC and LC/MS

    Science.gov (United States)

    The pungent compound piperine, a secondary metabolite present in black, white, and green pepper fruit, undergoes light-induced isomerizations. To facilitate studies in this area, an HPLC method has been developed for analysis and isolation of the following four possible piperine photo-induced isomer...

  8. Novel EUV mask black border suppressing EUV and DUV OoB light reflection

    Science.gov (United States)

    Ito, Shin; Kodera, Yutaka; Fukugami, Norihito; Komizo, Toru; Maruyama, Shingo; Watanabe, Genta; Yoshida, Itaru; Kotani, Jun; Konishi, Toshio; Haraguchi, Takashi

    2016-05-01

    EUV lithography is the most promising technology for semiconductor device manufacturing of the 10nm node and beyond. The image border is a pattern free dark area around the die on the photomask serving as transition area between the parts of the mask that is shielded from the exposure light by the Reticle Masking (REMA) blades and the die. When printing a die at dense spacing on an EUV scanner, the reflection from the image border overlaps edges of neighboring dies, affecting CD and contrast in this area. This is related to the fact that EUV absorber stack reflects 1-3% of actinic EUV light. To reduce this effect several types of image border with reduced EUV reflectance (CDU contributors in this area. Finally, we state that HBB is a promising technology allowing for CD control at die edges.

  9. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon

    Directory of Open Access Journals (Sweden)

    D. A. Lack

    2010-01-01

    Full Text Available The presence of clear coatings on atmospheric black carbon (BC particles is known to enhance the magnitude of light absorption by the BC cores. Based on calculations using core/shell Mie theory, we demonstrate the enhancement of light absorption (EAbs by atmospheric black carbon (BC when coated in mildly absorbing material (CBrown is reduced, relative to the enhancement by non-absorbing coatings (CClear. This reduction, sensitive to CBrown shell thickness and imaginary refractive index (RI, can be up to 50% for 400 nm radiation and 25% averaged across the visible radiation spectrum for reasonable core/shell diameters. The enhanced direct radiative forcing possible due to the enhancement effect of CClear is therefore reduced if the coating is absorbing. Additionally, the need to explicitly treat BC as an internal, as opposed to external, mixture with CBrown is shown to be important to the calculated single scatter albedo only whensub models treat BC as large spherical cores (>50 nm. For smaller BC cores (or fractal agglomerates consideration of the BC and CBrown as an external mixture leads to relatively small errors in the particle single scatter albedo of <0.03. It is often assumed that observation of an absorption Angstrom exponent (AAE >1 indicates non-BC absorption. Here, it is shown that BC cores coated in CClearcan reasonably have an AAE of up to 1.6, a result that complicates the attribution of observed light absorption to CBrown within ambient particles. However, an AAE<1.6 does not exclude the possibility of CBrown, rather CBrown cannot be confidently assigned unless AAE>1.6. Comparison of these results to some ambient AAE data shows that large-scale attribution of CBrown is a challenging task using current in-situ measurement methods. We suggest that coincident measurements of particle core and

  10. Etching process optimization using NH{sub 4}Cl aqueous solution to texture ZnO:Al films for efficient light trapping in flexible thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S., E-mail: susanamaria.fernandez@ciemat.es [CIEMAT, Departamento de Energias Renovables, Madrid (Spain); Abril, O. de [ISOM and Departamento de Fisica Aplicada, Escuela Tecnica Superior de Ingenieros de Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica, Universidad de Alcala, Departamento de Electronica, Alcala de Henares, Madrid (Spain); Gandia, J.J. [CIEMAT, Departamento de Energias Renovables, Madrid (Spain)

    2012-04-02

    0.5 {mu}m-thick aluminum-doped zinc oxide (ZnO:Al) films were deposited at 100 Degree-Sign C on polyethylene terephthalate substrates by Radio Frequency magnetron sputtering. The as-deposited films were compact and dense, showing grain sizes of 32.0 {+-} 6.4 nm and resistivities of (8.5 {+-} 0.7) Multiplication-Sign 10{sup -4} {Omega} cm. The average transmittance in the visible wavelength range of the structure ZnO:Al/PET was around 77%. The capability of a novel two-step chemical etching using diluted NH{sub 4}Cl aqueous solution to achieve efficient textured surfaces for light trapping was analyzed. The results indicated that both the aqueous solution and the etching method resulted appropriated to obtain etched surfaces with a surface roughness of 32 {+-} 5 nm, haze factors at 500 nm of 9% and light scattering at angles up to 50 Degree-Sign . To validate all these results, a commercially ITO coated PET substrate was used for comparison.

  11. Broad-Band Photocurrent Enhancement in MoS2 Layers Directly Grown on Light-Trapping Si Nanocone Arrays.

    Science.gov (United States)

    Cho, Yunae; Cho, Byungjin; Kim, Yonghun; Lee, Jihye; Kim, Eunah; Nguyen, Trang Thi Thu; Lee, Ju Hyun; Yoon, Seokhyun; Kim, Dong-Ho; Choi, Jun-Hyuk; Kim, Dong-Wook

    2017-02-22

    There has been growing research interest in realizing optoelectronic devices based on the two-dimensional atomically thin semiconductor MoS2 owing to its distinct physical properties that set it apart from conventional semiconductors. However, there is little optical absorption in these extremely thin MoS2 layers, which presents an obstacle toward applying them for use in high-efficiency light-absorbing devices. We synthesized trilayers of MoS2 directly on SiO2/Si nanocone (NC) arrays using chemical vapor deposition and investigated their photodetection characteristics. The photoresponsivity of the MoS2/NC structure was much higher than that of the flat counterpart across the whole visible wavelength range (for example, it was almost an order of magnitude higher at λ = 532 nm). Strongly concentrated light near the surface that originated from a Fabry-Perot interference in the SiO2 thin layers and a Mie-like resonance caused by the Si NCs boosted the optical absorption in MoS2. Our work demonstrates that MoS2/NC structures could provide a useful means to realize high-performance optoelectronic devices.

  12. PEDOT:PSS with embedded TiO2 nanoparticles as light trapping electrode for organic photovoltaics

    Science.gov (United States)

    Park, Yoonseok; Müller-Meskamp, Lars; Vandewal, Koen; Leo, Karl

    2016-06-01

    The performance of organic optoelectronic devices can be improved by employing a suitable optical cavity design beyond the standard plane layer approach, e.g., by the inclusion of periodically or randomly textured structures which increase light incoupling or extraction. One of the simplest approaches is to add an additional layer containing light scattering particles into the device stack. Solution processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin films are promising for replacing the brittle and expensive indium tin oxide transparent electrode. We use a blend of 100 nm TiO2 scattering particles in PEDOT:PSS solution to fabricate transparent electrode films which also functions as a scattering layer. When utilized in an organic photovoltaic device, a power conversion efficiency of 7.92% is achieved, which is an 8.6% relative improvement compared to a device with a neat PEDOT:PSS electrode without the nanoparticles. This improvement is caused by an increase in short-circuit current due to an improved photon harvesting in the 320 nm-700 nm spectral wavelength range.

  13. 一种太阳电池纳米陷光结构的制备方法%Preparing method of nano-light trapping structure for solar cells

    Institute of Scientific and Technical Information of China (English)

    张福庆; 程广贵; 郭立强; 凌智勇; 张忠强; 袁宁一; 丁建宁

    2013-01-01

    提出了一种利用石墨纳米颗粒作为掩膜,通过金属辅助刻蚀来制备具有低反射率的太阳电池纳米陷光结构的方法。用该方法制得了一种表面覆盖有纳米线和纳米孔的太阳电池纳米陷光结构。结合金属辅助刻蚀的机制和这种陷光结构的形成原理,分析了石墨纳米颗粒和 H2 O2浓度对陷光结构形貌的影响,并讨论了陷光结构的形貌对样品陷光性能的影响。最后,制得了在300~1100nm波长范围内平均反射率仅为3.6%的太阳电池陷光层。%In this paper,a method for preparing a low reflectivity nano-light trapping structure of solar cell was proposed.We used graphite nanoparticles (GNPs)as a mask,afterwards,the metal assisted etching method was used to prepare the nano-light trapping structure.By this method,a nano-light trapping structure of solar cell was obtained,which was covered with nanowires and nanoholes.According to the metal-assisted etching mechanism and the formation principle of this light trapping structure,the influences on different morphologies of the light trapping structure prepared under different GNPs and H2 O2 concentrations were analyzed.And the morphology’s impacts of the light trapping structure on antireflection were discussed.Finally,only 3 .6% re-flectance of the light trapping layer in the range of 300-1100nm was obtained.

  14. Revisited design optimization of metallic gratings for plasmonic light-trapping enhancement in thin organic solar cells

    Science.gov (United States)

    Toan Dang, Phuc; Nguyen, Truong Khang; Le, Khai Q.

    2017-01-01

    We revisit previous studies of metallic gratings for optical absorption enhancement in an organic solar cell with a thin active layer. Our device geometry is designed for a real solar cell with full of functional layers. Various metallic gratings calibrated to generate periodic scatterers and low reflectors for broadband light account for increases in short circuit current density of up to 47% when compared to its flat counterpart. We found that the tapered grating has greater performance than the regular rectangular grating for transverse magnetic (TM) polarization while the latter shows better performance for transverse electric (TE) polarization. The overall metallic grating induced absorption enhancement was found at all angles of incidence. The best configuration was realized for the tapered grating-based solar cell at 25° of inclination.

  15. Constructing Black Titania with Unique Nanocage Structure for Solar Desalination.

    Science.gov (United States)

    Zhu, Guilian; Xu, Jijian; Zhao, Wenli; Huang, Fuqiang

    2016-11-23

    Solar desalination driven by solar radiation as heat source is freely available, however, hindered by low efficiency. Herein, we first design and synthesize black titania with a unique nanocage structure simultaneously with light trapping effect to enhance light harvesting, well-crystallized interconnected nanograins to accelerate the heat transfer from titania to water and with opening mesopores (4-10 nm) to facilitate the permeation of water vapor. Furthermore, the coated self-floating black titania nanocages film localizes the temperature increase at the water-air interface rather than uniformly heating the bulk of the water, which ultimately results in a solar-thermal conversion efficiency as high as 70.9% under a simulated solar light with an intensity of 1 kW m(-2) (1 sun). This finding should inspire new black materials with rationally designed structure for superior solar desalination performance.

  16. A comparison of gravid and under-house CO2-baited CDC light traps for mosquito species of public health importance in Houston, Texas.

    Science.gov (United States)

    White, Stephanie L; Ward, Michael P; Budke, Christine M; Cyr, Tracy; Bueno, Rudy

    2009-11-01

    The relative efficacy of gravid and under-house CO2 traps for monitoring mosquito species of public health importance within the Houston metroplex area was assessed. Gravid and under-house traps were colocated at 10 sites and monitored weekly between 1 March to 31 May 2007. The most numerous species caught was Culex pipiens quinquefasciatus Say. Other species of public health importance caught in gravid and under-house traps included Culex restuans Theobald, Aedes aegypti (L.), and Aedes albopictus Skuse. Adjusting for the week of collection, gravid traps caught significantly more mosquitoes (mean 23.1 per trap) in the study area than under-house traps (mean 3.6 per trap). However, under-house traps caught a greater variety of mosquito species (13) than gravid traps (11). Gravid and under-house traps only caught nine of 15 of the same mosquito species during the study period. In this study area, gravid traps should be used as the primary method of surveillance for mosquito-borne diseases of public health importance during the early part of the season, because of greater catch numbers of mosquitoes that pose a public health risk.

  17. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China – interpretations of atmospheric measurements during EAST-AIRE

    Directory of Open Access Journals (Sweden)

    M. Yang

    2009-03-01

    Full Text Available Black carbon, brown carbon, and mineral dust are three of the most important light absorbing aerosols. Their optical properties differ greatly and are distinctive functions of the wavelength of light. Most optical instruments that quantify light absorption, however, are unable to distinguish one type of absorbing aerosol from another. It is thus instructive to separate total absorption from these different light absorbers to gain a better understanding of the optical characteristics of each aerosol type. During the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment campaign near Beijing, we measured light scattering using a nephelometer, and light absorption using an aethalometer and a particulate soot absorption photometer. We also measured the total mass concentrations of carbonaceous (elemental and organic carbon and inorganic particulates, as well as aerosol number and mass distributions. We were able to identify periods during the campaign that were dominated by dust, biomass burning, fresh (industrial chimney plumes, other coal burning pollution, and relatively clean (background air for Northern China. Each of these air masses possessed distinct intensive optical properties, including the single scatter albedo and Ångstrom exponents. Based on the wavelength-dependence and particle size distribution, we apportioned total light absorption to black carbon, brown carbon, and dust; their mass absorption efficiencies at 550 nm were estimated to be 9.5, 0.5 (a lower limit value, and 0.03 m2/g, respectively. While agreeing with the common consensus that black carbon is the most important light absorber in the mid-visible, we demonstrated that brown carbon and dust could also cause significant absorption, especially at shorter wavelengths.

  18. Generation of Free OHaq Radicals by Black Light Illumination of Degussa (Evonik P25 TiO2 Aqueous Suspensions

    Directory of Open Access Journals (Sweden)

    Torbjörn Reitberger

    2013-04-01

    Full Text Available This work demonstrates how formation of strongly chemiluminescent 3-hydroxyphthalic hydrazide by hydroxylation of non-chemiluminescent phthalic hydrazide can be applied as a selective reaction probe to obtain information on authentic hydroxyl radical, i.e., •OHaq, formation, in black light illuminated Degussa P25 TiO2 aerated suspensions in the pH range from 3 to 11. The •OHaq formation was found to be strongly pH dependent. At alkaline pH, the apparent quantum efficiency of •OHaq formation was estimated to be at the ~10−2 level whereas at acidic pH it was near zero. Addition of phosphate and fluoride ions substantially enhanced the •OHaq production in the acidic pH range. It is suggested that •OHaq-radical formation in TiO2 photocatalysis can occur by oxidation of hydroxyl ions in the water layer adsorbed on TiO2 surfaces.

  19. Tight control of light trapping in surface addressable photonic crystal membranes: application to spectrally and spatially selective optical devices (Conference Presentation)

    Science.gov (United States)

    Letartre, Xavier; Blanchard, Cédric; Grillet, Christian; Jamois, Cécile; Leclercq, Jean-Louis; Viktorovitch, Pierre

    2016-04-01

    Surface addressable Photonic Crystal Membranes (PCM) are 1D or 2D photonic crystals formed in a slab waveguides where Bloch modes located above the light line are exploited. These modes are responsible for resonances in the reflection spectrum whose bandwidth can be adjusted at will. These resonances result from the coupling between a guided mode of the membrane and a free-space mode through the pattern of the photonic crystal. If broadband, these structures represent an ideal mirror to form compact vertical microcavity with 3D confinement of photons and polarization selectivity. Among numerous devices, low threshold VCSELs with remarkable and tunable modal properties have been demonstrated. Narrow band PCMs (or high Q resonators) have also been extensively used for surface addressable optoelectronic devices where an active material is embedded into the membrane, leading to the demonstration of low threshold surface emitting lasers, nonlinear bistables, optical traps... In this presentation, we will describe the main physical rules which govern the lifetime of photons in these resonant modes. More specifically, it will be emphasized that the Q factor of the PCM is determined, to the first order, by the integral overlap between the electromagnetic field distributions of the guided and free space modes and of the dielectric periodic perturbation which is applied to the homogeneous membrane to get the photonic crystal. It turns out that the symmetries of these distributions are of prime importance for the strength of the resonance. It will be shown that, by molding in-plane or vertical symmetries of Bloch modes, spectrally and spatially selective light absorbers or emitters can be designed. First proof of concept devices will be also presented.

  20. Enhancing Light-Trapping Properties of Amorphous Si Thin-Film Solar Cells Containing High-Reflective Silver Conductors Fabricated Using a Nonvacuum Process

    Directory of Open Access Journals (Sweden)

    Jun-Chin Liu

    2014-01-01

    Full Text Available We proposed a low-cost and highly reflective liquid organic sheet silver conductor using back contact reflectors in amorphous silicon (a-Si single junction superstrate configuration thin-film solar cells produced using a nonvacuum screen printing process. A comparison of silver conductor samples with vacuum-system-sputtered silver samples indicated that the short-circuit current density (Jsc of sheet silver conductor cells was higher than 1.25 mA/cm2. Using external quantum efficiency measurements, the sheet silver conductor using back contact reflectors in cells was observed to effectively enhance the light-trapping ability in a long wavelength region (between 600 nm and 800 nm. Consequently, we achieved an optimal initial active area efficiency and module conversion efficiency of 9.02% and 6.55%, respectively, for the a-Si solar cells. The results indicated that the highly reflective sheet silver conductor back contact reflector layer prepared using a nonvacuum process is a suitable candidate for high-performance a-Si thin-film solar cells.

  1. Optimal design of light trapping in thin-film solar cells enhanced with graded SiNx and SiOxNy structure.

    Science.gov (United States)

    Zhao, Yongxiang; Chen, Fei; Shen, Qiang; Zhang, Lianmeng

    2012-05-07

    In this paper, a graded SiNx and SiOxNy structure is proposed as antireflection coatings deposited on top of amorphous silicon (α-Si) thin-film solar cell. The structural parameters are optimized by differential evolution in order to enhance the optical absorption of solar cells to the greatest degree. The optimal design result demonstrates that the nonlinear profile of dielectric constant is superior to the linear profile, and discrete multilayer graded antireflection coatings can outperform near continuously graded antireflection coatings. What's more, the electric field intensity distributions clearly demonstrate the proposed graded SiNx and SiOxNy structure can remarkably increase the magnitude of electric field of a-Si:H layer and hence, enhance the light trapping of a-Si:H thin-film solar cells in the whole visible and near-infrared spectrum. Finally, we have compared the optical absorption enhancements of proposed graded SiNx and SiOxNy structure with nanoparticles structure, and demonstrated that it can result in higher enhancements compared to the dielectric SiC and TiO2 nanoparticles. We have shown that the optimal graded SiNx and SiOxNy structure optimized by differential evolution can reach 33.31% enhancement which has exceeded the ideal limit of 32% of nanoparticles structure including plasmonic Ag nanoparticles, dielectric SiC and TiO2 nanoparticles.

  2. Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates

    Energy Technology Data Exchange (ETDEWEB)

    Springer, J. [Forschungszentrum Julich GmbH, Julich (Germany). Institute of Photovoltaics; Academy of Sciences of the Czech Republic, Prague (Czech Republic). Institute of Physics; Rech, B.; Reetz, W.; Muller, J. [Forschungszentrum Julich GmbH, Julich (Germany). Institute of Photovoltaics; Vanecek, M. [Academy of Sciences of the Czech Republic, Prague (Czech Republic). Institute of Physics

    2005-01-01

    Influence of front TCO thickness, surface texture and different back reflectors on short-circuit current density and fill factor of thin film silicon solar cells were investigated. For the front TCO studies, we used ZnO layers of different thickness and applied wet chemical etching in diluted HCl. This approach allowed us to adjust ZnO texture and thickness almost independently. Additionally, we used optical modeling to calculate optical absorption losses in every layer. Results show that texture and thickness reduction of front ZnO increase quantum efficiency over the whole spectral range. The major gain is in the red/IR region. However, the higher sheet resistance of the thin ZnO causes a reduction in fill factor. In the back reflector studies, we compared four different back reflectors: ZnO/Ag, Ag, ZnO/Al and Al. ZnO/Ag yielded the best, Al the worst light trapping properties. Furthermore, the Ag back contact turned out to be superior to ZnO/Al for microcrystalline cells. Finally, the smooth ZnO/Ag back contact showed a higher reflectivity than the rough one. We prepared pin cells with rough and smooth ZnO/Ag interface, leaving the roughness of all other interfaces unchanged. (author)

  3. Simulation and measurement of complete dye sensitised solar cells: including the influence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient device behaviour.

    Science.gov (United States)

    Barnes, Piers R F; Anderson, Assaf Y; Durrant, James R; O'Regan, Brian C

    2011-04-07

    A numerical model of the dye sensitised solar cell (DSSC) is used to assess the importance of different loss pathways under various operational conditions. Based on our current understanding, the simulation describes the processes of injection, regeneration, recombination and transport of electrons, oxidised dye molecules and electrolyte within complete devices to give both time dependent and independent descriptions of performance. The results indicate that the flux of electrons lost from the nanocrystalline TiO(2) film is typically at least twice as large under conditions equivalent to 1 sun relative to dark conditions at matched TiO(2) charge concentration. This is in agreement with experimental observations (Barnes et al. Phys. Chem. Chem. Phys. [DOI: 10.1039/c0cp01855d]). The simulated difference in recombination flux is shown to be due to variation in the concentration profile of electron accepting species in the TiO(2) pores between light and dark conditions and to recombination to oxidised dyes in the light. The model is able to easily incorporate non-ideal behaviour of a cell such as the variation of open circuit potential with light intensity and non-first order recombination of conduction band electrons. The time dependent simulations, described by the multiple trapping model of electron transport and recombination, show good agreement with both small and large transient photocurrent and photovoltage measurements at open circuit, including photovoltage rise measurements. The simulation of photovoltage rise also suggests the possibility of assessing the interfacial resistance between the TiO(2) and substrate. When cells with a short diffusion length relative to film thickness were modelled, the simulated small perturbation photocurrent transients at short circuit (but not open circuit) yielded significantly higher effective diffusion coefficients than expected from the mean concentration of electrons and the electrolyte in the cell. This implies that

  4. Trapping molecules on chips

    CERN Document Server

    Santambrogio, Gabriele

    2015-01-01

    In the last years, it was demonstrated that neutral molecules can be loaded on a microchip directly from a supersonic beam. The molecules are confined in microscopic traps that can be moved smoothly over the surface of the chip. Once the molecules are trapped, they can be decelerated to a standstill, for instance, or pumped into selected quantum states by laser light or microwaves. Molecules are detected on the chip by time-resolved spatial imaging, which allows for the study of the distribution in the phase space of the molecular ensemble.

  5. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  6. 3D characterization of the forces in optical traps based on counter-propagation beams shaped by a spatial light modulator

    DEFF Research Database (Denmark)

    Kristensen, M. V.; Lindballe, T.; Kylling, A.

    2010-01-01

    An experimental characterization of the 3D forces, acting on a trapped polystyrene bead in a counter-propagating beam geometry, is reported. Using a single optical trap with a large working distance (in the BioPhotonics Workstation), we simultaneously measure the transverse and longitudinal trapp...... power of 2x35 mW) for displacements in opposite directions. The Equipartition method is limited by mechanical noise and is shown to be applicable only when the total laser power in a single 10 µm counter-propagating trap is below 2x20 mW....... trapping force constants. Two different methods were used: The Drag force method and the Equipartition method. We show that the counterpropagating beams traps are simple harmonic for small displacements. The force constants reveal a transverse asymmetry as - = 9.7 pN/µm and + = 11.3 pN/µm (at a total laser...

  7. The Aarhus Ion Micro-Trap Project

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Nielsen, Otto; Poulsen, Gregers

    and installed in an ultra high vacuum chamber, which includes an ablation oven for all-optical loading of the trap [2]. The next steps on the project are to demonstrate the operation of the micro-trap and the cooling of ions using fiber delivered light. [1] D. Grant, Development of Micro-Scale Ion traps, Master...

  8. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China – interpretations of atmospheric measurements during EAST-AIRE

    Directory of Open Access Journals (Sweden)

    B. J. Huebert

    2008-06-01

    Full Text Available Black carbon, brown carbon, and mineral dust are three of the most important light absorbing aerosols. Their optical properties differ greatly and are distinctive functions of the wavelength of light. Most optical instruments that quantify light absorption, however, are unable to distinguish one type of absorbing aerosol from another. It is thus instructive to separate total absorption from these different light absorbers to gain a better understanding of the optical characteristics of each aerosol type. During the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment campaign near Beijing, we measured light scattering using a nephelometer, and light absorption using an aethalometer and a particulate soot absorption photometer. We also measured the total mass concentrations of carbonaceous (elemental and organic carbon and inorganic particulates, as well as aerosol number and mass distributions. We were able to identify periods during the campaign that were dominated by dust, biomass burning, fresh (industrial chimney plumes, other coal burning pollution, and relatively clean (background air for Northern China. Each of these air masses possessed distinct intensive optical properties, including the single scatter albedo and Ångstrom exponents. Based on the wavelength-dependence and particle size distribution, we apportioned total light absorption to black carbon, brown carbon, and dust; their mass absorption efficiencies at 550 nm were estimated to be 9.5, 0.5, and 0.03 m2/g, respectively. While agreeing with the common consensus that BC is the most important light absorber in the mid-visible, we demonstrated that brown carbon and dust could also cause significant absorption, especially at shorter wavelengths.

  9. Comparative performance of the Mbita trap, CDC light trap and the human landing catch in the sampling of Anopheles arabiensis, An. funestus and culicine species in a rice irrigation in western Kenya

    NARCIS (Netherlands)

    Mathenge, E.M.; Misiani, G.O.; Oulo, D.O.; Irungu, L.W.; Ndegwa, P.N.; Smith, T.A.; Killeen, G.F.; Knols, B.G.J.

    2005-01-01

    Background: Mosquitoes sampling is an important component in malaria control. However, most of the methods used have several shortcomings and hence there is a need to develop and calibrate new methods. The Mbita trap for capturing host-seeking mosquitoes was recently developed and successfully teste

  10. High-performance infrared light trapping in nano-needle structured p⁺ SnOx (x  ≤  1)/thin film n-Ge photodiodes on Si.

    Science.gov (United States)

    Wang, Xiaoxin; Wong, Andrew; Malek, Stephanie; Cai, Yan; Liu, Jifeng

    2015-06-01

    We report nano-needle structured conductive SnOx (x≤1) as a self-assembled electrode for high-efficiency light trapping in thin-film infrared (IR) photonic devices, benefiting from the high scattering efficiency, high density, and low IR loss of the nano-needles. We demonstrate a 2.2× responsivity enhancement for a 1.5-μm-thick Ge absorber in a nano-needled p(+) SnOx/n-Ge photodiode on Si at λ=1580  nm, in good agreement with theoretical calculation of 2.3× enhancement assuming no IR loss in the nano-needles. Such low-loss light trapping can potentially enable 15-30× absorption enhancement at λ=1600-1650  nm in the Ge layer when integrated with a perfect rear reflector.

  11. Light

    DEFF Research Database (Denmark)

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  12. Symmetry breaking and light-induced spin-state trapping in a mononuclear FeII complex with the two-step thermal conversion

    Science.gov (United States)

    Buron-Le Cointe, M.; Ould Moussa, N.; Trzop, E.; Moréac, A.; Molnar, G.; Toupet, L.; Bousseksou, A.; Létard, J. F.; Matouzenko, G. S.

    2010-12-01

    Crystallographic, magnetic, and Raman investigations of the mononuclear [FeII(Hpy-DAPP)](BF4)2 complex are presented. Its particular feature is a two-step thermal spin conversion in spite of a unique symmetry-independent iron site per unit cell. The plateau around 140 K is associated with a symmetry breaking visible by the appearance of weak (0k0) k odd Bragg peaks. Symmetries of the high-temperature high-spin state and of the low-temperature low-spin state are both monoclinic P21/c , so that the symmetry breaking on the plateau is associated with a reentrant phase transition. It is discussed in relation with Ising-type microscopic models. At the plateau level, the two symmetry-independent molecules differ both by their spin state and the conformation (chair versus twist-boat) of one metallocycle. At low-temperature photoinduced phenomena have been investigated: a partial phototransformation [light-induced excited spin-state trapping (LIESST) effect] is observed under visible red irradiation. Raman spectroscopy shows that the molecular photoinduced state is the high-spin one. Nevertheless, as no macroscopic symmetry breaking is observed, the unique average cationic [FeII(Hpy-DAPP)] state of the unit cell is intermediate between pure low-spin and high-spin states and presents a conformational disorder for one metallocycle. Reverse-LIESST has also been evidenced using near infrared excitation. Thus, the mononuclear [Fe(Hpy-DAPP)](BF4)2 compound offers the opportunity to discuss the interplay between spin conversion, molecular conformational change, and ordering processes.

  13. Relative Efficacy of CDC and UV Light-traps for Indoor Collection of Culex (Cx.) tritaeniorhychus in Yunnan, P.R.China%云南人房三带喙库蚊CDC和UV诱蚊灯捕捉效果观察

    Institute of Scientific and Technical Information of China (English)

    周红宁; Sarah Pettifor; Nigel Hill; 肖育江; 杜尊伟; 李鸿宾; 张再兴

    2004-01-01

    目的评估CDC和UV诱蚊灯夜间人房三带喙库蚊捕捉效果.方法根据拉丁方设计方案,把诱蚊灯置于寝室和客厅,每晚轮流置灯.结果共捕获库蚊属蚊虫6种624只.其中三带喙库蚊属于最常见的蚊种(419只);CDC和UV灯捕捉蚊虫效果差异无显著性,但当地降雨量与CDC捕捉效果存在较强的正相关关系,而与UV灯捕蚊效果呈弱的负相关.结论无论是CDC诱蚊灯还是UV诱蚊灯都可以作为云南省三带喙库蚊种群密度监测的有效方法.%Objective The efficacy of CDC and UV traps for the coll ection of Culex (Cx.) tritaeniorhynchus was evaluated in overnight in door c ollection. Method The traps were placed in bedrooms and sittin g rooms and rotated nightly approximately following a Latin square design. Results A total of 624 mosquitoes of the genera Culex were trapped comprising 6 species. Most common was Cx.tritaeniorhynchus with 419 individuals trapped. There was no significant difference in the efficiency of CDC and UV traps although there was a stronger positive correlati on between mosquitoes collected in CDC lamps and rainfall, whereas, there was a weak negative correlation between UV lamps and local rainfall. Conclusio n We suggest that either CDC or UV light traps provide an efficient met hod to monitor the population of Cx.tritaniorhychus in Yunnan province.

  14. Light or heavy supermassive black hole seeds: the role of internal rotation in the fate of supermassive stars

    Science.gov (United States)

    Fiacconi, Davide; Rossi, Elena M.

    2017-01-01

    Supermassive black holes are a key ingredient of galaxy evolution. However, their origin is still highly debated. In one of the leading formation scenarios, a black hole of ˜100 M⊙ results from the collapse of the inner core of a supermassive star (≳104-5 M⊙), created by the rapid accumulation (≳0.1 M⊙ yr-1) of pristine gas at the centre of newly formed galaxies at z ˜ 15. The subsequent evolution is still speculative: the remaining gas in the supermassive star can either directly plunge into the nascent black hole or part of it can form a central accretion disc, whose luminosity sustains a surrounding, massive, and nearly hydrostatic envelope (a system called a `quasi-star'). To address this point, we consider the effect of rotation on a quasi-star, as angular momentum is inevitably transported towards the galactic nucleus by the accumulating gas. Using a model for the internal redistribution of angular momentum that qualitatively matches results from simulations of rotating convective stellar envelopes, we show that quasi-stars with an envelope mass greater than a few 105 M_{⊙} × (black hole mass/100 M_{⊙})^{0.82} have highly sub-Keplerian gas motion in their core, preventing gas circularization outside the black hole's horizon. Less massive quasi-stars could form but last for only ≲104 yr before the accretion luminosity unbinds the envelope, suppressing the black hole growth. We speculate that this might eventually lead to a dual black hole seed population: (i) massive (>104 M⊙) seeds formed in the most massive (>108 M⊙) and rare haloes; (ii) lighter (˜102 M⊙) seeds to be found in less massive and therefore more common haloes.

  15. Light or heavy supermassive black hole seeds: the role of internal rotation in the fate of supermassive stars

    Science.gov (United States)

    Fiacconi, Davide; Rossi, Elena M.

    2016-10-01

    Supermassive black holes are a key ingredient of galaxy evolution. However, their origin is still highly debated. In one of the leading formation scenarios, a black hole of ˜100 M⊙ results from the collapse of the inner core of a supermassive star (≳ 104 - 5 M⊙), created by the rapid accumulation (≳ 0.1 M⊙ yr-1) of pristine gas at the centre of newly formed galaxies at z ˜ 15. The subsequent evolution is still speculative: the remaining gas in the supermassive star can either directly plunge into the nascent black hole, or part of it can form a central accretion disc, whose luminosity sustains a surrounding, massive, and nearly hydrostatic envelope (a system called a "quasi-star"). To address this point, we consider the effect of rotation on a quasi-star, as angular momentum is inevitably transported towards the galactic nucleus by the accumulating gas. Using a model for the internal redistribution of angular momentum that qualitative matches results from simulations of rotating convective stellar envelopes, we show that quasi-stars with an envelope mass greater than a few 105 M⊙ × black hole mass/100 M⊙)0.82 have highly sub-keplerian gas motion in their core, preventing gas circularisation outside the black hole's horizon. Less massive quasi-stars could form but last for only ≲ 104 years before the accretion luminosity unbinds the envelope, suppressing the black hole growth. We speculate that this might eventually lead to a dual black hole seed population: (i) massive (>104 M⊙) seeds formed in the most massive (>108 M⊙) and rare haloes; (ii) lighter (˜102 M⊙) seeds to be found in less massive and therefore more common haloes.

  16. Locust induced trapping experiment based on coupling effect of air disturbance stimulation and spectrum light source%气扰刺激与波谱光源耦合作用下蝗虫的诱导捕集试验

    Institute of Scientific and Technical Information of China (English)

    王立新; 牛虎力; 周强

    2014-01-01

    Control for locusts traditionally replies on chemical insecticide. However, the chemical insecticide has lead to serious environment pollution. A growing awareness of the environmental issues associated with insecticide control has expanded the demand for technologies that can not only control the plague locusts but also avoid the pollution. One of the recently proposed technologies is photoelectric inducing-trapping plague locust based on the phototaxis property of locusts. For the application of this technology, to obtain a light source that can induce high phototaxis efficiency for locusts is a key to high efficiency of locust trap. Therefore, this study compared phototaxis behaviors of locusts with respect to different wavelengths (465 nm, 520 nm, 630 nm, and 395-720 nm) using Light Emitting Diode (LED) arrays as light sources and the photoelectric inducing-trapping plague locust machine designed by ourselves in a locust phototactic behavior experiment and a locust inducing-trapping experiment in order to provide optimized parameters for design of light source. The experiments were carried out at 20:00-21:00 pm (60 min) in a locust (Locusta migratoria manilensis) breeding area of Shijiazhuang, China. During the test of locust phototactic behaviors, an air disturbance stimulation source (air blower) was utilized as supplementary of the light sources. Phototactic moving displacement, average phototactic moving velocity, inducing ratio, inducing efficiency and capturing ratio were determined to evaluate the phototactic property of locust and the trapping efficiency of photoelectric inducing-trapping plague locust machine with stimulations of different-spectra light source and air disturbance source. Results showed that compared with the other light sources, blue (465 nm) and white (395-720 nm) light had induced locust movement in a clearer direction and at a higher velocity, and hence more locusts gathered around the light sources. Air disturbance stimulation

  17. 用空间光调制器产生三维光阱阵列%Generation of the three-dimensional array of optical trap by spatial light modulator

    Institute of Scientific and Technical Information of China (English)

    徐淑武; 周巧巧; 顾宋博; 纪宪明; 印建平

    2012-01-01

    In this paper, a new scheme of generating a three-dimensional array of optical trap is proposed by using a composite phase grating that is fabricated by liquid crystal spatial light modulator. The composite phase grating is formed by combining the circular grating, which is generated by transforming a one-dimensional rectangular grating into a circular grating that can produce the longitudinal array of optical trap, with a two-dimensional rectangular grating. The grating that generates 5 × 5× 5 array of optical trap is simulated according to the technical parameters of the spatial light modulator. The output intensity distribution is calculated by using the Gaussian light wave with ordinary power as input light and focusing the diffracting light with lens. The results show that three-dimensional array of optical trap with a very high peak value of intensity and an intensity gradient is obtained around the focus of the lens. The optical dipole potential of trapping cold atoms achieves the order of mK, and the interaction force between the atom and the optical field is much greater than the atom gravity. When the high power laser is used as input light, the generated array of optical trap can also be employed to trap the cold molecules produced by Stark deceleration.%本文提出了用液晶空间光调制器制作复合相位光栅、产生三维光阱阵列的新方案.在本方案中,首先将一维矩形光栅转变为能够产生纵向光阱阵列的环形光栅,再把环形光栅和二维矩形光栅组合成复合光栅.根据现有空间光调制器的技术参数,模拟仿真设计了产生5×5×5光阱阵列的光栅,以普通功率的高斯光波为输入光,正透镜聚焦衍射光,计算输出光强分布,结果表明:在透镜焦点附近获得具有很高峰值光强和光强梯度的三维光阱阵列,囚禁冷原子的光学偶极势达到mK量级,对原子的作用力远大于原子的重力.用大功率激光作为输

  18. Big Crunch-based omnidirectional light concentrators

    CERN Document Server

    Smolyaninov, Igor I

    2014-01-01

    Omnidirectional light concentration remains an unsolved problem despite such important practical applications as design of efficient mobile photovoltaic cells. Optical black hole designs developed recently offer partial solution to this problem. However, even these solutions are not truly omnidirectional since they do not exhibit a horizon, and at large enough incidence angles light may be trapped into quasi-stationary orbits around such imperfect optical black holes. Here we propose and realize experimentally another gravity-inspired design of a broadband omnidirectional light concentrator based on the cosmological Big Crunch solutions. By mimicking the Big Crunch spacetime via corresponding effective optical metric we make sure that every photon world line terminates in a single point.

  19. Trapped antihydrogen

    CERN Document Server

    Butler, E; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kemp, S L; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Seif el Nasr, S; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki,Y

    2012-01-01

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ∼1 T (∼0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be ‘born’ inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been ...

  20. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.; Aziz, Michael J.; Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Rekemeyer, Paul H.; Gradečak, Silvija [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-12-14

    Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintaining high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.

  1. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  2. 蝗虫趋光捕集行为的光振调控效应研究%Investigation of Locusts Phototoxic Trapping Be havior Regulat ed by Light and Vibration

    Institute of Scientific and Technical Information of China (English)

    刘启航; 丛晓霞; 周强

    2016-01-01

    利用光振激发蝗虫趋光滑移捕集测试装置,测试分析了光、振、滑移环境对蝗虫趋光滑移捕集行为的影响,研究了蝗虫趋光视觉捕集进入行为。结果表明:紫光激发的趋光视觉效应,可有效引起蝗虫对紫光中敏感光谱竖条纹光照的敏感辨识性感应,产生趋光视觉行为,同时,在光振滑移耦合环境中,Ra3.2、40HRC不锈钢滑板特性,弱化了30°倾斜面上蝗虫生物摩擦控制滑移行为的调控能力,且光照激发趋光视觉效应的趋态性增益和激振力调控足趾接触环境的动态性增效,能够降低蝗虫摩擦控制效应,加速捕集增益性弹跳碰撞滑移行为实现,提高滑移捕集效率,因此蝗虫光振滑移捕集行为是在光电诱导蝗虫趋光视觉效应的基础上,光振激发效应强化蝗虫生物摩擦控制减弱、行为调控能力降低而出现的结果。然而,光源及激振措施放置,影响蝗虫趋光捕集进入效果,且趋光捕集进入是实现滑移捕集的关键,因而,需在试验测定150 mm灯距、调控光照和下激振措施结合调控蝗虫趋光滑移捕集效果较优的基础上,探寻蝗虫趋光捕集进入的有效措施,以提高蝗虫趋光捕集率。%Using the testing device of locusts phototoxic slipping and trapping behavior effect stimulated by light and vibra-tion, analyzed the influence of light, vibration and slipping environment on locusts phototoxic trapping behavior, and investigated the phototoxic visual behavior of locusts trapped to enter.The results showed that the phototoxic visual effect stimulated by violet light caused locusts were sensitive to identify and respond to the sensitive spectral light of vertical stripes in the violet light, gener-ating the phototoxic visual behavior.Simultaneously, in the coupling environment of light, vibration and slanting slip plane, stain-less steel board features( Ra3.2, 40HRC) weakened the

  3. Fabrication of 3 D Mesoporous Black TiO2 /MoS2 /TiO2 Nanosheets for Visible-Light-Driven Photocatalysis.

    Science.gov (United States)

    Liu, Xuefeng; Xing, Zipeng; Zhang, Hang; Wang, Wenmei; Zhang, Yan; Li, Zhenzi; Wu, Xiaoyan; Yu, Xiujuan; Zhou, Wei

    2016-05-23

    A novel 3 D mesoporous black TiO2 (MBT)/MoS2 /MBT sandwich-like nanosheet was successfully fabricated using a facile mechanochemical process combined with an in situ solid-state chemical reduction approach, followed by mild calcination (350 °C) under an argon atmosphere. The MBT/MoS2 /MBT exhibits a 3 D sandwich-like nanosheet structure and heterojunctions are formed at the interfaces between MoS2 and black TiO2 . The significantly narrowed band gap of MBT/MoS2 /MBT is attributed to the introduction of MoS2 and the formed Ti(3+) species in the frameworks. The visible-light photocatalytic degradation rate of methyl orange and the hydrogen production rate are as high as 89.86 % and 0.56 mmol h(-1)  g(-1) , respectively. The introduction of MoS2 and Ti(3+) in the frameworks favors the visible-light absorption and the separation of photogenerated charges, and the 3 D sandwich-like heterojunction structure facilitates the transfer of photogenerated charges.

  4. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  5. Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols

    Institute of Scientific and Technical Information of China (English)

    Wang Hai-Hua; Sun Xian-Ming

    2012-01-01

    The mixture of water cloud droplets with black carbon impurities is modeled by external and internal mixing models.The internal mixing model is modeled with a two-layered sphere(water cloud droplets containing black carbon(BC)inclusions),and tihe single scattering and absorption characteristics are calculated at the visible wavelength of 0.55 μm by using the Lorenz Mie theory.The external mixing model is developed assuming that the same amount of BC particles are mixed with the water droplets externally.The multiple scattering characteristics we computed by using the Monte Carlo method.The results show that when the size of the BC aerosol is small,the reflection intensity of the internal mixing model is bigger than that of the external mixing model.However,if the size of the BC aerosol is big,the absorption of the internal mixing model will be larger than that of the external mixing model.

  6. The Connection Between Entropy and the Absorption Spectra of Schwarzschild Black Holes for Light and Massless Scalar Fields

    Directory of Open Access Journals (Sweden)

    Sergio Mendoza

    2009-01-01

    Full Text Available We present heuristic arguments suggesting that if EM waves with wavelengths somewhat larger than the Schwarzschild radius of a black hole were fully absorbed by it, the second law of thermodynamics would be violated, under the Bekenstein interpretation of the area of a black hole as a measure of its entropy. Thus, entropy considerations make the well known fact that large wavelengths are only marginally absorbed by black holes, a natural consequence of thermodynamics. We also study numerically the ingoing radial propagation of a scalar field wave in a Schwarzschild metric, relaxing the standard assumption which leads to the eikonal equation, that the wave has zero spatial extent. We find that if these waves have wavelengths larger that the Schwarzschild radius, they are very substantially reflected, fully to numerical accuracy. Interestingly, this critical wavelength approximately coincides with the one derived from entropy considerations of the EM field, and is consistent with well known limit results of scattering in the Schwarzschild metric. The propagation speed is also calculated and seen to differ from the value c, for wavelengths larger than Rs, in the vicinity of Rs. As in all classical wave phenomena, whenever the wavelength is larger or comparable to the physical size of elements in the system, in this case changes in the metric, the zero extent ’particle’ description fails, and the wave nature becomes apparent.

  7. Light or heavy supermassive black hole seeds: the role of internal rotation in the fate of supermassive stars

    CERN Document Server

    Fiacconi, Davide

    2016-01-01

    Supermassive black holes are a key ingredient of galaxy evolution. However, their origin is still highly debated. In one of the leading formation scenarios, a black hole of $\\sim100$ M$_{\\odot}$ results from the collapse of the inner core of a supermassive star ($\\gtrsim 10^{4-5}$ M$_{\\odot}$), created by the rapid accumulation ($\\gtrsim 0.1 $ M$_{\\odot}$ yr$^{-1}$) of pristine gas at the centre of newly formed galaxies at $z\\sim 15$. The subsequent evolution is still speculative: the remaining gas in the supermassive star can either directly plunge into the nascent black hole, or part of it can form a central accretion disc, whose luminosity sustains a surrounding, massive, and nearly hydrostatic envelope (a system called a "quasi-star"). To address this point, we consider the effect of rotation on a quasi-star, as angular momentum is inevitably transported towards the galactic nucleus by the accumulating gas. Using a model for the internal redistribution of angular momentum that qualitative matches results ...

  8. Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance

    Science.gov (United States)

    Shen, Liyan; Xing, Zipeng; Zou, Jinlong; Li, Zhenzi; Wu, Xiaoyan; Zhang, Yuchi; Zhu, Qi; Yang, Shilin; Zhou, Wei

    2017-02-01

    Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption, and UV-visible diffuse reflectance spectroscopy, respectively. The results show that special laminated heterojunctions are formed between black TiO2 nanobelts and g-C3N4 nanosheets, which favor the separation of photogenerated electron-hole pairs. Furthermore, the presence of Ti3+ and g-C3N4 greatly enhance the absorption of visible light. The resultant b-TiO2/g-C3N4 materials exhibit higher photocatalytic activity than that of g-C3N4, TiO2, b-TiO2 and TiO2/g-C3N4 for degradation of methyl orange (95%) and hydrogen evolution (555.8 μmol h‑1 g‑1) under visible light irradiation. The apparent reaction rate constant (k) of b-TiO2/g-C3N4 is ~9 times higher than that of pristine TiO2. Therefore, the high-efficient laminated heterojunction composites will have potential applications in fields of environment and energy.

  9. Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance.

    Science.gov (United States)

    Shen, Liyan; Xing, Zipeng; Zou, Jinlong; Li, Zhenzi; Wu, Xiaoyan; Zhang, Yuchi; Zhu, Qi; Yang, Shilin; Zhou, Wei

    2017-02-06

    Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption, and UV-visible diffuse reflectance spectroscopy, respectively. The results show that special laminated heterojunctions are formed between black TiO2 nanobelts and g-C3N4 nanosheets, which favor the separation of photogenerated electron-hole pairs. Furthermore, the presence of Ti(3+) and g-C3N4 greatly enhance the absorption of visible light. The resultant b-TiO2/g-C3N4 materials exhibit higher photocatalytic activity than that of g-C3N4, TiO2, b-TiO2 and TiO2/g-C3N4 for degradation of methyl orange (95%) and hydrogen evolution (555.8 μmol h(-1 )g(-1)) under visible light irradiation. The apparent reaction rate constant (k) of b-TiO2/g-C3N4 is ~9 times higher than that of pristine TiO2. Therefore, the high-efficient laminated heterojunction composites will have potential applications in fields of environment and energy.

  10. Light

    CERN Document Server

    Ditchburn, R W

    2011-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  11. Comparison of various configurations of CDC-type traps for the collection of Phlebotomus papatasi (Scopoli) in southern Israel

    Science.gov (United States)

    We conducted 2 experiments to determine the best configuration of CDC-trap for catching male and female Phlebotomus papatasi. Darker traps caught significantly more male sand flies; significantly more females were captured by traps with either all black or a combination of black and white features. ...

  12. Galaxy Light Concentration. I. Index stability and the connection with galaxy structure, dynamics, and supermassive black holes

    CERN Document Server

    Graham, A W; Caon, N; Graham, Alister W.

    2001-01-01

    We explore the stability of different galaxy light concentration indices as a function of the outermost observed galaxy radius. With a series of analytical light-profile models, we show mathematically how varying the radial extent to which one measures a galaxy's light can strongly affect the derived galaxy concentration. The "mean concentration index", often used for parameterizing high-redshift galaxies, is shown to be horribly unstable, even when modeling one-component systems such as elliptical, dwarf elliptical and pure exponential disk galaxies. The C_31 concentration index performs considerably better but is also heavily dependent on the radial extent, and hence exposure depth, of any given galaxy. We show that the recently defined central concentration index is remarkably stable against changes to the outer radius, providing a meaningful and reliable estimate of galaxy concentration. The index n from the r^(1/n) models is shown to be monotonically related with the central concentration of light, givin...

  13. The disinformation problem for black holes (pop version)

    CERN Document Server

    Hayward, S A

    2005-01-01

    The supposed information paradox for black holes is based on the fundamental misunderstanding that black holes are usefully defined by event horizons. Understood in terms of locally defined trapping horizons, the paradox disappears: information will escape from an evaporating black hole. According to classical properties of trapping horizons, a general scenario is outlined whereby a black hole evaporates completely without singularity, event horizon or loss of energy or information.

  14. Stellar disruption by a supermassive black hole: is the light curve really proportional to $t^{-5/3}$?

    CERN Document Server

    Lodato, G; Pringle, J E

    2008-01-01

    In this paper we revisit the arguments for the basis of the time evolution of the flares expected to arise when a star is disrupted by a supermassive black hole. We present a simple analytic model relating the lightcurve to the internal density structure of the star. We thus show that the standard lightcurve proportional to $t^{-5/3}$ only holds at late times. Close to the peak luminosity the lightcurve is shallower, deviating more strongly from $t^{-5/3}$ for more centrally concentrated (e.g. solar--type) stars. We test our model numerically by simulating the tidal disruption of several stellar models, described by simple polytropic spheres with index $\\gamma$. The simulations agree with the analytical model given two considerations. First, the stars are somewhat inflated on reaching pericentre because of the effective reduction of gravity in the tidal field of the black hole. This is well described by a homologous expansion by a factor which becomes smaller as the polytropic index becomes larger. Second, fo...

  15. Black light visualized solar lentigines on the shoulders and upper back are associated with objectively measured UVR exposure and cutaneous malignant melanoma

    DEFF Research Database (Denmark)

    Idorn, Luise Winkel; Datta, Pameli; Heydenreich, Jakob;

    2015-01-01

    Previous studies on the association of solar lentigines with ultraviolet radiation (UVR) exposure have been based on retrospective questionnaires about UVR exposure. We aimed to investigate the association between solar lentigines and UVR exposure in healthy individuals using objective measurements...... and graded into 3 categories using black light photographs to show sun damage. Current UVR exposure in healthy controls was assessed by personal electronic UVR dosimeters that measured time-related UVR and by corresponding exposure diaries during a summer season. Sunburn history was assessed by interviews......, as well as time spent outdoors around noon on holidays and beach trips during a summer season, most likely reflecting past UVR exposure, and that solar lentigines are a risk factor for CMM....

  16. An Integrated Mirror and Surface Ion Trap with a Tunable Trap Location

    CERN Document Server

    Van Rynbach, Andre; Kim, Jungsang

    2016-01-01

    We report a demonstration of a surface ion trap fabricated directly on a highly reflective mirror surface, which includes a secondary set of radio frequency (RF) electrodes allowing for translation of the quadrupole RF null location. We introduce a position-dependent photon scattering rate for a $^{174}$Yb$^+$ ion in the direction perpendicular to the trap surface using a standing wave of retroreflected light off the mirror surface directly below the trap. Using this setup, we demonstrate the capability of fine-tuning the RF trap location with nanometer scale precision and characterize the charging effects of the dielectric mirror surface upon exposure to ultra-violet light.

  17. Theoretical study of stimulated and spontaneous Hawking effects from an acoustic black hole in a hydrodynamically flowing fluid of light

    Science.gov (United States)

    Grišins, Pjotrs; Nguyen, Hai Son; Bloch, Jacqueline; Amo, Alberto; Carusotto, Iacopo

    2016-10-01

    We propose an experiment to detect and characterize the analog Hawking radiation in an analog model of gravity consisting of a flowing exciton-polariton condensate. Under a suitably designed coherent pump configuration, the condensate features an acoustic event horizon for sound waves that at the semiclassical level is equivalent to an astrophysical black-hole horizon. We show that a continuous-wave pump-and-probe spectroscopy experiment allows to measure the analog Hawking temperature from the dependence of the stimulated Hawking effect on the pump-probe detuning. We anticipate the appearance of an emergent resonant cavity for sound waves between the pump beam and the horizon, which results in marked oscillations on top of an overall exponential frequency dependence. We finally analyze the spatial correlation function of density fluctuations and identify the hallmark features of the correlated pairs of Bogoliubov excitations created by the spontaneous Hawking process, as well as novel signatures characterizing the emergent cavity.

  18. Annual Trapping Proposal 1985

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Annual Trapping Plan for the 1984-1985 trapping season at Clarence Cannon NWR outlines rules and regulations for the trapping of beaver and muskrat on the...

  19. Advances in the use of trapping systems for Rhynchophorus ferrugineus (Coleoptera: Curculionidae): traps and attractants.

    Science.gov (United States)

    Vacas, S; Primo, J; Navarro-Llopis, V

    2013-08-01

    Given the social importance related to the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae), efforts are being made to develop new control methods, such as the deployment of trapping systems. In this work, the efficacy of a new black pyramidal trap design (Picusan) has been verified in comparison with white and black buckets. In addition, the attractant and synergistic effect of ethyl acetate (EtAc) at different release levels has been evaluated under field conditions. The results show that Picusan traps captured 45% more weevils than bucket-type traps, offering significantly better trapping efficacy. The addition of water to traps baited with palm tissues was found to be essential, with catches increasing more than threefold compared with dry traps. EtAc alone does not offer attractant power under field conditions, and the release levels from 57 mg/d to 1 g/d have no synergistic effect with ferrugineol. Furthermore, significantly fewer females were captured when EtAc was released at 2 g/d. The implications of using EtAc dispensers in trapping systems are discussed.

  20. Temperature and wavelength dependent trap filling in M{sub 2}Si{sub 5}N{sub 8}:Eu (M=Ca, Sr, Ba) persistent phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Smet, Philippe F., E-mail: philippe.smet@ugent.be [LumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent (Belgium); Center for Nano- and Biophotonics (NB-Photonics), Ghent University (Belgium); Van den Eeckhout, Koen [LumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent (Belgium); Center for Nano- and Biophotonics (NB-Photonics), Ghent University (Belgium); Bos, Adrie J.J.; Kolk, Erik van der; Dorenbos, Pieter [Delft University of Technology, Faculty of Applied Sciences, 2629 JB Delft (Netherlands)

    2012-03-15

    The evaluation of persistent phosphors is often focused on the processes right after the excitation, namely on the shape of the afterglow decay curve and the duration of the afterglow, in combination with thermoluminescence glow curve analysis. In this paper we study in detail the trap filling process in europium-doped alkaline earth silicon nitrides (Ca{sub 2}Si{sub 5}N{sub 8}:Eu, Sr{sub 2}Si{sub 5}N{sub 8}:Eu and Ba{sub 2}Si{sub 5}N{sub 8}:Eu), i.e., how the persistent luminescence can be induced. Both the temperature at which the phosphors are excited and the spectral distribution of the excitation light on the ability to store energy in the phosphors' lattices are investigated. We show that for these phosphors this storage process is thermally activated upon excitation in the lower 5d excited states of Eu{sup 2+}, with the lowest thermal barrier for europium doped Ca{sub 2}Si{sub 5}N{sub 8}. Also, the influence of co-doping with thulium on the trap filling and afterglow behavior is studied. Finally there exists a clear relation between the luminescence quenching temperature and the trap filling efficiency. The latter relation can be utilized to select new efficient 5d-4f based afterglow phosphors. - Highlights: Black-Right-Pointing-Pointer Orange afterglow in M{sub 2}Si{sub 5}N{sub 8}:Eu(Tm) studied with thermoluminescence spectroscopy. Black-Right-Pointing-Pointer Strong influences of excitation wavelength and temperature on trap filling. Black-Right-Pointing-Pointer Energy level scheme is presented. Black-Right-Pointing-Pointer Relation between trap filling with visible light and thermal quenching behavior.

  1. Modeling and Optimizing RF Multipole Ion Traps

    Science.gov (United States)

    Fanghaenel, Sven; Asvany, Oskar; Schlemmer, Stephan

    2016-06-01

    Radio frequency (rf) ion traps are very well suited for spectroscopy experiments thanks to the long time storage of the species of interest in a well defined volume. The electrical potential of the ion trap is determined by the geometry of its electrodes and the applied voltages. In order to understand the behavior of trapped ions in realistic multipole traps it is necessary to characterize these trapping potentials. Commercial programs like SIMION or COMSOL, employing the finite difference and/or finite element method, are often used to model the electrical fields of the trap in order to design traps for various purposes, e.g. introducing light from a laser into the trap volume. For a controlled trapping of ions, e.g. for low temperature trapping, the time dependent electrical fields need to be known to high accuracy especially at the minimum of the effective (mechanical) potential. The commercial programs are not optimized for these applications and suffer from a number of limitations. Therefore, in our approach the boundary element method (BEM) has been employed in home-built programs to generate numerical solutions of real trap geometries, e.g. from CAD drawings. In addition the resulting fields are described by appropriate multipole expansions. As a consequence, the quality of a trap can be characterized by a small set of multipole parameters which are used to optimize the trap design. In this presentation a few example calculations will be discussed. In particular the accuracy of the method and the benefits of describing the trapping potentials via multipole expansions will be illustrated. As one important application heating effects of cold ions arising from non-ideal multipole fields can now be understood as a consequence of imperfect field configurations.

  2. ZnO多晶薄膜绒面结构及陷光特性分析%Surface morphology and light trapping properties of textured ZnO films

    Institute of Scientific and Technical Information of China (English)

    林小园; 黄茜; 张德坤; 牟村; 赵颖; 张存善; 张晓丹

    2013-01-01

    Light trapping technique plays an important role in the high-performance thin film solar cells. In the present study, highly textured ZnO: Al (AZO) films are prepared by medium frequency impulsed magnetron sputtering and wet etching technology which are influenced by film thickness and etching time. The high-quality textured AZO surface is formed by wet etching after the films are deposited by magnetron sputtering technology. The effects of film thickness and etching-time on the textured structure and light-trapping characteristics are investigated. AZO films with different thicknesses are obtained by changing sputtering time,Precise etching time control leads to different textured structure with various light trapping properties. This textured surface morphology leads to a high haze factor which provides high light trapping efficiency. In addition, the electrical properties of AZO films are also enhanced with higher carrier concentration and mobility as thickness increases. Layers with outstanding electrical (resistivity less than 3×10-4 Ω·cm),optical (average total transmittance higher than 81% from 400 nm to 1 100 nm),haze (84. 3% and 73. 8% at 500 nm and 750 nm respectively) and morphological (RMS higher than 143 nm,after a 180 s etching process) properties have been obtained, satisfying the demands of photoelectric property of front contact in thin film silicon solar cells and illustrating a good potential application in mass production for large area expansibility.%针对当前薄膜太阳电池对光管理的迫切需求,采用磁控溅射及后腐蚀技术制备获得了高性能绒面铝掺杂氧化锌(AZO,ZnO:Al)前电极.深入分析了ZnO多晶薄膜厚度及腐蚀时间对绒面结构及陷光特性的影响.研究结果表明,随多晶薄膜厚度的增加,晶粒尺寸增大,腐蚀后获得的弹坑状表面结构的粒径亦随之增大,绒度增大;随后腐蚀时间的增加,弹坑状粒径及绒度均具有先增大而后趋于饱和的趋势.

  3. Time-resolved measurements of black carbon light absorption enhancement in urban and near-urban locations of Southern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    T. W. Chan

    2010-08-01

    Full Text Available In this study a photoacoustic spectrometer (PA, a laser-induced incandescence instrument system (LII and an aerosol mass spectrometer were operated in parallel for in situ measurements of black carbon (BC light absorption enhancement. Results of a thermodenuder experiment using ambient particles in Toronto are presented first to show that LII measurements of BC are not influenced by particle coating while the PA response is enhanced and also that the nature of this enhancement is influenced by particle morphology. Comparisons of ambient PA and LII measurements at four different locations (suburban Toronto; a street canyon with heavy diesel bus traffic in Ottawa; adjacent to a commuter highway in Ottawa and; regional background air in and around Windsor, Ontario, show that the different meteorological conditions and atmospheric processes result in different particle light absorption enhancement and hence the specific attenuation coefficient (SAC. Depending upon location of measurement and the BC spherule diameter (primary particle size – PPS measurement from the LII, the SAC varies from 2.6±0.04 to 22.5±0.7 m2 g−1. Observations from this study also show the active surface area of the BC aggregate, inferred from PPS, is an important parameter for inferring the degree of particle collapse of a BC particle. The predictability of the overall BC light absorption enhancement in the atmosphere depends not only on the coating mass but also on the source of the BC and on our ability to predict or measure the change in particle morphology as particles evolve.

  4. Photodissociation of Trapped Rb2+: Implications for Simultaneous Trapping of Atoms and Molecular Ions

    Science.gov (United States)

    Jyothi, S.; Ray, Tridib; Dutta, Sourav; Allouche, A. R.; Vexiau, Romain; Dulieu, Olivier; Rangwala, S. A.

    2016-11-01

    The direct photodissociation of trapped 85Rb2+ (rubidium) molecular ions by the cooling light for the 85Rb magneto-optical trap (MOT) is studied, both experimentally and theoretically. Vibrationally excited Rb2+ ions are created by photoionization of Rb2 molecules formed photoassociatively in the Rb MOT and are trapped in a modified spherical Paul trap. The decay rate of the trapped Rb2+ ion signal in the presence of the MOT cooling light is measured and agreement with our calculated rates for molecular ion photodissociation is observed. The photodissociation mechanism due to the MOT light is expected to be active and therefore universal for all homonuclear diatomic alkali metal molecular ions.

  5. Photodissociation of trapped Rb$^+_2$ : Implications for hybrid molecular ion-atom trapping

    CERN Document Server

    Jyothi, S; Dutta, Sourav; Allouche, A R; Vexiau, Romain; Dulieu, Olivier; Rangwala, S A

    2016-01-01

    We observe direct photodissociation of trapped $^{85}$Rb$_2^+$ molecular ions in the presence of cooling light for the $^{85}$Rb magneto optical trap (MOT). Vibrationally excited Rb$_{2}^{+}$ ions are created by photoionization of Rb$_{2}$ molecules formed photoassociatively in the rubidium (Rb) MOT and are trapped in a modified spherical Paul trap co-centric with the MOT. The decay rate of the trapped Rb$_{2}^{+}$ ion signal in the presence of the MOT cooling light is measured and agreement with our calculated rates for molecular ion photodissociation is established. The photodissociation mechanism due to the MOT light is expected to be active and therefore universal for all homonuclear diatomic alkali metal molecular ions.

  6. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    Science.gov (United States)

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated

  7. Shrew trap efficiency

    DEFF Research Database (Denmark)

    Gambalemoke, Mbalitini; Mukinzi, Itoka; Amundala, Drazo

    2008-01-01

    We investigated the efficiency of four trap types (pitfall, Sherman LFA, Victor snap and Museum Special snap traps) to capture shrews. This experiment was conducted in five inter-riverine forest blocks in the region of Kisangani. The total trapping effort was 6,300, 9,240, 5,280 and 5,460 trap-ni...

  8. 黑光治疗银屑病的临床分析%The Clinical Analyze of Psoriasis by Black Light Treatment

    Institute of Scientific and Technical Information of China (English)

    刘秀英

    2014-01-01

    Objective To approach clinical result of psoriasis by black light treatment.Methods To analyze the 200 cases clinical data of psoriasis patients in our hospital dermatology from 2010.1 to 2013.12 ,which was to be divided into two grouo ,control group 100 cases and detection group 100 cases.The PASI score pretherapy and post of treatment of two groups psoriasis patients was detected ,clinical curative effect of two groups psoriasis patients was detected.Results The PASI score pretherapy of treatment two groups psoriasis patients were no difference ,the The PASI score post of detec-tion group was better than control group ,the clinical curative effect of detection group was higher than control group ,P<0.05 ,the difference were statistical significance.Conclusions The clinical symptoms of psoriasis by black light treat-ment was obviously ,the result was good ,which was to be used.%目的:探讨黑光治疗银屑病的临床治疗效果。方法对收治的200例银屑病患者临床资料,依据治疗措施不同进行分组,对照组100例和观察组100例。观察两组银屑病患者治疗前后PASI评分情况和两组银屑病患者临床治疗效果。结果两组银屑病患者治疗前PASI评分无明显差异,P>0.05,观察组银屑病患者治疗后PASI评分明显优于对照组,观察组银屑病患者临床治疗总有效率明显高于对照组,P<0.05,差异均有统计学意义。结论黑光治疗银屑病患者临床症状改善明显,效果良好,值得临床推广应用。

  9. CaS∶Eu,Sm及其在农用转光膜上的应用原理%APPLICATION PRINCIPLE OF ELECTRON TRAPPING MATERIAL CaS∶Eu,Sm IN THE LIGHT CONVERSION AGRICULTURAL FILM

    Institute of Scientific and Technical Information of China (English)

    叶孔敦; 光昭; 范文慧

    2001-01-01

    Electron trapping material CaS∶Eu,Sm has been prepared by the technique of rare earth doping directly.It can not only possess the fluorescent characteristics of CaS∶Eu,but also convert infrared light (0.8~1.6μm) to visible light (~672nm) and its quantum efficiency is more than 76%.According to the solar spectra and the best spectrum of plant growth as well as the fluorescence spectrum of CaS∶Eu,Sm,it is explained that CaS∶Eu,Sm phosphor is good additive of the light conversion agricultural film.Moreover,the absorption spectrum of chlorophyll photosynthesis can be imitated and infrared light can be converted to visible light by the light conversion agricultural film if CaS∶Eu2+,Sm3+,Cu+ phosphor is used as additive,so it may be thought that CaS∶Eu2+,Sm3+,Cu+ phosphor is better than CaS∶Eu2+,Cu+ phosphor as additive in the light conversion agricultural film.%利用稀土直接掺杂工艺合成了一种“常光充能”型电子陷获材料CaS∶Eu,Sm,它不仅具有CaS∶Eu无机发光材料的荧光光谱特性,而且具有红外升频转换特性,可将0.8~ 1.6μm的红外光直接转换为~672nm的红光、量子效率高达76%,是一种优于CaS∶Eu的光转换农膜添加剂.而共掺Eu2+、Sm3+和Cu+的CaS荧光粉有望成为一种性能优于光转换农膜添加剂CaS∶Eu2+,Cu+、可人工模拟叶绿素吸收光谱的新型农用转光膜材料.

  10. Geometry of black hole spacetimes

    CERN Document Server

    Andersson, Lars; Blue, Pieter

    2016-01-01

    These notes, based on lectures given at the summer school on Asymptotic Analysis in General Relativity, collect material on the Einstein equations, the geometry of black hole spacetimes, and the analysis of fields on black hole backgrounds. The Kerr model of a rotating black hole in vacuum is expected to be unique and stable. The problem of proving these fundamental facts provides the background for the material presented in these notes. Among the many topics which are relevant for the uniqueness and stability problems are the theory of fields on black hole spacetimes, in particular for gravitational perturbations of the Kerr black hole, and more generally, the study of nonlinear field equations in the presence of trapping. The study of these questions requires tools from several different fields, including Lorentzian geometry, hyperbolic differential equations and spin geometry, which are all relevant to the black hole stability problem.

  11. Black to Black

    DEFF Research Database (Denmark)

    Langkjær, Michael Alexander

    2012-01-01

    ’s a lifestyle I enjoy.” For Monáe, the tuxedo is both working clothes and a superhero uniform. Together with futuristic references to Fritz Lang’s dystopian Metropolis, her trademark starched shirt and tuxedo also recall Weimar and pre-war Berlin. While outwardly dissimilar, Sioux’s and Monáe’s shared black...... suggested that appreciation of the highly personal motives of both Siouxsie Sioux and Janelle Monáe in wearing black may be achieved via analogies with the minimalist sublime of American artists Frank Stella’s and Ad Reinhardt’s black canvasses....

  12. Tachyon Physics with Trapped Ions

    CERN Document Server

    Lee, Tony E; Cheng, Xiao-Hang; Lamata, Lucas; Solano, Enrique

    2015-01-01

    It has been predicted that particles with imaginary mass, called tachyons, would be able to travel faster than the speed of light. So far, there has not been any experimental evidence for tachyons in either natural or engineered systems. Here, we propose how to experimentally simulate Dirac tachyons with trapped ions. Quantum measurement on a Dirac particle simulated by a trapped ion causes it to have an imaginary mass so that it may travel faster than the effective speed of light. We show that a Dirac tachyon must have spinor-motion entanglement in order to be superluminal. We also show that it exhibits significantly more Klein tunneling than a normal Dirac particle. We provide numerical simulations with realistic ion systems and show that our scheme is feasible with current technology.

  13. Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in black Sigatoka disease of bananas.

    Science.gov (United States)

    Beltrán-García, Miguel J; Prado, Fernanda M; Oliveira, Marilene S; Ortiz-Mendoza, David; Scalfo, Alexsandra C; Pessoa, Adalberto; Medeiros, Marisa H G; White, James F; Di Mascio, Paolo

    2014-01-01

    In pathogenic fungi, melanin contributes to virulence, allowing tissue invasion and inactivation of the plant defence system, but has never been implicated as a factor for host cell death, or as a light-activated phytotoxin. Our research shows that melanin synthesized by the fungal banana pathogen Mycosphaerella fijiensis acts as a virulence factor through the photogeneration of singlet molecular oxygen O2 (1Δg). Using analytical tools, including elemental analysis, ultraviolet/infrared absorption spectrophometry and MALDI-TOF mass spectrometry analysis, we characterized both pigment content in mycelia and secreted to the culture media as 1,8-dihydroxynaphthalene (DHN)-melanin type compound. This is sole melanin-type in M. fijiensis. Isolated melanins irradiated with a Nd:YAG laser at 532 nm produced monomol light emission at 1270 nm, confirming generation of O2 (1Δg), a highly reactive oxygen specie (ROS) that causes cellular death by reacting with all cellular macromolecules. Intermediary polyketides accumulated in culture media by using tricyclazole and pyroquilon (two inhibitors of DHN-melanin synthesis) were identified by ESI-HPLC-MS/MS. Additionally, irradiation at 532 nm of that mixture of compounds and whole melanized mycelium also generated O2 (1Δg). A pigmented-strain generated more O2 (1Δg) than a strain with low melanin content. Banana leaves of cultivar Cavendish, naturally infected with different stages of black Sigatoka disease, were collected from field. Direct staining of the naturally infected leaf tissues showed the presence of melanin that was positively correlated to the disease stage. We also found hydrogen peroxide (H2O2) but we cannot distinguish the source. Our results suggest that O2 (1Δg) photogenerated by DHN-melanin may be involved in the destructive effects of Mycosphaerella fijiensis on banana leaf tissues. Further studies are needed to fully evaluate contributions of melanin-mediated ROS to microbial pathogenesis.

  14. Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in black Sigatoka disease of bananas.

    Directory of Open Access Journals (Sweden)

    Miguel J Beltrán-García

    Full Text Available In pathogenic fungi, melanin contributes to virulence, allowing tissue invasion and inactivation of the plant defence system, but has never been implicated as a factor for host cell death, or as a light-activated phytotoxin. Our research shows that melanin synthesized by the fungal banana pathogen Mycosphaerella fijiensis acts as a virulence factor through the photogeneration of singlet molecular oxygen O2 (1Δg. Using analytical tools, including elemental analysis, ultraviolet/infrared absorption spectrophometry and MALDI-TOF mass spectrometry analysis, we characterized both pigment content in mycelia and secreted to the culture media as 1,8-dihydroxynaphthalene (DHN-melanin type compound. This is sole melanin-type in M. fijiensis. Isolated melanins irradiated with a Nd:YAG laser at 532 nm produced monomol light emission at 1270 nm, confirming generation of O2 (1Δg, a highly reactive oxygen specie (ROS that causes cellular death by reacting with all cellular macromolecules. Intermediary polyketides accumulated in culture media by using tricyclazole and pyroquilon (two inhibitors of DHN-melanin synthesis were identified by ESI-HPLC-MS/MS. Additionally, irradiation at 532 nm of that mixture of compounds and whole melanized mycelium also generated O2 (1Δg. A pigmented-strain generated more O2 (1Δg than a strain with low melanin content. Banana leaves of cultivar Cavendish, naturally infected with different stages of black Sigatoka disease, were collected from field. Direct staining of the naturally infected leaf tissues showed the presence of melanin that was positively correlated to the disease stage. We also found hydrogen peroxide (H2O2 but we cannot distinguish the source. Our results suggest that O2 (1Δg photogenerated by DHN-melanin may be involved in the destructive effects of Mycosphaerella fijiensis on banana leaf tissues. Further studies are needed to fully evaluate contributions of melanin-mediated ROS to microbial pathogenesis.

  15. Area inequalities for stable marginally trapped surfaces

    CERN Document Server

    Jaramillo, José Luis

    2012-01-01

    We discuss a family of inequalities involving the area, angular momentum and charges of stably outermost marginally trapped surfaces in generic non-vacuum dynamical spacetimes, with non-negative cosmological constant and matter sources satisfying the dominant energy condition. These inequalities provide lower bounds for the area of spatial sections of dynamical trapping horizons, namely hypersurfaces offering quasi-local models of black hole horizons. In particular, these inequalities represent particular examples of the extension to a Lorentzian setting of tools employed in the discussion of minimal surfaces in Riemannian contexts.

  16. Towards Quantum Simulations Using a Chip Ion Trap

    Science.gov (United States)

    Cao, Chenglin; Wright, Ken; Brennan, Daniel; Ji, Geoffrey; Monroe, Christopher

    2013-05-01

    We report our current experimental progress towards using chip ion traps for quantum simulation. Current progress is being made using a micro-fabricated symmetric trap from GTRI. This trap implements a novel two level design that combines the benefits of both surface traps and linear four-rod traps. The trap has 50 electrodes which allow for the fine control of the DC potential needed to create large anharmonic potentials, to join and split ion chains and to shuttle ions along the trapping axis similar to many surface traps. However this trap also has a much deeper trapping depth than conventional surface traps and improved optical access via an angled slot through the chip wide enough to accommodate higher power laser light which could cause surface charging or damage in a traditional chip trap. These advantages should allow trapping of long ion chains. We hope to use these features as the next step in increasing the size of current quantum simulations being done at Univ of Maryland, which are aimed at exploring quantum phenomena in spin systems in a regime inaccessible to classical simulation. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI. We acknowledge the GTRI team of J. Amini, K. Brown, A. Harter, F. Shaikh, R. Slusher, and C. Volin for the fabrication of the trap.

  17. Nanofiber-based optical trapping of cold neutral atoms

    CERN Document Server

    Vetsch, Eugen; Mitsch, Rudolf; Reitz, Daniel; Schneeweiss, Philipp; Rauschenbeutel, Arno

    2012-01-01

    We present experimental techniques and results related to the optimization and characterization of our nanofiber-based atom trap [Vetsch et al., Phys. Rev. Lett. 104, 203603 (2010)]. The atoms are confined in an optical lattice which is created using a two-color evanescent field surrounding the optical nanofiber. For this purpose, the polarization state of the trapping light fields has to be properly adjusted. We demonstrate that this can be accomplished by analyzing the light scattered by the nanofiber. Furthermore, we show that loading the nanofiber trap from a magneto-optical trap leads to sub-Doppler temperatures of the trapped atomic ensemble and yields a sub-Poissonian distribution of the number of trapped atoms per trapping site.

  18. Bottle atom trapping configuration by optical dipole forces

    Directory of Open Access Journals (Sweden)

    O.M. Aldossary

    2014-01-01

    Full Text Available The bottle beam configuration is a light field created by the interference of a pair of Laguerre–Gauss light beams with zero orbital angular momentum. In this work we show the theoretical study of the bottle beam as well as the use of this beam for the creation of a novel atom optical dipole trap namely the bottle atom trap. In such a trap the resulting dark trapping region is three-dimensional and has a cylindrical symmetry. These promising results show that this trap is a nice candidate for trapping Bose–Einstein condensates and may serve as an optical tweezer mechanism potentially useful for trapping micron-sized dielectric particles.

  19. St. Croix trap study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set contains detailed information about the catch from 600 trap stations around St. Croix. Data fields include species caught, size data, trap location...

  20. Small Mammal Trapping 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Small mammal traps were placed in the Baring division and in the Edmunds division of Moosehom National Wildlife Refuge. There were a total of 98 traps set for up to...

  1. A novel maskless approach towards aligned, density modulated and multi-junction ZnO nanowires for enhanced surface area and light trapping solar cells.

    Science.gov (United States)

    Kevin, M; Fou, Y H; Wong, A S W; Ho, G W

    2010-08-06

    A maskless method of employing polymer growth inhibitor layers is used to modulate the conflicting parameters of density and alignment of multi-junction nanowires via large-scale low temperature chemical route. This low temperature chemical route is shown to synthesize multi-junction nanostructures without compromising the crystal quality at the interfaces. The final morphology of optimized multi-junctions nanowire arrays can be demonstrated on various substrates due to substrate independence and low temperature processing. Here, we also fabricated devices based on density modulated multi-junction nanowires tuned to infiltrate nanoparticles. The fabrication of hierarchically structured nanowire/nanoparticles composites presents an advantageous structure, one that allows nanoparticles to provide large surface areas for dye adsorption, whilst the nanowires can enhance the light harvesting, electron transport rate, and also the mechanical properties of the films. This work can be of great scientific and commercial interest since the technique employed is of low temperature (<90 degrees C) and economical for large-scale solution processing, much valued in today's flexible display and photovoltaic industries.

  2. The role of high work-function metallic nanodots on the performance of a-Si:H solar cells: offering ohmic contact to light trapping.

    Science.gov (United States)

    Kim, Jeehwan; Abou-Kandil, Ahmed; Fogel, Keith; Hovel, Harold; Sadana, Devendra K

    2010-12-28

    Addition of carbon into p-type "window" layers in hydrogenated amorphous silicon (a-Si:H) solar cells enhances short circuit currents and open circuit voltages by a great deal. However, a-Si:H solar cells with high carbon-doped "window" layers exhibit poor fill factors due to a Schottky barrier-like impedance at the interface between a-SiC:H windows and transparent conducting oxides (TCO), although they show maximized short circuit currents and open circuit voltages. The impedance is caused by an increasing mismatch between the work function of TCO and that of p-type a-SiC:H. Applying ultrathin high-work-function metals at the interface between the two materials results in an effective lowering of the work function mismatch and a consequent ohmic behavior. If the metal layer is sufficiently thin, then it forms nanodots rather than a continuous layer which provides light-scattering effect. We demonstrate 31% efficiency enhancement by using high-work-function materials for engineering the work function at the key interfaces to raise fill factors as well as photocurrents. The use of metallic interface layers in this work is a clear contrast to previous work where attempts were made to enhance the photocurrent using plasmonic metal nanodots on the solar cell surface.

  3. A novel maskless approach towards aligned, density modulated and multi-junction ZnO nanowires for enhanced surface area and light trapping solar cells

    Science.gov (United States)

    Kevin, M.; Fou, Y. H.; Wong, A. S. W.; Ho, G. W.

    2010-08-01

    A maskless method of employing polymer growth inhibitor layers is used to modulate the conflicting parameters of density and alignment of multi-junction nanowires via large-scale low temperature chemical route. This low temperature chemical route is shown to synthesize multi-junction nanostructures without compromising the crystal quality at the interfaces. The final morphology of optimized multi-junctions nanowire arrays can be demonstrated on various substrates due to substrate independence and low temperature processing. Here, we also fabricated devices based on density modulated multi-junction nanowires tuned to infiltrate nanoparticles. The fabrication of hierarchically structured nanowire/nanoparticles composites presents an advantageous structure, one that allows nanoparticles to provide large surface areas for dye adsorption, whilst the nanowires can enhance the light harvesting, electron transport rate, and also the mechanical properties of the films. This work can be of great scientific and commercial interest since the technique employed is of low temperature (economical for large-scale solution processing, much valued in today's flexible display and photovoltaic industries.

  4. The disinformation problem for black holes (conference version)

    CERN Document Server

    Hayward, S A

    2005-01-01

    Basic properties of black holes are explained in terms of trapping horizons. It is shown that matter and information will escape from an evaporating black hole. A general scenario is outlined whereby a black hole evaporates completely without singularity, event horizon or loss of energy or information.

  5. Flebotomíneos (Diptera, Psychodidae na Amazônia: II. Listagem das espécies coletadas na bacia petrolífera no Rio Urucu, Amazonas, Brasil, utilizando diferentes armadilhas e iscas Sandflies (Diptera, Psychodidae in the Amazon: II. Cheek list of the species collected in the petroleum basin of the Urucu River, Amazonas, Brazil using differents traps and baits

    Directory of Open Access Journals (Sweden)

    Eloy G. Castellón

    2000-06-01

    Full Text Available A sandfly survey was carried out in 100 x 150 m patches of primary forest submitted to recent deforestation in order to determine its species composition 10-30 days after clearing. The following collecting methods were used: CDC traps whit black light; Malaise traps placed at 0.5, 1, 5 and 10m up from the the soil surface; Pennsylvania traps whit black light; Malaise traps, tree-base catches and human baits. A total of 2810 specimens of Lutzomyia França, 1924 and one species of Brumptomyia França & Parrot, 1921, were collected. In general, the predominant species were L. chagasi (Costa Lima, 1941 (25.9%, L. davisi (Root, 1934 (12.3%, L. ayrozai (Barretto & Coutinho, 1940 (9.32% and L. ubiquitalis (Mangabeira, 1942, (6.93%. The higher diversity in species was obtained with the CDC traps placed at 1 m and 5 m heights. In the human bait collections, the species of the subgenus Psychodopygus Mangabeira, 1941, predominated. Lutzomyia ubiquitalis was collected in both, Malaise and Pennsylvania traps. In the tree-base collections, L. damascenoi Mangabeira, 1941, L. dendrophyla (Mangabeira, 1942 and L. souza-castroi (Damasceno & Causey, 1944 were the predominant species. Of all collected species, five of the subgenus Lutzomyia, six of the subgenus Psychodopygus and one of genus Trichophoromyia Barretto, 1962 have been previously incriminayed as vectors of leishmaniasis disease or have been found associated with parasites of the genus Leishmania (Root, 1903.

  6. Global Liquidity Trap

    OpenAIRE

    Fujiwara, Ippei; NAKAJIMA Tomoyuki; Sudo, Nao; Teranishi, Yuki

    2011-01-01

    In this paper we consider a two-country New Open Economy Macroeconomics model, and analyze the optimal monetary policy when countries cooperate in the face of a "global liquidity trap" -- i.e., a situation where the two countries are simultaneously caught in liquidity traps. The notable features of the optimal policy in the face of a global liquidity trap are history dependence and international dependence. The optimality of history dependent policy is confirmed as in local liquidity trap. A ...

  7. Trap designs for monitoring Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Lee, Jana C; Shearer, Peter W; Barrantes, Luz D; Beers, Elizabeth H; Burrack, Hannah J; Dalton, Daniel T; Dreves, Amy J; Gut, Larry J; Hamby, Kelly A; Haviland, David R; Isaacs, Rufus; Nielsen, Anne L; Richardson, Tamara; Rodriguez-Saona, Cesar R; Stanley, Cory A; Walsh, Doug B; Walton, Vaughn M; Yee, Wee L; Zalom, Frank G; Bruck, Denny J

    2013-12-01

    Drosophila suzukii (Matsumura), an invasive pest of small and stone fruits, has been recently detected in 39 states of the United States, Canada, Mexico, and Europe. This pest attacks ripening fruit, causing economic losses including increased management costs and crop rejection. Ongoing research aims to improve the efficacy of monitoring traps. Studies were conducted to evaluate how physical trap features affect captures of D. suzukii. We evaluated five colors, two bait surface areas, and a top and side position for the fly entry point. Studies were conducted at 16 sites spanning seven states and provinces of North America and nine crop types. Apple cider vinegar was the standard bait in all trap types. In the overall analysis, yellow-colored traps caught significantly more flies than clear, white, and black traps; and red traps caught more than clear traps. Results by color may be influenced by crop type. Overall, the trap with a greater bait surface area caught slightly more D. suzukii than the trap with smaller area (90 vs. 40 cm(2)). Overall, the two traps with a side-mesh entry, with or without a protective rain tent, caught more D. suzukii than the trap with a top-mesh entry and tent.

  8. Ion trap simulation tools.

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Benjamin Roger

    2009-02-01

    Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

  9. Primordial Black Holes

    CERN Document Server

    MacGibbon, Jane H; Linnemann, J T; Marinelli, S S; Stump, D; Tollefson, K

    2015-01-01

    Primordial Black Holes (PBHs) are of interest in many cosmological contexts. PBHs lighter than about 1012 kg are predicted to be directly detectable by their Hawking radiation. This radiation should produce both a diffuse extragalactic gamma-ray background from the cosmologically-averaged distribution of PBHs and gamma-ray burst signals from individual light black holes. The Fermi, Milagro, Veritas, HESS and HAWC observatories, in combination with new burst recognition methodologies, offer the greatest sensitivity for the detection of such black holes or placing limits on their existence.

  10. Trapping Horizons in Sultana-Dyer Space-Time

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-Yi

    2011-01-01

    The Sultana-Dyer space-time is suggested as a model describing a black hole embedded in an expanding universe.Recently, its global structure is analyzed and the trapping horizons are shown.In the paper, by directly calculating the expansions of the radial null vector fields normal to the space-like two-spheres foliating the trapping horizons, we find that the trapping horizon outside the event horizon in the Sultana-Dyer space-time is a past trapping horizon.Further, we find that the past trapping horizon is an outer, instantaneously degenerate or inner trapping horizon accordingly when the radial coordinate is less than, equal to or greater than some value.

  11. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  12. Time-resolved measurements of black carbon light absorption enhancement in urban and near-urban locations of southern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    T. W. Chan

    2011-10-01

    Full Text Available In this study a photoacoustic spectrometer (PA, a laser-induced incandescence instrument system (LII and an Aerosol Mass Spectrometer were operated in parallel for in-situ measurements of black carbon (BC light absorption enhancement. Results of a thermodenuder experiment using ambient particles in Toronto are presented first to show that LII measurements of BC are not influenced by the presence of non-refractory material thus providing true atmospheric BC mass concentrations. In contrast, the PA response is enhanced when the non-refractory material is internally mixed with the BC particles. Through concurrent measurements using the LII and PA the specific absorption cross-section (SAC can be quantified with high time resolution (1 min. Comparisons of ambient PA and LII measurements from four different locations (suburban Toronto; a street canyon with diesel bus traffic in Ottawa; adjacent to a commuter highway in Ottawa and; regional background air in and around Windsor, Ontario, show that different impacts from emission sources and/or atmospheric processes result in different particle light absorption enhancements and hence variations in the SAC. The diversity of measurements obtained, including those with the thermodenuder, demonstrated that it is possible to identify measurements where the presence of externally-mixed non-refractory particles obscures direct observation of the effect of coating material on the SAC, thus allowing this effect to be measured with more confidence. Depending upon the time and location of measurement (urban, rural, close to and within a lake breeze frontal zone, 30 min average SAC varies between 9 ± 2 and 43 ± 4 m2 g−1. Causes of this variation, which were determined through the use of meteorological and gaseous measurements (CO, SO2, O3, include the particle emission source, airmass source region, the degree of atmospheric processing. Observations from this study

  13. The Electronic McPhail Trap

    Directory of Open Access Journals (Sweden)

    Ilyas Potamitis

    2014-11-01

    Full Text Available Certain insects affect cultivations in a detrimental way. A notable case is the olive fruit fly (Bactrocera oleae (Rossi, that in Europe alone causes billions of euros in crop-loss/per year. Pests can be controlled with aerial and ground bait pesticide sprays, the efficiency of which depends on knowing the time and location of insect infestations as early as possible. The inspection of traps is currently carried out manually. Automatic monitoring traps can enhance efficient monitoring of flying pests by identifying and counting targeted pests as they enter the trap. This work deals with the hardware setup of an insect trap with an embedded optoelectronic sensor that automatically records insects as they fly in the trap. The sensor responsible for detecting the insect is an array of phototransistors receiving light from an infrared LED. The wing-beat recording is based on the interruption of the emitted light due to the partial occlusion from insect’s wings as they fly in the trap. We show that the recordings are of high quality paving the way for automatic recognition and transmission of insect detections from the field to a smartphone. This work emphasizes the hardware implementation of the sensor and the detection/counting module giving all necessary implementation details needed to construct it.

  14. Trap style influences wild pig behavior and trapping success

    Science.gov (United States)

    Williams, B.L.; Holtfreter, R.W.; Ditchkoff, S.S.; Grand, J.B.

    2011-01-01

    Despite the efforts of many natural resource professionals, wild pig (Sus scrofa) populations are expanding in many areas of the world. Although many creative techniques for controlling pig populations are being explored, trapping has been and still is themost commonly usedmethod of population control formany public and private land managers. We conducted an observational study to examine the efficiency of 2 frequently used trap styles: a small, portable box-style trap and a larger, semi-permanent, corral-style trap.We used game cameras to examine patterns of trap entry by wild pigs around each style of trap, and we conducted a trapping session to compare trapping success between trap styles. Adult female and juvenile wild pigs entered both styles of trap more readily than did adult males, and adult males seemed particularly averse to entering box traps. Less than 10% of adult male visits to box traps resulted in entries, easily the least percentage of any class at any style of trap. Adult females entered corral traps approximately 2.2 times more often per visit than box traps and re-entered corral traps >2 times more frequently. Juveniles entered and reentered both box and corral traps at similar rates. Overall (all-class) entry-per-visit rates at corral traps (0.71) were nearly double that of box traps (0.37). Subsequent trapping data supported these preliminary entry data; the capture rate for corral traps was >4 times that of box traps. Our data suggest that corral traps are temporally and economically superior to box traps with respect to efficiency; that is, corral traps effectively trap more pigs per trap night at a lower cost per pig than do box traps. ?? 2011 The Wildlife Society.

  15. Comparison of Various Configurations of CDC-type Traps for the Collection of Phlebotomus papatasi Scopoli in Southern Israel

    Science.gov (United States)

    2011-03-01

    Prosopis farcta (Macbride) (Mimosaceae). Along the periphery...Innovations LTD., Tel Aviv, Israel) placed beneath a metal jacket of 4 mm iron sheet which fit tightly around the entire trap body. The modified...trap bodies were then covered with a heavy non-glossy black paper. The surface temperature of the covered trap bodies, which was set

  16. Black Droplets

    CERN Document Server

    Santos, Jorge E

    2014-01-01

    Black droplets and black funnels are gravitational duals to states of a large N, strongly coupled CFT on a fixed black hole background. We numerically construct black droplets corresponding to a CFT on a Schwarzchild background with finite asymptotic temperature. We find two branches of such droplet solutions which meet at a turning point. Our results suggest that the equilibrium black droplet solution does not exist, which would imply that the Hartle-Hawking state in this system is dual to the black funnel constructed in \\cite{Santos:2012he}. We also compute the holographic stress energy tensor and match its asymptotic behaviour to perturbation theory.

  17. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  18. Modular cryostat for ion trapping with surface-electrode ion traps

    CERN Document Server

    Vittorini, Grahame; Brown, Kenneth R; Harter, Alexa W; Doret, S Charles

    2013-01-01

    We present a simple cryostat purpose built for use with surface-electrode ion traps, designed around an affordable, large cooling power commercial pulse tube refrigerator. A modular vacuum enclosure with a single vacuum space facilitates interior access, and enables rapid turnaround and flexiblity for future modifications. Long rectangular windows provide nearly 360 degrees of optical access in the plane of the ion trap, while a circular bottom window near the trap enables NA 0.4 light collection without the need for in-vacuum optics. We evaluate the system's mechanical and thermal characteristics, and we quantify ion trapping performance by trapping 40Ca+, finding small stray electric fields, long ion lifetimes, and low ion heating rates.

  19. Modular cryostat for ion trapping with surface-electrode ion traps

    Science.gov (United States)

    Vittorini, Grahame; Wright, Kenneth; Brown, Kenneth R.; Harter, Alexa W.; Doret, S. Charles

    2013-04-01

    We present a simple cryostat purpose built for use with surface-electrode ion traps, designed around an affordable, large cooling power commercial pulse tube refrigerator. A modular vacuum enclosure with a single vacuum space facilitates interior access and enables rapid turnaround and flexibility for future modifications. Long rectangular windows provide nearly 360° of optical access in the plane of the ion trap, while a circular bottom window near the trap enables NA 0.4 light collection without the need for in-vacuum optics. We evaluate the system's mechanical and thermal characteristics and we quantify ion trapping performance by trapping 40Ca+, finding small stray electric fields, long ion lifetimes, and low ion heating rates.

  20. Polarization dependent particle dynamics in simple traps

    Science.gov (United States)

    Yifat, Yuval; Sule, Nishant; Figliozzi, Patrick; Scherer, Norbert F.

    2016-09-01

    Optical trapping has proved to be a valuable research tool in a wide range of fields including physics, chemistry, biological and materials science. The ability to precisely localize individual colloidal particles in a three-dimensional location has been highly useful for understanding soft matter phenomena and inter-particle interactions. It also holds great promise for nanoscale fabrication and ultra-sensitive sensing by enabling precise positioning of specific material building blocks. In this presentation we discuss our research on the effect of the polarization state of the incident laser on the trapping of nanoscale particles. The polarization of the incident light has a pronounced effect on particle behavior even for the simple case of two plasmonic silver nano-particles in a Gaussian trap,. When the incident light is linearly polarized, the particles form an optically induced dimer that is stably oriented along the direction of polarization. However, nanoparticle dimers and trimmers exhibit structural instabilities and novel dynamics when trapped with focused beams of circularly polarized light. The observed dynamics suggest electrodynamic and hydrodynamic coupling. We explore the electrodynamic phenomena experimentally and theoretically and discuss further examples of polarization controlled trapping.

  1. Black Teenage Pregnancy

    Directory of Open Access Journals (Sweden)

    Loretta I. Winters

    2012-01-01

    Full Text Available This article examines the relative importance of race and socioeconomic status (SES in determining whether Black and White teenagers report having ever been pregnant. Data gathered from 1999 to 2006 by the National Center for Health Statistics of the Center for Disease Control and Prevention included 1,580 Black and White females aged 15 to 19 years. Results supported the effects of race and SES, with SES having the stronger effect. However, the effects of race and SES differ when controlling for the state of the economy. No difference between Blacks and Whites was found during better economic times. During 2003-2004, the period of greatest economic stress, race was determined to be the only predictor of teenage pregnancy. In particular, during 2005-2006, the reduction in pregnancy rates for Black minors (15-17 fell below those for White minors within their respective SES categories. Policy implications are discussed in light of these findings.

  2. Towards trapped antihydrogen

    CERN Document Server

    Jorgensen, L V; Bertsche, W; Boston, A; Bowe, P D; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hayano, R S; Hydomako, R; Jenkins, M J; Kurchaninov, L; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page, R D; Povilus, A; Robicheaux, F; Sarid, E; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Substantial progress has been made in the last few years in the nascent field of antihydrogen physics. The next big step forward is expected to be the trapping of the formed antihydrogen atoms using a magnetic multipole trap. ALPHA is a new international project that started to take data in 2006 at CERN’s Antiproton Decelerator facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms to facilitate measurements of its properties. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.

  3. Radiation trapping inside a hollow-core photonic crystal fiber

    CERN Document Server

    Jen, H H; Lee, Kevin C J; Chen, Yi-Hsin; Yu, Ite A

    2014-01-01

    We report the radiation trapping effect inside a hollow-core photonic crystal fiber (PCF). An optical dipole trap was used to load and confine the atoms in the PCF without contacting the wall of the fiber. The transmission of a probe light propagating through the PCF was studied experimentally and theoretically. With the experimental results and theoretical predictions, we conclude that the radiation trapping can play a significant role and should be taken into account in the spectroscopic measurements inside the PCF.

  4. Black psyllium

    Science.gov (United States)

    Black psyllium is a weed that grows aggressively throughout the world. The plant was spread with the ... to make medicine. Be careful not to confuse black psyllium with other forms of psyllium including blond ...

  5. Black hole gravitohydromagnetics

    CERN Document Server

    Punsly, Brian

    2008-01-01

    Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...

  6. Microfabricated surface trap for scalable ion-photon interfaces

    CERN Document Server

    Herskind, Peter F; Shi, Molu; Ge, Yufei; Cetina, Marko; Chuang, Isaac L

    2010-01-01

    The combination of high-finesse optical mirrors and ion traps is attractive for quantum light-matter interfaces, which represents an enabling resource for large scale quantum information processing. We report on a scalable approach to ion-photon interfaces based on a surface electrode ion trap that is microfabricated on top of a dielectric mirror, with additional losses due to fabrication as low as 80 ppm for light at 422 nm. Stable trapping of single 88 Sr+ ions is demonstrated and the functionality of the mirror is verified by light collection from, and imaging of, the ion $169 \\pm 4 \\mu$m above the mirror. Sensitivity to laser induced charging of the trap and substrate as well as anomalous heating of the ion at 15 K is evaluated and found comparable to similar traps fabricated on conventional substrates without dielectric mirror coatings.

  7. An effort to trap mink in Maine to protect nesting Seabirds 1999

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report details and effort to trap mink and survey black guillemots on islands in outer Penobscot Bay (Otter, Roberts, Little Roberts, Carvers, Hay, and...

  8. An effort to trap mink in Maine to protect nesting Seabirds 2000

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Mink were trapped off the seabird nesting islands south east of Vinalhaven, Maine (outer Penobscot Bay) during the late 1990's, and the local Black Guillemot...

  9. Plasmon enhanced optical tweezers with gold-coated black silicon

    Science.gov (United States)

    Kotsifaki, D. G.; Kandyla, M.; Lagoudakis, P. G.

    2016-05-01

    Plasmonic optical tweezers are a ubiquitous tool for the precise manipulation of nanoparticles and biomolecules at low photon flux, while femtosecond-laser optical tweezers can probe the nonlinear optical properties of the trapped species with applications in biological diagnostics. In order to adopt plasmonic optical tweezers in real-world applications, it is essential to develop large-scale fabrication processes without compromising the trapping efficiency. Here, we develop a novel platform for continuous wave (CW) and femtosecond plasmonic optical tweezers, based on gold-coated black silicon. In contrast with traditional lithographic methods, the fabrication method relies on simple, single-step, maskless tabletop laser processing of silicon in water that facilitates scalability. Gold-coated black silicon supports repeatable trapping efficiencies comparable to the highest ones reported to date. From a more fundamental aspect, a plasmon-mediated efficiency enhancement is a resonant effect, and therefore, dependent on the wavelength of the trapping beam. Surprisingly, a wavelength characterization of plasmon-enhanced trapping efficiencies has evaded the literature. Here, we exploit the repeatability of the recorded trapping efficiency, offered by the gold-coated black silicon platform, and perform a wavelength-dependent characterization of the trapping process, revealing the resonant character of the trapping efficiency maxima. Gold-coated black silicon is a promising platform for large-scale parallel trapping applications that will broaden the range of optical manipulation in nanoengineering, biology, and the study of collective biophotonic effects.

  10. 'Black holes': escaping the void.

    Science.gov (United States)

    Waldron, Sharn

    2013-02-01

    The 'black hole' is a metaphor for a reality in the psyche of many individuals who have experienced complex trauma in infancy and early childhood. The 'black hole' has been created by an absence of the object, the (m)other, so there is no internalized object, no (m)other in the psyche. Rather, there is a 'black hole' where the object should be, but the infant is drawn to it, trapped by it because of an intrinsic, instinctive need for a 'real object', an internalized (m)other. Without this, the infant cannot develop. It is only the presence of a real object that can generate the essential gravity necessary to draw the core of the self that is still in an undeveloped state from deep within the abyss. It is the moving towards a real object, a (m)other, that relativizes the absolute power of the black hole and begins a reformation of its essence within the psyche.

  11. Self-trapping of optical beams through thermophoresis.

    Science.gov (United States)

    Lamhot, Yuval; Barak, Assaf; Peleg, Or; Segev, Mordechai

    2010-10-15

    We demonstrate, theoretically and experimentally, self-trapping of optical beams in nanoparticle suspensions by virtue of thermophoresis. We use light to control the local concentration of nanoparticles, and increase their density at the center of the optical beam, thereby increasing the effective refractive index in the beam vicinity, causing the beam to self-trap.

  12. LIME GREEN LIGHT-EMITTING DIODE EQUIPPED YELLOW STICKY CARD TRAPS FOR MONITORING WHITEFLIES, APHIDS AND FUNGUS GNATS IN GREENHOUSES%应用附加绿黄色光二极管的黄色胶片监测温室中的粉虱、蚜虫和蕈蚊

    Institute of Scientific and Technical Information of China (English)

    朱昌祺; Alvin M. Simmons; 陈天业; Patrick J. Alexander; Thomas J. Henneerry

    2004-01-01

    绿黄色光二极管(LED)附加在塑胶杯和胶片捕捉器可增加捕捉实验室和温室中昆虫的数量.附加有530nm绿黄色LED的塑胶杯捕捉器比没有附加的捕捉到更多的Trialeurodes vaporariorum(Westwood)和Bemisia tabaci(Gennadius)B生态型.在温室中昆虫笼以四季豆和棉花试验,附加有530nm绿黄色LED的黄色胶片(YC)和透明塑胶片(CS)分别缩写为LED-YC和LED-CS)比每一种没有附加的捕捉器捕捉到更多的T. vaporariorum,B.tabaci B生态型,Ahis gossypii(Glover)和Bradysia coprophila(Lintner)成虫.绿黄色LED-YC在温室中有用为监测和控制的潜在性.%Light-emitting diodes (LEDs) were attached to plastic cup and sticky card traps to improve Pest insect catches in the laboratory and in greenhouses. Plastic cup traps equipped with 530 nm lime green LEDs caught more adult Trialeurodes vaporariorum (Westwood) and Bemisia tabaci (Gennadius) biotype B compared with plastic cup traps alone. Yellow sticky card (YC) and clear plastic sticky card (CS) traps equipped with lime green LEDs (LED-YC and LED-CS, respectively) caught more adult T. vaporariorum, B. tabaci biotype B, Aphis gossypii (Glover) and Bradysia coprophila (Lintner) compared with unlit traps of each type in greenhouse cage studies with shell beans, Phaseolus vulgaris (L.) and cotton, Gossypium hirsutum (L.). The lime green LED equipped YC traps have potential for use in greenhouses for insect detection,monitoring, and control.

  13. Trapping radioactive ions

    CERN Document Server

    Kluge, Heinz-Jürgen

    2004-01-01

    Trapping devices for atomic and nuclear physics experiments with radioactive ions are becoming more and more important at accelerator facilities. While about ten years ago only one online Penning trap experiment existed, namely ISOLTRAP at ISOLDE/CERN, meanwhile almost every radioactive beam facility has installed or plans an ion trap setup. This article gives an overview on ion traps in the operation, construction or planing phase which will be used for fundamental studies with short-lived radioactive nuclides such as mass spectrometry, laser spectroscopy and nuclear decay spectroscopy. In addition, this article summarizes the use of gas cells and radiofrequency quadrupole (Paul) traps at different facilities as a versatile tool for ion beam manipulation like retardation, cooling, bunching, and cleaning.

  14. 1985-86 Trapping Proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Annual Trapping Plan for the 1985-1986 trapping season at Clarence Cannon NWR outlines rules and regulations for the trapping of beaver and muskrat on the...

  15. Efficient Fiber Optic Detection of Trapped Ion Fluorescence

    CERN Document Server

    VanDevender, A P; Amini, J; Leibfried, D; Wineland, D J

    2010-01-01

    Integration of fiber optics may play a critical role in the development of quantum information processors based on trapped ions and atoms by enabling scalable collection and delivery of light and coupling trapped ions to optical microcavities. We trap 24Mg+ ions in a surface-electrode Paul trap that includes an integrated optical fiber for detecting 280-nm fluorescence photons. The collection numerical aperture is 0.37 and total collection efficiency is 2.1 %. The ion can be positioned between 80 \\mum and 100 \\mum from the tip of the fiber by use of an adjustable rf-pseudopotential.

  16. In-trap fluorescence detection of atoms in a microscopic dipole trap

    CERN Document Server

    Hilliard, A J; Sompet, P; Carpentier, A V; Andersen, M F

    2015-01-01

    We investigate fluorescence detection using a standing wave of blue-detuned light of one or more atoms held in a deep, microscopic dipole trap. The blue-detuned standing wave realizes a Sisyphus laser cooling mechanism so that an atom can scatter many photons while remaining trapped. When imaging more than one atom, the blue detuning limits loss due to inelastic light-assisted collisions. Using this standing wave probe beam, we demonstrate that we can count from one to the order of 100 atoms in the microtrap with sub-poissonian precision.

  17. SURVEY OF THE ENTOMOFAUNA THROUGH LUMINOUS TRAP

    Directory of Open Access Journals (Sweden)

    V. R. Andrade Neto

    2014-09-01

    Full Text Available The demand for forest-based raw materials for energy, construction, paper pulp and the pressure to comply with legal requirements concerning environmental legislation, for example, the replacement of the permanent preservation area, legal reserve and recovery of degraded area, leads to encourage the production of healthy seedlings in a health status to do not compromise their future production. The present study aimed to survey the entomofauna population using the “Luiz de Queiroz” model of luminous trap, with white and red fluorescent lamps. The experiment was conducted at the nursery “Flora Sinop” in Sinop – MT. The survey was conducted weekly between the months of April to July 2010, totaling 4 months sand, 32 samples collected. The orders Hemiptera and Coleoptera showed the highest number of individuals captured, either in attraction with white or red light. It was captured 10.089 individuals, 9.339 collected under the influence of white light, representing 92,56%, and 750 with red light, only 7,44% of the total. The white light luminous trap possessed greater efficiency in the attraction of insects when compared with the red light trap.

  18. Towards Antihydrogen Trapping and Spectroscopy at ALPHA

    CERN Document Server

    Butler, Eoin; Ashkezari, Mohammad D; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Bray, Crystal C; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Hangst, Jeffrey S; Hardy, Walter N; Hayano, Ruyugo S; Hayden, Michael E; Humphries, Andrew J; Hydomako, Richard; Jonsell, Svante; Kurchaninov, Leonid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wilding, Dean; Wurtele, Jonathan S; Yamazaki, Yasunori

    2011-01-01

    Spectroscopy of antihydrogen has the potential to yield high-precision tests of the CPT theorem and shed light on the matter-antimatter imbalance in the Universe. The ALPHA antihydrogen trap at CERN's Antiproton Decelerator aims to prepare a sample of antihydrogen atoms confined in an octupole-based Ioffe trap and to measure the frequency of several atomic transitions. We describe our techniques to directly measure the antiproton temperature and a new technique to cool them to below 10 K. We also show how our unique position-sensitive annihilation detector provides us with a highly sensitive method of identifying antiproton annihilations and effectively rejecting the cosmic-ray background.

  19. Efficient cooling and trapping of strontium atoms.

    Science.gov (United States)

    Courtillot, I; Quessada, A; Kovacich, R P; Zondy, J J; Landragin, A; Clairon, A; Lemonde, P

    2003-03-15

    We report the capture of cold strontium atoms in a magneto-optical trap (MOT) at a rate of 4 x 10(10) atoms/s. The MOT is loaded from an atomic beam decelerated by a Zeeman slower operating with a focused laser beam. The 461-nm laser, used for both cooling and trapping, was generated by sum-frequency mixing in a KTP crystal with diode lasers at 813 nm and a Nd:YAG laser at 1064 nm. As much as 115 mW of blue light was obtained.

  20. Black Culture

    Directory of Open Access Journals (Sweden)

    Angela Khristin Brown

    2013-07-01

    Full Text Available The migration of blacks in North America through slavery became united.  The population of blacks past downs a tradition of artist through art to native born citizens. The art tradition involved telling stories to each generation in black families. The black culture elevated by tradition created hope to determine their personal freedom to escape from poverty of enslavement and to establish a way of life through tradition. A way of personal freedoms was through getting a good education that lead to a better foundation and a better way of life.

  1. Occlusion, transparency, and lightness

    OpenAIRE

    2007-01-01

    The lightness of a visual surface is its perceived achromatic reflectance [Adelson, E. H., (2000). Lightness perception and lightness illusions. In M. Gazzaniga (Ed.), The new cognitive neuroscience (2nd ed.) (pp. 339-351) Berlin: Springer; Gilchrist, A. (1999). Lightness perception. In R. W. F. Keil (Ed.), MIT encyclopedia of cognitive science (pp. 471-472). Cambridge: MIT press]. Lightness ranges from black, through various shades of grey, up to white. Anderson and Winawer [Anderson, B., Wi...

  2. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  3. Ultratrace determination of lead by hydride generation in-atomizer trapping atomic absorption spectrometry: Optimization of plumbane generation and analyte preconcentration in a quartz trap-and-atomizer device

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz

    2012-05-15

    A compact trap-and-atomizer device and a preconcentration procedure based on hydride trapping in excess of oxygen over hydrogen in the collection step, both constructed and developed previously in our laboratory, were employed to optimize plumbane trapping in this device and to develop a routine method for ultratrace lead determination subsequently. The inherent advantage of this preconcentration approach is that 100% preconcentration efficiency for lead is reached in this device which has never been reported before using quartz or metal traps. Plumbane is completely retained in the trap-and-atomizer device at 290 Degree-Sign C in oxygen-rich atmosphere and trapped species are subsequently volatilized at 830 Degree-Sign C in hydrogen-rich atmosphere. Effect of relevant experimental parameters on plumbane trapping and lead volatilization are discussed, and possible trapping mechanisms are hypothesized. Plumbane trapping in the trap-and-atomizer device can be routinely used for lead determination at ultratrace levels reaching a detection limit of 0.21 ng ml{sup -1} Pb (30 s preconcentration, sample volume 2 ml). Further improvement of the detection limit is feasible by reducing the blank signal and increasing the trapping time. - Highlights: Black-Right-Pointing-Pointer In-atomizer trapping HG-AAS was optimized for Pb. Black-Right-Pointing-Pointer A compact quartz trap-and-atomizer device was employed. Black-Right-Pointing-Pointer Generation, preconcentration and atomization steps were investigated in detail. Black-Right-Pointing-Pointer 100% preconcentration efficiency for lead was reached. Black-Right-Pointing-Pointer Routine analytical method was developed for Pb determination (LOD of 0.2 ng ml{sup -1} Pb).

  4. Search For Trapped Antihydrogen

    CERN Document Server

    Andresen, Gorm B; Baquero-Ruiz, Marcelo; Bertsche, William; Bowe, Paul D; Bray, Crystal C; Butler, Eoin; Cesar, Claudio L; Chapman, Steven; Charlton, Michael; Fajans, Joel; Friesen, Tim; Fujiwara, Makoto C; Gill, David R; Hangst, Jeffrey S; Hardy, Walter N; Hayano, Ryugo S; Hayden, Michael E; Humphries, Andrew J; Hydomako, Richard; Jonsell, Svante; Jørgensen, Lars V; Kurchaninov, Lenoid; Lambo, Ricardo; Madsen, Niels; Menary, Scott; Nolan, Paul; Olchanski, Konstantin; Olin, Art; Povilus, Alexander; Pusa, Petteri; Robicheaux, Francis; Sarid, Eli; Nasr, Sarah Seif El; Silveira, Daniel M; So, Chukman; Storey, James W; Thompson, Robert I; van der Werf, Dirk P; Wilding, Dean; Wurtele, Jonathan S; Yamazaki, Yasunori

    2011-01-01

    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consist...

  5. Microfabricated cylindrical ion trap

    Science.gov (United States)

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  6. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  7. Deep dyeing properties and light fastness of black ultrafine polyester for automotive textiles%黑色细旦汽车内饰面料染深性和耐光性

    Institute of Scientific and Technical Information of China (English)

    葛元宇; 闵洁; 代烨珉

    2012-01-01

    研究了细旦面料分散黑染色显色性及其耐光色牢度,以及添加耐光牢度提升剂后对细旦织物的表观得色和耐光色牢度的影响.研究结果表明,在染料用量3%-15%(omf)范围内,细旦纤维上染料浓度递增能直接引起纤维颜色深度的递增;当染料用量较低时,耐光牢度提升剂和分散染料在向涤纶纤维迁移过程中的相互影响较小;而当染料用量较大时,两者之间的竞染效应凸显,使染色织物K/S值下降;相同氙弧曝光条件下,细旦纤维上染料含量越高,其耐受光照的性能越优异.%Deep dyeing and light fastness of the black ultra-fine automotive textiles mainly depend on dye depth. Effects of dye-stuff dosage and light fastness promoter on the color value and light fastness are investigated. Results show that the color value increases along with the increase in dye depth ranging from 3% to 15%omf. There is little interaction between light fastness promoters and disperse dyes at low concentration during dye migration. When dye quantity is high, the competition between the light fastness promoters and dyes will lead to lower K/S value. The higher the content of dyes in the ultra-fine fibers is, the better the light fastness will be.

  8. The Formation of Supermassive Black Holes in the First Galaxies

    NARCIS (Netherlands)

    Schleicher, Dominik R. G.; Banerjee, Robi; Sur, Sharanya; Glover, Simon C. O.; Spaans, Marco; Klessen, Ralf S.

    2010-01-01

    We discuss the formation of supermassive black holes in the early universe, and how to probe their subsequent evolution with the upcoming mm/sub-mm telescope ALMA. We first focus on the chemical and radiative conditions for black hole formation, in particular considering radiation trapping and molec

  9. Comparative efficacy of three suction traps for collecting phlebotomine sand flies (Diptera: Psychodidae) in open habitats.

    Science.gov (United States)

    Faiman, Roy; Cuño, Ruben; Warburg, Alon

    2009-06-01

    The efficacy of three suction traps for trapping phlebotomine sand flies (Diptera: Psychodidae) was compared. Traps were baited with Co(2) and used without any light source. CO(2)-baited CDC traps were evaluated either in their standard downdraft orientation or inverted (iCDC traps). Mosquito Magnet-X (MMX) counterflow geometry traps were tested in the updraft orientation only. Both updraft traps (iCDC and MMX) were deployed with their opening ∼10 cm from the ground while the opening of the downdraft (CDC) trap was ∼40 cm above ground. Comparisons were conducted in two arid locations where different sand fly species prevail. In the Jordan Valley, 3,367 sand flies were caught, 2,370 of which were females. The predominant species was Phlebotomus (Phlebotomus) papatasi, Scopoli 1786 (>99%). The updraft-type traps iCDC and MMX caught an average of 118 and 67.1 sand flies per trap night, respectively. The CDC trap caught 32.9 sand flies on average per night, significantly less than the iCDC traps. In the Judean desert, traps were arranged in a 3 × 3 Latin square design. A total of 565 sand flies were caught, 345 of which were females. The predominant species was P. (Paraphlebotomus) sergenti Parrot 1917 (87%). The updraft traps iCDC and MMX caught an average of 25.6 and 17.9 sand flies per trap per night, respectively. The CDC trap caught 7.8 sand flies on average per night, significantly less than the iCDC traps. The female to male ratio was 1.7 on average for all trap types. In conclusion, updraft traps deployed with their opening close to the ground are clearly more effective for trapping sand flies than downdraft CDC traps in open habitats.

  10. Comparison of three trap types for adult catching of whitefly Bemisia tabaci and its parasitoid Eretmocerus mundus in tomato greenhouse

    OpenAIRE

    Nombela, Gloria; Chu, CC.; Heneberry, T.; Muñiz, M.

    2003-01-01

    The attractiveness of three trap types to Bemisia tabaci (Gennadius) B-biotype (= Bemisia argentifolii Bellows & Perring) and Eretmocerus mundus Mercet adult was compared in two choice experiments in a greenhouse at the Centro de Ciencias Medioambientales, Madrid, Spain.  Yellow sticky cards equipped with light-emitting-diodes (LED-YC) caught more adults per trap per day than yellow sticky card (YC) traps.YC traps caught significantly more B. tabaci and E. mundus adults than plastic cup traps...

  11. Optimising camera traps for monitoring small mammals.

    Directory of Open Access Journals (Sweden)

    Alistair S Glen

    Full Text Available Practical techniques are required to monitor invasive animals, which are often cryptic and occur at low density. Camera traps have potential for this purpose, but may have problems detecting and identifying small species. A further challenge is how to standardise the size of each camera's field of view so capture rates are comparable between different places and times. We investigated the optimal specifications for a low-cost camera trap for small mammals. The factors tested were 1 trigger speed, 2 passive infrared vs. microwave sensor, 3 white vs. infrared flash, and 4 still photographs vs. video. We also tested a new approach to standardise each camera's field of view. We compared the success rates of four camera trap designs in detecting and taking recognisable photographs of captive stoats (Mustelaerminea, feral cats (Felis catus and hedgehogs (Erinaceuseuropaeus. Trigger speeds of 0.2-2.1 s captured photographs of all three target species unless the animal was running at high speed. The camera with a microwave sensor was prone to false triggers, and often failed to trigger when an animal moved in front of it. A white flash produced photographs that were more readily identified to species than those obtained under infrared light. However, a white flash may be more likely to frighten target animals, potentially affecting detection probabilities. Video footage achieved similar success rates to still cameras but required more processing time and computer memory. Placing two camera traps side by side achieved a higher success rate than using a single camera. Camera traps show considerable promise for monitoring invasive mammal control operations. Further research should address how best to standardise the size of each camera's field of view, maximise the probability that an animal encountering a camera trap will be detected, and eliminate visible or audible cues emitted by camera traps.

  12. Optimising camera traps for monitoring small mammals.

    Science.gov (United States)

    Glen, Alistair S; Cockburn, Stuart; Nichols, Margaret; Ekanayake, Jagath; Warburton, Bruce

    2013-01-01

    Practical techniques are required to monitor invasive animals, which are often cryptic and occur at low density. Camera traps have potential for this purpose, but may have problems detecting and identifying small species. A further challenge is how to standardise the size of each camera's field of view so capture rates are comparable between different places and times. We investigated the optimal specifications for a low-cost camera trap for small mammals. The factors tested were 1) trigger speed, 2) passive infrared vs. microwave sensor, 3) white vs. infrared flash, and 4) still photographs vs. video. We also tested a new approach to standardise each camera's field of view. We compared the success rates of four camera trap designs in detecting and taking recognisable photographs of captive stoats (Mustelaerminea), feral cats (Felis catus) and hedgehogs (Erinaceuseuropaeus). Trigger speeds of 0.2-2.1 s captured photographs of all three target species unless the animal was running at high speed. The camera with a microwave sensor was prone to false triggers, and often failed to trigger when an animal moved in front of it. A white flash produced photographs that were more readily identified to species than those obtained under infrared light. However, a white flash may be more likely to frighten target animals, potentially affecting detection probabilities. Video footage achieved similar success rates to still cameras but required more processing time and computer memory. Placing two camera traps side by side achieved a higher success rate than using a single camera. Camera traps show considerable promise for monitoring invasive mammal control operations. Further research should address how best to standardise the size of each camera's field of view, maximise the probability that an animal encountering a camera trap will be detected, and eliminate visible or audible cues emitted by camera traps.

  13. Testing the Model of Oscillating Magnetic Traps

    Science.gov (United States)

    Szaforz, Ż.; Tomczak, M.

    2015-01-01

    The aim of this paper is to test the model of oscillating magnetic traps (the OMT model), proposed by Jakimiec and Tomczak ( Solar Phys. 261, 233, 2010). This model describes the process of excitation of quasi-periodic pulsations (QPPs) observed during solar flares. In the OMT model energetic electrons are accelerated within a triangular, cusp-like structure situated between the reconnection point and the top of a flare loop as seen in soft X-rays. We analyzed QPPs in hard X-ray light curves for 23 flares as observed by Yohkoh. Three independent methods were used. We also used hard X-ray images to localize magnetic traps and soft X-ray images to diagnose thermal plasmas inside the traps. We found that the majority of the observed pulsation periods correlates with the diameters of oscillating magnetic traps, as was predicted by the OMT model. We also found that the electron number density of plasma inside the magnetic traps in the time of pulsation disappearance is strongly connected with the pulsation period. We conclude that the observations are consistent with the predictions of the OMT model for the analyzed set of flares.

  14. Evanescent optical trapping of nanoscale particles using slotted tapered optical fibres

    CERN Document Server

    Daly, Mark; Chormaic, Síle Nic

    2016-01-01

    While conventional optical trapping techniques can trap objects with submicron dimensions, the underlying limits imposed by the diffraction of light generally restrict their use to larger, or higher refractive index particles. As the index and diameter decrease, the trapping difficulty rapidly increases; hence, the power requirements for stable trapping become so large as to quickly denature the trapped objects in such diffraction-limited systems. Here, we present an evanescent field-based device capable of confining low index nanoscale particles using modest optical powers as low as 1.2 mW, with additional applications in the field of cold atom trapping. Our experiment uses a nanostructured optical micro-nanofibre to trap 200 nm, low-index, fluorescent particles within the structured region, thereby overcoming diffraction limitations. We analyse the trapping potential of this device both experimentally and theoretically, and show how strong optical traps are achieved with low input powers.

  15. Evolving black hole horizons in General Relativity and alternative gravity

    CERN Document Server

    Faraoni, Valerio

    2013-01-01

    From the microscopic point of view, realistic black holes are time-dependent and the teleological concept of event horizon fails. At present, the apparent or the trapping horizon seem its best replacements in various areas of black hole physics. We discuss the known phenomenology of apparent and trapping horizons for analytical solutions of General Relativity and alternative theories of gravity. These specific examples (we focus on spherically symmetric inhomogeneities in a background cosmological spacetime) may be useful as toy models for research on various aspects of black hole physics.

  16. Penning trap at IGISOL

    Energy Technology Data Exchange (ETDEWEB)

    Szerypo, J. E-mail: jerzy.szerypo@phys.jyu.fi; Jokinen, A.; Kolhinen, V.S.; Nieminen, A.; Rinta-Antila, S.; Aeystoe, J

    2002-04-22

    The IGISOL facility at the Department of Physics of the University of Jyvaeskylae (JYFL) is delivering radioactive beams of short-lived exotic nuclei, in particular the neutron-rich isotopes from the fission reaction. These nuclei are studied with the nuclear spectroscopy methods. In order to substantially increase the quality and sensitivity of such studies, the beam should undergo beam handling: cooling, bunching and isobaric purification. The first two processes are performed with the use of an RFQ cooler/buncher. The isobaric purification will be made by a Penning trap placed after the RF-cooler element. This contribution describes the current status of the Penning trap project and its future prospects. The latter comprise the precise nuclear mass measurements, nuclear spectroscopy in the Penning trap interior as well as the laser spectroscopy on the extracted beams.

  17. .Investigation the  Zero-Valent Iron (ZVI Performance in the Presence of UV light and Hydrogen Peroxide on Removal of Azo Dyes Acid Orange 7 and Reactive Black 5 from Aquatic Solutions

    Directory of Open Access Journals (Sweden)

    Mansur Zarrabi

    2013-02-01

    Full Text Available Background and Objectives: Colored wastewaters are known as one of the most important sources of environmental pollutants. Having toxic chemicals and aesthetic problems has made treatment of these wastewaters very crucial. So far a number of methods such as electrochemical treatment, coagulation and flocculation, and adsorption have been used for treatment of textile industries wastewater. Hence,  the efficiency of zero-valent iron powder in the presence of UV light and hydrogen peroxide to remove Acid Orange 7 and Reactive Black 5 from the synthetic solutions was investigated.Materials and Methods: Conducting all experiments in a batch reactor, we examined different parameters including initial concentration of the color (25, 50, 75 mg/L, contact time (30,  60, 120 min, pH (3, 7, 11, the amount of iron powder (0.6, 1.3,  2  g/l, and hydrogen peroxide concentration (10, 15, 20  ml/l.Result: The results showed that dye removal efficiency was increased by increasing contact time, the amount of iron powder and hydrogen peroxide concentration. On the other hand, with the increasing pH and initial concentration of dye, removal efficiency decreased in both AO7and RB5 dyes.Conclusion: We found that the integrated ZVI/UV/H2O2 method has  high efficiency in removing azo dyes Acid Orange 7 and Reactive Black 5.

  18. Mosquito Traps: An Innovative, Environmentally Friendly Technique to Control Mosquitoes

    Directory of Open Access Journals (Sweden)

    Brigitte Poulin

    2017-03-01

    Full Text Available We tested the use of mosquito traps as an alternative to spraying insecticide in Camargue (France following the significant impacts observed on the non-target fauna through Bti persistence and trophic perturbations. In a village of 600 inhabitants, 16 Techno Bam traps emitting CO2 and using octenol lures were set from April to November 2016. Trap performance was estimated at 70% overall based on mosquitoes landing on human bait in areas with and without traps. The reduction of Ochlerotatus caspius and Oc. detritus, the two species targeted by Bti spraying, was, respectively, 74% and 98%. Traps were less efficient against Anopheles hyrcanus (46%, which was more attracted by lactic acid than octenol lures based on previous tests. Nearly 300,000 mosquitoes from nine species were captured, with large variations among traps, emphasizing that trap performance is also influenced by surrounding factors. Environmental impact, based on the proportion of non-target insects captured, was mostly limited to small chironomids attracted by street lights. The breeding success of a house martin colony was not significantly affected by trap use, in contrast to Bti spraying. Our experiment confirms that the deployment of mosquito traps can offer a cost-effective alternative to Bti spraying for protecting local populations from mosquito nuisance in sensitive natural areas.

  19. Camera traps can be heard and seen by animals.

    Science.gov (United States)

    Meek, Paul D; Ballard, Guy-Anthony; Fleming, Peter J S; Schaefer, Michael; Williams, Warwick; Falzon, Greg

    2014-01-01

    Camera traps are electrical instruments that emit sounds and light. In recent decades they have become a tool of choice in wildlife research and monitoring. The variability between camera trap models and the methods used are considerable, and little is known about how animals respond to camera trap emissions. It has been reported that some animals show a response to camera traps, and in research this is often undesirable so it is important to understand why the animals are disturbed. We conducted laboratory based investigations to test the audio and infrared optical outputs of 12 camera trap models. Camera traps were measured for audio outputs in an anechoic chamber; we also measured ultrasonic (n = 5) and infrared illumination outputs (n = 7) of a subset of the camera trap models. We then compared the perceptive hearing range (n = 21) and assessed the vision ranges (n = 3) of mammals species (where data existed) to determine if animals can see and hear camera traps. We report that camera traps produce sounds that are well within the perceptive range of most mammals' hearing and produce illumination that can be seen by many species.

  20. The Reusable Astronomy Portal (TRAP)

    Science.gov (United States)

    Donaldson, T.; Rogers, A.; Wallace, G.

    2012-09-01

    The Reusable Astronomy Portal (TRAP) aims to provide a common platform for rapidly deploying Astronomy Archives to the web. TRAP is currently under development for both the VAO Data Discovery Portal and the MAST Multi-Mission Portal (Figure 1). TRAP consists of 2 major software packages: the TRAP Client and the TRAP Server. The TRAP framework allows developers to deploy the Server, connect to data resources, then focus on building custom tools for the Client. TRAP is built upon proven industry technologies including the Ext/JS JavaScript Component Library, Mono.NET Web Services, and JSON message based APIs. The multi-layered architecture of TRAP decouples each layer: Client, Service and Data Access, enabling each to evolve independently over time. Although currently deployed to provide astronomy science data access, the TRAP architecture is flexible enough to thrive in any distributed data environment.

  1. Quantum interference from remotely trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, S; Rotter, D; Hennrich, M; Blatt, R [Institute for Experimental Physics, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck (Austria); Rohde, F; Schuck, C; Almendros, M; Gehr, R; Dubin, F; Eschner, J [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, Av del Canal OlImpic, E-08860 Castelldefels (Spain)], E-mail: francois.dubin@icfo.es

    2009-01-15

    We observe quantum interference of photons emitted by two continuously laser-excited single ions, independently trapped in distinct vacuum vessels. High contrast two-photon interference is observed in two experiments with different ion species, Ca{sup +} and Ba{sup +}. Our experimental findings are quantitatively reproduced by Bloch equation calculations. In particular, we show that the coherence of the individual resonance fluorescence light field is determined from the observed interference.

  2. Black tea

    Science.gov (United States)

    ... combination.Talk with your health provider.Birth control pills (Contraceptive drugs)Black tea contains caffeine. The body breaks down caffeine to get rid of it. Birth control pills can decrease how quickly the body breaks down ...

  3. Numerical simulations of black-hole spacetimes

    Science.gov (United States)

    Chu, Tony

    This thesis covers various aspects of the numerical simulation of black-hole spacetimes according to Einstein's general theory of relativity, using the Spectral Einstein Code developed by the Caltech-Cornell-CITA collaboration. The first topic is improvement of binary-black-hole initial data. One such issue is the construction of binary-black-hole initial data with nearly extremal spins that remain nearly constant during the initial relaxation in an evolution. Another concern is the inclusion of physically realistic tidal deformations of the black holes to reduce the high-frequency components of the spurious gravitational radiation content, and represents a first step in incorporating post-Newtonian results in constraint-satisfying initial data. The next topic is the evolution of black-hole binaries and the gravitational waves they emit. The first spectral simulation of two inspiralling black holes through merger and ringdown is presented, in which the black holes are nonspinning and have equal masses. This work is extended to perform the first spectral simulations of two inspiralling black holes with moderate spins and equal masses, including the merger and ringdown. Two configurations are considered, in which both spins are either anti-aligned or aligned with the orbital angular momentum. Highly accurate gravitational waveforms are computed for all these cases, and are used to calibrate waveforms in the effective-one-body model. The final topic is the behavior of quasilocal black-hole horizons in highly dynamical situations. Simulations of a rotating black hole that is distort ed by a pulse of ingoing gravitational radiation are performed. Multiple marginally outer trapped surfaces are seen to appear and annihilate with each other during the evolution, and the world tubes th ey trace out are all dynamical horizons. The dynamical horizon and angular momentum flux laws are evaluated in this context, and the dynamical horizons are contrasted with the event horizon

  4. Redesigning octopus traps

    Directory of Open Access Journals (Sweden)

    Eduarda Gomes

    2014-06-01

    In order to minimise the identified problems in the actual traps, the present work proposes a new design with the aim of reducing the volume and weight during transport, and also during onshore storage. Alternative materials to avoid corrosion and formation of encrustations were also proposed.

  5. Retrolensing by a charged black hole

    Science.gov (United States)

    Tsukamoto, Naoki; Gong, Yungui

    2017-03-01

    Compact objects with a light sphere such as black holes and wormholes can reflect light rays like a mirror. This gravitational lensing phenomenon is called retrolensing and it is an interesting tool to survey dark and compact objects with a light sphere near the solar system. In this paper, we calculate the deflection angle analytically in the strong deflection limit in the Reissner-Nordström spacetime without Taylor expanding it in the power of the electric charge. Using the obtained deflection angle in the strong deflection limit, we investigate the retrolensing light curves and the separation of double images by the light sphere of Reissner-Nordström black holes.

  6. A scheme of quantum phase gate for trapped ion

    Institute of Scientific and Technical Information of China (English)

    Cai Jian-Wu; Fang Mao-Fa; Zheng Xiao-Juan; Liao Xiang-Ping

    2007-01-01

    We propose a scheme to implement two-qubit controlled quantum phase gate(CQPG) via a single trapped twolevel ion located in the standing wave field of a quantum cavity, in which the trap works beyond the Lamb-Dicke limit. When the light field is resonant with the atomic transition |g〉←→|e〉of the ion located at the antinode of the standing wave, we can perform CQPG between the internal and external states of the trapped ion; while the frequency of the light field is chosen to be resonant with the first red sideband of the collective vibrational mode of the ion located at the node of the standing wave, we can perform CQPG between the cavity mode and the collective vibrational mode of the trapped ion. Neither the Lamb-Dicke approximation nor the assistant classical laser is needed. Also we can generate a GHZ state if assisted with a classical laser.

  7. View of the VO prototype made of two sectors of scintillating counters. WLS fibers embedded within connectors appear in green color. Beams of optical fibers inside black sheath collect and transport the emitted light to photo-multipliers a few meters apart.

    CERN Multimedia

    2004-01-01

    View of the VO prototype made of two sectors of scintillating counters. WLS fibers embedded within connectors appear in green color. Beams of optical fibers inside black sheath collect and transport the emitted light to photo-multipliers a few meters apart.

  8. Cryo-Etched Black Silicon for Use as Optical Black

    Science.gov (United States)

    Yee, Karl Y.; White, Victor E.; Mouroulis, Pantazis; Eastwood, Michael L.

    2011-01-01

    Stray light reflected from the surface of imaging spectrometer components in particular, the spectrometer slit degrade the image quality. A technique has been developed for rapid, uniform, and cost-effective black silicon formation based on inductively coupled plasma (ICP) etching at cryogenic temperatures. Recent measurements show less than 1-percent total reflectance from 350 2,500 nm of doped black silicon formed in this way, making it an excellent option for texturing of component surfaces for reduction of stray light. Oxygen combines with SF6 + Si etch byproducts to form a passivation layer atop the Si when the etch is performed at cryogenic temperatures. Excess flow of oxygen results in micromasking and the formation of black silicon. The process is repeatable and reliable, and provides control over etch depth and sidewall profile. Density of the needles can be controlled to some extent. Regions to be textured can be patterned lithographically. Adhesion is not an issue as the nanotips are part of the underlying substrate. This is in contrast to surface growth/deposition techniques such as carbon nanotubes (CNTs). The black Si surface is compatible with wet processing, including processing with solvents, the textured surface is completely inorganic, and it does not outgas. In radiometry applications, optical absorbers are often constructed using gold black or CNTs. This black silicon technology is an improvement for these types of applications.

  9. 50 CFR 622.40 - Limitations on traps and pots.

    Science.gov (United States)

    2010-10-01

    ... measure not less than 8 by 8 inches (20.3 by 20.3 cm). The mesh size of the panel may not be smaller than the mesh size of the trap. The panel must be attached to the trap with untreated jute twine with a... Hatteras Light, NC) and 28°35.1′ N. lat. (due east of the NASA Vehicle Assembly Building, Cape...

  10. Fast cooling of trapped ions using the dynamical Stark shift

    Energy Technology Data Exchange (ETDEWEB)

    Retzker, A [Institute for Mathematical Sciences, Imperial College London, SW7 2PE (United Kingdom); Plenio, M B [Institute for Mathematical Sciences, Imperial College London, SW7 2PE (United Kingdom)

    2007-08-15

    A laser cooling scheme for trapped ions is presented which is based on the fast dynamical Stark shift gate, described in (Jonathan et al 2000 Phys. Rev. A 62 042307). Since this cooling method does not contain an off resonant carrier transition, low final temperatures are achieved even in a traveling wave light field. The proposed method may operate in either pulsed or continuous mode and is also suitable for ion traps using microwave addressing in strong magnetic field gradients.

  11. Microtrap on a concave grating reflector for atom trapping

    Science.gov (United States)

    Zhang, Hui; Li, Tao; Yin, Ya-Ling; Li, Xing-Jia; Xia, Yong; Yin, Jian-Ping

    2016-08-01

    We propose a novel scheme of optical confinement for atoms by using a concave grating reflector. The two-dimension grating structure with a concave surface shape exhibits strong focusing ability under radially polarized illumination. Especially, the light intensity at the focal point is about 100 times higher than that of the incident light. Such a focusing optical field reflected from the curved grating structure can provide a deep potential to trap cold atoms. We discuss the feasibility of the structure serving as an optical dipole trap. Our results are as follows. (i) Van der Waals attraction potential to the surface of the structure has a low effect on trapped atoms. (ii) The maximum trapping potential is ˜ 1.14 mK in the optical trap, which is high enough to trap cold 87Rb atoms from a standard magneto-optical trap with a temperature of 120 μK, and the maximum photon scattering rate is lower than 1/s. (iii) Such a microtrap array can also manipulate and control cold molecules, or microscopic particles. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374100, 91536218, and 11274114) and the Natural Science Foundation of Shanghai Municipality, China (Grant No. 13ZR1412800).

  12. Orthogonal trapping and sensing with long working distance optics [invited

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Tauro, Sandeep

    2010-01-01

    will enable us to strongly expand the field of laser manipulation and diagnostics of the motion and structure of macromolecular systems. In particular, combining our new spatial light modulating techniques with the unique properties of ultrashort laser pulses we aim at constructing a multi-purpose Bio...... university this has been illustrated by CARS and fluorescence spectroscopy of trapped polystyrene beads where the side view geometry opens intriguing possibilities for accessing trapped particles with optical as well as other types of probe methods independent from the trapping process2....

  13. Low-mass black holes as the remnants of primordial black hole formation.

    Science.gov (United States)

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  14. Black holes

    CERN Document Server

    Chrúsciel, P T

    2002-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usual one for gravity, and leads to the one associated with the Unruh metric in the case of Euler equations. We review the global conditions which have been used in the Scri-based definition of a black hole and point out the deficiencies of the Scri approach. Various results on the structure of horizons and apparent horizons are presented, and a new proof of semi-convexity of horizons based on a variational principle is given. Recent results on the classification of stationary singularity-free vacuum solutions are reviewed. ...

  15. A System for Trapping Barium Ions in a Microfabricated Surface Trap

    Science.gov (United States)

    Zhou, Zichao; Wright, John; Graham, Richard; Sakrejda, Tomasz; Chen, Bing; Blinov, Boris; Musiqc Team

    2013-05-01

    We have developed a vacuum chamber and control system for rapid testing and development of microfabricated surface traps. Barium ions have been successfully cooled and trapped in this system. The dark lifetime of a single 138Ba + in this trap is up to 30s. And we can shuttle of ions at rate of 8 cm/s between different potential zones. Our system uses a modular design and is based on an in-vacuum PCB with integrated filters. Control of up to 96 DC electrodes is achieved with an update rate of 20 kHz using a custom FPGA based control system. Collection of fluorescence light over a numerical aperture of 0.28 has been achieved. This work is supported by IAPRA.

  16. Synthesis of visible light driven cobalt tailored Ag2O/TiON nanophotocatalyst by reverse micelle processing for degradation of Eriochrome Black T

    KAUST Repository

    Hussain, Syed Tajammul

    2013-02-01

    An ultra efficient cobalt tailored silver and nitrogen co-doped titania (TiON/Ag2O/Co) visible nanophotocatalyst is successfully synthesized using modified reverse micelle processing. Composition, phase, distribution of dopants, functional group analysis, optical properties and morphology of synthesized materials are investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) based techniques and others. Charge states of titanium (Ti) and silver are explored through core-loss electron energy loss spectroscopy (EELS) analysis and X ray photoelectron spectroscopy (XPS). Our characterization results showed that the synthesized nanophotocatalyst consisted of anatase phased qausispherical nanoparticles that exhibited homogeneous distribution of dopants, large surface area, high quantum efficiency and enhanced optical properties. At lower content of doped Co ions, the TiON/Ag2O responded with extraordinary photocatalytic properties. The cobalt tailored nanophotocatalyst showed remarkable activity against Eriochrome Black T (EBT). Moreover, comparative degradation behavior of EBT with TiON, Ag2O/TiON and Co/Ag2O/TiON is also investigated. © 2012 Elsevier Ltd.

  17. Integrated optics architecture for trapped-ion quantum information processing

    Science.gov (United States)

    Kielpinski, D.; Volin, C.; Streed, E. W.; Lenzini, F.; Lobino, M.

    2016-12-01

    Standard schemes for trapped-ion quantum information processing (QIP) involve the manipulation of ions in a large array of interconnected trapping potentials. The basic set of QIP operations, including state initialization, universal quantum logic, and state detection, is routinely executed within a single array site by means of optical operations, including various laser excitations as well as the collection of ion fluorescence. Transport of ions between array sites is also routinely carried out in microfabricated trap arrays. However, it is still not possible to perform optical operations in parallel across all array sites. The lack of this capability is one of the major obstacles to scalable trapped-ion QIP and presently limits exploitation of current microfabricated trap technology. Here we present an architecture for scalable integration of optical operations in trapped-ion QIP. We show theoretically that diffractive mirrors, monolithically fabricated on the trap array, can efficiently couple light between trap array sites and optical waveguide arrays. Integrated optical circuits constructed from these waveguides can be used for sequencing of laser excitation and fluorescence collection. Our scalable architecture supports all standard QIP operations, as well as photon-mediated entanglement channels, while offering substantial performance improvements over current techniques.

  18. Detection of Trapped Antihydrogen

    CERN Document Server

    Hydomako, Richard Allan

    The ALPHA experiment is an international effort to produce, trap, and perform precision spectroscopic measurements on antihydrogen (the bound state of a positron and an antiproton). Based at the Antiproton Decelerator (AD) facility at CERN, the ALPHA experiment has recently magnetically confined antihydrogen atoms for the first time. A crucial element in the observation of trapped antihydrogen is ALPHA’s silicon vertexing detector. This detector contains sixty silicon modules arranged in three concentric layers, and is able to determine the three-dimensional location of the annihilation of an antihydrogen atom by reconstructing the trajectories of the produced annihilation products. This dissertation focuses mainly on the methods used to reconstruct the annihilation location. Specifically, the software algorithms used to identify and extrapolate charged particle tracks are presented along with the routines used to estimate the annihilation location from the convergence of the identified tracks. It is shown...

  19. Trapping ions with lasers

    CERN Document Server

    Cormick, Cecilia; Morigi, Giovanna

    2010-01-01

    This work theoretically addresses the trapping an ionized atom with a single valence electron by means of lasers, analyzing qualitatively and quantitatively the consequences of the net charge of the particle. In our model, the coupling between the ion and the electromagnetic field includes the charge monopole and the internal dipole, within a multipolar expansion of the interaction Hamiltonian. Specifically, we perform a Power-Zienau-Woolley transformation, taking into account the motion of the center of mass. The net charge produces a correction in the atomic dipole which is of order $m_e/M$ with $m_e$ the electron mass and $M$ the total mass of the ion. With respect to neutral atoms, there is also an extra coupling to the laser field which can be approximated by that of the monopole located at the position of the center of mass. These additional effects, however, are shown to be very small compared to the dominant dipolar trapping term.

  20. Coherence in Microchip Traps

    CERN Document Server

    Treutlein, P; Steinmetz, T; Hänsch, T W; Reichel, J; Treutlein, Philipp; Hommelhoff, Peter; Steinmetz, Tilo; H\\"ansch, Theodor W.; Reichel, Jakob

    2003-01-01

    We report the coherent manipulation of internal states of neutral atoms in a magnetic microchip trap. Coherence lifetimes exceeding 1 s are observed with atoms at distances of $4-130 \\mu$m from the microchip surface. The coherence lifetime in the microtrap is independent of atom-surface distance and agrees well with the results of similar measurements in macroscopic magnetic traps. Due to the absence of surface-induced decoherence, a miniaturized atomic clock with a relative stability in the $10^{-13}$ range can be realized. For applications in quantum information processing, we propose to use microwave near-fields in the proximity of chip wires to create potentials that depend on the internal state of the atoms.

  1. Comparison of sex pheromone traps for monitoring pink hibiscus mealybug (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Vitullo, Justin; Wang, Shifa; Zhang, Aijun; Mannion, Catharine; Bergh, J Christopher

    2007-04-01

    The pink hibiscus mealybug, Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae), is a highly polyphagous pest that invaded Florida in 2002 and has recently been reported from several locations in Louisiana. Although identification of its sex pheromone in 2004 improved monitoring capabilities tremendously, the effectiveness and efficiency of different pheromone trap designs for capturing males has not been evaluated. We deployed green Delta, Pherocon IlB, Pherocon V, Jackson, and Storgard Thinline traps in Homestead, FL, and compared the number of male M. hirsutus captured per trap, the number captured per unit of trapping surface area, the amount of extraneous material captured, and the time taken to count trapped mealybugs. Pheromone-baited traps with larger trapping surfaces (green Delta, Pherocon IIB, and Pherocon V) captured more males per trap than those with smaller surfaces (Jackson and Storgard Thinline), and fewest males were captured by Storgard Thinline traps. However, Jackson traps captured as many or more males per square centimeter of trapping surface as those with larger surfaces, and the time required to count males in Jackson traps was significantly less than in green Delta, Pherocon IIB, and Pherocon V traps. Although all trap designs accumulated some debris and nontarget insects, it was rated as light to moderate for all designs. Based on our measures of effectiveness and efficiency, the Jackson trap is most suitable for monitoring M. hirsutus populations. Additionally, unlike the other traps evaluated, which must be replaced entirely or inspected in the field and then redeployed, only the sticky liners of Jackson traps require replacement, enhancing the efficiency of trap servicing.

  2. Chaotic lensing around boson stars and Kerr black holes with scalar hair

    Science.gov (United States)

    Cunha, P. V. P.; Grover, J.; Herdeiro, C.; Radu, E.; Rúnarsson, H.; Wittig, A.

    2016-11-01

    In a recent paper [1 P. V. P. Cunha, C. A. R. Herdeiro, E. Radu, and H. F. Runarsson, Phys. Rev. Lett. 115, 211102 (2015).], it was shown that the lensing of light around rotating boson stars and Kerr black holes with scalar hair can exhibit chaotic patterns. Since no separation of variables is known (or expected) for geodesic motion on these backgrounds, we examine the 2D effective potentials for photon trajectories, to obtain a deeper understanding of this phenomenon. We find that the emergence of stable light rings on the background spacetimes allows the formation of "pockets" in one of the effective potentials, for open sets of impact parameters, leading to an effective trapping of some trajectories, dubbed "quasibound orbits." We conclude that pocket formation induces chaotic scattering, although not all chaotic orbits are associated to pockets. These and other features are illustrated in a gallery of examples, obtained with a new ray-tracing code, pyhole, which includes tools for a simple, simultaneous visualization of the effective potential, together with the spacetime trajectory, for any given point in a lensing image. An analysis of photon orbits allows us to further establish a positive correlation between photon orbits in chaotic regions and those with more than one turning point in the radial direction; we recall that the latter is not possible around Kerr black holes. Moreover, we observe that the existence of several light rings around a horizon (several fundamental orbits, including a stable one), is a central ingredient for the existence of multiple shadows of a single hairy black hole. We also exhibit the lensing and shadows by Kerr black holes with scalar hair, observed away from the equatorial plane, obtained with pyhole.

  3. Ion Trap Quantum Computing

    Science.gov (United States)

    2011-12-01

    an inspiring speech at the MIT Physics of Computation 1st Conference in 1981, Feynman proposed the development of a computer that would obey the...on ion trap based 36 quantum computing for physics and computer science students would include lecture notes, slides, lesson plans, a syllabus...reading lists, videos, demonstrations, and laboratories. 37 LIST OF REFERENCES [1] R. P. Feynman , “Simulating physics with computers,” Int. J

  4. Water-Trapped Worlds

    CERN Document Server

    Menou, Kristen

    2013-01-01

    Although tidally-locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO2 as dayside ocean basins dry-up. Water-tr...

  5. Black hole accretion disc impacts

    CERN Document Server

    Pihajoki, Pauli

    2015-01-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength {\\lambda} = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  6. Space, time, and black holes

    Energy Technology Data Exchange (ETDEWEB)

    Darling, D.

    1980-10-01

    A discussion of Einstein's General Relativity and how it can explain black holes is included. The key idea of general relativity being that gravitational forces are a direct outcome of local curvature of space-time. The more mass something has the deeper the depression or well it causes in space-time. Black holes are supermassive objects, hence their gravity well is so steep even light can't escape. The three properties associated with a black hole are mass angular momentum, and electric charge. Non-rotating, Schwarzchild, and rotating, Kerr, black holes are studied. A Kruskal-Szekeres diagram for each type is given and explained. (SC)

  7. Chiral discrimination in optical trapping and manipulation

    Science.gov (United States)

    Bradshaw, David S.; Andrews, David L.

    2014-10-01

    When circularly polarized light interacts with chiral molecules or nanoscale particles powerful symmetry principles determine the possibility of achieving chiral discrimination, and the detailed form of electrodynamic mechanisms dictate the types of interaction that can be involved. The optical trapping of molecules and nanoscale particles can be described in terms of a forward-Rayleigh scattering mechanism, with trapping forces being dependent on the positioning within the commonly non-uniform intensity beam profile. In such a scheme, nanoparticles are commonly attracted to local potential energy minima, ordinarily towards the centre of the beam. For achiral particles the pertinent material response property usually entails an electronic polarizability involving transition electric dipole moments. However, in the case of chiral molecules, additional effects arise through the engagement of magnetic counterpart transition dipoles. It emerges that, when circularly polarized light is used for the trapping, a discriminatory response can be identified between left- and right-handed polarizations. Developing a quantum framework to accurately describe this phenomenon, with a tensor formulation to correctly represent the relevant molecular properties, the theory leads to exact analytical expressions for the associated energy landscape contributions. Specific results are identified for liquids and solutions, both for isotropic media and also where partial alignment arises due to a static electric field. The paper concludes with a pragmatic analysis of the scope for achieving enantiomer separation by such methods.

  8. Light Water Reactor Sustainability Program Support and Modeling for the Boiling Water Reactor Station Black Out Case Study Using RELAP and RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    Diego Mandelli; Curtis Smith; Thomas Riley; John Schroeder; Cristian Rabiti; Aldrea Alfonsi; Joe Nielsen; Dan Maljovec; Bie Wang; Valerio Pascucci

    2013-09-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated. In order to evaluate the impact of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the impact of power uprate on the safety of a boiled water reactor system. The case study considered is a loss of off-site power followed by the loss of diesel generators, i.e., a station black out (SBO) event. Analysis is performed by using a thermo-hydraulic code, i.e. RELAP-5, and a stochastic analysis tool currently under development at INL, i.e. RAVEN. Starting from the event tree models contained in SAPHIRE, we built the input file for RELAP-5 that models in great detail system dynamics under SBO conditions. We also interfaced RAVEN with RELAP-5 so that it would be possible to run multiple RELAP-5 simulation runs by changing specific keywords of the input file. We both employed classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. We also employed advanced data analysis and visualization tools that helped us to correlate simulation outcome such as maximum core temperature with a set of input uncertain parameters. Results obtained gave a detailed overview of the issues associated to power uprate for a SBO accident scenario. We were able to quantify how timing of safety related events were impacted by a higher reactor core power. Such insights can provide useful material to the decision makers to perform risk-infomed safety margins management.

  9. Discovery of periodic modulations in the optical spectra of galaxies, possibly due to ultra-rapid light bursts from their massive central black hole

    CERN Document Server

    Borra, Ermanno F

    2013-01-01

    A Fourier transform analysis of 2.5 million spectra in the SDSS survey was carried out to detect periodic modulations contained in their intensity versus frequency spectrum. A statistically significant signal was found for 223 galaxies while the spectra of 0.9 million galaxies were observed. A plot of the periods as a function of redshift clearly shows that the effect is real without any doubt, because they are quantized at two base periods that increase with redshift in two very tight parallel linear relations. I suggest that it could be caused by light bursts separated by times of the order of 10-13 seconds because it was the original reason for searching for the spectral periodicity but other causes may be possible. As another possible cause, I investigate the hypothesis that the modulation is generated by the Fourier transform of spectral lines, concluding that it is not valid. Although the light bursts suggestion implies absurdly high temperatures, it is supported by the fact that the Crab pulsar also ha...

  10. Orbital-type trapping of elastic Lamb waves.

    Science.gov (United States)

    Lomonosov, Alexey M; Yan, Shi-Ling; Han, Bing; Zhang, Hong-Chao; Shen, Zhong-Hua

    2016-01-01

    The interaction of laser-generated Lamb waves propagating in a plate with a sharp-angle conical hole was studied experimentally and numerically. Part of the energy of the incident wave is trapped within the conic area in two ways: the antisymmetric Lamb wave orbiting the center of the hole and the wave localized at the acute edge. Parameters and conditions for optimal conversion of the incident wave into the trapped modes were studied in this work. Experiments were performed using the laser stroboscopic shearography technique, which delivers the time evolution of the acoustic field in the whole area of interest. The effect of trapping can be used for efficient damping, similar to the one-dimensional acoustical black hole effect.

  11. How Black Are Black Hole Candidates?

    CERN Document Server

    Robertson, S L; Robertson, Stanley L.; Leiter, Darryl J.

    2002-01-01

    In previous work we found that many of the spectral properties of x-ray binaries, including both galactic black hole candiates (GBHC) and neutron stars, were consistent with the existence of intrinsically magnetized central objects. Here we review and extend the observational evidence for the existence of intrinsically magnetized GBHC and show that their existence is consistent with a new class of solutions of the Einstein field equations of General Relativity. These solutions are based on a strict adherence to the Principle of Equivalence, which prevents the time-like geodesics of physical matter from becoming null on trapped surfaces of infinite red shift. The new solutions emerge from the fact that the structure and radiation transfer properties of the energy-momentum tensor on the right hand side of the Einstein field equations must have a form that is consistent with this Principle of Equivalence requirement. In this context, we show that the Einstein field equations allow the existence of highly red shi...

  12. Closed Universes With Black Holes But No Event Horizons As a Solution to the Black Hole Information Problem

    CERN Document Server

    Tipler, F J; McGinley, M; Nichols-Barrer, J; Staecker, C; Tipler, Frank J.; Graber, Jessica; Ginley, Matthew Mc; Nichols-Barrer, Joshua; Staecker, Christopher

    2000-01-01

    We show it is possible for the information paradox in black hole evaporation to be resolved classically. Using standard junction conditions, we attach the general closed spherically symmetric dust metric to a spacetime satisfying all standard energy conditions but with a single point future c-boundary. The resulting Omega Point spacetime, which has NO event horizons, nevertheless has black hole type trapped surfaces and hence black holes. But since there are no event horizons, information eventually escapes from the black holes. We show that a scalar quintessence field with an appropriate exponential potential near the final singularity would give rise to an Omega Point final singularity.

  13. Closed universes with black holes but no event horizons as a solution to the black hole information problem

    Science.gov (United States)

    Tipler, Frank J.; Graber, Jessica; McGinley, Matthew; Nichols-Barrer, Joshua; Staecker, Christopher

    2007-08-01

    We show that it is possible for the information paradox in black hole evaporation to be resolved classically. Using standard junction conditions, we attach the general closed spherically symmetric dust metric to a space-time satisfying all standard energy conditions but with a single point future c-boundary. The resulting Omega Point space-time, which has NO event horizons, nevertheless has black hole type trapped surfaces and hence black holes. However, since there are no event horizons, information eventually escapes from the black holes. We show that a scalar quintessence field with an appropriate exponential potential near the final singularity would give rise to an Omega Point final singularity.

  14. Stability of charged black holes in string theory under charged massive scalar perturbations

    CERN Document Server

    Li, Ran

    2013-01-01

    Similar to the superradiant effect in Reissner-Nordstr\\"{o}m black hole, a charged scalar field can be amplified when impinging on the charged black hole in string theory. According to the black-hole bomb mechanism, the mass term of the incident field can effectively works as the reflecting mirror, which may trigger the instability of black hole. We study the possible instability triggered by superradiant effect and demonstrate that the charged black hole in string theory is stable against the massive charged scalar perturbation. The reason is that there is no trapping potential well in the black hole exterior and there is no bound states in the superradiant regime.

  15. Schwarzschild black holes can wear scalar wigs

    CERN Document Server

    Barranco, Juan; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-01-01

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultra-light scalar field dark matter around supermassive black holes and axion-like scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic, in the sense that fairly arbitrary initial data evolves, at late times, as a combination of those long-lived configurations.

  16. Linearity Limits of Biased 1337 Trap Detectors

    CERN Document Server

    Balling, Petr

    2015-01-01

    The upper power limit of linear response of light trap detectors was recently measured [2,3]. We have completed this measurement with test of traps with bias voltage at several visible wavelengths using silicon photodiodes Hamamatsu S1337 1010 and made a brief test of S5227 1010. Bias extends the linearity limit by factor of more than 10 for very narrow beams and more than 30 for wide beams [5]. No irreversible changes were detected even for the highest irradiance of 33 W/cm2 at 406nm. Here we present measurement of minimal bias voltage necessary for 99%, 99.8% and 99.95% linearity for several beam sizes.

  17. Magneto-Optical Trapping of Holmium Atoms

    CERN Document Server

    Miao, J; Stratis, G; Saffman, M

    2014-01-01

    We demonstrate sub-Doppler laser cooling and magneto-optical trapping of the rare earth element Holmium. Atoms are loaded from an atomic beam source and captured in six-beam $\\sigma_+ - \\sigma_-$ molasses using a strong $J=15/2 \\leftrightarrow J=17/2$ cycling transition at $\\lambda=410.5~\\rm nm$. Due to the small difference in hyperfine splittings and Land\\'e $g$-factors in the lower and upper levels of the cooling transition the MOT is self-repumped without additional repump light, and deep sub-Doppler cooling is achieved with the magnetic trap turned on. We measure the leakage out of the cycling transition to metastable states and find a branching ratio $\\sim 10^{-5}$ which is adequate for state resolved measurements on hyperfine encoded qubits.

  18. Laboratory and field testing of bednet traps for mosquito (Diptera: Culicidae) sampling in West Java, Indonesia.

    Science.gov (United States)

    Stoops, Craig A; Gionar, Yoyo R; Rusmiarto, Saptoro; Susapto, Dwiko; Andris, Heri; Elyazar, Iqbal R F; Barbara, Kathryn A; Munif, Amrul

    2010-06-01

    Surveillance of medically important mosquitoes is critical to determine the risk of mosquito-borne disease transmission. The purpose of this research was to test self-supporting, exposure-free bednet traps to survey mosquitoes. In the laboratory we tested human-baited and unbaited CDC light trap/cot bednet (CDCBN) combinations against three types of traps: the Mbita Trap (MIBITA), a Tent Trap (TENT), and a modified Townes style Malaise trap (TSM). In the laboratory, 16 runs comparing MBITA, TSM, and TENT to the CDCBN were conducted for a total of 48 runs of the experiment using 13,600 mosquitoes. The TENT trap collected significantly more mosquitoes than the CDCBN. The CDCBN collected significantly more than the MBITA and there was no difference between the TSM and the CDCBN. Two field trials were conducted in Cibuntu, Sukabumi, West Java, Indonesia. The first test compared human-baited and unbaited CDCBN, TENT, and TSM traps during six nights over two consecutive weeks per month from January, 2007 to September, 2007 for a total of 54 trapnights. A total of 8,474 mosquitoes representing 33 species were collected using the six trapping methods. The TENT-baited trap collected significantly more mosquitoes than both the CDCBN and the TSM. The second field trial was a comparison of the baited and unbaited TENT and CDCBN traps and Human Landing Collections (HLCs). The trial was carried out from January, 2008 to May, 2008 for a total of 30 trap nights. A total of 11,923 mosquitoes were collected representing 24 species. Human Landing Collections captured significantly more mosquitoes than either the TENT or the CDCBN. The baited and unbaited TENT collected significantly more mosquitoes than the CDCBN. The TENT trap was found to be an effective, light-weight substitute for the CDC light-trap, bednet combination in the field and should be considered for use in surveys of mosquito-borne diseases such as malaria, arboviruses, and filariasis.

  19. Retrospective accident dosimetry using trapped charges

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. I.; Kim, J. L.; Chang, I.; Kim, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Dicentric chromosome aberrations technique scoring of aberrations in metaphases prepared from human lymphocytes is most commonly used. This is considered as a reliable technique because the sample is extracted from the individual human body itself. There are other techniques in biological dosimetry such as Fluorescence In Situ Hybridization (FISH) using translocations, premature chromosome condensation (PCC) and micronucleus assay. However the minimum detectable doses (MDD) are relatively high and sample preparation time is also relatively longer. Therefore, there is limitation in use of these techniques for the purpose of triage in a short time in case of emergency situation relating large number of persons. Electronic paramagnetic resonance (EPR) technique is based on the signal from unpaired electrons such as free radicals in irradiated materials especially tooth enamel, however it has also limitation for the purpose of triage because of difficulty of sample taking and its high MDD. Recently as physical methods, thermoluminescence (TL) and optically stimulated luminescence (OSL) technique have been attracted due to its lower MDD and simplicity of sample preparation. Density of the trapped charges is generally proportional to the radiation dose absorbed and the intensity of emitting light is also proportional to the density of trapped charges, thus it can be applied to measure radiation dose retrospectively. In this presentation, TL and OSL techniques are going to introduced and discussed as physical methods for retrospective accident dosimetry using trapped charges especially in electronic component materials. As a tool for dose reconstruction for emergency situation, thermoluminescece and optically stimulated luminescence techniques which are based on trapped charges during exposure of material are introduced. These techniques have several advantages such as high sensitivity, fast evaluation and ease to sample collection over common biological dosimetry and EPR

  20. An Atomic Abacus: Trapped ion quantum computing experiments at NIST

    Science.gov (United States)

    Demarco, Brian

    2003-03-01

    Trapped atomic ions are an ideal system for exploring quantum information science because deterministic state preparation and efficient state detection are possible and coherent manipulation of atomic systems is relatively advanced. In our experiment, a few singly charged Be ions are confined by static and radio-frequency electric fields in a micro-machined linear Paul trap. The internal and motional states of the ions are coherently manipulated using applied laser light. Our current work focuses on demonstrating the necessary ingredients to produce a scalable quantum computing scheme and on simplifying and improving quantum logic gates. I will speak about a new set of experiments that was made possible by recent improvements in trap technology. A novel trap with multiple trapping regions was used to demonstrate the first steps towards a fully scalable quantum computing scheme. Single ions were ``shuttled" between trapping regions without disturbing the ion's motional and internal state, and two ions were separated from a single to two different trapping zones. Improvements in the trap manufacturing process has led to a reduction of nearly two orders of magnitude in the ion's motional heating rate, making possible two new improved logic gates. The first gate utilizes the wave-packet nature of the ions to tune the laser-atom interaction and achieve a controlled-NOT gate between a single ion's spin and motional states. The second, a two-ion phase gate, uses phase-space dynamics to produce a state-sensitive geometric phase. I will end with a quick look at experiments using a Mg ion to sympathetically cool a simultaneously trapped Be ion and a glimpse of the next generation of ions traps currently under construction.

  1. Atom trap trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O' Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  2. Nonresonance adiabatic photon trap

    CERN Document Server

    Popov, S S; Burdakov, A V; Ushkova, M Yu

    2016-01-01

    Concept of high efficiency photon storage based on adiabatic confinement between concave mirrors is presented and experimentally investigated. The approach is insensitive to typical for Fabri-Perot cells requirements on quality of accumulated radiation, tolerance of resonator elements and their stability. Experiments have been carried out with the trap, which consists from opposed concave cylindrical mirrors and conjugated with them spherical mirrors. In result, high efficiency for accumulation of radiation with large angular spread and spectrum width has been confirmed. As radiation source a commercial fiber laser has been used.

  3. Atomic Coherent Trapping and Properties of Trapped Atom

    Institute of Scientific and Technical Information of China (English)

    YANG Guo-Jian; XIA Li-Xin; XIE Min

    2006-01-01

    Based on the theory of velocity-selective coherent population trapping, we investigate an atom-laser system where a pair of counterpropagating laser fields interact with a three-level atom. The influence of the parametric condition on the properties of the system such as velocity at which the atom is selected to be trapped, time needed for finishing the coherent trapping process, and possible electromagnetically induced transparency of an altrocold atomic medium,etc., is studied.

  4. Cryogenic resonator design for trapped ion experiments in Paul traps

    CERN Document Server

    Brandl, Matthias F; Monz, Thomas; Blatt, Rainer

    2016-01-01

    Trapping ions in Paul traps requires high radio-frequency voltages, which are generated using resonators. When operating traps in a cryogenic environment, an in-vacuum resonator showing low loss is crucial to limit the thermal load to the cryostat. In this study, we present a guide for the design and production of compact, shielded cryogenic resonators. We produced and characterized three different types of resonators and furthermore demonstrate efficient impedance matching of these resonators at cryogenic temperatures.

  5. Efficacy of commercial mosquito traps in capturing phlebotomine sand flies (Diptera: Psychodidae) in Egypt.

    Science.gov (United States)

    Hoel, D F; Kline, D L; Hogsette, J A; Bernier, U R; El-Hossary, S S; Hanafi, H A; Watany, N; Fawaz, E Y; Furman, B D; Obenauer, P J; Szumlas, D E

    2010-11-01

    Four types of commercial mosquito control traps, the Mosquito Magnet Pro (MMP), the Sentinel 360 (S360), the BG-Sentinel (BGS), and the Mega-Catch Ultra (MCU), were compared with a standard Centers for Disease Control and Prevention (CDC) light trap for efficacy in collecting phlebotomine sand flies (Diptera: Psychodidae) in a small farming village in the Nile River Valley 10 km north of Aswan, Egypt. Each trap was baited with either carbon dioxide (CO2) from combustion of butane gas (MMP), dry ice (CDC and BGS traps), light (MCU and S360), or dry ice and light (CDC). Traps were rotated through five sites in a5 x 5 Latin square design, repeated four times during the height of the sand fly season (June, August, and September 2007) at a site where 94% of sand flies in past collections were Phlebotomus papatasi (Scopoli). A total of 6,440 sand flies was collected, of which 6,037 (93.7%) were P. papatasi. Of the CO2-baited traps, the BGS trap collected twice as many P. papatasi as the MMP and CDC light traps, and at least three times more P. papatasi than the light-only MCU and S360 traps (P MMP 56.8 (+/- 9.0) > CDC 52.3 (+/- 6.1) > MCU 38.2 (+/- 6.4) > S360 12.6 (+/- 1.8). Results indicate that several types of commercial traps are suitable substitutes for the CDC light trap in sand fly surveillance programs.

  6. Abundância e sazonalidade das espécies de Hydropsychidae (Insecta, Trichoptera capturadas em armadilha luminosa no Estado do Paraná, Brasil Abundance and seasonality of Hydropsychidae species (Insccta, Trichoptera collected with light trap at Paraná State, Brazil

    Directory of Open Access Journals (Sweden)

    Luciane Marinoni

    2000-03-01

    Full Text Available During one year of the project called "Survey of the Entomological Fauna in Paraná State" (henceforth PROFAUPAR, 126,340 adult specimens of Trichoptera were collected with light trap. The individuais of the family Hydropsychidae were identified and a list of species is presented. Eighteen species in four genera were identified. From this, S. (R. discalis Flint, 1972,5. (R. paramnsis Flint, 1983;S (R. spinulosa Flint, 1972 are for the first time registered for Brazil and Leptonema sparsum (Ulmer, 1905, Macrostemum hyalinum (Pictet, 1836, S. (Smicridea albosignata Ulmer, 1907; S. (Rhyacophylax dentifera Flint, 1983; S. (R. iguazu Flint, 1983; S. (R. piraya Flint, 1983; S. (R. unguiculaia Flint, 1983; S. (R. vermiculata Flint, 1978 and S. (R. weidneri Flint, 1972, for Paraná State. Discussion about the individuais abundance and species seasonality is presented.

  7. Nanofriction in cold ion traps.

    Science.gov (United States)

    Benassi, A; Vanossi, A; Tosatti, E

    2011-01-01

    Sliding friction between crystal lattices and the physics of cold ion traps are so far non-overlapping fields. Two sliding lattices may either stick and show static friction or slip with dynamic friction; cold ions are known to form static chains, helices or clusters, depending on the trapping conditions. Here we show, based on simulations, that much could be learnt about friction by sliding, through, for example, an electric field, the trapped ion chains over a corrugated potential. Unlike infinite chains, in which the theoretically predicted Aubry transition to free sliding may take place, trapped chains are always pinned. Yet, a properly defined static friction still vanishes Aubry-like at a symmetric-asymmetric structural transition, found for decreasing corrugation in both straight and zig-zag trapped chains. Dynamic friction is also accessible in ringdown oscillations of the ion trap. Long theorized static and dynamic one-dimensional friction phenomena could thus become accessible in future cold ion tribology.

  8. Revealing a hard X-ray spectral component reverberating within one light hour of the central Supermassive Black Hole in Ark 564

    CERN Document Server

    Giustini, M; Reeves, J N; Miller, L; Legg, E; Kraemer, S B; George, I M

    2015-01-01

    Ark 564 (z=0.0247) is an X-ray bright NLS1. By using advanced X-ray timing techniques, Legg et al. (2012) discovered an excess of "delayed" emission in the hard X-ray band (4-7.5 keV) following about 1000 seconds after "flaring" light in the soft X-ray band (0.4-1 keV). We report on the X-ray spectral analysis of eight XMM-Newton and one Suzaku observation of Ark 564. High-resolution spectroscopy was performed with the RGS in the soft X-ray band, while broad-band spectroscopy was performed with the EPIC-pn and XIS/PIN instruments. We analysed time-averaged, flux-selected, and time-resolved spectra. Despite the large variability in flux, the broad band spectral shape of Ark 564 is not dramatically varying and can be reproduced either by a superposition of a power law and a blackbody emission, or by a Comptonized power law emission model. High resolution spectroscopy revealed the presence of ionised gas along the line of sight at the systemic redshift of the source, with a low column density and a range of ioni...

  9. Are we getting the full picture? Animal responses to camera traps and implications for predator studies.

    Science.gov (United States)

    Meek, Paul; Ballard, Guy; Fleming, Peter; Falzon, Greg

    2016-05-01

    Camera trapping is widely used in ecological studies. It is often considered nonintrusive simply because animals are not captured or handled. However, the emission of light and sound from camera traps can be intrusive. We evaluated the daytime and nighttime behavioral responses of four mammalian predators to camera traps in road-based, passive (no bait) surveys, in order to determine how this might affect ecological investigations. Wild dogs, European red foxes, feral cats, and spotted-tailed quolls all exhibited behaviors indicating they noticed camera traps. Their recognition of camera traps was more likely when animals were approaching the device than if they were walking away from it. Some individuals of each species retreated from camera traps and some moved toward them, with negative behaviors slightly more common during the daytime. There was no consistent response to camera traps within species; both attraction and repulsion were observed. Camera trapping is clearly an intrusive sampling method for some individuals of some species. This may limit the utility of conclusions about animal behavior obtained from camera trapping. Similarly, it is possible that behavioral responses to camera traps could affect detection probabilities, introducing as yet unmeasured biases into camera trapping abundance surveys. These effects demand consideration when utilizing camera traps in ecological research and will ideally prompt further work to quantify associated biases in detection probabilities.

  10. Trapped-space-charge-limited currents in organics

    Energy Technology Data Exchange (ETDEWEB)

    Paasch, Gernot [IFW Dresden (Germany); Blom, Paul; Mandoc, Magda; Boer, Bert de [University of Groningen (Netherlands)

    2007-07-01

    The Mott-Gurney law for space charge limited current (SCLC) has been modified early to account for the presence of exponentially distributed traps. This expression has been widely used to analyse transport in organic light emitting diodes. However, the theory fails to describe the rather weak temperature dependence observed for electron transport, for instance in PPV derivatives. There we have shown that the trap-limited SCLC law is essentially modified if the density of transport states is of Gaussian type. Here, we discuss the origin of this modification and present a detailed analysis of the modified law. In addition, we derive further modifications for different combinations of densities of states of both the transport states and the trap distribution. As a result, rather different dependencies of the current on voltage, layer thickness and temperature are possible. Consequently, one has to exercise care in order to obtain reliable trap parameters from SCLC.

  11. Slowly balding black holes

    CERN Document Server

    Lyutikov, Maxim

    2011-01-01

    The "no hair" theorem, a key result in General Relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the "no hair" theorem is not formally applicable for black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes $N_B = e \\Phi_\\infty /(\\pi c \\hbar)$, where $\\Phi_\\infty \\approx 2 \\pi^2 B_{NS} R_{NS}^3 /(P_{\\rm NS} c)$ is the initial magnetic flux through the hemisphere...

  12. black cat

    Institute of Scientific and Technical Information of China (English)

    杜铁梅

    2016-01-01

    The black cat is a masterpiece of short fiction of Poe. He successfully solved the problem of creating of the horror effect by using scene description, symbol, repetition and first-person narrative methods. And created a complete and unified mysterious terror, achieved the effect of shocking. This paper aims to discuss the mystery in-depth and to enrich the research system in Poe’s novels.

  13. Photodetector with enhanced light absorption

    Science.gov (United States)

    Kane, James

    1985-01-01

    A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

  14. Boundary Terms and Noether Current of Spherical Black Holes

    CERN Document Server

    Ashworth, M C; Ashworth, Michael C.; Hayward, Sean A.

    1999-01-01

    We consider two proposals for defining black hole entropy in spherical symmetry, where the horizon is defined locally as a trapping horizon. The first case, boundary terms in a dual-null form of the reduced action in two dimensions, gives a result that is proportional to the area. The second case, Wald's Noether current method, is generalized to dynamic black holes, giving an entropy that is just the area of the trapping horizon. These results are compared with a generalized first law of thermodynamics.

  15. Observation of cooperatively enhanced atomic dipole forces from NV centers in optically trapped nanodiamonds

    CERN Document Server

    Juan, M L; Besga, B; Brennen, G; Molina-Terriza, G; Volz, T

    2015-01-01

    Since the early work by Ashkin in 1970, optical trapping has become one of the most powerful tools for manipulating small particles, such as micron sized beads or single atoms. The optical trapping mechanism is based on the interaction energy of a dipole and the electric field of the laser light. In atom trapping, the dominant contribution typically comes from the allowed optical transition closest to the laser wavelength, whereas for mesoscopic particles it is given by the bulk polarizability of the material. These two different regimes of optical trapping have coexisted for decades without any direct link, resulting in two very different contexts of applications: one being the trapping of small objects mainly in biological settings, the other one being dipole traps for individual neutral atoms in the field of quantum optics. Here we show that for nanoscale diamond crystals containing artificial atoms, so-called nitrogen vacancy (NV) color centers, both regimes of optical trapping can be observed at the same...

  16. Influence of trap color and host volatiles on capture of the emerald ash borer (Coleoptera: Buprestidae).

    Science.gov (United States)

    Crook, Damon J; Khrimian, Ashot; Cossé, Allard; Fraser, Ivich; Mastro, Victor C

    2012-04-01

    Field trapping assays were conducted in 2009 and 2010 throughout western Michigan, to evaluate lures for adult emerald ash borer, A. planipennis Fairmaire (Coleoptera: Buprestidae). Several ash tree volatiles were tested on purple prism traps in 2009, and a dark green prism trap in 2010. In 2009, six bark oil distillate lure treatments were tested against manuka oil lures (used in 2008 by USDA APHIS PPQ emerald ash borer cooperative program). Purple traps baited with 80/20 (manuka/phoebe oil) significantly increased beetle catch compared with traps baited with manuka oil alone. In 2010 we monitored emerald ash borer attraction to dark green traps baited with six lure combinations of 80/20 (manuka/phoebe), manuka oil, and (3Z)-hexenol. Traps baited with manuka oil and (3Z)-hexenol caught significantly more male and total count insects than traps baited with manuka oil alone. Traps baited with manuka oil and (3Z)-hexenol did not catch more beetles when compared with traps baited with (3Z)-hexenol alone. When compared with unbaited green traps our results show that (3Z)-hexenol improved male catch significantly in only one of three field experiments using dark green traps. Dark green traps caught a high number of A. planipennis when unbaited while (3Z)-hexenol was seen to have a minimal (nonsignificant) trap catch effect at several different release rates. We hypothesize that the previously reported kairomonal attractancy of (3Z)-hexenol (for males) on light green traps is not as obvious here because of improved male attractancy to the darker green trap.

  17. A Young-Laplace law for black hole horizons

    CERN Document Server

    Jaramillo, José Luis

    2013-01-01

    Black hole horizon sections, modelled as marginally outer trapped surfaces (MOTS), possess a notion of stability admitting a spectral characterization. Specifically, the "principal eigenvalue" \\lambda_o of the MOTS-stability operator (an elliptic operator on horizon sections) must be non-negative. We discuss the expression of \\lambda_o for axisymmetric stationary black hole horizons and show that, remarkably, it presents the form of the Young-Laplace law for soap bubbles in equilibrium, if \\lambda_o is identified with a formal pressure difference between the inner and outer sides of the "bubble". In this view, that endorses the existing fluid analogies for black hole horizons, MOTS-stability is interpreted as a consequence of a pressure increase in the black hole trapped region.

  18. Formation and evaporation of nonsingular black holes.

    Science.gov (United States)

    Hayward, Sean A

    2006-01-27

    Regular (nonsingular) space-times are given that describe the formation of a (locally defined) black hole from an initial vacuum region, its quiescence as a static region, and its subsequent evaporation to a vacuum region. The static region is Bardeen-like, supported by finite density and pressures, vanishing rapidly at large radius and behaving as a cosmological constant at small radius. The dynamic regions are Vaidya-like, with ingoing radiation of positive-energy flux during collapse and negative-energy flux during evaporation, the latter balanced by outgoing radiation of positive-energy flux and a surface pressure at a pair creation surface. The black hole consists of a compact space-time region of trapped surfaces, with inner and outer boundaries that join circularly as a single smooth trapping horizon.

  19. Electron traps in semiconducting polymers: exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H.T.; Mandoc, M.M.; Blom, P.W.M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  20. Electron traps in semiconducting polymers : Exponential versus Gaussian trap distribution

    NARCIS (Netherlands)

    Nicolai, H. T.; Mandoc, M. M.; Blom, P. W. M.

    2011-01-01

    The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution. Here we demonstrate that the electron transport of several PPV derivatives can

  1. A simple optical tweezers for trapping polystyrene particles

    Science.gov (United States)

    Shiddiq, Minarni; Nasir, Zulfa; Yogasari, Dwiyana

    2013-09-01

    Optical tweezers is an optical trap. For decades, it has become an optical tool that can trap and manipulate any particle from the very small size like DNA to the big one like bacteria. The trapping force comes from the radiation pressure of laser light which is focused to a group of particles. Optical tweezers has been used in many research areas such as atomic physics, medical physics, biophysics, and chemistry. Here, a simple optical tweezers has been constructed using a modified Leybold laboratory optical microscope. The ocular lens of the microscope has been removed for laser light and digital camera accesses. A laser light from a Coherent diode laser with wavelength λ = 830 nm and power 50 mW is sent through an immersion oil objective lens with magnification 100 × and NA 1.25 to a cell made from microscope slides containing polystyrene particles. Polystyrene particles with size 3 μm and 10 μm are used. A CMOS Thorlabs camera type DCC1545M with USB Interface and Thorlabs camera lens 35 mm are connected to a desktop and used to monitor the trapping and measure the stiffness of the trap. The camera is accompanied by camera software which makes able for the user to capture and save images. The images are analyzed using ImageJ and Scion macro. The polystyrene particles have been trapped successfully. The stiffness of the trap depends on the size of the particles and the power of the laser. The stiffness increases linearly with power and decreases as the particle size larger.

  2. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models.

    Directory of Open Access Journals (Sweden)

    Catherine C Sun

    Full Text Available An increasing number of studies employ spatial capture-recapture models to estimate population size, but there has been limited research on how different spatial sampling designs and trap configurations influence parameter estimators. Spatial capture-recapture models provide an advantage over non-spatial models by explicitly accounting for heterogeneous detection probabilities among individuals that arise due to the spatial organization of individuals relative to sampling devices. We simulated black bear (Ursus americanus populations and spatial capture-recapture data to evaluate the influence of trap configuration and trap spacing on estimates of population size and a spatial scale parameter, sigma, that relates to home range size. We varied detection probability and home range size, and considered three trap configurations common to large-mammal mark-recapture studies: regular spacing, clustered, and a temporal sequence of different cluster configurations (i.e., trap relocation. We explored trap spacing and number of traps per cluster by varying the number of traps. The clustered arrangement performed well when detection rates were low, and provides for easier field implementation than the sequential trap arrangement. However, performance differences between trap configurations diminished as home range size increased. Our simulations suggest it is important to consider trap spacing relative to home range sizes, with traps ideally spaced no more than twice the spatial scale parameter. While spatial capture-recapture models can accommodate different sampling designs and still estimate parameters with accuracy and precision, our simulations demonstrate that aspects of sampling design, namely trap configuration and spacing, must consider study area size, ranges of individual movement, and home range sizes in the study population.

  3. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models.

    Science.gov (United States)

    Sun, Catherine C; Fuller, Angela K; Royle, J Andrew

    2014-01-01

    An increasing number of studies employ spatial capture-recapture models to estimate population size, but there has been limited research on how different spatial sampling designs and trap configurations influence parameter estimators. Spatial capture-recapture models provide an advantage over non-spatial models by explicitly accounting for heterogeneous detection probabilities among individuals that arise due to the spatial organization of individuals relative to sampling devices. We simulated black bear (Ursus americanus) populations and spatial capture-recapture data to evaluate the influence of trap configuration and trap spacing on estimates of population size and a spatial scale parameter, sigma, that relates to home range size. We varied detection probability and home range size, and considered three trap configurations common to large-mammal mark-recapture studies: regular spacing, clustered, and a temporal sequence of different cluster configurations (i.e., trap relocation). We explored trap spacing and number of traps per cluster by varying the number of traps. The clustered arrangement performed well when detection rates were low, and provides for easier field implementation than the sequential trap arrangement. However, performance differences between trap configurations diminished as home range size increased. Our simulations suggest it is important to consider trap spacing relative to home range sizes, with traps ideally spaced no more than twice the spatial scale parameter. While spatial capture-recapture models can accommodate different sampling designs and still estimate parameters with accuracy and precision, our simulations demonstrate that aspects of sampling design, namely trap configuration and spacing, must consider study area size, ranges of individual movement, and home range sizes in the study population.

  4. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped

  5. The Honey Trap

    DEFF Research Database (Denmark)

    Wagner, Michael

    Michael F. Wagner: The Honey Trap –The democratization of leisure through automobilism The automobile has achieved a central position in modern everyday life as an essential artefact to mobility. This raises the question how automobiles have been mediated for mass consumption? The central thesis...... in the article is that the culture of Danish automobilism was constructed around and appropriated through leisure activities conducted primarily by the automobile consumer’s organisation Touring Club de Danemark (FDM). The general purpose for the consumer organisation has been to create a cultural identity...... and a material reality of democratic participation linking ‘Car and Leisure’, a term that has been a central motto for the organization during many decades. The keyword in this activity was ‘Free’ celebrating the manner in which the privately owned automobile secured a maximum of freedom to the owner. The paper...

  6. Using malaise traps to sample ground beetles (Coleoptera: Carabidae).

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael D., James L. Hanula, and Scott Horn

    2005-01-01

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and trap-shy species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

  7. Using malaise traps to sample ground beetles (Coleoptera. Carabidae)

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael D. [USDA Forest Service, Savannah River, New Ellenton, SC (United States); Hanula, James L. [USDA Forest Service, Savannah River, New Ellenton, SC (United States); Horn, Scott [USDA Forest Service, Savannah River, New Ellenton, SC (United States)

    2012-04-02

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and trap-shy species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

  8. Trapping of radioactive {sup 21}Na

    Energy Technology Data Exchange (ETDEWEB)

    Kruithof, Wilbert L.; Hoek, Duurt J. van der; Giri, Gouri S.; Hoekstra, Ronnie; Hoekstra, Steven; Jungmann, Klaus; Onderwater, Gerco; Santra, Bodhaditya; Shildling, Praveen D.; Sohani, Moslem; Versolato, Oscar O.; Willmann, Lorenz; Wilschut, Hans W. [Kernfysisch Versneller Instituut, University Groningen (Netherlands)

    2010-07-01

    Radioactive {sup 21}Na atoms in a magneto-optical trap (MOT) provide an excellent opportunity to search for non-Standard Model contributions in the weak interactions. In particular, correlations between the {beta}-particle and the neutrino are sensitive to time reversal symmetry violating effects. The Na isotope is produced at the TRI{mu}P facility of the KVI using intense {sup 20}Ne beams from the AGOR cyclotron on a cooled deuterium target. The isotopes are stopped and re-thermalized in a Thermal Ionizer. They are transported as a low energy ion beam to a MOT cell where they are neutralized and subsequently captured by laser light. The trapped Na atoms will be transferred to a second MOT which is placed inside a reaction microscope to measure the momentum distribution of the recoiling daughter nuclei after the {beta}-decay. The {beta}-particle will be detected in a scintillation detector. These two devices have been characterized. A pulsed UV laser was used to ionize trapped Na atoms in order to simulate the {beta}-decay in the reaction microscope. The momentum distribution of the recoil ions is measured. The setup of the whole experiment will be presented.

  9. Trapping and manipulating single molecules of DNA

    Science.gov (United States)

    Shon, Min Ju

    This thesis presents the development and application of nanoscale techniques to trap and manipulate biomolecules, with a focus on DNA. These methods combine single-molecule microscopy and nano- and micro-fabrication to study biophysical properties of DNA and proteins. The Dimple Machine is a lab-on-a-chip device that can isolate and confine a small number of molecules from a bulk solution. It traps molecules in nanofabricated chambers, or "dimples", and the trapped molecules are then studied on a fluorescence microscope at the single-molecule level. The sampling of bulk solution by dimples is representative, reproducible, and automated, enabling highthroughput single-molecule experiments. The device was applied to study hybridization of oligonucleotides, particularly in the context of reaction thermodynamics and kinetics in nanoconfinement. The DNA Pulley is a system to study protein binding and the local mechanical properties of DNA. A molecule of DNA is tethered to a surface on one end, and a superparamagnetic bead is attached to the other. A magnet pulls the DNA taut, and a silicon nitride knife with a nanoscale blade scans the DNA along its contour. Information on the local properties of the DNA is extracted by tracking the bead with nanometer precision in a white-light microscope. The system can detect proteins bound to DNA and localize their recognition sites, as shown with a model protein, EcoRI restriction enzyme. Progress on the measurements of nano-mechanical properties of DNA is included.

  10. Chandra Reviews Black Hole Musical: Epic But Off-Key

    Science.gov (United States)

    2006-10-01

    give the strongest evidence to date of a shock wave produced by the supermassive black hole, a clear sign of a powerful explosion. This shock wave appears as a nearly circular ring of high-energy X-rays that is 85,000 light years in diameter and centered on the black hole. Other remarkable features are seen in M87 for the first time including narrow filaments of X-ray emission -- some over 100,000 light years long -- that may be due hot gas trapped by magnetic fields. Also, a large, previously unknown cavity in the hot gas, created by an outburst from the black hole about 70 million years ago, is seen in the X-ray image. Animation Showing a Supermassive Black Hole Outburst in M87 Animation Showing a Supermassive Black Hole Outburst in M87 "We can explain some of what we see, like the shock wave, with textbook physics," said team member Christine Jones, also of the CfA. "However, other details, like the filaments we find, leave us scratching our heads." Sound has been detected from another black hole in the Perseus cluster, which was calculated to have a note some 57 octaves below middle C. However, the sound in M87 appears to be more discordant and complex. A series of unevenly spaced loops in the hot gas gives evidence for small outbursts from the black hole about every 6 million years. These loops imply the presence of sound waves, not visible in the Chandra image, which are about 56 octaves below middle C. The presence of the large cavity and the sonic boom gives evidence for even deeper notes -- 58 or 59 octaves below middle C -- powered by large outbursts. These new results on M87 were presented at the High-Energy Astrophysics Division meeting being held in San Francisco. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images are

  11. Massless black holes as black diholes and quadruholes

    CERN Document Server

    Ortín, Tomas

    1996-01-01

    Massless black holes can be understood as bound states of a (positive mass) extreme a=\\sqrt{3} black hole and a singular object with opposite ({\\it i.e.}~negative) mass with vanishing ADM (total) mass but non-vanishing gravitational field. Supersymmetric balance of forces is crucial for the existence of this kind of bound states and explains why the system does not move at the speed of light in spite of being massless. We also explain how supersymmetry allows for negative mass as long as it is never isolated but in bound states of total non-negative mass. The known massless black-hole solutions should then be considered particular cases of ``gravitational dipoles''. We also present ``gravitational quadrupoles'' and comment on the possible role of all these objects in string phase transitions.

  12. Wingbeat frequency-sweep and visual stimuli for trapping male Aedes aegypti

    Science.gov (United States)

    Combinations of female wingbeat acoustic cues and visual cues were evaluated to determine their potential for use in male Aedes aegypti (L.) traps in peridomestic environments. A modified Centers for Disease control (CDC) light trap using a 350-500 Hz frequency-sweep broadcast from a speaker as an a...

  13. Quantum computing with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.J.

    1998-01-01

    The significance of quantum computation for cryptography is discussed. Following a brief survey of the requirements for quantum computational hardware, an overview of the ion trap quantum computation project at Los Alamos is presented. The physical limitations to quantum computation with trapped ions are analyzed and an assessment of the computational potential of the technology is made.

  14. The ALPHA antihydrogen trapping apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Amole, C. [Department of Physics and Astronomy, York University, Toronto ON Canada, M3J 1P3 (Canada); Andresen, G.B. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Ashkezari, M.D. [Department of Physics, Simon Fraser University, Burnaby, BC Canada, V5A 1S6 (Canada); Baquero-Ruiz, M. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Bertsche, W. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); The Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Bowe, P.D. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Capra, A. [Department of Physics and Astronomy, York University, Toronto ON Canada, M3J 1P3 (Canada); Carpenter, P.T. [Department of Physics, Auburn University, Auburn, AL 36849-5311 (United States); Cesar, C.L. [Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Chapman, S. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Charlton, M.; Deller, A.; Eriksson, S. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); Escallier, J. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Fajans, J. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720-7300 (United States); Friesen, T. [Department of Physics and Astronomy, University of Calgary, Calgary AB, Canada, T2N 1N4 (Canada); Fujiwara, M.C.; Gill, D.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver BC, Canada V6T 2A3 (Canada); Gutierrez, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver BC, Canada V6T 1Z4 (Canada); and others

    2014-01-21

    The ALPHA collaboration, based at CERN, has recently succeeded in confining cold antihydrogen atoms in a magnetic minimum neutral atom trap and has performed the first study of a resonant transition of the anti-atoms. The ALPHA apparatus will be described herein, with emphasis on the structural aspects, diagnostic methods and techniques that have enabled antihydrogen trapping and experimentation to be achieved.

  15. Accretion discs trapped near corotation

    NARCIS (Netherlands)

    D'Angelo, C.R.; Spruit, H.C.

    2012-01-01

    We show that discs accreting on to the magnetosphere of a rotating star can end up in a trapped state, in which the inner edge of the disc stays near the corotation radius, even at low and varying accretion rates. The accretion in these trapped states can be steady or cyclic; we explore these states

  16. Cryogenic silicon surface ion trap

    CERN Document Server

    Niedermayr, Michael; Kumph, Muir; Partel, Stefan; Edlinger, Johannes; Brownnutt, Michael; Blatt, Rainer

    2014-01-01

    Trapped ions are pre-eminent candidates for building quantum information processors and quantum simulators. They have been used to demonstrate quantum gates and algorithms, quantum error correction, and basic quantum simulations. However, to realise the full potential of such systems and make scalable trapped-ion quantum computing a reality, there exist a number of practical problems which must be solved. These include tackling the observed high ion-heating rates and creating scalable trap structures which can be simply and reliably produced. Here, we report on cryogenically operated silicon ion traps which can be rapidly and easily fabricated using standard semiconductor technologies. Single $^{40}$Ca$^+$ ions have been trapped and used to characterize the trap operation. Long ion lifetimes were observed with the traps exhibiting heating rates as low as $\\dot{\\bar{n}}=$ 0.33 phonons/s at an ion-electrode distance of 230 $\\mu$m. These results open many new avenues to arrays of micro-fabricated ion traps.

  17. Black gold

    CERN Document Server

    Fletcher, MW

    2016-01-01

    Following the Yom Kippur war of October 1973, OPEC raises the price of oil by 70% along with a 5% reduction in oil production. Len Saunders a highly skilled and knowledgeable British engineer for Jaguar motors, is approached by the UK energy commission in the January of 1974 to create a new propulsion system; using a secret document from a German WW2 scientist, that they have come into possession of. Len Saunders sets to work on creating the holy grail of energy. Seven years later 1981, Haidar Farooq the Kuwait oil minister working at OPEC and head of a secret organisation named Black Gold bec

  18. Scrambling with matrix black holes

    Science.gov (United States)

    Brady, Lucas; Sahakian, Vatche

    2013-08-01

    If black holes are not to be dreaded sinks of information but rather fully described by unitary evolution, they must scramble in-falling data and eventually leak it through Hawking radiation. Sekino and Susskind have conjectured that black holes are fast scramblers; they generate entanglement at a remarkably efficient rate, with the characteristic time scaling logarithmically with the entropy. In this work, we focus on Matrix theory—M-theory in the light-cone frame—and directly probe the conjecture. We develop a concrete test bed for quantum gravity using the fermionic variables of Matrix theory and show that the problem becomes that of chains of qubits with an intricate network of interactions. We demonstrate that the black hole system evolves much like a Brownian quantum circuit, with strong indications that it is indeed a fast scrambler. We also analyze the Berenstein-Maldacena-Nastase model and reach the same tentative conclusion.

  19. A comparison of two common flight interception traps to survey tropical arthropods

    Directory of Open Access Journals (Sweden)

    Greg Lamarre

    2012-08-01

    Full Text Available Tropical forests are predicted to harbor most of the insect diversity on earth, but few studies have been conducted to characterize insect communities in tropical forests. One major limitation is the lack of consensus on methods for insect collection. Deciding which insect trap to use is an important consideration for ecologists and entomologists, yet to date few study has presented a quantitative comparison of the results generated by standardized methods in tropical insect communities. Here, we investigate the relative performance of two flight interception traps, the windowpane trap, and the more widely used malaise trap, across a broad gradient of lowland forest types in French Guiana. The windowpane trap consistently collected significantly more Coleoptera and Blattaria than the malaise trap, which proved most effective for Diptera, Hymenoptera, and Hemiptera. Orthoptera and Lepidoptera were not well represented using either trap, suggesting the need for additional methods such as bait traps and light traps. Our results of contrasting trap performance among insect orders underscore the need for complementary trapping strategies using multiple methods for community surveys in tropical forests.

  20. Development of the gravid Aedes trap for the capture of adult female container-exploiting mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Eiras, Alvaro E; Buhagiar, Tamara S; Ritchie, Scott A

    2014-01-01

    Monitoring dengue vector control by sampling adult Aedes aegypti (L.) recently has been used to replace both larval and pupal surveys. We have developed and evaluated the Gravid Aedes Trap (GAT) through a sequential behavioral study. The GAT does not require electricity to function, and trapped mosquitoes are identified easily during trap inspections. The GAT concept relies on visual and olfactory cues to lure gravid Ae. aegypti and an insecticide to kill trapped mosquitoes. Gravid mosquitoes are lured to a black bucket base containing oviposition attractant (infusion) and are trapped in a translucent chamber impregnated with a pyrethroid insecticide where they are killed within 3-15 min. In semifield observations, the GAT captured a significantly higher proportion of gravid mosquitoes than the double sticky ovitrap. We also demonstrated that the visual cues of the prototype GAT-LgBF (large black base bucket with a black funnel at the top of the translucent chamber) captured a significantly higher proportion of gravid mosquitoes than the other prototypes. The visual contrast created by the addition of a white lid to the top of the black funnel significantly increased the number of captured gravid mosquitoes when compared with the GAT-LgBF in semifield trials. We conclude that the GAT is more efficient in recapturing gravid Ae. aegypti when compared with sticky ovitraps. The GAT is an effective, practical, low cost, and easily transportable trap, features that are essential in large-scale monitoring programs, particularly in areas where funding is limited.

  1. The trapped human experiment.

    Science.gov (United States)

    Huo, R; Agapiou, A; Bocos-Bintintan, V; Brown, L J; Burns, C; Creaser, C S; Devenport, N A; Gao-Lau, B; Guallar-Hoyas, C; Hildebrand, L; Malkar, A; Martin, H J; Moll, V H; Patel, P; Ratiu, A; Reynolds, J C; Sielemann, S; Slodzynski, R; Statheropoulos, M; Turner, M A; Vautz, W; Wright, V E; Thomas, C L P

    2011-12-01

    This experiment observed the evolution of metabolite plumes from a human trapped in a simulation of a collapsed building. Ten participants took it in turns over five days to lie in a simulation of a collapsed building and eight of them completed the 6 h protocol while their breath, sweat and skin metabolites were passed through a simulation of a collapsed glass-clad reinforced-concrete building. Safety, welfare and environmental parameters were monitored continuously, and active adsorbent sampling for thermal desorption GC-MS, on-line and embedded CO, CO(2) and O(2) monitoring, aspirating ion mobility spectrometry with integrated semiconductor gas sensors, direct injection GC-ion mobility spectrometry, active sampling thermal desorption GC-differential mobility spectrometry and a prototype remote early detection system for survivor location were used to monitor the evolution of the metabolite plumes that were generated. Oxygen levels within the void simulator were allowed to fall no lower than 19.1% (v). Concurrent levels of carbon dioxide built up to an average level of 1.6% (v) in the breathing zone of the participants. Temperature, humidity, carbon dioxide levels and the physiological measurements were consistent with a reproducible methodology that enabled the metabolite plumes to be sampled and characterized from the different parts of the experiment. Welfare and safety data were satisfactory with pulse rates, blood pressures and oxygenation, all within levels consistent with healthy adults. Up to 12 in-test welfare assessments per participant and a six-week follow-up Stanford Acute Stress Response Questionnaire indicated that the researchers and participants did not experience any adverse effects from their involvement in the study. Preliminary observations confirmed that CO(2), NH(3) and acetone were effective markers for trapped humans, although interactions with water absorbed in building debris needed further study. An unexpected observation from the NH(3

  2. Coherence preservation of a single neutral atom qubit transferred between magic-intensity optical traps

    CERN Document Server

    Yang, Jiaheng; Guo, Ruijun; Xu, Peng; Wang, Kunpeng; Sheng, Cheng; Liu, Min; Wang, Jin; Derevianko, Andrei; Zhan, Mingsheng

    2016-01-01

    We demonstrate that the coherence of a single mobile atomic qubit can be well preserved during a transfer process among different optical dipole traps (ODTs). This is a prerequisite step in realizing a large-scale neutral atom quantum information processing platform. A qubit encoded in the hyperfine manifold of $^{87}$Rb atom is dynamically extracted from the static quantum register by an auxiliary moving ODT and reinserted into the static ODT. Previous experiments were limited by decoherences induced by the differential light shifts of qubit states. Here we apply a magic-intensity trapping technique which mitigates the detrimental effects of light shifts and substantially enhances the coherence time to $225 \\pm 21\\,\\mathrm{ms}$. The experimentally demonstrated magic trapping technique relies on the previously neglected hyperpolarizability contribution to the light shifts, which makes the light shift dependence on the trapping laser intensity to be parabolic. Because of the parabolic dependence, at a certain ...

  3. Online spectroscopy of trapped radium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Versolato, Oscar O.; Giri, Gouri S.; Berg, Joost van den; Hoek, Duurt Johan van der; Kruithof, Wilbert; Santra, Bodhaditya; Shidling, Praveen; Willmann, Lorenz; Wilschut, Hans W.; Jungmann, Klaus [Kernfysisch Versneller Instituut, University of Groningen (Netherlands)

    2010-07-01

    Radium ions are of particular interest for a most precise measurement of Atomic Parity Violation. From a single cold and trapped ion one expects a significantly improved measurement of the weak mixing (Weinberg) angle through a determination of the light shift in the forbidden 7{sup 2}S{sub 1/2}-6{sup 2}D{sub 3/2} transition. In preparation of such precision measurements the transitions relevant for this (7S-7P, 6D-7P) were observed and measured in the isotopes {sup 212}Ra, {sup 213}Ra and {sup 214}Ra. The isotopes were produced at the TRI{mu}P facility of KVI, when a {sup 208}Pb beam hit a solid {sup 12}C target. The Ra isotopes were stopped and re-ionized to Ra{sup +} in a Thermal Ionizer, mass separated in a Wien Filter and cooled in a gas filled Radio Frequency Quadrupole. The ions were stored as a cloud in a Paul trap, where they also interacted with laser light. All necessary wavelengths were obtained by semiconductor lasers. The setup and the measurements will be discussed.

  4. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  5. 1986-87 Annual Trapping Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Annual Trapping Plan for the 1986-87 trapping season at Clarence Cannon NWR outlines rules and regulations for the trapping of beaver, muskrat, raccoon,...

  6. Search for Optical Binding with Shape Phase Holographic Optical Trapping

    Science.gov (United States)

    Roichman, Yohai; Polin, Marco; Cholis, Ilias; Grier, David

    2007-03-01

    Light scattered by an illuminated particle should repel that particle's neighbors through radiation pressure. Nearly two decades ago, Burns, Fournier and Golovchenko (BFG) proposed that the coherent superposition of scattered fields can lead to an attractive interparticle interaction, which they called optical binding. Their pioneering experimental observation has generated considerable interest, most of which has focused on developing the theory for the effect. Accurate measurements of the optical binding force in the BFG geometry have been lacking, however. The need to quantify optical binding forces is particularly acute for colloidal interaction measurements on linear optical traps. We present a new method to directly measure optical binding forces between colloidal spheres that exploits the ability of shape-phase holography to create linear optical traps with accurately specified intensity and phase profiles. Our ability to control the trap's phase profile makes possible precise discrimination between intensity- and field-dependent interactions, i.e. between radiation pressure and optical binding. The same novel technique that allows us to project holographic line traps also can be used to project two- and three-dimensionally structured ring traps, novel Bessel-beam traps, which we also will describe.

  7. Surfing a Black Hole

    Science.gov (United States)

    2002-10-01

    Star Orbiting Massive Milky Way Centre Approaches to within 17 Light-Hours [1] Summary An international team of astronomers [2], lead by researchers at the Max-Planck Institute for Extraterrestrial Physics (MPE) , has directly observed an otherwise normal star orbiting the supermassive black hole at the center of the Milky Way Galaxy. Ten years of painstaking measurements have been crowned by a series of unique images obtained by the Adaptive Optics (AO) NAOS-CONICA (NACO) instrument [3] on the 8.2-m VLT YEPUN telescope at the ESO Paranal Observatory. It turns out that earlier this year the star approached the central Black Hole to within 17 light-hours - only three times the distance between the Sun and planet Pluto - while travelling at no less than 5000 km/sec . Previous measurements of the velocities of stars near the center of the Milky Way and variable X-ray emission from this area have provided the strongest evidence so far of the existence of a central Black Hole in our home galaxy and, implicitly, that the dark mass concentrations seen in many nuclei of other galaxies probably are also supermassive black holes. However, it has not yet been possible to exclude several alternative configurations. In a break-through paper appearing in the research journal Nature on October 17th, 2002, the present team reports their exciting results, including high-resolution images that allow tracing two-thirds of the orbit of a star designated "S2" . It is currently the closest observable star to the compact radio source and massive black hole candidate "SgrA*" ("Sagittarius A") at the very center of the Milky Way. The orbital period is just over 15 years. The new measurements exclude with high confidence that the central dark mass consists of a cluster of unusual stars or elementary particles, and leave little doubt of the presence of a supermassive black hole at the centre of the galaxy in which we live . PR Photo 23a/02 : NACO image of the central region of the Milky Way

  8. An Important Supplement to NAA in Study on Atmosphere Pollution:Determination of Black Carbon

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Light absorption in the atmosphere is dominated by elemental carbon (EC), sometimes called black carbon (BC). Black carbon is an important indication of man-made pollution in airborne particulate matter

  9. Trap loss in a metastable helium-rubidium magneto-optical trap

    Science.gov (United States)

    Byron, L. J.; Dall, R. G.; Truscott, A. G.

    2010-01-01

    We present results of the study of a simultaneously confined metastable helium (He*) and rubidium magneto-optical trap (MOT). By monitoring the trap decay of the Rb87 MOT with and without a He* MOT present, we find the light-assisted, two-body loss rate to be βRb-He*=(6±2)×10-10cm3/s. Moreover, we find that it is possible to create a large, robust Rb87-He* MOT, opening the possibility of creating a Rb87-He* Bose-Einstein condensate. This would be the first dual-species condensate incorporating an alkali metal ground-state atom and an excited-state noble gas atom.

  10. Feedback traps for virtual potentials

    CERN Document Server

    Gavrilov, Momčilo

    2016-01-01

    Feedback traps are tools for trapping and manipulating single charged objects, such as molecules in solution. An alternative to optical tweezers and other single-molecule techniques, they use feedback to counteract the Brownian motion of a molecule of interest. The trap first acquires information about a molecule's position and then applies an electric feedback force to move the molecule. Since electric forces are stronger than optical forces at small scales, feedback traps are the best way to trap single molecules without "touching" them. Feedback traps can do more than trap molecules: They can also subject a target object to forces that are calculated to be the gradient of a desired potential function U(x). If the feedback loop is fast enough, it creates a virtual potential whose dynamics will be very close to those of a particle in an actual potential U(x). But because the dynamics are entirely a result of the feedback loop--absent the feedback, there is only an object diffusing in a fluid--we are free to ...

  11. Single and dual fiber nano-tip optical tweezers: trapping and analysis

    CERN Document Server

    Decombe, Jean-Baptiste; Fick, Jochen

    2013-01-01

    An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decreasing light intensity and increasing fiber tip-to-tip distance.

  12. Motion analysis of optically trapped particles and cells using 2D Fourier analysis

    DEFF Research Database (Denmark)

    Kristensen, Martin Verner; Ahrendt, Peter; Lindballe, Thue Bjerring;

    2012-01-01

    Motion analysis of optically trapped objects is demonstrated using a simple 2D Fourier transform technique. The displacements of trapped objects are determined directly from the phase shift between the Fourier transform of subsequent images. Using end-and side-view imaging, the stiffness...... of the trap is determined in three dimensions. The Fourier transform method is simple to implement and applicable in cases where the trapped object changes shape or where the lighting conditions change. This is illustrated by tracking a fluorescent particle and a myoblast cell, with subsequent determination...

  13. A decay estimate for a wave equation with trapping and a complex potential

    CERN Document Server

    Andersson, Lars; Nicolas, Jean-Philippe

    2011-01-01

    In this brief note, we consider a wave equation that has both trapping and a complex potential. For this problem, we prove a uniform bound on the energy and a Morawetz (or integrated local energy decay) estimate. The equation is a model problem for certain scalar equations appearing in the Maxwell and linearised Einstein systems on the exterior of a rotating black hole.

  14. Les Houches lectures on black holes

    CERN Document Server

    Strominger, A

    1995-01-01

    Contents: 1. Introduction 2. Causal Structure and Penrose Diagrams Minkowski Space; 1+1 Dimensional Minkowski Space; Schwarzchild Black Holes; Gravitational Collapse and the Vaidya Spacetimes; Event Horizons, Apparent Horizons, and Trapped Surfaces 3. Black Holes in Two Dimensions General Relativity in the S-Wave Sector; Classical Dilaton Gravity; Eternal Black Holes; Coupling to Conformal Matter; Hawking Radiation and the Trace Anomaly; The Quantum State; Including the Back-Reaction; The Large N Approximation; Conformal Invariance and Generalizations of Dilaton Gravity; The Soluble RST Model 4. The Information Puzzle in Four Dimensions Can the Information Come Out Before the Endpoint?; Low-Energy Effective Descriptions of the Planckian Endpoint; Remnants?; Information Destruction?; The Superposition Principle; Energy Conservation The New Rules; Superselection Sectors, \\alpha-parameters, and the Restoration of Unitarity 5. Conclusions and Outlook

  15. Trapping tsetse flies on water

    Directory of Open Access Journals (Sweden)

    Laveissière C.

    2011-05-01

    Full Text Available Riverine tsetse flies such as Glossina palpalis gambiensis and G. tachinoides are the vectors of human and animal trypanosomoses in West Africa. Despite intimate links between tsetse and water, to our knowledge there has never been any attempt to design trapping devices that would catch tsetse on water. In mangrove (Guinea one challenging issue is the tide, because height above the ground for a trap is a key factor affecting tsetse catches. The trap was mounted on the remains of an old wooden dugout, and attached with rope to nearby branches, thereby allowing it to rise and fall with the tide. Catches showed a very high density of 93.9 flies/”water-trap”/day, which was significantly higher (p < 0.05 than all the catches from other habitats where the classical trap had been used. In savannah, on the Comoe river of South Burkina Faso, the biconical trap was mounted on a small wooden raft anchored to a stone, and catches were compared with the classical biconical trap put on the shores. G. p. gambiensis and G. tachinoides densities were not significantly different from those from the classical biconical one. The adaptations described here have allowed to efficiently catch tsetse on the water, which to our knowledge is reported here for the first time. This represents a great progress and opens new opportunities to undertake studies on the vectors of trypanosomoses in mangrove areas of Guinea, which are currently the areas showing the highest prevalences of sleeping sickness in West Africa. It also has huge potential for tsetse control using insecticide impregnated traps in savannah areas where traps become less efficient in rainy season. The Guinean National control programme has already expressed its willingness to use such modified traps in its control campaigns in Guinea, as has the national PATTEC programme in Burkina Faso during rainy season.

  16. A reservoir trap for antiprotons

    CERN Document Server

    Smorra, Christian; Franke, Kurt; Nagahama, Hiroki; Schneider, Georg; Higuchi, Takashi; Van Gorp, Simon; Blaum, Klaus; Matsuda, Yasuyuki; Quint, Wolfgang; Walz, Jochen; Yamazaki, Yasunori; Ulmer, Stefan

    2015-01-01

    We have developed techniques to extract arbitrary fractions of antiprotons from an accumulated reservoir, and to inject them into a Penning-trap system for high-precision measurements. In our trap-system antiproton storage times > 1.08 years are estimated. The device is fail-safe against power-cuts of up to 10 hours. This makes our planned comparisons of the fundamental properties of protons and antiprotons independent from accelerator cycles, and will enable us to perform experiments during long accelerator shutdown periods when background magnetic noise is low. The demonstrated scheme has the potential to be applied in many other precision Penning trap experiments dealing with exotic particles.

  17. A New Atom Trap The Annular Shell Atom Trap (ASAT)

    CERN Document Server

    Pilloff, H S; Pilloff, Herschel S.; Horbatsch, Marko

    2002-01-01

    In the course of exploring some aspects of atom guiding in a hollow, optical fiber, a small negative potential energy well was found just in front of the repulsive or guiding barrier. This results from the optical dipole and the van der Waals potentials. The ground state for atoms bound in this negative potential well was determined by numerically solving the Schrodinger eq. and it was found that this negative well could serve as an atom trap. This trap is referred to as the Annular Shell Atom Trap or ASAT because of the geometry of the trapped atoms which are located in the locus of points defining a very thin annular shell just in front of the guiding barrier. A unique feature of the ASAT is the compression of the atoms from the entire volume to the volume of the annular shell resulting in a very high density of atoms in this trap. This trap may have applications to very low temperatures using evaporative cooling and possibly the formation of BEC. Finally, a scheme is discussed for taking advantage of the d...

  18. Black Urine

    Directory of Open Access Journals (Sweden)

    Rahim Vakili

    2016-06-01

    Full Text Available A 2-year-old boy was born at term of healthy, non-consanguineous Iranian parents. His mother attended in the clinic with the history of sometimes discoloration of diapers after passing urine. She noticed that first at the age of one month with intensified in recent months. His Physical examination and growth parameters were normal. His mother denied taking any medication (sorbitol, nitrofurantoin, metronidazole, methocarbamol, sena and methyldopa (5. Qualitative urine examination showed dark black discoloration. By this history, alkaptonuria was the most clinical suspicious. A 24-hour-urine sample was collected and sent for quantitative measurements. The urine sample was highly positive for homogentisic acid and negative for porphyrin metabolites.

  19. Grand unification scale primordial black holes: consequences and constraints.

    Science.gov (United States)

    Anantua, Richard; Easther, Richard; Giblin, John T

    2009-09-11

    A population of very light primordial black holes which evaporate before nucleosynthesis begins is unconstrained unless the decaying black holes leave stable relics. We show that gravitons Hawking radiated from these black holes would source a substantial stochastic background of high frequency gravititational waves (10(12) Hz or more) in the present Universe. These black holes may lead to a transient period of matter-dominated expansion. In this case the primordial Universe could be temporarily dominated by large clusters of "Hawking stars" and the resulting gravitational wave spectrum is independent of the initial number density of primordial black holes.

  20. Composição e diversidade de Scarabaeoidea (Coleoptera atraídos por armadilha de luz em área rural no norte do Paraná, Brasil Composition and diversity of Scarabaeoidea (Coleoptera attracted by light trap in the rural areas of Northern Paraná

    Directory of Open Access Journals (Sweden)

    Daniele C. Ronqui

    2006-03-01

    Full Text Available No Estado do Paraná, as áreas mais devastadas são aquelas com potencial agrícola e as ações de inferência no meio raramente são precedidas do estudo faunístico que permitam avaliar a diversidade e abundância dos animais das áreas atingidas. Este trabalho objetivou catalogar a escarabeoideofauna atraída por armadilha de luz na área rural do município de Tamarana, Paraná e contribuir com o conhecimento ecológico de espécies deste grupo. As coletas foram realizadas em duas propriedades, utilizando armadilha de luz modelo Luiz de Queiroz modificada. Estas tiveram periodicidade quinzenal de março de 2002 a abril de 2001. Foram capturados 2.447 espécimens, distribuídos em 10 famílias, 24 gêneros e 67 espécies. As três espécies mais abundantes também foram as mais freqüentes: Aphodius lividus (Olivier, 1789, Melolonthidae sp. 1 e Ataenius sp. 5. A maior abundância de A. lividus ocorreu no outono, durante o mês de abril, enquanto que Melolonthidae sp. 1 e Ataeucus sp. 5 foram mais abundantes em outubro e novembro. A maioria das espécies foram representadas por poucos indivíduos (H'=1,74 e as espécies apareceram de maneira uniforme (J'=0,95; S=0,20. Ocorreu um maior número de famílias que estavam representadas por poucos indivíduos. Houve predominância das famílias que apresentam hábitos alimentares detritívoros - Aphodiidae, Scarabaeidae, Hybosoridae e fitófagos - Melolonthidae, Dynastidae e Rutelidae. Para os grupos de hábito detritívoro, foram coletados 25 espécies, num total de 1.422 espécimes.The most devastated environments in the State of Paraná are those with great agricultural potential, and most human interference actions on the environment are seldom preceded by a careful study of the fauna, which would reveal the diversity and abundance of animals in these areas. This study aimed to describe the Scarabaeoidea fauna attracted by light traps in rural areas of the Tamarana County, Paraná, Brazil, and