WorldWideScience

Sample records for black light trap

  1. The Technical and Performance Characteristics of a Low-Cost, Simply Constructed, Black Light Moth Trap.

    Science.gov (United States)

    White, Peter J T; Glover, Katharine; Stewart, Joel; Rice, Amanda

    2016-01-01

    The universal mercury vapor black light trap is an effective device used for collecting moth specimens in a wide variety of habitats; yet, they can present challenges for researchers. The mercury vapor trap is often powered by a heavy automotive battery making it difficult to conduct extensive surveys in remote regions. The mercury vapor trap also carries a considerable financial cost per trap unit, making trapping challenging with low research budgets. Here, we describe the development and trapping properties of a lighter, simply constructed, and less expensive trap. The LED funnel trap consists of a funnel, soda bottles with plastic vanes, and is powered by rechargeable 9-V batteries. Two strips of low-wavelength LEDs are used as attractants. We tested the trapping parameters of this trap design compared to a standard mercury vapor trap over 10 trap nights in a suburban woodlot in the summer of 2015. The mercury vapor trap caught significantly more moth individuals than the LED trap (average of 78 vs 40 moths per trap night; P < 0.05), and significantly more species than the LED trap (23 vs 15 per trap night; P < 0.05); the mercury vapor trap caught a total of 104 macromoth species over the duration of the study, compared to a total of 87 by the LED trap. Despite the lower yields, the low cost of the LED trap (<$30 ea.) makes it superior to the mercury vapor trap in cost-acquisition per moth species and per moth individual trapped. The LED trap may be a viable alternative to the standard mercury vapor trap, facilitating insect trapping in more diverse settings. PMID:26936923

  2. Black Silicon Solar Thin-film Microcells Integrating Top Nanocone Structures for Broadband and Omnidirectional Light-Trapping

    CERN Document Server

    Xu, Zhida; Brueckner, Eric P; Li, Lanfang; Jiang, Jing; Nuzzo, Ralph G; Liu, Gang L

    2014-01-01

    Recently developed classes of monocrystalline silicon solar microcells (u-cell) can be assembled into modules with characteristics (i.e., mechanically flexible forms, compact concentrator designs, and high-voltage outputs) that would be impossible to achieve using conventional, wafer-based approaches. In this paper, we describe a highly dense, uniform and non-periodic nanocone forest structure of black silicon (bSi) created on optically-thin (30 um) u-cells for broadband and omnidirectional light-trapping with a lithography-free and high-throughput plasma texturizing process. With optimized plasma etching conditions and a silicon nitride passivation layer, black silicon u-cells, when embedded in a polymer waveguiding layer, display dramatic increases of as much as 65.7% in short circuit current, as compared to a bare silicon device. The conversion efficiency increases from 8% to 11.5% with a small drop in open circuit voltage and fill factor.

  3. Black silicon solar thin-film microcells integrating top nanocone structures for broadband and omnidirectional light-trapping.

    Science.gov (United States)

    Xu, Zhida; Yao, Yuan; Brueckner, Eric P; Li, Lanfang; Jiang, Jing; Nuzzo, Ralph G; Liu, Gang Logan

    2014-08-01

    Recently developed classes of monocrystalline silicon solar microcells (μ-cell) can be assembled into modules with characteristics (i.e., mechanically flexible forms, compact concentrator designs, and high-voltage outputs) that would be impossible to achieve using conventional, wafer-based approaches. In this paper, we describe a highly dense, uniform and non-periodic nanocone forest structure of black silicon (bSi) created on optically-thin (30 μm) μ-cells for broadband and omnidirectional light-trapping with a lithography-free and high-throughput plasma texturizing process. With optimized plasma etching conditions and a silicon nitride passivation layer, black silicon μ-cells, when embedded in a polymer waveguiding layer, display dramatic increases of as much as 65.7% in short circuit current, as compared to a bare silicon device. The conversion efficiency increases from 8.1% to 11.5% with a small drop in open circuit voltage and fill factor. PMID:25006119

  4. Black light photography

    Energy Technology Data Exchange (ETDEWEB)

    Lisin, M.A. [Koon-Hall-Adrian Metallurgical, Portland, OR (United States)

    1996-11-01

    Black light photography of fluorescent penetrant and wet fluorescent magnetic particle indications can yield spectacular and useful results. The technique provides a lasting record of a flaw`s severity and location, as well as its physical relation to other components and important features. The procedures are easily learned and do not require sophisticated apparatus. In fact, equipment costs can often be justified on the basis of a single application. Using the techniques described in this article, black light photography can be a cost-effective, informative NDT tool.

  5. Black Silicon Solar Thin-film Microcells Integrating Top Nanocone Structures for Broadband and Omnidirectional Light-Trapping

    OpenAIRE

    Xu, Zhida; YAO, YUAN; Brueckner, Eric P.; Li, Lanfang; Jiang, Jing; Nuzzo, Ralph G.; Liu, Gang L.

    2014-01-01

    Recently developed classes of monocrystalline silicon solar microcells (u-cell) can be assembled into modules with characteristics (i.e., mechanically flexible forms, compact concentrator designs, and high-voltage outputs) that would be impossible to achieve using conventional, wafer-based approaches. In this paper, we describe a highly dense, uniform and non-periodic nanocone forest structure of black silicon (bSi) created on optically-thin (30 um) u-cells for broadband and omnidirectional l...

  6. Black holes, marginally trapped surfaces and quasi-minimal surfaces

    Directory of Open Access Journals (Sweden)

    Bang-Yen Chen

    2009-12-01

    Full Text Available The concept of trapped surfaces introduced by Sir Roger Penrose in [Phys. Rev. Lett. 14 (1965, 57-59] plays an extremely important role in cosmology and general relativity. A black hole is a trapped region in a space-time enclosed by a marginally trapped surface. In term of mean curvature vector, a space-like surface in a space-time is marginally trapped if its mean curvature vector field is light-like at each point. In this article, we survey recent classification results on marginally trapped surfaces from differential geometric viewpoint. Also, we survey recent results on a closely related subject; namely, quasi-minimal surfaces in pseudo-Riemannian manifolds.

  7. Light-trapping concentrator cells

    Science.gov (United States)

    Keavney, Christopher J.; Geoffroy, Leo M.; Sanfacon, Michael M.; Tobin, Stephen P.

    1989-11-01

    The objective was to develop a thin, light-trapping silicon concentrator solar cell using a new structure, the cross-grooved cell. A process was developed for fabricating V-grooves on both sides of thin silicon wafers, the grooves on one side being perpendicular to those on the other side. A way to minimize flat spots at the tops of the V-grooves was discovered. The theoretical light-trapping superiority of the cross-grooved structure was verified. A reduction was also demonstrated in grid line obscuration for grid lines running parallel to the V-grooves due to light reflection into the cell. High short-circuit current densities were achieved for p-i-n concentrator cells with the cross-grooved structure, proving the concept. The best efficiencies achieved were 18 percent at concentration, compared to 20 percent for a conventional planar low-resistivity cell. Recombination in the full-area emitter was identified as the major intrinsic loss mechanism in these thin, high-resistivity bifacial cells. Recombination on the emitter limits Voc and fill factor, and also leads to a large sublinearity of short-circuit current with light intensity. Reduction of the junction area is a major recommendation for future work. In addition, there were persistent problems with ohmic contacts and maintaining high minority-carrier lifetime during processing. It is believed that these problems can be solved, and that the cross-grooved cell is a viable approach to the limit-efficiency silicon solar cell. This report covers research conducted between March 1987 and July 1989.

  8. Trapping of intense light in hollow shell

    International Nuclear Information System (INIS)

    A small hollow shell for trapping laser light is proposed. Two-dimensional particle-in-cell simulation shows that under appropriate laser and plasma conditions a part of the radiation fields of an intense short laser pulse can enter the cavity of a small shell through an over-critical density plasma in an adjacent guide channel and become trapped. The trapped light evolves into a circulating radial wave pattern until its energy is dissipated

  9. Prisons of light : black holes

    Science.gov (United States)

    Ferguson, Kitty

    What is a black hole? Could we survive a visit to one -- perhaps even venture inside? Have we yet discovered any real black holes? And what do black holes teach us about the mysteries of our Universe? These are just a few of the tantalizing questions examined in this tour-de-force, jargon-free review of one of the most fascinating topics in modern science. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light - Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.

  10. Prisons of Light - Black Holes

    Science.gov (United States)

    Ferguson, Kitty

    1998-05-01

    In this jargon-free review of one of the most fascinating topics in modern science, acclaimed science writer Kitty Ferguson examines the discovery of black holes, their nature, and what they can teach us about the mysteries of the universe. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light--Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.

  11. Black generation using lightness scaling

    Science.gov (United States)

    Cholewo, Tomasz J.

    1999-12-01

    This paper describes a method for constructing a lookup table relating a 3D CMY coordinate system to CMYK colorant amounts in a way that maximizes the utilization of the printer gamut volume. The method is based on an assumption, satisfied by most printers, that adding a black colorant to any combination of CMY colorants does not result in a color with more chroma. Therefore the CMYK gamut can be obtained from the CMY gamut by expanding it towards lower lightness values. Use of black colorant on the gray axis is enforced by modifying the initial distribution of CMY points through an approximate black generation transform. Lightness values of a resulting set of points in CIELAB space are scaled to fill the four-color gamut volume. The output CMYK values corresponding to the modified CIELAB colors are found by inverting a printer model. This last step determines a specific black use rate which can depend on the region of the color space.

  12. Sexual pheromone traps with light for mass trapping of Tuta absoluta (Meyrick), yes or no ?

    OpenAIRE

    Matos, Tiago; Figueiredo, Elisabete; Mexia, António

    2012-01-01

    In an assay performed in November 2010, adults captured in sexual pheromone water traps with and without light were counted. In traps with light a part of the insects were sampled for sex identification. Water traps for mass trapping which combined the attractive effect of sexual pheromone and light captured higher levels of Tuta absoluta adults than the traditional ones, with pheromone bait only. However, these traps were unable to capture females of T. absoluta...

  13. Trapping light by mimicking gravitational lensing

    CERN Document Server

    Sheng, C; Wang, Y; Zhu, S N; Genov, D A

    2013-01-01

    One of the most fascinating predictions of the theory of general relativity is the effect of gravitational lensing, the bending of light in close proximity to massive stellar objects. Recently, artificial optical materials have been proposed to study the various aspects of curved spacetimes, including light trapping and Hawking's radiation. However, the development of experimental toy models that simulate gravitational lensing in curved spacetimes remains a challenge, especially for visible light. Here, by utilizing a microstructured optical waveguide around a microsphere, we propose to mimic curved spacetimes caused by gravity, with high precision. We experimentally demonstrate both far-field gravitational lensing effects and the critical phenomenon in close proximity to the photon sphere of astrophysical objects under hydrostatic equilibrium. The proposed microstructured waveguide can be used as an omnidirectional absorber, with potential light harvesting and microcavity applications.

  14. Laser trapping and spatial light modulators

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    designed different three-dimensional micro-structures and fabricated them by two-photon polymerization. These micro-structures are then handled using our BioPhotonics Workstation to show proof-of-principle demonstrations illustrating the 6DOF optical actuation of these two-photon fabricated three......INVITED: Robotics at the macro-scale typically uses light for carrying information in machine vision for monitoring and feedback in intelligent robotic guidance systems. With light’s miniscule momentum, shrinking robots down to the micro-scale regime creates opportunities for exploiting optical...... forces and torques in micro-robotic actuation and control. Indeed, the literature on optical trapping and micro-manipulation attests to the possibilities for optical micro-robotics. Advancing light-driven micro-robotics requires the optimization of optical force and optical torque that, in turn, requires...

  15. Light trapping effects in thin film silicon solar cells

    OpenAIRE

    Haug, FJ; Söderström, T; Dominé, D.; Ballif, C.

    2009-01-01

    We present advanced light trapping concepts for thin film silicon solar cells. When an amorphous and a microcrystalline absorber layers are combined into a micromorph tandem cell, light trapping becomes a challenge because it should combine the spectral region from 600 to 750 nm for the amorphous top cell and from 800 to 1100 for the microcrystalline bottom cell. Because light trapping is typically achieved by growing on textured substrates, the effect of interface textures on the material an...

  16. Light geodesics near an evaporating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, Thiago, E-mail: thiago.barbosa@unige.ch; Monteiro, Fernando, E-mail: fernando.monteiro@unige.ch

    2015-10-16

    Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed. - Highlights: • We calculate the in-falling light geodesics in an evaporating black hole. • For our calculation we use a non-static metric called Vaydia metric. • We show that in-falling light cannot cross the event horizon. • In this case there is no information paradox.

  17. Light geodesics near an evaporating black hole

    International Nuclear Information System (INIS)

    Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed. - Highlights: • We calculate the in-falling light geodesics in an evaporating black hole. • For our calculation we use a non-static metric called Vaydia metric. • We show that in-falling light cannot cross the event horizon. • In this case there is no information paradox

  18. Charge trap memory based on few-layer black phosphorus

    Science.gov (United States)

    Feng, Qi; Yan, Faguang; Luo, Wengang; Wang, Kaiyou

    2016-01-01

    Atomically thin layered two-dimensional materials, including transition-metal dichalcogenide (TMDC) and black phosphorus (BP), have been receiving much attention, because of their promising physical properties and potential applications in flexible and transparent electronic devices. Here, for the first time we show nonvolatile charge-trap memory devices, based on field-effect transistors with large hysteresis, consisting of a few-layer black phosphorus channel and a three dimensional (3D) Al2O3/HfO2/Al2O3 charge-trap gate stack. An unprecedented memory window exceeding 12 V is observed, due to the extraordinary trapping ability of the high-k HfO2. The device shows a high endurance of over 120 cycles and a stable retention of ~30% charge loss after 10 years, even lower than the reported MoS2 flash memory. The high program/erase current ratio, large memory window, stable retention and high on/off current ratio, provide a promising route towards flexible and transparent memory devices utilising atomically thin two-dimensional materials. The combination of 2D materials with traditional high-k charge-trap gate stacks opens up an exciting field of nonvolatile memory devices.

  19. Charge trap memory based on few-layer black phosphorus.

    Science.gov (United States)

    Feng, Qi; Yan, Faguang; Luo, Wengang; Wang, Kaiyou

    2016-02-01

    Atomically thin layered two-dimensional materials, including transition-metal dichalcogenide (TMDC) and black phosphorus (BP), have been receiving much attention, because of their promising physical properties and potential applications in flexible and transparent electronic devices. Here, for the first time we show nonvolatile charge-trap memory devices, based on field-effect transistors with large hysteresis, consisting of a few-layer black phosphorus channel and a three dimensional (3D) Al2O3/HfO2/Al2O3 charge-trap gate stack. An unprecedented memory window exceeding 12 V is observed, due to the extraordinary trapping ability of the high-k HfO2. The device shows a high endurance of over 120 cycles and a stable retention of ∼30% charge loss after 10 years, even lower than the reported MoS2 flash memory. The high program/erase current ratio, large memory window, stable retention and high on/off current ratio, provide a promising route towards flexible and transparent memory devices utilising atomically thin two-dimensional materials. The combination of 2D materials with traditional high-k charge-trap gate stacks opens up an exciting field of nonvolatile memory devices. PMID:26758336

  20. Production of high stellar-mass primordial black holes in trapped inflation

    OpenAIRE

    Cheng, Shu-Lin; Lee, Wolung; Ng, Kin-Wang

    2016-01-01

    Trapped inflation has been proposed to provide a successful inflation with a steep potential. We discuss the formation of primordial black holes in the trapped inflationary scenario. We argue that primordial black holes are naturally produced in a trapped inflation. In particular, we have given an inflaton potenial with which particle production can induce large non-Gaussian curvature perturbation that leads to the formation of high stellar-mass primordial black holes. These primordial black ...

  1. Comparison of different light sources for trapping Culicoides biting midges, mosquitoes and other dipterans.

    Science.gov (United States)

    González, Mikel; Alarcón-Elbal, Pedro María; Valle-Mora, Javier; Goldarazena, Arturo

    2016-08-15

    The response of Culicoides biting midges, mosquitoes and other dipterans to different wavelengths was evaluated in a farm meadow in northern Spain. A total of 9449 specimens of 23 species of Culicoides, 5495 other ceratopogonids (non-biting midges), 602 culicids and 12428 other mixed dipterans were captured. Centers for Disease Control and Prevention (CDC) suction light traps fitted with five light emitting diodes (LEDs) (white, green, red, blue, ultraviolet) were run for 15 consecutive nights. Significantly more Culicoides were collected in those traps fitted with green, blue or ultraviolet (UV) lights than in red and white-baited LED traps for the most abundant species captured: C. punctatus (37.5%), C. cataneii (26.5%) and C. obsoletus/C. scoticus (20.4%). Similar results were obtained for non-Culicoides ceratopogonids, mosquitoes and other mixed dipterans. Wavelengths in green (570nm) resulted effective for targeting some Culicoides species, culicids and other midges. In a second trial, the effectiveness of 4-W white and UV tubes was compared to traps fitted with UV LED and a standard incandescent light bulb. More specimens of all taxa were collected with fluorescent black light (UV) traps than with the other light sources, except culicids, which were recovered in high numbers from fluorescent white light traps. PMID:27514882

  2. Migration Traps in Disks Around Supermassive Black Holes

    CERN Document Server

    Bellovary, Jillian; McKernan, Barry; Ford, K E Saavik

    2015-01-01

    Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations in turn exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to the behavior of planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20--300$R_{\\rm g}$, where $R_{\\rm g}=2GM/c^{2}$ is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, an...

  3. Twisting of light around rotating black holes

    CERN Document Server

    Tamburini, Fabrizio; Molina-Terriza, Gabriel; Anzolin, Gabriele; 10.1038/nphys1907

    2011-01-01

    Kerr black holes are among the most intriguing predictions of Einstein's general relativity theory. These rotating massive astrophysical objects drag and intermix their surrounding space and time, deflecting and phase-modifying light emitted nearby them. We have found that this leads to a new relativistic effect that imposes orbital angular momentum onto such light. Numerical experiments, based on the integration of the null geodesic equations of light from orbiting point-like sources in the Kerr black hole equatorial plane to an asymptotic observer, indeed identify the phase change and wavefront warping and predict the associated light-beam orbital angular momentum spectra. Setting up the best existing telescopes properly, it should be possible to detect and measure this twisted light, thus allowing a direct observational demonstration of the existence of rotating black holes. Since non-rotating objects are more an exception than a rule in the Universe, our findings are of fundamental importance.

  4. Twisting of light around rotating black holes

    Science.gov (United States)

    Tamburini, Fabrizio; Thidé, Bo; Molina-Terriza, Gabriel; Anzolin, Gabriele

    2011-03-01

    Kerr black holes are among the most intriguing predictions of Einstein's general relativity theory. These rotating massive astrophysical objects drag and intermix their surrounding space and time, deflecting and phase-modifying light emitted near them. We have found that this leads to a new relativistic effect that imprints orbital angular momentum on such light. Numerical experiments, based on the integration of the null geodesic equations of light from orbiting point-like sources in the Kerr black hole equatorial plane to an asymptotic observer, indeed identify the phase change and wavefront warping and predict the associated light-beam orbital angular momentum spectra. Setting up the best existing telescopes properly, it should be possible to detect and measure this twisted light, thus allowing a direct observational demonstration of the existence of rotating black holes. As non-rotating objects are more an exception than a rule in the Universe, our findings are of fundamental importance.

  5. Trapping of waves and null geodesics for rotating black holes

    OpenAIRE

    Dyatlov, Semyon; Zworski, Maciej

    2013-01-01

    We present dynamical properties of linear waves and null geodesics valid for Kerr and Kerr-de Sitter black holes and their stationary perturbations. The two are intimately linked by the geometric optics approximation. For the nullgeodesic flow the key property is the r-normal hyperbolicity of the trapped set and for linear waves it is the distribution of quasi-normal modes: the exact quantization conditions do not hold for perturbations but the bounds on decay rates and the statistics of freq...

  6. Light-induced charging effects in microscopic ion traps

    International Nuclear Information System (INIS)

    Full text: Microfabricated ion traps are discussed as one of the most promising candidates for a quantum mechanical computer. By bringing the electrodes close to the ions a rich selection of trapping potentials can be created and many traps can, in principle, be operated in parallel. However, the proximity of the electrodes and other surfaces poses strong constraints on the materials used. In particular, near-by glass surfaces that may be used for high-finesse cavities around the ions or for light collection represent a challenge, since the dielectric surfaces may charge up and perturb the trapping potential. By bringing a glass substrate close to a surface ion trap, the charging can be studied in a controlled manner. Two distinct mechanisms of charging have been observed, both being light-induced with different wavelength dependence. The results allow an estimate of the rate of charge production and may be prove useful for the design of new integrated microscopic ion traps. (author)

  7. Photonic crystals for light trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gjessing, Jo

    2012-07-25

    Solar energy is an abundant and non-polluting source of energy. Nevertheless, the installation of solar cells for energy production is still dependent on subsidies in most parts of the world. One way of reducing the costs of solar cells is to decrease their thickness. This will reduce material consumption and, at the same time, unlock the possibility of using cheaper lower quality solar cell material. However, a thinner solar cell will have a higher optical loss due to insufficient absorption of long wavelength light. Therefore, light-trapping must be improved in order to make thin solar cells economically viable. In this thesis I investigate the potential for light-trapping in thin silicon solar cells by the use of various photonic crystal back-side structures. The first structure I study consists of a periodic array of cylinders in a configuration with a layer of silicon oxide separating the periodic structure from the rear metal reflector. This configuration reduces unwanted parasitic absorption in the reflector and the thickness of the oxide layer provides a new degree of freedom for improving light trapping from the structure. I use a large-period and a small-period approximation to analyze the cylinder structure and to identify criteria that contributes to successful light-trapping. I explore the light-trapping potential of various periodic structures including dimples, inverted pyramids, and cones. The structures are compared in an optical model using a 20 m thick Si slab. I find that the light trapping potential differs between the structures, that the unit cell dimensions for the given structure is more important for light trapping than the type of structure, and that the optimum lattice period does not differ significantly between the different structures. The light-trapping effect of the structures is investigated as a function on incidence angle. The structures provide good light trapping also under angles of incidence up to 60 degrees. The behavior

  8. Photonic crystals for light trapping in solar cells

    International Nuclear Information System (INIS)

    Solar energy is an abundant and non-polluting source of energy. Nevertheless, the installation of solar cells for energy production is still dependent on subsidies in most parts of the world. One way of reducing the costs of solar cells is to decrease their thickness. This will reduce material consumption and, at the same time, unlock the possibility of using cheaper lower quality solar cell material. However, a thinner solar cell will have a higher optical loss due to insufficient absorption of long wavelength light. Therefore, light-trapping must be improved in order to make thin solar cells economically viable. In this thesis I investigate the potential for light-trapping in thin silicon solar cells by the use of various photonic crystal back-side structures. The first structure I study consists of a periodic array of cylinders in a configuration with a layer of silicon oxide separating the periodic structure from the rear metal reflector. This configuration reduces unwanted parasitic absorption in the reflector and the thickness of the oxide layer provides a new degree of freedom for improving light trapping from the structure. I use a large-period and a small-period approximation to analyze the cylinder structure and to identify criteria that contributes to successful light-trapping. I explore the light-trapping potential of various periodic structures including dimples, inverted pyramids, and cones. The structures are compared in an optical model using a 20 m thick Si slab. I find that the light trapping potential differs between the structures, that the unit cell dimensions for the given structure is more important for light trapping than the type of structure, and that the optimum lattice period does not differ significantly between the different structures. The light-trapping effect of the structures is investigated as a function on incidence angle. The structures provide good light trapping also under angles of incidence up to 60 degrees. The behavior

  9. Light, Gravity and Black Holes

    Science.gov (United States)

    Falla, David

    2012-01-01

    The nature of light and how it is affected by gravity is discussed. Einstein's prediction of the deflection of light as it passes near the Sun was verified by observations made during the solar eclipse of 1919. Another prediction was that of gravitational redshift, which occurs when light emitted by a star loses energy in the gravitational field…

  10. Production of high stellar-mass primordial black holes in trapped inflation

    CERN Document Server

    Cheng, Shu-Lin; Ng, Kin-Wang

    2016-01-01

    Trapped inflation has been proposed to provide a successful inflation with a steep potential. We discuss the formation of primordial black holes in the trapped inflationary scenario. We argue that primordial black holes are naturally produced in a trapped inflation. In particular, we have given an inflaton potenial with which particle production can induce large non-Gaussian curvature perturbation that leads to the formation of high stellar-mass primordial black holes. These primordial black holes could be the dark matter observed by the LIGO detectors through a binary black-hole merger.

  11. Chernobyl radionuclides in a Black Sea sediment trap.

    Science.gov (United States)

    Buesseler, K O; Livingston, H D; Honjo, S; Hay, B J; Manganini, S J; Degens, E; Ittekkot, V; Izdar, E; Konuk, T

    The Chernobyl nuclear power station accident released large quantities of vaporized radionuclides, and, to a lesser extent, mechanically released small (less than 1-10 micron) aerosol particles. The total release of radioactivity is estimated to be out of the order of 1-2 x 10(18) Bq (3-5 x 10(7) Ci) not allowing for releases of the xenon and krypton gases. The 137Cs releases of 3.8 x 10(16) Bq from Chernobyl can be compared to 1.3 x 10(18) Bq 137Cs released due to atmospheric nuclear weapons testing. Chernobyl-derived radionuclides can be used as transient tracers to study physical and biogeochemical processes. Initial measurements of fallout Chernobyl radionuclides from a time-series sediment trap at 1,071 m during June-September 1986 in the southern Black Sea are presented. The specific activities of 137Cs, 144Ce and 106Ru in the trap samples (0.5-2, 4-12 and 6-13 Bq g-1) are independent of the particle flux while their relative activities reflect their rates of scavenging in the order Ce greater than Ru greater than Cs. PMID:3670387

  12. Geometric light trapping with a V-trap for efficient organic solar cells

    KAUST Repository

    Kim, Soo Jin

    2013-03-14

    The efficiency of today’s most efficient organic solar cells is primarily limited by the ability of the active layer to absorb all the sunlight. While internal quantum efficiencies exceeding 90% are common, the external quantum efficiency rarely exceeds 70%. Light trapping techniques that increase the ability of a given active layer to absorb light are common in inorganic solar cells but have only been applied to organic solar cells with limited success. Here, we analyze the light trapping mechanism for a cell with a V-shape substrate configuration and demonstrate significantly improved photon absorption in an 5.3%-efficient PCDTBT:PC70BM bulk heterojunction polymer solar cell. The measured short circuit current density improves by 29%, in agreement with model predictions, and the power conversion efficiency increases to 7.2%, a 35% improvement over the performance in the absence of a light trap.

  13. Enhanced light trapping in periodically truncated cone silicon nanowire structure

    Science.gov (United States)

    Kai, Qiu; Yuhua, Zuo; Tianwei, Zhou; Zhi, Liu; Jun, Zheng; Chuanbo, Li; Buwen, Cheng

    2015-10-01

    Light trapping plays an important role in improving the conversion efficiency of thin-film solar cells. The good wideband light trapping is achieved using our periodically truncated cone Si nanowire (NW) structures, and their inherent mechanism is analyzed and simulated by FDTD solution software. Ordered cylinder Si NW structure with initial size of 80 nm and length of 200 nm is grown by pattern transfer and selective epitaxial growth. Truncated cone Si NW array is then obtained by thermal oxidation treatment. Its mean reflection in the range of 300-900 nm is lowered to be 5% using 140 nm long truncated cone Si NW structure, compared with that of 20% using cylinder counterparts. It indicates that periodically truncated Si cone structures trap the light efficiently to enhance the light harvesting in a wide spectral range and have the potential application in highly efficient NW solar cells. Project supported by the National Natural Science Foundation of China (Nos. 51072194, 61021003, 61036001, 61376057).

  14. Light trapping in thin film organic solar cells

    Directory of Open Access Journals (Sweden)

    Zheng Tang

    2014-10-01

    Full Text Available A major issue in organic solar cells is the poor mobility and recombination of the photogenerated charge carriers. The active layer has to be kept thin to facilitate charge transport and minimize recombination losses. However, optical losses due to inefficient light absorption in the thin active layers can be considerable in organic solar cells. Therefore, light trapping schemes are critically important for efficient organic solar cells. Traditional light trapping schemes for thick solar cells need to be modified for organic thin film solar cells in which coherent optics and wave effects play a significant role. In this review, we discuss the light trapping schemes for organic thin film solar cells, which includes geometric engineering of the structure of the solar cell at the micro and nanoscale, plasmonic structures, and more.

  15. Exploration of external light trapping for photovoltaic modules.

    Science.gov (United States)

    van Dijk, Lourens; van de Groep, Jorik; Di Vece, Marcel; Schropp, Ruud E I

    2016-07-11

    The reflection of incident sunlight by photovoltaic modules prevents them from reaching their theoretical energy conversion limit. We explore the effectiveness of a universal external light trap that can tackle this reflection loss. A unique feature of external light traps is their capability to simultaneously recycle various broadband sources of reflection on the module level, such as the reflection from the metal front grid, the front interfaces, the reflective backside of the cell, and the white back sheet. The reflected light is recycled in the space between the solar cell and a mirror above the solar cell. A concentrator funnels the light into this cage through a small aperture in the mirror. As a proof-of-principle experiment, a significant reflectance reduction of a bare crystalline silicon (c-Si) photodiode is demonstrated. In contrast to conventional light trapping methods, external light trapping does not induce any damage to the active solar cell material. Moreover, this is a universally applicable technology that enables the use of thin and planar solar cells of superior electrical quality that were so far hindered by limited optical absorption. We considered several trap designs and identified fabrication issues. A series of prototype millimeter-scale external metal light traps were milled and applied on an untextured c-Si photodiode, which is used as a model for future thin solar cells. We determined the concentrator transmittance and analyzed the effect of both the concentration factor and cage height on the absorptance and spatial intensity distribution on the surface of the solar cell. This relatively simple and comprehensive light management solution can be a promising candidate for highly efficient solar modules using thin c-Si solar cells. PMID:27410902

  16. Fundamental limit of light trapping in grating structures

    KAUST Repository

    Yu, Zongfu

    2010-08-11

    We use a rigorous electromagnetic approach to analyze the fundamental limit of light-trapping enhancement in grating structures. This limit can exceed the bulk limit of 4n 2, but has significant angular dependency. We explicitly show that 2D gratings provide more enhancement than 1D gratings. We also show the effects of the grating profile’s symmetry on the absorption enhancement limit. Numerical simulations are applied to support the theory. Our findings provide general guidance for the design of grating structures for light-trapping solar cells.

  17. Modeling Light Trapping in Nanostructured Solar Cells

    OpenAIRE

    Ferry, Vivian E.; Polman, Albert; Atwater, Harry A.

    2011-01-01

    The integration of nanophotonic and plasmonic structures with solar cells offers the ability to control and confine light in nanoscale dimensions. These nanostructures can be used to couple incident sunlight into both localized and guided modes, enhancing absorption while reducing the quantity of material. Here we use electromagnetic modeling to study the resonances in a solar cell containing both plasmonic metal back contacts and nanostructured semiconductor top contacts, identify the local ...

  18. Towards Laser Cooling Trapped Ions with Telecom Light

    Science.gov (United States)

    Dungan, Kristina; Becker, Patrick; Donoghue, Liz; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information has many potential applications in communication, atomic clocks, and the precision measurement of fundamental constants. Trapped ions are excellent candidates for applications in quantum information because of their isolation from external perturbations, and the precise control afforded by laser cooling and manipulation of the quantum state. For many applications in quantum communication, it would be advantageous to interface ions with telecom light. We present progress towards laser cooling and trapping of doubly-ionized lanthanum, which should require only infrared, telecom-compatible light. Additionally, we present progress on optimization of a second-harmonic generation cavity for laser cooling and trapping barium ions, for future sympathetic cooling experiments. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  19. Eliminating light shifts in single-atom optical traps

    CERN Document Server

    Hutzler, Nicholas R; Yu, Yichao; Ni, Kang-Kuen

    2016-01-01

    Microscopically controlled neutral atoms in optical tweezers and lattices have led to exciting advances in the study of quantum information and quantum many-body systems. The light shifts of atomic levels from the trapping potential in these systems can result in detrimental effects such as fluctuating dipole force heating, inhomogeneous detunings, and inhibition of laser cooling, which limits the atomic species that can be manipulated. In particular, these light shifts can be large enough to prevent loading into optical tweezers directly from a magneto-optical trap. We present a general solution to these limitations by loading, cooling, and imaging single atoms with temporally alternating beams. Because this technique does not depend on any specific spectral properties, we expect it to enable the optical tweezer method to control nearly any atomic or molecular species that can be laser cooled and optically trapped. Furthermore, we present an analysis of the role of heating and required cooling for single ato...

  20. Introduction to light forces, atom cooling, and atom trapping

    OpenAIRE

    Savage, Craig

    1995-01-01

    This paper introduces and reviews light forces, atom cooling and atom trapping. The emphasis is on the physics of the basic processes. In discussing conservative forces the semi-classical dressed states are used rather than the usual quantized field dressed states.

  1. Light-trapping in perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Qing Guo Du

    2016-06-01

    Full Text Available We numerically demonstrate enhanced light harvesting efficiency in both CH3NH3PbI3 and CH(NH22PbI3-based perovskite solar cells using inverted vertical-cone photonic-crystal nanostructures. For CH3NH3PbI3 perovskite solar cells, the maximum achievable photocurrent density (MAPD reaches 25.1 mA/cm2, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm2 and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60 degree for both S- and P- polarizations. For the corresponding CH(NH22PbI3 based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm2, corresponding to 95.4% of the total available photocurrent. The projected power conversion efficiency of the CH(NH22PbI3 based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.

  2. Light-trapping in perovskite solar cells

    Science.gov (United States)

    Du, Qing Guo; Shen, Guansheng; John, Sajeev

    2016-06-01

    We numerically demonstrate enhanced light harvesting efficiency in both CH3NH3PbI3 and CH(NH2)2PbI3-based perovskite solar cells using inverted vertical-cone photonic-crystal nanostructures. For CH3NH3PbI3 perovskite solar cells, the maximum achievable photocurrent density (MAPD) reaches 25.1 mA/cm2, corresponding to 92% of the total available photocurrent in the absorption range of 300 nm to 800 nm. Our cell shows 6% absorption enhancement compared to the Lambertian limit (23.7 mA/cm2) and has a projected power conversion efficiency of 12.9%. Excellent solar absorption is numerically demonstrated over a broad angular range from 0 to 60 degree for both S- and P- polarizations. For the corresponding CH(NH2)2PbI3 based perovskite solar cell, with absorption range of 300 nm to 850 nm, we find a MAPD of 29.1 mA/cm2, corresponding to 95.4% of the total available photocurrent. The projected power conversion efficiency of the CH(NH2)2PbI3 based photonic crystal solar cell is 23.4%, well above the current world record efficiency of 20.1%.

  3. Quantum interference and the formation of trapping regions around a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Astrophysical processes in vicinity of black holes involve a coupling of spacetime geometry and the quantum effects. Using the quantum potential approach we investigate the quantum dynamics of a massive particle around a Schwarzschild black hole. The analysis shows the existence of typical quantum effects near the black hole region. In particular the R-amplitude variation leads to the formation of fringe-like trapping regions around the black hole where the particle is more likely to be located. However due to the energy loss, which gains a local maxima in the trapping regions, the particle in-fall eventually occurs. The energy loss during such a process will show up in frequency and amplitude modulation in X-ray signals from accreting black holes and may confirm the existence of such trapping regions.

  4. Effect of light trapping in an amorphous silicon solar cell

    International Nuclear Information System (INIS)

    Light trapping in amorphous silicon based solar cell has been investigated theoretically. The substrate for these cells can be textured, including pyramidally textured c-Si wafer, to improve capture of incident light. A thin silver layer, deposited on the substrate of an n–i–p cell, ultimately goes at the back of the cell structure and can act a back reflector to improve light trapping. The two physical solar cells we investigated had open circuit voltages (Voc) of 0.87, 0.90 V, short circuit current densities (Jsc) of 14.2, 15.36 mA/cm2 respectively. The first cell was investigated for the effect on its performance while having and not having light trapping scheme (LT), when thickness of the active layer (di) was changed in the range of 100 nm to 800 nm. In both the approaches, for having or not having LT, the short circuit current density increases with di while the Voc and fill factor, decreases steadily. However, maximum cell efficiency can be obtained when di = 400 nm, and hence it was considered optimized thickness of the active layer, that was used for further investigation. With the introduction of light trapping to the second cell, it shows a further enhancement in Jsc and red response of the external quantum efficiency to 16.6 mA/cm2 and by 11.1% respectively. Considering multiple passages of light inside the cell, we obtained an improvement in cell efficiency from 9.7% to 10.6%. - Highlights: • A theoretical analysis of light trapping in p–i–n and n–i–p type solar cells • Jsc increases and Voc decreases with the increase in i-layer thickness. • Observed optimized thickness of i-layer as 400 nm • Jsc improved from 15.4 mA/cm2 to 16.6 mA/cm2 due to the light trapping. • Efficiency (η) improved from 9.7% to 10.6% due to better red response of the EQE

  5. Effect of light trapping in an amorphous silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Iftiquar, S.M., E-mail: iftiquar@skku.edu [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jung, Juyeon; Park, Hyeongsik [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Cho, Jaehyun; Shin, Chonghoon [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Park, Jinjoo [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jung, Junhee [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Bong, Sungjae [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Sunbo [Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-31

    Light trapping in amorphous silicon based solar cell has been investigated theoretically. The substrate for these cells can be textured, including pyramidally textured c-Si wafer, to improve capture of incident light. A thin silver layer, deposited on the substrate of an n–i–p cell, ultimately goes at the back of the cell structure and can act a back reflector to improve light trapping. The two physical solar cells we investigated had open circuit voltages (V{sub oc}) of 0.87, 0.90 V, short circuit current densities (J{sub sc}) of 14.2, 15.36 mA/cm{sup 2} respectively. The first cell was investigated for the effect on its performance while having and not having light trapping scheme (LT), when thickness of the active layer (d{sub i}) was changed in the range of 100 nm to 800 nm. In both the approaches, for having or not having LT, the short circuit current density increases with d{sub i} while the V{sub oc} and fill factor, decreases steadily. However, maximum cell efficiency can be obtained when d{sub i} = 400 nm, and hence it was considered optimized thickness of the active layer, that was used for further investigation. With the introduction of light trapping to the second cell, it shows a further enhancement in J{sub sc} and red response of the external quantum efficiency to 16.6 mA/cm{sup 2} and by 11.1% respectively. Considering multiple passages of light inside the cell, we obtained an improvement in cell efficiency from 9.7% to 10.6%. - Highlights: • A theoretical analysis of light trapping in p–i–n and n–i–p type solar cells • J{sub sc} increases and V{sub oc} decreases with the increase in i-layer thickness. • Observed optimized thickness of i-layer as 400 nm • J{sub sc} improved from 15.4 mA/cm{sup 2} to 16.6 mA/cm{sup 2} due to the light trapping. • Efficiency (η) improved from 9.7% to 10.6% due to better red response of the EQE.

  6. Ultra-broadband light trapping using nanotextured decoupled graphene multilayers

    Science.gov (United States)

    Anguita, José V.; Ahmad, Muhammad; Haq, Sajad; Allam, Jeremy; Silva, S. Ravi P.

    2016-01-01

    The ability to engineer a thin two-dimensional surface for light trapping across an ultra-broad spectral range is central for an increasing number of applications including energy, optoelectronics, and spectroscopy. Although broadband light trapping has been obtained in tall structures of carbon nanotubes with millimeter-tall dimensions, obtaining such broadband light–trapping behavior from nanometer-scale absorbers remains elusive. We report a method for trapping the optical field coincident with few-layer decoupled graphene using field localization within a disordered distribution of subwavelength-sized nanotexturing metal particles. We show that the combination of the broadband light–coupling effect from the disordered nanotexture combined with the natural thinness and remarkably high and wavelength-independent absorption of graphene results in an ultrathin (15 nm thin) yet ultra-broadband blackbody absorber, featuring 99% absorption spanning from the mid-infrared to the ultraviolet. We demonstrate the utility of our approach to produce the blackbody absorber on delicate opto-microelectromechanical infrared emitters, using a low-temperature, noncontact fabrication method, which is also large-area compatible. This development may pave a way to new fabrication methodologies for optical devices requiring light management at the nanoscale. PMID:26933686

  7. Photovoltaic cell with light trapping for enhanced efficiency

    Science.gov (United States)

    Brener, Igal; Fofang, Nche Tumasang; Luk, Ting S.

    2015-11-19

    The efficiency of a photovoltaic cell is enhanced by light trapping using Mie-scattering nanostructures. In one embodiment, an array of nanocylinders is formed on the front surface of a silicon film to enhance forward scattering into the film, and an array of nanocylinders is formed on the back surface to enhance backscattering so that more light is absorbed within the silicon film. In an alternate embodiment, a mirror layer is formed on the back surface of the silicon film to reflect light within the film back toward the front-surface nanocylinder array.

  8. Quantum computing with trapped ions, atoms and light

    International Nuclear Information System (INIS)

    We consider experimental issues relevant to quantum computing, and discuss the best way to achieve the essential requirements of reliable quantum memory and gate operations. Nuclear spins in trapped ions or atoms are a very promising candidate for the qubits. We estimate the parameters required to couple atoms using light via cavity QED in order to achieve quantum gates. We briefly comment on recent improvements to the Cirac-Zoller method for coupling trapped ions via their vibrational degree of freedom. Error processes result in a trade-off between quantum gate speed and failure probability. A useful quantum computer does appear to be feasible using a combination of ion trap and optical methods. The best understood method to stabilize a large computer relies on quantum error correction. The essential ideas of this are discussed, and recent estimates of the noise requirements in a quantum computing device are given

  9. The repellent effect of organic fatty acids on Culicoides midges as determined with suction light traps in South Africa.

    Science.gov (United States)

    Venter, G J; Labuschagne, K; Boikanyo, S N B; Morey, L; Snyman, M G

    2011-09-27

    The efficacy of a 15% (w/w) mixture of octanoic, nonanoic and decanoic acids in light mineral oil to repel Culicoides biting midges (Diptera; Ceratopogonidae) was determined in three replicates of a 4 × 4 Latin square design under South African field conditions. The fatty acids were applied to ± 0.07 m(2) polyester meshes with a mesh size 2-3mm fitted to 220 V 8 W Onderstepoort downdraught light traps. To reduce the relatively strong attraction of the light trap, the black light tubes in the Onderstepoort trap were replaced with 8 W 23 cm white light tubes. The traps were operating overnight next to cattle. Two traps treated with the mixture of fatty acids collected 1.7 times fewer midges than two untreated traps. Although this mixture of fatty acids had shown a repellent effect against a number of blood-feeding insects this is the first indication that it also has a significant repellent effect against Culicoides species and especially Culicoides (Avaritia) imicola Kieffer when applied to polyester mesh. PMID:21592665

  10. Light with orbital angular momentum interacting with trapped ions

    OpenAIRE

    Schmiegelow, Christian Tomás; Schmidt-Kaler, Ferdinand

    2011-01-01

    We study the interaction of a light beams carrying angular momentum with a single, trapped and well localized ion. We provide a detailed calculation of selection rules and excitation probabilities for quadrupole transitions. The results show the dependencies on the angular momentum and polarization of the laser beam as well as the direction of the quantization magnetic field. In order to observe optimally the specific effects, focusing the angular momentum beam close to the diffraction limit ...

  11. Graphene plasmonics for light trapping and absorption engineering

    OpenAIRE

    Zhang, Jianfa; Zhu, Zhihong; Liu, Wei; Yuan, Xiaodong; Qin, Shiqiao

    2015-01-01

    Plasmonics can be used to improve absorption in optoelectronic devices and has been intensively studied for solar cells and photodetectors. Graphene has recently emerged as a powerful plasmonic material. It shows significantly less losses compared to traditional plasmonic materials such as gold and silver and its plasmons can be tuned by changing the Fermi energy with chemical or electrical doping. Here we propose the usage of graphene plasmonics for light trapping in optoelectronic devices a...

  12. Light Loop Echoes and Blinking Black Holes

    CERN Document Server

    Boyle, Latham

    2011-01-01

    Radiation emitted near a black hole reaches the observer by multiple paths; and when this radiation varies in time, the time-delays between the various paths generate a "blinking" effect in the observed light curve L(t) or its auto-correlation function xi(T)= . For the particularly important "face-on" configuration (in which the hole is viewed roughly along its spin axis, while the emission comes roughly from its equatorial plane -- e.g. from the inner edge of its accretion disk, or from the violent flash of a nearby/infalling star) we calculate the blinking in detail by computing the time delay Delta t_{j}(r,a) and magnification mu_{j}(r,a) of the jth path (j=1,2,3,...), relative to the primary path (j=0), as a function of the emission radius r and black hole spin 0

  13. Light trapping in horizontally aligned silicon microwire solar cells.

    Science.gov (United States)

    Martinsen, Fredrik A; Smeltzer, Benjamin K; Ballato, John; Hawkins, Thomas; Jones, Max; Gibson, Ursula J

    2015-11-30

    In this study, we demonstrate a solar cell design based on horizontally aligned microwires fabricated from 99.98% pure silicon via the molten core fiber drawing method. A similar structure consisting of 50 μm diameter close packed wires (≈ 0.97 packing density) on a Lambertian white back-reflector showed 86 % absorption for incident light of wavelengths up to 850 nm. An array with a packing fraction of 0.35 showed an absorption of 58 % over the same range, demonstrating the potential for effective light trapping. Prototype solar cells were fabricated to demonstrate the concept. Horizontal wire cells offer several advantages as they can be flexible, and partially transparent, and absorb light efficiently over a wide range of incident angles. PMID:26698794

  14. Light geodesics near an evaporating black hole

    Science.gov (United States)

    Guerreiro, Thiago; Monteiro, Fernando

    2015-10-01

    Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed.

  15. Optical particle trapping and dynamic manipulation using spatial light modulation

    DEFF Research Database (Denmark)

    Eriksen, René Lynge

    spots acting as tweezers beams are generated using phase-only spatial light modulation of an incident laser beam together with a generalized phase contrast (GPC) filter. The GPC method acts as a common-path interferometer, which converts encoded phase information into an appropriate intensity pattern...... proven capable of generating a phase pattern from an input amplitude distribution. The birefringent nature of liquid crystals in the SLM is utilized for the generation of an arbitrary two-dimensional state of polarization using two-cascaded SLMs. By means of elliptically polarized light, generated by one...... SLM and a lens-array, angular momentum transfer to multiple birefringent particles is achieved in an optical tweezers system. The rotation direction and angular orientation of the trapped particles are controlled from the SLM device that directly affects the state of polarization. In addition, a novel...

  16. Black Holes Shed Light on Galaxy Formation

    Science.gov (United States)

    2000-01-01

    This videotape is comprised of several segments of animations on black holes and galaxy formation, and several segments of an interview with Dr. John Kormendy. The animation segments are: (1) a super massive black hole, (2) Centarus A active black hole found in a collision, (3) galaxy NGC-4261 (active black hole and jet model), (4) galaxy M-32 (orbits of stars are effected by the gravity of the black hole), (5) galaxy M-37 (motion of stars increases as mass of black hole increases), (6) Birth of active galactic nuclei, (7) the collision of two galaxy leads to merger of the black holes, (8) Centarus A and simulation of the collision of 2 galaxies. There are also several segments of an interview with John Kormendy. In these segments he discusses the two most important aspects of his recent black hole work: (1) the correlations between galaxies speed and the mass of the black holes, and (2) the existence of black holes and galactic formation. He also discusses the importance of the Hubble Space Telescope and the Space Telescope Imaging Spectrograph to the study of black holes. He also shows the methodology of processing images from the spectrograph in his office.

  17. Nanophotonic light trapping with patterned transparent conductive oxides.

    Science.gov (United States)

    Vasudev, Alok P; Schuller, Jon A; Brongersma, Mark L

    2012-05-01

    Transparent conductive oxides (TCOs) play a crucial role in solar cells by efficiently transmitting sunlight and extracting photo-generated charge. Here, we show how nanophotonics concepts can be used to transform TCO films into effective photon management layers for solar cells. This is accomplished by patterning the TCO layer present on virtually every thin-film solar cell into an array of subwavelength beams that support optical (Mie) resonances. These resonances can be exploited to concentrate randomly polarized sunlight or to effectively couple it to guided and diffracted modes. We first demonstrate these concepts with a model system consisting of a patterned TCO layer on a thin silicon (Si) film and outline a design methodology for high-performance, TCO-based light trapping coatings. We then show that the short circuit current density from a 300 nm thick amorphous silicon (a-Si) cell with an optimized TCO anti-reflection coating can be enhanced from 19.9 mA/cm2 to 21.1 mA/cm2, out of a possible 26.0 mA/cm2, by using an optimized nanobeam array. The key differences and advantages over plasmonic light trapping layers will be discussed. PMID:22712089

  18. Spherically symmetric trapping horizons, the Misner-Sharp mass and black hole evaporation

    OpenAIRE

    Nielsen, Alex B; Yeom, Dong-han

    2008-01-01

    Understood in terms of pure states evolving into mixed states, the possibility of information loss in black holes is closely related to the global causal structure of spacetime, as is the existence of event horizons. However, black holes need not be defined by event horizons, and in fact we argue that in order to have a fully unitary evolution for black holes, they should be defined in terms of something else, such as a trapping horizon. The Misner-Sharp mass in spherical symmetry shows very ...

  19. Enhancement of light trapping in thin-film solar cells through Ag

    Institute of Scientific and Technical Information of China (English)

    Yiming Bai; Han Zhang; Jun Wang; Nuofu Chen; Jianxi Yao; Tianmao Huang; Xingwang Zhang; Zhigang Yin; Zhen Fu

    2011-01-01

    Forward-scattering efficiency (FSE) is first proposed when an Ag nanoparticle serves as the light-trapping structure for thin-film (TF) solar cells because the Ag nanoparticle's light-trapping efficiency lies on the light-scattering direction of metal nanoparticles. Based on FSE analysis of Ag nanoparticles with radii of 53 and 88 nm, the forward-scattering spectra and light-trapping efficiencies are calculated. The contributions of dipole and quadrupole modes to light-trapping effect are also analyzed quantitatively. When the surface coverage of Ag nanoparticles is 5%, light-trapping efficiencies are 15.5% and 32.3%, respectively, for 53- and 88-nm Ag nanoparticles. Results indicate that the plasmon quadrupole mode resonance of Ag nanoparticles could further enhance the light-trapping effect for TF solar cells.%@@ Forward-scattering efficiency (FSE) is first proposed when an Ag nanoparticle serves as the light-trapping structure for thin-film (TF) solar cells because the Ag nanoparticle's light-trapping efficiency lies on the light-scattering direction of metal nanoparticles.Based on FSE analysis of Ag nanoparticles with radii of 53 and 88 nm, the forward-scattering spectra and light-trapping efficiencies are calculated.The contributions of dipole and quadrupole modes to light-trapping effect are also analyzed quantitatively.When the surface coverage of Ag nanoparticles is 5%, light-trapping efficiencies are 15.5% and 32.3%, respectively, for 53- and 88-nm Ag nanoparticles.Results indicate that the plasmon quadrupole mode resonance of Ag nanoparticles could further enhance the light-trapping effect for TF solar cells.

  20. A comparison of commercial light-emitting diode baited suction traps for surveillance of Culicoides in northern Europe

    OpenAIRE

    Hope, Andrew; Gubbins, Simon; Sanders, Christopher; Denison, Eric; Barber, James; Stubbins, Francesca; Baylis, Matthew; Carpenter, Simon

    2015-01-01

    Background The response of Culicoides biting midges (Diptera: Ceratopogonidae) to artificial light sources has led to the use of light-suction traps in surveillance programmes. Recent integration of light emitting diodes (LED) in traps improves flexibility in trapping through reduced power requirements and also allows the wavelength of light used for trapping to be customized. This study investigates the responses of Culicoides to LED light-suction traps emitting different wavelengths of ligh...

  1. Three-dimensional grating nanowires for enhanced light trapping.

    Science.gov (United States)

    Lee, Hoo-Cheol; Na, Jin-Young; Moon, Yoon-Jong; Park, Jin-Sung; Ee, Ho-Seok; Park, Hong-Gyu; Kim, Sun-Kyung

    2016-04-01

    We propose rationally designed 3D grating nanowires for boosting light-matter interactions. Full-vectorial simulations show that grating nanowires sustain high-amplitude waveguide modes and induce a strong optical antenna effect, which leads to an enhancement in nanowire absorption at specific or broadband wavelengths. Analyses of mode profiles and scattering spectra verify that periodic shells convert a normal plane wave into trapped waveguide modes, thus giving rise to scattering dips. A 200 nm diameter crystalline Si nanowire with designed periodic shells yields an enormously large current density of ∼28  mA/cm2 together with an absorption efficiency exceeding unity at infrared wavelengths. The grating nanowires studied herein will provide an extremely efficient absorption platform for photovoltaic devices and color-sensitive photodetectors. PMID:27192291

  2. Graphene plasmonics for light trapping and absorption engineering

    CERN Document Server

    Zhang, Jianfa; Liu, Wei; Yuan, Xiaodong; Qin, Shiqiao

    2015-01-01

    Plasmonics can be used to improve absorption in optoelectronic devices and has been intensively studied for solar cells and photodetectors. Graphene has recently emerged as a powerful plasmonic material. It shows significantly less losses compared to traditional plasmonic materials such as gold and silver and its plasmons can be tuned by changing the Fermi energy with chemical or electrical doping. Here we propose the usage of graphene plasmonics for light trapping in optoelectronic devices and show that the excitation of localized plasmons in doped, nanostructured graphene can enhance optical absorption in its surrounding media including both bulky and two-dimensional materials by tens of times, which may lead to a new generation of highly efficient, spectrally selective photodetectors in mid-infrared and THz ranges. The proposed concept could even revolutionize the field of plasmonic solar cells if graphene plasmons in the visible and near-infrared are realized.

  3. Light trapping architecture for photovoltaic and photodector applications

    Energy Technology Data Exchange (ETDEWEB)

    Forrest, Stephen R.; Lunt, Richard R.; Slootsky, Michael

    2016-08-09

    There is disclosed photovoltaic device structures which trap admitted light and recycle it through the contained photosensitive materials to maximize photoabsorption. For example, there is disclosed a photosensitive optoelectronic device comprising: a first reflective layer comprising a thermoplastic resin; a second reflective layer substantially parallel to the first reflective layer; a first transparent electrode layer on at least one of the first and second reflective layer; and a photosensitive region adjacent to the first electrode, wherein the first transparent electrode layer is substantially parallel to the first reflective layer and adjacent to the photosensitive region, and wherein the device has an exterior face transverse to the planes of the reflective layers where the exterior face has an aperture for admission of incident radiation to the interior of the device.

  4. How can horseflies be captured by solar panels? A new concept of tabanid traps using light polarization and electricity produced by photovoltaics.

    Science.gov (United States)

    Blahó, Miklós; Egri, Ádám; Barta, András; Antoni, Györgyi; Kriska, György; Horváth, Gábor

    2012-10-26

    Horseflies (Diptera: Tabanidae) can cause severe problems for humans and livestock because of the continuous annoyance performed and the diseases vectored by the haematophagous females. Therefore, effective horsefly traps are in large demand, especially for stock-breeders. To catch horseflies, several kinds of traps have been developed, many of them attracting these insects visually with the aid of a black ball. The recently discovered positive polarotaxis (attraction to horizontally polarized light) in several horsefly species can be used to design traps that capture female and male horseflies. The aim of this work is to present the concept of such a trap based on two novel principles: (1) the visual target of the trap is a horizontal solar panel (photovoltaics) attracting polarotactic horseflies by means of the highly and horizontally polarized light reflected from the photovoltaic surface. (2) The horseflies trying to touch or land on the photovoltaic trap surface are perished by the mechanical hit of a wire rotated quickly with an electromotor supplied by the photovoltaics-produced electricity. Thus, the photovoltaics is bifunctional: its horizontally polarized reflected light signal attracts water-seeking, polarotactic horseflies, and it produces the electricity necessary to rotate the wire. We describe here the concept and design of this new horsefly trap, the effectiveness of which was demonstrated in field experiments. The advantages and disadvantages of the trap are discussed. Using imaging polarimetry, we measured the reflection-polarization characteristics of the photovoltaic trap surface demonstrating the optical reason for the polarotactic attractiveness to horseflies. PMID:22564663

  5. Black Hole Ringing, Quasinormal Modes, and Light Rings

    CERN Document Server

    Khanna, Gaurav

    2016-01-01

    Modelling of gravitational waves from binary black hole inspiral has played an important role in the recent observations of such signals. The late-stage ringdown phase of the gravitational waveform is often associated with the null particle orbit (\\light ring") of the black hole spacetime. With simple models we show that this link between the light ring and spacetime ringing is based more on the history of applications than on an actual constraining relationship. We also show, in particular, that a better understanding of the disassociation between the two, may be relevant to the astrophysically interesting case of rotating (Kerr) black holes.

  6. Visible, invisible and trapped ghosts as sources of wormholes and black universes

    CERN Document Server

    Bolokhov, S V; Korolyov, P A; Skvortsova, M V

    2015-01-01

    We construct explicit examples of globally regular static, spherically symmetric solutions in general relativity with scalar and electromagnetic fields, describing traversable wormholes with flat and AdS asymptotics and regular black holes, in particular, black universes. (A black universe is a regular black hole with an expanding, asymptotically isotropic space-time beyond the horizon.) Such objects exist in the presence of scalar fields with negative kinetic energy ("phantoms'', or "ghosts''), which are not observed under usual physical conditions. To account for that, we consider what we call "trapped ghosts'' (scalars whose kinetic energy is only negative in a strong-field region of space-time) and "invisible ghosts'', i.e., phantom scalar fields sufficiently rapidly decaying in the weak-field region. The resulting configurations contain different numbers of Killing horizons, from zero to four.

  7. Visible, invisible and trapped ghosts as sources of wormholes and black universes

    Science.gov (United States)

    Bolokhov, S. V.; Bronnikov, K. A.; Korolyov, P. A.; Skvortsova, M. V.

    2016-02-01

    We construct explicit examples of globally regular static, spherically symmetric solutions in general relativity with scalar and electromagnetic fields, describing traversable wormholes with flat and AdS asymptotics and regular black holes, in particular, black universes. (A black universe is a regular black hole with an expanding, asymptotically isotropic space-time beyond the horizon.) Such objects exist in the presence of scalar fields with negative kinetic energy (“phantoms”, or “ghosts”), which are not observed under usual physical conditions. To account for that, we consider what we call “trapped ghosts” (scalars whose kinetic energy is only negative in a strong-field region of space-time) and “invisible ghosts”, i.e., phantom scalar fields sufficiently rapidly decaying in the weak-field region. The resulting configurations contain different numbers of Killing horizons, from zero to four.

  8. Light trapping in thin film solar cells using textured photonic crystal

    Science.gov (United States)

    Yi, Yasha; Kimerling, Lionel C.; Duan, Xiaoman; Zeng, Lirong

    2009-01-27

    A solar cell includes a photoactive region that receives light. A photonic crystal is coupled to the photoactive region, wherein the photonic crystal comprises a distributed Bragg reflector (DBR) for trapping the light.

  9. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    2015-01-01

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the so

  10. Black Hole Spindown by Light Bosons

    OpenAIRE

    Gruzinov, Andrei

    2016-01-01

    The saturation mechanism for the fastest-growing instability of massive scalar field in Kerr metric is identified, assuming saturation by cubic or quartic nonlinearities of the field potential. The resulting spindown rate of the black hole is calculated. The (rather involved) saturation scenario is confirmed by numerical simulations.

  11. Glass buildings on river banks as ``polarized light traps'' for mass-swarming polarotactic caddis flies

    Science.gov (United States)

    Kriska, György; Malik, Péter; Szivák, Ildikó; Horváth, Gábor

    2008-05-01

    The caddis flies Hydropsyche pellucidula emerge at dusk from the river Danube and swarm around trees and bushes on the river bank. We document here that these aquatic insects can also be attracted en masse to the vertical glass surfaces of buildings on the river bank. The individuals lured to dark, vertical glass panes land, copulate, and remain on the glass for hours. Many of them are trapped by the partly open, tiltable windows. In laboratory choice experiments, we showed that ovipositing H. pellucidula are attracted to highly and horizontally polarized light stimulating their ventral eye region and, thus, have positive polarotaxis. In the field, we documented that highly polarizing vertical black glass surfaces are significantly more attractive to both female and male H. pellucidula than weakly polarizing white ones. Using video polarimetry, we measured the reflection-polarization characteristics of vertical glass surfaces of buildings where caddis flies swarmed. We propose that after its emergence from the river, H. pellucidula is attracted to buildings by their dark silhouettes and the glass-reflected, horizontally polarized light. After sunset, this attraction may be strengthened by positive phototaxis elicited by the buildings’ lights. The novelty of this visual ecological phenomenon is that the attraction of caddis flies to vertical glass surfaces has not been expected because vertical glass panes do not resemble the horizontal surface of waters from which these insects emerge and to which they must return to oviposit.

  12. Dielectric nanostructures for broadband light trapping in organic solar cells

    KAUST Repository

    Raman, Aaswath

    2011-09-15

    Organic bulk heterojunction solar cells are a promising candidate for low-cost next-generation photovoltaic systems. However, carrier extraction limitations necessitate thin active layers that sacrifice absorption for internal quantum efficiency or vice versa. Motivated by recent theoretical developments, we show that dielectric wavelength-scale grating structures can produce significant absorption resonances in a realistic organic cell architecture. We numerically demonstrate that 1D, 2D and multi-level ITO-air gratings lying on top of the organic solar cell stack produce a 8-15% increase in photocurrent for a model organic solar cell where PCDTBT:PC71BM is the organic semiconductor. Specific to this approach, the active layer itself remains untouched yet receives the benefit of light trapping by nanostructuring the top surface below which it lies. The techniques developed here are broadly applicable to organic semiconductors in general, and enable partial decoupling between active layer thickness and photocurrent generation. © 2011 Optical Society of America.

  13. Trapping light with micro lenses in thin film organic photovoltaic cells.

    Science.gov (United States)

    Tvingstedt, Kristofer; Dal Zilio, Simone; Inganäs, Olle; Tormen, Massimo

    2008-12-22

    We demonstrate a novel light trapping configuration based on an array of micro lenses in conjunction with a self aligned array of micro apertures located in a highly reflecting mirror. When locating the light trapping element, that displays strong directional asymmetric transmission, in front of thin film organic photovoltaic cells, an increase in cell absorption is obtained. By recycling reflected photons that otherwise would be lost, thinner films with more beneficial electrical properties can effectively be deployed. The light trapping element enhances the absorption rate of the solar cell and increases the photocurrent by as much as 25%. PMID:19104592

  14. Dynamic photophoresis-based optical trapping using a spatial light modulator

    Science.gov (United States)

    Porfirev, Aleksey P.; Skidanov, Roman V.

    2016-04-01

    We investigate optical trapping light-absorbing particles in the air employing photophoretic forces with optical tweezers generated by a spatial light modulator (SLM). SLM gives us the opportunity to form optical tweezers for multiple trapping in several planes. We investigate the possibility of using lenses with various focal lengths for trapping light-absorbing microparticles with the SLM. We used lenses with a large focal length and a large depth of focus. The results shown in this paper could be useful in various applications of optics and biology.

  15. Disorder improves nanophotonic light trapping in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, U. W., E-mail: u.paetzold@fz-juelich.de; Smeets, M.; Meier, M.; Bittkau, K.; Merdzhanova, T.; Smirnov, V.; Carius, R.; Rau, U. [IEK5—Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Michaelis, D.; Waechter, C. [Fraunhofer Institut für Angewandte Optik und Feinmechanik, Albert Einstein Str. 7, D-07745 Jena (Germany)

    2014-03-31

    We present a systematic experimental study on the impact of disorder in advanced nanophotonic light-trapping concepts of thin-film solar cells. Thin-film solar cells made of hydrogenated amorphous silicon were prepared on imprint-textured glass superstrates. For periodically textured superstrates of periods below 500 nm, the nanophotonic light-trapping effect is already superior to state-of-the-art randomly textured front contacts. The nanophotonic light-trapping effect can be associated to light coupling to leaky waveguide modes causing resonances in the external quantum efficiency of only a few nanometer widths for wavelengths longer than 500 nm. With increasing disorder of the nanotextured front contact, these resonances broaden and their relative altitude decreases. Moreover, overall the external quantum efficiency, i.e., the light-trapping effect, increases incrementally with increasing disorder. Thereby, our study is a systematic experimental proof that disorder is conceptually an advantage for nanophotonic light-trapping concepts employing grating couplers in thin-film solar cells. The result is relevant for the large field of research on nanophotonic light trapping in thin-film solar cells which currently investigates and prototypes a number of new concepts including disordered periodic and quasi periodic textures.

  16. Trapping of light in solitonic cavities and its role in the supercontinuum generation

    CERN Document Server

    Driben, R; Efimov, A; Malomed, B A

    2013-01-01

    We demonstrate that the fission of higher-order N-solitons with a subsequent ejection of fundamental quasi-solitons creates solitonic cavities, formed by a pair of solitons with dispersive light trapped between them. As a result of multiple reflections of the trapped light from the bounding solitons which act as mirrors, they bend their trajectories and collide. In the spectral-domain, the two solitons receive blue and red wavelength shifts, respectively. The spectrum of the bouncing trapped light alters as well. This phenomenon strongly affect spectral characteristics of the generated supercontinuum. Studies of the system's parameters, which are responsible for the creation of the cavities, reveal possibilities of predicting and controlling soliton-soliton collisions induced by multiple reflections of the trapped light.

  17. Self-organization effects and light amplification of collective atomic recoil motion in a harmonic trap

    OpenAIRE

    Zhang, L.; Yang, G. J.; Xia, L. X.

    2005-01-01

    Self-organization effects related to light amplification in the collective atomic recoil laser system with the driven atoms confined in a harmonic trap are investigated further. In the dispersive parametric region, our study reveals that the spontaneously formed structures in the phase space contributes an important role to the light amplification of the probe field under the atomic motion being modified by the trap.

  18. Three-dimensional simulations of supercritical black hole accretion discs - luminosities, photon trapping and variability

    Science.gov (United States)

    Sądowski, Aleksander; Narayan, Ramesh

    2016-03-01

    We present a set of four three-dimensional, general relativistic, radiation magnetohydrodynamical simulations of black hole accretion at supercritical mass accretion rates, dot{M} > dot{M}_Edd. We use these simulations to study how disc properties are modified when we vary the black hole mass, the black hole spin, or the mass accretion rate. In the case of a non-rotating black hole, we find that the total efficiency is of the order of 3 per cent dot{M} c^2, approximately a factor of 2 less than the efficiency of a standard thin accretion disc. The radiation flux in the funnel along the axis is highly super-Eddington, but only a small fraction of the energy released by accretion escapes in this region. The bulk of the 3 per cent dot{M} c^2 of energy emerges farther out in the disc, either in the form of photospheric emission or as a wind. In the case of a black hole with a spin parameter of 0.7, we find a larger efficiency of about 8 per cent dot{M} c^2. By comparing the relative importance of advective and diffusive radiation transport, we show that photon trapping is effective near the equatorial plane. However, near the disc surface, vertical transport of radiation by diffusion dominates. We compare the properties of our fiducial three-dimensional run with those of an equivalent two-dimensional axisymmetric model with a mean-field dynamo. The latter simulation runs nearly 100 times faster than the three-dimensional simulation, and gives very similar results for time-averaged properties of the accretion flow, but does not reproduce the time-variability.

  19. Quantifying the effectiveness of SiO2/Au light trapping nanoshells for thin film poly-Si solar cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to enhance light absorption of thin film poly-crystalline silicon(TF poly-Si)solar cells over a broad spectral range, and quantify the effectiveness of nanoshell light trapping structure over the full solar spectrum in theory,the effective photon trapping flux(EPTF)and effective photon trapping efficiency(EPTE)were firstly proposed by considering both the external quantum efficiency of TF poly-Si solar cell and scattering properties of light trapping structures.The EPTF,EPTE and scattering spectrum exhibit different behaviors depending on the geometric size and density of nanoshells that form the light trapping layer.With an optimum size and density of SiO2/Au nanoshell light trapping layer,the EPTE could reach up to 40%due to the enhancement of light trapping over a broad spectral range,especially from 500 to 800 nm.

  20. Spin squeezing and light entanglement in Coherent Population Trapping

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Cviklinski, Jean; Giacobino, Elisabeth; Pinard, Michel

    2006-01-01

    We show that strong squeezing and entanglement can be generated at the output of a cavity containing atoms interacting with two fields in a coherent population trapping situation, on account of a nonlinear Faraday effect experienced by the fields close to a dark-state resonance in a cavity....... Moreover, the cavity provides a feedback mechanism allowing to reduce the quantum fluctuations of the ground state spin, resulting in strong steady state spin squeezing....

  1. Advanced methods for light trapping in optically thin silicon solar cells

    Science.gov (United States)

    Nagel, James Richard

    2011-12-01

    The field of light trapping is the study of how best to absorb light in a thin film of material when most light either reflects away at the surface or transmits straight through to the other side. This has tremendous application to the field of photovoltaics where thin silicon films can be manufactured cheaply, but also fail to capture all of the available photons in the solar spectrum. Advancements in light trapping therefore bring us closer to the day when photovoltaic devices may reach grid parity with traditional fossil fuels on the electrical energy market. This dissertation advances our understanding of light trapping by first modeling the effects of loss in planar dielectric waveguides. The mathematical framework developed here can be used to model any arbitrary three-layer structure with mixed gain or loss and then extract the total field solution for the guided modes. It is found that lossy waveguides possess a greater number of eigenmodes than their lossless counterparts, and that these "loss guided" modes attenuate much more rapidly than conventional modes. Another contribution from this dissertation is the exploration of light trapping through the use of dielectric nanospheres embedded directly within the active layer of a thin silicon film. The primary benefit to this approach is that the device can utilize a surface nitride layer serving as an antireflective coating while still retaining the benefits of light trapping within the film. The end result is that light trapping and light injection are effectively decoupled from each other and may be independently optimized within a single photovoltaic device. The final contribution from this work is a direct numerical comparison between multiple light trapping schemes. This allows us to quantify the relative performances of various design techniques against one another and objectively determine which ideas tend to capture the most light. Using numerical simulation, this work directly compares the absorption

  2. Light rays at optical black holes in moving media

    International Nuclear Information System (INIS)

    Light experiences a nonuniformly moving medium as an effective gravitational field, endowed with an effective metric tensor g(tilde sign)μν=ημν+(n2-1)uμuν, n being the refractive index and uμ the four-velocity of the medium. Leonhardt and Piwnicki [Phys. Rev. A 60, 4301 (1999)] argued that a flowing dielectric fluid of this kind can be used to generate an ''optical black hole.'' In the Leonhardt-Piwnicki model, only a vortex flow was considered. It was later pointed out by Visser [Phys. Rev. Lett. 85, 5252 (2000)] that in order to form a proper optical black hole containing an event horizon, it becomes necessary to add an inward radial velocity component to the vortex flow. In the present paper we undertake this task: we consider a full spiral flow, consisting of a vortex component plus a radially infalling component. Light propagates in such a dielectric medium in a way similar to that occurring around a rotating black hole. We calculate, and show graphically, the effective potential versus the radial distance from the vortex singularity, and show that the spiral flow can always capture light in both a positive, and a negative, inverse impact parameter interval. The existence of a genuine event horizon is found to depend on the strength of the radial flow, relative to the strength of the azimuthal flow. A limitation of our fluid model is that it is nondispersive

  3. The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae)

    DEFF Research Database (Denmark)

    Kirkeby, Carsten; Græsbøll, Kaare; Stockmarr, Anders;

    2013-01-01

    Background Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light...

  4. Collisional cooling of light ions by co-trapped heavy atoms

    CERN Document Server

    Dutta, Sourav; Rangwala, S A

    2015-01-01

    The most generic cooling and thermalization pathway at the lowest temperatures is via elastic collisions. In hybrid ion-atom traps, ion cooling to temperatures where low partial wave collisions dominate require the collisional cooling mechanism to be well understood and controlled. There exists great uncertainty on whether cooling of light ions by heavier neutral atoms is possible. Here we experimentally demonstrate the cooling of light ions by co-trapped heavy atoms for the first time. We show that trapped 39K+ ions are cooled by localized ultracold neutral 85Rb atoms for an ion-atom mass ratio where most theoretical models predict ion heating. We demonstrate, based on detailed numerical simulation of our ion-cooling model, which is in excellent agreement with experiments, that cooling of ions by localized cold atoms is possible for any mass ratio. Our result opens up the possibility of studying quantum collisions and chemistry in trapped atom-ion systems.

  5. Light Trapping Effect in Wing Scales of Butterfly Papilio peranthus and Its Simulations

    Institute of Scientific and Technical Information of China (English)

    Zhiwu Han; Shichao Niu; Lufeng Zhang; Zhenning Liu; Luquan Ren

    2013-01-01

    Broadband light trapping ettect and arrays of sub-wavelength textured sructures based on the butterfly wing scales are applicable to solar cells and stealth technologies.In this paper,the fine optical structures in wing scales of butterfly Papilio peranthus,exhibiting efficient light trapping effect,were carefully examined.First,the reflectivity was measured by reflectance spectrum.Field Emission Scanning Electronic Microscope (FESEM) and Transmission Electron Microscope (TEM) were used to observe the coupling morphologies and structures of the scales.Then,the optimized 3D model of the coupling structure was created combining Scanning Electron Microscope (SEM) and TEM data.Afterwards,the mechanism of the light trapping effect of these structures was analyzed by simulation and theoretical calculations.A multilayer nano-structure of chitin and air was found.These structures are effective in increasing optical path,resulting in that most of the incident light can be trapped and adsorbed within the structure at last.Furthermore,the simulated optical results are consistent with the experimental and calculated ones.This result reliably confirms that these structures induce an efficient light trapping effect.This work can be used as a reference for in-depth study on the fabrication of highly efficient bionic optical devices,such as solar cells,photo detectors,high-contrast,antiglare,and so forth.

  6. Broadband perfect light trapping in the thinnest monolayer graphene-MoS$_{2}$ photovoltaic cell

    CERN Document Server

    Wu, Yun-Beng; Wang, Tong-Biao; Deng, Xin-Hua; Liu, Jiang-Tao

    2015-01-01

    The light absorption of a monolayer graphene-molybdenum disulfide photovoltaic (GM-PV) cell in a wedge-shaped microcavity with a spectrum-splitting structure is investigated theoretically. The GM-PV cell, which is three times thinner than the traditional photovoltaic cell, exhibits up to 98\\% light absorptivity in a wide wavelength range. This rate exceeds the fundamental limit of nanophotonic light trapping in solar cells. The effects of defect layer thickness, GM-PV cell position in the microcavity, incident angle, and lens aberration on the light absorption rate of the GM-PV cell is explored. Regardless of errors, the GM-PV cell can still achieve at least 90\\% light absorptivity with the current technology. Our proposal provides different methods to design light-trapping structures and apply spectrum-splitting systems.

  7. An Ingenious Super Light Trapping Surface Templated from Butterfly Wing Scales

    Science.gov (United States)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-08-01

    Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching. Firstly, the reflectivity of butterfly wing scales was carefully examined. It was found that the whole reflectance spectroscopy of the butterfly wings showed a lower level (less than 10 %) in the visible spectrum. Thus, it was confirmed that the butterfly wings possessed a super light trapping effect. Afterwards, the morphologies and detailed architectures of the butterfly wing scales were carefully investigated using the ultra-depth three-dimensional (3D) microscope and field emission scanning electronic microscopy (FESEM). It was composed by the parallel ridges and quasi-honeycomb-like structure between them. Based on the biological properties and function above, an exact SiO2 negative replica was fabricated through a synthesis method combining a sol-gel process and subsequent selective etching. At last, the comparative analysis of morphology feature size and the reflectance spectroscopy between the SiO2 negative replica and the flat plate was conducted. It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template. This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature.

  8. An Ingenious Super Light Trapping Surface Templated from Butterfly Wing Scales.

    Science.gov (United States)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-12-01

    Based on the super light trapping property of butterfly Trogonoptera brookiana wings, the SiO2 replica of this bionic functional surface was successfully synthesized using a simple and highly effective synthesis method combining a sol-gel process and subsequent selective etching. Firstly, the reflectivity of butterfly wing scales was carefully examined. It was found that the whole reflectance spectroscopy of the butterfly wings showed a lower level (less than 10 %) in the visible spectrum. Thus, it was confirmed that the butterfly wings possessed a super light trapping effect. Afterwards, the morphologies and detailed architectures of the butterfly wing scales were carefully investigated using the ultra-depth three-dimensional (3D) microscope and field emission scanning electronic microscopy (FESEM). It was composed by the parallel ridges and quasi-honeycomb-like structure between them. Based on the biological properties and function above, an exact SiO2 negative replica was fabricated through a synthesis method combining a sol-gel process and subsequent selective etching. At last, the comparative analysis of morphology feature size and the reflectance spectroscopy between the SiO2 negative replica and the flat plate was conducted. It could be concluded that the SiO2 negative replica inherited not only the original super light trapping architectures, but also the super light trapping characteristics of bio-template. This work may open up an avenue for the design and fabrication of super light trapping materials and encourage people to look for more super light trapping architectures in nature. PMID:26306539

  9. Modeling nanostructure-enhanced light trapping in organic solar cells

    DEFF Research Database (Denmark)

    Adam, Jost

    A promising approach for improving the power conversion efficiencies of organic solar cells (OSCs) is by incorporating nanostructures in their thin film architecture to improve the light absorption in the device’s active polymer layers. Here, we present a modelling framework for the prediction...

  10. Trapping of Rift Valley Fever (RVF vectors using Light Emitting Diode (LED CDC traps in two arboviral disease hot spots in Kenya

    Directory of Open Access Journals (Sweden)

    Tchouassi David P

    2012-05-01

    Full Text Available Abstract Background Mosquitoes’ response to artificial lights including color has been exploited in trap designs for improved sampling of mosquito vectors. Earlier studies suggest that mosquitoes are attracted to specific wavelengths of light and thus the need to refine techniques to increase mosquito captures following the development of super-bright light-emitting diodes (LEDs which emit narrow wavelengths of light or very specific colors. Therefore, we investigated if LEDs can be effective substitutes for incandescent lamps used in CDC light traps for mosquito surveillance, and if so, determine the best color for attraction of important Rift Valley Fever (RFV vectors. Methods The efficiency of selected colored LED CDC light traps (red, green, blue, violet, combination of blue-green-red (BGR to sample RVF vectors was evaluated relative to incandescent light (as control in a CDC light trap in two RVF hotspots (Marigat and Ijara districts in Kenya. In field experiments, traps were baited with dry ice and captures evaluated for Aedes tricholabis, Ae. mcintoshi, Ae. ochraceus, Mansonia uniformis, Mn. africana and Culex pipiens, following Latin square design with days as replicates. Daily mosquito counts per treatment were analyzed using a generalized linear model with Negative Binomial error structure and log link using R. The incidence rate ratios (IRR that mosquito species chose other treatments instead of the control, were estimated. Results Seasonal preference of Ae.mcintoshi and Ae. ochraceus at Ijara was evident with a bias towards BGR and blue traps respectively in one trapping period but this pattern waned during another period at same site with significantly low numbers recorded in all colored traps except blue relative to the control. Overall results showed that higher captures of all species were recorded in control traps compared to the other LED traps (IRR  Conclusion Based on our trapping design and color, none of the LEDs

  11. Assessment of vector/host contact: comparison of animal-baited traps and UV-light/suction trap for collecting Culicoides biting midges (Diptera: Ceratopogonidae, vectors of Orbiviruses

    Directory of Open Access Journals (Sweden)

    Delécolle Jean-Claude

    2011-06-01

    Full Text Available Abstract Background The emergence and massive spread of bluetongue in Western Europe during 2006-2008 had disastrous consequences for sheep and cattle production and confirmed the ability of Palaearctic Culicoides (Diptera: Ceratopogonidae to transmit the virus. Some aspects of Culicoides ecology, especially host-seeking and feeding behaviors, remain insufficiently described due to the difficulty of collecting them directly on a bait animal, the most reliable method to evaluate biting rates. Our aim was to compare typical animal-baited traps (drop trap and direct aspiration to both a new sticky cover trap and a UV-light/suction trap (the most commonly used method to collect Culicoides. Methods/results Collections were made from 1.45 hours before sunset to 1.45 hours after sunset in June/July 2009 at an experimental sheep farm (INRA, Nouzilly, Western France, with 3 replicates of a 4 sites × 4 traps randomized Latin square using one sheep per site. Collected Culicoides individuals were sorted morphologically to species, sex and physiological stages for females. Sibling species were identified using a molecular assay. A total of 534 Culicoides belonging to 17 species was collected. Abundance was maximal in the drop trap (232 females and 4 males from 10 species whereas the diversity was the highest in the UV-light/suction trap (136 females and 5 males from 15 species. Significant between-trap differences abundance and parity rates were observed. Conclusions Only the direct aspiration collected exclusively host-seeking females, despite a concern that human manipulation may influence estimation of the biting rate. The sticky cover trap assessed accurately the biting rate of abundant species even if it might act as an interception trap. The drop trap collected the highest abundance of Culicoides and may have caught individuals not attracted by sheep but by its structure. Finally, abundances obtained using the UV-light/suction trap did not estimate

  12. The Chaotic Light Curves of Accreting Black Holes

    Science.gov (United States)

    Kazanas, Demosthenes

    2007-01-01

    We present model light curves for accreting Black Hole Candidates (BHC) based on a recently developed model of these sources. According to this model, the observed light curves and aperiodic variability of BHC are due to a series of soft photon injections at random (Poisson) intervals and the stochastic nature of the Comptonization process in converting these soft photons to the observed high energy radiation. The additional assumption of our model is that the Comptonization process takes place in an extended but non-uniform hot plasma corona surrounding the compact object. We compute the corresponding Power Spectral Densities (PSD), autocorrelation functions, time skewness of the light curves and time lags between the light curves of the sources at different photon energies and compare our results to observation. Our model reproduces the observed light curves well, in that it provides good fits to their overall morphology (as manifest by the autocorrelation and time skewness) and also to their PSDs and time lags, by producing most of the variability power at time scales 2 a few seconds, while at the same time allowing for shots of a few msec in duration, in accordance with observation. We suggest that refinement of this type of model along with spectral and phase lag information can be used to probe the structure of this class of high energy sources.

  13. Light-induced evaporative cooling in a magneto-optical trap

    Institute of Scientific and Technical Information of China (English)

    Ma Hong-Yu; Cheng Hua-Dong; Wang Yu-Zhu; Liu Liang

    2008-01-01

    This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap.An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap.These atoms get an additional force and evaporated away from the trap by both the magnetic field and laser fields.The remaining atoms have lower kinetic energy and thus are cooled.It reports the measurements on the temperature and atomic number after the evaporative cooling with different parameters including the distance between the laser and the centre of the atomic cloud,the detuning,the intensity.The results show that the light-induced evaporative cooling is a way to generate an ultra-cold atom source.

  14. Tunable dual-band light trapping and absorption enhancement with graphene concentric ring arrays

    CERN Document Server

    Xiao, Shuyuan; Liu, Yuebo; Han, Xu; Yan, Xicheng

    2016-01-01

    Surface plasmon resonance (SPR) has been intensively studied and widely employed for light trapping and absorption enhancement. In the mid-infrared and terahertz (THz) regime, graphene supports the tunable SPR via manipulating its Fermi energy and enhances light-matter interaction at the selective wavelength. In this paper, a pair of graphene concentric rings has been proposed to introduce tunable dual-band light trapping with good angle polarization tolerance and enhance the absorption in the low light-absorbing efficiency materials nearby to more than one order. Moreover, the design principle here could be set as a template to achieve multi-band plasmonic absorption enhancement by introducing more graphene concentric rings into each unit cell. This work not only opens up new ways of employing graphene SPR, but also leads to practical applications in high-performance simultaneous multi-color photodetection with high efficiency and tunable spectral selectivity.

  15. Temporal tweezing of light: trapping and manipulation of temporal cavity solitons

    CERN Document Server

    Jang, Jae K; Coen, Stephane; Murdoch, Stuart G

    2014-01-01

    Optical tweezers use laser light to trap and move microscopic particles in space. Here we demonstrate a similar control over ultrashort light pulses, but in time. Our experiment involves temporal cavity solitons that are stored in a passive loop of optical fiber pumped by a continuous-wave "holding" laser beam. The cavity solitons are trapped into specific time slots through a phase-modulation of the holding beam, and moved around in time by manipulating the phase profile. We report both continuous and discrete manipulations of the temporal positions of picosecond light pulses, with the ability to simultaneously and independently control several pulses within a train. We also study the transient drifting dynamics and show complete agreement with theoretical predictions. Our study demonstrates how the unique particle-like characteristics of cavity solitons can be leveraged to achieve unprecedented control over light. These results could have significant ramifications for optical information processing.

  16. Experimental comparison of light-trapping structures for silicon solar cells

    Science.gov (United States)

    Tobin, S. P.; Keavney, C. J.; Geoffroy, L. M.; Sanfacon, M. M.

    Silicon solar cells and test structures were made with etched V-grooves on both the front and the back. The light trapping in these structures was compared to that of control samples with polished and textured surfaces. It was found, in agreement with theoretical predictions, that the structure in which the grooves on the front and the back are perpendicular showed the greatest degree of light trapping, i.e., absorbed the most light in the near-bandgap region. Furthermore, the V-groove front surface makes possible a reduction in effective shadow loss by allowing reflection of light from the metal grid lines onto the active area; this reduction was measured at 41 percent in a typical cell. An 0.25 sq cm bifacial concentrator cell with a short-circuit current density of 41.5 mA/sq cm was made by this method.

  17. Ultrabroadband, More than One Order Absorption Enhancement in Graphene with Plasmonic Light Trapping

    OpenAIRE

    Feng Xiong; Jianfa Zhang; Zhihong Zhu; Xiaodong Yuan; Shiqiao Qin

    2015-01-01

    This paper presents an comprehensive study of light trapping and absorption enhancement in graphene through metallic plasmonic structures and shows a strategy to realize both ultrabroadband and strong absorption enhancement. Three different plasmonic absorber designs are investigated by numerical simulations. The excitation of localized plasmons in the metallic structures significantly enhances the interactions between graphene and light at the resonances. By employing a splitted cross design...

  18. Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells

    Science.gov (United States)

    Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis

    2016-01-01

    A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries. PMID:27499446

  19. Large-area soft-imprinted nanowire networks as light trapping transparent conductors

    Science.gov (United States)

    van de Groep, Jorik; Gupta, Dhritiman; Verschuuren, Marc A.; M. Wienk, Martijn; Janssen, Rene A. J.; Polman, Albert

    2015-06-01

    Using soft-imprint nanolithography, we demonstrate large-area application of engineered two-dimensional polarization-independent networks of silver nanowires as transparent conducting electrodes. These networks have high optical transmittance, low electrical sheet resistance, and at the same time function as a photonic light-trapping structure enhancing optical absorption in the absorber layer of thin-film solar cells. We study the influence of nanowire width and pitch on the network transmittance and sheet resistance, and demonstrate improved performance compared to ITO. Next, we use P3HT-PCBM organic solar cells as a model system to show the realization of nanowire network based functional devices. Using angle-resolved external quantum efficiency measurements, we demonstrate engineered light trapping by coupling to guided modes in the thin absorber layer of the solar cell. Concurrent to the direct observation of controlled light trapping we observe a reduction in photocurrent as a result of increased reflection and parasitic absorption losses; such losses can be minimized by re-optimization of the NW network geometry. Together, these results demonstrate how engineered 2D NW networks can serve as multifunctional structures that unify the functions of a transparent conductor and a light trapping structure. These results are generic and can be applied to any type of optoelectronic device.

  20. Trapping of quantum particles and light beams by switchable potential wells

    CERN Document Server

    Sonkin, Eduard; Granot, Er'el; Marchewka, Avi

    2010-01-01

    We consider basic dynamical effects in settings based on a pair of local potential traps that may be effectively switched on and off, or suddenly displaced, by means of appropriate control mechanisms, such as the scanning tunneling microscopy (STM) or photo-switchable quantum dots. The same models, based on the linear Schrodinger equation with time-dependent trapping potentials, apply to the description of optical planar systems designed for the switching of trapped light beams. The analysis is carried out in the analytical form, using exact solutions of the Schrodinger equation. The first dynamical problem considered in this work is the retention of a particle released from a trap which was suddenly turned off, while another local trap was switched on at a distance - immediately or with a delay. In this case, we demonstrate that the maximum of the retention rate is achieved at a specific finite value of the strength of the new trap, and at a finite value of the temporal delay, depending on the distance betwe...

  1. Ultraviolet light-induced atom desorption for large rubidium and potassium magneto-optical traps

    International Nuclear Information System (INIS)

    We show that light-induced atom desorption (LIAD) can be used as a flexible atomic source for large 87Rb and 40K magneto-optical traps. The use of LIAD at short wavelengths allows for fast switching of the desired vapor pressure and permits experiments with long trapping and coherence times. The wavelength dependence of the LIAD effect for both species was explored in a range from 630 to 253 nm in an uncoated quartz cell and a stainless steel chamber. Only a few mW/cm2 of near-UV light produce partial pressures that are high enough to saturate a magneto-optical trap at 3.5x10987Rb atoms or 7x10740K atoms. Loading rates as high as 1.2x10987Rb atoms/s and 8x10740K atoms/s were achieved without the use of a secondary atom source. After the desorption light is turned off, the pressure quickly decays back to equilibrium with a time constant as short as 200 μs, allowing for long trapping lifetimes after the MOT loading phase

  2. Influence of carbon dioxide on numbers of Culicoides midges collected with suction light traps in South Africa.

    Science.gov (United States)

    Venter, G J; Boikanyo, S N B; Majatladi, D M; Morey, L

    2016-03-01

    To implement risk management against diseases transmitted by species of Culicoides Latreille, 1809 (Diptera: Ceratopogonidae), it is essential to identify all potential vectors. Light traps are the most commonly used tool for the collection of Culicoides midges. Given the indiscriminate artificial attraction of light, traps will collect all night-flying insects rather than only livestock-associated Culicoides midges. Factors that may increase the efficacy of traps, especially for livestock-associated Culicoides midges, require investigation. In the present study, results obtained with Centers for Disease Control (CDC) and Onderstepoort light traps baited with carbon dioxide (CO2 ) were compared with those of unbaited controls. Comparisons were made using two replicates of a 4 × 4 randomized Latin square design. With both trap types, the mean numbers of Culicoides midges collected in 16 baited traps were higher than those caught in 16 unbaited traps. Although exceptionally low numbers were collected with the CDC traps, the increases in the numbers and frequency of collection of Culicoides imicola Kieffer, 1913 were more pronounced in the CDC traps compared with the Onderstepoort traps. These results indicate that the addition of CO2 may increase the efficiency of these traps for the collection of C. imicola and other livestock-associated Culicoides species. PMID:26522279

  3. Low cost and high performance light trapping structure for thin-film solar cells

    CERN Document Server

    Wang, DongLin; Su, Gang

    2015-01-01

    Nano-scaled dielectric and metallic structures are popular light tapping structures in thin-film solar cells. However, a large parasitic absorption in those structures is unavoidable. Most schemes based on such structures also involve the textured active layers that may bring undesirable degradation of the material quality. Here we propose a novel and cheap light trapping structure based on the prism structured SiO2 for thin-film solar cells, and a flat active layer is introduced purposefully. Such a light trapping structure is imposed by the geometrical shape optimization to gain the best optical benefit. By examining our scheme, it is disclosed that the conversion efficiency of the flat a-Si:H thin-film solar cell can be promoted to exceed the currently certified highest value. As the cost of SiO2-based light trapping structure is much cheaper and easier to fabricate than other materials, this proposal would have essential impact and wide applications in thin-film solar cells.

  4. Optical trapping of cold neutral atoms using a two-color evanescent light field around a carbon nanotube

    International Nuclear Information System (INIS)

    We suggest a new schema of trapping cold atoms using a two-color evanescent light field around a carbon nanotube. The two light fields circularly polarized sending through a carbon nanotube generates an evanescent wave around this nanotube. By evanescent effect, the wave decays away from the nanotube producing a set of trapping minima of the total potential in the transverse plane as a ring around the nanotube. This schema allows capture of atoms to a cylindrical shell around the nanotube. We consider some possible boundary conditions leading to the non-trivial bound state solution. Our result will be compared to some recent trapping models and our previous trapping models.

  5. Dislocation-related trap levels in nitride-based light emitting diodes

    International Nuclear Information System (INIS)

    Deep level transient spectroscopy was performed on InGaN/GaN multiple quantum well light emitting diodes (LEDs) in order to determine the effect of the dislocation density on the deep intragap electronic levels. The LEDs were grown by metalorganic vapor phase epitaxy on GaN templates with a high dislocation density of 8 × 109 cm−2 and a low dislocation density of 3 × 108 cm−2. Three trapping levels for electrons were revealed, named A, A1, and B, with energies EA ≈ 0.04 eV, EA1 ≈ 0.13 eV, and EB ≈ 0.54 eV, respectively. The trapping level A has a much higher concentration in the LEDs grown on the template with a high density of dislocations. The logarithmic dependence of the peak amplitude on the bias pulse width for traps A and A1 identifies the defects responsible for these traps as associated with linearly arranged defects. We conclude that traps A and A1 are dislocation-related intragap energy levels.

  6. The effect of high frequency sound on Culicoides numbers collected with suction light traps

    Directory of Open Access Journals (Sweden)

    Gert J. Venter

    2012-04-01

    Full Text Available Culicoides midges (Diptera: Ceratopogonidae, are involved in the transmission of various pathogens that cause important diseases of livestock worldwide. The use of insect repellents to reduce the attack rate of these insects on livestock could play an important role as part of an integrated control programme against diseases transmitted by these midges. The objective of this study was to determine whether high frequency sound has any repellent effect on Culicoides midges. The number of midges collected with 220 V Onderstepoort white light traps fitted with electronic mosquito repellents (EMRs, emitting 5-20 KHz multi-frequency sound waves, was compared with that of two untreated traps. Treatments were rotated in two replicates of a 4 x 4 randomised Latin square design. Although fewer midges were collected in the two traps fitted with EMRs, the average number collected over eight consecutive nights was not significantly different. The EMRs also had no influence on any of the physiological groups of Culicoides imicola Kieffer or the species composition of the Culicoides population as determined with light traps. The results indicate that high frequency sound has no repellent effect on Culicoides midges. There is therefore no evidence to support their promotion or use in the protection of animals against pathogens transmitted by Culicoides midges.

  7. Periodic molybdenum disc array for light trapping in amorphous silicon layer

    Science.gov (United States)

    Wang, Jiwei; Yang, Kang; Chen, Haiyan; Deng, Changkai; Li, Dongdong; Chen, Xiaoyuan; Ren, Wei

    2016-05-01

    We demonstrate the light trapping effect in amorphous silicon (a-Si:H) layer by inserting a layer of periodic molybdenum disc array (MDA) between the a-Si:H layer and the quartz substrate, which forms a three-layer structure of Si/MDA/SiO2. The MDA layer was fabricated by a new cost-effective method based on nano-imprint technology. Further light absorption enhancement was realized through altering the topography of MDA by annealing it at 700°C. The mechanism of light absorption enhancement in a-Si:H interfaced with MDA was analyzed, and the electric field distribution and light absorption curve of the different layers in the Si/MDA structure under light illumination of different wavelengths were simulated by employing numerical finite difference time domain (FDTD) solutions.

  8. Two-dimensional high efficiency thin-film silicon solar cells with a lateral light trapping architecture

    OpenAIRE

    Fang, Jia; Liu, Bofei; Zhao, Ying; Zhang, Xiaodan

    2014-01-01

    Introducing light trapping structures into thin-film solar cells has the potential to enhance their solar energy harvesting as well as the performance of the cells; however, current strategies have been focused mainly on harvesting photons without considering the light re-escaping from cells in two-dimensional scales. The lateral out-coupled solar energy loss from the marginal areas of cells has reduced the electrical yield indeed. We therefore herein propose a lateral light trapping structur...

  9. Light trapping at Dirac point in 2D triangular Archimedean-like lattice photonic crystal.

    Science.gov (United States)

    Mao, Qiuping; Xie, Kang; Hu, Lei; Li, Qian; Zhang, Wei; Jiang, Haiming; Hu, Zhijia; Wang, Erlei

    2016-04-20

    Optical cavities and waveguides are critical parts of modern optical devices. Traditionally, optical cavities and waveguides rely on photonic bandgaps, or total internal reflection, to achieve light trapping. It has been reported that a novel light trapping, which exists in triangular and honeycomb lattices, is attributed to the so-called Dirac point. Our analysis reveals that 2D triangular Archimedean-like lattice photonic crystals also can support this Dirac mode with similar characteristics. This is a new type of localized mode with a different algebraic field profile at a different specified Dirac frequency, which is also beyond any complete photonic bandgap. The new wave localization has different features and can be applied to the design of new optical devices. PMID:27140119

  10. LOOKING ALONG A FUNNEL OF LIGHT FROM A HIDDEN BLACK HOLE

    Science.gov (United States)

    2002-01-01

    distant faint knots (beyond 1,000 light-years from the nucleus). This means they may have a different history, representing orbital motions of the undisturbed galaxy population, a previous epoch of different nuclear beam orientation, or some kind of backflow into the central cone regions. NGC 4151 is the brightest member of a class of galaxies called Seyferts, characterized by extraordinary energy sources in their centers. They are generally agreed to be similar to quasars, though not as bright. Because quasars are much more rare, there are none as close and as easy to study as NGC 4151. The generally accepted model for this nuclear activity is accretion by a massive black hole, hundreds of millions of times the mass of the Sun. Models predict a disk of trapped material spiraling into the hole, and jets are created along the axis of the disk, where some of the material is blasted out at high velocity rather than being captured by the black hole. The appearance of active nuclei depends how they lie with respect to our line of sight to them. If the beam is aimed at Earth astronomers can see the central 'black hole engine' directly. If the beam is sideways to the line of sight astronomers only see material illuminated by the beam. In the case of NGC 4151, Hubble is viewing along the edge of the beam.

  11. Light-trapping in solar cells by photonic nanostructures. The need for benchmarking and fabrication assessments

    Energy Technology Data Exchange (ETDEWEB)

    Lenzmann, F.O.; Salpakari, J.; Weeber, A.W.; Olson, C.L. [ECN Solar Energy, Petten (Netherlands)

    2013-07-15

    Light-trapping in solar cells by photonic nanostructures, e.g., nano-textured surfaces or metallic and nonmetallic nanoparticles is a research area of great promise. A large multitude of configurations is being explored and there is a rising need for (a set of) assessment elements that help to narrow in on the most viable ones. This paper discusses two examples: benchmark devices and the assessment of fabrication aspects for the nanostructures.

  12. Light trapping in thin-film solar cells measured by Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ledinský, Martin; Moulin, E.; Bugnon, G.; Ganzerová, Kristína; Vetushka, Aliaksi; Meillaud, F.; Fejfar, Antonín; Ballif, C.

    2014-01-01

    Roč. 105, č. 11 (2014), "111106-1"-"111106-4". ISSN 0003-6951 R&D Projects: GA ČR GA14-15357S; GA MŠk(CZ) LM2011026; GA MŠk 7E12029 EU Projects: European Commission(XE) 283501 - FAST TRACK Institutional support: RVO:68378271 Keywords : light trapping * microcrystalline silicon * thin film solar cell * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.302, year: 2014

  13. Fabrication of the replica templated from butterfly wing scales with complex light trapping structures

    Science.gov (United States)

    Han, Zhiwu; Li, Bo; Mu, Zhengzhi; Yang, Meng; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2015-11-01

    The polydimethylsiloxane (PDMS) positive replica templated twice from the excellent light trapping surface of butterfly Trogonoptera brookiana wing scales was fabricated by a simple and promising route. The exact SiO2 negative replica was fabricated by using a synthesis method combining a sol-gel process and subsequent selective etching. Afterwards, a vacuum-aided process was introduced to make PDMS gel fill into the SiO2 negative replica, and the PDMS gel was solidified in an oven. Then, the SiO2 negative replica was used as secondary template and the structures in its surface was transcribed onto the surface of PDMS. At last, the PDMS positive replica was obtained. After comparing the PDMS positive replica and the original bio-template in terms of morphology, dimensions and reflectance spectra and so on, it is evident that the excellent light trapping structures of butterfly wing scales were inherited by the PDMS positive replica faithfully. This bio-inspired route could facilitate the preparation of complex light trapping nanostructure surfaces without any assistance from other power-wasting and expensive nanofabrication technologies.

  14. Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks

    International Nuclear Information System (INIS)

    We present a joint theoretical and experimental characterization of the coherent population trapping (CPT) resonance excited on the D1 line of 87Rb atoms by bichromatic linearly polarized laser light. We observe high-contrast transmission resonances (up to ≅25%), which makes this excitation scheme promising for miniature all-optical atomic clock applications. We also demonstrate cancellation of the first-order light shift by proper choice of the frequencies and relative intensities of the two laser-field components. Our theoretical predictions are in good agreement with the experimental results.

  15. The effects of enhanced light trapping in tandem micromorph silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Krc, J.; Brecl, K.; Smole, F.; Topic, M. [Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, SI-1000 Ljubljana (Slovenia)

    2006-11-23

    Optical modelling is used to investigate the potential improvements in quantum efficiency and short-circuit current density of the top and bottom silicon cell in tandem micromorph configuration. The effects of enhanced haze parameter and different angular distribution functions of scattered light are presented and analysed. The role of an intermediate reflector (interlayer), located between the top and bottom cell, is studied from the optical point of view. The improvements in quantum efficiency of top cell are demonstrated for different types of interlayers. Potential thickness reductions due to enhanced light trapping in the solar cells are presented. (author)

  16. Trapped surfaces

    OpenAIRE

    Senovilla, José M. M.

    2011-01-01

    I review the definition and types of (closed) trapped surfaces. Surprising global properties are shown, such as their "clairvoyance" and the possibility that they enter into flat portions of the spacetime. Several results on the interplay of trapped surfaces with vector fields and with spatial hypersurfaces are presented. Applications to the quasi-local definition of Black Holes are discussed, with particular emphasis set onto marginally trapped tubes, trapping horizons and the boundary of th...

  17. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  18. Light-induced atomic desorption for loading a sodium magneto-optical trap

    International Nuclear Information System (INIS)

    We report studies of photon-stimulated desorption, also known as light-induced atomic desorption, of sodium atoms from a vacuum-cell glass surface used for loading a magneto-optical trap (MOT). Fluorescence detection was used to record the trapped atom number and the desorption rate. We observed a steep wavelength dependence of the desorption process above 2.6 eV photon energy, a result significant for estimations of sodium vapor density in the lunar atmosphere. Our data fit well to a simple model for the loading of the MOT dependent only on the sodium desorption rate and residual gas density. Up to 3.7x107 Na atoms were confined under ultrahigh-vacuum conditions, creating promising loading conditions for a vapor-cell-based atomic Bose-Einstein condensate of sodium.

  19. Trapped Surfaces

    Science.gov (United States)

    Senovilla, José M. M.

    2013-03-01

    I review the definition and types of (closed) trapped surfaces. Surprising global properties are pointed out, such as their "clairvoyance" and the possibility that they enter into flat portions of the spacetime. Several results on the interplay of trapped surfaces with vector fields and with spatial hypersurfaces are presented. Applications to the quasi-local definition of Black Holes are analyzed, with particular emphasis set onto marginally trapped tubes, trapping horizons and the boundary of the region with closed trapped surfaces. Finally, the core of a trapped region is introduced, and its importance briefly discussed.

  20. Trapped surfaces

    CERN Document Server

    Senovilla, José M M

    2011-01-01

    I review the definition and types of (closed) trapped surfaces. Surprising global properties are shown, such as their "clairvoyance" and the possibility that they enter into flat portions of the spacetime. Several results on the interplay of trapped surfaces with vector fields and with spatial hypersurfaces are presented. Applications to the quasi-local definition of Black Holes are discussed, with particular emphasis set onto marginally trapped tubes, trapping horizons and the boundary of the region with closed trapped surfaces. Finally, the core of a trapped region is introduced, and its importance discussed.

  1. Transparent polymer solar cells employing a layered light-trapping architecture

    Science.gov (United States)

    Betancur, Rafael; Romero-Gomez, Pablo; Martinez-Otero, Alberto; Elias, Xavier; Maymó, Marc; Martorell, Jordi

    2013-12-01

    Organic solar cells have unique properties that make them very attractive as a renewable energy source. Of particular interest are semi-transparent cells, which have the potential to be integrated into building façades yet not completely block light. However, making organic cells transparent limits the metal electrode thickness to a few nanometres, drastically reducing its reflectivity and the device photon-harvesting capacity. Here, we propose and implement an ad hoc path for light-harvesting recovery to bring the photon-to-charge conversion up to almost 80% that of its opaque counterpart. We report semi-transparent PTB7:PC71BM cells that exhibit 30% visible light transmission and 5.6% power conversion efficiency. Non-periodic photonic crystals are used to trap near-infrared and near-ultraviolet photons. By modifying the layer structure it is possible to tune the device colour without significantly altering cell performance.

  2. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    Science.gov (United States)

    Bozzola, A.; Kowalczewski, P.; Andreani, L. C.

    2014-03-01

    Thin-film solar cells based on silicon have emerged as an alternative to standard thick wafers technology, but they are less efficient, because of incomplete absorption of sunlight, and non-radiative recombinations. In this paper, we focus on the case of crystalline silicon (c-Si) devices, and we present a full analytic electro-optical model for p-n junction solar cells with Lambertian light trapping. This model is validated against numerical solutions of the drift-diffusion equations. We use this model to investigate the interplay between light trapping, and bulk and surface recombination. Special attention is paid to surface recombination processes, which become more important in thinner devices. These effects are further amplified due to the textures required for light trapping, which lead to increased surface area. We show that c-Si solar cells with thickness of a few microns can overcome 20% efficiency and outperform bulk ones when light trapping is implemented. The optimal device thickness in presence of light trapping, bulk and surface recombination, is quantified to be in the range of 10-80 μm, depending on the bulk quality. These results hold, provided the effective surface recombination is kept below a critical level of the order of 100 cm/s. We discuss the possibility of meeting this requirement, in the context of state-of-the-art techniques for light trapping and surface passivation. We show that our predictions are within the capability of present day silicon technologies.

  3. Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations

    International Nuclear Information System (INIS)

    Thin-film solar cells based on silicon have emerged as an alternative to standard thick wafers technology, but they are less efficient, because of incomplete absorption of sunlight, and non-radiative recombinations. In this paper, we focus on the case of crystalline silicon (c-Si) devices, and we present a full analytic electro-optical model for p-n junction solar cells with Lambertian light trapping. This model is validated against numerical solutions of the drift-diffusion equations. We use this model to investigate the interplay between light trapping, and bulk and surface recombination. Special attention is paid to surface recombination processes, which become more important in thinner devices. These effects are further amplified due to the textures required for light trapping, which lead to increased surface area. We show that c-Si solar cells with thickness of a few microns can overcome 20% efficiency and outperform bulk ones when light trapping is implemented. The optimal device thickness in presence of light trapping, bulk and surface recombination, is quantified to be in the range of 10–80 μm, depending on the bulk quality. These results hold, provided the effective surface recombination is kept below a critical level of the order of 100 cm/s. We discuss the possibility of meeting this requirement, in the context of state-of-the-art techniques for light trapping and surface passivation. We show that our predictions are within the capability of present day silicon technologies

  4. Development of a novel trap for the collection of black flies of the Simulium ochraceum complex.

    Directory of Open Access Journals (Sweden)

    Mario A Rodríguez-Pérez

    Full Text Available BACKGROUND: Human landing collections are currently the standard method for collecting onchocerciasis vectors in Africa and Latin America. As part of the efforts to develop a trap to replace human landing collections for the monitoring and surveillance of onchocerciasis transmission, comprehensive evaluations of several trap types were conducted to assess their ability to collect Simulium ochraceum sensu lato, one of the principal vectors of Onchocerca volvulus in Latin America. METHODOLOGY/PRINCIPAL FINDINGS: Diverse trap designs with numerous modifications and bait variations were evaluated for their abilities to collect S. Ochraceum s.l. females. These traps targeted mostly host seeking flies. A novel trap dubbed the "Esperanza window trap" showed particular promise over other designs. When baited with CO2 and BG-lure (a synthetic blend of human odor components a pair of Esperanza window traps collected numbers of S. Ochraceum s.l. females similar to those collected by a team of vector collectors. CONCLUSIONS/SIGNIFICANCE: The Esperanza window trap, when baited with chemical lures and CO2 can be used to collect epidemiologically significant numbers of Simulium ochraceum s.l., potentially serving as a replacement for human landing collections for evaluation of the transmission of O. volvulus.

  5. Plasmonic light trapping in an ultrathin photovoltaic layer with film-coupled metamaterial structures

    International Nuclear Information System (INIS)

    A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above the bandgap, but also practically serve as electrical contacts for photon-generated charge collection. The energy absorbed by the active layer is greatly enhanced with the help of the film-coupled metamaterial structure, resulting in significant improvement on the short-circuit current density by three times over a free-standing GaAs layer at the same thickness. The performance of the proposed light trapping structure is demonstrated to be little affected by the grating ridge width considering the geometric tolerance during fabrication. The optical absorption at oblique incidences also shows direction-insensitive behavior, which is highly desired for efficiently converting off-normal sunlight to electricity. The results would facilitate the development of next-generation ultrathin solar cells with lower cost and higher efficiency

  6. Light trapping in thin film solar cells using photonic engineering device concepts

    Science.gov (United States)

    Mutitu, James Gichuhi

    In this era of uncertainty concerning future energy solutions, strong reservations have arisen over the continued use and pursuit of fossil fuels and other conventional sources of energy. Moreover, there is currently a strong and global push for the implementation of stringent measures, in order to reduce the amount of green house gases emitted by every nation. As a consequence, there has emerged a sudden and frantic rush for new renewable energy solutions. In this world of renewable energy technologies is where we find photovoltaic (PV) technology today. However, as is, there are still many issues that need to be addressed before solar energy technologies become economically viable and available to all people, in every part of the world. This renewed interest in the development of solar electricity, has led to the advancement of new avenues that address the issues of cost and efficiency associated with PV. To this end, one of the prominent approaches being explored is thin film solar cell (TFSC) technology, which offers prospects of lower material costs and enables larger units of manufacture than conventional wafer based technology. However, TFSC technologies suffer from one major problem; they have lower efficiencies than conventional wafer based solar cell technologies. This lesser efficiency is based on a number of reasons, one of which is that with less material, there is less volume for the absorption of incident photons. This shortcoming leads to the need for optical light trapping; which is concerned with admitting the maximum amount of light into the solar cell and keeping the light within the structure for as long as possible. In this thesis, I present the fundamental scientific ideas, practice and methodology behind the application of photonic engineering device concepts to increase the light trapping capacity of thin film solar cells. In the introductory chapters, I develop the basic ideas behind light trapping in a sequential manner, where the effects

  7. Testing and optical modeling of novel concentrating solar receiver geometries to increase light trapping and effective solar absorptance

    Science.gov (United States)

    Yellowhair, Julius; Ho, Clifford K.; Ortega, Jesus D.; Christian, Joshua M.; Andraka, Charles E.

    2015-09-01

    Concentrating solar power receivers are comprised of panels of tubes arranged in a cylindrical or cubical shape on top of a tower. The tubes contain heat-transfer fluid that absorbs energy from the concentrated sunlight incident on the tubes. To increase the solar absorptance, black paint or a solar selective coating is applied to the surface of the tubes. However, these coatings degrade over time and must be reapplied, which reduces the system performance and increases costs. This paper presents an evaluation of novel receiver shapes and geometries that create a light-trapping effect, thereby increasing the effective solar absorptance and efficiency of the solar receiver. Several prototype shapes were fabricated from Inconel 718 and tested in Sandia's solar furnace at an irradiance of ~30 W/cm2. Photographic methods were used to capture the irradiance distribution on the receiver surfaces. The irradiance profiles were compared to results from raytracing models. The effective solar absorptance was also evaluated using the ray-tracing models. Results showed that relative to a flat plate, the new geometries could increase the effective solar absorptance from 86% to 92% for an intrinsic material absorptance of 86%, and from 60% to 73% for an intrinsic material absorptance of 60%.

  8. Light traps fail to estimate reliable malaria mosquito biting rates on Bioko Island, Equatorial Guinea

    Directory of Open Access Journals (Sweden)

    Overgaard Hans J

    2012-02-01

    Full Text Available Abstract Background The human biting rate (HBR, an important parameter for assessing malaria transmission and evaluating vector control interventions, is commonly estimated by human landing collections (HLC. Although intense efforts have been made to find alternative non-exposure mosquito collection methods, HLC remains the standard for providing reliable and consistent HBRs. The aim of this study was to assess the relationship between human landing and light trap collections (LTC, in an attempt to estimate operationally feasible conversion factors between the two. The study was conducted as part of the operational research component of the Bioko Island Malaria Control Project (BIMCP, Equatorial Guinea. Methods Malaria mosquitoes were collected indoors and outdoors by HLCs and LTCs in three villages on Bioko Island, Equatorial Guinea during five bimonthly collections in 2009. Indoor light traps were suspended adjacent to occupied long-lasting, insecticide-treated bed nets. Outdoor light traps were placed close to the outer wall under the roof of the collection house. Collected specimens were subjected to DNA extraction and diagnostic PCR to identify species within the Anopheles gambiae complex. Data were analysed by simple regression of log-transformed values and by Bayesian regression analysis. Results There was a poor correlation between the two collection methods. Results varied by location, venue, month, house, but also by the statistical method used. The more robust Bayesian analyses indicated non-linear relationships and relative sampling efficiencies being density dependent for the indoor collections, implying that straight-forward and simple conversion factors could not be calculated for any of the locations. Outdoor LTC:HLC relationships were weak, but could be estimated at 0.10 and 0.07 for each of two locations. Conclusions Light trap collections in combination with bed nets are not recommended as a reliable method to assess human

  9. Disorder-induced light trapping enhanced by pulse collisions in one-dimensional nonlinear photonic crystals

    CERN Document Server

    Novitsky, Denis

    2015-01-01

    We use numerical simulations to study interaction of co- and counter-propagating pulses in disordered multilayers with noninstantaneous Kerr nonlinearity. We propose a statistical argument for existence of the disorder-induced trapping which implies the dramatic rise of the probability of realization with low output energy in the structure with a certain level of disorder. This effect is much more pronounced in the case of two interacting pulses than in the single-pulse regime and does not occur in the strictly ordered system at the same intensity of the pulses. Therefore it cannot be explained simply as a result of increase in strength of nonlinear light-matter interaction.

  10. Light trap with reactive sun tracking for high-efficiency spectrum splitting photovoltaic conversion

    Science.gov (United States)

    Apostoleris, H.; Chiesa, M.; Stefancich, M.

    2015-05-01

    We present a design for a modification of a previously proposed light-trapping solar collector that enables reactive solar tracking by the incorporation of an optically activated transparency-switching material. The material forms an entry aperture whose position reactively varies to admit sunlight, which is focused to a point on the receiving surface by a lens or set of lenses, over a wide range of solar angles. An analytic model for assessing device performance based on statistical ray optics is described and confirmed by raytrace simulations on a model system.

  11. Light trapping abilities of silicon thin films measured by Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ledinský, Martin; Hakl, M.; Ondič, Lukáš; Ganzerová, K.; Vetushka, Aliaksi; Fejfar, Antonín; Kočka, Jan

    München: WIP Wirtschaft und Infrastruktur GmbH & Co Planungs KG, 2012 - (Nowak, S.), s. 2431-2433 ISBN 3-936338-28-0. [European Photovoltaic Solar Energy Conference and Exhibition (PVSEC) /17./. Frankfurt (DE), 24.09.2012-28.09.2012] R&D Projects: GA MŠk 7E10061; GA MŠk(CZ) LM2011026; GA MPO FR-TI2/736 EU Projects: European Commission(XE) 240826 - POLYSIMODE Institutional research plan: CEZ:AV0Z10100521 Keywords : light trapping * polycrystalline silicon (Si) * thin film solar cell * Raman spectoscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. Unexpected Attraction of Polarotactic Water-Leaving Insects to Matt Black Car Surfaces: Mattness of Paintwork Cannot Eliminate the Polarized Light Pollution of Black Cars

    OpenAIRE

    Miklos Blaho; Tamas Herczeg; Gyorgy Kriska; Adam Egri; Denes Szaz; Alexandra Farkas; Nikolett Tarjanyi; Laszlo Czinke; Andras Barta; Gabor Horvath

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt ...

  13. Control of light trapping in a large atomic system by a static magnetic field

    CERN Document Server

    Skipetrov, S E; Havey, M D

    2016-01-01

    We propose to control light trapping in a large ensemble of cold atoms by an external, static magnetic field. For an appropriate choice of frequency and polarization of the exciting pulse, the field is expected to speed up the fluorescence of a dilute atomic system but can significantly slow it down in a dense ensemble. The slowing down of fluorescence is due to the excitation of spatially localized collective atomic states that appear only under a strong magnetic field and have exponentially long lifetimes. The control of fluorescence by the magnetic field may be of interest for use in future quantum-information processing devices. It also paves a way towards the experimental observation of the disorder-induced localization of light in cold atomic systems.

  14. Efficient nanorod-based amorphous silicon solar cells with advanced light trapping

    International Nuclear Information System (INIS)

    We present a simple, low-cost, and scalable approach for the fabrication of efficient nanorod-based solar cells. Templates with arrays of self-assembled ZnO nanorods with tunable morphology are synthesized by chemical bath deposition using a low process temperature at 80 °C. The nanorod templates are conformally coated with hydrogenated amorphous silicon light absorber layers of 100 nm and 200 nm thickness. An initial efficiency of up to 9.0% is achieved for the optimized design. External quantum efficiency measurements on the nanorod cells show a substantial photocurrent enhancement both in the red and the blue parts of the solar spectrum. Key insights in the light trapping mechanisms in these arrays are obtained via a combination of three-dimensional finite-difference time-domain simulations, optical absorption, and external quantum efficiency measurements. Front surface patterns enhance the light incoupling in the blue, while rear side patterns lead to enhanced light trapping in the red. The red response in the nanorod cells is limited by absorption in the patterned Ag back contact. With these findings, we develop and experimentally realize a further advanced design with patterned front and back sides while keeping the Ag reflector flat, showing significantly enhanced scattering from the back reflector with reduced parasitic absorption in the Ag and thus higher photocurrent generation. Many of the findings in this work can serve to provide insights for further optimization of nanostructures for thin-film solar cells in a broad range of materials

  15. Efficient nanorod-based amorphous silicon solar cells with advanced light trapping

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Y. [Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, High Tech Campus, Building 21, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Plasma & Materials Processing, Eindhoven University of Technology (TUE), P.O. Box 513, 5600 MB Eindhoven (Netherlands); Lare, M. C. van; Polman, A. [Center for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Veldhuizen, L. W.; Schropp, R. E. I., E-mail: r.e.i.schropp@tue.nl [Department of Applied Physics, Plasma & Materials Processing, Eindhoven University of Technology (TUE), P.O. Box 513, 5600 MB Eindhoven (Netherlands); Rath, J. K. [Physics of Devices, Debye Institute for Nanomaterials Science, Utrecht University, High Tech Campus, Building 21, 5656 AE Eindhoven (Netherlands)

    2015-11-14

    We present a simple, low-cost, and scalable approach for the fabrication of efficient nanorod-based solar cells. Templates with arrays of self-assembled ZnO nanorods with tunable morphology are synthesized by chemical bath deposition using a low process temperature at 80 °C. The nanorod templates are conformally coated with hydrogenated amorphous silicon light absorber layers of 100 nm and 200 nm thickness. An initial efficiency of up to 9.0% is achieved for the optimized design. External quantum efficiency measurements on the nanorod cells show a substantial photocurrent enhancement both in the red and the blue parts of the solar spectrum. Key insights in the light trapping mechanisms in these arrays are obtained via a combination of three-dimensional finite-difference time-domain simulations, optical absorption, and external quantum efficiency measurements. Front surface patterns enhance the light incoupling in the blue, while rear side patterns lead to enhanced light trapping in the red. The red response in the nanorod cells is limited by absorption in the patterned Ag back contact. With these findings, we develop and experimentally realize a further advanced design with patterned front and back sides while keeping the Ag reflector flat, showing significantly enhanced scattering from the back reflector with reduced parasitic absorption in the Ag and thus higher photocurrent generation. Many of the findings in this work can serve to provide insights for further optimization of nanostructures for thin-film solar cells in a broad range of materials.

  16. Interlaced semi-ellipsoid nanostructures for improving light trapping of ultrathin crystalline silicon solar cells

    Science.gov (United States)

    Gao, Ge; Li, Juntao; Wang, Xuehua

    2015-10-01

    Ultrathin crystalline silicon (c-Si) solar cells, which are of several micrometers thick, have attracted much attention in recent years, since it can greatly save raw materials than the traditional ones. To enhance the absorption, as well as to improve the cell efficiency, of the ultrathin c-Si, light trapping nanostructures are used to increase the effective absorption length to close to the 4n2 of the materials thickness, which is determined by the Lambertian limit. Here, we propose a novel interlaced semi-ellipsoid nanostructures (ISENs) to improve the performance of ultrathin c-Si solar cells. In this structure, the large and small periods in x and y direction can improve the light trapping capability at long and short wavelengths respectively. Meanwhile, the graded refractive index of the surface can act as the antireflection coating. By optimizing the ISENs, the short circuit current density of 30.15mA/cm2 was achieved by simulations for a 2 μm thick c-Si solar cell with rx = 500 nm, ry = 200 nm, rz= 550 nm and without antireflection coating and metal back reflector. The absorption is close to 87% of the Lambertian limit with equivalent thickness. We expect this structure can be fabricated by low cost nanosphere lithography technology and used to improve the efficiency of the ultrathin c-Si solar cells.

  17. Spectral and directional dependence of light-trapping in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, Carolin

    2011-02-17

    This thesis investigates the directional and spectral dependence of light-incoupling and light-trapping in solar cells. The light-trapping does not notably change under increased angles of incidence. To enhance the incoupling at the front of the solar cell, the effects of a textured surface structure on the cover glass of the solar cell are investigated. The texture reduces the reflectance at the air-glass interface and, additionally, reduces the reflection losses originating at the interface between the glass and the transparent conductive oxide (TCO) as well as the TCO and the silicon (Si) absorber due to the randomization of light. On samples without a textured TCO/Si interface, the textured foil induces additional light-trapping in the photovoltaically active absorber material. This effect is not observed for samples with a textured TCO/Si interface. In this case, using tandem solar cells, a redistribution of light absorption in the top and bottom subcells is detected. The antireflective texture increases the short circuit current density in thin film silicon tandem solar cells by up to 1 mA/cm{sup 2}, and the conversion efficiency by up to 0.7 % absolute. The increase in the annual yield of solar cells is estimated to be up to 10 %. Further, the spectral dependence of the efficiency and annual yield of a tandem solar cell was investigated. The daily variation of the incident spectrum causes a change in the current matching of the serial connected subcells. Simulations determine the optimum subcell layer thicknesses of tandem solar cells. The thicknesses optimized in respect to the annual yield overlap in a wide range for both investigated locations with those for the AM1.5g standard spectrum. Though, a slight top limitation is favorable. Matching the short circuit currents of the subcells maximizes the overall current, but minimizes the fill factor. This thesis introduces a new definition for the matching condition of tandem solar cells. This definition

  18. The Effects on Visually Impaired Children of Viewing Fluorescent Stimuli under Black-Light Conditions.

    Science.gov (United States)

    LaGrow, S. J.; Leung, J-P.; Leung, S.; Yeung, P.

    1998-01-01

    This study compared effects of four visual conditions of stimuli and light on the visual performance of 30 children with low vision (divided into high, and low, visual-acuity groups). Orange stimuli viewed under black light resulted in the best overall performance, benefitted the low-acuity group more than the high-acuity group, and was the…

  19. OZONE UPTAKE OF DIFFERENT-SIZED BLACK CHERRY TREES IN HIGH- AND LOW-LIGHT ENVIRONMENTS

    Science.gov (United States)

    Ozone uptake rates of different-sized black cherry trees located in both high and low light environments were calculated from measurements of ambient ozone concentration and stomatal conductance. he objective of the study was to determine how tree size and light conditions may di...

  20. Characterization and FDTD simulation analysis on light trapping structures of amorphous silicon thin films by laser irradiation

    Science.gov (United States)

    Huang, Lu; Jin, Jing; Yuan, Zhijun; Yang, Weiguang; Wang, Linjun; Shi, Weimin; Zhou, Jun; Lou, Qihong

    2016-05-01

    The effect of laser energy density on the light-trapping structures of amorphous silicon (α-Si) thin films is studied both theoretically and experimentally. The thin films are irradiated by a frequency-doubled (λ = 532 nm) Nd:YAG pulsed nanosecond laser. An effective finite difference time domain (FDTD) model is built to find the optimized laser energy density (EL) for the light trapping structures of α-Si. Based on the simulation analysis, it shows the variation of reflection spectra with laser energy density. The optimized reflection spectra at EL = 1000 mJ/cm2 measured by UV-visible spectroscopy confirms to agree well with that corresponding to the depth to diameter ratio (h/D) in the FDTD simulation. The surface morphology characterization by optical microscope (OM) and scanning electron microscope (SEM) accords fairly well to of light-trapping modeling in the simulation.

  1. The Eye of the Storm: Light from the Inner Plunging Region of Black Hole Accretion Discs

    CERN Document Server

    Zhu, Yucong; Narayan, Ramesh; Kulkarni, Akshay K; Penna, Robert F; McClintock, Jeffrey E

    2012-01-01

    It is generally thought that the light coming from the inner plunging region of black hole accretion discs contributes negligibly to the disc's overall spectrum, i.e. the plunging fluid is swallowed by the black hole before it has time to radiate. In the standard disc model used to fit X-ray observations of accretion discs, the plunging region is assumed to be perfectly dark. However, numerical simulations that include the full physics of the magnetized flow predict that a small fraction of the disc's total luminosity emanates from this plunging region. In this work, we investigate the observational consequences of this neglected inner light. We compute radiative transfer based disc spectra that correspond to 3D general relativistic magnetohydrodynamic simulated discs (which produce light inside their plunging regions). In the context of black hole spin estimation, we find that this neglected inner light only has a modest effect (this bias is less than typical observational systematic errors). For rapidly spi...

  2. Trapping polarization of light in nonlinear optical fibers: An ideal Raman polarizer

    CERN Document Server

    Kozlov, Victor V; Ania-Castanon, Juan Diego; Wabnitz, Stefan

    2012-01-01

    The main subject of this contribution is the all-optical control over the state of polarization (SOP) of light, understood as the control over the SOP of a signal beam by the SOP of a pump beam. We will show how the possibility of such control arises naturally from a vectorial study of pump-probe Raman interactions in optical fibers. Most studies on the Raman effect in optical fibers assume a scalar model, which is only valid for high-PMD fibers (here, PMD stands for the polarization-mode dispersion). Modern technology enables manufacturing of low-PMD fibers, the description of which requires a full vectorial model. Within this model we gain full control over the SOP of the signal beam. In particular we show how the signal SOP is pulled towards and trapped by the pump SOP. The isotropic symmetry of the fiber is broken by the presence of the polarized pump. This trapping effect is used in experiments for the design of new nonlinear optical devices named Raman polarizers. Along with the property of improved sig...

  3. Diffractive optical devices produced by light-assisted trapping of nanoparticles.

    Science.gov (United States)

    Muñoz-Martínez, J F; Jubera, M; Matarrubia, J; García-Cabañes, A; Agulló-López, F; Carrascosa, M

    2016-01-15

    One- and two-dimensional diffractive optical devices have been fabricated by light-assisted trapping and patterning of nanoparticles. The method is based on the dielectrophoretic forces appearing in the vicinity of a photovoltaic crystal, such as Fe:LiNbO3, during or after illumination. By illumination with the appropriate light distribution, the nanoparticles are organized along patterns designed at will. One- and two-dimensional diffractive components have been achieved on X- and Z-cut Fe:LiNbO3 crystals, with their polar axes parallel and perpendicular to the crystal surface, respectively. Diffraction gratings with periods down to around a few micrometers have been produced using metal (Al, Ag) nanoparticles with radii in the range of 70-100 nm. Moreover, several 2D devices, such as Fresnel zone plates, have been also produced showing the potential of the method. The diffractive particle patterns remain stable when light is removed. A method to transfer the diffractive patterns to other nonphotovoltaic substrates, such as silica glass, has been also reported. PMID:26766732

  4. Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium

    CERN Document Server

    Yasuda, Masami; Inaba, Hajime; Nakajima, Yoshiaki; Hosaka, Kazumoto; Onae, Atsushi; Hong, Feng-Lei

    2010-01-01

    A frequency-stabilized light source emitting at 556 nm is realized by frequency-doubling a 1112-nm laser, which is phase-locked to a fiber-based optical frequency comb. The 1112-nm laser is either an ytterbium (Yb)-doped distributed feedback fiber laser or a master-slave laser system that uses an external cavity diode laser as a master laser. We have achieved the continuous frequency stabilization of the light source over a five-day period. With the light source, we have completed the second-stage magneto-optical trapping (MOT) of Yb atoms using the 1S0 - 3P1 intercombination transition. The temperature of the ultracold atoms in the MOT was 40 uK when measured using the time-of-flight method, and this is sufficient for loading the atoms into an optical lattice. The fiber-based frequency comb is shown to be a useful tool for controlling the laser frequency in cold-atom experiments.

  5. Printed light-trapping nanorelief Cu electrodes for full-solution-processed flexible organic solar cells

    Science.gov (United States)

    Li, Kan; Zhang, Yaokang; Zhen, Hongyu; Niu, Liyong; Fang, Xu; Liu, Zhike; Yan, Feng; Shen, Weidong; Li, Haifeng; Zheng, Zijian

    2016-07-01

    Light-trapping nanorelief metal electrodes have been proven to be an effective approach to improve the absorption performance of flexible organic solar cells (FOSCs). These nanorelief electrodes have been made by conventional vacuum deposition techniques, which are difficult to integrate with roll-to-roll fabrication processes. To address this challenge, this paper reports, for the first time, the fabrication of highly conductive nanorelief Cu electrodes on the flexible substrates through solution printing and polymer-assisted metal deposition at room temperature in the air. FOSCs made with these printed nanorelief Cu electrodes possess not only much improved power conversion efficiency, by 13.5%, but also significant enhancement in flexibility when compared with those made with flat Cu electrodes. Because of the low material and fabrication cost, these printed nanorelief Cu electrodes show great promise in roll-to-roll fabrication of FOSCs in the future.

  6. Nanoimprint-textured glass superstrates for light trapping in crystalline silicon thin-film solar cells

    Czech Academy of Sciences Publication Activity Database

    Köppel, G.; Preidel, V.; Mangold, S.; Rudigier-Voigt, E.; Hývl, Matěj; Fejfar, Antonín; Rech, B.; Becker, C.

    Amsterdam: Elsevier Ltd, 2015 - (Gordon, I.; Conibeer, G.; Krc, J.; Slaoui, A.; Niki, S.), s. 118-126. (84). ISSN 1876-6102. [EMRS 2015 Spring meeting – Symposium C on Advanced Inorganic Materials and Structures for Photovoltaics. Lille (FR), 11.05.2015-15.05.2015] R&D Projects: GA ČR GA13-25747S; GA ČR GA13-12386S; GA MŠk(CZ) LM2011026; GA ČR GB14-37427G Grant ostatní: AVČR(CZ) M100101216 Institutional support: RVO:68378271 Keywords : nanoimprint lithography * light trapping * polycrystalline silicon thin-film solar cells Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells

    International Nuclear Information System (INIS)

    Sub-wavelength photonic structures and nanoscale materials have the potential to greatly improve the efficiencies of solar cells by enabling maximum absorption of sunlight. Semiconductor heterostructures provide versatile opportunities for improving absorption of infrared radiation in photovoltaic devices, which accounts for half of the power in the solar spectrum. These ideas can be combined in quantum-well solar cells and related structures in which sub-wavelength metal and dielectric scattering elements are integrated for light trapping. Measurements and simulations of GaAs solar cells with less than one micron of active material demonstrate the benefits of incorporating In(Ga)As quantum-wells and quantum-dots to improve their performance. Simulations that incorporate a realistic model of absorption in quantum-wells show that the use of broadband photonic structures with such devices can substantially improve the benefit of incorporating heterostructures, enabling meaningful improvements in their performance

  8. Light trapping in an ensemble of point-like impurity centers in Fabry-Perot cavity

    CERN Document Server

    Kuraptsev, A S

    2016-01-01

    We report the development of quantum microscopic theory of quasi-resonant dipole-dipole interaction in the ensembles of impurity atoms imbedded into transparent dielectric and located into Fabry-Perot cavity. On the basis of the general approach we study the simultaneous influence of the cavity and resonant dipole-dipole interaction on the shape of the line of atomic transition as well as on light trapping in dense impurity ensembles. We analyze this influence depending on the size of the ensemble, its density, as well as on r.m.s. deviation of the transition frequency shifts caused by the symmetry disturbance of the internal fields of the dielectric medium. Obtained results are compared with the case when the cavity is absent. We show that the cavity can essentially modify cooperative polyatomic effects.

  9. Light Trapping in Thin Film Silicon Solar Cells on Plastic Substrates

    Science.gov (United States)

    de Jong, M. M.

    2013-01-01

    In the search for sustainable energy sources, solar energy can fulfil a large part of the growing demand. The biggest threshold for large-scale solar energy harvesting is the solar panel price. For drastic cost reductions, roll-to-roll fabrication of thin film silicon solar cells using plastic substrates can be a solution. In this thesis, we investigate the possibilities of depositing thin film solar cells directly onto cheap plastic substrates. Micro-textured glass and sheets, which have a wide range of applications, such as in green house, lighting etc, are applied in these solar cells for light trapping. Thin silicon films can be produced by decomposing silane gas, using a plasma process. In these types of processes, the temperature of the growing surface has a large influence on the quality of the grown films. Because plastic substrates limit the maximum tolerable substrate temperature, new methods have to be developed to produce device-grade silicon layers. At low temperature, polysilanes can form in the plasma, eventually forming dust particles, which can deteriorate device performance. By studying the spatially resolved optical emission from the plasma between the electrodes, we can identify whether we have a dusty plasma. Furthermore, we found an explanation for the temperature dependence of dust formation; Monitoring the formation of polysilanes as a function of temperature using a mass-spectrometer, we observed that the polymerization rate is indeed influenced by the substrate temperature. For solar cell substrate material, our choice was polycarbonate (PC), because of its low cost, its excellent transparency and its relatively high glass transition temperature of 130-140°C. At 130°C we searched for deposition recipes for device quality silicon, using a very high frequency plasma enhanced chemical deposition process. By diluting the feedstock silane with hydrogen gas, the silicon quality can be improved for amorphous silicon (a-Si), until we reach the

  10. Light trapping in ultrathin 25  μm exfoliated Si solar cells.

    Science.gov (United States)

    Hilali, Mohamed M; Saha, Sayan; Onyegam, Emmanuel; Rao, Rajesh; Mathew, Leo; Banerjee, Sanjay K

    2014-09-20

    The optical absorption in 25-μm-thick, single-crystal Si foils fabricated using a novel exfoliation technique for solar cells is studied and improved in this work. Various light-trapping and optical absorption enhancement schemes implemented show that it is possible to substantially narrow the gap in optical absorption loss between the 25 μm Si foils and industry-standard 180-μm-thick Si wafer solar cells. An improvement of absorption by 58% in the near-infrared (740-1200 nm) range is observed for the 25 μm monocrystalline Si substrates with the use of antireflective coating and texturing. The back reflectance of the metal foil that provides mechanical support to the ultrathin Si semiconductor-on-metal foils is extracted to be ∼51.5%, based on the reflectance matching with the simulated escape reflectance in the sub-bandgap region. The back reflectance is enhanced to ∼58% by incorporating an intermediate silicon nitride layer on the back between the Si and the metal. The incorporation of Al as an improved metal reflector on top of the silicon nitride at the backside of the solar cell results in a 5.8 times enhancement in optical path length as a consequence of the improved effective back reflectance of ∼95%. A thin Si foil solar cell with an unoptimized amorphous Si/crystalline Si heterojunction with intrinsic-thin-layer design with implementation of such light-trapping schemes shows an efficiency of 13.28% with a short-circuit current density (JSC) of 35.97  mA/cm2, which approaches the JSC of industrial wafer-based Si solar cells. PMID:25322089

  11. Glad nanostructured arrays with enhanced carrier collection and light trapping for photoconductive and photovoltaic device applications

    Science.gov (United States)

    Cansizoglu, Hilal

    Solar energy harvesting has been of great interest for researchers over the past 50 years. Main emphasis has been on developing high quality materials with low defect density and proper band gaps. However, high cost of bulk materials and insufficient light absorption in thin films led to utilization of semiconductor nanostructures in photovoltaics and photonics. Light trapping abilities of nanostructures can provide high optical absorption whereas core/shell nanostructured arrays can allow enhanced charge carrier collection. However, most of the nanofabrication methods that can produce uniform nanostructure geometries are limited in materials, dimensions, and not compatible with industrial production systems. Therefore, it is essential to develop innovative low-cost fabrication approaches that can address these issues. The primary goal of this project is to investigate light trapping and carrier collection properties of glancing angle deposited (GLAD) nanostructured arrays for high-efficiency, low-cost photoconductive and photovoltaic devices using characterization techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy and time resolved photocurrent measurements. Indium sulfide (In2S3) has been chosen as a model material system in this study. GLAD nanostructured arrays of vertical rods, screws, springs, zigzags and tilted rods were fabricated and characterized. A strong dependence of optical absorption on the shapes of nanostructures is observed from UV-vis-NIR spectroscopy. A simulation study using finite difference time domain (FDTD) shows that introducing 3D geometry results in diffuse scattering of light and leads to high optical absorption. Monte Carlo simulations were conducted to determine a simple and scalable fabrication technique for conformal and uniform shell coatings. The results suggest that an atomic flux with angular distribution, which can be

  12. Coupled optical-thermal-fluid and structural analyses of novel light-trapping tubular panels for concentrating solar power receivers

    Science.gov (United States)

    Ortega, Jesus D.; Christian, Joshua M.; Yellowhair, Julius E.; Ho, Clifford K.

    2015-09-01

    Traditional tubular receivers used in concentrating solar power are formed using tubes connected to manifolds to form panels; which in turn are arranged in cylindrical or rectangular shapes. Previous and current tubular receivers, such as the ones used in Solar One, Solar Two, and most recently the Ivanpah solar plants, have used a black paint coating to increase the solar absorptance of the receiver. However, these coatings degrade over time and must be reapplied, increasing the receiver maintenance cost. This paper presents the thermal efficiency evaluation of novel receiver tubular panels that have a higher effective solar absorptance due to a light-trapping effect created by arranging the tubes in each panel into unique geometric configurations. Similarly, the impact of the incidence angle on the effective solar absorptance and thermal efficiency is evaluated. The overarching goal of this work is to achieve effective solar absorptances of ~90% and thermal efficiencies above 85% without using an absorptance coating. Several panel geometries were initially proposed and were down-selected based on structural analyses considering the thermal and pressure loading requirements of molten salt and supercritical carbon-dioxide receivers. The effective solar absorptance of the chosen tube geometries and panel configurations were evaluated using the ray-tracing modeling capabilities of SolTrace. The thermal efficiency was then evaluated by coupling computational fluid dynamics with the ray-tracing results using ANSYS Fluent. Compared to the base case analysis (flat tubular panel), the novel tubular panels have shown an increase in effective solar absorptance and thermal efficiency by several percentage points.

  13. Long-wave UV light fluorescence for identification of black-pigmented Bacteroides spp.

    OpenAIRE

    Slots, J; Reynolds, H S

    1982-01-01

    Black-pigmented Bacteroides strains were grown on blood agar, and the colonies were evaluated for fluorescence from long-wave UV light. Most test strains of Bacteroides melaninogenicus subsp. intermedius exhibited a brilliant red fluorescence. B. melaninogenicus subsp. melaninogenicus fluoresced mostly red-orange. Bacteroides asaccharolyticus showed a yellow or red fluorescence. The intensity of the Bacteroides fluorescence weakened when the black pigment of the colonies developed. In contras...

  14. 3D micromanipulation at low numerical aperture with a single light beam: the focused-Bessel trap.

    Science.gov (United States)

    Ayala, Yareni A; Arzola, Alejandro V; Volke-Sepúlveda, Karen

    2016-02-01

    Full-three-dimensional (3D) manipulation of individual glass beads with radii in the range of 2-8 μm is experimentally demonstrated by using a single Bessel light beam focused through a low-numerical-aperture lens (NA=0.40). Although we have a weight-assisted trap with the beam propagating upward, we obtain a stable equilibrium position well away from the walls of the sample cell, and we are able to move the particle across the entire cell in three dimensions. A theoretical analysis for the optical field and trapping forces along the lateral and axial directions is presented for the focused-Bessel trap. This trap offers advantages for 3D manipulation, such as an extended working distance, a large field of view, and reduced aberrations. PMID:26907437

  15. Black lead molybdate nanoparticles: Facile synthesis and photocatalytic properties responding to visible light

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Black lead molybdate (PbMoO4) nanoparticles were first synthesized. • A novel energy band structure leads to better absorption of visible light. • Black PbMoO4 nanoparticles have better visible-light-responsive photocatalytic activities. • It has better applied prospects in conversion and utilization of solar energy. - Abstract: Black lead molybdate (PbMoO4) nanoparticles were first synthesized by the glycol–solvothermal method. Phase, morphology, crystal lattice, and specific surface of products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller nitrogen adsorption–desorption, respectively. Results revealed that the as-synthesized PbMoO4 nanoparticles are the scheelite-type tetragonal structure with 30–50 nm in size. Also, glycol played a dual function in present synthetic system: solvent and surface modification agent. Optical properties reveal glycol-modification on the surface of PbMoO4 nanoparticles can generate new energy level between the original conduction band and valence band, leading to better absorption of visible light and the black appearance. Photocatalytic experimental results demonstrate that black PbMoO4 nanoparticles synthesized in glycol medium have pretty visible-light-responsive photocatalytic degradation performance on methylene blue and phenol solution. Reaction mechanism investigations show that the excellent photocatalytic activities of black PbMoO4 nanoparticles derive from the novel energy band structure, smaller size, and larger specific surface area. Hence one can see that black PbMoO4 nanoparticles are a type of visible-light-responsive photocatalysts with excellent photocatalytic activities and potentially applied prospects in dye wastewater treatment and environmental protection. Meanwhile, the present work provides an innovative strategy for adjusting the energy band structure of wide band

  16. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    Directory of Open Access Journals (Sweden)

    Miklos Blaho

    Full Text Available The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt and species (mayflies, dolichopodids, tabanids. (ii Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries than matt black finish. (iii The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a matt car-paints are highly polarization reflecting, and (b these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  17. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    Science.gov (United States)

    Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles. PMID:25076137

  18. Evolution of light trapped by a soliton in a microstructured fiber

    CERN Document Server

    Hill, S; Leonhardt, U; Koenig, F

    2009-01-01

    We observe the dynamics of pulse trapping in a microstructured fiber. Few-cycle pulses create a system of two pulses: a Raman shifting soliton traps a pulse in the normal dispersion regime. When the soliton approaches a wavelength of zero group velocity dispersion the Raman shifting abruptly terminates and the trapped pulse is released. In particular, the trap is less than 4ps long and contains a 1ps pulse. After being released, this pulse asymmetrically expands to more than 10ps. Additionally, there is no disturbance of the trapping dynamics at high input pulse energies as the supercontinuum develops further.

  19. Shedding light on the black hole mass spectrum

    CERN Document Server

    Spera, Mario; Mapelli, Michela

    2016-01-01

    The mass spectrum of stellar black holes (BHs) is highly uncertain. Theoretical models of BH formation strongly depend on the efficiency of stellar winds of the progenitor star and on the supernova (SN) explosion mechanism. We discuss the BH mass spectrum we obtain using SEVN, a new public population-synthesis code that includes up-to-date stellar-wind prescriptions and several SN explosion models. Our models indicate a sub-solar metallicity environment for the progenitors of the gravitational wave source GW150914. We show that our models predict substantially larger BH masses (up to ~100 Msun) than other population synthesis codes, at low metallicity. In this proceeding, we also discuss the impact of pair-instability SNe on our previously published models.

  20. Numerical Analysis of Lamellar Gratings for Light-Trapping in Amorphous Silicon Solar Cells

    CERN Document Server

    Gablinger, David I

    2015-01-01

    In this paper, we calculate the material specific absorption accurately using a modal method by determining the integral of the Poynting vector around the boundary of a specific material. Given that the accuracy of our method is only determined by the number of modes included, the material specific absorption can be used as a quality measure for the light-trapping performance. We use this method to investigate metallic gratings and find nearly degenerate plasmons at the interface between metal and amorphous silicon (a-Si). The plasmons cause large undesired absorption in the metal part of a grating as used in a-Si cells. We explore ways to alleviate the parasitic absorption in the metal by appropriate choice of the geometry. Separating the diffraction grating from the back reflector helps, lining silver or aluminum with a dielectric helps as well. Gratings with depth > 60nm are preferred, and periods > 600nm are not useful. Maximum absorption in silicon can occur for less thick a-Si than is standard. We also ...

  1. Ultraviolet broadband light scattering for optically-trapped submicron-sized aerosol particles.

    Science.gov (United States)

    David, Grégory; Esat, Kıvanç; Ritsch, Irina; Signorell, Ruth

    2016-02-21

    We describe a broadband light scattering setup for the characterization of size and refractive index of single submicron-to-micron sized aerosol particles. Individual particles are isolated in air by a quadruple Bessel beam optical trap or a counter-propagating optical tweezer. The use of very broadband radiation in the wavelength range from 320 to 700 nm covering the ultraviolet region allows to size submicron particles. We show that a broad wavelength range is required to determine the particle radius and the refractive index with an uncertainty of several nanometers and ∼ 0.01, respectively. The smallest particle radius that can be accurately determined lies around 300 nm. Wavelength-dependent refractive index data over a broad range are obtained, including the ultraviolet region where corresponding data are rare. Four different applications are discussed: (1) the sizing of submicron polystyrene latex spheres, (2) the evaporation of binary glycerol water droplets, (3) hydration/dehydration cycling of aqueous potassium carbonate droplets, and (4) photochemical reactions of oleic acid droplets. PMID:26863396

  2. Engineering inverse woodpile and woodpile photonic crystal solar cells for light trapping.

    Science.gov (United States)

    Wang, Baomin; Chen, Kevin P; Leu, Paul W

    2016-06-01

    We demonstrate that inverse woodpile and woodpile photonic crystal nanocrystalline silicon structures may be engineered for light trapping in solar cells. We use finite-difference tim-domain simulations to show that the geometry of these photonic crystals may be varied such that absorption in the infrared, visible, and ultraviolet parts of the spectrum may all be improved. The short-circuit current density and ultimate efficiency are also improved. We found a 77.1% and 106% absorption enhancement in the optimized inverse woodpile and woodpile structures respectively, compared to a nanocrystalline silicon thin film of the equivalent thickness. The inverse woodpile structures may be approximated as a thin film with effective index of refraction, whereas the woodpile structures exhibit resonances from the coupling of TE and TM leaky modes in the stacked cylinders. Woodpile photonic crystal structures exhibit improved performance compared to inverse woodpile structures over a range of equivalent thicknesses and incidence angles. The performance of woodpile structures is also generally insensitive to the diameter, pitch and number of layers, whereas inverse woodpile structures are much more sensitive to morphology. PMID:27109121

  3. Engineering inverse woodpile and woodpile photonic crystal solar cells for light trapping

    Science.gov (United States)

    Wang, Baomin; Chen, Kevin P.; Leu, Paul W.

    2016-06-01

    We demonstrate that inverse woodpile and woodpile photonic crystal nanocrystalline silicon structures may be engineered for light trapping in solar cells. We use finite-difference tim-domain simulations to show that the geometry of these photonic crystals may be varied such that absorption in the infrared, visible, and ultraviolet parts of the spectrum may all be improved. The short-circuit current density and ultimate efficiency are also improved. We found a 77.1% and 106% absorption enhancement in the optimized inverse woodpile and woodpile structures respectively, compared to a nanocrystalline silicon thin film of the equivalent thickness. The inverse woodpile structures may be approximated as a thin film with effective index of refraction, whereas the woodpile structures exhibit resonances from the coupling of TE and TM leaky modes in the stacked cylinders. Woodpile photonic crystal structures exhibit improved performance compared to inverse woodpile structures over a range of equivalent thicknesses and incidence angles. The performance of woodpile structures is also generally insensitive to the diameter, pitch and number of layers, whereas inverse woodpile structures are much more sensitive to morphology.

  4. Comparative investigation of 39K and 40K trap loss rates alternative loss channel at low light intensities

    CERN Document Server

    Modugno, G; Inguscio, M; Dos Santos, M S; Telles, G D; Marcassa, L G; Bagnato, V S

    2001-01-01

    We report a comparative investigation of trap loss rates in a magneto-optical trap for two potassium isotopes, 39K and 40K, as a function of trap light intensity. The isotopes present a quite similar behavior for the loss rates at high intensities, and a sudden increase of the loss rates at low intensities is present in both cases. While for 39K such increase can be explained assuming that the major contribution to the losses comes from Hyperfine Changing Collisions, a different loss mechanism must be considered for 40K, which has an inverted ground state hyperfine structure. The experimental results of both isotopes are well reproduced by an alternative model based on radiative escape as the dominant loss mechanism.

  5. Optical Trapping-Formed Colloidal Assembly with Horns Extended to the Outside of a Focus through Light Propagation.

    Science.gov (United States)

    Kudo, Tetsuhiro; Wang, Shun-Fa; Yuyama, Ken-Ichi; Masuhara, Hiroshi

    2016-05-11

    We report optical trapping and assembling of colloidal particles at a glass/solution interface with a tightly focused laser beam of high intensity. It is generally believed that the particles are gathered only in an irradiated area where optical force is exerted on the particles by laser beam. Here we demonstrate that, the propagation of trapping laser from the focus to the outside of the formed assembly leads to expansion of the assembly much larger than the irradiated area with sticking out rows of linearly aligned particles like horns. The shape of the assembly, its structure, and the number of horns can be controlled by laser polarization. Optical trapping study utilizing the light propagation will open a new avenue for assembling and crystallizing quantum dots, metal nanoparticles, molecular clusters, proteins, and DNA. PMID:27104966

  6. Improving light trapping and conversion efficiency of amorphous silicon solar cell by modified and randomly distributed ZnO nanorods

    International Nuclear Information System (INIS)

    Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their applications in enhancing light trapping. Enhanced light trapping can result in more effective absorption in solar cells, thus leading to higher short-circuit current density and conversion efficiency. We develop randomly distributed and modified ZnO nanorods, which are designed and fabricated by the following processes: the deposition of a ZnO seed layer on substrate with sputtering, the wet chemical etching of the seed layer to form isolated islands for nanorod growth, the chemical bath deposition of the ZnO nanorods, and the sputtering deposition of a thin Al-doped ZnO (ZnO:Al) layer to improve the ZnO/Si interface. Solar cells employing the modified ZnO nanorod substrate show a considerable increase in solar energy conversion efficiency. (condensed matter: structural, mechanical, and thermal properties)

  7. THE BLACK HOLE MASS, STELLAR MASS-TO-LIGHT RATIO, AND DARK HALO IN M87

    International Nuclear Information System (INIS)

    We model the dynamical structure of M87 (NGC4486) using high spatial resolution long-slit observations of stellar light in the central regions, two-dimensional stellar light kinematics out to half of the effective radius, and globular cluster velocities out to eight effective radii. We simultaneously fit for four parameters: black hole mass, dark halo core radius, dark halo circular velocity, and stellar mass-to-light (M/L) ratio. We find a black hole mass of 6.4(±0.5) x 109 M sun (the uncertainty is 68% confidence marginalized over the other parameters). The stellar M/LV = 6.3 ± 0.8. The best-fit dark halo core radius is 14 ± 2 kpc, assuming a cored logarithmic potential. The best-fit dark halo circular velocity is 715 ± 15 km s-1. Our black hole mass is over a factor of 2 larger than previous stellar dynamical measures, and our derived stellar M/L ratio is two times lower than previous dynamical measures. When we do not include a dark halo, we measure a black hole mass and stellar M/L ratio that is consistent with previous measures, implying that the major difference is in the model assumptions. The stellar M/L ratio from our models is very similar to that derived from stellar population models of M87. The reason for the difference in the black hole mass is because we allow the M/L ratio to change with radius. The dark halo is degenerate with the stellar M/L ratio, which is subsequently degenerate with the black hole mass. We argue that dynamical models of galaxies that do not include the contribution from a dark halo may produce a biased result for the black hole mass. This bias is especially large for a galaxy with a shallow light profile such as M87, and may not be as severe in galaxies with steeper light profiles unless they have a large stellar population change with radius.

  8. Efficacy of UV-Pit-light traps for discerning micro-habitat-specific beetle and ant species related with different oil palm age stands and tropical annual seasons for accurate ecology and diversity interpretations

    Science.gov (United States)

    Ahmad Bukhary, A. K.; Ruslan, M. Y.; Mohd. Fauzi, M. M.; Nicholas, S.; Muhamad Fahmi, M. H.; Izfa Riza, H.; Idris, A. B.

    2015-09-01

    A newly innovated and efficient UV-Pit-light Trap is described and the results of the experiments on its efficacy that were carried out within different oil palm age stands of the year 2013 were evaluated and compared with previous study year of 2010, with out the implementation of the UV-Pit-light Trap. In 2013 the UV-Pit-light Traps, the Malaise Traps, and the Pit-fall Traps were employed, while in 2010, the conventional canopy-height UV-Light Traps, Malaise Traps, and the Pit-fall Traps were employed. The UV-Pit-light traps caught more beetle and ant families, morpho-species, and individuals per species compared with the passive Pit-fall traps. The UV-Pit-light Trap targets different subsets of the oil palm beetles and ants' communities, specifying on epigaeic-related micro-habitats, with different oil palm age stands have different compositions of micro-habitats. The UV-Pit-light Traps have the dual quality for satisfying both the biological and statistical data requirements and evaluations. There were no significant difference between the UV-Pit-light Traps and the passive Pit-fall Traps, while the trapping difference with the Malaise traps for different seasons of the year 2013. The UV-Pit-light Traps and the Malaise Traps were complementary to each other, detecting the activities of beetles and ants around the epigaeic-related micro-habitats or having active flight activities respectively according to annual seasons. The UV-Pit-light Trap is an oil-palm specific type of passive trapping system, focusing on the insect species dwelling the upper-ground/epigaeic micro-habitats.

  9. Light bending in Reissner-Nordstrom-de Sitter black hole by Rindler-Ishak method

    Science.gov (United States)

    Heydari-Fard, M.; Mojahed, S.; Rokni, S. Y.

    2014-05-01

    We investigate the influence of the cosmological constant, Λ, on the bending of light by a charged black hole in a de Sitter spacetime. Despite vanishing of the cosmological constant in the second order null geodesic equation, considering the method introduced by Rindler and Ishak (2007), we obtain an expression for the deflection angle, consistent with previous results for Schwarzschild, Schwarzschild-de Sitter (SdS), and Reissner-Nordstrom (RN) spacetimes.

  10. Light-trapping optimization in wet-etched silicon photonic crystal solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Eyderman, Sergey, E-mail: sergey.eyderman@utoronto.ca [Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7 (Canada); John, Sajeev [Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7 (Canada); Department of Physics, King Abdul-Aziz University, Jeddah (Saudi Arabia); Hafez, M.; Al-Ameer, S. S.; Al-Harby, T. S.; Al-Hadeethi, Y. [Department of Physics, King Abdul-Aziz University, Jeddah (Saudi Arabia); Bouwes, D. M. [iX-factory GmbH, Konrad Adenauer–Allee 11, 44263 Dortmund (Germany)

    2015-07-14

    We demonstrate, by numerical solution of Maxwell's equations, near-perfect solar light-trapping and absorption over the 300–1100 nm wavelength band in silicon photonic crystal (PhC) architectures, amenable to fabrication by wet-etching and requiring less than 10 μm (equivalent bulk thickness) of crystalline silicon. These PhC's consist of square lattices of inverted pyramids with sides comprised of various (111) silicon facets and pyramid center-to-center spacing in the range of 1.3–2.5 μm. For a wet-etched slab with overall height H = 10 μm and lattice constant a = 2.5 μm, we find a maximum achievable photo-current density (MAPD) of 42.5 mA/cm{sup 2}, falling not far from 43.5 mA/cm{sup 2}, corresponding to 100% solar absorption in the range of 300–1100 nm. We also demonstrate a MAPD of 37.8 mA/cm{sup 2} for a thinner silicon PhC slab of overall height H = 5 μm and lattice constant a = 1.9 μm. When H is further reduced to 3 μm, the optimal lattice constant for inverted pyramids reduces to a = 1.3 μm and provides the MAPD of 35.5 mA/cm{sup 2}. These wet-etched structures require more than double the volume of silicon, in comparison to the overall mathematically optimum PhC structure (consisting of slanted conical pores), to achieve the same degree of solar absorption. It is suggested these 3–10 μm thick structures are valuable alternatives to currently utilized 300 μm-thick textured solar cells and are suitable for large-scale fabrication by wet-etching.

  11. Light-trapping optimization in wet-etched silicon photonic crystal solar cells

    International Nuclear Information System (INIS)

    We demonstrate, by numerical solution of Maxwell's equations, near-perfect solar light-trapping and absorption over the 300–1100 nm wavelength band in silicon photonic crystal (PhC) architectures, amenable to fabrication by wet-etching and requiring less than 10 μm (equivalent bulk thickness) of crystalline silicon. These PhC's consist of square lattices of inverted pyramids with sides comprised of various (111) silicon facets and pyramid center-to-center spacing in the range of 1.3–2.5 μm. For a wet-etched slab with overall height H = 10 μm and lattice constant a = 2.5 μm, we find a maximum achievable photo-current density (MAPD) of 42.5 mA/cm2, falling not far from 43.5 mA/cm2, corresponding to 100% solar absorption in the range of 300–1100 nm. We also demonstrate a MAPD of 37.8 mA/cm2 for a thinner silicon PhC slab of overall height H = 5 μm and lattice constant a = 1.9 μm. When H is further reduced to 3 μm, the optimal lattice constant for inverted pyramids reduces to a = 1.3 μm and provides the MAPD of 35.5 mA/cm2. These wet-etched structures require more than double the volume of silicon, in comparison to the overall mathematically optimum PhC structure (consisting of slanted conical pores), to achieve the same degree of solar absorption. It is suggested these 3–10 μm thick structures are valuable alternatives to currently utilized 300 μm-thick textured solar cells and are suitable for large-scale fabrication by wet-etching

  12. Testing dark energy and light particles via black hole evaporation at colliders

    International Nuclear Information System (INIS)

    We show that collider experiments have the potential to exclude a light scalar field as well as generic models of modified gravity as dark energy candidates. Our mechanism uses the spectrum radiated by black holes and can equally well be applied to determine the number of light degrees of freedom. We obtain the grey body factors for massive scalar particles and calculate the total emissivity. While the Large Hadron Collider (LHC) may not get to the desired accuracy, the measurement is within reach of next generation colliders. (orig.)

  13. INFLUENCE OF FILM STRUCTURE AND LIGHT ON CHARGE TRAPPING AND DISSIPATION DYNAMICS IN SPUN-CAST ORGANIC THIN-FILM TRANSISTORS MEASURED BY SCANNING KELVIN PROBE MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Teague, L.; Moth, M.; Anthony, J.

    2012-05-03

    Herein, time-dependent scanning Kelvin probe microscopy of solution processed organic thin film transistors (OTFTs) reveals a correlation between film microstructure and OTFT device performance with the location of trapped charge within the device channel. The accumulation of the observed trapped charge is concurrent with the decrease in I{sub SD} during operation (V{sub G}=-40 V, V{sub SD}= -10 V). We discuss the charge trapping and dissipation dynamics as they relate to the film structure and show that application of light quickly dissipates the observed trapped charge.

  14. Local relaxation and light-cone-like propagation of correlations in a trapped one-dimensional Bose gas

    CERN Document Server

    Geiger, Remi; Mazets, Igor; Schmiedmayer, Jörg

    2013-01-01

    We describe the relaxation dynamics of a coherently split one-dimensional (1D) Bose gas in the harmonic approximation. A dephased, prethermalized state emerges in a light-cone-like evolution which is connected to the spreading of correlations with a characteristic velocity. In our description we put special emphasis on the influence of the longitudinal trapping potential and the finite size of the system, both of which are highly relevant in experiments. In particular, we quantify their influence on the phase correlation properties and the characteristic velocity with which the prethermalized state is established. Finally, we show that the trapping potential has an important effect on the recurrences of coherence which are expected to appear in a finite size system.

  15. Heavily Doped, Charge-Balanced Fluorescent Organic Light-Emitting Diodes from Direct Charge Trapping of Dopants in Emission Layer.

    Science.gov (United States)

    Rhee, Sang Ho; Kim, Sung Hyun; Kim, Hwang Sik; Shin, Jun Young; Bastola, Jeeban; Ryu, Seung Yoon

    2015-08-01

    We studied the effect of direct charge trapping at different doping concentrations on the device performance in tris(8-hydroxyquinoline) aluminum (Alq3):10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T) as a host-dopant system of a fluorescent organic light-emitting diode. With increasing C545T doping concentration, trap sites could lead to the promotion of hole injection and the suppression of electron injection due to the electron-transport character of Alq3 host for each carriers, as confirmed by hole- and electron-only devices. Direct charge injection of hole carriers from the hole transport layer into C545T dopants and the charge trapping of electron carriers are the dominant processes to improve the charge balance and the corresponding efficiency. The shift of the electroluminescence (EL) spectra from 519 nm to 530 nm was confirmed the exciton formation route from Förster energy transfer of host-dopant system to direct charge trapping of dopant-only emitting systems. Variation in the doping concentration dictates the role of the dopant in the fluorescent host-dopant system. Even though concentration quenching in fluorescent dopants is unavoidable, relatively heavy doping is necessary to improve the charge balance and efficiency and to investigate the relationship between direct charge trapping and device performance. Heavy doping at a doping ratio of 6% also generates heavy exciton quenching and excimer exciton, because of the excitons being close enough and dipole-dipole interactions. The optimum device performance was achieved with a 4%-doped device, retaining the high efficiency of 12.5 cd/A from 100 cd/m(2) up to 15,000 cd/m(2). PMID:26151550

  16. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2006-01-01

    Full Text Available Although the definition and measurement techniques for atmospheric 'black carbon' ('BC' or 'elemental carbon'' ('EC' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ('brown carbon, Cbrown' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes from (1 spectral aerosol light absorption measurements near specific combustion sources, (2 observations of spectral properties of water extracts of continental aerosol, (3 laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4 indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of 'BC' and 'EC' over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of Cbrown is high relative to that of soot carbon. Chemical measurements to determine 'EC' are biased by the refractory nature of Cbrown as well as by complex matrix interferences. Optical measurements of 'BC' suffer from a number of problems: (1 many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2 there is no unique conversion factor between light absorption and 'EC' or 'BC' concentration in ambient aerosols, and (3 the difference in spectral properties between the different types of LAC, as well as the chemical complexity of Cbrown, lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our

  17. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2006-05-01

    Full Text Available Although the definition and measurement methods of atmospheric ''black carbon'' (''BC'' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black (''brown carbon, Cbrown'' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes directly from aerosol absorption measurements near specific combustion sources, from observations of spectral properties of water extracts of continental aerosol, from laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that these species may severely bias measurements of ''BC'' and ''EC'' over vast parts of the troposphere, where mass concentration of Cbrown is high relative to that of combustion soot. We also imply that due to the strongly skewed absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. The possible consequences of these effects on our understanding of tropospheric processes are discussed.

  18. General method for simultaneous optimization of light trapping and carrier collection in an ultra-thin film organic photovoltaic cell

    International Nuclear Information System (INIS)

    We describe a general method for maximizing the short-circuit current in thin planar organic photovoltaic (OPV) heterojunction cells by simultaneous optimization of light absorption and carrier collection. Based on the experimentally obtained complex refractive indices of the OPV materials and the thickness-dependence of the internal quantum efficiency of the OPV active layer, we analyze the potential benefits of light trapping strategies for maximizing the overall power conversion efficiency of the cell. This approach provides a general strategy for optimizing the power conversion efficiency of a wide range of OPV structures. In particular, as an experimental trial system, the approach is applied here to a ultra-thin film solar cell with a SubPc/C60 photovoltaic structure. Using a patterned indium tin oxide (ITO) top contact, the numerically optimized designs achieve short-circuit currents of 0.790 and 0.980 mA/cm2 for 30 nm and 45 nm SubPc/C60 heterojunction layer thicknesses, respectively. These values correspond to a power conversion efficiency enhancement of 78% for the 30 nm thick cell, but only of 32% for a 45 nm thick cell, for which the overall photocurrent is actually higher. Applied to other material systems, the general optimization method can elucidate if light trapping strategies can improve a given cell architecture.

  19. LFN, QPO and fractal dimension of X-ray light curves from black hole binaries

    Science.gov (United States)

    Prosvetov, Art; Grebenev, Sergey

    The origin of the low frequency noise (LFN) and quasi-periodic oscillations (QPO) observed in X-ray flux of Galactic black hole binaries is still not recognized in spite of multiple studies and attempts to model this phenomenon. There are known correlations between the QPO frequency, X-ray power density, X-ray flux and spectral state of the system, but there is no model that can do these dependences understandable. For the low frequency (~1 Hz) QPO we still have no even an idea capable to explain their production and don't know even what part of an accretion disc is responsible for them. Here we attempted to measure the fractal dimension of X-ray light curves of several black hole X-ray binaries and to study its correlation with the frequency of quasi periodic oscillations observed in their X-ray light-curves. The fractal dimension is a measure of the space-filling capacity of the light curves' profile. To measure the fractal dimension we used R/S method, which is fast enough and has good reputation in financial analytic and materials sciences. We found that if no QPO were observed in X-ray flux from the particular source, the fractal dimension is equal to the unique value which is independent on the source, its luminosity or its spectral state. On the other hand if QPO were detected in the flux, the fractal dimension deviated from its usual value. Also, we found a clear correlation between the QPO frequency and the fractal dimension of the emission. The relationship between these two parameters is solid but nonlinear. We believe that the analysis of X-ray light curves of black hole binaries using the fractal dimension has a good scientific potential and may provide an addition information on the geometry of accretion flow and fundamental physical parameters of the system.

  20. Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps

    Science.gov (United States)

    Belgio, Erica; Kapitonova, Ekaterina; Chmeliov, Jevgenij; Duffy, Christopher D. P.; Ungerer, Petra; Valkunas, Leonas; Ruban, Alexander V.

    2014-07-01

    The light-harvesting antenna of higher plant photosystem II has an intrinsic capability for self-defence against intense sunlight. The thermal dissipation of excess energy can be measured as the non-photochemical quenching of chlorophyll fluorescence. It has recently been proposed that the transition between the light-harvesting and self-defensive modes is associated with a reorganization of light-harvesting complexes. Here we show that despite structural changes, the photosystem II cross-section does not decrease. Our study reveals that the efficiency of energy trapping by the non-photochemical quencher(s) is lower than the efficiency of energy capture by the reaction centres. Consequently, the photoprotective mechanism works effectively for closed rather than open centres. This type of defence preserves the exceptional efficiency of electron transport in a broad range of light intensities, simultaneously ensuring high photosynthetic productivity and, under hazardous light conditions, sufficient photoprotection for both the reaction centre and the light-harvesting pigments of the antenna.

  1. Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function

    OpenAIRE

    Chung, H.; Jung, K. Y.; Tee, X. T.; Bermel, Peter

    2014-01-01

    Amorphous silicon/crystalline silicon (a-Si/c-Si) micromorph tandem cells, with best confirmed efficiency of 12.3%, have yet to fully approach their theoretical performance limits. In this work, we consider a strategy for improving the light trapping and charge collection of a-Si/c-Si micromorph tandem cells using random texturing with adjustable short-range correlations and long-range periodicity. In order to consider the full-spectrum absorption of a-Si and c-Si, a novel dispersion model kn...

  2. Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption

    OpenAIRE

    Tan, H; Sivec, L.; Yan, B.; Santbergen, R.; Zeman, M.; Smets, A.H.M.

    2013-01-01

    We show experimentally that the photocurrent of thin-film hydrogenated microcrystalline silicon (μc-Si:H) solar cells can be enhanced by 4.5 mA/cm2 with a plasmonic back reflector (BR). The light trapping performance is improved using plasmonic BR with broader angular scattering and lower parasitic absorption loss through tuning the size of silver nanoparticles. The μc-Si:H solar cells deposited on the improved plasmonic BR demonstrate a high photocurrent of 26.3 mA/cm2 which is comparable to...

  3. An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms.

    Science.gov (United States)

    Füzesi, F; Jornod, A; Thomann, P; Plimmer, M D; Dudle, G; Moser, R; Sache, L; Bleuler, H

    2007-10-01

    This article describes the design, characterization, and performance of an electrostatic glass actuator adapted to an ultrahigh vacuum environment (10(-8) mbar). The three-phase rotary motor is used to drive a turbine that acts as a velocity-selective light trap for a slow continuous beam of laser-cooled atoms. This simple, compact, and nonmagnetic device should find applications in the realm of time and frequency metrology, as well as in other areas of atomic, molecular physics and elsewhere. PMID:17979408

  4. Black-body radiation effects and light shifts in atomic frequency standards

    International Nuclear Information System (INIS)

    A general method is presented for calculating the higher-order terms of series in powers of the black-body radiation field for the Stark-state wavefunctions, dipole transition matrix elements and corresponding frequency shifts of hyperfine splitting in the ground states for Cs and Rb atoms. A numerical method for calculating the light shifts in Sr atoms is described. It is based on the Green function method for summation over all intermediate states and exact Dirac-Fock wavefunctions for the resonant transitions to the first excited s-, p- and d-states. By comparing the calculated Stark shift with results of measurements employing atomic frequency standards, the black-body radiation effects on the ground state are analysed

  5. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk;

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping...

  6. Hidden in the light: Magnetically induced afterglow from trapped chameleon fields

    Science.gov (United States)

    Gies, Holger; Mota, David F.; Shaw, Douglas J.

    2008-01-01

    We propose an afterglow phenomenon as a unique trace of chameleon fields in optical experiments. The vacuum interaction of a laser pulse with a magnetic field can lead to a production and subsequent trapping of chameleons in the vacuum chamber, owing to their mass dependence on the ambient matter density. Magnetically induced reconversion of the trapped chameleons into photons creates an afterglow over macroscopic timescales that can conveniently be searched for by current optical experiments. We show that the chameleon parameter range accessible to available laboratory technology is comparable to scales familiar from astrophysical stellar energy-loss arguments. We analyze quantitatively the afterglow properties for various experimental scenarios and discuss the role of potential background and systematic effects. We conclude that afterglow searches represent an ideal tool to aim at the production and detection of cosmologically relevant scalar fields in the laboratory.

  7. Optical pumping of deep traps in AlGaN/GaN-on-Si HEMTs using an on-chip Schottky-on-heterojunction light-emitting diode

    International Nuclear Information System (INIS)

    In this work, by using an on-chip integrated Schottky-on-heterojunction light-emitting diode (SoH-LED) which is seamlessly integrated with the AlGaN/GaN high electron mobility transistor (HEMT), we studied the effect of on-chip light illumination on the de-trapping processes of electrons from both surface and bulk traps. Surface trapping was generated by applying OFF-state drain bias stress, while bulk trapping was generated by applying positive substrate bias stress. The de-trapping processes of surface and/or bulk traps were monitored by measuring the recovery of dynamic on-resistance Ron and/or threshold voltage Vth of the HEMT. The results show that the recovery processes of both dynamic Ron and threshold voltage Vth of the HEMT can be accelerated by the on-chip SoH-LED light illumination, demonstrating the potentiality of on-chip hybrid opto-HEMTs to minimize the influences of traps during dynamic operation of AlGaN/GaN power HEMTs

  8. 黑箱法应用于蚊虫监测的效果研究%Mosquito-trapping effects of black box method for mosquito surveillance

    Institute of Scientific and Technical Information of China (English)

    任文军; 熊建菁; 冷培恩; 刘洪霞; 黄瑾; 陈天民; 陈仁朝; 张锦生

    2012-01-01

    Objective To compare the mosquito-trapping effects of black boxes with different opening directions, and to explore the operation guidelines for black box method in mosquito surveillance. Methods The black boxes with different opening directions were used, and 24 h night-and-day observation method was adopted. Results There were significant differences in trapped mosquito number among the black boxes with different opening directions (f2=44.82, P0.05), but there was significant difference in mosquito sex (f2= 121.13, P<0.05). Conclusion The black box toward the west is the best for trapping mosquitoes, and can be used for regular mosquito surveillance and the evaluation of mosquito control in special areas.%目的 比较不同开口方向放置黑箱的捕蚊效果,探讨蚊虫黑箱法的操作规范.方法 不同开口朝向放置法以及24h昼夜观察法.结果 不同开口朝向黑箱的捕蚊数差异有统计学意义(f2=44.82,P<0.05),开口朝西的黑箱捕蚊最多;24 h昼夜观察捕获结果表明,蚊虫入箱高峰主要出现在清晨(05:00--07:00)和傍晚(18:00--20:00),各个时段均以开口朝西的黑箱捕获蚊虫最多,且差异有统计学意义(f2=259.56,P<0.05);人工小时法和黑箱法成蚊季节消长趋势一致,具有相关性和一致性(r=0.696,P<0.01);黑箱法和人工小时法监测的蚊种构成差异无统计学意义(f2=4.54,P>0.05),蚊虫性别比差异有统计学意义(f2=121.13,P<0.05).结论 黑箱开口朝西具有较好的诱捕效果,可适用于常规蚊虫监测以及特定场所蚊虫控制评估.

  9. Tandem photonic-crystal thin films surpassing Lambertian light-trapping limit over broad bandwidth and angular range

    CERN Document Server

    Oskooi, Ardavan; Noda, Susumu

    2013-01-01

    The maximum absorption of solar radiation over the broadest range of frequencies and incident angles using the thinnest material possible has important applications for renewable-energy generation. Complete random texturing of an optically-thick film's surface to increase the path length of scattered light rays, first proposed nearly thirty years ago, has thus far remained the most effective approach for photon absorption over the widest set of conditions. Recent thin-film nanostructured designs involving resonant wave effects of photons have explored the possibility of superior performance though as of yet no proposal satisfying the dual requirements of enhanced and robust absorption over a large fraction of the solar spectrum has been made. Here using recent advances in computational electrodynamics we describe a general strategy for the design of a silicon thin film applicable to photovoltaic cells based on a quasi-resonant approach to light trapping where two partially-disordered photonic-crystal slabs, s...

  10. The influence of light on small hive beetle (Aethina tumida) behavior and trap capture

    OpenAIRE

    Duehl, Adrian; Arbogast, Richard; Sheridan, Audrey; Teal, Peter

    2012-01-01

    International audience The small hive beetle (Aethina tumida, Murray) is a major pest of honeybee (Apis mellifera) colonies, particularly in the Southeastern USA. We evaluated the small hive beetle's (SHB) response to different wavelengths of the light spectrum and found that SHB larvae and adults were most attracted to the 390 nm wavelength. Early instar larvae were not significantly attracted to light, while wandering larvae and adults exhibited strong positive phototaxis. The light resp...

  11. Time domain simulation of tandem silicon solar cells with optimal textured light trapping enabled by the quadratic complex rational function.

    Science.gov (United States)

    Chung, H; Jung, K-Y; Tee, X T; Bermel, P

    2014-05-01

    Amorphous silicon/crystalline silicon (a-Si/c-Si) micromorph tandem cells, with best confirmed efficiency of 12.3%, have yet to fully approach their theoretical performance limits. In this work, we consider a strategy for improving the light trapping and charge collection of a-Si/c-Si micromorph tandem cells using random texturing with adjustable short-range correlations and long-range periodicity. In order to consider the full-spectrum absorption of a-Si and c-Si, a novel dispersion model known as a quadratic complex rational function (QCRF) is applied to photovoltaic materials (e.g., a-Si, c-Si and silver). It has the advantage of accurately modeling experimental semiconductor dielectric values over the entire relevant solar bandwidth from 300-1000 nm in a single simulation. This wide-band dispersion model is then used to model a silicon tandem cell stack (ITO/a-Si:H/c-Si:H/silver), as two parameters are varied: maximum texturing height h and correlation parameter f. Even without any other light trapping methods, our front texturing method demonstrates 12.37% stabilized cell efficiency and 12.79 mA/cm² in a 2 μm-thick active layer. PMID:24922389

  12. An Artificial Light Source Influences Mating and Oviposition of Black Soldier Flies, Hermetia illucens

    OpenAIRE

    Zhang, Jibin; Huang, Ling; He, Jin; Tomberlin, Jeffery K; Li, Jianhong; Lei, Chaoliang; Sun, Ming; Liu, Ziduo; Yu, Ziniu

    2010-01-01

    Current methods for mass-rearing black soldier flies, Hermetia illucens (L.) (Diptera: Stratiomyidae), in the laboratory are dependent on sunlight. Quartz-iodine lamps and rare earth lamps were examined as artificial light sources for stimulating H. illucens to mate and lay eggs. Sunlight was used as the control. Adults in the quartz-iodine lamp treatment had a mating rate of 61% of those in the sunlight control. No mating occurred when the rare earth lamp was used as a substitute. Egg hatch ...

  13. An artificial light source influences mating and oviposition of black soldier flies, Hermetia illucens.

    Science.gov (United States)

    Zhang, Jibin; Huang, Ling; He, Jin; Tomberlin, Jeffery K; Li, Jianhong; Lei, Chaoliang; Sun, Ming; Liu, Ziduo; Yu, Ziniu

    2010-01-01

    Current methods for mass-rearing black soldier flies, Hermetia illucens (L.) (Diptera: Stratiomyidae), in the laboratory are dependent on sunlight. Quartz-iodine lamps and rare earth lamps were examined as artificial light sources for stimulating H. illucens to mate and lay eggs. Sunlight was used as the control. Adults in the quartz-iodine lamp treatment had a mating rate of 61% of those in the sunlight control. No mating occurred when the rare earth lamp was used as a substitute. Egg hatch for the quartz-iodine lamp and sunlight treatments occurred in approximately 4 days, and the hatch rate was similar between these two treatments. Larval and pupal development under these treatments required approximately 18 and 15 days at 28°C, respectively. Development of methods for mass rearing of H. illucens using artificial light will enable production of this fly throughout the year without investing in greenhouse space or requiring sunlight. PMID:21268697

  14. Shell-in-Shell TiO2 hollow microspheres and optimized application in light-trapping perovskite solar cells

    Science.gov (United States)

    Sun, Hongxia; Ruan, Peng; Bao, Zhongqiu; Chen, Lei; Zhou, Xingfu

    2015-02-01

    The shell-in-shell structured TiO2 hollow microspheres with enhanced light scattering ability were synthesized via a facile one step hydrothermal process. The diameter of the microsphere is about 1.5 μm, the core of the unique shell-in-shell structure is composed of TiO2 nanoparticles with a diameter of about 15 nm, while the shell is constructed with ∼50 nm TiO2 nanocubes. The hollow space between the outer shell and the inner shell is about 230 nm. The formation mechanism of the unique shell-in-shell structure is interpreted. The design and the optimized application of shell-in-shell structured TiO2 hollow microspheres in the light-trapping perovskite solar cells are also investigated. Owing to the light scattering properties of the shell-in-shell structure of the hollow microsphere, the optimized photoelectrode exhibits an enhanced photoelectric conversion efficiency of 4.29% using perovskite CH3NH3PbI3 as the sensitizer. The shell-in-shell hollow TiO2 microsphere shows a 21.2% increase in conversion efficiency when compared with P25 nanoparticels photoanode. The conversion efficiency enhancement is mainly attributed to the increase of short-current density induced by the light scattering effect.

  15. Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium

    OpenAIRE

    Yasuda, Masami; Kohno, Takuya; Inaba, Hajime; Nakajima, Yoshiaki; Hosaka, Kazumoto; Onae, Atsushi; Hong, Feng-Lei

    2010-01-01

    A frequency-stabilized light source emitting at 556 nm is realized by frequency-doubling a 1112-nm laser, which is phase-locked to a fiber-based optical frequency comb. The 1112-nm laser is either an ytterbium (Yb)-doped distributed feedback fiber laser or a master-slave laser system that uses an external cavity diode laser as a master laser. We have achieved the continuous frequency stabilization of the light source over a five-day period. With the light source, we have completed the second-...

  16. Broadband perfect light trapping in the thinnest monolayer graphene-MoS2 photovoltaic cell: the new application of spectrum-splitting structure

    Science.gov (United States)

    Wu, Yun-Ben; Yang, Wen; Wang, Tong-Biao; Deng, Xin-Hua; Liu, Jiang-Tao

    2016-02-01

    The light absorption of a monolayer graphene-molybdenum disulfide photovoltaic (GM-PV) cell in a wedge-shaped microcavity with a spectrum-splitting structure is investigated theoretically. The GM-PV cell, which is three times thinner than the traditional photovoltaic cell, exhibits up to 98% light absorptance in a wide wavelength range. This rate exceeds the fundamental limit of nanophotonic light trapping in solar cells. The effects of defect layer thickness, GM-PV cell position in the microcavity, incident angle, and lens aberration on the light absorptance of the GM-PV cell are explored. Despite these effects, the GM-PV cell can still achieve at least 90% light absorptance with the current technology. Our proposal provides different methods to design light-trapping structures and apply spectrum-splitting systems.

  17. Nobel Prize in Physics 1997 "for development of methods to cool and trap atoms with laser light" : Steven Chu, Claude Cohen-Tannoudji and William D. Phillips

    CERN Multimedia

    1998-01-01

    Prof.S. Chu presents "the manipulation of atoms and bio-molecules by laser light" : a brief history of the laser cooling and trapping of atoms developed over the past 15 years will be presented. The cooling and trapping technology is already being applied in numerous areas of science and engineering. Applications to be discussed include atomic clocks, atom interferometers, as well as studies in polymer dynamics and protein motion.

  18. Effective Light Trapping in Thin Film Silicon Solar Cells with Nano- and Microscale Structures on Glass Substrate.

    Science.gov (United States)

    Bong, Sungjae; Ahn, Shihyun; Anh, Le Huy Tuan; Kim, Sunbo; Park, Hyeongsik; Shin, Chonghoon; Park, Jinjoo; Lee, Younjung; Yi, Junsin

    2016-05-01

    For thin film silicon-based solar cells, effective light trapping at a broad range of wavelengths (400-1100 nm) is necessary. Normally, etching is only carried out with TCOs, such as SnO2:F and impurity doped ZnO, to form nano-sized craters in the surface morphology to confer a light trapping effect. However, in this study, prior to ZnO:Al etching, periodic structures on the glass substrates were made by photolithography and wet etching to increase the light scattering and internal reflection. The use of periodic structures on the glass substrate resulted in higher haze ratios in the range from 550 nm to 1100 nm, which is the optical absorption wavelength region for thin film silicon solar cells, than obtained by simple ZnO:Al etching. The periodically textured glass with micro-sized structures compensates for the low haze ratio at the middle and long wavelengths of wet etched ZnO:Al. ZnO:Al was deposited on the periodically textured glass, after which the ZnO:Al surface was also etched randomly using a mixed acid solution to form nano-sized craters. The thin film silicon solar cells with 350-nm-thick amorphous silicon absorber layer deposited on the periodic structured glass and etched ZnO:Al generated up to 10.68% more photocurrent, with 11.2% increase of the conversion efficiency compared to the cell deposited on flat glass and etched ZnO:Al. PMID:27483855

  19. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells.

    Science.gov (United States)

    Eyderman, Sergey; John, Sajeev

    2016-01-01

    We demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300-865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiO2. Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm(2) is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 10(3) cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%. PMID:27334045

  20. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells

    Science.gov (United States)

    Eyderman, Sergey; John, Sajeev

    2016-01-01

    We demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300–865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiO2. Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm2 is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 103 cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%. PMID:27334045

  1. Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells.

    Science.gov (United States)

    Zhou, Suqiong; Yang, Zhenhai; Gao, Pingqi; Li, Xiaofeng; Yang, Xi; Wang, Dan; He, Jian; Ying, Zhiqin; Ye, Jichun

    2016-12-01

    Crystalline silicon thin film (c-Si TF) solar cells with an active layer thickness of a few micrometers may provide a viable pathway for further sustainable development of photovoltaic technology, because of its potentials in cost reduction and high efficiency. However, the performance of such cells is largely constrained by the deteriorated light absorption of the ultrathin photoactive material. Here, we report an efficient light-trapping strategy in c-Si TFs (~20 μm in thickness) that utilizes two-dimensional (2D) arrays of inverted nanopyramid (INP) as surface texturing. Three types of INP arrays with typical periodicities of 300, 670, and 1400 nm, either on front, rear, or both surfaces of the c-Si TFs, are fabricated by scalable colloidal lithography and anisotropic wet etch technique. With the extra aid of antireflection coating, the sufficient optical absorption of 20-μm-thick c-Si with a double-sided 1400-nm INP arrays yields a photocurrent density of 39.86 mA/cm(2), which is about 76 % higher than the flat counterpart (22.63 mA/cm(2)) and is only 3 % lower than the value of Lambertian limit (41.10 mA/cm(2)). The novel surface texturing scheme with 2D INP arrays has the advantages of excellent antireflection and light-trapping capabilities, an inherent low parasitic surface area, a negligible surface damage, and a good compatibility for subsequent process steps, making it a good alternative for high-performance c-Si TF solar cells. PMID:27071681

  2. Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells

    Science.gov (United States)

    Zhou, Suqiong; Yang, Zhenhai; Gao, Pingqi; Li, Xiaofeng; Yang, Xi; Wang, Dan; He, Jian; Ying, Zhiqin; Ye, Jichun

    2016-04-01

    Crystalline silicon thin film (c-Si TF) solar cells with an active layer thickness of a few micrometers may provide a viable pathway for further sustainable development of photovoltaic technology, because of its potentials in cost reduction and high efficiency. However, the performance of such cells is largely constrained by the deteriorated light absorption of the ultrathin photoactive material. Here, we report an efficient light-trapping strategy in c-Si TFs (~20 μm in thickness) that utilizes two-dimensional (2D) arrays of inverted nanopyramid (INP) as surface texturing. Three types of INP arrays with typical periodicities of 300, 670, and 1400 nm, either on front, rear, or both surfaces of the c-Si TFs, are fabricated by scalable colloidal lithography and anisotropic wet etch technique. With the extra aid of antireflection coating, the sufficient optical absorption of 20-μm-thick c-Si with a double-sided 1400-nm INP arrays yields a photocurrent density of 39.86 mA/cm2, which is about 76 % higher than the flat counterpart (22.63 mA/cm2) and is only 3 % lower than the value of Lambertian limit (41.10 mA/cm2). The novel surface texturing scheme with 2D INP arrays has the advantages of excellent antireflection and light-trapping capabilities, an inherent low parasitic surface area, a negligible surface damage, and a good compatibility for subsequent process steps, making it a good alternative for high-performance c-Si TF solar cells.

  3. The Enhanced Light Absorptance and Device Application of Nanostructured Black Silicon Fabricated by Metal-assisted Chemical Etching.

    Science.gov (United States)

    Zhong, Hao; Guo, Anran; Guo, Guohui; Li, Wei; Jiang, Yadong

    2016-12-01

    We use metal-assisted chemical etching (MCE) method to fabricate nanostructured black silicon on the surface of C-Si. The Si-PIN photoelectronic detector based on this type of black silicon shows excellent device performance with a responsivity of 0.57 A/W at 1060 nm. Silicon nanocone arrays can be created using MCE treatment. These modified surfaces show higher light absorptance in the near-infrared range (800 to 2500 nm) compared to that of C-Si with polished surfaces, and the variations in the absorption spectra of the nanostructured black silicon with different etching processes are obtained. The maximum light absorptance increases significantly up to 95 % in the wavelength range of 400 to 2500 nm. Our recent novel results clearly indicate that nanostructured black silicon made by MCE has potential application in near-infrared photoelectronic detectors. PMID:27368764

  4. Plasmonic mirror for light-trapping in thin film solar cells

    OpenAIRE

    Sesuraj, Rufina

    2014-01-01

    Microcrystalline silicon solar cells require an enhanced absorption of photons in the near-bandgap region between 700-1150nm. Conventional textured mirrors scatter light and increase the path length of photons in the absorber by total internal reflection. However, these mirrors exhibit a high surface roughness which degrades the performance of the microcrystalline silicon device. An alternative solution is to use metal nanoparticles with low surface roughness to scatter light. An illuminated ...

  5. Colored Sticky Traps to Selectively Survey Thrips in Cowpea Ecosystem.

    Science.gov (United States)

    Tang, L D; Zhao, H Y; Fu, B L; Han, Y; Liu, K; Wu, J H

    2016-02-01

    The bean flower thrips, Megalurothrips usitatus (Bagrall) (Thysanoptera: Thripidae), is an important pest of legume crops in South China. Yellow, blue, or white sticky traps are currently recommended for monitoring and controlling thrips, but it is not known whether one is more efficient than the other or if selectivity could be optimized by trap color. We investigated the response of thrips and beneficial insects to different-colored sticky traps on cowpea, Vigna unguiculata. More thrips were caught on blue, light blue, white, and purple traps than on yellow, green, pink, gray, red, or black traps. There was a weak correlation on the number of thrips caught on yellow traps and survey from flowers (r = 0.139), whereas a strong correlation was found for blue traps and thrips' survey on flowers (r = 0.929). On commercially available sticky traps (Jiaduo®), two and five times more thrips were caught on blue traps than on white and yellow traps, respectively. Otherwise, capture of beneficial insects was 1.7 times higher on yellow than on blue traps. The major natural enemies were the predatory ladybird beetles (63%) and pirate bugs Orius spp. (29%), followed by a number of less representative predators and parasitoids (8%). We conclude the blue sticky trap was the best to monitor thrips on cowpea in South China. PMID:26429578

  6. A novel approach for enhanced visible light activity in doped nanosize titanium dioxide through the excitons trapping

    Science.gov (United States)

    Jaimy, Kanakkanmavudi B.; Baiju, K. V.; Ghosh, Swapankumar; Warrier, K. G. K.

    2012-02-01

    Titanium dioxide doped with iron oxide (0-10 mol%) has been synthesized by an aqueous sol-gel method. The extent of phase transformation is higher in presence of up to 1 mol% of Fe3+ ions in doped titania. A further increase in Fe3+ content was found to decrease the phase transformation. A composition which contains ∼90% rutile and the remaining anatase phase shows the highest photocatalytic activity. Even though surface area values are dramatically decreased by the modification of TiO2 by Fe3+ doping, crystallinity plays a major role in photocatalytic activity enhancement. UV-vis reflectance spectra indicate a red-shift in band gap energy and thus an enhanced photoactivity in visible light, suitable for application in photodegradation of toxic industrial effluents as well as other organic contaminants, is achieved. Low concentrations of Fe3+ ions act as excitons trapping centers, while higher concentrations act as recombination centers. The synergy between the rutile-anatase ratios and optimum amount of Fe3+ ions improve the interfacial charge transfer and trapping which enhanced the photochemical degradation of MB dye. The Fe3+ doped TiO2 composition has the highest photoactivity, having an apparent rate constant of 11.1×10-3 min-1, which is much higher than that of commercial P25 Degussa titania (6.03×10-3 min-1).

  7. Measurement of the light scattering of single micrometer-sized particles captured with a microfluidic trap.

    Science.gov (United States)

    Dai, Jie; Li, Wei; Gong, Baoyu; Wang, Huimin; Xia, Min; Yang, Kecheng

    2015-11-16

    Light scattering detection of a single particle is significant to both theoretical developments and application progresses of particle scattering. In this work, a new method employing the polydimethylsiloxane microfluidic catcher with self-regulation was developed to detect the light scattering of an individual micro particle (20.42, 23.75, and 31.10 μm) in a wide angular range. This system can rapidly (particles without aggregations and continuously analyze its light scattering ranging from 2° to 162°. The high success ratio of the capture, good agreement with the anticipation, and moderate time and cost make this method a promising candidate in single-particle-scattering applications. PMID:26698501

  8. Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption

    Science.gov (United States)

    Tan, Hairen; Sivec, Laura; Yan, Baojie; Santbergen, Rudi; Zeman, Miro; Smets, Arno H. M.

    2013-04-01

    We show experimentally that the photocurrent of thin-film hydrogenated microcrystalline silicon (μc-Si:H) solar cells can be enhanced by 4.5 mA/cm2 with a plasmonic back reflector (BR). The light trapping performance is improved using plasmonic BR with broader angular scattering and lower parasitic absorption loss through tuning the size of silver nanoparticles. The μc-Si:H solar cells deposited on the improved plasmonic BR demonstrate a high photocurrent of 26.3 mA/cm2 which is comparable to the state-of-the-art textured Ag/ZnO BR. The commonly observed deterioration of fill factor is avoided by using μc-SiOx:H as the n-layer for solar cells deposited on plasmonic BR.

  9. Capture of atoms and small particles in an optical trap formed by sequences of counter-propagating light pulses with a large area

    CERN Document Server

    Romanenko, Victor I

    2012-01-01

    A new trap for atoms and small particles based on the interaction between an atom and the field of counter-propagating light pulses that are partially superposed in time has been proposed. A substantial difference from the known analogs consists in that the atom-field interaction is close to the adiabatic one, which allows a considerably higher momentum to be transferred to the atom within the same time interval and makes the trap smaller in size. It has been shown that, owing to the dependence of the light pressure force on the atom velocity, the atomic ensemble is cooled at its interaction with the field.

  10. Photonic light trapping in silicon nanowire arrays: deriving and overcoming the physical limitations

    CERN Document Server

    Schmitt, Sebastian W

    2016-01-01

    Hexagonally aligned, free-standing silicon nanowire (SiNW) arrays serve as photonic resonators which, as compared to a silicon (Si) thin film, do not only absorb more visible (VIS) and near-infrared (NIR) light, but also show an inherent photonic light concentration that enhances their performance as solar absorbers. Using numerical simulations we show, how light concentration is induced by high optical cross sections of the individual SiNWs but cannot be optimized independently of the SiNW array absorption. While an ideal spatial density exists, for which the SiNW array absorption for VIS and NIR wavelengths reaches a maximum, the spatial correlation of SiNWs in an array suppresses the formation of optical Mie modes responsible for light concentration. We show that different from SiNWs with straight sidewalls, arrays of inverted silicon nanocones (SiNCs) permit to avoid the mode suppression. In fact they give rise to an altered set of photonic modes which is induced by the spatial correlation of SiNCs in the...

  11. Three-dimensional simulations of super-critical black hole accretion disks --- luminosities, photon trapping and variability

    CERN Document Server

    Sadowski, Aleksander

    2015-01-01

    We present a set of four three-dimensional, general relativistic, radiation MHD simulations of black hole accretion at super-critical mass accretion rates, $\\dot{M} > \\dot{M}_{\\rm Edd}$. We use these simulations to study how disk properties are modified when we vary the black hole mass, the black hole spin, or the mass accretion rate. In the case of a non-rotating black hole, we find that the total efficiency is of order $3\\%\\dot M c^2$, approximately a factor of two less than the efficiency of a standard thin accretion disk. The radiation flux in the funnel along the axis is highly super-Eddington, but only a small fraction of the energy released by accretion escapes in this region. The bulk of the $3\\%\\dot M c^2$ of energy emerges farther out in the disk, either in the form of photospheric emission or as a wind. In the case of a black hole with a spin parameter of 0.7, we find a larger efficiency of about $8\\%\\dot M c^2$. By comparing the relative importance of advective and diffusive radiation transport, w...

  12. Heat- and light-induced transformations of Yb trapping sites in an Ar matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tao, L.-G.; Lambo, R., E-mail: lambo@mail.ustc.edu.cn; Zhou, X.-G.; Hu, S.-M. [Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230026 (China); Kleshchina, N. N.; Bezrukov, D. S. [Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Buchachenko, A. A., E-mail: a.buchachenko@skoltech.ru [Skolkovo Institute of Science and Technology, 100 Novaya St., Skolkovo, Moscow Region 143025 (Russian Federation)

    2015-11-07

    The low-lying electronic states of Yb isolated in a solid Ar matrix grown at 4.2 K are characterized through absorption and emission spectroscopy. Yb atoms are found to occupy three distinct thermally stable trapping sites labeled “red,” “blue,” and “violet” according to the relative positions of the absorption features they produce. Classical simulations of the site structure and relative stability broadly reproduced the experimentally observed matrix-induced frequency shifts and thus identified the red, blue, and violet sites as due to respective single substitutional (SS), tetravacancy (TV), and hexavacancy (HV) occupation. Prolonged excitation of the {sup 1}S → {sup 1}P transition was found to transfer the Yb population from HV sites into TV and SS sites. The process showed reversibility in that annealing to 24 K predominantly transferred the TV population back into HV sites. Population kinetics were used to deduce the effective rate parameters for the site transformation processes. Experimental observations indicate that the blue and violet sites lie close in energy, whereas the red one is much less stable. Classical simulations identify the blue site as the most stable one.

  13. Aggregates of plasmonic nanoparticles for broadband light trapping in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Metallic nanoparticles (NPs) have not been effective in improving the overall performance of the cells with micrometer-thick absorbing layers mainly due to the parasitic optical dissipation in the metal. Here, using both experiment and theory, we demonstrate that aggregates of metallic NPs enhance the light absorption of dye-sensitized solar cells of a few micrometer-thick light absorbing layers. The composite electrode containing the optimal concentration of 5 wt% Au@SiO2 aggregates shows the enhancement of 80% and 52% in external quantum efficiency and photocurrent density, respectively. The superior performance of the aggregates relative to NP is attributed to their larger scattering efficiency using full-wave optical simulations. This is further confirmed by optical spectroscopic measurements showing that a large fraction of the incident light couples into the diffused components because of the presence of these metallic aggregates. The optical absorption enhancement is broadband and it is particularly strong at wavelengths larger than 680 nm where the optical absorption of dye molecules is weak. (paper)

  14. Comparison of surveillance efficacy between black box and lamp trap methods%黑箱法与灯诱法蚊虫监测结果比较

    Institute of Scientific and Technical Information of China (English)

    冷培恩; 除友祥; 武峥嵘; 刘洪霞; 徐仁权

    2011-01-01

    Objective To evaluate the application of black box method in mosquito surveillance by comparing the results from black box and lamp trap methods. Methods Two lamps were set at each surveillance site and one black box was put at a 10 m interval from each lamp. Surveillance was conducted twice every month. Results The total number of captured mosquitoes and the number of female mosquitoes by the lamp trap method was 3.50 times and 3.75 times higer than those monitored by black box method, respectively. The seasonal fluctuation curves reflected by both methods were unimodal, with a peak in July. The monthly calculations of mosquitoes of the two methods were highly correlated. Mosquitoes captured by the black box method included Culex pipens pollens (84.64%), Cx. Tritaeriorhynchus (10.02%), and Anopheles sinensis (3.34%), and those by the lamp trap method were Cx. Pipens pollens (80.47%), Cx. Tritaeriorhynchw (11.79%), and An. Sinensis (6.88%). Only a few Aedes albopictus and Armigeres subalbatus were trapped. The male-female ratios were similar between the two methods, whereas great difference in the mosquito number was found in distinct environments. Black box method was more effective in parks and hospitals than the other, while lamp trap was more effective in pasture lands and farms. Two peaks of mosquito density were shown on 05: 00 and 19: 00 with environmental difference between day and night. The day and night peaks of density were also present in parks, farms and pasture lands except hospitals and residential areas where only one night peak was shown. Conclusion With fewer requirements for equipment, operation skills and power supply, the black box method is an effective alternative to the lamp trap approach. Deployment before the night peak of density and collection after the early morning peak is recommended for mosquito monitoring.%目的 比较黑箱法与灯诱法监测蚊虫密度的差异,探讨黑箱法在蚊虫监测中的作用.方法 在7个

  15. Design of Light Source of Agricultural UVALED Pest Control Lamp in Food Production

    OpenAIRE

    Li Tianhua; Luo Guangyi

    2015-01-01

    In this study, we have a research of the design of light source of agricultural UVALED pest control lamp in food production. The traditional agricultural black light lamp is a special gas discharge lamp, which can emit 320~400 nm ultraviolet light to trap the pests. However, the traditional agricultural black light lamp has such problems as low light efficiency, large power consumption; poor shock resistance, short life span and the filler harming the environment. To solve these problems, thi...

  16. Water column depth and light intensity modulate the zebrafish preference response in the black/white test.

    Science.gov (United States)

    Córdova, Sandro Daniel; Dos Santos, Thainá Garbino; de Oliveira, Diogo Losch

    2016-04-21

    Currently, the black/white preference test has been used to evaluate anxiety-like behaviors in zebrafish. However, several inconsistent results have been reported across literature. Since animal behavior can be influenced by several environmental factors, the main goal of the present study was to investigate the influence of different water column depths and light intensities on zebrafish behavioral responses in the black/white test. On a 4cm water column depth, animals spent more time in the black than in the white compartment. However, when animals were tested in an 8cm water column, no significant difference was found. Using an inclined acrylic floor inside the aquarium, animals spent more time in the deep compartment when this was black. However, there is no difference in time spent in each compartment when the deeper compartment was white. For light intensity test, animals showed preference for the white compartment only when both compartments were illuminated with 100lx. For the others illumination settings, there was no difference in the compartment preference. In conclusion, our results suggest that variations in water column depth and light intensity can modulate zebrafish preference in the black/white test. These variations may be implicated in the discrepancies observed in literature. PMID:26960010

  17. Nanoscale aluminum concaves for light-trapping in organic thin-films

    Science.gov (United States)

    Goszczak, Arkadiusz Jarosław; Adam, Jost; Cielecki, Paweł Piotr; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2016-07-01

    Anodic aluminum oxide (AAO) templates, fabricated from oxalic acid and phosphoric acid, lead to non-periodic nanoscale concave structures in their underlying aluminum layer, which are investigated for their field-enhancement properties by applying a thin-film polymer coating based laser ablation technique. Local ablation spots, corresponding to field enhancement on the ridge edges of the aluminum concave nanostructures, are observed in surface-covering polymer films, and confirmed with FDTD studies. The field enhancement leads to improved light absorption in the applied polymer layers, which may be used as an efficient method for enhancing the power conversion efficiency of organic solar cells.

  18. Nanoscale aluminum concaves for light-trapping in organic thin-films

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Adam, Jost; Cielecki, Pawel Piotr;

    2016-01-01

    Anodic aluminum oxide (AAO) templates, fabricated from oxalic acid and phosphoric acid, lead to non-periodic nanoscale concave structures in their underlying aluminum layer, which are investigated for their field-enhancement properties by applying a thin-film polymer coating based laser ablation...... technique. Local ablation spots, corresponding to field enhancement on the ridge edges of the aluminum concave nanostructures, are observed in surface-covering polymer films, and confirmed with FDTD studies. The field enhancement leads to improved light absorption in the applied polymer layers, which may be...

  19. Trapping polarization of light in nonlinear optical fibers: An ideal Raman polarizer

    OpenAIRE

    Kozlov, Victor V.; Nuno, Javier; Ania-Castanon, Juan Diego; Wabnitz, Stefan

    2012-01-01

    The main subject of this contribution is the all-optical control over the state of polarization (SOP) of light, understood as the control over the SOP of a signal beam by the SOP of a pump beam. We will show how the possibility of such control arises naturally from a vectorial study of pump-probe Raman interactions in optical fibers. Most studies on the Raman effect in optical fibers assume a scalar model, which is only valid for high-PMD fibers (here, PMD stands for the polarization-mode dis...

  20. Nanoscale aluminum concaves for light-trapping in organic thin-films

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Adam, Jost; Cielecki, Pawel Piotr; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2016-01-01

    Anodic aluminum oxide (AAO) templates, fabricated from oxalic acid and phosphoric acid, lead to non-periodic nanoscale concave structures in their underlying aluminum layer, which are investigated for their field-enhancement properties by applying a thin-film polymer coating based laser ablation...... technique. Local ablation spots, corresponding to field enhancement on the ridge edges of the aluminum concave nanostructures, are observed in surface-covering polymer films, and confirmed with FDTD studies. The field enhancement leads to improved light absorption in the applied polymer layers, which may be...... used as an efficient method for enhancing the power conversion efficiency of organic solar cells....

  1. Limits of light-trapping efficiency of prototypical lamellar 1-d metal gratings for amorphous silicon PV cells

    CERN Document Server

    Gablinger, David I

    2014-01-01

    One-dimensional lamellar gratings allow a particularly efficient way for solving Maxwell's equations by expanding the electromagnetic field in the basis of exact eigenmodes of the Helmholtz equation. Then, the solution can be expressed analytically as a superposition of these eigenmodes and the accuracy depends only on the number of modes $N$ included. On this basis, we compute ideal limits of light-trapping performance for prototypical lamellar metal surface relief gratings in amorphous silicon (a-Si) PV cells assuming that light absorption in the metal and front surface reflection can be suppressed. We show that geometric asymmetry can increase absorption. For large enough $N$, convergence of absorption spectra for E polarisation is reached. For H polarisation it is reached for wavelengths $\\lambda<$680-700 nm, while the integrated AM1.5-weighted absorption varies by less than 1\\% at large $N$. For an a-Si layer with height 200 nm and normal incidence, we obtain upper limits of the total absorption of 79...

  2. Half-open Penning trap with efficient light collection for precision laser spectroscopy of highly charged ions

    OpenAIRE

    von Lindenfels, David; Vogel, Manuel; Quint, Wolfgang; Birkl, Gerhard; Wiesel, Marco

    2014-01-01

    We have conceived, built and operated a 'half-open' cylindrical Penning trap for the confinement and laser spectroscopy of highly charged ions. This trap allows fluorescence detection employing a solid angle which is about one order of magnitude larger than in conventional cylindrical Penning traps. At the same time, the desired electrostatic and magnetostatic properties of a closed-endcap cylindrical Penning trap are preserved in this congfiuration. We give a detailed account on the design a...

  3. Light trapping regimes in thin-film silicon solar cells with a photonic pattern.

    Science.gov (United States)

    Zanotto, Simone; Liscidini, Marco; Andreani, Lucio Claudio

    2010-03-01

    We present a theoretical study of crystalline and amorphous silicon thin-film solar cells with a periodic pattern on a sub-micron scale realized in the silicon layer and filled with silicon dioxide right below a properly designed antireflection (AR) coating. The study and optimization of the structure as a function of all the photonic lattice parameters, together with the calculation of the absorption in a single layer, allows to identify the different roles of the periodic pattern in determining an increase of the absorbance. From one side, the photonic crystal and the AR coating act as impedance matching layers, thus minimizing reflection of incident light over a particularly wide range of frequencies. Moreover a strong absorption enhancement is observed when the incident light is coupled into the quasi guided modes of the photonic slab. We found a substantial increase of the short-circuit current when the parameters are properly optimized, demonstrating the advantage of a wavelength-scale, photonic crystal based approach for patterning of thin-film silicon solar cells. PMID:20389438

  4. Enhancing energy absorption in quantum dot solar cells via periodic light-trapping microstructures

    Science.gov (United States)

    Miller, Christopher Wayne; Fu, Yulan; Lopez, Rene

    2016-09-01

    Colloidal quantum dot (CQD) solar cells prove to be promising devices for optoelectronic applications due to their tunable absorption range, deep infrared absorption capabilities, and straightforward processability. However, there remains a need to further enhance their device performance—particularly when one has to adhere to strict physical limitations on their physical structure. Here we present a three-dimensional numerical model of CQD solar cells in COMSOL Multiphysics based on the finite element method. With this model we have simulated the optical characteristics of several CQD solar cells across varying photonic structures and physical parameters to investigate how distinct photonic structures may enhance the light absorption and current output of CQD solar cells using identical physical parameters. Of the many cells simulated, one notable model increased the predicted current in the active layer PbS by 69.33% as compared to a flat solar cell with identical physical parameters, and produced a current of 24.18 mA cm‑2 by implementing a cross-shaped photonic structure built on top of a flat substrate of glass and ITO. This cross-shaped model serves as a key example of how unique photonic structures can be implemented to further enhance light absorption.

  5. Black Holes

    Science.gov (United States)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  6. Tailoring broadband light trapping of GaAs and Si substrates by self-organised nanopatterning

    Energy Technology Data Exchange (ETDEWEB)

    Martella, C.; Chiappe, D.; Mennucci, C.; Buatier de Mongeot, F. [Dipartimento di Fisica, Università di Genova, via Dodecaneso 33, I-16146 Genova (Italy)

    2014-05-21

    We report on the formation of high aspect ratio anisotropic nanopatterns on crystalline GaAs (100) and Si (100) substrates exploiting defocused Ion Beam Sputtering assisted by a sacrificial self-organised Au stencil mask. The tailored optical properties of the substrates are characterised in terms of total reflectivity and haze by means of integrating sphere measurements as a function of the morphological modification at increasing ion fluence. Refractive index grading from sub-wavelength surface features induces polarisation dependent anti-reflection behaviour in the visible-near infrared (VIS-NIR) range, while light scattering at off-specular angles from larger structures leads to very high values of the haze functions in reflection. The results, obtained for an important class of technologically relevant materials, are appealing in view of photovoltaic and photonic applications aiming at photon harvesting in ultrathin crystalline solar cells.

  7. Enhanced light trapping with double-groove grating in thin-film amorphous silicon solar cells

    Science.gov (United States)

    Wu, Jun

    2016-05-01

    A design to enhance light absorption in thin-film amorphous silicon (a-Si) solar cells is proposed. It is achieved by patterning a double-groove grating with waveguide layer as the absorbing layer and coating a double-groove grating anti-reflective layer in the front window of the cell. The broadband absorption under normal incidence can be achieved for both TE and TM polarizations. It is shown that the averaged integrated absorptions have very large angle independence for the optimized solar cell. An qualitative understanding of such broadband enhanced absorption effect, which is attributed to the guided mode resonance, is presented. The conclusions can be exploited to guide the design of solar cells based on a grating structure.

  8. Nanostructured zinc oxide systems with gold nanoparticle pattern for efficient light trapping

    Science.gov (United States)

    Robak, Elżbieta; Kotkowiak, Michał; Drozdowski, Henryk

    2016-02-01

    In this work we describe the design of a system consisting of a zinc oxide nanowire array and ITO glass nanostructured with gold NPs. Our goal was to create a more efficient system that could be used in various optical applications, such as photovoltaics or photodetectors. The impact of gold NPs of different shapes, single as well as arranged in a pattern, on the optical properties of the system was studied by using a finite integration technique. The absorptance and transmittance spectra of individual components of the system were calculated. Finally, the integrated spectral enhancement factors of the photons absorbed and transmitted by the electrode were estimated using the different geometrical parameters of the electrode. The results suggested that the most effective absorber of light should include zinc oxide nanowires (NWs), with smaller diameters and cylindrical shapes of single gold NPs, as well as in a pattern, while the highest transmittance is obtained for greater diameter of NWs and conical shapes of gold NPs in a pattern. Based on these results, the absorption current density (derived from the generation and collection of light-generated charge carriers) was calculated for the ZnO-CdTe core-shell NWs nanostructured with gold NPs arranged into a pattern. The results suggest that the most efficient electrode contains ZnO NWs with gold NPs in a conical shaped pattern. Our results confirm the importance of computational simulation in the design of the photonic and photovoltaic devices, making it possible to predict the most efficient systems. These results could be useful to further optimize photonic or photovoltaic devices based on plasmonic NPs and semiconductor nanostructures.

  9. Nanostructured zinc oxide systems with gold nanoparticle pattern for efficient light trapping

    International Nuclear Information System (INIS)

    In this work we describe the design of a system consisting of a zinc oxide nanowire array and ITO glass nanostructured with gold NPs. Our goal was to create a more efficient system that could be used in various optical applications, such as photovoltaics or photodetectors. The impact of gold NPs of different shapes, single as well as arranged in a pattern, on the optical properties of the system was studied by using a finite integration technique. The absorptance and transmittance spectra of individual components of the system were calculated. Finally, the integrated spectral enhancement factors of the photons absorbed and transmitted by the electrode were estimated using the different geometrical parameters of the electrode. The results suggested that the most effective absorber of light should include zinc oxide nanowires (NWs), with smaller diameters and cylindrical shapes of single gold NPs, as well as in a pattern, while the highest transmittance is obtained for greater diameter of NWs and conical shapes of gold NPs in a pattern. Based on these results, the absorption current density (derived from the generation and collection of light-generated charge carriers) was calculated for the ZnO-CdTe core-shell NWs nanostructured with gold NPs arranged into a pattern. The results suggest that the most efficient electrode contains ZnO NWs with gold NPs in a conical shaped pattern. Our results confirm the importance of computational simulation in the design of the photonic and photovoltaic devices, making it possible to predict the most efficient systems. These results could be useful to further optimize photonic or photovoltaic devices based on plasmonic NPs and semiconductor nanostructures. (paper)

  10. Light-induced excited spin state trapping and charge transfer in trigonal bipyramidal cyanide-bridged complexes.

    Science.gov (United States)

    Funck, Kristen E; Prosvirin, Andrey V; Mathonière, Corine; Clérac, Rodolphe; Dunbar, Kim R

    2011-04-01

    Three members of the family of trigonal bipyramidal (TBP) complexes of general formula [M(tmphen)(2)](3)[M'(CN)(6)](2) (tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline) or [M(3)M'(2)], which are known to exhibit thermally induced spin crossover and charge transfer, have been investigated for optical and photomagnetic properties. The light-induced excited spin-state trapping (LIESST) effect found in classical spin crossover compounds, such as [Fe(phen)(2)(NCS)(2)], was explored for the [Fe(3)Fe(2)] and [Fe(3)Co(2)] compounds. Similarly, inspired by the light-induced charge-transfer properties of K(0.2)Co(1.4)[Fe(CN)(6)]·6.9H(2)O and related Prussian blue materials, the possibility of photo-induced magnetic changes was investigated for the [Co(3)Fe(2)] TBP complex. Optical reflectivity and magnetic susceptibility measurements were used to evaluate the photoactivity of these compounds. A comparison of these data before and after light irradiation demonstrates that (i) the spin crossover of the Fe(II) centers in the [Fe(3)Fe(2)] and [Fe(3)Co(2)] analogues and the (ii) charge transfer events in the [Co(3)Fe(2)] complex occur with temperature and irradiation. In addition, photomagnetic behavior is exhibited by all three compounds. The photo-conversion efficiency has been estimated at 20% of photo-induced high spin Fe(II) centers in [Fe(3)Co(2)], 30% of paramagnetic Co(II)-Fe(III) pairs in [Co(3)Fe(2)], and less than 2% of photo-induced high spin Fe(II) centers in [Fe(3)Fe(2)]. PMID:21391549

  11. THE HARD X-RAY SPECTRUM OF NGC 1365: SCATTERED LIGHT, NOT BLACK HOLE SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L. [Department of Physics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Turner, T. J. [Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250 (United States)

    2013-08-10

    Active galactic nuclei (AGNs) show excess X-ray emission above 10 keV compared with extrapolation of spectra from lower energies. Risaliti et al. have recently attempted to model the hard X-ray excess in the type 1.8 AGN NGC 1365, concluding that the hard excess most likely arises from Compton-scattered reflection of X-rays from an inner accretion disk close to the black hole. Their analysis disfavored a model in which the hard excess arises from a high column density of circumnuclear gas partially covering a primary X-ray source, despite such components being required in the NGC 1365 data below 10 keV. Using a Monte Carlo radiative transfer approach, we demonstrate that this conclusion is invalidated by (1) use of slab absorption models, which have unrealistic transmission spectra for partial covering gas, (2) neglect of the effect of Compton scattering on transmitted spectra, and (3) inadequate modeling of the spectrum of scattered X-rays. The scattered spectrum is geometry-dependent and, for high global covering factors, may dominate above 10 keV. We further show that, in models of circumnuclear gas, the suppression of the observed hard X-ray flux by reprocessing may be no larger than required by the ''light bending'' model invoked for inner disk reflection, and the expected emission line strengths lie within the observed range. We conclude that the time-invariant ''red wing'' in AGN X-ray spectra is probably caused by continuum transmitted through and scattered from circumnuclear gas, not by highly redshifted line emission, and that measurement of black hole spin is not possible.

  12. THE HARD X-RAY SPECTRUM OF NGC 1365: SCATTERED LIGHT, NOT BLACK HOLE SPIN

    International Nuclear Information System (INIS)

    Active galactic nuclei (AGNs) show excess X-ray emission above 10 keV compared with extrapolation of spectra from lower energies. Risaliti et al. have recently attempted to model the hard X-ray excess in the type 1.8 AGN NGC 1365, concluding that the hard excess most likely arises from Compton-scattered reflection of X-rays from an inner accretion disk close to the black hole. Their analysis disfavored a model in which the hard excess arises from a high column density of circumnuclear gas partially covering a primary X-ray source, despite such components being required in the NGC 1365 data below 10 keV. Using a Monte Carlo radiative transfer approach, we demonstrate that this conclusion is invalidated by (1) use of slab absorption models, which have unrealistic transmission spectra for partial covering gas, (2) neglect of the effect of Compton scattering on transmitted spectra, and (3) inadequate modeling of the spectrum of scattered X-rays. The scattered spectrum is geometry-dependent and, for high global covering factors, may dominate above 10 keV. We further show that, in models of circumnuclear gas, the suppression of the observed hard X-ray flux by reprocessing may be no larger than required by the ''light bending'' model invoked for inner disk reflection, and the expected emission line strengths lie within the observed range. We conclude that the time-invariant ''red wing'' in AGN X-ray spectra is probably caused by continuum transmitted through and scattered from circumnuclear gas, not by highly redshifted line emission, and that measurement of black hole spin is not possible

  13. The Hard X-Ray Spectrum of NGC 1365: Scattered Light, Not Black Hole Spin

    Science.gov (United States)

    Miller, L.; Turner, T. J.

    2013-08-01

    Active galactic nuclei (AGNs) show excess X-ray emission above 10 keV compared with extrapolation of spectra from lower energies. Risaliti et al. have recently attempted to model the hard X-ray excess in the type 1.8 AGN NGC 1365, concluding that the hard excess most likely arises from Compton-scattered reflection of X-rays from an inner accretion disk close to the black hole. Their analysis disfavored a model in which the hard excess arises from a high column density of circumnuclear gas partially covering a primary X-ray source, despite such components being required in the NGC 1365 data below 10 keV. Using a Monte Carlo radiative transfer approach, we demonstrate that this conclusion is invalidated by (1) use of slab absorption models, which have unrealistic transmission spectra for partial covering gas, (2) neglect of the effect of Compton scattering on transmitted spectra, and (3) inadequate modeling of the spectrum of scattered X-rays. The scattered spectrum is geometry-dependent and, for high global covering factors, may dominate above 10 keV. We further show that, in models of circumnuclear gas, the suppression of the observed hard X-ray flux by reprocessing may be no larger than required by the "light bending" model invoked for inner disk reflection, and the expected emission line strengths lie within the observed range. We conclude that the time-invariant "red wing" in AGN X-ray spectra is probably caused by continuum transmitted through and scattered from circumnuclear gas, not by highly redshifted line emission, and that measurement of black hole spin is not possible.

  14. DEET (N,N-diethyl-meta-toluamide)/PMD (para-menthane-3,8-diol) repellent-treated mesh increases Culicoides catches in light traps.

    Science.gov (United States)

    Murchie, A K; Clawson, S; Rea, I; Forsythe, I W N; Gordon, A W; Jess, S

    2016-09-01

    Biting midges (Culicoides spp.) are vectors of bluetongue and Schmallenberg viruses. Treatment of mesh barriers is a common method for preventing insect-vectored diseases and has been proposed as a means of limiting Culicoides ingression into buildings or livestock transporters. Assessments using animals are costly, logistically difficult and subject to ethical approval. Therefore, initial screening of test repellents/insecticides was made by applying treatments to mesh (2 mm) cages surrounding Onderstepoort light traps. Five commercial treatments were applied to cages as per manufacturers' application rates: control (water), bendiocarb, DEET/p-menthane-3,8-diol (PMD) repellent, Flygo (a terpenoid based repellent) and lambda-cyhalothrin. The experimental design was a 5 × 5 Latin square, replicated in time and repeated twice. Incongruously, the traps surrounded by DEET/PMD repellent-treated mesh caught three to four times more Obsoletus group Culicoides (the commonest midge group) than the other treatments. A proposed hypothesis is that Obsoletus group Culicoides are showing a dose response to DEET/PMD, being attracted at low concentrations and repelled at higher concentrations but that the strong light attraction from the Onderstepoort trap was sufficient to overcome close-range repellence. This study does not imply that DEET/PMD is an ineffective repellent for Culicoides midges in the presence of an animal but rather that caution should be applied to the interpretation of light trap bioassays. PMID:27179956

  15. Capture of atoms and small particles in an optical trap formed by sequences of counter-propagating light pulses with a large area

    OpenAIRE

    Romanenko, Victor I.; Yatsenko, Leonid P.

    2012-01-01

    A new trap for atoms and small particles based on the interaction between an atom and the field of counter-propagating light pulses that are partially superposed in time has been proposed. A substantial difference from the known analogs consists in that the atom-field interaction is close to the adiabatic one, which allows a considerably higher momentum to be transferred to the atom within the same time interval and makes the trap smaller in size. It has been shown that, owing to the dependen...

  16. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.

    Science.gov (United States)

    Vasudev, Pranai; Jiang, Jian-Hua; John, Sajeev

    2016-06-27

    , the strong light confinement results in light-matter coupling strength of ℏΩ = 13.7 meV. Assuming an exciton density per QW of (15aB)-2, well below the saturation density, in a 2-D box-trap with a side length of 10 to 500 µm, we predict thermal equilibrium Bose-Einstein condensation well above room temperature. PMID:27410564

  17. Light absorption and scattering by aggregates: Application to black carbon and snow grains

    International Nuclear Information System (INIS)

    under the condition of equal geometrical cross section area for both external and internal mixing states; however, nonspherical snowflakes scatter less light in forward directions than spheres, resulting in a substantial reduction of the asymmetry factor. We further demonstrate that small soot particles on the order of 1 μm internally mixed with snow grains could effectively reduce snow albedo by as much as 5-10%. Indeed, the depositions of black carbon would substantially reduce mountain-snow albedo, which would lead to surface warming and snowmelt, critical to regional climatic surface temperature amplification and feedback.

  18. The role of iron and black carbon in aerosol light absorption

    Directory of Open Access Journals (Sweden)

    Y. Derimian

    2008-07-01

    Full Text Available Iron is a major component of atmospheric aerosols, influencing the light absorption ability of mineral dust, and an important micronutrient that affects oceanic biogeochemistry. The regional distribution of the iron concentration in dust is important for climate studies; however, this is difficult to obtain since it requires in-situ aerosol sampling or simulation of complex natural processes. Simultaneous studies of aerosol chemical composition and radiometric measurements of aerosol optical properties, which were performed in the Negev desert of Israel continuously for about eight years, suggest a potential for deriving a relationship between chemical composition and light absorption properties, in particular the spectral single-scattering albedo.

    The two main data sets of the present study were obtained by a sun/sky radiometer and a stacked filter unit sampler that collects particles in coarse and fine size fractions. Analysis of chemical and optical data showed the presence of mixed dust and pollution aerosol in the study area, although their sources appear to be different. Spectral SSA showed an evident response to increased concentrations of iron, black carbon equivalent matter, and their mixing state. A relationship that relates the spectral SSA, the percentage of iron in total particulate mass, and the pollution components was derived. Results calculated, using this relationship, were compared with measurements from dust episodes in several locations around the globe. The comparison showed reasonable agreement between the calculated and the observed iron concentrations, and supported the validity of the suggested approach for the estimation of iron concentrations in mineral dust.

  19. Gravitational deflection of light and massive particles by a moving Kerr-Newman black hole

    Science.gov (United States)

    He, Guansheng; Lin, Wenbin

    2016-05-01

    The gravitational deflection of test particles including light, due to a radially moving Kerr-Newman (KN) black hole with an arbitrary constant velocity that is perpendicular to its angular momentum, is investigated. In harmonic coordinates, we derive the second post-Minkowskian (2PM) equations of motion for test particles, and solve them by high-accuracy numerical calculations. We then concentrate on discussing the kinematical corrections caused by the motion of the gravitational source to second-order deflection. The analytical formula of the light-deflection angle up to the second order by a moving lens is obtained. For a massive particle moving with a relativistic velocity, there are two different analytical results for the Schwarzschild deflection angle up to the second order reported in the previous works, i.e. α (w)=2≤ft(1+\\tfrac{1}{{w}2}\\right)\\tfrac{M}{b}+3π ≤ft(\\tfrac{1}{4}+\\tfrac{1}{{w}2}\\right)\\tfrac{{M}2}{{b}2} and α (w)=2≤ft(1+\\tfrac{1}{{w}2}\\right)\\tfrac{M}{b}+≤ft[3π ≤ft(\\tfrac{1}{4}+\\tfrac{1}{{w}2}\\right)+2≤ft(1-\\tfrac{1}{{w}4}\\right)\\right]\\tfrac{{M}2}{{b}2}, where M, b, and w are the mass of the lens, the impact parameter, and the particle’s initial velocity, respectively. Our numerical result is in perfect agreement with the former result. Furthermore, the analytical formula for massive particle deflection up to the second order in the Kerr geometry is achieved. Finally, the possibilities of detecting the motion effects on the second-order deflection are also analyzed.

  20. Black Carbon and Kerosene Lighting: An Opportunity for Rapid Action on Climate Change and Clean Energy for Development

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Arne [Humboldt State Univ., MN (United States). Schatz Energy Research Center; Bond, Tami C. [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Civil and Environmental Engineering; Lam, Nicholoas L. [Univ. of California, Berkeley, CA (United States). Dept. of Environmental Health Sciences; Hultman, Nathan [The Brookings Institution, Washington, DC (United States)

    2013-04-15

    Replacing inefficient kerosene lighting with electric lighting or other clean alternatives can rapidly achieve development and energy access goals, save money and reduce climate warming. Many of the 250 million households that lack reliable access to electricity rely on inefficient and dangerous simple wick lamps and other kerosene-fueled light sources, using 4 to 25 billion liters of kerosene annually to meet basic lighting needs. Kerosene costs can be a significant household expense and subsidies are expensive. New information on kerosene lamp emissions reveals that their climate impacts are substantial. Eliminating current annual black carbon emissions would provide a climate benefit equivalent to 5 gigatons of carbon dioxide reductions over the next 20 years. Robust and low-cost technologies for supplanting simple wick and other kerosene-fueled lamps exist and are easily distributed and scalable. Improving household lighting offers a low-cost opportunity to improve development, cool the climate and reduce costs.

  1. Light Fraction Carbon and Water-Stable Aggregates in Black Soils

    Institute of Scientific and Technical Information of China (English)

    SHI Yi; CHEN Xin; SHEN Shan-Min

    2007-01-01

    The distribution of light fraction carbon (LF-C) in the various size classes of aggregates and its relationship to waterstable aggregates as well as the influence of cultivation on the organic components in virgin and cultivated black soils were studied by wet sieving and density separation methods. The total organic carbon (TOC) and LF-C were significantly higher (P ≤ 0.05) in the virgin soils than in the cultivated soils. The LF-C in aggregates of different size classes varied from 0.9 to 2.5 g kg-1 in the cultivated soils and from 2.5 to 7.1 g kg-1 in the virgin soils, whereas the ratio of LF-C to TOC varied from 1.9% to 7.3% and from 5.0% to 12.2%, respectively. After being incubated under constant temperature and controlled humidity for three months, the contribution of LF-C to TOC sharply decreased to an amount (1.7%-8.5%)close to the level in soils that had been cultivated for 20 to 25 years (1.3%-8.8%). As a result, the larger water-stable macro-aggregates (especially > 1 mm) decreased sharply, indicating that the LF-C pool in virgin soils declined quickly after cultivation, which reduced the water stability of soil aggregates.

  2. Dynamics of black holes

    OpenAIRE

    Hayward, Sean A.

    2008-01-01

    This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...

  3. Deflection of a Λ-type three-level atom by a light field: a mechanical demonstration of the coherent population trapping effect

    International Nuclear Information System (INIS)

    We consider the deflection of a three-level atom of Λ-type interacting with a light field of two coherent laser beams. We employ the dressed state formalism, which is suitable for large Rabi frequencies and/or large detunings. A full study of the interaction and relaxation processes is performed. We show that a beam of atoms is split into three beams once it crosses the light field. This is a three-state version of the well-known optical Stern-Gerlach effect, which has been theoretically studied and experimentally demonstrated for two-level atoms. Under coherent population trapping conditions, the splitting of the beam becomes twofold. This gives us, in principle, the opportunity of a mechanical demonstration of the coherent population trapping effect. (paper)

  4. Multi-functional stacked light-trapping structure for stabilizing and boosting solar-electricity efficiency of hydrogenated amorphous silicon solar cells

    Science.gov (United States)

    Huang, Wen-Hsien; Shieh, Jia-Min; Pan, Fu-Ming; Shen, Chang-Hong; Huang, Jung Y.; Wu, Tsung-Ta; Kao, Ming-Hsuan; Hsiao, Tzu-Hsuan; Yu, Peichen; Kuo, Hao-Chung; Lee, Ching-Ting

    2013-08-01

    A sandwiched light-trapping electrode structure, which consists of a capping aluminum-doped ZnO (AZO) layer, dispersed plasmonic Au-nanoparticles (Au-NPs), and a micro-structured transparent conductive substrate, is employed to stabilize and boost the conversion-efficiency of hydrogenated amorphous silicon (a-Si:H) solar cells. The conformal AZO ultrathin layer (5 nm) smoothened the Au-NP-dispersed electrode surface, thereby reducing defects across the AZO/a-Si:H interface and resulting in a high resistance to photo-degradation in the ultraviolet-blue photoresponse band. With the plasmonic light-trapping structure, the cell has a high conversion-efficiency of 10.1% and the photo-degradation is as small as 7%.

  5. Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells.

    Science.gov (United States)

    Fahim, Narges F; Jia, Baohua; Shi, Zhengrong; Gu, Min

    2012-09-10

    Crystalline silicon solar cells are predominant and occupying more than 89% of the global solar photovoltaic market. Despite the boom of the innovative solar technologies, few can provide a low-cost radical solution to dramatically boost the efficiency of crystalline silicon solar cells, which has reached plateau in the past ten years. Here, we present a novel strategy to simultaneously achieve dramatic enhancement in the short-circuit current and the fill factor through the integration of Ag plasmonic nanoparticles and nanoshells on the antireflection coating and the screen-printed fingers of monocrystalline silicon solar cells, respectively, by a single step and scalable modified electroless displacement method. As a consequence, up to 35.2% enhancement in the energy conversion efficiency has been achieved due to the plasmonic broadband light trapping and the significant reduction in the series resistance. More importantly, this method can further increase the efficiency of the best performing textured solar cells from 18.3% to 19.2%, producing the highest efficiency cells exceeding the state-of-the-art efficiency of the standard screen-printed solar cells. The dual functions of the Ag nanostructures, reported for the first time here, present a clear contrast to the previous works, where plasmonic nanostructures were integrated into solar cells to achieve the short-circuit current enhancement predominately. Our method offers a facile, cost-effective and scalable pathway for metallic nanostructures to be used to dramatically boost the overall efficiency of the optically thick crystalline silicon solar cells. PMID:23037536

  6. Engineering the unitary charge conjugation operator of quantum field theory for particle–antiparticle using trapped ions and light fields in cavity QED

    International Nuclear Information System (INIS)

    In this paper we present a method to engineer the unitary charge conjugation operator, as given by quantum field theory, in the highly controlled context of quantum optics, thus allowing one to simulate the creation of charged particles with well-defined momenta simultaneously with their respective antiparticles. Our method relies on trapped ions driven by a laser field and interacting with a single mode of a light field in a high Q cavity. (paper)

  7. CAPTURE OF Tuta absoluta (Meyrick (LEPIDOPTERA: GELECHIIDAE WITH LIGHT TRAP IN TOMATO CROP CAPTURA DE Tuta absoluta (Meyrick (LEPIDOPTERA: GELECHIIDAE COM ARMADILHA LUMINOSA NA CULTURA DO TOMATEIRO TUTORADO

    Directory of Open Access Journals (Sweden)

    Aline Cavalcante Rodrigues de Oliveira

    2008-09-01

    Full Text Available

    The tomato leafminer (Tuta absoluta represents a serious problem for the tomato crop, not only due to the intensity of its attack, but also to its occurrence during all the crop cycle. In Brazil, this pest has been controlled almost exclusively with insecticides, what is undesirable for economic and environmental reasons. In order to get more information on the control of this pest this research was carried out, in Ouro Verde (Goiás State, Brazil, from September through October 2002, to evaluate the use of light  traps for capture of adult T. absoluta specimens. The treatments used were: 1 black lamp; 2 BLB lamp; 3 Grolux lamp; and 4 fluorescent daylight lamp. The experimental design used was randomized complete blocks with four replications. The parameter to evaluate treatment capture efficiency was the counting of the adult T. absoluta specimens trapped. The results showed that the BLB and ultraviolet lamps were the most efficient treatments. Therefore, both can help to control the tomato leafminer in integrated pest management programs.

    KEY-WORDS: Tomato pinworm; integrated pest management; tomato.

    A traça-do-tomateiro (Tuta absoluta representa um sério problema à tomaticultura, não somente pela intensidade de ataque, mas também por sua ocorrência durante todo o ciclo da cultura. No Brasil, esta praga tem sido controlada, quase exclusivamente, com inseticidas, o que é indesejável, tanto por motivos econômicos, quanto ambientais. Visando a obter maiores informa

  8. Enhanced photo-sensitivity through an increased light-trapping on Si by surface nano-structuring using MWCNT etch mask

    Directory of Open Access Journals (Sweden)

    Hwang Min-Young

    2011-01-01

    Full Text Available Abstract We demonstrate an enhanced photo-sensitivity (PS through an increased light-trapping using surface nano-structuring technique by inductively coupled plasma (ICP etching on multi-walled carbon nanotube (MWCNT etch masked Si with hexamethyl-disilazane (HMDS dispersion. In order for a systematic comparison, four samples are prepared, respectively, by conventional photolithography and ICP etching using MWCNT as a etch mask. MWCNT-etched Si with HMDS dispersion shows the highest RMS roughness and the lowest reflectance of the four. Two test device structures are fabricated with active regions of bare-Si as a reference and MWCNT etch masked Si with HMDS dispersion. The increased light-trapping was most significant at mid-UV, somewhat less at visible and less noticeable at infrared. With an ICP-etched Si using CNT HMDS dispersion, PS is very sharply increased. This result can lead to applications in optoelectronics where the enhancement in light-trapping is important.

  9. Screening of LED light source of the adapter solar trap lamp for trapping the citrus psyllid%适配太阳能诱虫器诱杀柑橘木虱LED光源的筛选

    Institute of Scientific and Technical Information of China (English)

    林雄杰; 范国成; 胡菡青; 阮传清; 蔡子坚; Xia Yulu; 杜云贵; 刘波

    2013-01-01

    The citrus psyllid is the vector of Huanglongbing.In order to control citrus psyllid and prevent disease,screening of LED light source adapter solar trap lamp for citrus psyllid by using reaction vessel of insect behavior was carried out in the laboratory.The results showed that the phototaxis of 1 800 1x and 4 310 lx blue and green light sources (wavelength 460 nm and 531 nm) were best on the illumination duration of 17 h.It was also found that the phototaxis of citrus psyllid adults was positively correlated with light intensity and light duration under the same wavelength condition.It might provide an effective theoretical basis for the LED light source for forecasting and trapping citrus psyllid in the field in the future.%柑橘木虱(Dia phorina citri)是柑橘黄龙病的传播媒介.为达到治虫防病的目的,在室内利用昆虫行为反应器开展适配太阳能诱虫器的LED光源筛选,结果表明:柑橘木虱成虫对光照强度分别为1 800 lx和4 310 lx的蓝光和绿光(波长分别为460 nm和531 nm)在光照时长为17 h时的趋光性最佳,相同波长条件下,其趋光性与光照强度和光照时长成正相关.该研究结果为进一步探索适宜田间柑橘木虱测报和高效诱杀的LED光源提供理论依据.

  10. Flebotomíneos (Diptera, Psychodidae) na Amazônia: II. Listagem das espécies coletadas na bacia petrolífera no Rio Urucu, Amazonas, Brasil, utilizando diferentes armadilhas e iscas Sandflies (Diptera, Psychodidae) in the Amazon: II. Cheek list of the species collected in the petroleum basin of the Urucu River, Amazonas, Brazil using differents traps and baits

    OpenAIRE

    Eloy G. Castellón; Fé, Nelson F; Paulo F. Buhrnheim; Flavio A. Fé

    2000-01-01

    A sandfly survey was carried out in 100 x 150 m patches of primary forest submitted to recent deforestation in order to determine its species composition 10-30 days after clearing. The following collecting methods were used: CDC traps whit black light; Malaise traps placed at 0.5, 1, 5 and 10m up from the the soil surface; Pennsylvania traps whit black light; Malaise traps, tree-base catches and human baits. A total of 2810 specimens of Lutzomyia França, 1924 and one species of Brumptomyia Fr...

  11. Atomic density and light intensity dependences of the Rb2 molecule formation rate constant in a magneto-optical trap

    International Nuclear Information System (INIS)

    In this paper, we report the measurement of molecular formation rate constant of Rb2 directly in a magneto-optical trap (MOT). The ground state molecules are detected by two-photon ionization, resonantly enhanced through the intermediate a3Σu+→23Πg molecular band. We have measured the rate constant as a function of atomic density to conclude that the molecules Rb2 are formed in the MOT by a photoassociation process caused by the trapping laser beams. We also measured the rate constant as a function of the trapping laser intensity. The results here presented are of importance to future experiments involving trapping of cold molecules

  12. Cylinder light concentrator and absorber: theoretical description

    OpenAIRE

    Kildishev, Alexander V.; Prokopeva, Ludmila J.; Narimanov, Evgenii

    2010-01-01

    We present a detailed theoretical description of a broadband omnidirectional light concentrator and absorber with cylinder geometry. The proposed optical "trap" captures nearly all the incident light within its geometric cross-section, leading to a broad range of possible applications from solar energy harvesting to thermal light emitters and optoelectronic components. We have demonstrated that an approximate lamellar black-hole with a moderate number of homogeneous layers, while giving the d...

  13. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China ? interpretations of atmospheric measurements during EAST-AIRE

    OpenAIRE

    Yang, M.; S. G. Howell; Zhuang, J.; Huebert, B. J.

    2008-01-01

    Black carbon, brown carbon, and mineral dust are three of the most important light absorbing aerosols. Their optical properties differ greatly and are distinctive functions of the wavelength of light. Most optical instruments that quantify light absorption, however, are unable to distinguish one type of absorbing aerosol from another. It is thus instructive to separate total absorption from these different light absorbers to gain a better understanding of the optical characteristics of each a...

  14. Nonlinear time series analysis of the light curves from the black hole system GRS1915+105

    Institute of Scientific and Technical Information of China (English)

    K.P Harikrishnan; Ranjeev Misra; G.Ambika

    2011-01-01

    GRS 1915+105 is a prominent black hole system exhibiting variability over a wide range of time scales and its observed light curves have been classified into 12 temporal states. Here we undertake a complete analysis of these light curves from all the states using various quantifiers from nonlinear time series analysis, such as the correlation dimension (D2), the correlation entropy (K2), singular value decomposition (SVD) and the multifractal spectrum (f(α) spectrum). An important aspect of our analysis is that, for estimating these quantifiers, we use algorithmic schemes which we have recently proposed and successfully tested on synthetic as well as practical time series from various fields. Though the schemes are based on the conventional delay embedding technique, they are automated so that the above quantitative measures can be computed using conditions prescribed by the algorithm and without any intermediate subjective analysis. We show that nearly half of the 12 temporal states exhibit deviation from randomness and their complex temporal behavior could be approximated by a few (three or four) coupled ordinary nonlinear differential equations. These results could be important for a better understanding of the processes that generate the light curves and hence for modeling the temporal behavior of such complex systems.To our knowledge, this is the first complete analysis of an astrophysical object (let alone a black hole system) using various techniques from nonlinear dynamics.

  15. Shining Light on Quantum Gravity with Pulsar-Black Hole Binaries

    CERN Document Server

    Estes, John; Lippert, Matthew; Simonetti, John H

    2016-01-01

    Pulsars are some of the most accurate clocks found in nature, while black holes offer a unique arena for the study of quantum gravity. As such, pulsar-black hole (PSR-BH) binaries provide ideal astrophysical systems for detecting effects of quantum gravity. With the success of aLIGO and the advent of instruments like the SKA and eLISA, the prospects for discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed resolutions to the black hole information paradox. We propose using timing signals from a pulsar beam passing through the region near a BH event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a black hole lead to an increase in the measured root-mean-square deviation of arrival times of pulsar pulses traveling near the horizon. This allows for a clear observational test of the nonviolent nonlocality proposal for black hole information escape. For a ...

  16. Light as a factor affecting the concentration of simple organics in the traps of aquatic carnivorous Utricularia species

    Czech Academy of Sciences Publication Activity Database

    Borovec, Jakub; Sirová, Dagmar; Adamec, Lubomír

    2012-01-01

    Roč. 181, č. 2 (2012), s. 159-166. ISSN 1863-9135 R&D Projects: GA ČR(CZ) GAP504/11/0783 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:60077344 Keywords : Utricularia * trap fluid * organic compounds Subject RIV: EF - Botanics Impact factor: 1.190, year: 2012

  17. Effect of irradiation with black light fluorescent lamp on coloration and hardness of strawberry [Fragaria ananassa] fruits

    International Nuclear Information System (INIS)

    The effect of irradiation by black light fluorescent lamp on the coloration and hardness of detached strawberry fruits was studied. Only the coloring of fruits (var. Toyonoka) that had started to pigment was accelerated by lamp irradiation. Maintaining the irradiation distance and ambient temperature after treatment was very important to obtain the maximum effect, and the action of lamps was restricted to the irradiated parts. The accelerating effect of a lamp on coloration was observed in all 3 of other varieties examined, and in some varieties, the level of anthocyanin concentration in fruits was greater than that in ripening stage. However, the lamp did not affect the hardness of fruits

  18. Shining Light on Quantum Gravity with Pulsar-Black Hole Binaries

    OpenAIRE

    Estes, John; Kavic, Michael; Lippert, Matthew; Simonetti, John H.

    2016-01-01

    Pulsars are some of the most accurate clocks found in nature, while black holes offer a unique arena for the study of quantum gravity. As such, pulsar-black hole (PSR-BH) binaries provide ideal astrophysical systems for detecting effects of quantum gravity. With the success of aLIGO and the advent of instruments like the SKA and eLISA, the prospects for discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed reso...

  19. In-vacuum scattered light reduction with black cupric oxide surfaces for sensitive fluorescence detection.

    Science.gov (United States)

    Norrgard, E B; Sitaraman, N; Barry, J F; McCarron, D J; Steinecker, M H; DeMille, D

    2016-05-01

    We demonstrate a simple and easy method for producing low-reflectivity surfaces that are ultra-high vacuum compatible, may be baked to high temperatures, and are easily applied even on complex surface geometries. Black cupric oxide (CuO) surfaces are chemically grown in minutes on any copper surface, allowing for low-cost, rapid prototyping, and production. The reflective properties are measured to be comparable to commercially available products for creating optically black surfaces. We describe a vacuum apparatus which uses multiple blackened copper surfaces for sensitive, low-background detection of molecules using laser-induced fluorescence. PMID:27250404

  20. FLIGHT OF THE EUROPEAN CORN BORER (OSTRINIA NUBILALIS HBN.) AS FOLLOWED BY LIGHT- AND PHEROMONE TRAPS IN VÁRDA AND BALATONMAGYARÓD 2002

    OpenAIRE

    S KESZTHELYI; Z LENGYEL

    2003-01-01

    The investigations were made in 2002 in the outskirts of two settlements: Balatonmagyaród (Zala county) and Várda (Somogy county). In the corn fields Jermy’s light- and Arco-Pheron MZ pheromone traps were placed in order to follow up the course of flight. From the material collected the corn borer specimens were isolated, then separated by sex. The generation number of the populations appearing on the respective areas, and the characteristics of the flight were determined. The meteorological ...

  1. Nobel Prize in Physics 1997 "for development of methods to cool and trap atoms with laser light" : Steven Chu, Claude Cohen-Tannoudji and William D. Phillips

    CERN Multimedia

    Audiovideo service

    1998-01-01

    Prof. C. Cohen-Tannoudji presents "manipulating atoms with light" . By using quasi-resonant exchanges of energy, linear and angular momentum between atoms and photons, it is possible to polarize atoms, to displace their energy levels and to control their position and their velocity. A few physical mechanisms allowing one to trap atoms and to cool them in the microKelvin, and even in the nanoKelvin range, will be described. Various possible applications of such ultracold atoms will be also reviewed.

  2. Trapped and marginally trapped surfaces in Weyl-distorted Schwarzschild solutions

    OpenAIRE

    Pilkington, Terry; Melanson, Alexandre; Fitzgerald, Joseph; Booth, Ivan

    2011-01-01

    To better understand the allowed range of black hole geometries, we study Weyl-distorted Schwarzschild solutions. They always contain trapped surfaces, a singularity and an isolated horizon and so should be understood to be (geometric) black holes. However we show that for large distortions the isolated horizon is neither a future outer trapping horizon (FOTH) nor even a marginally trapped surface: slices of the horizon cannot be infinitesimally deformed into (outer) trapped surfaces. We cons...

  3. FLIGHT OF THE EUROPEAN CORN BORER (OSTRINIA NUBILALIS HBN. AS FOLLOWED BY LIGHT- AND PHEROMONE TRAPS IN VÁRDA AND BALATONMAGYARÓD 2002

    Directory of Open Access Journals (Sweden)

    S KESZTHELYI

    2003-07-01

    Full Text Available The investigations were made in 2002 in the outskirts of two settlements: Balatonmagyaród (Zala county and Várda (Somogy county. In the corn fields Jermy’s light- and Arco-Pheron MZ pheromone traps were placed in order to follow up the course of flight. From the material collected the corn borer specimens were isolated, then separated by sex. The generation number of the populations appearing on the respective areas, and the characteristics of the flight were determined. The meteorological data of the areas obtained from Keszthely and Kaposvár for the period concerned were compared woth the data of flight. In that way the effect of the different meteorological elements on the flight and on the trend of the female ratio could be established. The results showed the presence of two-generation corn borer populations in both places. In Balatonmagyaród the first- while in Várda the second generation proved larger. The meteorological elements significally influenced the possibility of trapping in the case of both sexes. As for the female sex ratio close correlations were found with the minimum (P=100%; r=0.297-, maximum (P=99.9%; r=0.267-, average (P=100%; r=0.308 temperature and precipitation (P=98.2%; r=0.187 data. Considerable asynchrony was observed between the data obtained with the two prognostic means that we ascribed to the unreliability of the pheromone trap.

  4. Near perfect light trapping in a 2D gold nanotrench grating at oblique angles of incidence and its application for sensing.

    Science.gov (United States)

    Guo, Junpeng; Li, Zhitong; Guo, Hong

    2016-07-25

    A two-dimensional nanotrench cavity grating on a thick gold film was fabricated by using e-beam lithography. Optical reflection spectra from the fabricated device were measured at oblique angles of incidence for TE and TM polarizations. Near perfect light absorption was observed at different wavelengths for TE and TM polarizations at oblique angles of incidence. The peak absorption wavelength of TM polarization red-shifts significantly as angle of incidence increases. The peak absorption wavelength of TE polarization blue-shifts slightly as incident angle increases. Using finite-difference time-domain (FDTD) simulations, two orders of magnitude magnetic field enhancement was revealed inside nanotrenches, indicating strong light trapping inside the nanostructure. The fabricated device was investigated as a refractive index chemical sensor. It was found that sensitivity increases for TM polarization and decreases for TE polarization when angle of incidence increases from zero. PMID:27464175

  5. An efficient light trapping scheme based on textured conductive photonic crystal back reflector for performance improvement of amorphous silicon solar cells

    International Nuclear Information System (INIS)

    An efficient light trapping scheme named as textured conductive photonic crystal (TCPC) has been proposed and then applied as a back-reflector (BR) in n-i-p hydrogenated amorphous silicon (a-Si:H) solar cell. This TCPC BR combined a flat one-dimensional photonic crystal and a randomly textured surface of chemically etched ZnO:Al. Total efficiency enhancement was obtained thanks to the sufficient conductivity, high reflectivity and strong light scattering of the TCPC BR. Unwanted intrinsic losses of surface plasmon modes are avoided. An initial efficiency of 9.66% for a-Si:H solar cell was obtained with short-circuit current density of 14.74 mA/cm2, fill factor of 70.3%, and open-circuit voltage of 0.932 V.

  6. Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front.

    Science.gov (United States)

    Uhrenfeldt, C; Villesen, T F; Têtu, A; Johansen, B; Larsen, A Nylandsted

    2015-06-01

    Plasmonic resonances in metal nanoparticles are considered candidates for improved thin film Si photovoltaics. In periodic arrays the influence of collective modes can enhance the resonant properties of such arrays. We have investigated the use of periodic arrays of Al nanoparticles placed on the front of a thin film Si test solar cell. It is demonstrated that the resonances from the Al nanoparticle array causes a broadband photocurrent enhancement ranging from the ultraviolet to the infrared with respect to a reference cell. From the experimental results as well as from numerical simulations it is shown that this broadband enhancement is due to single particle resonances that give rise to light-trapping in the infrared spectral range and to collective resonances that ensure an efficient in-coupling of light in the ultraviolet-blue spectral range. PMID:26072877

  7. Using chemical wet-etching methods of textured AZO films on a-Si:H solar cells for efficient light trapping

    International Nuclear Information System (INIS)

    In this paper, Al-doped ZnO (AZO) films are deposited on glasses substrate by RF magnetron sputtering. The optical, electrical and morphological properties of AZO films textured by wet-etching with different etchants, H3PO4, HCl, and HNO3 are studied. It is found that the textured structure could enhance the light scattering and light trapping ability of amorphous silicon solar cells. The textured AZO film etched with HNO3 exhibits optimized optical properties (T% ≧ 80% over entire wavelength, haze ratio > 40% at 550 nm wavelength) and excellent electrical properties (ρ = 5.86 × 10−4 Ωcm). Scanning electron microscopy and Atomic force microscopy are used to observe surface morphology and average roughness of each textured AZO films. Finally, the textured AZO films etched by H3PO4, HCl and HNO3 were applied to front electrode layer for p–i–n amorphous silicon solar cells. The highest conversion efficiency of amorphous silicon solar cell fabricated on HNO3-etched AZO film was 7.08% with open-circuit voltage, short-circuit current density and fill factor of 895 mV, 14.92 mA/cm2 and 0.56, respectively. It shows a significantly enhancement in the short-circuit current density and conversion efficiency by 16.2% and 20.2%, respectively, compared with the solar cell fabricated on as-grown AZO film. - Highlights: • The textured surface enhances light scattering and light trapping ability. • The HNO3-etched AZO film exhibits excellent optical and electrical properties. • The efficiency of a-Si:H solar cell fabricated on HNO3-etched AZO film was 7.08%. • The short-circuit current density enhances to 16.2%. • The conversion efficiency enhances to 20.2%

  8. ZnO/a-Si distributed Bragg reflectors for light trapping in thin film solar cells from visible to infrared range

    Science.gov (United States)

    Chen, Aqing; Yuan, Qianmin; Zhu, Kaigui

    2016-01-01

    Distributed Bragg reflectors (DBRs) consisting of ZnO and amorphous silicon (a-Si) were prepared by magnetron sputtering method for selective light trapping. The quarter-wavelength ZnO/a-Si DBRs with only 6 periods exhibit a peak reflectance of above 99% and have a full width at half maximum that is greater than 347 nm in the range of visible to infrared. The 6-pair reversed quarter-wavelength ZnO/a-Si DBRs also have a peak reflectance of 98%. Combination of the two ZnO/a-Si DBRs leads to a broader stopband from 686 nm to 1354 nm. Using the ZnO/a-Si DBRs as the rear reflector of a-Si thin film solar cells significantly increases the photocurrent in the spectrum range of 400-1000 nm, in comparison with that of the cells with Al reflector. The obtained results suggest that ZnO/a-Si DBRs are promising reflectors of a-Si thin-film solar cells for light trapping.

  9. Null Trajectories and Bending of Light in Charged Black Holes with Quintessence

    Science.gov (United States)

    Fernando, Sharmanthie; Meadows, Scott; Reis, Kevon

    2015-10-01

    We have studied null geodesics of the charged black hole surrounded by quintessence. Quintessence is a candidate for dark energy and is represented by a scalar field. Here, we have done a detailed study of the photon trajectories. The exact solutions for the trajectories are obtained in terms of the Jacobi-elliptic integrals for all possible energy and angular momentum of the photons. We have also studied the bending angle using the Rindler and Ishak method.

  10. Null trajectories and bending of light in charged black holes with quintessence

    CERN Document Server

    Fernando, Sharmanthie; Reis, Kevon

    2014-01-01

    We have studied null geodesics of the charged black hole surrounded by quintessence. Quintessence is a candidate for dark energy and is represented by a scalar field. Here, we have done a detailed study of the photon trajectories. The exact solutions for the trajectories are obtained in terms of the Jacobi-elliptic integrals for all possible energy and angular momentum of the photons. We have also studied the bending angle using the Rindler and Ishak method.

  11. Contact photolithography using a carbon-black embedded soft photomask and ultraviolet light emitting diodes with application on patterned sapphire substrates.

    Science.gov (United States)

    Hsieh, Heng; Wu, Chun-Ying; Lee, Yung-Chun

    2016-04-18

    This paper presents a contact photolithography method for large-area ultraviolet (UV) patterning using a soft polydimethylsiloxane (PDMS) photomask and a planar light source consisting of arrayed light-emitting diodes (LEDs). With simple design and construction, the UV light source can achieve uniformly distributed UV light intensity over an area of 4" in diameter but its divergent angle is 15°. To overcome this large divergent angle, a PDMS soft mold embedded with carbon-black inserts as the UV light blocking materials is applied. It is demonstrated that, when increasing the aspect ratio of the carbon-black inserts, one can achieve excellent UV patterning results. Both experimental data and simulation results are presented. This contact photolithography system has been successfully used for manufacturing patterned sapphire substrates (PSSs) in LED industry. The advantages and potential applications of the proposed method will be addresses. PMID:27137297

  12. The trade-off of light trapping between top and bottom cell in micromorph tandem solar cells with sputtering ZnO:Al glass substrate

    Science.gov (United States)

    Bai, Lisha; Liu, Bofei; Fan, Jun; Zhang, Dekun; Wei, Changchun; Sun, Jian; Zhao, Ying; Zhang, Xiaodan

    2014-11-01

    A simulated and experimental investigation of the trade-off between light trapping and current matching in p-i-n structured a-Si:H/μc-Si:H tandem solar cells is presented, which aims to address the limited short circuit current density (Jsc) that results from the low long-wavelength light scattering of the fluorine-doped tin oxide (SnO2:F) substrates typically used. To this end, the mismatch of the Jsc between the top and bottom cells is reduced by utilizing a ZnO:Al substrate with optimized long-wavelength light scattering properties as the front contact, thereby improving the response of the bottom cell at the expense of the lower top cell's Jsc yet. A trade-off between the top and bottom cell's light response is subsequently found with SnO2 or ZnO:Al as a substrate, by introducing an n-type μc-SiOx intermediate reflector (IR) between the two component cells. An initial efficiency based on an approximate current matching of 11.90% is achieved for a-Si:H/μc-Si:H tandem solar cell by adopting a magnetron-sputtered and texture-etched ZnO:Al substrate and an optimized n-type μc-SiOx IR.

  13. Synergistic effect of single-electron-trapped oxygen vacancies and carbon species on the visible light photocatalytic activity of carbon-modified TiO2

    International Nuclear Information System (INIS)

    Carbon-modified TiO2 (CT) nanoparticles were prepared via a two-step method of heat treatment without the resorcinol-formaldehyde (RF) polymer. As-prepared CT nanoparticles were characterized by means of X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (UV–Vis/DRS), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms, thermal analysis (TA), electron spin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). The visible light photocatalytic activities were evaluated on the basis of the degradation of methyl orange (MO). The synergistic effect of single-electron-trapped oxygen vacancies (SETOVs) and the carbon species on the visible light photocatalytic activities of the CT nanoparticles were discussed. It was found that the crystalline phase, the morphology, and particle size of the CT nanoparticles depended on the second heat-treatment temperature instead of the first heat-treatment temperature. The visible light photocatalytic activities were attributed to the synergistic effect of SETOVs and the carbon species, and also depended on the specific surface area of the photocatalysts. - Highlights: • Carbon-modified TiO2 particles have been prepared without RF polymer. • The visible light photocatalytic activities of the particles have been evaluated. • The band gap energy structure of the carbon-modified TiO2 has been proposed. • Synergistic effect of SETOVs and carbon species has been discussed. • The activities also depend on the specific surface area of the catalysts

  14. MT-1二氧化碳诱蚊器诱捕白纹伊蚊效果观察%Evaluation of the trapping effect of MT-1 carbon dioxide light-trap on adult Aedes albopictus

    Institute of Scientific and Technical Information of China (English)

    葛军旗; 张洪江; 王晨; 李书明

    2011-01-01

    Objective To evaluate the trapping effect of MT-1 carbon dioxide light-traps on adult Aedes albopictus. Methods A factorial design was conducted to compare six CO2 flow groups and one blank control at 7 sampled sites during 10 surveillance periods. The traps were placed at each sample site to collect mosquitoes, and were replaced with new devices with the flow rate adjusted every two hours between 02:00-22:00. Results (1) A total of 1122 adult mosquitoes were collected and identified as two species, including 939 Ae. Albopictus; (2) Mosquitoes were collected more efficiently in the CO2 flow groups (F=3.05, P=0.01), and the highest number of collected mosquitoes was observed at a flow rate of 6 L/min; (3) The numbers of captured Ae. Albopictus were statistically different in distinct surveillance periods (F=2.98, P=0.03), and most of them were captured during 18:00-20:00 and 04:00-06:00; (4) No difference was found in the captured Ae. Albopictus at the sample sites (F=0.47, P=0.80). Conclusion The MT-1 carbon dioxide light-traps could be used to collect adult Ae. Albopictus at a recommended CO2 flow rate of 6 L/min at dusk.%目的 评估MT-1二氧化碳(CO2)诱蚊器诱捕白纹伊蚊的效果.方法 采用析因设计方案,设6个CO2流量组和1个CO2空白对照组、10个监测时段和7个取样点,在每个取样点布放诱蚊灯,每2h调整诱蚊器的CO2流量并更换捕蚊笼,将采集到的蚊虫分类并计数,监测时间为02:00-22:00,探讨CO2流量、监测时段和取样点对MT-1 CO2诱蚊器诱捕白纹伊蚊效果的影响.结果 (1)共捕获蚊类1122只,其中白纹伊蚊占83.69%;(2)CO2流量组对白纹伊蚊的诱捕效果高于对照组(F=3.05,P=0.01),流量为6 L/min时捕获的白纹伊蚊最多;(3)不同监测时段对白纹伊蚊捕获数量的影响差异有统计学意义(F=2.98,P=0.03),18:00-20:00和04:00-06:00两个时段捕获的白纹伊蚊数量较多;(4)各取样点捕获的白纹伊蚊差异无统计学意义(F=0.47,P

  15. Testing the nature of the supermassive black hole candidate in SgrA* with light curves and images of hot spots

    International Nuclear Information System (INIS)

    General relativity makes clear predictions about the spacetime geometry around black holes. In the near future, new facilities will have the capability to explore the metric around SgrA*, the supermassive black hole candidate at the center of our Galaxy, and to open a new window to test the Kerr black hole hypothesis. In this paper, we compute light curves and images associated with compact emission regions (hot spots) orbiting around Kerr and non-Kerr black holes. We study how the analysis of the properties of the radiation emitted by a hot spot can be used to test the Kerr nature of SgrA*. We find that the sole observation of the hot spot light curve can at most constrain a combination of the black hole spin and of possible deviations from the Kerr solution. This happens because the same orbital frequency around a Kerr black hole can be found for a non-Kerr object with a different spin parameter. Second order corrections in the light curve due to the background geometry are typically too small to be identified. While the observation of the hot spot centroid track can potentially bound possible deviations from the Kerr solution, that is out of reach for the near future for the Very Large Telescope Interferometer instrument GRAVITY. The Kerr black hole hypothesis could really be tested in the case of the discovery of a radio pulsar in a compact orbit around SgrA*. Radio observations of such a pulsar would provide precise estimates of the mass and the spin of SgrA*, and the combination of these measurements (probing the weak field) with the hot spot light curve information (probing the strong field) may constrain/find possible deviations from the Kerr solution with quite good precision.

  16. The secondary maxima in black hole X-ray nova light curves - Clues toward a complete picture

    Science.gov (United States)

    Chen, Wan; Livio, Mario; Gehrels, Neil

    1993-01-01

    We study the secondary maxima observed commonly in the X-ray/optical light curves of black hole X-ray novae and show that they can play an important role in our understanding of the X-ray nova phenomenon. We discuss the observational characteristics of the secondary maxima and possible mechanisms to produce them. We propose a complete scenario for black hole X-ray nova events. The main outburst is caused by a disk instability. The second maximum is caused by X-ray evaporation of the matter near the inner Lagrangian (L1) region when the disk becomes optically thin. The third maximum (or the final minioutburst) is due to a mass transfer instability caused by hard X-ray heating of the subphotospheric layers of the secondary during the outburst. We predict that the newly discovered X-ray nova GRO J0422 + 32 may develop a final minioutburst in early 1993 and that its binary orbital period is less than 7 hr.

  17. Lamp-lit bridges as dual light-traps for the night-swarming mayfly, Ephoron virgo: interaction of polarized and unpolarized light pollution.

    Directory of Open Access Journals (Sweden)

    Denes Szaz

    Full Text Available Ecological photopollution created by artificial night lighting can alter animal behavior and lead to population declines and biodiversity loss. Polarized light pollution is a second type of photopollution that triggers water-seeking insects to ovisposit on smooth and dark man-made objects, because they simulate the polarization signatures of natural water bodies. We document a case study of the interaction of these two forms of photopollution by conducting observations and experiments near a lamp-lit bridge over the river Danube that attracts mass swarms of the mayfly Ephoron virgo away from the river to oviposit on the asphalt road of the bridge. Millions of mayflies swarmed near bridge-lights for two weeks. We found these swarms to be composed of 99% adult females performing their upstream compensatory flight and were attracted upward toward unpolarized bridge-lamp light, and away from the horizontally polarized light trail of the river. Imaging polarimetry confirmed that the asphalt surface of the bridge was strongly and horizontally polarized, providing a supernormal ovipositional cue to Ephoron virgo, while other parts of the bridge were poor polarizers of lamplight. Collectively, we confirm that Ephoron virgo is independently attracted to both unpolarized and polarized light sources, that both types of photopollution are being produced at the bridge, and that spatial patterns of swarming and oviposition are consistent with evolved behaviors being triggered maladaptively by these two types of light pollution. We suggest solutions to bridge and lighting design that should prevent or mitigate the impacts of such scenarios in the future. The detrimental impacts of such scenarios may extend beyond Ephoron virgo.

  18. Lamp-Lit Bridges as Dual Light-Traps for the Night-Swarming Mayfly, Ephoron virgo: Interaction of Polarized and Unpolarized Light Pollution

    OpenAIRE

    Denes Szaz; Gabor Horvath; Andras Barta; Robertson, Bruce A.; Alexandra Farkas; Adam Egri; Nikolett Tarjanyi; Gergely Racz; Gyorgy Kriska

    2015-01-01

    Ecological photopollution created by artificial night lighting can alter animal behavior and lead to population declines and biodiversity loss. Polarized light pollution is a second type of photopollution that triggers water-seeking insects to ovisposit on smooth and dark man-made objects, because they simulate the polarization signatures of natural water bodies. We document a case study of the interaction of these two forms of photopollution by conducting observations and experiments near a ...

  19. Lamp-lit bridges as dual light-traps for the night-swarming mayfly, Ephoron virgo: interaction of polarized and unpolarized light pollution.

    Science.gov (United States)

    Szaz, Denes; Horvath, Gabor; Barta, Andras; Robertson, Bruce A; Farkas, Alexandra; Egri, Adam; Tarjanyi, Nikolett; Racz, Gergely; Kriska, Gyorgy

    2015-01-01

    Ecological photopollution created by artificial night lighting can alter animal behavior and lead to population declines and biodiversity loss. Polarized light pollution is a second type of photopollution that triggers water-seeking insects to ovisposit on smooth and dark man-made objects, because they simulate the polarization signatures of natural water bodies. We document a case study of the interaction of these two forms of photopollution by conducting observations and experiments near a lamp-lit bridge over the river Danube that attracts mass swarms of the mayfly Ephoron virgo away from the river to oviposit on the asphalt road of the bridge. Millions of mayflies swarmed near bridge-lights for two weeks. We found these swarms to be composed of 99% adult females performing their upstream compensatory flight and were attracted upward toward unpolarized bridge-lamp light, and away from the horizontally polarized light trail of the river. Imaging polarimetry confirmed that the asphalt surface of the bridge was strongly and horizontally polarized, providing a supernormal ovipositional cue to Ephoron virgo, while other parts of the bridge were poor polarizers of lamplight. Collectively, we confirm that Ephoron virgo is independently attracted to both unpolarized and polarized light sources, that both types of photopollution are being produced at the bridge, and that spatial patterns of swarming and oviposition are consistent with evolved behaviors being triggered maladaptively by these two types of light pollution. We suggest solutions to bridge and lighting design that should prevent or mitigate the impacts of such scenarios in the future. The detrimental impacts of such scenarios may extend beyond Ephoron virgo. PMID:25815748

  20. Distinguishing triplet energy transfer and trap-assisted recombination in multi-color organic light-emitting diode with an ultrathin phosphorescent emissive layer

    International Nuclear Information System (INIS)

    An ultrathin layer of deep-red phosphorescent emitter tris(1-phenylisoquinoline) iridium (III) (Ir(piq)3) is inserted within different positions of the electron blocking layer fac-tris (1-phenylpyrazolato-N,C2′)-iridium(III) (Ir(ppz)3) to distinguish the contribution of the emission from the triplet exciton energy transfer/diffusion from the adjacent blue phosphorescent emitter and the trap-assisted recombination from the narrow band-gap emitter itself. The charge trapping effect of the narrow band-gap deep-red emitter which forms a quantum-well-like structure also plays a role in shaping the electroluminescent characteristics of multi-color organic light-emitting diodes. By accurately controlling the position of the ultrathin sensing layer, it is considerably easy to balance the white emission which is quite challenging for full-color devices with multiple emission zones. There is nearly no energy transfer detectable if 7 nm thick Ir(ppz)3 is inserted between the blue phosphorescent emitter and the ultrathin red emitter

  1. A study of aqueous solutions of nucleic acid constituents exposed to monochromatic 160 nm vacuum-UV light by spin-trapping method

    International Nuclear Information System (INIS)

    Spin-trapping technique was employed to detect and identify free radical intermediates produced in aqueous solutions of nucleic acid constituents (pyrimidine bases and pyrimidine nucleosides) after irradiation by monochromatic 160 nm vacuum-UV light from the electron storage ring. Short-lived free radicals produced in the molecules were converted into relatively long-lived free radicals (spin-adducts) by the reaction with MNP used as a spin trap. The resulting nitroxide radicals were subsequently analysed by esr. Clear evidence that most of the radicals were not formed by H-addition but formed by OH-addition at the C5 position of the 5,6 double bond were obtained for pyrimidine bases. For pyrimidine nucleosides, although the effect of H2O-D2O exchange was not recognized on resolution improvement of the hyperfine structure of the esr spectra, careful analysis of the hyperfine structure made it possible to identify the radical structures: OH-addition radicals at the C6 of the double bond of the base moiety in addition to the OH-addition radicals at the C5 position for all except for 2'-deoxycytidine. Evidence for the formation of free radicals at the sugar moiety was not clear. (author)

  2. Hawking radiation from an acoustic black hole on an ion ring.

    Science.gov (United States)

    Horstmann, B; Reznik, B; Fagnocchi, S; Cirac, J I

    2010-06-25

    In this Letter we propose to simulate acoustic black holes with ions in rings. If the ions are rotating with a stationary and inhomogeneous velocity profile, regions can appear where the ion velocity exceeds the group velocity of the phonons. In these regions phonons are trapped like light in black holes, even though we have a discrete field theory and a nonlinear dispersion relation. We study the appearance of Hawking radiation in this setup and propose a scheme to detect it. PMID:20867352

  3. Trapped and marginally trapped surfaces in Weyl-distorted Schwarzschild solutions

    CERN Document Server

    Pilkington, Terry; Fitzgerald, Joseph; Booth, Ivan

    2011-01-01

    To better understand the allowed range of black hole geometries, we study Weyl-distorted Schwarzschild solutions. They always contain trapped surfaces, a singularity and an isolated horizon and so should be understood to be (geometric) black holes. However we show that for large distortions the isolated horizon is neither a future outer trapping horizon (FOTH) nor even a marginally trapped surface: slices of the horizon cannot be infinitesimally deformed into (outer) trapped surfaces. We consider the implications of this result for popular quasilocal definitions of black holes.

  4. Using chemical wet-etching methods of textured AZO films on a-Si:H solar cells for efficient light trapping

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guo-Sheng; Li, Chien-Yu; Huang, Kuo-Chan; Houng, Mau-Phon, E-mail: mphoung@eembox.ncku.edu.tw

    2015-06-15

    In this paper, Al-doped ZnO (AZO) films are deposited on glasses substrate by RF magnetron sputtering. The optical, electrical and morphological properties of AZO films textured by wet-etching with different etchants, H{sub 3}PO{sub 4}, HCl, and HNO{sub 3} are studied. It is found that the textured structure could enhance the light scattering and light trapping ability of amorphous silicon solar cells. The textured AZO film etched with HNO{sub 3} exhibits optimized optical properties (T% ≧ 80% over entire wavelength, haze ratio > 40% at 550 nm wavelength) and excellent electrical properties (ρ = 5.86 × 10{sup −4} Ωcm). Scanning electron microscopy and Atomic force microscopy are used to observe surface morphology and average roughness of each textured AZO films. Finally, the textured AZO films etched by H{sub 3}PO{sub 4}, HCl and HNO{sub 3} were applied to front electrode layer for p–i–n amorphous silicon solar cells. The highest conversion efficiency of amorphous silicon solar cell fabricated on HNO{sub 3}-etched AZO film was 7.08% with open-circuit voltage, short-circuit current density and fill factor of 895 mV, 14.92 mA/cm{sup 2} and 0.56, respectively. It shows a significantly enhancement in the short-circuit current density and conversion efficiency by 16.2% and 20.2%, respectively, compared with the solar cell fabricated on as-grown AZO film. - Highlights: • The textured surface enhances light scattering and light trapping ability. • The HNO{sub 3}-etched AZO film exhibits excellent optical and electrical properties. • The efficiency of a-Si:H solar cell fabricated on HNO{sub 3}-etched AZO film was 7.08%. • The short-circuit current density enhances to 16.2%. • The conversion efficiency enhances to 20.2%.

  5. Constructing and Using a Light Trap Harvester: Rural Technology for Mass Collection of Agoro Termites (Macrotermes subhylanus

    Directory of Open Access Journals (Sweden)

    M.A. Ayieko

    2011-02-01

    Full Text Available Entomophagy is now a growing industry in many parts of the world especially in the developing countries. Entrepreneurs in several parts of the world are making edible insects both palatable and marketable for income generation. The traditional use of insects as food continues to be widespread in tropical and subtropical countries and to provide significant nutritional, economic and ecological benefits for rural communities. Consumption of insects is considered to be a more efficient use of the world's resources to feed the growing population. Insect consumption is growing in many parts of the world and the winged termite in particular is consumed widely in various part of East Africa especially in the western part of Kenya. The traditional methods of collecting these termites vary considerably from one region to another. This paper highlights the indigenous ways of collecting Macrotermes subhylanus locally known as Agoro in the Lake Victoria region. The method was developed by integrating modern technology and the indigenous technological knowledge. The variation in the yield of the sample of Agoro mounds selected and the traps used are presented and discussed.

  6. Characterizing optical dipole trap via fluorescence of trapped cesium atoms

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; GENG; Tao; YAN; Shubin; LI; Gang; ZHANG; Jing; WANG; Junmin; PENG; Kunchi; ZHANG; Tiancai

    2006-01-01

    Optical dipole trap (ODT) is becoming an important tool of manipulating neutral atoms. In this paper ODT is realized with a far-off resonant laser beam strongly focused in the magneto-optical trap (MOT) of cesium atoms. The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the optical dipole trap simultaneously. The advantages of our experimental scheme are discussed, and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.

  7. Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon

    Directory of Open Access Journals (Sweden)

    D. A. Lack

    2010-01-01

    Full Text Available The presence of clear coatings on atmospheric black carbon (BC particles is known to enhance the magnitude of light absorption by the BC cores. Based on calculations using core/shell Mie theory, we demonstrate the enhancement of light absorption (EAbs by atmospheric black carbon (BC when coated in mildly absorbing material (CBrown is reduced, relative to the enhancement by non-absorbing coatings (CClear. This reduction, sensitive to CBrown shell thickness and imaginary refractive index (RI, can be up to 50% for 400 nm radiation and 25% averaged across the visible radiation spectrum for reasonable core/shell diameters. The enhanced direct radiative forcing possible due to the enhancement effect of CClear is therefore reduced if the coating is absorbing. Additionally, the need to explicitly treat BC as an internal, as opposed to external, mixture with CBrown is shown to be important to the calculated single scatter albedo only whensub models treat BC as large spherical cores (>50 nm. For smaller BC cores (or fractal agglomerates consideration of the BC and CBrown as an external mixture leads to relatively small errors in the particle single scatter albedo of <0.03. It is often assumed that observation of an absorption Angstrom exponent (AAE >1 indicates non-BC absorption. Here, it is shown that BC cores coated in CClearcan reasonably have an AAE of up to 1.6, a result that complicates the attribution of observed light absorption to CBrown within ambient particles. However, an AAE<1.6 does not exclude the possibility of CBrown, rather CBrown cannot be confidently assigned unless AAE>1.6. Comparison of these results to some ambient AAE data shows that large-scale attribution of CBrown is a challenging task using current in-situ measurement methods. We suggest that coincident measurements of particle core and

  8. The role of iron and black carbon in aerosol light absorption

    OpenAIRE

    Y. Derimian; Karnieli, A.; Y. J. Kaufman; Andreae, M. O.; Andreae, T.W.; Dubovik, O.; Maenhaut, W.; Koren, I.

    2007-01-01

    Iron is a major component of atmospheric aerosols, influencing the light absorption ability of mineral dust, and an important micronutrient that affects oceanic biogeochemistry. The regional distribution of the iron concentration in dust is important for climate studies; however, this is difficult to obtain since it requires in-situ aerosol sampling or simulation of complex natural processes. Simultaneous studies of aerosol chemical composition and radiometric measurements of aerosol optical ...

  9. The hard X-ray spectrum of NGC 1365: scattered light, not black hole spin

    CERN Document Server

    Miller, L

    2013-01-01

    Active Galactic Nuclei (AGN) show excess X-ray emission above 10 keV compared with extrapolation of spectra from lower energies. Risaliti et al. have recently attempted to model the hard X-ray excess in the type 1.8 AGN NGC 1365, concluding that the hard excess most likely arises from Compton-scattered reflection of X-rays from an inner accretion disk close to the black hole. Their analysis disfavored a model in which the hard excess arises from a high column density of circumnuclear gas partially covering a primary X-ray source, despite such components being required in the NGC 1365 data below 10 keV. Using a Monte Carlo radiative transfer approach, we demonstrate that this conclusion is invalidated by (i) use of slab absorption models, which have unrealistic transmission spectra for partial covering gas, (ii) neglect of the effect of Compton scattering on transmitted spectra and (iii) inadequate modeling of the expected spectrum of scattered X-rays. The scattered spectrum is geometry dependent and, for high...

  10. Etching process optimization using NH4Cl aqueous solution to texture ZnO:Al films for efficient light trapping in flexible thin film solar cells

    International Nuclear Information System (INIS)

    0.5 μm-thick aluminum-doped zinc oxide (ZnO:Al) films were deposited at 100 °C on polyethylene terephthalate substrates by Radio Frequency magnetron sputtering. The as-deposited films were compact and dense, showing grain sizes of 32.0 ± 6.4 nm and resistivities of (8.5 ± 0.7) × 10−4 Ω cm. The average transmittance in the visible wavelength range of the structure ZnO:Al/PET was around 77%. The capability of a novel two-step chemical etching using diluted NH4Cl aqueous solution to achieve efficient textured surfaces for light trapping was analyzed. The results indicated that both the aqueous solution and the etching method resulted appropriated to obtain etched surfaces with a surface roughness of 32 ± 5 nm, haze factors at 500 nm of 9% and light scattering at angles up to 50°. To validate all these results, a commercially ITO coated PET substrate was used for comparison.

  11. Etching process optimization using NH{sub 4}Cl aqueous solution to texture ZnO:Al films for efficient light trapping in flexible thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S., E-mail: susanamaria.fernandez@ciemat.es [CIEMAT, Departamento de Energias Renovables, Madrid (Spain); Abril, O. de [ISOM and Departamento de Fisica Aplicada, Escuela Tecnica Superior de Ingenieros de Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica, Universidad de Alcala, Departamento de Electronica, Alcala de Henares, Madrid (Spain); Gandia, J.J. [CIEMAT, Departamento de Energias Renovables, Madrid (Spain)

    2012-04-02

    0.5 {mu}m-thick aluminum-doped zinc oxide (ZnO:Al) films were deposited at 100 Degree-Sign C on polyethylene terephthalate substrates by Radio Frequency magnetron sputtering. The as-deposited films were compact and dense, showing grain sizes of 32.0 {+-} 6.4 nm and resistivities of (8.5 {+-} 0.7) Multiplication-Sign 10{sup -4} {Omega} cm. The average transmittance in the visible wavelength range of the structure ZnO:Al/PET was around 77%. The capability of a novel two-step chemical etching using diluted NH{sub 4}Cl aqueous solution to achieve efficient textured surfaces for light trapping was analyzed. The results indicated that both the aqueous solution and the etching method resulted appropriated to obtain etched surfaces with a surface roughness of 32 {+-} 5 nm, haze factors at 500 nm of 9% and light scattering at angles up to 50 Degree-Sign . To validate all these results, a commercially ITO coated PET substrate was used for comparison.

  12. A light-trapping strategy for nanocrystalline silicon thin-film solar cells using three-dimensionally assembled nanoparticle structures

    Science.gov (United States)

    Ha, Kyungyeon; Jang, Eunseok; Jang, Segeun; Lee, Jong-Kwon; Jang, Min Seok; Choi, Hoseop; Cho, Jun-Sik; Choi, Mansoo

    2016-02-01

    We report three-dimensionally assembled nanoparticle structures inducing multiple plasmon resonances for broadband light harvesting in nanocrystalline silicon (nc-Si:H) thin-film solar cells. A three-dimensional multiscale (3DM) assembly of nanoparticles generated using a multi-pin spark discharge method has been accomplished over a large area under atmospheric conditions via ion-assisted aerosol lithography. The multiscale features of the sophisticated 3DM structures exhibit surface plasmon resonances at multiple frequencies, which increase light scattering and absorption efficiency over a wide spectral range from 350-1100 nm. The multiple plasmon resonances, together with the antireflection functionality arising from the conformally deposited top surface of the 3D solar cell, lead to a 22% and an 11% improvement in power conversion efficiency of the nc-Si:H thin-film solar cells compared to flat cells and cells employing nanoparticle clusters, respectively. Finite-difference time-domain simulations were also carried out to confirm that the improved device performance mainly originates from the multiple plasmon resonances generated from three-dimensionally assembled nanoparticle structures.

  13. Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chutinan, Alongkarn; Li, Catherine Wei Wei; Kherani, Nazir P; Zukotynski, Stefan, E-mail: kherani@ecf.utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, ON, M9A 3W9 (Canada)

    2011-07-06

    Wave optics calculations are performed to determine the energy conversion efficiency of pyramidal textured thin c-Si solar cells. For an optimized 20 {mu}m thick c-Si device backed by a silver mirror an efficiency of 21.3% is obtained. An alternative approach to back reflection, submicrometre phase-shifted pyramid texturization on the back surface instead of the lossy metal mirror is demonstrated to yield a higher efficiency of 21.5%. More significantly the phase-shifted texturization approach permits light to enter the solar cell from both the front and back surfaces. For 10 {mu}m and 5 {mu}m thicknesses, efficiencies of 20.4% and 19.0% are obtained, respectively. Thus, the architecture is amenable to fabrication of high-efficiency ultra-thin bifacial solar cells. (fast track communication)

  14. Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells

    Science.gov (United States)

    Chutinan, Alongkarn; Li, Catherine Wei Wei; Kherani, Nazir P.; Zukotynski, Stefan

    2011-07-01

    Wave optics calculations are performed to determine the energy conversion efficiency of pyramidal textured thin c-Si solar cells. For an optimized 20 µm thick c-Si device backed by a silver mirror an efficiency of 21.3% is obtained. An alternative approach to back reflection, submicrometre phase-shifted pyramid texturization on the back surface instead of the lossy metal mirror is demonstrated to yield a higher efficiency of 21.5%. More significantly the phase-shifted texturization approach permits light to enter the solar cell from both the front and back surfaces. For 10 µm and 5 µm thicknesses, efficiencies of 20.4% and 19.0% are obtained, respectively. Thus, the architecture is amenable to fabrication of high-efficiency ultra-thin bifacial solar cells.

  15. Wave-optical studies of light trapping in submicrometre-textured ultra-thin crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Wave optics calculations are performed to determine the energy conversion efficiency of pyramidal textured thin c-Si solar cells. For an optimized 20 μm thick c-Si device backed by a silver mirror an efficiency of 21.3% is obtained. An alternative approach to back reflection, submicrometre phase-shifted pyramid texturization on the back surface instead of the lossy metal mirror is demonstrated to yield a higher efficiency of 21.5%. More significantly the phase-shifted texturization approach permits light to enter the solar cell from both the front and back surfaces. For 10 μm and 5 μm thicknesses, efficiencies of 20.4% and 19.0% are obtained, respectively. Thus, the architecture is amenable to fabrication of high-efficiency ultra-thin bifacial solar cells. (fast track communication)

  16. The effect of snow/sea ice type on the response of albedo and light penetration depth (e-folding depth to increasing black carbon

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2014-02-01

    Full Text Available The optical properties of snow/sea ice vary with age and by the processes they were formed, giving characteristic types of snow and sea ice. The response of albedo and light penetration depth (e-folding depth to increasing mass-ratio of black carbon is shown to depend on the snow and sea ice type and the thickness of the snow or sea ice. The response of albedo and e-folding depth of three different types of snow (cold polar snow, windpacked snow and melting snow and three sea ice (multi-year ice, first-year ice and melting sea ice to increasing black carbon is calculated using a coupled atmosphere–snow/sea ice radiative-transfer model (TUV-snow, over the optical wavelengths of 300–700 nm. The snow and sea ice types are defined by a scattering-cross section, density and asymmetry parameter. The relative change in albedo of a melting snowpack is a factor of four more responsive to additions of black carbon compared to cold polar snow over a black carbon increase from 1 to 50 ng g−1. While the relative change in albedo of a melting sea ice is a factor of two more responsive to additions of black carbon compared to multi-year ice for the same black carbon mass-ratio increase. The response of e-folding depth is effectively not dependent on snow/sea ice type. The albedo of sea ice is more responsive to increased mass-ratios of black carbon than snow.

  17. Broadband and Low-Loss Plasmonic Light Trapping in Dye-Sensitized Solar Cells Using Micrometer-Scale Rodlike and Spherical Core-Shell Plasmonic Particles.

    Science.gov (United States)

    Malekshahi Byranvand, Mahdi; Nemati Kharat, Ali; Taghavinia, Nima; Dabirian, Ali

    2016-06-29

    Dielectric scattering particles have widely been used as embedded scattering elements in dye-sensitized solar cells (DSCs) to improve the optical absorption of the device. Here we systematically study rodlike and spherical core-shell silica@Ag particles as more effective alternatives to the dielectric scattering particles. The wavelength-scale silica@Ag particles with sufficiently thin Ag shell support hybrid plasmonic-photonic resonance modes that have low parasitic absorption losses and a broadband optical response. Both of these features lead to their successful deployment in light trapping in high-efficiency DSCs. Optimized rodlike silica@Ag@silica particles improve the power conversion efficiency of a DSC from 6.33 to 8.91%. The dimension, surface morphology, and concentration of these particles are optimized to achieve maximal efficiency enhancement. The rodlike silica particles are prepared in a simple one-pot synthesis process and then are coated with Ag in a liquid-phase deposition process by reducing an Ag salt. The aspect ratio of silica rods is tuned by adjusting the temperature and duration of the growth process, whereas the morphology of Ag shell is tailored by controlling the reduction rate of Ag salt, where slower reduction in a polyol process gives a smoother Ag shell. Using optical calculations, the superior performance of the plasmonic core-shell particles is related to the large number of hybrid photonic-plasmonic resonance modes that they support. PMID:27300764

  18. Comment on "Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations" [J. Appl. Phys. 115, 094501 (2014)

    Science.gov (United States)

    Abenante, L.

    2015-01-01

    In the above paper, an analytical approach including a new solution to the differential diffusion equation in illuminated quasi-neutral regions (QNR) is exploited to calculate the short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and efficiency (η) of light-trapping (LT) c-Si solar cells with a given structure. Comparisons with numerical results calculated by the Silvaco ATLAS device simulator in the same LT cells show that the analytical results are systematically overestimated. According to the authors, the inaccuracies in Jsc, Voc, and η are due to the fact that assuming ideal collection from space-charge region (SCR) and using the superposition approximation introduce systematic errors into analytical models. In this comment, an analytical approach using reported solutions to the transport equations in QNR and SCR, where ideal collection from SCR is assumed and the superposition approximation is used, is shown to agree with both the Silvaco and PC1d numerical approaches in calculating Jsc, Voc, and η, in the same LT devices as considered in the commented paper. Reasons for the inaccuracies detected in the commented paper are suggested.

  19. Enhancing Light-Trapping Properties of Amorphous Si Thin-Film Solar Cells Containing High-Reflective Silver Conductors Fabricated Using a Nonvacuum Process

    Directory of Open Access Journals (Sweden)

    Jun-Chin Liu

    2014-01-01

    Full Text Available We proposed a low-cost and highly reflective liquid organic sheet silver conductor using back contact reflectors in amorphous silicon (a-Si single junction superstrate configuration thin-film solar cells produced using a nonvacuum screen printing process. A comparison of silver conductor samples with vacuum-system-sputtered silver samples indicated that the short-circuit current density (Jsc of sheet silver conductor cells was higher than 1.25 mA/cm2. Using external quantum efficiency measurements, the sheet silver conductor using back contact reflectors in cells was observed to effectively enhance the light-trapping ability in a long wavelength region (between 600 nm and 800 nm. Consequently, we achieved an optimal initial active area efficiency and module conversion efficiency of 9.02% and 6.55%, respectively, for the a-Si solar cells. The results indicated that the highly reflective sheet silver conductor back contact reflector layer prepared using a nonvacuum process is a suitable candidate for high-performance a-Si thin-film solar cells.

  20. General Laws of Black-Hole Dynamics

    OpenAIRE

    Hayward, Sean A.

    1993-01-01

    A general definition of a black hole is given, and general `laws of black-hole dynamics' derived. The definition involves something similar to an apparent horizon, a trapping horizon, defined as a hypersurface foliated by marginal surfaces of one of four non-degenerate types, described as future or past, and outer or inner. If the boundary of an inextendible trapped region is suitably regular, then it is a (possibly degenerate) trapping horizon. The future outer trapping horizon provides the ...

  1. Lighting

    Data.gov (United States)

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  2. Cylinder light concentrator and absorber: theoretical description.

    Science.gov (United States)

    Kildishev, Alexander V; Prokopeva, Ludmila J; Narimanov, Evgenii E

    2010-08-01

    We present a detailed theoretical description of a broadband omnidirectional light concentrator and absorber with cylinder geometry. The proposed optical "trap" captures nearly all the incident light within its geometric cross-section, leading to a broad range of possible applications--from solar energy harvesting to thermal light emitters and optoelectronic components. We have demonstrated that an approximate lamellar black-hole with a moderate number of homogeneous layers, while giving the desired ray-optical performance, can provide absorption efficiencies comparable to those of ideal devices with a smooth gradient in index. PMID:20721056

  3. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China – interpretations of atmospheric measurements during EAST-AIRE

    Directory of Open Access Journals (Sweden)

    B. J. Huebert

    2008-06-01

    Full Text Available Black carbon, brown carbon, and mineral dust are three of the most important light absorbing aerosols. Their optical properties differ greatly and are distinctive functions of the wavelength of light. Most optical instruments that quantify light absorption, however, are unable to distinguish one type of absorbing aerosol from another. It is thus instructive to separate total absorption from these different light absorbers to gain a better understanding of the optical characteristics of each aerosol type. During the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment campaign near Beijing, we measured light scattering using a nephelometer, and light absorption using an aethalometer and a particulate soot absorption photometer. We also measured the total mass concentrations of carbonaceous (elemental and organic carbon and inorganic particulates, as well as aerosol number and mass distributions. We were able to identify periods during the campaign that were dominated by dust, biomass burning, fresh (industrial chimney plumes, other coal burning pollution, and relatively clean (background air for Northern China. Each of these air masses possessed distinct intensive optical properties, including the single scatter albedo and Ångstrom exponents. Based on the wavelength-dependence and particle size distribution, we apportioned total light absorption to black carbon, brown carbon, and dust; their mass absorption efficiencies at 550 nm were estimated to be 9.5, 0.5, and 0.03 m2/g, respectively. While agreeing with the common consensus that BC is the most important light absorber in the mid-visible, we demonstrated that brown carbon and dust could also cause significant absorption, especially at shorter wavelengths.

  4. The effect of snow/sea ice type on the response of albedo and light penetration depth (e-folding depth to increasing black carbon

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2014-09-01

    Full Text Available The optical properties of snow/sea ice vary with age and by the processes they were formed, giving characteristic types of snow and sea ice. The response of albedo and light penetration depth (e-folding depth to increasing mass ratio of black carbon is shown to depend on the snow and sea ice type and the thickness of the snow or sea ice. The response of albedo and e-folding depth of three different types of snow (cold polar snow, wind-packed snow and melting snow and three sea ice (multi-year ice, first-year ice and melting sea ice to increasing mass ratio of black carbon is calculated using a coupled atmosphere–snow/sea ice radiative-transfer model (TUV-snow, over the optical wavelengths of 300–800 nm. The snow and sea ice types are effectively defined by a scattering cross-section, density and asymmetry parameter. The relative change in albedo and e-folding depth of each of the three snow and three sea ice types with increasing mass ratio of black carbon is considered relative to a base case of 1 ng g−1 of black carbon. The relative response of each snow and sea ice type is intercompared to examine how different types of snow and sea ice respond relative to each other. The relative change in albedo of a melting snowpack is a factor of four more responsive to additions of black carbon compared to cold polar snow over a black carbon increase from 1 to 50 ng g−1, while the relative change in albedo of a melting sea ice is a factor of two more responsive to additions of black carbon compared to multi-year ice for the same increase in mass ratio of black carbon. The response of e-folding depth is effectively not dependent on snow/sea ice type. The albedo of sea ice is more responsive to increasing mass ratios of black carbon than snow.

  5. A reliable light scattering computing for black carbon-containing particles: Hybrid discrete dipole approximation (h-DDA)

    Science.gov (United States)

    Moteki, N.

    2015-12-01

    Black carbon (BC) is a light-absorbing carbonaceous aerosol emitted from combustions of fossil fuels and biomasses and is estimated as the second most important contributor to positive climate forcing after the carbon dioxide. In the atmosphere, the fractal aggregate of BC-spherules may be mixed with non-absorbing (or weakly absorbing) compounds that forms morphologically complex "BC-containing particle". A reliable scattering code for BC-containing particles is necessary for predicting mass absorption efficiency of BC and designing/evaluating optical techniques for estimating microphysical properties (i.e., size distribution, mixing state, shape, refractive index) of BC-containing particles. The computational methods that derived from the volume-integral form of the Maxwell equation, such as discrete dipole approximation (DDA), are method of choice for morphologically complex object like BC-containing particles. In ordinary DDA, the entire particle volume is approximated as a collection of tiny cubical dipoles (with side length d) placed on a 3D cubic lattice. For several model BC-containing particles, the comparisons with numerically exact T-matrix method reveals that the ordinary DDA suffered from persistent positive systematic error (up to +30%) in absorption even under d DDA error is identified to be the shape error in BC-spherules. To eliminate the shape error in BC-spherules, we propose a new DDA methodology which may be called hybrid DDA (h-DDA): each primary BC sphere is assumed as a spherical dipole, while remaining particle volume of coating material is approximated by a collection of tiny cubical dipoles on a 3D cubic lattice. Positive absorption bias up to +30% in ordinary DDA is suppressed to within 3% in h-DDA. In h-DDA code, an efficient FFT-based algorithm for solving the matrix equation has been implemented, by utilizing the multilevel block-Toeplitz property of the submatrix corresponding to inter-dipole interaction within coating material.

  6. 3D characterization of the forces in optical traps based on counter-propagation beams shaped by a spatial light modulator

    DEFF Research Database (Denmark)

    Kristensen, M. V.; Lindballe, T.; Kylling, A.;

    2010-01-01

    An experimental characterization of the 3D forces, acting on a trapped polystyrene bead in a counter-propagating beam geometry, is reported. Using a single optical trap with a large working distance (in the BioPhotonics Workstation), we simultaneously measure the transverse and longitudinal...... trapping force constants. Two different methods were used: The Drag force method and the Equipartition method. We show that the counterpropagating beams traps are simple harmonic for small displacements. The force constants reveal a transverse asymmetry as - = 9.7 pN/µm and + = 11.3 pN/µm (at a total laser...... power of 2x35 mW) for displacements in opposite directions. The Equipartition method is limited by mechanical noise and is shown to be applicable only when the total laser power in a single 10 µm counter-propagating trap is below 2x20 mW....

  7. Trapping molecules on chips

    CERN Document Server

    Santambrogio, Gabriele

    2015-01-01

    In the last years, it was demonstrated that neutral molecules can be loaded on a microchip directly from a supersonic beam. The molecules are confined in microscopic traps that can be moved smoothly over the surface of the chip. Once the molecules are trapped, they can be decelerated to a standstill, for instance, or pumped into selected quantum states by laser light or microwaves. Molecules are detected on the chip by time-resolved spatial imaging, which allows for the study of the distribution in the phase space of the molecular ensemble.

  8. Brane-World Black Holes

    CERN Document Server

    Chamblin, A; Reall, H S

    2000-01-01

    Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.

  9. Brane-world black holes

    Science.gov (United States)

    Chamblin, A.; Hawking, S. W.; Reall, H. S.

    2000-03-01

    Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five-dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.

  10. Responses of Neomegalotomus parvus (Hemiptera: Alydidae) to color and male-lured traps

    OpenAIRE

    Maurício Ursi Ventura; Antônio Ricardo Panizzi

    2004-01-01

    In 1998, the relative responses of Neomegalotomus parvus (Westwood) (Hemiptera: Alydidae) to colors in traps were assessed in the field. Colors were printed in white alkaline paper and covered with transparent plastic. Printed colors were black, green, yellow, red and blue. Treatments also included white paper and aluminum foil. Green traps captured more bugs than the other traps (except yellow). Yellow traps caught significantly more N. parvus males than blue, black and aluminum traps. White...

  11. Pyrolytic carbon coated black silicon

    OpenAIRE

    Shah, Ali; Stenberg, Petri; Karvonen, Lasse; Ali, Rizwan; Honkanen, Seppo; Lipsanen, Harri; Peyghambarian, N.; Kuittinen, Markku; Svirko, Yuri; Kaplas, Tommi

    2016-01-01

    Carbon is the most well-known black material in the history of man. Throughout the centuries, carbon has been used as a black material for paintings, camouflage, and optics. Although, the techniques to make other black surfaces have evolved and become more sophisticated with time, carbon still remains one of the best black materials. Another well-known black surface is black silicon, reflecting less than 0.5% of incident light in visible spectral range but becomes a highly reflecting surface ...

  12. Dynamic array of dark optical traps

    DEFF Research Database (Denmark)

    Daria, V.R.; Rodrigo, P.J.; Glückstad, J.

    2004-01-01

    A dynamic array of dark optical traps is generated for simultaneous trapping and arbitrary manipulation of multiple low-index microstructures. The dynamic intensity patterns forming the dark optical trap arrays are generated using a nearly loss-less phase-to-intensity conversion of a phase......-encoded coherent light source. Two-dimensional input phase distributions corresponding to the trapping patterns are encoded using a computer-programmable spatial light modulator, enabling each trap to be shaped and moved arbitrarily within the plane of observation. We demonstrate the generation of multiple dark...

  13. A fluence response study of lethality and mutagenicity of white, black, and blue fluorescent light, sunlamp, and sunlight irradiation in Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Under a set of defined experimental conditions, the fluence response of Chinese hamster ovary (CHO) cells to various light sources was studied by measuring single-cell survival and mutation to 6-thioguanine (TG) resistance. Fluorescent white, black, and blue lights were slightly lethal and mutagenic. Sunlamp light was highly lethal and mutagenic, exhibiting these biological effects within 15 sec of exposure under conditions recommended by the manufacturer for human use. Lethal and mutagenic effects were observed after 5 min of sunlight exposure; responses varied with hourly and daily variations in solar radiation. Sunlight induced TG-resistant variants possessed <5% of parental cellular hypoxanthine-guanine phosphoribosyl transferase (HGPRT) enzyme activity, suggesting that the mutation induction occurs at this locus. The cell survival and mutation-induction curves generated by exposure of cells to both sunlamp and sunlight were similar to those obtained by the use of a standard far-UV lamp

  14. Relative Efficacy of CDC and UV Light-traps for Indoor Collection of Culex (Cx.) tritaeniorhychus in Yunnan, P.R.China%云南人房三带喙库蚊CDC和UV诱蚊灯捕捉效果观察

    Institute of Scientific and Technical Information of China (English)

    周红宁; Sarah Pettifor; Nigel Hill; 肖育江; 杜尊伟; 李鸿宾; 张再兴

    2004-01-01

    目的评估CDC和UV诱蚊灯夜间人房三带喙库蚊捕捉效果.方法根据拉丁方设计方案,把诱蚊灯置于寝室和客厅,每晚轮流置灯.结果共捕获库蚊属蚊虫6种624只.其中三带喙库蚊属于最常见的蚊种(419只);CDC和UV灯捕捉蚊虫效果差异无显著性,但当地降雨量与CDC捕捉效果存在较强的正相关关系,而与UV灯捕蚊效果呈弱的负相关.结论无论是CDC诱蚊灯还是UV诱蚊灯都可以作为云南省三带喙库蚊种群密度监测的有效方法.%Objective The efficacy of CDC and UV traps for the coll ection of Culex (Cx.) tritaeniorhynchus was evaluated in overnight in door c ollection. Method The traps were placed in bedrooms and sittin g rooms and rotated nightly approximately following a Latin square design. Results A total of 624 mosquitoes of the genera Culex were trapped comprising 6 species. Most common was Cx.tritaeniorhynchus with 419 individuals trapped. There was no significant difference in the efficiency of CDC and UV traps although there was a stronger positive correlati on between mosquitoes collected in CDC lamps and rainfall, whereas, there was a weak negative correlation between UV lamps and local rainfall. Conclusio n We suggest that either CDC or UV light traps provide an efficient met hod to monitor the population of Cx.tritaniorhychus in Yunnan province.

  15. Enhanced light-assisted-collision rate via excitation to the long-lived 5S1/2-5D5/2 molecular potential in an 85Rb magneto-optical trap

    International Nuclear Information System (INIS)

    We report measurements of a significant increase in the two-body loss rate in an 85Rb magneto-optic trap (MOT) caused by the addition of light resonant with the 5P3/2-to-5D5/2 transition (776 nm) in Rb. Exposure to the additional light resulted in up to a factor of 5 decrease in the steady-state number of atoms in the MOT. This loss is attributed to more than an order of magnitude increase in the light-assisted collision rate brought about by the 776-nm light. By measuring the intensity dependence of the loss rate, the loss channel was identified to be the relatively long-lived 5S1/2-5D5/2 molecular potential.

  16. Registros de Mantodea (Insecta coletados à luz no dossel da floresta, na torre do km 14 do núcleo ZF-2, Manaus, Brasil Records of Mantodea (Insecta collected with light trap at 45 meters height over an Amazon forest canopy, at ZF-2 nucleus, Manaus, Brazil

    Directory of Open Access Journals (Sweden)

    Yana Karlla Lessa Alves Dantas

    2008-01-01

    Full Text Available Foram realizadas coletas mensais de insetos de janeiro a dezembro de 2004, durante três noites de transição lunar minguante/nova, das 18:00 às 06:00 horas. Os espécimes foram capturados em um lençol iluminado com lâmpada de 250 watts, luz mista de vapor de mercúrio e lâmpada de 20 watts black light (BL e black light bulb (BLB. A armadilha foi montada a 45 metros de altura numa torre metálica de 50 metros, que ultrapassa a maioria das copas das árvores, num platô de terra firme, na bacia do rio Cuieiras, Manaus, Amazonas, Brasil. Foram coletados 23 espécies de Mantodea, sendo Chaeteessidae (1 espécie; Mantoididae (2; Mantidae (15; Thespidae (2 e Acanthopidae (3. Seis espécies são novas e serão descritas oportunamente nos seguintes gêneros: Cardioptera Burmeister, 1838, Phyllovates Kirby, 1904, Pseudovates Saussure, 1869, Stagmomantis Saussure, 1869, Stagmatoptera Burmeister, 1838 e Metilia Stal, 1877. Três espécies registradas para o Brasil sem uma região determinada estão sendo registradas para a Amazônia brasileira: Heterovates pardalina Saussure, 1872, Macromantis ovalifolia (Stoll, 1813 e Photina reticulata (Burmeister, 1838. Quatro registros são novos para o estado do Amazonas: Angela guianensis Rehn, 1906, Photina gracillis Giglio-Tos, 1915, Raptrix perspicua (Fabricius, 1787 e Vates festae Gigio-Tos, 1914. Os números de indivíduos, em cada coleta mensal, são apresentados para cada espécie.Insect collections were carried out monthly from January to December of 2004, during three nights of lunar transition third quarter moon/new moon from 18 p.m. to 6 a.m. They were collected over a vertical white sheet illuminated by a 250 watts mixed light and a 20 watts black light (BL and black light bulb (BLB lamps. The light trap was mounted at 45 meters height in a metallic tower of 50 meters height, in a "platô de terra firme", in the Cueiras River basin, in Manaus, Amazonas, Brazil. It was collected 23 species of

  17. The effect of snow/sea ice type on the response of albedo and light penetration depth (e-folding depth) to increasing black carbon

    OpenAIRE

    A. A. Marks; M. D. King

    2014-01-01

    The optical properties of snow/sea ice vary with age and by the processes they were formed, giving characteristic types of snow and sea ice. The response of albedo and light penetration depth (e-folding depth) to increasing mass-ratio of black carbon is shown to depend on the snow and sea ice type and the thickness of the snow or sea ice. The response of albedo and e-folding depth of three different types of snow (cold polar snow, windpacked snow and melting...

  18. The effect of snow/sea ice type on the response of albedo and light penetration depth (e-folding depth) to increasing black carbon

    OpenAIRE

    A. A. Marks; M. D. King

    2014-01-01

    The optical properties of snow/sea ice vary with age and by the processes they were formed, giving characteristic types of snow and sea ice. The response of albedo and light penetration depth (e-folding depth) to increasing mass ratio of black carbon is shown to depend on the snow and sea ice type and the thickness of the snow or sea ice. The response of albedo and e-folding depth of three different types of snow (cold polar snow, wind-packed snow and meltin...

  19. Trapping of photophoretic particles

    CERN Document Server

    Magiera, Martin P

    2014-01-01

    A trapping mechanism for self-propelled particles based on an inhomogeneous drive is presented and studied analytically as well as by computer simulations. In experiments this method can be realized using photophoretic Janus particles driven by a light source, which shines through a shading mask and leads to an accumulation of the swimmers in the shaded part. The mechanism can be traced back to a finite penetration depth of particles impinging from the illuminated part of the system into the shaded part.

  20. Light or heavy supermassive black hole seeds: the role of internal rotation in the fate of supermassive stars

    OpenAIRE

    Fiacconi, Davide; Rossi, Elena M.

    2016-01-01

    Supermassive black holes are a key ingredient of galaxy evolution. However, their origin is still highly debated. In one of the leading formation scenarios, a black hole of $\\sim100$ M$_{\\odot}$ results from the collapse of the inner core of a supermassive star ($\\gtrsim 10^{4-5}$ M$_{\\odot}$), created by the rapid accumulation ($\\gtrsim 0.1 $ M$_{\\odot}$ yr$^{-1}$) of pristine gas at the centre of newly formed galaxies at $z\\sim 15$. The subsequent evolution is still speculative: the remaini...

  1. Big Crunch-based omnidirectional light concentrators

    International Nuclear Information System (INIS)

    Omnidirectional light concentration remains an unsolved problem despite such important practical applications as the design of efficient mobile photovoltaic cells. Recently developed optical black hole designs offer partial solutions to this problem. However, even these solutions are not truly omnidirectional since they do not exhibit a horizon, and at large enough incidence angles the light may be trapped into quasi-stationary orbits around such imperfect optical black holes. Here, we propose and realize experimentally another gravity-inspired design of a broadband omnidirectional light concentrator based on the cosmological Big Crunch solutions. By mimicking the Big Crunch spacetime via a corresponding effective optical metric, we make sure that every photon world line terminates in a single point. (paper)

  2. Big Crunch-based omnidirectional light concentrators

    CERN Document Server

    Smolyaninov, Igor I

    2014-01-01

    Omnidirectional light concentration remains an unsolved problem despite such important practical applications as design of efficient mobile photovoltaic cells. Optical black hole designs developed recently offer partial solution to this problem. However, even these solutions are not truly omnidirectional since they do not exhibit a horizon, and at large enough incidence angles light may be trapped into quasi-stationary orbits around such imperfect optical black holes. Here we propose and realize experimentally another gravity-inspired design of a broadband omnidirectional light concentrator based on the cosmological Big Crunch solutions. By mimicking the Big Crunch spacetime via corresponding effective optical metric we make sure that every photon world line terminates in a single point.

  3. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  4. Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light.

    Science.gov (United States)

    Shoji, Tatsuya; Saitoh, Junki; Kitamura, Noboru; Nagasawa, Fumika; Murakoshi, Kei; Yamauchi, Hiroaki; Ito, Syoji; Miyasaka, Hiroshi; Ishihara, Hajime; Tsuboi, Yasuyuki

    2013-05-01

    The use of localized surface plasmons (LSPs) for highly sensitive biosensors has already been investigated, and they are currently being applied for the optical manipulation of small nanoparticles. The objective of this work was the optical trapping of λ-DNA on a metallic nanostructure with femtosecond-pulsed (fs) laser irradiation. Continuous-wave laser irradiation, which is generally used for plasmon excitation, not only increased the electromagnetic field intensity but also generated heat around the nanostructure, causing the DNA to become permanently fixed on the plasmonic substrate. Using fs laser irradiation, on the other hand, the reversible trapping and release of the DNA was achieved by switching the fs laser irradiation on and off. This trap-and-release behavior was clearly observed using a fluorescence microscope. This technique can also be used to manipulate other biomolecules such as nucleic acids, proteins, and polysaccharides and will prove to be a useful tool in the fabrication of biosensors. PMID:23586869

  5. The Aarhus Ion Micro-Trap Project

    DEFF Research Database (Denmark)

    Miroshnychenko, Yevhen; Nielsen, Otto; Poulsen, Gregers; Drewsen, Michael

    As part of our involvement in the EU MICROTRAP project, we have designed, manufactured and assembled a micro-scale ion trap with integrated optical fibers. These prealigned fibers will allow delivering cooling laser light to single ions. Therefore, such a trap will not require any direct optical...... access for laser cooling. All the parts for the trap have been made in our institute [1]. The electrodes and the spacers were laser cut in the collaboration with the group of P.  Balling. In our group we have developed a technique to manufacture lensed optical fibers. The trap is now assembled and...... installed in an ultra high vacuum chamber, which includes an ablation oven for all-optical loading of the trap [2]. The next steps on the project are to demonstrate the operation of the micro-trap and the cooling of ions using fiber delivered light. [1] D. Grant, Development of Micro-Scale Ion traps, Master...

  6. A comparison of traps and stem tap sampling for monitoring adult Asian citrus psyllid (Hemiptera: Psyllidae), in citrus

    Science.gov (United States)

    Studies were conducted at two different field sites to compare yellow sticky card traps, blue sticky card traps, Multi-Lure traps, and CC traps (red, blue, black, white, yellow, and green) for monitoring adult Asian citrus psyllid, Diaphorina citri Kuwayama,in citrus. The Multi-Lure trap is useful f...

  7. Fabrication of 3 D Mesoporous Black TiO2 /MoS2 /TiO2 Nanosheets for Visible-Light-Driven Photocatalysis.

    Science.gov (United States)

    Liu, Xuefeng; Xing, Zipeng; Zhang, Hang; Wang, Wenmei; Zhang, Yan; Li, Zhenzi; Wu, Xiaoyan; Yu, Xiujuan; Zhou, Wei

    2016-05-23

    A novel 3 D mesoporous black TiO2 (MBT)/MoS2 /MBT sandwich-like nanosheet was successfully fabricated using a facile mechanochemical process combined with an in situ solid-state chemical reduction approach, followed by mild calcination (350 °C) under an argon atmosphere. The MBT/MoS2 /MBT exhibits a 3 D sandwich-like nanosheet structure and heterojunctions are formed at the interfaces between MoS2 and black TiO2 . The significantly narrowed band gap of MBT/MoS2 /MBT is attributed to the introduction of MoS2 and the formed Ti(3+) species in the frameworks. The visible-light photocatalytic degradation rate of methyl orange and the hydrogen production rate are as high as 89.86 % and 0.56 mmol h(-1)  g(-1) , respectively. The introduction of MoS2 and Ti(3+) in the frameworks favors the visible-light absorption and the separation of photogenerated charges, and the 3 D sandwich-like heterojunction structure facilitates the transfer of photogenerated charges. PMID:27111114

  8. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing

    Energy Technology Data Exchange (ETDEWEB)

    Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.; Aziz, Michael J.; Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Rekemeyer, Paul H.; Gradečak, Silvija [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-12-14

    Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintaining high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.

  9. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing

    International Nuclear Information System (INIS)

    Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintaining high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon

  10. Photodiode Based Detection for Multiple Trap Optical Tweezers

    DEFF Research Database (Denmark)

    Ott, Dino

    This thesis is concerned with the position tracking of microscopic, optically trapped particles and the quantification of the forces acting on them. A new detection method for simultaneous, three-dimensional tracking of multiple particles is presented, its performance is evaluated, and its...... one of the workhorses of biophysical research. There exists a variety of implementations of optical traps, from simple single traps to complex multiple traps with engineered three-dimensional light fields. In comparison to single beam optical traps, multiple beam optical traps offer more freedom in...... respective optical traps that contain information about the movement of the trapped particles....

  11. Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols

    Institute of Scientific and Technical Information of China (English)

    Wang Hai-Hua; Sun Xian-Ming

    2012-01-01

    The mixture of water cloud droplets with black carbon impurities is modeled by external and internal mixing models.The internal mixing model is modeled with a two-layered sphere(water cloud droplets containing black carbon(BC)inclusions),and tihe single scattering and absorption characteristics are calculated at the visible wavelength of 0.55 μm by using the Lorenz Mie theory.The external mixing model is developed assuming that the same amount of BC particles are mixed with the water droplets externally.The multiple scattering characteristics we computed by using the Monte Carlo method.The results show that when the size of the BC aerosol is small,the reflection intensity of the internal mixing model is bigger than that of the external mixing model.However,if the size of the BC aerosol is big,the absorption of the internal mixing model will be larger than that of the external mixing model.

  12. Theoretical study of stimulated and spontaneous Hawking effects from an acoustic black hole in a hydrodynamically flowing fluid of light

    OpenAIRE

    Grisins, Pjotrs; Nguyen, Hai Son; Bloch, Jacqueline; Amo, Alberto; Carusotto, Iacopo

    2016-01-01

    We propose an experiment to detect and characterize the analog Hawking radiation in an analog model of gravity consisting of a flowing exciton-polariton condensate. Under a suitably designed coherent pump configuration, the condensate features an acoustic event horizon for sound waves that at the semiclassical level is equivalent to an astrophysical black hole horizon. We show that a continuous-wave pump-and-probe spectroscopy experiment allows to measure the analog Hawking temperature from t...

  13. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  14. Transparent ion trap with integrated photodetector

    CERN Document Server

    Eltony, Amira M; Akselrod, Gleb M; Herskind, Peter F; Chuang, Isaac L

    2012-01-01

    Fluorescence collection sets the efficiency of state detection and the rate of entanglement generation between remote trapped ion qubits. Despite efforts to improve light collection using various optical elements, solid angle capture is limited to ~10% for implementations that are scalable to many ions. We present an approach based on fluorescence detection through a transparent trap using an integrated photodetector, combining collection efficiency approaching 50% with scalability. We microfabricate transparent surface traps with indium tin oxide and verify stable trapping of single ions. The fluorescence from a cloud of ions is detected using a photodiode sandwiched with a transparent trap.

  15. The Connection Between Entropy and the Absorption Spectra of Schwarzschild Black Holes for Light and Massless Scalar Fields

    Directory of Open Access Journals (Sweden)

    Sergio Mendoza

    2009-01-01

    Full Text Available We present heuristic arguments suggesting that if EM waves with wavelengths somewhat larger than the Schwarzschild radius of a black hole were fully absorbed by it, the second law of thermodynamics would be violated, under the Bekenstein interpretation of the area of a black hole as a measure of its entropy. Thus, entropy considerations make the well known fact that large wavelengths are only marginally absorbed by black holes, a natural consequence of thermodynamics. We also study numerically the ingoing radial propagation of a scalar field wave in a Schwarzschild metric, relaxing the standard assumption which leads to the eikonal equation, that the wave has zero spatial extent. We find that if these waves have wavelengths larger that the Schwarzschild radius, they are very substantially reflected, fully to numerical accuracy. Interestingly, this critical wavelength approximately coincides with the one derived from entropy considerations of the EM field, and is consistent with well known limit results of scattering in the Schwarzschild metric. The propagation speed is also calculated and seen to differ from the value c, for wavelengths larger than Rs, in the vicinity of Rs. As in all classical wave phenomena, whenever the wavelength is larger or comparable to the physical size of elements in the system, in this case changes in the metric, the zero extent ’particle’ description fails, and the wave nature becomes apparent.

  16. Light or heavy supermassive black hole seeds: the role of internal rotation in the fate of supermassive stars

    CERN Document Server

    Fiacconi, Davide

    2016-01-01

    Supermassive black holes are a key ingredient of galaxy evolution. However, their origin is still highly debated. In one of the leading formation scenarios, a black hole of $\\sim100$ M$_{\\odot}$ results from the collapse of the inner core of a supermassive star ($\\gtrsim 10^{4-5}$ M$_{\\odot}$), created by the rapid accumulation ($\\gtrsim 0.1 $ M$_{\\odot}$ yr$^{-1}$) of pristine gas at the centre of newly formed galaxies at $z\\sim 15$. The subsequent evolution is still speculative: the remaining gas in the supermassive star can either directly plunge into the nascent black hole, or part of it can form a central accretion disc, whose luminosity sustains a surrounding, massive, and nearly hydrostatic envelope (a system called a "quasi-star"). To address this point, we consider the effect of rotation on a quasi-star, as angular momentum is inevitably transported towards the galactic nucleus by the accumulating gas. Using a model for the internal redistribution of angular momentum that qualitative matches results ...

  17. Light

    CERN Document Server

    Ditchburn, R W

    2011-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  18. Capturing American black ducks in tidal waters

    Science.gov (United States)

    Harrison, M.K., Sr.; Haramis, G.M.; Jorde, D.G.; Stotts, D.B.

    2000-01-01

    We modified conventional, funnel-entrance dabbling duck bait traps to increase captures for banding of American Black Ducks (Anas rubripes) in tidal saltmarsh habitats of Smith Island, Maryland, one of the few remaining strongholds for breeding Black Ducks in the Chesapeake Bay. Traps and trapping techniques were adapted to tidal creeks and refined to improve capture rate, reduce mortality, and minimize interference by gulls. Best results were achieved by synchronizing trapping with predawn, low-tide foraging patterns of Black Ducks. Trap entrances were critical to retaining ducks, and use of loafing platforms reduced overall mortality to 3% of captures per year. We captured 3071 Black Ducks during the 14-year period, 1984-199

  19. Polarization of Light from Warm Clouds above an Accretion Disk: Effects of Strong Gravity near a Black Hole

    Czech Academy of Sciences Publication Activity Database

    Horák, Jiří; Karas, Vladimír

    2006-01-01

    Roč. 58, č. 1 (2006), s. 203-209. ISSN 0004-6264 R&D Projects: GA MŠk(CZ) LC06014; GA ČR(CZ) GP205/06/P415; GA AV ČR IAA300030510; GA ČR GD205/03/H144 Institutional research plan: CEZ:AV0Z10030501 Keywords : accretion disks * black holes * general relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.106, year: 2006

  20. Optimizing Trap Design and Trapping Protocols for Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Renkema, Justin M; Buitenhuis, Rosemarije; Hallett, Rebecca H

    2014-12-01

    Drosophila suzukii Matsumura (Diptera: Drosophilidae) is a recent invasive pest of fruit crops in North America and Europe. Carpophagous larvae render fruit unmarketable and may promote secondary rot-causing organisms. To monitor spread and develop programs to time application of controls, further work is needed to optimize trap design and trapping protocols for adult D. suzukii. We compared commercial traps and developed a new, easy-to-use plastic jar trap that performed well compared with other designs. For some trap types, increasing the entry area led to increased D. suzukii captures and improved selectivity for D. suzukii when populations were low. However, progressive entry area enlargement had diminishing returns, particularly for commercial traps. Unlike previous studies, we found putting holes in trap lids under a close-fitting cover improved captures compared with holes on sides of traps. Also, red and black traps outperformed yellow and clear traps when traps of all colors were positioned 10-15 cm apart above crop foliage. In smaller traps, attractant surface area and entry area, but not other trap features (e.g., headspace volume), appeared to affect D. suzukii captures. In the new, plastic jar trap, tripling attractant volume (360 vs 120 ml) and weekly attractant replacement resulted in the highest D. suzukii captures, but in the larger commercial trap these measures only increased by-catch of large-bodied Diptera. Overall, the plastic jar trap with large entry area is affordable, durable, and can hold high attractant volumes to maximize D. suzukii capture and selectivity. PMID:26470076

  1. Multiple scattering of light by water cloud droplets with external and internal mixing of black carbon aerosols

    International Nuclear Information System (INIS)

    The mixture of water cloud droplets with black carbon impurities is modeled by external and internal mixing models. The internal mixing model is modeled with a two-layered sphere (water cloud droplets containing black carbon (BC) inclusions), and the single scattering and absorption characteristics are calculated at the visible wavelength of 0.55 μm by using the Lorenz—Mie theory. The external mixing model is developed assuming that the same amount of BC particles are mixed with the water droplets externally. The multiple scattering characteristics are computed by using the Monte Carlo method. The results show that when the size of the BC aerosol is small, the reflection intensity of the internal mixing model is bigger than that of the external mixing model. However, if the size of the BC aerosol is big, the absorption of the internal mixing model will be larger than that of the external mixing model. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Influence of near-ultraviolet light enhancement and photosynthetic photon flux density during photoperiod extension on the morphology and lignin content of black spruce seedlings

    International Nuclear Information System (INIS)

    When containerized black spruce seedlings (Picea mariana (Mill.) B.S.P.) are grown rapidly in greenhouse culture, they sometimes bend over, grow horizontally and become deformed. This phenomenon has been known to affect between 5% and 10% of a winter greenhouse crop. In this study, near-ultraviolet lamps were used to supplement the artificial light received from high-pressure sodium lamps and the effects on seedling morphology and lignin contents were examined. Neither height to diameter ratios nor lignin concentrations were significantly affected by UV radiation flux density. However, seedling biomass, height, root collar diameter, lignin content, and lignin to cellulose ratios of stems were significantly correlated with total photosynthetic photon flux density (PPFD) received during photoperiod extension. Height to diameter ratios were negatively correlated with PPFD during photoperiod enhancement because of a greater relative increase in diameter growth compared with height growth. Neither UV nor PAR flux density affected the percentage of black spruce seedlings having stem deformations greater than 30 ° from the vertical

  3. The New Black

    OpenAIRE

    Lettman-Hicks, Sharon

    2014-01-01

    The New Black is a documentary that tells the story of how the African American community is grappling with the gay rights issue in light of the recent gay marriage movement and the fight over Civil Rights. The film documents activities, families and clergy on both sides of the campaign to legalize gay marriage and examines homophobia in the Black community's institutional pillar, the Black church, and reveals the Christian right wing's strategy of exploiting this phenomenon in order to pursu...

  4. Black to Black

    DEFF Research Database (Denmark)

    Langkjær, Michael Alexander

    2012-01-01

    Pop musicians performing in black stage costume take advantage of cultural traditions relating to matters black. Stylistically, black is a paradoxical color: although a symbol of melancholy, pessimism, and renunciation, black also expresses minimalist modernity and signifies exclusivity (as...... is hinted by Rudyard Kipling’s illustration of ‘The [Black] Cat That Walked by Himself’ in his classic children’s tale). It was well understood by uniformed Anarchists, Fascists and the SS that there is an assertive presence connected with the black-clad figure. The paradox of black’s abstract elegance......-styled references to, among other things, the culturally and ideologically effervescent interwar-period have made me curious as to what alternative possibilities – for instance ‘emancipation’ – a comparative analysis might disclose concerning the visual rhetoric of black. Thus, in conclusion, it is briefly...

  5. Neutrino trapping in braneworld extremely compact stars

    CERN Document Server

    Stuchlik, Zdenek; Urbanec, Martin

    2011-01-01

    Extremely Compact Stars (ECS) contain trapped null geodesics. When such objects enter the evolution period admitting geodetical motion of neutrinos, certain part of neutrinos produced in their interior will be trapped influencing their neutrino luminosity and thermal evolution. We study neutrino trapping in the braneworld ECS, assuming uniform distribution of neutrino emissivity and massless neutrinos. We give the efficiency of the neutrino trapping effects in the framework of the simple model of the internal spacetime with uniform distribution of energy density, and external spacetime described by the Reissner-Nordstr\\"om geometry characterized by the braneworld "tidal" parameter $b$. For $b 0$ the external spacetime can be of both black-hole and naked-singularity type. Then the ECS surface radius $R$ can be located also above the unstable (outer) photon circular orbit. Such basically new types of the spacetimes strongly alter the trapping phenomena as compared to the standard case of $b = 0$. It is shown t...

  6. Magnetic trapping of ultracold neutrons

    OpenAIRE

    Brome, C. R.; Butterworth, J. S.; Dzhosyuk, S. N.; Mattoni, C. E. H.; McKinsey, D. N.; Doyle, J. M.; Huffman, P. R.; Dewey, M. S.; Wietfeldt, F. E.; Golub, R.; Habicht, K.; Greene, G. L.; Lamoreaux, S. K.; Coakley, K. J.

    2001-01-01

    Three-dimensional magnetic confinement of neutrons is reported. Neutrons are loaded into an Ioffe-type superconducting magnetic trap through inelastic scattering of cold neutrons with 4He. Scattered neutrons with sufficiently low energy and in the appropriate spin state are confined by the magnetic field until they decay. The electron resulting from neutron decay produces scintillations in the liquid helium bath that results in a pulse of extreme ultraviolet light. This light is frequency dow...

  7. Influence of trap construction on mosquito capture

    Czech Academy of Sciences Publication Activity Database

    Šebesta, Oldřich; Peško, Juraj; Gelbič, Ivan

    2012-01-01

    Roč. 6, č. 2 (2012), s. 209-215. ISSN 1934-7391 R&D Projects: GA MŠk 2B08003 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:68081766 ; RVO:60077344 Keywords : CDC miniature light traps * baited lard-can traps * mosquitoes Subject RIV: EG - Zoology

  8. X-ray emission fluorescence (XRF) analysis of origin of raw materials of light dark reddish brown porcelain and porcelain with black flower on a white background of Dangyangyu kiln

    International Nuclear Information System (INIS)

    Dangyangyu kiln was an important civil porcelain production place in the North China during the Song Dynasty. In order to find out the source of raw materials of the porcelain body and glaze and their classification relationship so as to correctly distinguish them, we have used XRF to determine the major chemical elements of some porcelain samples with light brown and samples with black flower on a white background. Dynamic fuzzy cluster analysis was applied to the data. Results indicate that the origin of raw materials of light brown porcelain body samples is comparatively more concentrated, while that of the porcelain with black flower on a white background is scattered about. The origin of the body materials of those two kinds of porcelain samples is obviously different. The origin of raw materials of light brown porcelain samples is comparatively concentrated and stable, while that of the porcelain with black flower on a white background is scattered about, moreover, the origin of glaze raw materials and the formula of the two kinds are obviously different. The origin and formula of the light brown porcelain with white glaze in the interior are close to those of the white glaze of porcelain with black flower on a white background, but they are not entirely identical. (author)

  9. Hydroxyl radical and NOx production rates, black carbon concentrations and light-absorbing impurities in snow from field measurements of light penetration and nadir reflectivity of onshore and offshore coastal Alaskan snow

    Science.gov (United States)

    France, J. L.; Reay, H. J.; King, M. D.; Voisin, D.; Jacobi, H. W.; Domine, F.; Beine, H.; Anastasio, C.; MacArthur, A.; Lee-Taylor, J.

    2012-07-01

    Photolytic production rates of NO, NO2 and OH radicals in snow and the total absorption spectrum due to impurities in snowpack have been calculated for the Ocean-Atmosphere-Sea-Ice-Snowpack (OASIS) campaign during Spring 2009 at Barrow, Alaska. The photolytic production rate and snowpack absorption cross-sections were calculated from measurements of snowpack stratigraphy, light penetration depths (e-folding depths), nadir reflectivity (350-700 nm) and UV broadband atmospheric radiation. Maximum NOx fluxes calculated during the campaign owing to combined nitrate and nitrite photolysis were calculated as 72 nmol m-2 h-1 for the inland snowpack and 44 nmol m-2 h-1 for the snow on sea-ice and snowpack around the Barrow Arctic Research Center (BARC). Depth-integrated photochemical production rates of OH radicals were calculated giving maximum OH depth-integrated production rates of ˜160 nmol m-2 h-1 for the inland snowpack and ˜110-120 nmol m-2 h-1 for the snow around BARC and snow on sea-ice. Light penetration (e-folding) depths at a wavelength of 400 nm measured for snowpack in the vicinity of Barrow and snow on sea-ice are ˜9 cm and 14 cm for snow 15 km inland. Fitting scaled HULIS (HUmic-LIke Substances) and black carbon absorption cross-sections to the determined snow impurity absorption cross-sections show a "humic-like" component to snowpack absorption, with typical concentrations of 1.2-1.5 μgC g-1. Estimates of black carbon concentrations for the four snowpacks are ˜40 to 70 ng g-1 for the terrestrial Arctic snowpacks and ˜90 ng g-1 for snow on sea-ice.

  10. An Integrated Mirror and Surface Ion Trap with a Tunable Trap Location

    CERN Document Server

    Van Rynbach, Andre; Kim, Jungsang

    2016-01-01

    We report a demonstration of a surface ion trap fabricated directly on a highly reflective mirror surface, which includes a secondary set of radio frequency (RF) electrodes allowing for translation of the quadrupole RF null location. We introduce a position-dependent photon scattering rate for a $^{174}$Yb$^+$ ion in the direction perpendicular to the trap surface using a standing wave of retroreflected light off the mirror surface directly below the trap. Using this setup, we demonstrate the capability of fine-tuning the RF trap location with nanometer scale precision and characterize the charging effects of the dielectric mirror surface upon exposure to ultra-violet light.

  11. Temperature and wavelength dependent trap filling in M{sub 2}Si{sub 5}N{sub 8}:Eu (M=Ca, Sr, Ba) persistent phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Smet, Philippe F., E-mail: philippe.smet@ugent.be [LumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent (Belgium); Center for Nano- and Biophotonics (NB-Photonics), Ghent University (Belgium); Van den Eeckhout, Koen [LumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent (Belgium); Center for Nano- and Biophotonics (NB-Photonics), Ghent University (Belgium); Bos, Adrie J.J.; Kolk, Erik van der; Dorenbos, Pieter [Delft University of Technology, Faculty of Applied Sciences, 2629 JB Delft (Netherlands)

    2012-03-15

    The evaluation of persistent phosphors is often focused on the processes right after the excitation, namely on the shape of the afterglow decay curve and the duration of the afterglow, in combination with thermoluminescence glow curve analysis. In this paper we study in detail the trap filling process in europium-doped alkaline earth silicon nitrides (Ca{sub 2}Si{sub 5}N{sub 8}:Eu, Sr{sub 2}Si{sub 5}N{sub 8}:Eu and Ba{sub 2}Si{sub 5}N{sub 8}:Eu), i.e., how the persistent luminescence can be induced. Both the temperature at which the phosphors are excited and the spectral distribution of the excitation light on the ability to store energy in the phosphors' lattices are investigated. We show that for these phosphors this storage process is thermally activated upon excitation in the lower 5d excited states of Eu{sup 2+}, with the lowest thermal barrier for europium doped Ca{sub 2}Si{sub 5}N{sub 8}. Also, the influence of co-doping with thulium on the trap filling and afterglow behavior is studied. Finally there exists a clear relation between the luminescence quenching temperature and the trap filling efficiency. The latter relation can be utilized to select new efficient 5d-4f based afterglow phosphors. - Highlights: Black-Right-Pointing-Pointer Orange afterglow in M{sub 2}Si{sub 5}N{sub 8}:Eu(Tm) studied with thermoluminescence spectroscopy. Black-Right-Pointing-Pointer Strong influences of excitation wavelength and temperature on trap filling. Black-Right-Pointing-Pointer Energy level scheme is presented. Black-Right-Pointing-Pointer Relation between trap filling with visible light and thermal quenching behavior.

  12. Predator trapping on Monte Vista NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This letter is summarizing the status of predator trapping on Monte Vista National Wildlife refuge in light of the referendum passes in the State of Colorado...

  13. Evaluation and improvement of sticky traps as monitoring tools for Glossina austeni and G. brevipalpis (Diptera: Glossinidae) in north-eastern KwaZulu-Natal, South Africa.

    Science.gov (United States)

    Green, K Kappmeier; Venter, G J

    2007-12-01

    The attractiveness of various colours, colour combinations and sizes of sticky traps of the 3-dimensional trap (3DT), cross-shaped target (XT), rectangular screen (RT) and monopanels were evaluated for their efficacy to capture Glossina austeni Newstead and G. brevipalpis Newstead in north-eastern KwaZulu-Natal, South Africa. The 3-dimensional shapes of the XT and 3DT in light blue (l.blue) and white were significantly (ca. 3.1-6.9 times) better than the RT for G. austeni. On bicoloured XTs, G. austeni landed preferentially on electric blue (e.blue) (58%) and black (63%) surfaces when used with white; while for G. brevipalpis, significantly more landed on e.blue (60-66%) surfaces when used with l.blue, black or white surfaces. Increased trap size increased the catches of G. brevipalpis females and both sexes of G. austeni significantly. Temoocid and polybutene sticky materials were equally effective and remained durable for 2-3 weeks. The glossy shine of trap surfaces did not have any significant effect on the attraction and landing responses of the two species. The overall trap efficiency of the e.blue/l.blue XT was 23% for G. brevipalpis and 28% for G. austeni, and that of the e.blue/black XT was 16% for G. brevipalpis and 51% for G. austeni. Larger monopanels, painted e.blue/black on both sides, increased the catches of G. austeni females significantly by up to four times compared to the standard e.blue/black XT. This monopanel would be recommended for use as a simple and cost effective survey tool for both species in South Africa. PMID:17997867

  14. Effect of ambient humidity on the light absorption amplification of black carbon in Beijing during January 2013

    Science.gov (United States)

    Wu, Yunfei; Zhang, Renjian; Tian, Ping; Tao, Jun; Hsu, S.-C.; Yan, Peng; Wang, Qiyuan; Cao, Junji; Zhang, Xiaoling; Xia, Xiangao

    2016-01-01

    Black carbon (BC) and its mixing state were measured with a ground-based single particle soot photometer in urban Beijing during the extremely polluted winter of 2013. Up to 70 ± 14% of the BC-containing particles were thickly-coated during periods of haze, compared to 37 ± 9% on non-hazy days. The thickly-coated number fraction (NFBC-thick) increased with increasing BC, reaching a plateau at ˜80-90% when BC concentrations were ≥15 μg m-3 and visibility was ≤2 km. Regional inflows brought more aged, highly thickly-coated BC to Beijing during haze. The absorption coefficient showed a distinct linear correlation with BC concentration; the mass absorption efficiency (MAE) of BC was acquired, with an overall mean of 4.2 ± 0.01 m2 g-1 at 870 nm. The MAE of BC amplified with increasing ambient relative humidity. This was largely explained by the increase in NFBC-thick, which was likely due to the enhanced production of secondary aerosol under humid conditions.

  15. Annual Trapping Proposal 1985

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Annual Trapping Plan for the 1984-1985 trapping season at Clarence Cannon NWR outlines rules and regulations for the trapping of beaver and muskrat on the...

  16. Time-resolved measurements of black carbon light absorption enhancement in urban and near-urban locations of Southern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    T. W. Chan

    2010-08-01

    Full Text Available In this study a photoacoustic spectrometer (PA, a laser-induced incandescence instrument system (LII and an aerosol mass spectrometer were operated in parallel for in situ measurements of black carbon (BC light absorption enhancement. Results of a thermodenuder experiment using ambient particles in Toronto are presented first to show that LII measurements of BC are not influenced by particle coating while the PA response is enhanced and also that the nature of this enhancement is influenced by particle morphology. Comparisons of ambient PA and LII measurements at four different locations (suburban Toronto; a street canyon with heavy diesel bus traffic in Ottawa; adjacent to a commuter highway in Ottawa and; regional background air in and around Windsor, Ontario, show that the different meteorological conditions and atmospheric processes result in different particle light absorption enhancement and hence the specific attenuation coefficient (SAC. Depending upon location of measurement and the BC spherule diameter (primary particle size – PPS measurement from the LII, the SAC varies from 2.6±0.04 to 22.5±0.7 m2 g−1. Observations from this study also show the active surface area of the BC aggregate, inferred from PPS, is an important parameter for inferring the degree of particle collapse of a BC particle. The predictability of the overall BC light absorption enhancement in the atmosphere depends not only on the coating mass but also on the source of the BC and on our ability to predict or measure the change in particle morphology as particles evolve.

  17. zTrap: zebrafish gene trap and enhancer trap database

    Directory of Open Access Journals (Sweden)

    Muto Akira

    2010-10-01

    Full Text Available Abstract Background We have developed genetic methods in zebrafish by using the Tol2 transposable element; namely, transgenesis, gene trapping, enhancer trapping and the Gal4FF-UAS system. Gene trap constructs contain a splice acceptor and the GFP or Gal4FF (a modified version of the yeast Gal4 transcription activator gene, and enhancer trap constructs contain the zebrafish hsp70l promoter and the GFP or Gal4FF gene. By performing genetic screens using these constructs, we have generated transgenic zebrafish that express GFP and Gal4FF in specific cells, tissues and organs. Gal4FF expression is visualized by creating double transgenic fish carrying a Gal4FF transgene and the GFP reporter gene placed downstream of the Gal4-recognition sequence (UAS. Further, the Gal4FF-expressing cells can be manipulated by mating with UAS effector fish. For instance, when fish expressing Gal4FF in specific neurons are crossed with the UAS:TeTxLC fish carrying the tetanus neurotoxin gene downstream of UAS, the neuronal activities are inhibited in the double transgenic fish. Thus, these transgenic fish are useful to study developmental biology and neurobiology. Description To increase the usefulness of the transgenic fish resource, we developed a web-based database named zTrap http://kawakami.lab.nig.ac.jp/ztrap/. The zTrap database contains images of GFP and Gal4FF expression patterns, and genomic DNA sequences surrounding the integration sites of the gene trap and enhancer trap constructs. The integration sites are mapped onto the Ensembl zebrafish genome by in-house Blat analysis and can be viewed on the zTrap and Ensembl genome browsers. Furthermore, zTrap is equipped with the functionality to search these data for expression patterns and genomic loci of interest. zTrap contains the information about transgenic fish including UAS reporter and effector fish. Conclusion zTrap is a useful resource to find gene trap and enhancer trap fish lines that express GFP

  18. Enhanced visible-light H2 evolution of g-C3N4 photocatalysts via the synergetic effect of amorphous NiS and cheap metal-free carbon black nanoparticles as co-catalysts

    Science.gov (United States)

    Wen, Jiuqing; Li, Xin; Li, Haiqiong; Ma, Song; He, Kelin; Xu, Yuehua; Fang, Yueping; Liu, Wei; Gao, Qiongzhi

    2015-12-01

    In this report, g-C3N4-based photocatalysts with dual co-catalysts of amorphous NiS and carbon black were firstly synthesized through a facile two-step process. The g-C3N4/carbon black/NiS composite photocatalyst were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-vis), N2 adsorption, photoluminescence (PL) spectra and transient photocurrent responses. The photocatalytic activities for photocatalytic hydrogen evolution under visible light irradiation (λ ≥ 420 nm) were measured using an aqueous solution containing triethanolamine as an electron donor. Moreover, the results showed that the ternary g-C3N4 photocatalyst loaded by 0.5 wt% carbon black and 1.5 wt% NiS could achieve the highest H2-production rate of 992 μmol g-1 h-1 under visible-light irradiation (>420 nm), which is about 2.51 times higher than that of the corresponding binary g-C3N4/1.5% NiS photocatalyst. It is believed that the enhanced photocatalytic H2-evolution activities could be attributed to the excellent synergetic effect between the carbon black and NiS as co-catalysts on the surface of g-C3N4, leading to the improved visible light absorption, promoted charge separation and enhanced the following H2-evolution kinetics. This work would not only demonstrate the promising potentials of carbon black as co-catalyst for applications in visible-light H2 generation, but also offer a new insight into the construction of highly efficient and stable g-C3N4-based hybrid semiconductor nanocomposites with dual co-catalysts for diverse photocatalytic applications.

  19. 黑光治疗银屑病的临床分析%The Clinical Analyze of Psoriasis by Black Light Treatment

    Institute of Scientific and Technical Information of China (English)

    刘秀英

    2014-01-01

    Objective To approach clinical result of psoriasis by black light treatment.Methods To analyze the 200 cases clinical data of psoriasis patients in our hospital dermatology from 2010.1 to 2013.12 ,which was to be divided into two grouo ,control group 100 cases and detection group 100 cases.The PASI score pretherapy and post of treatment of two groups psoriasis patients was detected ,clinical curative effect of two groups psoriasis patients was detected.Results The PASI score pretherapy of treatment two groups psoriasis patients were no difference ,the The PASI score post of detec-tion group was better than control group ,the clinical curative effect of detection group was higher than control group ,P<0.05 ,the difference were statistical significance.Conclusions The clinical symptoms of psoriasis by black light treat-ment was obviously ,the result was good ,which was to be used.%目的:探讨黑光治疗银屑病的临床治疗效果。方法对收治的200例银屑病患者临床资料,依据治疗措施不同进行分组,对照组100例和观察组100例。观察两组银屑病患者治疗前后PASI评分情况和两组银屑病患者临床治疗效果。结果两组银屑病患者治疗前PASI评分无明显差异,P>0.05,观察组银屑病患者治疗后PASI评分明显优于对照组,观察组银屑病患者临床治疗总有效率明显高于对照组,P<0.05,差异均有统计学意义。结论黑光治疗银屑病患者临床症状改善明显,效果良好,值得临床推广应用。

  20. Holographic generation of micro-trap arrays for single atoms

    CERN Document Server

    Bergamini, S; Jones, M; Jacubowiez, L; Browaeys, A; Grangier, P; Bergamini, Silvia; Darquie, Benoit; Jones, Matt; Jacubowiez, Lionel; Browaeys, Antoine; Grangier, Philippe

    2004-01-01

    We have generated multiple micron-sized optical dipole traps for neutral atoms using holographic techniques with a programmable liquid crystal spatial light modulator. The setup allows the storing of a single atom per trap, and the addressing and manipulation of individual trapping sites.

  1. Experimental study of driving micro-particles with double sources and double light traps%双光源双光阱法驱动微型粒子旋转的实验研究

    Institute of Scientific and Technical Information of China (English)

    朱艳英; 靳李丽; 许耀云; 陈志婷; 孟祥君; 李云涛

    2012-01-01

    在自行构建的双光源双光阱实验系统中,实现了双光阱法驱动微型粒子旋转的实验研究。其原理是利用双折射晶体微粒光致旋转产生的涡旋力带动一个被光镊捕获的普通微粒进行旋转。实验观测了CaCO3粒子的旋转通过液体传动使酵母菌细胞团旋转的实验现象,当两个光阱的激光功率一定时,两个光阱的距离必须选择合适,CaCO3粒子的旋转才会通过液体的传动带动酵母菌细胞团旋转。实验结果得到CaCO3粒子逆时针旋转频率为2.75Hz,带动酵母菌粒子团顺时针旋转频率为2.25Hz。%We build the double-optical-trapping and double-optical tweezer experiment system and achieve driving particles with double light traps method. The principle is that the vortex force generated by light rotation using birefringence crystal particles drives ordinary particles captured by optical tweezer rotating. The CaCO3 crystal rotation will produce vortex which can drive a yeast cell which is captured by light rotation. The rotation of the crystal particles and passive particle is observed by a CCD camera. The rotation characteristics of yeast cell which is driven by CaCO3 particles are analyzed and discussed. When the two laser power supplies are constant, the distance between two light sources must be suitable, the yeast will be driven by CaCO3 particles, and it rotates in the opposite direction of the motion of CaCO3 particles. Experimental results show that the frequency of counter-clockwise rotation of CaCO3 is 2.75 Hz and that of clockwise rotation of yeast cell mass is 2.25 Hz.

  2. Photodissociation of trapped Rb$^+_2$ : Implications for hybrid molecular ion-atom trapping

    CERN Document Server

    Jyothi, S; Dutta, Sourav; Allouche, A R; Vexiau, Romain; Dulieu, Olivier; Rangwala, S A

    2016-01-01

    We observe direct photodissociation of trapped $^{85}$Rb$_2^+$ molecular ions in the presence of cooling light for the $^{85}$Rb magneto optical trap (MOT). Vibrationally excited Rb$_{2}^{+}$ ions are created by photoionization of Rb$_{2}$ molecules formed photoassociatively in the rubidium (Rb) MOT and are trapped in a modified spherical Paul trap co-centric with the MOT. The decay rate of the trapped Rb$_{2}^{+}$ ion signal in the presence of the MOT cooling light is measured and agreement with our calculated rates for molecular ion photodissociation is established. The photodissociation mechanism due to the MOT light is expected to be active and therefore universal for all homonuclear diatomic alkali metal molecular ions.

  3. Black rings

    International Nuclear Information System (INIS)

    A black ring is a five-dimensional black hole with an event horizon of topology S1 x S2. We provide an introduction to the description of black rings in general relativity and string theory. Novel aspects of the presentation include a new approach to constructing black ring coordinates and a critical review of black ring microscopics. (topical review)

  4. Black holes and beyond

    International Nuclear Information System (INIS)

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for instance, the UK

  5. Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in black Sigatoka disease of bananas.

    Directory of Open Access Journals (Sweden)

    Miguel J Beltrán-García

    Full Text Available In pathogenic fungi, melanin contributes to virulence, allowing tissue invasion and inactivation of the plant defence system, but has never been implicated as a factor for host cell death, or as a light-activated phytotoxin. Our research shows that melanin synthesized by the fungal banana pathogen Mycosphaerella fijiensis acts as a virulence factor through the photogeneration of singlet molecular oxygen O2 (1Δg. Using analytical tools, including elemental analysis, ultraviolet/infrared absorption spectrophometry and MALDI-TOF mass spectrometry analysis, we characterized both pigment content in mycelia and secreted to the culture media as 1,8-dihydroxynaphthalene (DHN-melanin type compound. This is sole melanin-type in M. fijiensis. Isolated melanins irradiated with a Nd:YAG laser at 532 nm produced monomol light emission at 1270 nm, confirming generation of O2 (1Δg, a highly reactive oxygen specie (ROS that causes cellular death by reacting with all cellular macromolecules. Intermediary polyketides accumulated in culture media by using tricyclazole and pyroquilon (two inhibitors of DHN-melanin synthesis were identified by ESI-HPLC-MS/MS. Additionally, irradiation at 532 nm of that mixture of compounds and whole melanized mycelium also generated O2 (1Δg. A pigmented-strain generated more O2 (1Δg than a strain with low melanin content. Banana leaves of cultivar Cavendish, naturally infected with different stages of black Sigatoka disease, were collected from field. Direct staining of the naturally infected leaf tissues showed the presence of melanin that was positively correlated to the disease stage. We also found hydrogen peroxide (H2O2 but we cannot distinguish the source. Our results suggest that O2 (1Δg photogenerated by DHN-melanin may be involved in the destructive effects of Mycosphaerella fijiensis on banana leaf tissues. Further studies are needed to fully evaluate contributions of melanin-mediated ROS to microbial pathogenesis.

  6. Instability of black hole formation in gravitational collapse

    International Nuclear Information System (INIS)

    We consider here the classic scenario given by Oppenheimer, Snyder, and Datt, for the gravitational collapse of a massive matter cloud, and examine its stability under the introduction of small tangential stresses. We show, by offering an explicit class of physically valid tangential stress perturbations, that an introduction of tangential pressure, however small, can qualitatively change the final fate of collapse from a black hole final state to a naked singularity. This shows instability of black hole formation in collapse and sheds important light on the nature of cosmic censorship hypothesis and its possible formulations. The key effect of these perturbations is to alter the trapped surface formation pattern within the collapsing cloud and the apparent horizon structure. This allows the singularity to be visible, and implications are discussed.

  7. A scanning electron microscope study of the pecten oculi of the black kite (Milvus migrans): possible involvement of melanosomes in protecting the pecten against damage by ultraviolet light

    International Nuclear Information System (INIS)

    The pecten oculi of the black kite (Milvus migrans), a diurnally active bird of prey, has been examined by scanning electron microscopy. In this species the pecten consists of 12 highly vascularised pleats, held together apically by a heavily pigmented 'bridge' and projects freely into the vitreous body in the ventral part of the eye cup. Ascending and descending blood vessels of varying calibre, together with a profuse network of capillaries, essentially constitute the vascular framework of the pecten. A distinct distribution of melansomes is discernible on the pecten, the concentration being highest at its apical end, moderate at the crest of the pleats and least at the basal and lateral margins. Overlying and within the vascular network, a close association between blood vessels and melanocytes is evident. It is conjectured that such an association may have evolved to augment the structural reinforcement of this nutritive organ in order to keep it firmly erectile within the gel-like vitreous. Such erectility may be an essential prerequisite for its optimal functioning, as well as in its overt use as a protective shield against the effects of ultraviolet light, which otherwise might lead to damage of the pectineal vessels. (author)

  8. Efficient Fiber Optic Detection of Trapped Ion Fluorescence

    OpenAIRE

    VanDevender, A. P.; Colombe, Y.; J. Amini; Leibfried, D.; Wineland, D. J.

    2010-01-01

    Integration of fiber optics may play a critical role in the development of quantum information processors based on trapped ions and atoms by enabling scalable collection and delivery of light and coupling trapped ions to optical microcavities. We trap 24Mg+ ions in a surface-electrode Paul trap that includes an integrated optical fiber for detecting 280-nm fluorescence photons. The collection numerical aperture is 0.37 and total collection efficiency is 2.1 %. The ion can be positioned betwee...

  9. Optical design of transparent thin metal electrodes to enhance in-coupling and trapping of light in flexible polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Salinas, Jose-Francisco [Department of Material Science and Engineering, University of Washington, Seattle, Washington, 98195 (United States); Centro de Investigaciones en Optica A.P.1-948, Leon, Guanajuato, CP 37000 (Mexico); Yip, Hin-Lap; Chueh, Chu-Chen; Li, Chang-Zhi; Jen, Alex K.Y. [Department of Material Science and Engineering, University of Washington, Seattle, Washington, 98195 (United States); Maldonado, Jose-Luis [Centro de Investigaciones en Optica A.P.1-948, Leon, Guanajuato, CP 37000 (Mexico)

    2012-12-11

    ITO-free polymer solar cells with efficiencies as high as 6.6% and 5.8% are fabricated on glass and polyethylene naphthalate (PEN) by using TeO{sub 2} to enhance the in-coupling of light in an Ag-Ag microcavity. These cells exhibit higher performance, selective microcavity resonance as a function of the thickness of TeO{sub 2}, and better bending stability than flexible devices made with ITO. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Evanescent field trapping of nanoparticles using nanostructured ultrathin optical fibers.

    Science.gov (United States)

    Daly, Mark; Truong, Viet Giang; Chormaic, Síle Nic

    2016-06-27

    While conventional optical trapping techniques can trap objects with submicron dimensions, the underlying limits imposed by the diffraction of light generally restrict their use to larger or higher refractive index particles. As the index and diameter decrease, the trapping difficulty rapidly increases; hence, the power requirements for stable trapping become so large as to quickly denature the trapped objects in such diffraction-limited systems. Here, we present an evanescent field-based device capable of confining low index nanoscale particles using modest optical powers as low as 1.2 mW, with additional applications in the field of cold atom trapping. Our experiment uses a nanostructured optical micro-nanofiber to trap 200 nm, low index contrast, fluorescent particles within the structured region, thereby overcoming diffraction limitations. We analyze the trapping potential of this device both experimentally and theoretically, and show how strong optical traps are achieved with low input powers. PMID:27410600

  11. A model for direct laser interference patterning of ZnO:Al - predicting possible sample topographies to optimize light trapping in thin-film silicon solar cells

    Science.gov (United States)

    Dyck, Tobias; Haas, Stefan

    2016-04-01

    We present a novel approach to obtaining a quick prediction of a sample's topography after the treatment with direct laser interference patterning (DLIP) . The underlying model uses the parameters of the experimental setup as input, calculates the laser intensity distribution in the interference volume and determines the corresponding heat intake into the material as well as the subsequent heat diffusion within the material. The resulting heat distribution is used to determine the topography of the sample after the DLIP treatment . This output topography is in good agreement with corresponding experiments. The model can be applied in optimization algorithms in which a sample topography needs to be engineered in order to suit the needs of a given device. A prominent example for such an application is the optimization of the light scattering properties of the textured interfaces in a solar cell.

  12. Trapped electrons in crystalline cyclodextrin matrices

    International Nuclear Information System (INIS)

    The formation of trapped electrons was found in crystalline matrices of several α-cyclodextrin inclusion complexes γ-irradiated at 77 K. ESR signals of the trapped electrons were structureless single-line spectra, for which width depended on the included molecules: 1.7, 0.5 and 1.5 mT for H2O, D2O and 1-propanol included in cyclodextrin molecule, respectively. Optical absorption spectra were essentially structureless broad bands with the absorption maxima at 530 and 410 nm for the H2O and 1-propanol complexes, and were bleached homogeneously with light of wavelength longer than the absorption maxima. No trapped electron was formed in the cyclodextrin-neopentane complex. The G values of photobleached entities, assigned mainly to the trapped electrons, were found to be 1.7 and 1.8 for the D2O and 1-propanol complexes, respectively. These results indicate that the electrons are trapped in the inner cavity of the α-cyclodextrin molecule about 0.5 nm diameter, together with the included molecules, and imply that the trapped electrons can be found even in crystalline matrices, if they have pre-existing traps available to localize the radiation-generated electrons. The trapped electrons in the present matrices, providing a model of electron trapping in better-known environments, were compared with those in amorphous matrices so far reported. (author)

  13. Shrew trap efficiency

    DEFF Research Database (Denmark)

    Gambalemoke, Mbalitini; Mukinzi, Itoka; Amundala, Drazo;

    2008-01-01

    We investigated the efficiency of four trap types (pitfall, Sherman LFA, Victor snap and Museum Special snap traps) to capture shrews. This experiment was conducted in five inter-riverine forest blocks in the region of Kisangani. The total trapping effort was 6,300, 9,240, 5,280 and 5,460 trap...... previous studies, our results indicate that pitfall traps are the most efficient for capturing shrews: not only do they have a higher efficiency (yield), but the taxonomic diversity of shrews is also higher when pitfall traps are used....

  14. 液晶空间光调制器产生可调三光学势阱*%Generation of the controllable triple-well optical trap by liquid-crystal spatial light modulator*

    Institute of Scientific and Technical Information of China (English)

    周巧巧; 徐淑武; 陆俊发; 周琦; 纪宪明; 印建平

    2013-01-01

      提出了产生三光学势阱的新方案,在该方案中用液晶空间光调制器制作相位型闪耀光栅,单色相干光照明,产生按等边三角形分布的三个光学势阱,三个光阱光强大小分布相同,调节空间光调制器的相位分布,可以改变光阱的相对位置,实现三光阱到单个光阱、两光阱合并为一个光阱等演变及其反向演变,调节过程简单、方便。根据现有空间光调制器性能和尺寸,模拟设计光栅,计算三光阱的光强分布和调控过程中光强的变化,结果表明:用一般功率的激光照明,能够得到具有较大峰值光强和较高光强梯度的可调三光阱,在原子和分子光学实验研究中有多种重要的应用。%A new scheme of generating the controllable triple-well optical trap is proposed, in which a liquid-crystal spatial light modulator (SLM) is used to fabricate the phase-type blazed grating and be illuminated with coherent monochromatic light. Three optical wells, each of which has the same intensity distribution, can be formed with relative position of the distribution of an equilateral triangle. The relative positions of the optical wells can be changed by simply and conveniently adjusting the phase distribution of the SLM to realize the evolution and reverse evolution from triple or dual wells to single well. The phase grating is designed by simulation according to the technical parameters of the SLM, and illuminated by the laser with ordinary power. The intensity distributions and intensity changes in the adjustment process for the triple wells are calculated. Results show that the controllable triple-well optical trap with very high peak value of intensity and intensity gradient can be obtained. It has many important applications in the experimental study of atomic and molecular optics.

  15. Black phosphorus nonvolatile transistor memory.

    Science.gov (United States)

    Lee, Dain; Choi, Yongsuk; Hwang, Euyheon; Kang, Moon Sung; Lee, Seungwoo; Cho, Jeong Ho

    2016-04-28

    We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (10(4) s), and cyclic endurance (1000 cycles). PMID:27074903

  16. Flebotomíneos (Diptera, Psychodidae na Amazônia: II. Listagem das espécies coletadas na bacia petrolífera no Rio Urucu, Amazonas, Brasil, utilizando diferentes armadilhas e iscas Sandflies (Diptera, Psychodidae in the Amazon: II. Cheek list of the species collected in the petroleum basin of the Urucu River, Amazonas, Brazil using differents traps and baits

    Directory of Open Access Journals (Sweden)

    Eloy G. Castellón

    2000-06-01

    Full Text Available A sandfly survey was carried out in 100 x 150 m patches of primary forest submitted to recent deforestation in order to determine its species composition 10-30 days after clearing. The following collecting methods were used: CDC traps whit black light; Malaise traps placed at 0.5, 1, 5 and 10m up from the the soil surface; Pennsylvania traps whit black light; Malaise traps, tree-base catches and human baits. A total of 2810 specimens of Lutzomyia França, 1924 and one species of Brumptomyia França & Parrot, 1921, were collected. In general, the predominant species were L. chagasi (Costa Lima, 1941 (25.9%, L. davisi (Root, 1934 (12.3%, L. ayrozai (Barretto & Coutinho, 1940 (9.32% and L. ubiquitalis (Mangabeira, 1942, (6.93%. The higher diversity in species was obtained with the CDC traps placed at 1 m and 5 m heights. In the human bait collections, the species of the subgenus Psychodopygus Mangabeira, 1941, predominated. Lutzomyia ubiquitalis was collected in both, Malaise and Pennsylvania traps. In the tree-base collections, L. damascenoi Mangabeira, 1941, L. dendrophyla (Mangabeira, 1942 and L. souza-castroi (Damasceno & Causey, 1944 were the predominant species. Of all collected species, five of the subgenus Lutzomyia, six of the subgenus Psychodopygus and one of genus Trichophoromyia Barretto, 1962 have been previously incriminayed as vectors of leishmaniasis disease or have been found associated with parasites of the genus Leishmania (Root, 1903.

  17. The caddisfly fauna (Insecta, Trichoptera) of the rivers of the Black Sea basin in Kosovo with distributional data for some rare species

    OpenAIRE

    Halil Ibrahimi; Mladen Kučinić; Agim Gashi; Linda Grapci Kotori

    2012-01-01

    Abstract Adult caddisflies were collected from 12 stations in the Black Sea basin in Kosovo using UV light traps. Sixty-five of the seventy-six species reported in this paper are first records for the Kosovo caddisfly fauna. The unexpected discovery of several species during this investigation: Agapetus delicatulus McLachlan, 1884, Psychomyia klapaleki Malicky, 1995, Tinodes janssensi Jacquemart, 1957, Hydropsyche emarginata Navas, 1923, Drusus botosaneanui Kumanski, 1968, Potamophylax rotund...

  18. Time-resolved measurements of black carbon light absorption enhancement in urban and near-urban locations of southern Ontario, Canada

    Directory of Open Access Journals (Sweden)

    T. W. Chan

    2011-10-01

    Full Text Available In this study a photoacoustic spectrometer (PA, a laser-induced incandescence instrument system (LII and an Aerosol Mass Spectrometer were operated in parallel for in-situ measurements of black carbon (BC light absorption enhancement. Results of a thermodenuder experiment using ambient particles in Toronto are presented first to show that LII measurements of BC are not influenced by the presence of non-refractory material thus providing true atmospheric BC mass concentrations. In contrast, the PA response is enhanced when the non-refractory material is internally mixed with the BC particles. Through concurrent measurements using the LII and PA the specific absorption cross-section (SAC can be quantified with high time resolution (1 min. Comparisons of ambient PA and LII measurements from four different locations (suburban Toronto; a street canyon with diesel bus traffic in Ottawa; adjacent to a commuter highway in Ottawa and; regional background air in and around Windsor, Ontario, show that different impacts from emission sources and/or atmospheric processes result in different particle light absorption enhancements and hence variations in the SAC. The diversity of measurements obtained, including those with the thermodenuder, demonstrated that it is possible to identify measurements where the presence of externally-mixed non-refractory particles obscures direct observation of the effect of coating material on the SAC, thus allowing this effect to be measured with more confidence. Depending upon the time and location of measurement (urban, rural, close to and within a lake breeze frontal zone, 30 min average SAC varies between 9 ± 2 and 43 ± 4 m2 g−1. Causes of this variation, which were determined through the use of meteorological and gaseous measurements (CO, SO2, O3, include the particle emission source, airmass source region, the degree of atmospheric processing. Observations from this study

  19. Black Consciousness

    Science.gov (United States)

    Hraba, Joseph; Siegman, Jack

    1974-01-01

    Black militancy is treated as an instance of class consciousness with criteria and scales developed to measure black consciousness and "self-placement" into black consciousness. These dimensions are then investigated with respect to the social and symbolic participation in the ideology of the black movement on the part of a sample of black…

  20. St. Croix trap study

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data set contains detailed information about the catch from 600 trap stations around St. Croix. Data fields include species caught, size data, trap location...

  1. Small Mammal Trapping 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Small mammal traps were placed in the Baring division and in the Edmunds division of Moosehom National Wildlife Refuge. There were a total of 98 traps set for up to...

  2. Spatial distribution, seasonality and trap preference of stable fly, Stomoxys calcitrans L. (Diptera: Muscidae), adults on a 12-hectare zoological park

    OpenAIRE

    Ose, Gregory A; Hogsette, Jerome A

    2014-01-01

    Although this study was originally designed to compare the efficacy of two different stable fly traps within 10 sites at a 12-ha zoological park, seasonal and spatial population distribution data were simultaneously collected. The two traps included an Alsynite fiberglass cylindrical trap (AFT) and a blue-black cloth target modified into a cylindrical trap (BCT). Both traps were covered with sticky sleeves to retain the attracted flies. Paired trap types were placed at sites that were 20–100 ...

  3. Trap designs for monitoring Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Lee, Jana C; Shearer, Peter W; Barrantes, Luz D; Beers, Elizabeth H; Burrack, Hannah J; Dalton, Daniel T; Dreves, Amy J; Gut, Larry J; Hamby, Kelly A; Haviland, David R; Isaacs, Rufus; Nielsen, Anne L; Richardson, Tamara; Rodriguez-Saona, Cesar R; Stanley, Cory A; Walsh, Doug B; Walton, Vaughn M; Yee, Wee L; Zalom, Frank G; Bruck, Denny J

    2013-12-01

    Drosophila suzukii (Matsumura), an invasive pest of small and stone fruits, has been recently detected in 39 states of the United States, Canada, Mexico, and Europe. This pest attacks ripening fruit, causing economic losses including increased management costs and crop rejection. Ongoing research aims to improve the efficacy of monitoring traps. Studies were conducted to evaluate how physical trap features affect captures of D. suzukii. We evaluated five colors, two bait surface areas, and a top and side position for the fly entry point. Studies were conducted at 16 sites spanning seven states and provinces of North America and nine crop types. Apple cider vinegar was the standard bait in all trap types. In the overall analysis, yellow-colored traps caught significantly more flies than clear, white, and black traps; and red traps caught more than clear traps. Results by color may be influenced by crop type. Overall, the trap with a greater bait surface area caught slightly more D. suzukii than the trap with smaller area (90 vs. 40 cm(2)). Overall, the two traps with a side-mesh entry, with or without a protective rain tent, caught more D. suzukii than the trap with a top-mesh entry and tent. PMID:24252375

  4. Excitons in Electrostatic Traps

    OpenAIRE

    Hammack, A. T.; Gippius, N. A.; Andreev, G. O.; Butov, L. V.; Hanson, M.; Gossard, A. C.

    2005-01-01

    We consider in-plane electrostatic traps for indirect excitons in coupled quantum wells, where the traps are formed by a laterally modulated gate voltage. An intrinsic obstacle for exciton confinement in electrostatic traps is an in-plane electric field that can lead to exciton dissociation. We propose a design to suppress the in-plane electric field and, at the same time, to effectively confine excitons in the electrostatic traps. We present calculations for various classes of electrostatic ...

  5. Duponchelia water-trap

    NARCIS (Netherlands)

    Deventer, van P.

    2008-01-01

    How can the harmful Duponchelia insect best be trapped for optimum detection? A water trap was found to be most effective in a field test by Plant Research International. Another advantage is the low maintenance required by this trap. The composition of the Duponchelia sex pheromone was identified j

  6. Do poverty traps exist ?

    OpenAIRE

    Kraay, Aart; McKenzie, David

    2014-01-01

    This paper reviews the empirical evidence on the existence of poverty traps, understood as self-reinforcing mechanisms through which poor individuals or countries remain poor. Poverty traps have captured the interest of many development policy makers, because poverty traps provide a theoretically coherent explanation for persistent poverty. They also suggest that temporary policy intervent...

  7. Ion trap simulation tools.

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, Benjamin Roger

    2009-02-01

    Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

  8. Trapping Horizons in Sultana-Dyer Space-Time

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-Yi

    2011-01-01

    The Sultana-Dyer space-time is suggested as a model describing a black hole embedded in an expanding universe.Recently, its global structure is analyzed and the trapping horizons are shown.In the paper, by directly calculating the expansions of the radial null vector fields normal to the space-like two-spheres foliating the trapping horizons, we find that the trapping horizon outside the event horizon in the Sultana-Dyer space-time is a past trapping horizon.Further, we find that the past trapping horizon is an outer, instantaneously degenerate or inner trapping horizon accordingly when the radial coordinate is less than, equal to or greater than some value.

  9. Optical trapping in liquid crystals

    Science.gov (United States)

    Simoni, F.; Lucchetti, L.; Criante, L.; Bracalente, F.; Aieta, F.

    2010-08-01

    Optical trapping and manipulation of micrometric silica particles dispersed in a nematic liquid crystal is reported. Several kind of samples are considered: homeotropic and planar undoped cells and homeotropic and planar cells doped by a small amount of the azo-dye Methyl-Red. The incident light intensity is over the threshold for optical reorientation of the molecular director. The refractive index of the dispersed particles is lower than the ones of the liquid crystal therefore the usual conditions for laser trapping and manipulation are not fulfilled. Nevertheless optical trapping is possible and is closely related to the optical nonlinearity of the hosting liquid crystal1. Trapping in doped and undoped cells are compared and it is shown that in the first case intensity lower by more than one order of magnitude is required as compared to the one needed in undoped samples. The effect is faster and the structural forces are of longer range. The formation of bubble-gum like defects in doped samples under certain experimental conditions is also reported and discussed.

  10. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  11. TeV mini black hole decay at future colliders

    International Nuclear Information System (INIS)

    It is generally believed that mini black holes decay by emitting elementary particles with a black body energy spectrum. The original calculation leads to the conclusion that about the 90% of the black hole mass is radiated away in the form of photons, neutrinos and light leptons, mainly electrons and muons. With the advent of string theory, such a scenario must be updated by including new effects coming from the stringy nature of particles and interactions. The main modifications with respect to the original picture of black hole evaporation come from recent developments in non-perturbative string theory globally referred to as TeV-scale gravity. By taking for granted that black holes can be produced in hadronic collisions, then their decay must take into account that: (i) we live in a D3 brane embedded into a higher dimensional bulk spacetime; (ii) fundamental interactions, including gravity, are unified at the TeV energy scale. Thus, the formal description of the Hawking radiation mechanism has to be extended to the case of more than four spacetime dimensions and includes the presence of D-branes. This kind of topological defect in the bulk spacetime fabric acts as a sort of 'cosmic fly-paper' trapping electro-weak standard model elementary particles in our (3 + 1)-dimensional universe. Furthermore, unification of fundamental interactions at an energy scale many orders of magnitude lower than the Planck energy implies that any kind of fundamental particle, not only leptons, is expected to be emitted. A detailed understanding of the new scenario is instrumental for optimal tuning of detectors at future colliders, where, hopefully, this exciting new physics will be tested. In this review, we study higher dimensional black hole decay, considering not only the emission of particles according to the Hawking mechanism, but also their near-horizon QED/QCD interactions. The ultimate motivation is to build up a phenomenologically reliable scenario, allowing a clear

  12. Large-area surveys for black carbon and other light-absorbing impurities in snow: Arctic, Antarctic, North America, China (Invited)

    Science.gov (United States)

    Warren, S. G.; Doherty, S. J.; Hegg, D.; Dang, C.; Zhang, R.; Grenfell, T. C.; Brandt, R. E.; Clarke, A. D.; Zatko, M.

    2013-12-01

    Absorption of radiation by ice is extremely weak at visible and near-UV wavelengths, so small amounts of light-absorbing impurities (LAI) in snow can dominate the absorption of sunlight at these wavelengths, reducing the albedo relative to that of pure snow and leading to earlier snowmelt. Snow samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean, on tundra, glaciers, ice caps, sea ice, and frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack was accessible for sampling. Snow was also collected at 67 sites in western North America. Expeditions from Lanzhou University obtained black carbon (BC) amounts at 84 sites in northeast and northwest China. BC was measured at 3 locations on the Antarctic Plateau, and at 5 sites on East Antarctic sea ice. The snow is melted and filtered; the filters are analyzed in a spectrophotometer. Median BC mixing ratios in snow range over 4 orders of magnitude from 0.2 ng/g in Antarctica to 1000 ng/g in northeast China. Chemical analyses, input to a receptor model, indicate that the major source of BC in most of the Arctic is biomass burning, but industrial sources dominate in Svalbard and the central Arctic Ocean. Non-BC impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. In northeast China BC is the dominant LAI, but in Inner Mongolia soil dominates. When the snow surface layer melts, much of the BC is left at the top of the snowpack rather than carried away in meltwater, thus causing a positive feedback on snowmelt. This process was quantified through field studies in Greenland, Alaska, and Norway, where we found that only 10-30% of the BC is removed with meltwater. The BC content of the Arctic atmosphere has declined markedly since 1989, according to the continuous measurements of near-surface air in Canada, Alaska, and Svalbard. Correspondingly, our recent BC

  13. Black Eye

    Science.gov (United States)

    ... eyesight if not treated. If both eyes are black after a head injury, it could signify a skull fracture or other serious injury. Next Black Eye Symptoms Related Ask an Ophthalmologist Answers How ...

  14. Black tea

    Science.gov (United States)

    ... diuretic to increase urine flow. Some people use black tea for preventing tooth decay and kidney stones. In combination with various other products, black tea is used for weight loss. In foods, ...

  15. The Electronic McPhail Trap

    Directory of Open Access Journals (Sweden)

    Ilyas Potamitis

    2014-11-01

    Full Text Available Certain insects affect cultivations in a detrimental way. A notable case is the olive fruit fly (Bactrocera oleae (Rossi, that in Europe alone causes billions of euros in crop-loss/per year. Pests can be controlled with aerial and ground bait pesticide sprays, the efficiency of which depends on knowing the time and location of insect infestations as early as possible. The inspection of traps is currently carried out manually. Automatic monitoring traps can enhance efficient monitoring of flying pests by identifying and counting targeted pests as they enter the trap. This work deals with the hardware setup of an insect trap with an embedded optoelectronic sensor that automatically records insects as they fly in the trap. The sensor responsible for detecting the insect is an array of phototransistors receiving light from an infrared LED. The wing-beat recording is based on the interruption of the emitted light due to the partial occlusion from insect’s wings as they fly in the trap. We show that the recordings are of high quality paving the way for automatic recognition and transmission of insect detections from the field to a smartphone. This work emphasizes the hardware implementation of the sensor and the detection/counting module giving all necessary implementation details needed to construct it.

  16. Light trapping in fluorescent solar collectors

    OpenAIRE

    Soleimani, Nazila

    2012-01-01

    A fluorescent solar collector (FSC) is an optoelectronic waveguide device that can concentrate both diffuse and direct sunlight onto a solar cell which is then converted to electricity. Fluorescent collectors offer the potential to reduce the cost of crystalline silicon (c-Si) solar cells, but so far their effectiveness has been demonstrated only theoretically. The major problems in the device obtaining high practical efficiency are photon transport losses and material instability. This ...

  17. Trap style influences wild pig behavior and trapping success

    Science.gov (United States)

    Williams, B.L.; Holtfreter, R.W.; Ditchkoff, S.S.; Grand, J.B.

    2011-01-01

    Despite the efforts of many natural resource professionals, wild pig (Sus scrofa) populations are expanding in many areas of the world. Although many creative techniques for controlling pig populations are being explored, trapping has been and still is themost commonly usedmethod of population control formany public and private land managers. We conducted an observational study to examine the efficiency of 2 frequently used trap styles: a small, portable box-style trap and a larger, semi-permanent, corral-style trap.We used game cameras to examine patterns of trap entry by wild pigs around each style of trap, and we conducted a trapping session to compare trapping success between trap styles. Adult female and juvenile wild pigs entered both styles of trap more readily than did adult males, and adult males seemed particularly averse to entering box traps. Less than 10% of adult male visits to box traps resulted in entries, easily the least percentage of any class at any style of trap. Adult females entered corral traps approximately 2.2 times more often per visit than box traps and re-entered corral traps >2 times more frequently. Juveniles entered and reentered both box and corral traps at similar rates. Overall (all-class) entry-per-visit rates at corral traps (0.71) were nearly double that of box traps (0.37). Subsequent trapping data supported these preliminary entry data; the capture rate for corral traps was >4 times that of box traps. Our data suggest that corral traps are temporally and economically superior to box traps with respect to efficiency; that is, corral traps effectively trap more pigs per trap night at a lower cost per pig than do box traps. ?? 2011 The Wildlife Society.

  18. Black hole magnetospheres

    International Nuclear Information System (INIS)

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  19. Physics of open traps

    International Nuclear Information System (INIS)

    The basic physical problems determining the fusion prospects of the open traps are considered. Main attention is paid to the possibility of a scalable modelling of the anomalous transverse transport in long solenoids (which are a necessary component of most of the types of open traps), and to the problem of the MHD stability of axisymmetric ambipolar traps. The experimental device for studying the transverse transport in a long solenoid, based on the concept of a gas-dynamic trap, is described. Various axisymmetric MHD - stabilizers for ambipolar traps are considered, including the recently suggested stabilizer in the form of a ''fat'' mirror machine. Such a stabilizer is shown to provide the suppression of large-scale flute perturbations in the framework of a ''natural'' geometry of open traps. (author)

  20. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  1. Neutral atom traps.

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  2. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  3. Duponchelia water-trap

    OpenAIRE

    Deventer, van, S.J.H.

    2008-01-01

    How can the harmful Duponchelia insect best be trapped for optimum detection? A water trap was found to be most effective in a field test by Plant Research International. Another advantage is the low maintenance required by this trap. The composition of the Duponchelia sex pheromone was identified just over a year ago and now growers are using pheromone traps on a large scale for a timely detection of this difficult pest insect. The caterpillars of this moth cause damage in all sorts of crops...

  4. A versatile electrostatic trap

    CERN Document Server

    van Veldhoven, J; Meijer, G; Schnell, M; Bethlem, Hendrick L.; Meijer, Gerard; Schnell, Melanie; Veldhoven, Jacqueline van

    2006-01-01

    A four electrode electrostatic trap geometry is demonstrated that can be used to combine a dipole, quadrupole and hexapole field. A cold packet of 15ND3 molecules is confined in both a purely quadrupolar and hexapolar trapping field and additionally, a dipole field is added to a hexapole field to create either a double-well or a donut-shaped trapping field. The profile of the 15ND3 packet in each of these four trapping potentials is measured, and the dependence of the well-separation and barrier height of the double-well and donut potential on the hexapole and dipole term are discussed.

  5. Plasmon enhanced optical tweezers with gold-coated black silicon

    Science.gov (United States)

    Kotsifaki, D. G.; Kandyla, M.; Lagoudakis, P. G.

    2016-05-01

    Plasmonic optical tweezers are a ubiquitous tool for the precise manipulation of nanoparticles and biomolecules at low photon flux, while femtosecond-laser optical tweezers can probe the nonlinear optical properties of the trapped species with applications in biological diagnostics. In order to adopt plasmonic optical tweezers in real-world applications, it is essential to develop large-scale fabrication processes without compromising the trapping efficiency. Here, we develop a novel platform for continuous wave (CW) and femtosecond plasmonic optical tweezers, based on gold-coated black silicon. In contrast with traditional lithographic methods, the fabrication method relies on simple, single-step, maskless tabletop laser processing of silicon in water that facilitates scalability. Gold-coated black silicon supports repeatable trapping efficiencies comparable to the highest ones reported to date. From a more fundamental aspect, a plasmon-mediated efficiency enhancement is a resonant effect, and therefore, dependent on the wavelength of the trapping beam. Surprisingly, a wavelength characterization of plasmon-enhanced trapping efficiencies has evaded the literature. Here, we exploit the repeatability of the recorded trapping efficiency, offered by the gold-coated black silicon platform, and perform a wavelength-dependent characterization of the trapping process, revealing the resonant character of the trapping efficiency maxima. Gold-coated black silicon is a promising platform for large-scale parallel trapping applications that will broaden the range of optical manipulation in nanoengineering, biology, and the study of collective biophotonic effects.

  6. Plasmon enhanced optical tweezers with gold-coated black silicon.

    Science.gov (United States)

    Kotsifaki, D G; Kandyla, M; Lagoudakis, P G

    2016-01-01

    Plasmonic optical tweezers are a ubiquitous tool for the precise manipulation of nanoparticles and biomolecules at low photon flux, while femtosecond-laser optical tweezers can probe the nonlinear optical properties of the trapped species with applications in biological diagnostics. In order to adopt plasmonic optical tweezers in real-world applications, it is essential to develop large-scale fabrication processes without compromising the trapping efficiency. Here, we develop a novel platform for continuous wave (CW) and femtosecond plasmonic optical tweezers, based on gold-coated black silicon. In contrast with traditional lithographic methods, the fabrication method relies on simple, single-step, maskless tabletop laser processing of silicon in water that facilitates scalability. Gold-coated black silicon supports repeatable trapping efficiencies comparable to the highest ones reported to date. From a more fundamental aspect, a plasmon-mediated efficiency enhancement is a resonant effect, and therefore, dependent on the wavelength of the trapping beam. Surprisingly, a wavelength characterization of plasmon-enhanced trapping efficiencies has evaded the literature. Here, we exploit the repeatability of the recorded trapping efficiency, offered by the gold-coated black silicon platform, and perform a wavelength-dependent characterization of the trapping process, revealing the resonant character of the trapping efficiency maxima. Gold-coated black silicon is a promising platform for large-scale parallel trapping applications that will broaden the range of optical manipulation in nanoengineering, biology, and the study of collective biophotonic effects. PMID:27195446

  7. Pyrolytic carbon coated black silicon.

    Science.gov (United States)

    Shah, Ali; Stenberg, Petri; Karvonen, Lasse; Ali, Rizwan; Honkanen, Seppo; Lipsanen, Harri; Peyghambarian, N; Kuittinen, Markku; Svirko, Yuri; Kaplas, Tommi

    2016-01-01

    Carbon is the most well-known black material in the history of man. Throughout the centuries, carbon has been used as a black material for paintings, camouflage, and optics. Although, the techniques to make other black surfaces have evolved and become more sophisticated with time, carbon still remains one of the best black materials. Another well-known black surface is black silicon, reflecting less than 0.5% of incident light in visible spectral range but becomes a highly reflecting surface in wavelengths above 1000 nm. On the other hand, carbon absorbs at those and longer wavelengths. Thus, it is possible to combine black silicon with carbon to create an artificial material with very low reflectivity over a wide spectral range. Here we report our results on coating conformally black silicon substrate with amorphous pyrolytic carbon. We present a superior black surface with reflectance of light less than 0.5% in the spectral range of 350 nm to 2000 nm. PMID:27174890

  8. An effort to trap mink in Maine to protect nesting Seabirds 1999

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report details and effort to trap mink and survey black guillemots on islands in outer Penobscot Bay Otter, Roberts, Little Roberts, Carvers, Hay, and...

  9. An effort to trap mink in Maine to protect nesting Seabirds 2000

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Mink were trapped off the seabird nesting islands south east of Vinalhaven, Maine outer Penobscot Bay during the late 1990s, and the local Black Guillemot...

  10. Black Hole Grabs Starry Snack

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end. The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light. The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.

  11. Evaluation of Trap Designs and Deployment Strategies for Capturing Halyomorpha halys (Hemiptera: Pentatomidae).

    Science.gov (United States)

    Morrison, William R; Cullum, John P; Leskey, Tracy C

    2015-08-01

    Halyomorpha halys (Stål) is an invasive pest that attacks numerous crops. For growers to make informed management decisions against H. halys, an effective monitoring tool must be in place. We evaluated various trap designs baited with the two-component aggregation pheromone of H. halys and synergist and deployed in commercial apple orchards. We compared our current experimental standard trap, a black plywood pyramid trap 1.22 m in height deployed between border row apple trees with other trap designs for two growing seasons. These included a black lightweight coroplast pyramid trap of similar dimension, a smaller (29 cm) pyramid trap also ground deployed, a smaller limb-attached pyramid trap, a smaller pyramid trap hanging from a horizontal branch, and a semipyramid design known as the Rescue trap. We found that the coroplast pyramid was the most sensitive, capturing more adults than all other trap designs including our experimental standard. Smaller pyramid traps performed equally in adult captures to our experimental standard, though nymphal captures were statistically lower for the hanging traps. Experimental standard plywood and coroplast pyramid trap correlations were strong, suggesting that standard plywood pyramid traps could be replaced with lighter, cheaper coroplast pyramid traps. Strong correlations with small ground- and limb-deployed pyramid traps also suggest that these designs offer promise as well. Growers may be able to adopt alternative trap designs that are cheaper, lighter, and easier to deploy to monitor H. halys in orchards without a significant loss in sensitivity. PMID:26470309

  12. Eliminating Impurity Traps in the Silane Process

    Science.gov (United States)

    Coleman, L. M.

    1982-01-01

    Redistribution reaction section of silane process progressively separates heavier parts of chlorosilane feedstock until light silane product is available for pyrolysis. Small amount of liquid containing impurities is withdrawn from processing stages in which trapping occurs and passed to earlier processing stage in which impurities tend to be removed via chemical reactions.

  13. Nonlinear integrable ion traps

    Energy Technology Data Exchange (ETDEWEB)

    Nagaitsev, S.; /Fermilab; Danilov, V.; /SNS Project, Oak Ridge

    2011-10-01

    Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.

  14. Nonlinear integrable ion traps

    International Nuclear Information System (INIS)

    Quadrupole ion traps can be transformed into nonlinear traps with integrable motion by adding special electrostatic potentials. This can be done with both stationary potentials (electrostatic plus a uniform magnetic field) and with time-dependent electric potentials. These potentials are chosen such that the single particle Hamilton-Jacobi equations of motion are separable in some coordinate systems. The electrostatic potentials have several free adjustable parameters allowing for a quadrupole trap to be transformed into, for example, a double-well or a toroidal-well system. The particle motion remains regular, non-chaotic, integrable in quadratures, and stable for a wide range of parameters. We present two examples of how to realize such a system in case of a time-independent (the Penning trap) as well as a time-dependent (the Paul trap) configuration.

  15. Black phosphorus nonvolatile transistor memory

    Science.gov (United States)

    Lee, Dain; Choi, Yongsuk; Hwang, Euyheon; Kang, Moon Sung; Lee, Seungwoo; Cho, Jeong Ho

    2016-04-01

    We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (104 s), and cyclic endurance (1000 cycles).We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (104 s), and cyclic endurance (1000 cycles). Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02078j

  16. Tightly confined atoms in optical dipole traps

    International Nuclear Information System (INIS)

    This thesis reports on the design and setup of a new atom trap apparatus, which is developed to confine few rubidium atoms in ultrahigh vacuum and make them available for controlled manipulations. To maintain low background pressure, atoms of a vapour cell are transferred into a cold atomic beam by laser cooling techniques, and accumulated by a magneto-optic trap (MOT) in a separate part of the vacuum system. The laser cooled atoms are then transferred into dipole traps made of focused far-off-resonant laser fields in single- or crossed-beam geometry, which are superimposed with the center of the MOT. Gaussian as well as hollow Laguerre-Gaussian (LG$(01)$) beam profiles are used with red-detuned or blue-detuned light, respectively. Microfabricated dielectric phase objects allow efficient and robust mode conversion of Gaussian into Laguerre-Gaussian laser beams. Trap geometries can easily be changed due to the highly flexible experimental setup. The dipole trap laser beams are focused to below 10 microns at a power of several hundred milliwatts. Typical trap parameters, at a detuning of several ten nanometers from the atomic resonance, are trag depths of few millikelvin, trap frequencies near 30-kHz, trap light scattering rates of few hundred photons per atom and second, and lifetimes of several seconds. The number of dipole-trapped atoms ranges from more than ten thousand to below ten. The dipole-trapped atoms are detected either by a photon counting system with very efficient straylight discrimination, or by recapture into the MOT, which is imaged onto a sensitive photodiode and a CCD-camera. Due to the strong AC-Stark shift imposed by the high intensity trapping light, energy-selective resonant excitation and detection of the atoms is possible. The measured energy distribution is consistent with a harmonic potential shape and allows the determination of temperatures and heating rates. In first measurements, the thermal energy is found to be about 10 % of the trap

  17. Conservation laws for dynamical black holes

    OpenAIRE

    Hayward, Sean A.

    2006-01-01

    An essentially complete new paradigm for dynamical black holes in terms of trapping horizons is presented, including dynamical versions of the physical quantities and laws which were considered important in the classical paradigm for black holes in terms of Killing or event horizons. Three state functions are identified as surface integrals over marginal surfaces: irreducible mass, angular momentum and charge. There are three corresponding conservation laws, expressing the rate of change of t...

  18. Local temperature for dynamical black holes

    CERN Document Server

    Hayward, Sean A; Nadalini, M; Vanzo, L; Zerbini, S

    2009-01-01

    A local Hawking temperature was recently derived for any future outer trapping horizon in spherical symmetry, using a Hamilton-Jacobi tunneling method, and is given by a dynamical surface gravity as defined geometrically. Descriptions are given of the operational meaning of the temperature, in terms of what observers measure, and its relation to the usual Hawking temperature for static black holes. Implications for the final fate of an evaporating black hole are discussed.

  19. Local temperature for dynamical black holes

    Science.gov (United States)

    Hayward, Sean A.; di Criscienzo, R.; Nadalini, M.; Vanzo, L.; Zerbini, S.

    2009-05-01

    A local Hawking temperature was recently derived for any future outer trapping horizon in spherical symmetry, using a Hamilton-Jacobi tunneling method, and is given by a dynamical surface gravity as defined geometrically. Descriptions are given of the operational meaning of the temperature, in terms of what observers measure, and its relation to the usual Hawking temperature for static black holes. Implications for the final fate of an evaporating black hole are discussed.

  20. Black holes and relativitic gravity theories

    Science.gov (United States)

    Fennelly, A. J.; Pavelle, R.

    1977-01-01

    All presently known relativistic gravitation theories were considered which have a Riemannian background geometry and possess exact static, spherically symmetric solutions which are asymptotically flat. Each theory predicts the existence of trapped surfaces (black holes). For a general static isotropic metric, MACSYMA was used to compute the Newman-Penrose equations, the black hole radius, the impact parameter, and capture radius for photon accretion. These results were then applied to several of the better known gravitation theories.

  1. In-trap fluorescence detection of atoms in a microscopic dipole trap

    CERN Document Server

    Hilliard, A J; Sompet, P; Carpentier, A V; Andersen, M F

    2015-01-01

    We investigate fluorescence detection using a standing wave of blue-detuned light of one or more atoms held in a deep, microscopic dipole trap. The blue-detuned standing wave realizes a Sisyphus laser cooling mechanism so that an atom can scatter many photons while remaining trapped. When imaging more than one atom, the blue detuning limits loss due to inelastic light-assisted collisions. Using this standing wave probe beam, we demonstrate that we can count from one to the order of 100 atoms in the microtrap with sub-poissonian precision.

  2. Doppler cooling of an optically dense cloud of trapped atoms

    CERN Document Server

    Schmidt, P O; Werner, J; Binhammer, T; Görlitz, A; Pfau, T; Schmidt, Piet O.; Hensler, Sven; Binhammer, Thomas; G\\"{o}rlitz, Axel; Pfau, Tilman

    2002-01-01

    We have studied a general technique for laser cooling a cloud of polarized trapped atoms down to the Doppler temperature. A one-dimensional optical molasses using polarized light cools the axial motional degree of freedom of the atoms in the trap. Cooling of the radial degrees of freedom can be modelled by reabsorption of scattered photons in the optically dense cloud. We present experimental results for a cloud of chromium atoms in a magnetic trap. A simple model based on rate equations shows quantitative agreement with the experimental results. This scheme allows us to readily prepare a dense cloud of atoms in a magnetic trap with ideal starting conditions for evaporative cooling.

  3. Cooling and trapping neutral atoms with radiative forces

    International Nuclear Information System (INIS)

    Techniques to slow and trap neutral atoms at high densities with radiative forces are discussed in this review articles. Among several methods of laser cooling, it is emphasized Zeeman Tuning of the electronic levels and frequency-sweeping techniques. Trapping of neutral atoms and recent results obtained in light and magnetic traps are discussed. Techniques to further cool atoms inside traps are presented and the future of laser cooling of neutral atoms by means of radiation pressure is discussed. (A.C.A.S.)

  4. Optimal Proton Trapping

    CERN Document Server

    Coakley, K J

    2006-01-01

    In a neutron lifetime experiment conducted at the National Institute of Standards and Technology, protons produced by neutron decay events are confined in a Penning trap. In each run of the experiment, there is a trapping stage of duration $\\tau$. After the trapping stage, protons are purged from the trap. A proton detector provides incomplete information because it goes dead after detecting the first of any purged protons. Further, there is a dead time $\\delta$ between the end of the trapping stage in one run and the beginning of the next trapping stage in the next run. Based on the fraction of runs where a proton is detected, I estimate the trapping rate $\\lambda$ by the method of maximum likelihood. I show that the expected value of the maximum likelihood estimate is infinite. To obtain a maximum likelihood estimate with a finite expected value and a well-defined and finite variance, I restrict attention to a subsample of all realizations of the data. This subsample excludes an exceedingly rare realization...

  5. Speckle lithography for fabricating Gaussian, quasi-random 2D structures and black silicon structures

    Science.gov (United States)

    Bingi, Jayachandra; Murukeshan, Vadakke Matham

    2015-12-01

    Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices.

  6. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for

  7. Black Culture

    Directory of Open Access Journals (Sweden)

    Angela Khristin Brown

    2013-07-01

    Full Text Available The migration of blacks in North America through slavery became united.  The population of blacks past downs a tradition of artist through art to native born citizens. The art tradition involved telling stories to each generation in black families. The black culture elevated by tradition created hope to determine their personal freedom to escape from poverty of enslavement and to establish a way of life through tradition. A way of personal freedoms was through getting a good education that lead to a better foundation and a better way of life. 

  8. Sediment trap methodology

    International Nuclear Information System (INIS)

    The processes by which dissolved pollutants from atmospheric or tributary inputs are deposited in local regions of the bottom sediments of Lake Michigan are known only in part. Settling particulate material must play a major role in these processes, but sediment traps have been used only rarely in the Great Lakes. The trap and mooring designs developed during the plutonium study in Lake Michigan are presented, and the experience with their use is summarized. the traps used were right circular cylinders, and the mooring arrangement an adaptation of the U system often used in current-meter studies

  9. Dynamics of the four kinds of Trapping Horizons and Existence of Hawking Radiation

    CERN Document Server

    Helou, Alexis

    2015-01-01

    We work with the notion of apparent/trapping horizons for spherically symmetric, dynamical spacetimes: these are quasi-locally defined, simply based on the behaviour of congruence of light rays. We show that the sign of the dynamical Hayward-Kodama surface gravity is dictated by the inner/outer nature of the horizon. Using the tunneling method to compute Hawking Radiation, this surface gravity is then linked to a notion of temperature, up to a sign that is dictated by the future/past nature of the horizon. Therefore two sign effects are conspiring to give a positive temperature for the black hole case and the expanding cosmology, whereas the same quantity is negative for white holes and contracting cosmologies. This is consistent with the fact that, in the latter cases, the horizon does not act as a separating membrane, and Hawking emission should not occur.

  10. The nature of the TRAP-Anti-TRAP complex.

    Science.gov (United States)

    Watanabe, Masahiro; Heddle, Jonathan G; Kikuchi, Kenichi; Unzai, Satoru; Akashi, Satoko; Park, Sam-Yong; Tame, Jeremy R H

    2009-02-17

    Tryptophan biosynthesis is subject to exquisite control in species of Bacillus and has become one of the best-studied model systems in gene regulation. The protein TRAP (trp RNA-binding attenuation protein) predominantly forms a ring-shaped 11-mer, which binds cognate RNA in the presence of tryptophan to suppress expression of the trp operon. TRAP is itself regulated by the protein Anti-TRAP, which binds to TRAP and prevents RNA binding. To date, the nature of this interaction has proved elusive. Here, we describe mass spectrometry and analytical centrifugation studies of the complex, and 2 crystal structures of the TRAP-Anti-TRAP complex. These crystal structures, both refined to 3.2-A resolution, show that Anti-TRAP binds to TRAP as a trimer, sterically blocking RNA binding. Mass spectrometry shows that 11-mer TRAP may bind up to 5 AT trimers, and an artificial 12-mer TRAP may bind 6. Both forms of TRAP make the same interactions with Anti-TRAP. Crystallization of wild-type TRAP with Anti-TRAP selectively pulls the 12-mer TRAP form out of solution, so the crystal structure of wild-type TRAP-Anti-TRAP complex reflects a minor species from a mixed population. PMID:19164760

  11. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids. PMID:25768746

  12. Turbulent Black Holes

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-01

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability—which is triggered above a certain perturbation amplitude threshold—akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies—a phenomenon reminiscent of the inverse cascade displayed by (2 +1 )-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  13. SURVEY OF THE ENTOMOFAUNA THROUGH LUMINOUS TRAP

    Directory of Open Access Journals (Sweden)

    V. R. Andrade Neto

    2014-09-01

    Full Text Available The demand for forest-based raw materials for energy, construction, paper pulp and the pressure to comply with legal requirements concerning environmental legislation, for example, the replacement of the permanent preservation area, legal reserve and recovery of degraded area, leads to encourage the production of healthy seedlings in a health status to do not compromise their future production. The present study aimed to survey the entomofauna population using the “Luiz de Queiroz” model of luminous trap, with white and red fluorescent lamps. The experiment was conducted at the nursery “Flora Sinop” in Sinop – MT. The survey was conducted weekly between the months of April to July 2010, totaling 4 months sand, 32 samples collected. The orders Hemiptera and Coleoptera showed the highest number of individuals captured, either in attraction with white or red light. It was captured 10.089 individuals, 9.339 collected under the influence of white light, representing 92,56%, and 750 with red light, only 7,44% of the total. The white light luminous trap possessed greater efficiency in the attraction of insects when compared with the red light trap.

  14. Single photon from a single trapped atom

    International Nuclear Information System (INIS)

    Full text: A quantum treatment of the interaction between atoms and light usually begins with the simplest model system: a two-level atom interacting with a monochromatic light wave. Here we demonstrate an elegant experimental realization of this system using an optically trapped single rubidium atom illuminated by resonant light pulses. We observe Rabi oscillations, and show that this system can be used as a highly efficient triggered source of single photons with a well-defined polarisation. In contrast to other sources based on neutral atoms and trapped ions, no optical cavity is required. We achieved a flux of single photons of about 104 s-1 at the detector, and observe complete antibunching. This source has potential applications for distributed atom-atom entanglement using single photons. (author)

  15. Slowly balding black holes

    International Nuclear Information System (INIS)

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πc(ℎ/2π)), where Φ∞≅2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  16. Slowly balding black holes

    Science.gov (United States)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-10-01

    The “no-hair” theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively “frozen in” the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πcℏ), where Φ∞≈2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole’s magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  17. Comment on Hawking radiation and trapping horizons

    CERN Document Server

    Baier, Rudolf

    2015-01-01

    We consider dynamical black hole formation from a collapsing fluid described by a symmetric and flat FRW metric. Using the Hamilton-Jacobi method the local Hawking temperature for the formed trapping/apparent horizon is calculated. The local Hawking temperature depends on the tunneling path, which we take to be along a null direction $(\\Delta s=0)$. We find that the local Hawking temperature depends directly on the equation of state of the collapsing fluid. We argue that Hawking radiation by quantum tunnelling from future inner and future outer trapping horizons is possible. However, only radiation from a space-like dynamical horizon has a chance to be observed by an external observer. Some comparison to existing literature is made.

  18. Elimination of charge carrier trapping in diluted semiconductors

    Science.gov (United States)

    Abbaszadeh, D.; Kunz, A.; Wetzelaer, G. A. H.; Michels, J. J.; Crăciun, N. I.; Koynov, K.; Lieberwirth, I.; Blom, P. W. M.

    2016-06-01

    In 1962, Mark and Helfrich demonstrated that the current in a semiconductor containing traps is reduced by N/Ntr, with N the amount of transport sites, Nt the amount of traps and r a number that depends on the trap energy distribution. For r > 1, the possibility opens that trapping effects can be nearly eliminated when N and Nt are simultaneously reduced. Solution-processed conjugated polymers are an excellent model system to test this hypothesis, because they can be easily diluted by blending them with a high-bandgap semiconductor. We demonstrate that in conjugated polymer blends with 10% active semiconductor and 90% high-bandgap host, the typical strong electron trapping can be effectively eliminated. As a result we were able to fabricate polymer light-emitting diodes with balanced electron and hole transport and reduced non-radiative trap-assisted recombination, leading to a doubling of their efficiency at nearly ten times lower material costs.

  19. Are black holes totally black?

    CERN Document Server

    Grib, A A

    2014-01-01

    Geodesic completeness needs existence near the horizon of the black hole of "white hole" geodesics coming from the region inside of the horizon. Here we give the classification of all such geodesics with the energies $E/m \\le 1$ for the Schwarzschild and Kerr's black hole. The collisions of particles moving along the "white hole" geodesics with those moving along "black hole" geodesics are considered. Formulas for the increase of the energy of collision in the centre of mass frame are obtained and the possibility of observation of high energy particles arriving from the black hole to the Earth is discussed.

  20. Optothermal Molecule Trap

    OpenAIRE

    Duhr, Stefan; Braun, Dieter

    2006-01-01

    Thermophoresis moves molecules along temperature gradients, typically from hot to cold. We superpose fluid flow with thermophoretic molecule flow under well defined microfluidic conditions, imaged by fluorescence microscopy. DNA is trapped and accumulated 16-fold in regions where both flows move in opposite directions. Strong 800-fold accumulation is expected, however with slow trapping kinetics. The experiment is equally described by a three-dimensional and one-dimensional analytical model. ...

  1. An Improved Antihydrogen Trap

    OpenAIRE

    Kalra, Rita Rani

    2015-01-01

    The recent demonstration of trapped atomic antihydrogen for 15 to 1000 seconds is a milestone towards precise spectroscopy for tests of CPT invariance. The confinement of a total of 105±21 atoms in a quadrupole magnetic trap was made possible by several improved methods. Improved accumulation techniques give us the largest numbers of constituent particles yet: up to 10 million antiprotons and several billion positrons. A novel cooling protocol leads to 3.5 K antiprotons, the coldest ever obse...

  2. Fractal Poverty Traps

    OpenAIRE

    Barrett, Christopher B.; Swallow, Brent M.

    2003-01-01

    This paper offers an informal theory of fractal poverty traps that lead to chronic poverty at multiple scales of socio-spatial aggregation. Poverty traps result from nonlinear processes at individual, household, community, national and international scales that cause the coexistence of high and low equilibrium levels of productivity and income and high and low rates of economic growth. Multiple equilibria result from key threshold effects that exist at all scales due to market failures and no...

  3. Comparision of carbon dioxide-baited trapping systems for sampling outdoor mosquito populations in Tanzania

    NARCIS (Netherlands)

    Mboera, L.E.G.; Knols, B.G.J.; Braks, M.A.H.; Takken, W.

    2000-01-01

    For collecting mosquitoes (Diptera: Culicidae) the outdoor catching efficiency of four types of trapping devices baited with carbon dioxide (CO2, 300 ml/min) was evaluated and compared in two areas of Tanzania. The types of traps employed were: the CDC miniature trap with the incandescent light bulb

  4. Motion analysis of optically trapped particles and cells using 2D Fourier analysis

    DEFF Research Database (Denmark)

    Kristensen, Martin Verner; Ahrendt, Peter; Lindballe, Thue Bjerring;

    2012-01-01

    trap is determined in three dimensions. The Fourier transform method is simple to implement and applicable in cases where the trapped object changes shape or where the lighting conditions change. This is illustrated by tracking a fluorescent particle and a myoblast cell, with subsequent determination...... of diffusion coefficients and the trapping forces....

  5. Assessing Carbon Dioxide and Synthetic Lure-Baited Traps for Dengue and Chikungunya Vector Surveillance (3).

    Science.gov (United States)

    Harwood, James F; Arimoto, Hanayo; Nunn, Peter; Richardson, Alec G; Obenauer, Peter J

    2015-09-01

    The Aedes mosquito vectors of dengue virus (DENV) and chikungunya virus (CHIKV) are attracted to specific host cues that are not generated by traditional light traps. For this reason multiple companies have designed traps to specifically target those species. Recently the standard trap for DENV and CHIKV vectors, the BG-Sentinel (BGS) trap, has been remodeled to be more durable and better suited for use in harsh field conditions, common during military operations, and relabeled the BG-Sentinel 2 (BGS2). This new trap was evaluated against the standard Centers for Disease Control and Prevention (CDC) light trap, Zumba Trap, and BG-Mosquitito Trap to determine relative effectiveness in collecting adult Aedes aegypti and Ae. albopictus. Evaluations were conducted under semifield and field conditions in suburban areas in northeastern Florida from May to August 2014. The BGS2 trap collected more DENV and CHIKV vectors than the standard CDC light trap, Zumba Trap, and BG-Mosquitito Trap, but attracted fewer species, while the BG-Mosquitito Trap attracted the greatest number of mosquito species. PMID:26375905

  6. Spectral gaps for normally hyperbolic trapping

    CERN Document Server

    Dyatlov, Semyon

    2014-01-01

    We establish a resonance free strip for codimension 2 symplectic normally hyperbolic trapped sets with smooth incoming/outgoing tails. An important application is wave decay on Kerr and Kerr-de Sitter black holes. We recover the optimal size of the strip and give an $o(h^{-2})$ resolvent bound there. We next show existence of deeper resonance free strips under the $r$-normal hyperbolicity assumption and a pinching condition. We also give a lower bound on one-sided cutoff resolvent on the real line.

  7. Virtual black holes

    Science.gov (United States)

    Hawking, S. W.

    1996-03-01

    One would expect spacetime to have a foamlike structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the nontrivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S2×S2 and K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S2×S2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix S/ that does not factorize into an S matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the θ angle of QCD is zero without having to invoke the problematical existence of a light axion. The picture of virtual black holes given here also suggests that macroscopic black holes will evaporate down to the Planck size and then disappear in the sea of virtual black holes.

  8. Black Holes and Galaxy Metamorphosis

    CERN Document Server

    Holley-Bockelmann, K

    2001-01-01

    Supermassive black holes can be seen as an agent of galaxy transformation. In particular, a supermassive black hole can cause a triaxial galaxy to evolve toward axisymmetry by inducing chaos in centrophilic orbit families. This is one way in which a single supermassive black hole can induce large-scale changes in the structure of its host galaxy -- changes on scales far larger than the Schwarzschild radius ($O(10^{-5}) \\rm{pc}$) and the radius of influence of the black hole ($O(1)-O(100) \\rm{pc}$). We will discuss the transformative power of supermassive black holes in light of recent high resolution N-body realizations of cuspy triaxial galaxies.

  9. Using insect traps to increase weaver ant (Oecophylla longinoda) prey capture

    DEFF Research Database (Denmark)

    Lynegaard, Gina; Offenberg, Joachim; Fast, Thora;

    2014-01-01

    estimated the amount of insects caught by simple traps (cost per trap = 3.9 USD), and whether O. longinoda was able to collect insects from them. On average, a trap caught 110 insects per month without catching any weaver ants. The number of insects found in traps with ant access was 25% lower than in...... by O. longinoda under natural conditions (without traps), potentially increasing to 14% if ants learn to extract all insects. Thus, prey intake may be increased with 5-14% per 3.9 USD invested in traps. These numbers increased to 38 and 78%, respectively, when light was used to attract insects during...

  10. Evolving Black Hole Horizons in General Relativity and Alternative Gravity

    Directory of Open Access Journals (Sweden)

    Valerio Faraoni

    2013-09-01

    Full Text Available From the microscopic point of view, realistic black holes are time-dependent and the teleological concept of the event horizon fails. At present, the apparent or trapping horizon seem to be its best replacements in various areas of black hole physics. We discuss the known phenomenology of apparent and trapping horizons for analytical solutions of General Relativity and alternative theories of gravity. These specific examples (we focus on spherically symmetric inhomogeneities in a background cosmological spacetime are useful as toy models for research on various aspects of black hole physics.

  11. Evolving black hole horizons in General Relativity and alternative gravity

    CERN Document Server

    Faraoni, Valerio

    2013-01-01

    From the microscopic point of view, realistic black holes are time-dependent and the teleological concept of event horizon fails. At present, the apparent or the trapping horizon seem its best replacements in various areas of black hole physics. We discuss the known phenomenology of apparent and trapping horizons for analytical solutions of General Relativity and alternative theories of gravity. These specific examples (we focus on spherically symmetric inhomogeneities in a background cosmological spacetime) may be useful as toy models for research on various aspects of black hole physics.

  12. WOW: light print, light propel, light point

    Science.gov (United States)

    Glückstad, Jesper; Bañas, Andrew; Aabo, Thomas; Palima, Darwin

    2012-10-01

    We are presenting so-called Wave-guided Optical Waveguides (WOWs) fabricated by two-photon polymerization and capable of being optically manipulated into any arbitrary orientation. By integrating optical waveguides into the structures we have created freestanding waveguides which can be positioned anywhere in a sample at any orientation using real-time 3D optical micromanipulation with six degrees of freedom. One of the key aspects of our demonstrated WOWs is the change in direction of in-coupled light and the marked increase in numerical aperture of the out-coupled light. Hence, each light propelled WOW can tap from a relatively broad incident beam and generate a much more tightly confined light at its tip. The presentation contains both numerical simulations related to the propagation of light through a WOW and preliminary experimental demonstrations on our BioPhotonics Workstation. In a broader context, this research shows that optically trapped micro-fabricated structures can potentially help bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the sub-wavelength domain.

  13. Comparison of three trap types for adult catching of whitefly Bemisia tabaci and its parasitoid Eretmocerus mundus in tomato greenhouse

    OpenAIRE

    Nombela, G.; Chu, CC.; Heneberry, T.; Muñiz, M.

    2003-01-01

    The attractiveness of three trap types to Bemisia tabaci (Gennadius) B-biotype (= Bemisia argentifolii Bellows & Perring) and Eretmocerus mundus Mercet adult was compared in two choice experiments in a greenhouse at the Centro de Ciencias Medioambientales, Madrid, Spain.  Yellow sticky cards equipped with light-emitting-diodes (LED-YC) caught more adults per trap per day than yellow sticky card (YC) traps.YC traps caught significantly more B. tabaci and E. mundus adults than plastic cup traps...

  14. Black market

    International Nuclear Information System (INIS)

    One way for states and subnational groups to acquire material, knowledge and equipment necessary to build a nuclear weapon or device are illegal transactions. These were singular in the past and did not cause the development of a nuclear black market. But all necessary components of a functioning black market exist. Therefore the further spread and extension of the use of nuclear power would enhance the threat of a nuclear black market, if the trade and use of specific nuclear material is not abandoned worldwide. (orig.)

  15. Adaptive Capacity and Traps

    Directory of Open Access Journals (Sweden)

    William A. Brock

    2008-12-01

    Full Text Available Adaptive capacity is the ability of a living system, such as a social–ecological system, to adjust responses to changing internal demands and external drivers. Although adaptive capacity is a frequent topic of study in the resilience literature, there are few formal models. This paper introduces such a model and uses it to explore adaptive capacity by contrast with the opposite condition, or traps. In a social–ecological rigidity trap, strong self-reinforcing controls prevent the flexibility needed for adaptation. In the model, too much control erodes adaptive capacity and thereby increases the risk of catastrophic breakdown. In a social–ecological poverty trap, loose connections prevent the mobilization of ideas and resources to solve problems. In the model, too little control impedes the focus needed for adaptation. Fluctuations of internal demand or external shocks generate pulses of adaptive capacity, which may gain traction and pull the system out of the poverty trap. The model suggests some general properties of traps in social–ecological systems. It is general and flexible, so it can be used as a building block in more specific and detailed models of adaptive capacity for a particular region.

  16. Switching Oxide Traps

    Science.gov (United States)

    Oldham, Timothy R.

    2003-01-01

    We consider radiation-induced charge trapping in SiO2 dielectric layers, primarily from the point of view of CMOS devices. However, SiO2 insulators are used in many other ways, and the same defects occur in other contexts. The key studies, which determined the nature of the oxide charge traps, were done primarily on gate oxides in CMOS devices, because that was the main radiation problem in CMOS at one time. There are two major reviews of radiation-induced oxide charge trapping already in the literature, which discuss the subject in far greater detail than is possible here. The first of these was by McLean et al. in 1989, and the second, ten years later, was intended as an update, because of additional, new work that had been reported. Basically, the picture that has emerged is that ionizing radiation creates electron-hole pairs in the oxide, and the electrons have much higher mobility than the holes. Therefore, the electrons are swept out of the oxide very rapidly by any field that is present, leaving behind any holes that escape the initial recombination process. These holes then undergo a polaron hopping transport toward the Si/SiO2 interface (under positive bias). Near the interface, some fraction of them fall into deep, relatively stable, long-lived hole traps. The nature and annealing behavior of these hole traps is the main focus of this paper.

  17. Evanescent optical trapping of nanoscale particles using slotted tapered optical fibres

    CERN Document Server

    Daly, Mark; Chormaic, Síle Nic

    2016-01-01

    While conventional optical trapping techniques can trap objects with submicron dimensions, the underlying limits imposed by the diffraction of light generally restrict their use to larger, or higher refractive index particles. As the index and diameter decrease, the trapping difficulty rapidly increases; hence, the power requirements for stable trapping become so large as to quickly denature the trapped objects in such diffraction-limited systems. Here, we present an evanescent field-based device capable of confining low index nanoscale particles using modest optical powers as low as 1.2 mW, with additional applications in the field of cold atom trapping. Our experiment uses a nanostructured optical micro-nanofibre to trap 200 nm, low-index, fluorescent particles within the structured region, thereby overcoming diffraction limitations. We analyse the trapping potential of this device both experimentally and theoretically, and show how strong optical traps are achieved with low input powers.

  18. Black tea

    Science.gov (United States)

    ... product containing black tea extract plus green tea extract, asparagus, guarana, kidney bean, and mate along with a combination of kidney bean pods, garcinia, and chromium yeast for 12 weeks does not reduce body weight ...

  19. Enhanced visible-light-driven photocatalytic activity in yellow and black orthorhombic NaTaO3 nanocubes by surface modification and simultaneous N/Ta(4+) co-doping.

    Science.gov (United States)

    Zhou, Yannan; Wang, Yonggang; Wen, Ting; Chang, Binbin; Guo, Yanzhen; Lin, Zheshuai; Yang, Baocheng

    2016-01-01

    Perovskite-type NaTaO3 as a wide band semiconductor shows good catalytic activity under UV light irradiation. In this work, chemical manipulation methods including surface modification and elemental doping have been adopted to improve the catalytic activity of NaTaO3 nanocubes for visible-light-driven applications. Firstly, a facile hydrothermal route was established to fabricate uniform NaTaO3 nanocubes with orthorhombic structure, which exhibited narrower band gaps than that of cubic NaTaO3. During this syntheses process, glucose could be used as the local structure modifier to generate modified NaTaO3 nanocubes with increased surface defects. Subsequent annealing treatment in NH3 atmosphere yielded anion (N(3-)) and self- (Ta(4+)) simultaneously doped products with further enhanced photocatalytic response in the visible region. The dramatic red shifts of the band gap of NaTaO3 into the visible region were associated with both the local crystal structure variation and exotic molecular level of the doping elements. The optimized products, black-coloured NaTaO(3-x)N(y), exhibit desirable band gap down to 2.2 eV and excellent photocatalytic activity for the degradation of organic pollutants under visible light irradiation. More importantly, our approach for preparing Ta(4+)/N co-doped NaTaO3 provides a good example for the combination of controllable syntheses routes and chemical doping methods to promote traditional wide-band catalysts for visible-light driven applications. PMID:26397927

  20. Ion trap device

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  1. Asymmetric ion trap

    International Nuclear Information System (INIS)

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode is disclosed. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity. 4 figs

  2. View of the VO prototype made of two sectors of scintillating counters. WLS fibers embedded within connectors appear in green color. Beams of optical fibers inside black sheath collect and transport the emitted light to photo-multipliers a few meters apart.

    CERN Multimedia

    2004-01-01

    View of the VO prototype made of two sectors of scintillating counters. WLS fibers embedded within connectors appear in green color. Beams of optical fibers inside black sheath collect and transport the emitted light to photo-multipliers a few meters apart.

  3. Cosmological Constraints from Primordial Black Holes

    OpenAIRE

    Liddle, Andrew R.; Green, Anne M.

    1998-01-01

    Primordial black holes may form in the early Universe, for example from the collapse of large amplitude density perturbations predicted in some inflationary models. Light black holes undergo Hawking evaporation, the energy injection from which is constrained both at the epoch of nucleosynthesis and at the present. The failure as yet to unambiguously detect primordial black holes places important constraints. In this article, we are particularly concerned with the dependence of these constrain...

  4. Cryo-Etched Black Silicon for Use as Optical Black

    Science.gov (United States)

    Yee, Karl Y.; White, Victor E.; Mouroulis, Pantazis; Eastwood, Michael L.

    2011-01-01

    Stray light reflected from the surface of imaging spectrometer components in particular, the spectrometer slit degrade the image quality. A technique has been developed for rapid, uniform, and cost-effective black silicon formation based on inductively coupled plasma (ICP) etching at cryogenic temperatures. Recent measurements show less than 1-percent total reflectance from 350 2,500 nm of doped black silicon formed in this way, making it an excellent option for texturing of component surfaces for reduction of stray light. Oxygen combines with SF6 + Si etch byproducts to form a passivation layer atop the Si when the etch is performed at cryogenic temperatures. Excess flow of oxygen results in micromasking and the formation of black silicon. The process is repeatable and reliable, and provides control over etch depth and sidewall profile. Density of the needles can be controlled to some extent. Regions to be textured can be patterned lithographically. Adhesion is not an issue as the nanotips are part of the underlying substrate. This is in contrast to surface growth/deposition techniques such as carbon nanotubes (CNTs). The black Si surface is compatible with wet processing, including processing with solvents, the textured surface is completely inorganic, and it does not outgas. In radiometry applications, optical absorbers are often constructed using gold black or CNTs. This black silicon technology is an improvement for these types of applications.

  5. Low-mass black holes as the remnants of primordial black hole formation.

    Science.gov (United States)

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism. PMID:23250434

  6. Redesigning octopus traps

    Directory of Open Access Journals (Sweden)

    Eduarda Gomes

    2014-06-01

    In order to minimise the identified problems in the actual traps, the present work proposes a new design with the aim of reducing the volume and weight during transport, and also during onshore storage. Alternative materials to avoid corrosion and formation of encrustations were also proposed.

  7. WATER-TRAPPED WORLDS

    Energy Technology Data Exchange (ETDEWEB)

    Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2013-09-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.

  8. Singlet Molecular Oxygen Generation by Light-Activated DHN-Melanin of the Fungal Pathogen Mycosphaerella fijiensis in Black Sigatoka Disease of Bananas

    OpenAIRE

    Miguel J Beltrán-García; Prado, Fernanda M.; Marilene S Oliveira; David Ortiz-Mendoza; Alexsandra C Scalfo; Adalberto Pessoa; Medeiros, Marisa H. G.; White, James F.; Paolo Di Mascio

    2014-01-01

    In pathogenic fungi, melanin contributes to virulence, allowing tissue invasion and inactivation of the plant defence system, but has never been implicated as a factor for host cell death, or as a light-activated phytotoxin. Our research shows that melanin synthesized by the fungal banana pathogen Mycosphaerella fijiensis acts as a virulence factor through the photogeneration of singlet molecular oxygen O2 (1Δg). Using analytical tools, including elemental analysis, ultraviolet/infrared absor...

  9. Responses of Neomegalotomus parvus (Hemiptera: Alydidae to color and male-lured traps

    Directory of Open Access Journals (Sweden)

    Maurício Ursi Ventura

    2004-08-01

    Full Text Available In 1998, the relative responses of Neomegalotomus parvus (Westwood (Hemiptera: Alydidae to colors in traps were assessed in the field. Colors were printed in white alkaline paper and covered with transparent plastic. Printed colors were black, green, yellow, red and blue. Treatments also included white paper and aluminum foil. Green traps captured more bugs than the other traps (except yellow. Yellow traps caught significantly more N. parvus males than blue, black and aluminum traps. White, red and blue traps captured significantly more N. parvus males than black traps. In 1999, the same treatments were used and additionally included the factor presence (X absence of males in cages in the traps. Four males were confined in the cages together with pigeon pea seeds and water. Control traps received only pigeon pea seeds and water. No responses were found for color comparisons. Male-lured traps captured significantly more males than control traps.Em 1998, as respostas relativas de Neomegalotomus parvus (Westwood (Hemiptera: Alydidae a cores em armadilhas foram avaliadas no campo. As cores foram impressas (preto, verde, amarelo, vermelho e azul, em papel alcalino branco e coberto com plástico transparente. Também se incluiu papel branco e folha de alumínio, como tratamentos. Armadilhas verdes capturaram mais insetos que outras armadilhas (exceto amarelo. Armadilhas amarelas capturaram significativamente mais machos de N. parvus do que armadilhas azuis, pretas e alumínio. Armadilhas brancas, vermelhas e azuis capturaram significativamente mais machos de N. parvus do que armadilhas pretas. Em 1999, os mesmos tratamentos foram usados e também se incluiu fator presença (X ausência de machos em gaiolas nas armadilhas. Quatro machos foram confinados nas gaiolas junto com sementes de guandu e água. Testemunhas receberam somente sementes de guandu e água. Não foram obtidas respostas significativas à cores. Armadilhas com machos capturaram

  10. Synthesis of visible light driven cobalt tailored Ag2O/TiON nanophotocatalyst by reverse micelle processing for degradation of Eriochrome Black T

    KAUST Repository

    Hussain, Syed Tajammul

    2013-02-01

    An ultra efficient cobalt tailored silver and nitrogen co-doped titania (TiON/Ag2O/Co) visible nanophotocatalyst is successfully synthesized using modified reverse micelle processing. Composition, phase, distribution of dopants, functional group analysis, optical properties and morphology of synthesized materials are investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) based techniques and others. Charge states of titanium (Ti) and silver are explored through core-loss electron energy loss spectroscopy (EELS) analysis and X ray photoelectron spectroscopy (XPS). Our characterization results showed that the synthesized nanophotocatalyst consisted of anatase phased qausispherical nanoparticles that exhibited homogeneous distribution of dopants, large surface area, high quantum efficiency and enhanced optical properties. At lower content of doped Co ions, the TiON/Ag2O responded with extraordinary photocatalytic properties. The cobalt tailored nanophotocatalyst showed remarkable activity against Eriochrome Black T (EBT). Moreover, comparative degradation behavior of EBT with TiON, Ag2O/TiON and Co/Ag2O/TiON is also investigated. © 2012 Elsevier Ltd.

  11. Black hole accretion disc impacts

    Science.gov (United States)

    Pihajoki, P.

    2016-04-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength λ = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  12. Black hole accretion disc impacts

    CERN Document Server

    Pihajoki, Pauli

    2015-01-01

    We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength {\\lambda} = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.

  13. Highly uniform holographic microtrap arrays for single atom trapping using a feedback optimization of in-trap fluorescence measurements.

    Science.gov (United States)

    Tamura, Hikaru; Unakami, Tomoyuki; He, Jun; Miyamoto, Yoko; Nakagawa, Ken'ichi

    2016-04-18

    We report on the novel optimization method to realize highly uniform microtrap arrays for single atom trapping with a spatial light modulator (SLM). This method consists of two iterative feedback loops with the measurements of both diffracted light intensities and in-trap fluorescence intensities from each microtrap. By applying this method to the single 87Rb atom trapping, we can reduce the variance of trap depths from 20.8% to 1.7% for 4 × 4 square arrays and less than 4% for various arrays with up to 62 sites. The detection error of individual single atoms is also reduced from 1.7% to 0.0054% on average. PMID:27137252

  14. Cold highly charged ions in a cryogenic Paul trap

    DEFF Research Database (Denmark)

    Versolato, O.O.; Schwarz, M.; Windberger, A.; Ullrich, J.; Schmidt, P.O.; Drewsen, M.; Crespo López-Urrutia, J.R.

    Narrow optical transitions in highly charged ions (HCIs) are of particular interest for metrology and fundamental physics, exploiting the high sensitivity of HCIs to new physics. The highest sensitivity for a changing fine structure constant ever predicted for a stable atomic system is found in Ir...... linear Paul trap in which HCIs will be sympathetically cooled by 9Be +  ions. Optimized optical access for laser light is provided while maintaining excellent UHV conditions. The Paul trap will be connected to an electron beam ion trap (EBIT) which is able to produce a wide range of HCIs. This EBIT will...

  15. Behavior of a very large magneto-optical trap

    CERN Document Server

    Camara, Abdoulaye; Labeyrie, Guillaume

    2014-01-01

    We investigate the scaling behavior of a very large magneto-optical trap (VLMOT) containing up to $1.4 \\times 10^{11}$ Rb$^{87}$ atoms. By varying the diameter of the trapping beams, we are able to change the number of trapped atoms by more than 5 orders of magnitude. We then study the scaling laws of the loading and size of the VLMOT, and analyze the shape of the density profile in this regime where the Coulomb-like, light-mediated repulsive interaction between atoms is expected to play an important role.

  16. Behavior of a very large magneto-optical trap

    OpenAIRE

    Camara, Abdoulaye; Kaiser, Robin; Labeyrie, Guillaume

    2014-01-01

    We investigate the scaling behavior of a very large magneto-optical trap (VLMOT) containing up to $1.4 \\times 10^{11}$ Rb$^{87}$ atoms. By varying the diameter of the trapping beams, we are able to change the number of trapped atoms by more than 5 orders of magnitude. We then study the scaling laws of the loading and size of the VLMOT, and analyze the shape of the density profile in this regime where the Coulomb-like, light-mediated repulsive interaction between atoms is expected to play an i...

  17. Optical trapping of absorbing particles

    CERN Document Server

    Rubinsztein-Dunlop, H; Friese, M E J; Heckenberg, N R

    1998-01-01

    Radiation pressure forces in a focussed laser beam can be used to trap microscopic absorbing particles against a substrate. Calculations based on momentum transfer considerations show that stable trapping occurs before the beam waist, and that trapping is more effective with doughnut beams. Such doughnut beams can transfer angular momentum leading to rotation of the trapped particles. Energy is also transferred, which can result in heating of the particles to temperatures above the boiling point of the surrounding medium.

  18. Optical trapping of absorbing particles

    OpenAIRE

    Rubinsztein-Dunlop, H.; Nieminen, T. A.; Friese, M. E. J.; Heckenberg, N R

    2003-01-01

    Radiation pressure forces in a focussed laser beam can be used to trap microscopic absorbing particles against a substrate. Calculations based on momentum transfer considerations show that stable trapping occurs before the beam waist, and that trapping is more effective with doughnut beams. Such doughnut beams can transfer angular momentum leading to rotation of the trapped particles. Energy is also transferred, which can result in heating of the particles to temperatures above the boiling po...

  19. Synthesis of visible light driven cobalt tailored Ag{sub 2}O/TiON nanophotocatalyst by reverse micelle processing for degradation of Eriochrome Black T

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Syed Tajammul, E-mail: dr_tajammul@yahoo.ca [Nano Science and Catalysis Div. National Centre For Physics, Quaid-i-Azam University Complex, Islamabad 4400 (Pakistan); Rashid [Nano Science and Catalysis Div. National Centre For Physics, Quaid-i-Azam University Complex, Islamabad 4400 (Pakistan); Department of Chemistry, Quaid-i-Azam University, Islamabad (Pakistan); Anjum, Dalaver [Imaging and Characterization Lab, Blg 3 L0/room 232, 4700, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Siddiqa, Asima [Nano Science and Catalysis Div. National Centre For Physics, Quaid-i-Azam University Complex, Islamabad 4400 (Pakistan); Badshah, Amin [Department of Chemistry, Quaid-i-Azam University, Islamabad (Pakistan)

    2013-02-15

    Graphical abstract: Cobalt tailored Ag{sub 2}O/TiON nanophotocatalyst is synthesized using reverse micelle technique and it showed extraordinary photocatalytic activity. Display Omitted Highlights: ► TiON/Ag{sub 2}O/Co nanophotocatalyst is synthesized using microemulsion technique. ► Low temperature anatase phase and outstanding photocatlytic activity is observed. ► Effect of temperature and inert atmosphere on materials phase is investigated. ► Homogeneous dopants distribution and oxygen vacancies are examined. ► Enhancement in surface area, quantum efficiency and optical properties is observed. -- Abstract: An ultra efficient cobalt tailored silver and nitrogen co-doped titania (TiON/Ag{sub 2}O/Co) visible nanophotocatalyst is successfully synthesized using modified reverse micelle processing. Composition, phase, distribution of dopants, functional group analysis, optical properties and morphology of synthesized materials are investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) based techniques and others. Charge states of titanium (Ti) and silver are explored through core-loss electron energy loss spectroscopy (EELS) analysis and X ray photoelectron spectroscopy (XPS). Our characterization results showed that the synthesized nanophotocatalyst consisted of anatase phased qausispherical nanoparticles that exhibited homogeneous distribution of dopants, large surface area, high quantum efficiency and enhanced optical properties. At lower content of doped Co ions, the TiON/Ag{sub 2}O responded with extraordinary photocatalytic properties. The cobalt tailored nanophotocatalyst showed remarkable activity against Eriochrome Black T (EBT). Moreover, comparative degradation behavior of EBT with TiON, Ag{sub 2}O/TiON and Co/Ag{sub 2}O/TiON is also investigated.

  20. Light Water Reactor Sustainability Program Support and Modeling for the Boiling Water Reactor Station Black Out Case Study Using RELAP and RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    Diego Mandelli; Curtis Smith; Thomas Riley; John Schroeder; Cristian Rabiti; Aldrea Alfonsi; Joe Nielsen; Dan Maljovec; Bie Wang; Valerio Pascucci

    2013-09-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated. In order to evaluate the impact of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the impact of power uprate on the safety of a boiled water reactor system. The case study considered is a loss of off-site power followed by the loss of diesel generators, i.e., a station black out (SBO) event. Analysis is performed by using a thermo-hydraulic code, i.e. RELAP-5, and a stochastic analysis tool currently under development at INL, i.e. RAVEN. Starting from the event tree models contained in SAPHIRE, we built the input file for RELAP-5 that models in great detail system dynamics under SBO conditions. We also interfaced RAVEN with RELAP-5 so that it would be possible to run multiple RELAP-5 simulation runs by changing specific keywords of the input file. We both employed classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. We also employed advanced data analysis and visualization tools that helped us to correlate simulation outcome such as maximum core temperature with a set of input uncertain parameters. Results obtained gave a detailed overview of the issues associated to power uprate for a SBO accident scenario. We were able to quantify how timing of safety related events were impacted by a higher reactor core power. Such insights can provide useful material to the decision makers to perform risk-infomed safety margins management.

  1. Synthesis of visible light driven cobalt tailored Ag2O/TiON nanophotocatalyst by reverse micelle processing for degradation of Eriochrome Black T

    International Nuclear Information System (INIS)

    Graphical abstract: Cobalt tailored Ag2O/TiON nanophotocatalyst is synthesized using reverse micelle technique and it showed extraordinary photocatalytic activity. Display Omitted Highlights: ► TiON/Ag2O/Co nanophotocatalyst is synthesized using microemulsion technique. ► Low temperature anatase phase and outstanding photocatlytic activity is observed. ► Effect of temperature and inert atmosphere on materials phase is investigated. ► Homogeneous dopants distribution and oxygen vacancies are examined. ► Enhancement in surface area, quantum efficiency and optical properties is observed. -- Abstract: An ultra efficient cobalt tailored silver and nitrogen co-doped titania (TiON/Ag2O/Co) visible nanophotocatalyst is successfully synthesized using modified reverse micelle processing. Composition, phase, distribution of dopants, functional group analysis, optical properties and morphology of synthesized materials are investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) based techniques and others. Charge states of titanium (Ti) and silver are explored through core-loss electron energy loss spectroscopy (EELS) analysis and X ray photoelectron spectroscopy (XPS). Our characterization results showed that the synthesized nanophotocatalyst consisted of anatase phased qausispherical nanoparticles that exhibited homogeneous distribution of dopants, large surface area, high quantum efficiency and enhanced optical properties. At lower content of doped Co ions, the TiON/Ag2O responded with extraordinary photocatalytic properties. The cobalt tailored nanophotocatalyst showed remarkable activity against Eriochrome Black T (EBT). Moreover, comparative degradation behavior of EBT with TiON, Ag2O/TiON and Co/Ag2O/TiON is also investigated.

  2. Beauty is attractive: Moduli trapping at enhanced symmetry points

    International Nuclear Information System (INIS)

    We study quantum effects on moduli dynamics arising from the production of particles which are light at special points in moduli space. The resulting forces trap the moduli at these points, which often exhibit enhanced symmetry. Moduli trapping occurs in time-dependent quantum field theory, as well as in systems of moving D-branes, where it leads the branes to combine into stacks. Trapping also occurs in an expanding universe, though the range over which the moduli can roll is limited by Hubble friction. We observe that a scalar field trapped on a steep potential can induce a stage of acceleration of the universe, which we call trapped inflation. Moduli trapping ameliorates the cosmological moduli problem and may affect vacuum selection. In particular, rolling moduli are most powerfully attracted to the points with the largest number of light particles, which are often the points of greatest symmetry. Given suitable assumptions about the dynamics of the very early universe, this effect might help to explain why among the plethora of possible vacuum states of string theory, we appear to live in one with a large number of light particles and (spontaneously broken) symmetries. In other words, some of the surprising properties of our world might arise not through pure chance or miraculous cancellations, but through a natural selection mechanism during dynamical evolution. (author)

  3. Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap

    CERN Document Server

    Allcock, D T C; Janacek, H A; Linke, N M; Ballance, C J; Steane, A M; Lucas, D M; Jarecki, R L; Habermehl, S D; Blain, M G; Stick, D; Moehring, D L

    2011-01-01

    We characterise the performance of a surface-electrode ion "chip" trap fabricated using established semiconductor integrated circuit and micro-electro-mechanical-system (MEMS) microfabrication processes which are in principle scalable to much larger ion trap arrays, as proposed for implementing ion trap quantum information processing. We measure rf ion micromotion parallel and perpendicular to the plane of the trap electrodes, and find that on-package capacitors reduce this to <~ 10 nm in amplitude. We also measure ion trapping lifetime, charging effects due to laser light incident on the trap electrodes, and the heating rate for a single trapped ion. The performance of this trap is found to be comparable with others of the same size scale.

  4. Architecture for a scalable ion-trap quantum computer

    International Nuclear Information System (INIS)

    A scalable architecture for quantum information processing with trapped ions depends, among other things, on the ability to store and manipulate large numbers of ions within a single processing unit, i.e. the ion trap. To reliably control the ions these traps must be stable and well characterised. Furthermore, reliable ways of sharing the information between the ions have to be developed. This work presents the development of and the results from two segmented-trap experiments. First, the ions are used as electrical field probes which serves as the basis for a novel diagnostic tool. With these probes light-induced charging of trap structures was observed with a sensitivity of 40 elementary charges per root Hz. Second, a way to share quantum information in a multiplexed trap structure by direct coupling between two trapping sites is presented. A coherent exchange of the motional states between two ions, separated by 54 microns, was observed. The coupling strength between these two trap sites was increased using additional ions as near-field antennae. (author)

  5. Anisotropic optical trapping of ultracold erbium atoms

    Science.gov (United States)

    Dulieu, Olivier; Lepers, Maxence; Wyart, Jean-Francois

    2014-05-01

    We calculate the complex dynamic dipole polarizability of ground-state erbium, a rare-earth atom that was recently Bose-condensed. This quantity determines the trapping conditions of cold atoms in an optical trap. The polarizability is calculated with the sum-over-state formula inherent to second-order perturbation theory. The summation is performed on transition energies and transition dipole moments from ground-state erbium, which are computed using the Racah-Slater least-square fitting procedure provided by the Cowan codes. This allows us to predict several yet unobserved energy levels in the range 25000-31000 cm-1 above the ground state. Regarding the trapping potential, we find that ground-state erbium essentially behaves like a spherically-symmetric atom, in spite of its large electronic angular momentum. We find a mostly isotropic van der Waals interaction between two ground-state erbium atoms, with a coefficient C6iso= 1760 a.u.. On the contrary, the photon-scattering rate is strongly anisotropic with respect to the polarization of the trapping light. also at LERMA, UMR8112, Observatoire de Paris-Meudon, Univ. Pierre et Marie Curie, Meudon, France.

  6. Escaping the tolerance trap

    International Nuclear Information System (INIS)

    In order to examine the implications of the weakening of OPEC's responsiveness in adjusting its production levels, this paper explicitly incorporates rigidity in the quantity adjustment mechanism, thereby extending previous research which assumed smooth quantity adjustments. The rigidity is manifested in a tolerance range for the discrepancy between the declared target price and that of the market. This environment gives rise to a 'tolerance trap' which impedes the convergence process and inevitably brings the market to a standstill before its reaches the targeted price and revenue objectives. OPEC's reaction to the standstill has important implications for the achievement of the target-based equilibrium and for the potential collapse of the market price. This paper examines OPEC's policy options in the tolerance trap and reveals that the optional policy in order to break this impasse and move closer to the equilibrium point is gradually to reduce output and not to flood the market. (Author)

  7. Phosphorous trapped within buckminsterfullerene

    Science.gov (United States)

    Larsson, J. A.; Greer, J. C.; Harneit, W.; Weidinger, A.

    2002-05-01

    Under normal circumstances, when covalent molecules form, electrons are exchanged between atoms to form bonds. However, experiment and theoretical computations reveal exactly the opposite effect for the formation of group V elements nitrogen and phosphorous encapsulated within a buckminsterfullerene molecule. The C60 carbon cage remains intact upon encapsulation of the atom, whereas the electronic charge cloud of the N or P atom contracts. We have studied the chemical, spin, and thermodynamic properties of endohedral phosphorous (P@C60) and have compared our results with earlier findings for N@C60. From a combined experimental and theoretical vantage, we are able to elucidate a model for the interaction between the trapped group V atom and the fullerene cage. A picture emerges for the electronic structure of these complexes, whereby an atom is trapped within a fullerene, and interacts weakly with the molecular orbitals of the C60 cage.

  8. Schwarzschild black holes can wear scalar wigs

    CERN Document Server

    Barranco, Juan; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-01-01

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultra-light scalar field dark matter around supermassive black holes and axion-like scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic, in the sense that fairly arbitrary initial data evolves, at late times, as a combination of those long-lived configurations.

  9. Strong Gravitational Lensing by Kiselev Black Hole

    CERN Document Server

    Younas, Azka; Jamil, Mubasher

    2015-01-01

    We investigate the gravitational lensing scenario due to Schwarzschild-like black hole surrounded by quintessence (Kiselev black hole). We discuss here these special cases of Kiselev black hole: non-extreme, extreme and naked singularity. We present the detailed derivation for the bending angles of light as it traverses in the equatorial plane of the black hole. We also calculate the approximate bending angle and compare it with exact bending angle expressions. In the weak field approximation we calculate the expression for relativistic images.

  10. Expectation Traps and Discretion

    OpenAIRE

    V. V. Chari; Lawrence J. Christiano; Martin Eichenbaum

    1996-01-01

    We argue that discretionary monetary policy exposes the economy to welfare-decreasing instability. It does so by creating the potential for private expectations about the response of monetary policy to exogenous shocks to be self-fulfilling. Among the many equilibria that are possible, some have good welfare properties. But others exhibit welfare-decreasing volatility in output and employment. We refer to the latter type of equilibria as expectation traps. In effect, our paper presents a new ...

  11. Indonesia : Avoiding the Trap

    OpenAIRE

    World Bank

    2014-01-01

    Within the next two decades Indonesia aspires to generate prosperity, avoid a middle-income trap and leave no one behind as it tries to catch up with high-income economies. These are ambitious goals. Realizing them requires sustained high growth and job creation, as well as reduced inequality. Can Indonesia achieve them? This report argues that the country has the potential to rise and bec...

  12. Optimal traps in graphene

    OpenAIRE

    Downing, C. A.; Pearce, A. R.; Churchill, R. J.; Portnoi, M. E.

    2015-01-01

    We transform the two-dimensional Dirac-Weyl equation, which governs the charge carriers in graphene, into a non-linear first-order differential equation for scattering phase shift, using the so-called variable phase method. This allows us to utilize the Levinson Theorem to find zero-energy bound states created electrostatically in realistic structures. These confined states are formed at critical potential strengths, which leads to us posit the use of `optimal traps' to combat the chiral tunn...

  13. Water-Trapped Worlds

    CERN Document Server

    Menou, Kristen

    2013-01-01

    Although tidally-locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO2 as dayside ocean basins dry-up. Water-tr...

  14. Fischer Black

    OpenAIRE

    Robert C. Merton; Myron S. Scholes

    2013-01-01

    ReprintThis article was originally published by Wiley for the American Finance Association (Merton RC, Scholes MS. 1995. Fischer Black. J. Finance 50(5):1359–70). It is reprinted with permission from John Wiley and Sons © 1995. Reference formatting was updated to facilitate linking.

  15. Locking information in black holes.

    Science.gov (United States)

    Smolin, John A; Oppenheim, Jonathan

    2006-03-01

    We show that a central presumption in the debate over black-hole information loss is incorrect. Ensuring that information not escape during evaporation does not require that it all remain trapped until the final stage of the process. Using the recent quantum information-theoretic result of locking, we show that the amount of information that must remain can be very small, even as the amount already radiated is negligible. Information need not be additive: A small system can lock a large amount of information, making it inaccessible. Only if the set of initial states is restricted can information leak. PMID:16606164

  16. An electromagnetic black hole made of metamaterials

    CERN Document Server

    Cheng, Qiang

    2009-01-01

    Traditionally, a black hole is a region of space with huge gravitational field in the means of general relativity, which absorbs everything hitting it including the light. In general relativity, the presence of matter-energy densities results in the motion of matter propagating in a curved spacetime1, which is similar to the electromagnetic-wave propagation in a curved space and in an inhomogeneous metamaterial2. Hence one can simulate the black hole using electromagnetic fields and metamaterials. In a recent theoretical work, an optical black hole has been proposed based on metamaterials, in which the numerical simulations showed a highly efficient light absorption3. Here we report the first experimental demonstration of electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can absorb electromagnetic waves efficiently coming from all directions due to the local control of electromagnetic fields. Hence the elect...

  17. High contrast atomic magnetometer based on coherent population trapping

    International Nuclear Information System (INIS)

    We present an experimental and theoretical investigation of the coherent population trapping (CPT) resonance excited on the D1 line of 87Rb atoms by bichromatic linearly polarized laser light. The experimental results show that a lin ‖ lin transition scheme is a promising alternative to the conventional circular—circular transition scheme for an atomic magnetometer. Compared with the circular light transition scheme, linear light accounts for high-contrast transmission resonances, which makes this excitation scheme promising for high-sensitivity magnetometers. We also use linear light and circular light to detect changes of a standard magnetic field, separately. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Revealing a hard X-ray spectral component reverberating within one light hour of the central Supermassive Black Hole in Ark 564

    CERN Document Server

    Giustini, M; Reeves, J N; Miller, L; Legg, E; Kraemer, S B; George, I M

    2015-01-01

    Ark 564 (z=0.0247) is an X-ray bright NLS1. By using advanced X-ray timing techniques, Legg et al. (2012) discovered an excess of "delayed" emission in the hard X-ray band (4-7.5 keV) following about 1000 seconds after "flaring" light in the soft X-ray band (0.4-1 keV). We report on the X-ray spectral analysis of eight XMM-Newton and one Suzaku observation of Ark 564. High-resolution spectroscopy was performed with the RGS in the soft X-ray band, while broad-band spectroscopy was performed with the EPIC-pn and XIS/PIN instruments. We analysed time-averaged, flux-selected, and time-resolved spectra. Despite the large variability in flux, the broad band spectral shape of Ark 564 is not dramatically varying and can be reproduced either by a superposition of a power law and a blackbody emission, or by a Comptonized power law emission model. High resolution spectroscopy revealed the presence of ionised gas along the line of sight at the systemic redshift of the source, with a low column density and a range of ioni...

  19. Linearity Limits of Biased 1337 Trap Detectors

    CERN Document Server

    Balling, Petr

    2015-01-01

    The upper power limit of linear response of light trap detectors was recently measured [2,3]. We have completed this measurement with test of traps with bias voltage at several visible wavelengths using silicon photodiodes Hamamatsu S1337 1010 and made a brief test of S5227 1010. Bias extends the linearity limit by factor of more than 10 for very narrow beams and more than 30 for wide beams [5]. No irreversible changes were detected even for the highest irradiance of 33 W/cm2 at 406nm. Here we present measurement of minimal bias voltage necessary for 99%, 99.8% and 99.95% linearity for several beam sizes.

  20. Magneto-Optical Trapping of Holmium Atoms

    CERN Document Server

    Miao, J; Stratis, G; Saffman, M

    2014-01-01

    We demonstrate sub-Doppler laser cooling and magneto-optical trapping of the rare earth element Holmium. Atoms are loaded from an atomic beam source and captured in six-beam $\\sigma_+ - \\sigma_-$ molasses using a strong $J=15/2 \\leftrightarrow J=17/2$ cycling transition at $\\lambda=410.5~\\rm nm$. Due to the small difference in hyperfine splittings and Land\\'e $g$-factors in the lower and upper levels of the cooling transition the MOT is self-repumped without additional repump light, and deep sub-Doppler cooling is achieved with the magnetic trap turned on. We measure the leakage out of the cycling transition to metastable states and find a branching ratio $\\sim 10^{-5}$ which is adequate for state resolved measurements on hyperfine encoded qubits.