Gravitating Disks Around Black Holes
Czech Academy of Sciences Publication Activity Database
Karas, Vladimír; Šubr, Ladislav
Cambridge : Cambridge University Press, 2010 - (Peterson, B.), s. 332-332 ISBN 978-0-521-76502-2. - (IAU Symposium Proceedings Series. 267). [Symposium of the International Astronomical Union /267./. Rio de Janeiro (BR), 10.08.2009-14.08.2009] Institutional research plan: CEZ:AV0Z10030501 Keywords : accretion disks * gravitation * black hole physics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
Merging Black Holes and Gravitational Waves
Centrella, Joan
2009-01-01
This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.
Gravitational energy of a Schwarzschild black hole
Shimizu, Katsutaro
2016-01-01
In a previous paper, we proposed a new gravitational energy momentum tensor. Here we use this tensor to evaluate the gravitational energies both inside and outside the horizon of a Schwarzschild black hole. Our results show that all of the gravitational energy exists outside the horizon, and that there is no gravitational energy inside the horizon. We comment on a relation with our gravitational energy momentum tensor and another one which is proposed in a teleparallel gravity.
Gravitational waves from inspiralling binary black holes
International Nuclear Information System (INIS)
Binary black holes are the most promising candidate sources for the first generation of earth-based interferometric gravitational-wave detectors. We summarize and discuss the state-of-the-art analytical techniques developed during the last few years to better describe the late dynamical evolution of binary black holes of comparable masses
Constructing black hole entropy from gravitational collapse
Acquaviva, Giovanni; Ellis, George F. R.; Goswami, Rituparno; Hamid, Aymen I. M.
2016-01-01
Based on a recent proposal for the gravitational entropy of free gravitational fields, we investigate the thermodynamic properties of black hole formation through gravitational collapse in the framework of the semitetrad 1+1+2 covariant formalism. In the simplest case of an Oppenheimer-Snyder-Datt collapse we prove that the change in gravitational entropy outside a collapsing body is related to the variation of the surface area of the body itself, even before the formation of horizons. As a r...
Strong Gravitational Lensing by Kiselev Black Hole
Younas, Azka; Jamil, Mubasher
2015-01-01
We investigate the gravitational lensing scenario due to Schwarzschild-like black hole surrounded by quintessence (Kiselev black hole). We discuss here these special cases of Kiselev black hole: non-extreme, extreme and naked singularity. We present the detailed derivation for the bending angles of light as it traverses in the equatorial plane of the black hole. We also calculate the approximate bending angle and compare it with exact bending angle expressions. In the weak field approximation we calculate the expression for relativistic images.
Gravitational waves from binary black holes
Indian Academy of Sciences (India)
Bala R Iyer
2011-07-01
It is almost a century since Einstein predicted the existence of gravitational waves as one of the consequences of his general theory of relativity. A brief historical overview including Chandrasekhar’s contribution to the subject is ﬁrst presented. The current status of the experimental search for gravitational waves and the attendant theoretical insights into the two-body problem in general relativity arising from computations of gravitational waves from binary black holes are then broadly reviewed.
Black Holes and Gravitational Properties of Antimatter
Hajdukovic, Dragan Slavkov
2006-01-01
The gravitational properties of antimatter are still a secret of nature. One outstanding possibility is that there is a gravitational repulsion between matter and antimatter (in short we call it antigravity). We argue that in the case of antigravity the collapse of a black hole doesn't end with singularity and that deep inside the horizon, the gravitational field may be sufficiently strong to create (from the vacuum) neutrino-antineutrino pairs of all flavours. The created antineutrinos (neut...
Regular phantom black holes as gravitational lenses
Eiroa, Ernesto F
2015-01-01
The distortion of the spacetime structure in the surroundings of black holes affects the trajectories of light rays. As a consequence, black holes can act as gravitational lenses. Observations of type Ia supernovas, show that our Universe is in accelerated expansion. The usual explanation is that the Universe is filled with a negative pressure fluid called dark energy, which accounts for 70 % of its total density, which can be modeled by a self-interacting scalar field with a potential. We consider a class of spherically symmetric regular phantom black holes as gravitational lenses. We study large deflection angles, using the strong deflection limit, corresponding to an asymptotic logarithmic approximation. In this case, photons passing close to the photon sphere of the black hole experiment several loops around it before they emerge towards the observer, giving place to two infinite sets of relativistic images. Within this limit, we find analytical expressions for the positions and the magnifications of thes...
Gravitating discs around black holes
Czech Academy of Sciences Publication Activity Database
Karas, Vladimír; Huré, J.-M.; Semerák, O.
2004-01-01
Roč. 21, č. 7 (2004), R1-R5. ISSN 0264-9381 R&D Projects: GA ČR GA205/03/0902; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1003909 Keywords : black holes * accretion discs * general relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.941, year: 2004
Gravitational radiation from dynamical black holes
Hayward, Sean A.
2005-01-01
An effective energy tensor for gravitational radiation is identified for uniformly expanding flows of the Hawking mass-energy. It appears in an energy conservation law expressing the change in mass due to the energy densities of matter and gravitational radiation, with respect to a Killing-like vector encoding a preferred flow of time outside a black hole. In a spin-coefficient formulation, the components of the effective energy tensor can be understood as the energy densities of ingoing and ...
Gravitational waves from black-hole mergers
Baker, John G.; Boggs, William D.; Centrella, Joan M.; Kelly, Bernard J.; McWilliams, Sean T.; van Meter, James R.
2007-01-01
Coalescing black-hole binaries are expected to be the strongest sources of gravitational waves for ground-based interferometers as well as the space-based interferometer LISA. Recent progress in numerical relativity now makes it possible to calculate the waveforms from the strong-field dynamical merger and is revolutionizing our understanding of these systems. We review these dramatic developments, emphasizing applications to issues in gravitational wave observations. These new capabilities a...
Gravitational waves from black-hole mergers
Baker, John G; Centrella, Joan M; Kelly, Bernard J; McWilliams, Sean T; van Meter, James R
2007-01-01
Coalescing black-hole binaries are expected to be the strongest sources of gravitational waves for ground-based interferometers as well as the space-based interferometer LISA. Recent progress in numerical relativity now makes it possible to calculate the waveforms from the strong-field dynamical merger and is revolutionizing our understanding of these systems. We review these dramatic developments, emphasizing applications to issues in gravitational wave observations. These new capabilities also make possible accurate calculations of the recoil or kick imparted to the final remnant black hole when the merging components have unequal masses, or unequal or unaligned spins. We highlight recent work in this area, focusing on results of interest to astrophysics.
The quantum gravitational black hole is neither black nor white
Singh, T P; Vaz, Cenalo
2004-01-01
Understanding the end state of black hole evaporation, the microscopic origin of black hole entropy, the information loss paradox, and the nature of the singularity arising in gravitational collapse - these are outstanding challenges for any candidate quantum theory of gravity. Recently, a midisuperspace model of quantum gravitational collapse has been solved using a lattice regularization scheme. It is shown that the mass of an eternal black hole follows the Bekenstein spectrum, and a related argument provides a fairly accurate estimate of the entropy. The solution also describes a quantized mass-energy distribution around a central black hole, which in the WKB approximation, is precisely Hawking radiation. The leading quantum gravitational correction makes the spectrum non-thermal, thus providing a plausible resolution of the information loss problem.
Contemporary gravitational waves from primordial black holes
Dolgov, A. D.
2011-01-01
Stochastic background of gravitational waves (GW) generated by the interactions between primordial black holes (PBH) in the early universe and by PBH evaporation is considered. If PBHs dominated in the cosmological energy density prior to their evaporation, GWs from the earlier stages (e.g. inflation) would be noticeably diluted. On the other hand, at the PBH dominance period they could form dense clusters where PBH binary formation might be significant. These binaries would be efficient sour...
Gravitational Effects Near the Kerr-Newman Black Hole
Institute of Scientific and Technical Information of China (English)
王永久; 唐智明
2001-01-01
e have reached a solution of the Dirac equation and the energy spectrum of electrons in the gravitational field of the Kerr-Newman black hole. The results are interesting in astrophysics for observations of the black hole.
Gravitational Tension, Spacetime Pressure and Black Hole Volume
Armas, Jay; Sanchioni, Marco
2015-01-01
We study the first law of black hole thermodynamics in the presence of surrounding gravitational fields and argue that variations of these fields are naturally incorporated in the first law by defining gravitational tension or gravitational binding energy. We demonstrate that this notion can also be applied in Anti-de Sitter spacetime, in which the surrounding gravitational field is sourced by a cosmological fluid, therefore showing that spacetime volume and gravitational tension encode the same physics as spacetime pressure and black hole volume. We furthermore show that it is possible to introduce a definition of spacetime pressure and black hole volume for any spacetime with characteristic length scales which does not necessarily require a cosmological constant sourcing Einstein equations. However, we show that black hole volume is non-universal in the flat spacetime limit, questioning its significance. We illustrate these ideas by studying the resulting black hole volume of Kaluza-Klein black holes and of...
Formation of black hole and emission of gravitational waves
Nakamura,Takashi
2006-01-01
Numerical simulations were performed for the formation process of rotating black holes. It is suggested that Kerr black holes are formed for wide ranges of initial parameters. The nature of gravitational waves from a test particle falling into a Kerr black hole as well as the development of 3D numerical relativity for the coalescing binary neutron stars are discussed.
Formation of black hole and emission of gravitational waves.
Nakamura, Takashi
2006-12-01
Numerical simulations were performed for the formation process of rotating black holes. It is suggested that Kerr black holes are formed for wide ranges of initial parameters. The nature of gravitational waves from a test particle falling into a Kerr black hole as well as the development of 3D numerical relativity for the coalescing binary neutron stars are discussed. PMID:25792793
Low-frequency gravitational waves from supermassive black holes
Haehnelt, M. G.
1994-01-01
Supermassive black holes are investigated as possible sources for low-frequency bursts of gravity waves. The event rate for `known' supermassive black holes at intermediate and high redshifts, inferred from the quasar luminosity function, is low $\\sim 0.1 \\yr^{-1}$. A space-based interferometer could therefore only see several events per year from supermassive black holes if an additional population of supermassive black holes existed and emitted gravitational waves efficiently. These might r...
Discovering the QCD Axion with Black Holes and Gravitational Waves
Arvanitaki, Asimina; Baryakhtar, Masha; Huang, Xinlu
2014-01-01
Advanced LIGO may be the first experiment to detect gravitational waves. Through superradiance of stellar black holes, it may also be the first experiment to discover the QCD axion with decay constant above the GUT scale. When an axion's Compton wavelength is comparable to the size of a black hole, the axion binds to the black hole, forming a "gravitational atom." Through the superradiance process, the number of axions occupying the bound levels grows exponentially, extracting energy and angu...
Black Holes, Gravitational Waves, and LISA
Baker, John
2009-01-01
Binary black hole mergers are central to many key science objectives of the Laser Interferometer Space Antenna (LISA). For many systems the strongest part of the signal is only understood by numerical simulations. Gravitational wave emissions are understood by simulations of vacuum General Relativity (GR). I discuss numerical simulation results from the perspective of LISA's needs, with indications of work that remains to be done. Some exciting scientific opportunities associated with LISA observations would be greatly enhanced if prompt electromagnetic signature could be associated. I discuss simulations to explore this possibility. Numerical simulations are important now for clarifying LISA's science potential and planning the mission. We also consider how numerical simulations might be applied at the time of LISA's operation.
Black-hole kicks as new gravitational-wave observables
Gerosa, Davide
2016-01-01
Generic black-hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick velocity to the merger remnant. If a component of the kick along the line-of-sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler-shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational-wave experiments will be able to perform direct measurements, not only of the black-hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black-hole kick velocities as low as ~500 km/s, which are expected to be a common outcome of black-hole binary coalescence following galaxy mergers. Black-hole kicks thus constitute a promising new observable in the growing field of gravitational-wave astronomy.
Strong field gravitational lensing by a charged Galileon black hole
Zhao, Shan-Shan
2016-01-01
Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of the observables for the closest suppermassive black hole Sgr A*. It is found that when the scalar filed in the Galileon is weakly coupled to the gravitational field and it is "low-speed", the charged Galileon black hole can possibly be distinguished from a Reissner-Nordstr\\"om black hole.
Gravitational entropy of a Schwarzschild-type black hole
Dil, Emre
2016-07-01
In this study, Clifton, Ellis and Tavakol's gravitational entropy proposal is used to determine the entropy of free gravitational fields due to a spherical symmetric Schwarzschild-type black hole which is considered in the framework of f( R) gravity. In order to obtain the gravitational entropy, we calculate the Weyl tensor of the black hole to determine the Bel-Robinson tensor, giving the super energy density. By using the super energy density, we obtain the gravitational energy density and the gravitational temperature to calculate the gravitational entropy of the f( R) gravity black hole. This proposal can reproduce the Bekenstein-Hawking value in general relativity limit, but cannot reproduce it in the f( R) gravity case.
Probing seed black holes using future gravitational-wave detectors
Gair, Jonathan R.; Mandel, Ilya; Sesana, Alberto; Vecchio, Alberto
2009-01-01
Identifying the properties of the first generation of seeds of massive black holes is key to understanding the merger history and growth of galaxies. Mergers between ~100 solar mass seed black holes generate gravitational waves in the 0.1-10Hz band that lies between the sensitivity bands of existing ground-based detectors and the planned space-based gravitational wave detector, the Laser Interferometer Space Antenna (LISA). However, there are proposals for more advanced detectors that will br...
Strong gravitational lensing in a noncommutative black-hole spacetime
Ding, Chikun; Kang, Shuai; Chen, Chang-Yong; Chen, Songbai; Jing, Jiliang
2011-04-01
Noncommutative geometry may be a starting point to a quantum gravity. We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Schwarzschild black-hole spacetime and obtain the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy can be described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. In comparison to the Reissner-Norström black hole, we find that the influences of the spacetime noncommutative parameter is similar to those of the charge, but these influences are much smaller. This may offer a way to distinguish a noncommutative black hole from a Reissner-Norström black hole, and may permit us to probe the spacetime noncommutative constant ϑ by the astronomical instruments in the future.
Strong gravitational lensing in a noncommutative black-hole spacetime
International Nuclear Information System (INIS)
Noncommutative geometry may be a starting point to a quantum gravity. We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Schwarzschild black-hole spacetime and obtain the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy can be described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. In comparison to the Reissner-Norstroem black hole, we find that the influences of the spacetime noncommutative parameter is similar to those of the charge, but these influences are much smaller. This may offer a way to distinguish a noncommutative black hole from a Reissner-Norstroem black hole, and may permit us to probe the spacetime noncommutative constant θ by the astronomical instruments in the future.
Matter flows around black holes and gravitational radiation
Papadopoulos, Philippos; Font, Jose A.
1998-01-01
We develop and calibrate a new method for estimating the gravitational radiation emitted by complex motions of matter sources in the vicinity of black holes. We compute numerically the linearized curvature perturbations induced by matter fields evolving in fixed black hole backgrounds, whose evolution we obtain using the equations of relativistic hydrodynamics. The current implementation of the proposal concerns non-rotating holes and axisymmetric hydrodynamical motions. As first applications...
Observation of Gravitational Waves from a Binary Black Hole Merger.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J
2016-02-12
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger. PMID:26918975
Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part III
Centrella, Joan
2012-01-01
This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this third and final lecture, we present applications of the results of numerical relativity simulations to gravitational wave detection and astrophysics.
Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part I
Centrella, Joan
2012-01-01
This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this first lecture, we introduce the basic ideas of numerical relativity, highlighting the challenges that arise in simulating gravitational wave sources on a computer.
Spinning black holes in a gauge theory of gravitation
BabeÅ£i (Pretorian), Simona
2013-11-01
Spinning black holes are presented in terms of gauge fields in a commutative gauge theory of gravitation. The field strength tensor comes as a consequence of the particular ansatz for gauge fields. In order to obtain spinning black holes in a noncommutative gauge theory of gravitation is used an analytical procedure conceived in GRTensorII. To calculate the leading noncommutative corrections and to choose an appropriate noncommutative parameter are used recursive relations. The gauge fields and the field strength tensor for a spinning mass preserves some features of other cosmological solutions in the gauge theory of gravitation and the noncommutative corrections are expected to provide some important physical insights.
Probing Black Holes and Relativistic Stars with Gravitational Waves
Thorne, K S
1997-01-01
In the coming decade, gravitational waves will convert the study of general relativistic aspects of black holes and stars from a largely theoretical enterprise to a highly interactive, observational/theoretical one. For example, gravitational-wave observations should enable us to observationally map the spacetime geometries around quiescient black holes, study quantitatively the highly nonlinear vibrations of curved spacetime in black-hole collisions, probe the structures of neutron stars and their equation of state, search for exotic types of general relativistic objects such as boson stars, soliton stars, and naked singularities, and probe aspects of general relativity that have never yet been seen such as the gravitational fields of gravitons and the influence of gravitational-wave tails on radiation reaction.
Gravitational Waves from Coalescing Black Hole MACHO Binaries
Nakamura, T; Tanaka, T; Thorne, K S; Nakamura, Takashi; Sasaki, Misao; Tanaka, Takahiro; Thorne, Kip S.
1997-01-01
If MACHOs are black holes of mass about 0.5 solar mass, they must have been formed in the early universe when the temperature was about 1 GeV. We estimate that in this case in our galaxy's halo out to about 50kpc there exist about half billion black hole binaries whose coalescence times are comparable to the age of the universe, so that the coalescence rate will be about five hundredth events/year/galaxy. This suggests that we can expect a few events/year within 15Mpc. The gravitational waves from such coalescing black hole MACHOs can be detected by the first generation of interferometers in the LIGO/VIRGO/TAMA/GEO network. Therefore, the existence of black hole MACHOs can be tested within the next five years by gravitational waves.
Mergers of nonspinning black-hole binaries: Gravitational radiation characteristics
Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; van Meter, James R.
2008-01-01
We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of nonspinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an ...
S. Chandrasekhar: White Dwarfs, $H^-$ ion,.., Black holes, Gravitational waves
Gupta, Patrick Das
2011-01-01
This is a concise review, addressed to undergraduate students, of S. Chandrasekhar's oeuvre in astrophysics, ranging from his early studies on white dwarfs using relativistic quantum statistics to topics as diverse as dynamical friction, negative hydrogen ion, fluid dynamical instabilities, black holes and gravitational waves. The exposition is based on simple physical explanations in the context of observational astronomy. Black holes and their role as central engines of active, compact, hig...
Numerical Relativity, Black Hole Mergers, and Gravitational Waves: Part II
Centrella, Joan
2012-01-01
This series of 3 lectures will present recent developments in numerical relativity, and their applications to simulating black hole mergers and computing the resulting gravitational waveforms. In this second lecture, we focus on simulations of black hole binary mergers. We hig hlight the instabilities that plagued the codes for many years, the r ecent breakthroughs that led to the first accurate simulations, and the current state of the art.
Black Hole Mergers and Gravitational Waves: Opening the New Frontier
Centrella, Joan
2012-01-01
The final merger of two black holes produces a powerful burst of gravitational waves, emitting more energy than all the stars in the observable universe combined. Since these mergers take place in the regime of strong dynamical gravity, computing the gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For more than 30 years, scientists tried to simulate these mergers using the methods of numerical relativity. The resulting computer codes were plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. In the past several years, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will highlight these breakthroughs and the resulting 'gold rush' of new results that is revealing the dynamics of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
Black Hole Mergers, Gravitational Waves, and Multi-Messenger Astronomy
Centrella, Joan M.
2010-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. Although numerical codes designed to simulate black hole mergers were plagued for many years by a host of instabilities, recent breakthroughs have conquered these problems and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, astrophysics, and testing general relativity.
Gravitational recoil from spinning binary black hole mergers
Herrmann, F; Laguna, P; Matzner, R A; Shoemaker, D; Herrmann, Frank; Hinder, Ian; Laguna, Pablo; Matzner, Richard A.; Shoemaker, Deirdre
2007-01-01
The inspiral and merger of binary black holes will likely involve black holes with both unequal masses and arbitrary spins. The gravitational radiation emitted by these binaries will carry angular as well as linear momentum. A net flux of emitted linear momentum implies that the black hole produced by the merger will experience a recoil or kick. Previous studies have focused on the recoil velocity from unequal mass, non-spinning binaries. We present results from simulations of equal mass but spinning black hole binaries and show how a significant gravitational recoil can also be obtained in these situations. We consider the case of black holes with opposite spins aligned with the orbital angular momentum. For the initial setups under consideration, we find a recoil velocity of $V = 475 \\KMS |a| $, with $a$ the dimensionless spin parameters of the individual holes. Supermassive black hole mergers producing kicks of this magnitude could result in the ejection from the cores of dwarf galaxies of the final hole p...
Strong field gravitational lensing by a charged Galileon black hole
Zhao, Shan-Shan; Xie, Yi
2016-07-01
Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgr A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.
Strong Gravitational Lensing in a Brane-World Black Hole
Li, GuoPing; Feng, Zhongwen; Zu, Xiaotao
2015-01-01
Adopting the strong field limit approach, we investigated the strong gravitational lensing in a Brane-World black hole, which means that the strong field limit coefficients and the deflection angle in this gravitational field are obtained. With this result, it can be said with certainly that the strong gravitational lensing is related to the metric of gravitational fields closely, the cosmology parameter {\\alpha} and the dark matter parameter \\b{eta} come from the Brane-World black hole exerts a great influence on it. Comparing with the Schwarzschild-AdS spacetime and the Schwarzschild-XCMD spacetime, the parameters {\\alpha}, \\b{eta} of black holes have the similar effects on the gravitational lensing. In some way, we infer that the real gravitational fields in our universe can be described by this metric, so the results of the strong gravitational lensing in this spacetime will be more reasonable for us to observe. Finally, it has to be noticed that the influence which the parameters {\\alpha}, \\b{eta} exerte...
Gravitational wave production by rotating primordial black holes
Dong, Ruifeng; Stojkovic, Dejan
2015-01-01
In this paper we analyze in detail a rarely discussed question of gravity waves production from evaporating black holes. Evaporating black holes emit gravitons which are at classical level registered as gravity waves. We use the latest constraints on the primordial black hole abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the total energy density which was occupied by black holes, the epoch in which the black holes are formed, and quantities like mass and angular momentum of evaporating black holes. We conclude that very small primordial black holes which evaporate before the nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as $10^{-5}$. On the other hand, primordial black ...
Gravitational waves from perturbed black holes and relativistic stars
International Nuclear Information System (INIS)
These lectures aim at providing an introduction to the properties of gravitational waves and in particular to those gravitational waves that are expected as a consequence of perturbations of black holes and neutron stars. Imprinted in the gravitational radiation emitted by these objects is, in fact, a wealth of physical information. In the case of black holes, a detailed knowledge of the gravitational radiation emitted as a response to perturbations will reveal us important details about their mass and spin, but also about the fundamental properties of the event horizon. In the case of neutron stars, on the other hand, this information can provide a detailed map of their internal structure and tell us about the equation of state of matter at very high density, thus filling-in a gap in energies and densities that cannot be investigated by experiments in terrestrial laboratories. (author)
Gravitation, black holes and space-time physics
International Nuclear Information System (INIS)
A wide range of questions relating to the general theory of relativity, the physics of gravitation and space-time are discussed, including the relations between gravitation and the other fields of physics, mainly electromagnetism and the special theory of relativity, Einstein general relativity theory - the consequences of the principle of equivalence, the physics of curved space-time, equations of the gravitation fields, properties of gravitational energy and gravitational waves, the properties are analysed of certain significant solutions of Einstein field equations, causality and the global structure of space-time, horizons, the problem of space-time singularities, etc. The physics of black holes is discussed in detail as the extreme manifestation of gravitation also the problem of the structure and development of the universe with regard to present relativistic cosmology. Finally discussed is Mach principle, the quantizing of the field of gravitation and the problems of unified theories of the field. (V.U.)
Black-Hole Binaries, Gravitational Waves, and Numerical Relativity
Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.
2010-01-01
Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.
Can static regular black holes form from gravitational collapse?
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yiyang; Zhu, Yiwei; Modesto, Leonardo; Bambi, Cosimo [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China)
2015-02-01
Starting from the Oppenheimer-Snyder model, we know how in classical general relativity the gravitational collapse of matter forms a black hole with a central spacetime singularity. It is widely believed that the singularity must be removed by quantum-gravity effects. Some static quantum-inspired singularity-free black hole solutions have been proposed in the literature, but when one considers simple examples of gravitational collapse the classical singularity is replaced by a bounce, after which the collapsing matter expands for ever. We may expect three possible explanations: (i) the static regular black hole solutions are not physical, in the sense that they cannot be realized in Nature, (ii) the final product of the collapse is not unique, but it depends on the initial conditions, or (iii) boundary effects play an important role and our simple models miss important physics. In the latter case, after proper adjustment, the bouncing solution would approach the static one. We argue that the ''correct answer'' may be related to the appearance of a ghost state in de Sitter spacetimes with super Planckian mass. Our black holes have indeed a de Sitter core and the ghost would make these configurations unstable. Therefore we believe that these black hole static solutions represent the transient phase of a gravitational collapse but never survive as asymptotic states. (orig.)
Gravitational energy of a noncommutative Vaidya black hole
Mehdipour, S Hamid
2012-01-01
In this paper we evaluate the components of the energy-momentum pseudotensors of Landau and Lifshitz for the noncommutative Vaidya spacetime. The effective gravitational mass experienced by a neutral test particle present at any finite distance in the gravitational field of the noncommutative Vaidya black hole is derived. Using the effective mass parameter one finds that the naked singularity is massless and this supports Seifert's conjecture.
Strong gravitational lensing in a noncommutative black-hole spacetime
Ding, Chikun; Kang, Shuai; Chen, Chang-Yong; Chen, Songbai; Jing, Jiliang
2010-01-01
Noncommutative geometry may be a starting point to a quantum gravity. We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Schwarzschild black-hole spacetime and obtain the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy described by this metric, we estimate the numerical values of the coefficients and observables fo...
Gravitational energy of a noncommutative Vaidya black hole
Mehdipour, S. Hamid
2013-03-01
In this paper we evaluate the components of the energy-momentum pseudotensors of Landau and Lifshitz for the noncommutative Vaidya spacetime. The effective gravitational mass experienced by a neutral test particle present at any finite distance in the gravitational field of the noncommutative Vaidya black hole is derived. Using the effective mass parameter one finds that the naked singularity is massless and this supports Seifert's conjecture.
Binary Black Hole Encounters, Gravitational Bursts and Maximum Final Spin
Washik, M C; Herrmann, F; Hinder, I; Shoemaker, D M; Laguna, P; Matzner, R A
2008-01-01
The spin of the final black hole in the coalescence of nonspinning black holes is determined by the ``residual'' orbital angular momentum of the binary. This residual momentum consists of the orbital angular momentum that the binary is not able to shed in the process of merging. We study the angular momentum radiated, the spin of the final black hole and the gravitational bursts in a series of orbits ranging from almost direct infall to numerous orbits before infall that exhibit multiple bursts of radiation in the merger process. We show that the final black hole gets a maximum spin parameter $a/M_h \\le 0.78$, and this maximum occurs for initial orbital angular momentum $L \\approx M^2_h$.
Binary black hole late inspiral: Simulations for gravitational wave observations
Baker, J G; Choi, D I; Kelly, B J; Koppitz, M; McWilliams, S T; Van Meter, J R; Baker, John G.; Centrella, Joan; Choi, Dae-Il; Kelly, Bernard J.; Koppitz, Michael; Meter, James R. van; Williams, Sean T. Mc
2006-01-01
Coalescing binary black hole mergers are expected to be the strongest gravitational wave sources for ground-based interferometers, such as the LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Until recently it has been impossible to reliably derive the predictions of General Relativity for the final merger stage, which takes place in the strong-field regime. Recent progress in numerical relativity simulations is, however, revolutionizing our understanding of these systems. We examine here the specific case of merging equal-mass Schwarzschild black holes in detail, presenting new simulations in which the black holes start in the late inspiral stage on orbits with very low eccentricity and evolve for ~1200M through ~7 orbits before merging. We study the accuracy and consistency of our simulations and the resulting gravitational waveforms, which encompass ~14 cycles before merger, and highlight the importance of using frequency (rather than time) to set the physical reference when compari...
Discovering the QCD Axion with Black Holes and Gravitational Waves
Arvanitaki, Asimina; Huang, Xinlu
2014-01-01
Advanced LIGO will be the first experiment to detect gravitational waves. Through superradiance of stellar black holes, it may also be the first experiment to discover the QCD axion with decay constant above the GUT scale. When an axion's Compton wavelength is comparable to the size of a black hole, the axion binds to the black hole, forming a "gravitational atom." Through the superradiance process, the number of axions occupying the bound levels grows exponentially, extracting energy and angular momentum from the black hole. Axions transitioning between levels of the gravitational atom and axions annihilating to gravitons produce observable gravitational wave signals. The signals are long-lasting, monochromatic, and can be distinguished from ordinary astrophysical sources. We estimate O(1) transition events at aLIGO for an axion between 10^-11 and 10^-10 eV and up to 1000 annihilation events for an axion between 10^-13 and 10^-12 eV. Axion annihilations are particularly promising for much lighter masses at f...
Observation of Gravitational Waves from a Binary Black Hole Merger
,
2016-01-01
On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \\times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\\odot$ and $29^{+4}_{-4} M_\\odot$, and the final black hole mass is $62^{+4}_{-4} M_\\odot$, with $3.0^{+0.5}_{-0.5} M_\\odot c^2$ radiated in gravitational waves. ...
Binary black holes, gravitational waves, and numerical relativity
Energy Technology Data Exchange (ETDEWEB)
Centrella, Joan M [Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771 (United States); Baker, John G [Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771 (United States); Boggs, William D [University of Maryland, Department of Physics, College Park, MD 20742 (United States); Kelly, Bernard J [Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771 (United States); McWilliams, Sean T [University of Maryland, Department of Physics, College Park, MD 20742 (United States); Meter, James R van [Center for Space Science and Technology, University of Maryland Baltimore County, Physics Department, 1000 Hilltop Circle, Baltimore, MD 21250 (United States)
2007-07-15
The final merger of comparable mass binary black holes produces an intense burst of gravitational radiation and is one of the strongest sources for both ground-based and space-based gravitational wave detectors. Since the merger occurs in the strong-field dynamical regime of general relativity, numerical relativity simulations of the full Einstein equations in 3-D are required to calculate the resulting gravitational dynamics and waveforms. While this problem has been pursued for more than 30 years, the numerical codes have long been plagued by various instabilities and, overall, progress was incremental. Recently, however, dramatic breakthrough have occurred, resulting in robust simulations of merging black holes. In this paper, we examine these developments and the exciting new results that are emerging.
Binary Black Hole Mergers, Gravitational Waves, and LISA
Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; van Meter, J.
2007-12-01
The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks.” The magnitude of these kicks has bearing on the production and growth of supermassive blackholes during the epoch of structure formation, and on the retention of black holes in stellar clusters. This work was supported by NASA grant 06-BEFS06-19, and the simulations were carried out using Project Columbia at the NASA Advanced Supercomputing Division (Ames Research Center) and at the NASA Center for Computational Sciences (Goddard Space Flight Center).
Merging Black Holes, Gravitational Waves, and Numerical Relativity
Centrella, Joan M.
2009-01-01
The final merger of two black holes will emit more energy than all the stars in the observable universe combined. This energy will come in the form of gravitational waves, which are a key prediction of Einstein's general relativity and a new tool for exploring the universe. Observing these mergers with gravitational wave detectors, such as the ground-based LIGO and the space-based LISA, requires knowledge of the radiation waveforms. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes were long plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and w aefo rms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
Black holes with gravitational hair in higher dimensions
Anabalon, A.; Canfora, F.; A. Giacomini; Oliva, J
2011-01-01
A new class of vacuum black holes for the most general gravity theory leading to second order field equations in the metric in even dimensions is presented. These space-times are locally AdS in the asymptotic region, and are characterized by a continuous parameter that does not enter in the conserve charges, nor it can be reabsorbed by a coordinate transformation: it is therefore a purely gravitational hair. The black holes are constructed as a warped product of a two-dimensional space-time, ...
Gravitational Radiation of Binaries Coalescence into Intermediate Mass Black Holes
Institute of Scientific and Technical Information of China (English)
李瑾; 仲元红; 潘宇
2012-01-01
This paper discusses the gravitation waveforms of binaries coalescence into intermediate mass black holes （about 30 times of the solar mass）. We focus on the non-spinning intermediate mass black hole located less than 100 Mpc from earth. By comparing two simulation waveforms （effective one body numerical relativity waveform （EOBNR）, phenomenological waveform）, we discuss the relationship between the effective distance and frequency; and through analyzing large amounts of data in event, we find that the phenomenological waveform is much smoother than EOBNR waveform, and has higher accuracy at the same effective distance.
Binary Black Holes, Numerical Relativity, and Gravitational Waves
Centrella, Joan
2007-01-01
The final merger of two black holes releases a tremendous amount of energy, more than the combined light from all the stars in the visible universe. This energy is emitted in the form of gravitational waves, and observing these sources with gravitational wave detectors such as LISA requires that we know the pattern or fingerprint of the radiation emitted. Since black hole mergers take place in regions of extreme gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these wave patterns. For more than 30 years, scientists have tried to compute these wave patterns. However, their computer codes have been plagued by problems that caused them to crash. This situation has changed dramatically in the past 2 years, with a series of amazing breakthroughs. This talk will take you on this quest for these gravitational wave patterns, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LISA
Modeling gravitational radiation from coalescing binary black holes
Baker, J; Loustó, C O; Takahashi, R
2002-01-01
With the goal of bringing theory, particularly numerical relativity, to bear on an astrophysical problem of critical interest to gravitational wave observers we introduce a model for coalescence radiation from binary black hole systems. We build our model using the "Lazarus approach", a technique that bridges far and close limit approaches with full numerical relativity to solve Einstein equations applied in the truly nonlinear dynamical regime. We specifically study the post-orbital radiation from a system of equal-mass non-spinning black holes, deriving waveforms which indicate strongly circularly polarized radiation of roughly 3% of the system's total energy and 12% of its total angular momentum in just a few cycles. Supporting this result we first establish the reliability of the late-time part of our model, including the numerical relativity and close-limit components, with a thorough study of waveforms from a sequence of black hole configurations varying from previously treated head-on collisions to rep...
Strong Field Gravitational Lensing by a Kerr Black Hole
Vázquez-Semadeni, E; V\\'azquez, Samuel E.; Esteban, Ernesto P.
2003-01-01
We study the gravitational lens effect caused by a Kerr black hole within the geometrical optics and point source approximations. Special attention is given to the strong field regime where, as in the case of a Schwarzschild black hole, we find an infinite set of highly demagnified images (relativistic images). We develop the geometry necessary for a gravitational lens consisting of an observer and a source far away from the black hole, but at arbitrary inclinations with respect to the rotation axis. Using this geometry, we write the equations of motion for null geodesics in terms of the angular positions in the observer's sky so they become our "lens equations". By studying the equations of motion we develop a simple classification scheme for any image which consist in two integers: the number of turning points in the polar coordinate, and the number of windings around the rotation axis of the black hole. We also write the lens equations as elliptic integrals which we use in our numerical calculations. Final...
Black holes with gravitational hair in higher dimensions
Anabalón, Andrés; Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio
2011-10-01
A new class of vacuum black holes for the most general gravity theory leading to second order field equations in the metric in even dimensions is presented. These space-times are locally anti-de Sitter in the asymptotic region, and are characterized by a continuous parameter that does not enter in the conserve charges, nor it can be reabsorbed by a coordinate transformation: it is therefore a purely gravitational hair. The black holes are constructed as a warped product of a two-dimensional space-time, which resembles the r-t plane of the Bañados-Teitelboim-Zanelli black hole, times a warp factor multiplying the metric of a D-2-dimensional Euclidean base manifold, which is restricted by a scalar equation. It is shown that all the Noether charges vanish. Furthermore, this is consistent with the Euclidean action approach: even though the black hole has a finite temperature, both the entropy and the mass vanish. Interesting examples of base manifolds are given in eight dimensions which are products of Thurston geometries, giving then a nontrivial topology to the black hole horizon. The possibility of introducing a torsional hair for these solutions is also discussed.
Black holes with gravitational hair in higher dimensions
International Nuclear Information System (INIS)
A new class of vacuum black holes for the most general gravity theory leading to second order field equations in the metric in even dimensions is presented. These space-times are locally anti-de Sitter in the asymptotic region, and are characterized by a continuous parameter that does not enter in the conserve charges, nor it can be reabsorbed by a coordinate transformation: it is therefore a purely gravitational hair. The black holes are constructed as a warped product of a two-dimensional space-time, which resembles the r-t plane of the Banados-Teitelboim-Zanelli black hole, times a warp factor multiplying the metric of a D-2-dimensional Euclidean base manifold, which is restricted by a scalar equation. It is shown that all the Noether charges vanish. Furthermore, this is consistent with the Euclidean action approach: even though the black hole has a finite temperature, both the entropy and the mass vanish. Interesting examples of base manifolds are given in eight dimensions which are products of Thurston geometries, giving then a nontrivial topology to the black hole horizon. The possibility of introducing a torsional hair for these solutions is also discussed.
Binary Black Holes: Spin Dynamics and Gravitational Recoil
Herrmann, Frank; Shoemaker, Deirdre M; Laguna, Pablo; Matzner, Richard A
2007-01-01
We present a study of spinning black hole binaries focusing on the spin dynamics of the individual black holes as well as on the gravitational recoil acquired by the black hole produced by the merger. We consider two series of initial spin orientations away from the binary orbital plane. In one of the series, the spins are anti-aligned; for the second series, one of the spins points away from the binary along the line separating the black holes. We find a remarkable agreement between the spin dynamics predicted at 2nd post-Newtonian order and those from numerical relativity. For each configuration, we compute the kick of the final black hole. We use the kick estimates from the series with anti-aligned spins to fit the parameters in the Kidder kick formula, and verify that the recoil along the direction of the orbital angular momentum is proportional to $\\sin\\theta$ and on the orbital plane to $\\cos\\theta$, with $\\theta$ the angle between the spin directions and the orbital angular momentum.
Binary Black Holes, Gravitational Waves, and Numerical Relativity
Centrella, Joan
2009-01-01
The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.
Luminet, Jean-Pierre
1992-09-01
Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.
Extremal black holes, gravitational entropy and nonstationary metric fields
Edery, Ariel
2010-01-01
We show that extremal black holes have zero entropy by pointing out a simple fact: they are time-independent throughout the spacetime and therefore correspond to a single or unique metric field configuration. We show that non-extremal black holes, including the Schwarzschild black hole, contain a region hidden behind the event horizon where all their Killing vectors are spacelike. This region is nonstationary and the time $t$ labels a continuous set of classical microstates, the phase space $[\\,h_{ab}(t), P^{ab}(t)\\,]$, where $h_{ab}$ is a three-metric induced on a spacelike hypersurface $\\Sigma_t$ and $P^{ab}$ is its momentum conjugate. We determine explicitly the phase space in the interior region of the Schwarzschild black hole. We identify its entropy as a measure of an outside observer's ignorance of $h_{ab}$ and $P^{ab}$ inside the event horizon: ignorance of the value of the label $t$ which lies anywhere between $0$ and $2M$. We provide numerical evidence from recent simulations of gravitational collap...
Black holes with gravitational hair in higher dimensions
Anabalon, Andres; Giacomini, Alex; Oliva, Julio
2011-01-01
A new class of vacuum black holes for the most general gravity theory leading to second order field equations in the metric in even dimensions is presented. These space-times are locally AdS in the asymptotic region, and are characterized by a continuous parameter that does not enter in the conserve charges, nor it can be reabsorbed by a coordinate transformation: it is therefore a purely gravitational hair. The black holes are constructed as a warped product of a two-dimensional space-time, which resembles the r-t plane of the BTZ black hole, times a warp factor multiplying the metric of a D-2-dimensional Euclidean base manifold, which is restricted by a scalar equation. It is shown that all the Noether charges vanish. Furthermore, this is consistent with the Euclidean action approach: even though the black hole has a finite temperature, both the entropy and the mass vanish. Interesting examples of base manifolds are given in eight dimensions which are products of Thurston geometries, giving then a nontrivia...
An effective search method for gravitational ringing of black holes
International Nuclear Information System (INIS)
We develop a search method for gravitational ringing of black holes. The gravitational ringing is due to complex frequency modes called the quasinormal modes that are excited when a black hole geometry is perturbed. The detection of it will be a direct confirmation of the existence of a black hole. Assuming that the ringdown waves are dominated by the least-damped (fundamental) mode with the least imaginary part, we consider matched filtering and develop an optimal method to search for the ringdown waves that have damped sinusoidal wave forms. When we use the matched filtering method, a data analysis with a lot of templates is required. Here we have to ensure a proper match between the filter as a template and the real wave. It is necessary to keep the detection efficiency as high as possible under limited computational costs. First, we consider the white noise case for which the matched filtering can be studied analytically. We construct an efficient method for tiling the template space. Then, using a fitting curve of the TAMA300 DT7 noise spectrum, we numerically consider the case of colored noise. We find our tiling method developed for the white noise case is still valid even if the noise is colored
An Effective Search Method for Gravitational Ringing of Black Holes
Nakano, H; Tagoshi, H; Sasaki, M; Nakano, Hiroyuki; Sasaki, Misao; Tagoshi, Hideyuki; Takahashi, Hirotaka
2003-01-01
We develop a search method for gravitational ringing of black holes. The gravitational ringing is due to complex frequency modes called the quasi-normal modes that are excited when a black hole geometry is perturbed. The detection of it will be a direct confirmation of the existence of a black hole. Assuming that the ringdown waves are dominated by the fundamental mode with least imaginary part, we consider matched filtering and develop an optimal method to search for the ringdown waves that have damped sinusoidal wave forms. When we use the matched filtering method, the data analysis with a lot of templates required. Here we have to ensure a proper match between the filter as a template and the real wave. It is necessary to keep the detection efficiency as high as possible under limited computational costs. First, we consider the white noise case for which the matched filtering can be studied analytically. We construct an efficient method for tiling the template space. Then, using a fitting curve of the TAMA...
Gravitation. [consideration of black holes in gravity theories
Fennelly, A. J.
1978-01-01
Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models.
Instability of black hole formation in gravitational collapse
International Nuclear Information System (INIS)
We consider here the classic scenario given by Oppenheimer, Snyder, and Datt, for the gravitational collapse of a massive matter cloud, and examine its stability under the introduction of small tangential stresses. We show, by offering an explicit class of physically valid tangential stress perturbations, that an introduction of tangential pressure, however small, can qualitatively change the final fate of collapse from a black hole final state to a naked singularity. This shows instability of black hole formation in collapse and sheds important light on the nature of cosmic censorship hypothesis and its possible formulations. The key effect of these perturbations is to alter the trapped surface formation pattern within the collapsing cloud and the apparent horizon structure. This allows the singularity to be visible, and implications are discussed.
Searching for intermediate-mass black holes with gravitational microlensing
Kains, Noé; Bramich, Dan; Sahu, Kailash C.; Calamida, Annalisa
2016-06-01
Despite a lot of indirect observational evidence, no intermediate-mass black hole (IMBH) has been detected unambiguously so far. A clear detection would shed light on the possible role of IMBHs in the formation of supermassive black holes, and on the evolution of Galaxies. This could be achieved with gravitational microlensing. We present the results of simulations to estimate the expected astrometric microlensing rates by IMBHs in globular clusters, and show that microlensing has the potential to detect signals that can be unambiguously attributed to an IMBH in several Galactic globular clusters. We also discuss the implication of our simulations for archival studies with available Hubble Space Telescope data, and the impact of JWST and WFIRST on possible future detections.
Gravitational Black Hole Hair from Event Horizon Supertranslations
Averin, Artem; Gomez, Cesar; Lust, Dieter
2016-01-01
We discuss BMS supertranslations both at null-infinity and on the horizon for the case of the Schwarzschild black hole. We show that both kinds of supertranslations lead to infinetly many gapless physical excitations. On this basis we construct a quotient algebra using suited superpositions of both kinds of transformations which cannot be compensated by an ordinary BMS-supertranslation and therefore are intrinsically due to the presence of an event horizon. We show that these quotient transformations are physical and generate gapless excitations on the horizon that can account for the gravitational hair as well as for the black hole entropy. We identify the physics of these modes as associated with Bogolioubov-Goldstone modes due to quantum criticality. Classically the number of these gapless modes is infinite. However, we show that due to quantum criticality the actual amount of information-carriers becomes finite and consistent with Bekenstein entropy. Although we only consider the case of Schwarzschild geo...
GRAVITATIONAL WAVE SIGNATURES IN BLACK HOLE FORMING CORE COLLAPSE
International Nuclear Information System (INIS)
We present general relativistic numerical simulations of collapsing stellar cores. Our initial model consists of a low metallicity rapidly-rotating progenitor which is evolved in axisymmetry with the latest version of our general relativistic code CoCoNuT, which allows for black hole formation and includes the effects of a microphysical equation of state (LS220) and a neutrino leakage scheme to account for radiative losses. The motivation of our study is to analyze in detail the emission of gravitational waves in the collapsar scenario of long gamma-ray bursts. Our simulations show that the phase during which the proto-neutron star (PNS) survives before ultimately collapsing to a black hole is particularly optimal for gravitational wave emission. The high-amplitude waves last for several seconds and show a remarkable quasi-periodicity associated with the violent PNS dynamics, namely during the episodes of convection and the subsequent nonlinear development of the standing-accretion shock instability (SASI). By analyzing the spectrogram of our simulations we are able to identify the frequencies associated with the presence of g-modes and with the SASI motions at the PNS surface. We note that the gravitational waves emitted reach large enough amplitudes to be detected with third-generation detectors such as the Einstein Telescope within a Virgo Cluster volume at rates ≲ 0.1 yr–1
Gravitational recoil: signatures on the massive black hole population
Volonteri, M
2007-01-01
In the last stages of a black hole merger, the binary can experience a recoil due to asymmetric emission of gravitational radiation. Recent numerical relativity simulations suggest that the recoil velocity can be as high as a few thousands kilometers per second for particular configurations. We consider here the effect of this worst case scenario on the hierarchical evolution of the massive black hole (MBH) population, where sensible values for binaries mass ratios and spins are assumed. The orbital configuration is chosen to be the one yielding the highest possible kick. We explore two routes for MBH formation which lead to different ejection histories: either that MBHs are the remnants of the first generation of stars, or that MBHs form by direct collapse. We show that the gravitational recoil does not pose a threat to the evolution of the MBH population that we observe locally in either case. The gravitational recoil is instead a real hazard for (i) MBHs in biased halos at high-redshift, where mergers are ...
GRAVITATIONAL WAVE SIGNATURES IN BLACK HOLE FORMING CORE COLLAPSE
Energy Technology Data Exchange (ETDEWEB)
Cerdá-Durán, Pablo; DeBrye, Nicolas; Aloy, Miguel A.; Font, José A.; Obergaulinger, Martin, E-mail: pablo.cerda@uv.es [Departamento de Astronomia y Astrofísica, Universidad de Valencia, c/Dr. Moliner 50, E-46100-Burjassot (Spain)
2013-12-20
We present general relativistic numerical simulations of collapsing stellar cores. Our initial model consists of a low metallicity rapidly-rotating progenitor which is evolved in axisymmetry with the latest version of our general relativistic code CoCoNuT, which allows for black hole formation and includes the effects of a microphysical equation of state (LS220) and a neutrino leakage scheme to account for radiative losses. The motivation of our study is to analyze in detail the emission of gravitational waves in the collapsar scenario of long gamma-ray bursts. Our simulations show that the phase during which the proto-neutron star (PNS) survives before ultimately collapsing to a black hole is particularly optimal for gravitational wave emission. The high-amplitude waves last for several seconds and show a remarkable quasi-periodicity associated with the violent PNS dynamics, namely during the episodes of convection and the subsequent nonlinear development of the standing-accretion shock instability (SASI). By analyzing the spectrogram of our simulations we are able to identify the frequencies associated with the presence of g-modes and with the SASI motions at the PNS surface. We note that the gravitational waves emitted reach large enough amplitudes to be detected with third-generation detectors such as the Einstein Telescope within a Virgo Cluster volume at rates ≲ 0.1 yr{sup –1}.
Binary Systems with a Black Hole Component as Sources of Gravitational Waves
Koçak, D
2016-01-01
Discovery of gravitational waves by LIGO team (Abbott et al. 2016) bring a new era for observation of black hole systems. These new observations will improve our knowledge on black holes and gravitational physics. In this study, we present angular momentum loss mechanism through gravitational radiation for selected X-ray binary systems. The angular momentum loss in X-ray binary systems with a black hole companion due to gravitational radiation and mass loss time-scales are estimated for each selected system. In addition, their gravitational wave amplitudes are also estimated and their detectability with gravitational wave detectors has been discussed.
Black Hole Coalescence: The Gravitational Wave Driven Phase
Schnittman, Jeremy D.
2011-01-01
When two supermassive black holes (SMBHS) approach within 1-10 mpc, gravitational wave (GW) losses begin to dominate the evolution of the binary, pushing the system to merge in a relatively small time. During this final inspiral regime, the system will emit copious energy in GWs, which should be directly detectable by pulsar timing arrays and space-based interferometers. At the same time, any gas or stars in the immediate vicinity of the merging 5MBHs can get heated and produce bright electromagnetic (EM) counterparts to the GW signals. We present here a number of possible mechanisms by which simultaneous EM and GW signals will yield valuable new information about galaxy evolution, accretion disk dynamics, and fundamental physics in the most extreme gravitational fields.
Exact black holes and gravitational shockwaves on codimension-2 branes
Kaloper, Nemanja; Kiley, Derrick
2006-03-01
We derive exact gravitational fields of a black hole and a relativistic particle stuck on a codimension-2 brane in D dimensions when gravity is ruled by the bulk D-dimensional Einstein-Hilbert action. The black hole is locally the higher-dimensional Schwarzschild solution, which is threaded by a tensional brane yielding a deficit angle and includes the first explicit example of a `small' black hole on a tensional 3-brane. The shockwaves allow us to study the large distance limits of gravity on codimension-2 branes. In an infinite locally flat bulk, they extinguish as 1/rD-4, i.e. as 1/r2 on a 3-brane in 6D, manifestly displaying the full dimensionality of spacetime. We check that when we compactify the bulk, this special case correctly reduces to the 4D Aichelburg-Sexl solution at large distances. Our examples show that gravity does not really obstruct having general matter stress-energy on codimension-2 branes, although its mathematical description may be more involved.
Exact Black Holes and Gravitational Shockwaves on Codimension-2 Branes
Kaloper, Nemanja; Kaloper, Nemanja; Kiley, Derrick
2006-01-01
We derive exact gravitational fields of a black hole and a relativistic particle stuck on a codimension-2 brane in $D$ dimensions when gravity is ruled by the bulk $D$-dimensional Einstein-Hilbert action. The black hole is locally the higher-dimensional Schwarzschild solution, which is threaded by a tensional brane yielding a deficit angle and includes the first explicit example of a `small' black hole on a tensional 3-brane. The shockwaves allow us to study the large distance limits of gravity on codimension-2 branes. In an infinite locally flat bulk, they extinguish as $1/r^{D-4}$, i.e. as $1/r^2$ on a 3-brane in $6D$, manifestly displaying the full dimensionality of spacetime. We check that when we compactify the bulk, this special case correctly reduces to the 4D Aichelburg-Sexl solution at large distances. Our examples show that gravity does not really obstruct having general matter stress-energy on codimension-2 branes, although its mathematical description may be more involved.
Gravitational wave signatures in black-hole forming core collapse
Cerdá-Durán, Pablo; Aloy, Miguel A; Font, José A; Obergaulinger, Martin
2013-01-01
We present numerical simulations in general relativity of collapsing stellar cores. Our initial model consists of a low metallicity rapidly-rotating progenitor which is evolved in axisymmetry with the latest version of our general relativistic code CoCoNuT, which allows for black hole formation and includes the effects of a microphysical equation of state (LS220) and a neutrino leakage scheme to account for radiative losses. The motivation of our study is to analyze in detail the emission of gravitational waves in the collapsar scenario of long gamma-ray bursts. Our simulations show that the phase during which the proto-neutron star (PNS) survives before ultimately collapsing to a black hole is particularly optimal for gravitational wave emission. The high-amplitude waves last for several seconds and show a remarkable quasi-periodicity associated with the violent PNS dynamics, namely during the episodes of convection and the subsequent nonlinear development of the standing-accretion shock instability (SASI). ...
Nonspinning black hole-neutron star mergers: a model for the amplitude of gravitational waveforms
Pannarale, Francesco; Kyutoku, Koutarou; Shibata, Masaru
2013-01-01
Black hole-neutron star binary mergers display a much richer phenomenology than black hole-black hole mergers, even in the relatively simple case - considered in this paper - in which both the black hole and the neutron star are nonspinning. When the neutron star is tidally disrupted, the gravitational wave emission is radically different from the black hole-black hole case and it can be broadly classified in two groups, depending on the spatial extent of the disrupted material. We present a phenomenological model for the gravitational waveform amplitude in the frequency domain that encompasses the three possible outcomes of the merger: no tidal disruption, "mild", and "strong" tidal disruption. The model is calibrated to general relativistic numerical simulations using piecewise polytropic neutron star equations of state. It should prove useful to extract information on the nuclear equation of state from future gravitational-wave observations, and also to obtain more accurate estimates of black hole-neutron ...
Mazur, P. O.
1998-01-01
This is a short account of our work on the statistical mechanics of `cold' quantum black holes in the constituent model of a black hole$^{3,4,6}$. A quantum Schwarzschild black hole consists of gravitational atoms of Planckian mass scale$^{3,4,6}$. The gapless collective excitations of a bound state of N gravitational atoms dominate the thermodynamics of a cold quantum black hole. It turns out that it is only in the limit of large $N$, with the observable mean values of the gravitational mass...
The Effect of Gravitational Recoil on Black Holes Forming in a Hierarchical Universe
Libeskind, N. I.; S. Cole; Frenk, C.S.; Helly, J. C.
2005-01-01
Galactic bulges are known to harbour central black holes whose mass is tightly correlated with the stellar mass and velocity dispersion of the bulge. In a hierarchical universe, mergers of subgalactic units are accompanied by the amalgamation of bulges and the likely coalescence of galactocentric black holes. In these mergers, the beaming of gravitational radiation during the plunge phase of the black hole collision can impart a linear momentum kick or ``gravitational recoil'' to the remnant....
Gravitational anomalies and one-dimensional behavior of black holes
Energy Technology Data Exchange (ETDEWEB)
Majhi, Bibhas Ranjan [Indian Institute of Technology Guwahati, Department of Physics, Guwahati, Assam (India)
2015-12-15
It has been pointed out by Bekenstein and Mayo that the behavior of the black hole's entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S on the power is S ∝ P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry's formula, while in the latter situation its value decreases. (orig.)
Gravitational anomalies and one-dimensional behavior of black holes
International Nuclear Information System (INIS)
It has been pointed out by Bekenstein and Mayo that the behavior of the black hole's entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S on the power is S ∝ P1/2, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry's formula, while in the latter situation its value decreases. (orig.)
Improved gravitational waveforms from spinning black hole binaries
International Nuclear Information System (INIS)
The standard post-Newtonian approximation to gravitational waveforms, called T-approximants, from nonspinning black hole binaries are known not to be sufficiently accurate close to the last stable orbit of the system. A new approximation, called P-approximants, is believed to improve the accuracy of the waveforms rendering them applicable up to the last stable orbit. In this study we apply P-approximants to the case of a test particle in equatorial orbit around a Kerr black hole parameterized by a spin-parameter q that takes values between -1 and 1. In order to assess the performance of the two approximants we measure their effectualness (i.e., larger overlaps with the exact signal), and faithfulness (i.e., smaller biases while measuring the parameters of the signal) with the exact (numerical) waveforms. We find that in the case of prograde orbits, that is orbits whose angular momentum is in the same sense as the spin angular momentum of the black hole, T-approximant templates obtain an effectualness of ∼0.99 for spins q 0.99 for all spins up to q=0.95. The bias in the estimation of parameters is much lower in the case of P-approximants than T-approximants. We find that P-approximants are both effectual and faithful and should be more effective than T-approximants as a detection template family when q>0. For q<0 both T- and P-approximants perform equally well so that either of them could be used as a detection template family
Entropic corrected Newton's law of gravitation and the loop quantum black hole gravitational atom
Aragão, R. G. L.; Silva, C. A. S.
2016-07-01
One proposal by Verlinde is that gravity is not a fundamental, but an entropic force (Verlinde in JHEP 1104:029, 2011. arXiv:hep-th/1001.0785). Based on this new interpretation of the gravity, Verlinde has provide us with a way to derive the Newton's law of gravitation from the Bekenstein-Hawking entropy-area formula. On the other hand, since it has been demonstrated that this formula is susceptible to quantum gravity corrections, one may hope that such corrections could be inherited by Newton's law. In this sense, the entropic interpretation of Newton's law could be a prolific way in order to get verifiable or falsifiable quantum corrections to ordinary gravity in an observationally accessible regimes. On the other hand, loop quantum gravity is a theory that provide a scheme to approach the quantum properties of spacetime. From this theory, emerges a quantum corrected semiclassical black hole solution called loop quantum black hole or self-dual black hole. Among the interesting features of loop quantum black holes, is the fact that they give rise to a modified entropy-area relation where quantum gravity corrections are present. In this work, we obtain a quantum corrected Newton's law from the entropy-area relation given by loop quantum black holes by using the nonrelativistic Verlinde's approach. Moreover, in order to relate our results with the recent experimental activity, we consider the quantum mechanical properties of a huge gravitational atom consisting in a light neutral elementary particle in the presence of a loop quantum black hole.
Weak Gravitational lensing from regular Bardeen black holes
Ghaffarnejad, Hossein
2014-01-01
In this article we consider regular charged Bardeen black hole as a gravitational lens. Weak deflection limit is studied for deflection angle by regarding perturbation approach presented by Keeton et al. From which we obtain the positions and magnifications of the non-relativistic images. In this article we assume that the quotient between the charge $|q|$ and twice the mass $2m$ of the Bardeen black hole is $|g|/2m>2\\sqrt{3}/9$ in which apparent horizon and photon sphere disappear. Results of this work predicts for a fixed $|g|/2m$ (impact parameter), the deflection angle decreases with respect to impact parameter ($|g|/2m$). Fixing position of the source and increasing ($|g|/2m$), positions of the non-relativistic images are closer and primary images locations transmit to corresponding secondary image positions. Magnification of the images reduces to an infinite value for Einstein rings for different values of the charge parameter ($|g|/2m$) and its absolute value increases in terms of positions of the sour...
Gravitational black hole hair from event horizon supertranslations
Averin, Artem; Dvali, Gia; Gomez, Cesar; Lüst, Dieter
2016-06-01
We discuss BMS supertranslations both at null-infinity BMS- and on the horizon {BMS}^{mathscr{H}} for the case of the Schwarzschild black hole. We show that both kinds of supertranslations lead to infinetly many gapless physical excitations. On this basis we construct a quotient algebra mathcal{A}equiv {BMS}^{mathscr{H}}/{BMS}- using suited superpositions of both kinds of transformations which cannot be compensated by an ordinary BMS-supertranslation and therefore are intrinsically due to the presence of an event horizon. We show that transformations in mathcal{A} are physical and generate gapless excitations on the horizon that can account for the gravitational hair as well as for the black hole entropy. We identify the physics of these modes as associated with Bogolioubov-Goldstone modes due to quantum criticality. Classically the number of these gapless modes is infinite. However, we show that due to quantum criticality the actual amount of information-carriers becomes finite and consistent with Bekenstein entropy. Although we only consider the case of Schwarzschild geometry, the arguments are extendable to arbitrary space-times containing event horizons.
Gravitational Radiation Characteristics of Nonspinning Black-Hole Binaries
Kelly, Barnard
2008-01-01
"We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source. applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the $\\ell = m$ modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model."
Search for Gravitational Waves from Intermediate Mass Binary Black Holes
Abadie, J; Abbott, R; Abbott, T D; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Affeldt, C; Agathos, M; Agatsuma, K; Ajith, P; Allen, B; Ceron, E Amador; Amariutei, D; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Baragoya, J C B; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Beck, D; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Belletoile, A; Belopolski, I; Benacquista, M; Berliner, J M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Bulik, T; Bulten, H J; Buonanno, A; Burguet-Castell, J; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campsie, P; Cannizzo, J; Cannon, K; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Caudill, S; Cavaglia, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chaibi, O; Chalermsongsak, T; Charlton, P; Chassande-Mottin, E; Chelkowski, S; Chen, W; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H; Chow, J; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Ciani, G; Clark, D E; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P -F; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Cutler, R M; Dahl, K; Danilishin, S L; Dannenberg, R; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Del Pozzo, W; del Prete, M; Dent, T; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Diaz, M; Dietz, A; Donovan, F; Dooley, K L; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J -C; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Endroczi, G; Engel, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, Y; Farr, B F; Fazi, D; Fehrmann, H; Feldbaum, D; Feroz, F; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Flanigan, M; Foley, S; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fujimoto, M -K; Fulda, P J; Fyffe, M; Gair, J; Galimberti, M; Gammaitoni, L; Garcia, J; Garufi, F; Gaspar, M E; Gemme, G; Geng, R; Genin, E; Gennai, A; Gergely, L A; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil, S; Gill, C; Gleason, J; Goetz, E; Goggin, L M; Gonzalez, G; Gorodetsky, M L; Gossler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Gray, N; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Gupta, R; Gustafson, E K; Gustafson, R; Ha, T; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Hayau, J -F; Heefner, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hendry, M A; Heng, I S; Heptonstall, A W; Herrera, V; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Hosken, D J; Hough, J; Howell, E J; Hughey, B; Husa, S; Huttner, S H; Inta, R; Isogai, T; Ivanov, A; Izumi, K; Jacobson, M; James, E; Jang, Y J; Jaranowski, P; Jesse, E; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawamura, S; Kawazoe, F; Kelley, D; Kells, W; Keppel, D G; Keresztes, Z; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B; Kim, C; Kim, H; Kim, K; Kim, N; Kim, Y -M; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kranz, O; Kringel, V; Krishnamurthy, S; Krishnan, B; Krolak, A; Kuehn, G; Kumar, R; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lastzka, N; Lawrie, C; Lazzarini, A; Leaci, P; Lee, C H; Lee, H K; Lee, H M; Leong, J R; Leonor, I; Leroy, N; Letendre, N; Li, J; Li, T G F; Liguori, N; Lindquist, P E; Liu, Y; Liu, Z; Lockerbie, N A; Lodhia, D; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Luan, J; Lubinski, M; Luck, H; Lundgren, A P; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marandi, A; Marchesoni, F; Marion, F; Marka, S; Marka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McKechan, D J A; McWilliams, S; Meadors, G D; Mehmet, M; Meier, T; Melatos, A; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Michel, C; Milano, L; Miller, J; Minenkov, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moreno, G; Morgado, N; Morgia, A; Mori, T; Morriss, S R; Mosca, S; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Muller-Ebhardt, H; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nash, T; Naticchioni, L; Necula, V; Nelson, J; Newton, G; Nguyen, T; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Page, A; Pagliaroli, G; Palladino, L; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pedraza, M; Peiris, P; Pekowsky, L; Penn, S; Perreca, A; Persichetti, G; Phelps, M; Pickenpack, M; Piergiovanni, F; Pietka, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Pold, J; Postiglione, F; Prato, M; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quitzow-James, R; Raab, F J; Rabeling, D S; Racz, I; Radkins, H; Raffai, P; Rakhmanov, M; Rankins, B; Rapagnani, P; Raymond, V; Re, V; Redwine, K; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Rolland, L; Rollins, J G; Romano, J D; Romano, R; Romie, J H; Rosinska, D; Rover, C; Rowan, S; Rudiger, A; Ruggi, P; Ryan, K; Sainathan, P; Salemi, F; Sammut, L; Sandberg, V; Sannibale, V; Santamaria, L; Santiago-Prieto, I; Santostasi, G; Sassolas, B; Sathyaprakash, B S; Sato, S; Saulson, P R; Savage, R L; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sentenac, D; Sergeev, A; Shaddock, D A; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Somiya, K; Sorazu, B; Soto, J; Speirits, F C; Sperandio, L; Stefszky, M; Stein, A J; Stein, L C; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S E; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Sung, M; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Taffarello, L; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Thuring, A; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C; Torrie, C I; Tournefier, E; Travasso, F; Traylor, G; Tseng, K; Ugolini, D; Vahlbruch, H; Vajente, G; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van Veggel, A A; Vass, S; Vasuth, M; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Veltkamp, C; Verkindt, D; Vetrano, F; Vicere, A; Villar, A E; Vinet, J -Y; Vitale, S; Vitale, S; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Wallace, L; Wan, Y; Wang, M; Wang, X; Wang, Z; Wanner, A; Ward, R L; Was, M; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wilkinson, C; Willems, P A; Williams, L; Williams, R; Willke, B; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wooley, R; Worden, J; Yakushin, I; Yamamoto, H; Yamamoto, K; Yamamoto, K; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yu, P; Yvert, M; Zadrozny, A; Zanolin, M; Zendri, J -P; Zhang, F; Zhang, L; Zhang, W; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J
2012-01-01
We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100--450 solar masses and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88 solar masses, for non-spinning sources, the rate density upper limit is 0.13 per Mpc^3 per Myr at the 90% confidence level.
Search for Gravitational Waves from Intermediate Mass Binary Black Holes
Blackburn, L.; Camp, J. B.; Cannizzo, J.; Stroeer, A. S.
2012-01-01
We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100-450 solar Mass and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 solar Mass , for non-spinning sources, the rate density upper limit is 0.13 per Mpc(exp 3) per Myr at the 90% confidence level.
Gravitational radiation characteristics of nonspinning black-hole binaries
Energy Technology Data Exchange (ETDEWEB)
Kelly, B J; Baker, J G; Boggs, W D; Centrella, J M; Meter, J R van; McWilliams, S T, E-mail: bernard.j.kelly@nasa.go, E-mail: john.g.baker@nasa.go, E-mail: william.d.boggs@nasa.go, E-mail: joan.m.centrella@nasa.go, E-mail: james.r.vanmeter@nasa.go, E-mail: sean.t.mcwilliams@nasa.go [NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States)
2009-03-01
We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source, applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the l = m modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.
Gravitational radiation characteristics of nonspinning black-hole binaries
International Nuclear Information System (INIS)
We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source, applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the l = m modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.
Gravitational wave production by rotating primordial black holes
Dong, Ruifeng; Kinney, William H.; Stojkovic, Dejan
2015-01-01
In this paper we analyze in detail a rarely discussed question of gravity waves production from evaporating black holes. Evaporating black holes emit gravitons which are at classical level registered as gravity waves. We use the latest constraints on the primordial black hole abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during t...
Gravitational axial perturbations and quasinormal modes of loop quantum black holes
Cruz, M B; Brito, F A
2015-01-01
Gravitational waves can be used as a way to investigate the structure of spacetime. Loop Quantum Gravity is a theory that propose a way to model the behavior of spacetime in situations where its atomic characteristic arises. Among these situations, the spacetime behavior near the Big Bang or black hole's singularity. A recent prediction of loop quantum gravity is the existence of sub-Planckian black holes called loop quantum black holes (LQBH) or self-dual black holes which correspond to a quantized version of Schwarzschild black hole. In this work, we study the gravitational waves spectrum emitted by a LQBH through the analysis of its the quasinormal modes. From the results obtained, loop quantum black holes have been shown stable under axial gravitational perturbations.
Gravitational Waves from Direct Collapse Black Holes Formation
Pacucci, Fabio; Marassi, Stefania
2015-01-01
The possible formation of Direct Collapse Black Holes (DCBHs) in the first metal-free atomic cooling halos at high redshifts ($z > 10$) is nowadays object of intense study and several methods to prove their existence are currently under development. The abrupt collapse of a massive ($\\sim 10^4 - 10^5 \\, \\mathrm{M_{\\odot}}$) and rotating object is a powerful source of gravitational waves emission. In this work, we employ modern waveforms and the improved knowledge on the DCBHs formation rate to estimate the gravitational signal emitted by these sources at cosmological distances. Their formation rate is very high ($\\sim 10^4 \\, \\mathrm{yr^{-1}}$ up to $z\\sim20$), but due to a short duration of the collapse event ($\\sim 2-30\\, \\mathrm{s}$, depending on the DCBH mass) the integrated signal from these sources is characterized by a very low duty-cycle (${\\cal D}\\sim 10^{-3}$), i.e. a shot-noise signal. Our results show that the estimated signal lies above the foreseen sensitivity of the Ultimate-DECIGO observatory ...
Gravitational Collapse and Black Hole Formation in a Braneworld
Wang, Daoyan
2015-01-01
In this thesis we present the first numerical study of gravitational collapse in braneworlds within the framework of the single brane model proposed by Randall and Sundrum (RSII). We directly show that the evolutions of sufficiently strong initial data configurations result in black holes (BHs) with finite extension into the bulk. The extension changes from sphere to pancake (or cigar, seen from a different perspective) as the size of BH increases. We find preliminary evidences that BHs of the same size generated from distinct initial data profiles are geometrically indistinguishable. As such, a no-hair theorem of BH (uniqueness of BH) is suggested to hold in the RSII spacetimes studied in this thesis---these spacetimes are axisymmetric without angular momentum and non-gravitational charges. In particular, the BHs we obtained as the results of the dynamical system, are consistent with the ones previously obtained from a static vacuum system by Figueras and Wiseman. We also obtained some results in closed form...
Dvorkin, Irina; Silk, Joseph; Uzan, Jean-Philippe; Olive, Keith A
2016-01-01
The recent detection of the binary black hole merger GW150914 demonstrates the existence of black holes more massive than previously observed in X-ray binaries in our Galaxy. This article explores different scenarios of black hole formation in the context of self-consistent cosmic chemical evolution models that simultaneously match observations of the cosmic star formation rate, optical depth to reionization and metallicity of the interstellar medium. This framework is used to calculate the mass distribution of merging black hole binaries and its evolution with redshift. We also study the implications of the black hole mass distribution for the stochastic gravitational wave background from mergers and from core collapse events.
International Nuclear Information System (INIS)
In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra, and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss the possible connections between these results and black-hole-black-hole collisions at the speed of light. Our results show that during the high-speed collision of a nonrotating hole with a rotating one, at most 35% of the total energy can get converted into gravitational waves. This 35% efficiency occurs only in the most optimistic situation, that of a zero impact parameter collision, along the equatorial plane, with an almost extreme Kerr black hole. In the general situation, the total gravitational energy radiated is expected to be much less, especially if the impact parameter increases. Thus, if one is able to produce black holes at the CERN Large Hadron Collider, at most 35% of the partons' energy should be emitted during the so-called balding phase. This energy will be missing, since we do not have gravitational wave detectors able to measure such amplitudes. The collision at the speed of light between one rotating black hole and a nonrotating one or two rotating black holes turns out to be the most efficient gravitational wave generator in the Universe
Gravitational Waves from Hyper-Accretion onto Nascent Black Holes
Araya-Gochez, R A
2003-01-01
We examine the possibility that hyper-accretion onto newly born, black holes occurs in highly intermittent, non-asymmetric fashion favorable to gravitational wave emission in a neutrino cooled disk. This picture of near-hole accretion is motivated by magneto-rotationally induced, ultra-relativistic disk dynamics in the region of the flow bounded from below by the marginally bound geodesic radius. For high spin values, a largely coherent magnetic field in this region has the dynamical implication of compact mass segregation at the displacement nodes of the non-axisymmetric, MRI modes. When neutrino stress competes favorably for the disk dynamical structure, the matter clumps may be rather dense and sufficiently long-lived to excite the Quasi-Normal Ringing (a.k.a. QNR) modes of the Kerr geometry upon their in-fall. We find that such accretion flow may drive bar-like, quadrupole (l,m=2,2) modes in nearly resonant fashion for spin parameters $a \\geq .9$. The ensuing build up in strain amplitude of the undamped o...
Entropic corrected Newton's law of gravitation and the Loop Quantum Black Hole gravitational atom
Aragão, R G L
2016-01-01
One proposal by Verlinde \\cite{Verlinde:2010hp} is that gravity is not a fundamental, but an entropic force. In this way, Verlinde has provide us with a way to derive the Newton's law of gravitation from the Bekenstein-Hawking entropy-area formula. On the other hand, since it has been demonstrated that this formula is susceptible to quantum gravity corrections, one may hope that these corrections could be inherited by the Newton's law. In this way, the entropic interpretation of Newton's law could be a prolific way in order to get verifiable or falsifiable quantum corrections to ordinary gravity in an observationally accessible regimes. Loop quantum gravity is a theory that provide a way to approach the quantum properties of spacetime. From this theory, emerges a quantum corrected semiclassical black hole solution called loop quantum black holes or self-dual black holes. Among the interesting features of loop quantum black holes is the fact that they give rise to a modified entropy-area relation where quantum...
Salcido, Jaime; Bower, Richard G.; Theuns, Tom; McAlpine, Stuart; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop; Regan, John
2016-08-01
We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilising the reference cosmological hydrodynamical simulation from the EAGLE suite. These simulations assume a ΛCDM cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with the latest phenomenological waveform models to calculate the gravitational waves signals from the intrinsic parameters of the merging black holes. The EAGLE models predict ˜2 detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between seed mass black holes merging at redshifts between z ˜ 2 and z ˜ 1. In order to investigate the dependence on the assumed black hole seed mass, we introduce an additional model with a black hole seed mass an order of magnitude smaller than in our reference model. We also consider a variation of the reference model where a prescription for the expected delays in the black hole merger timescale has been included after their host galaxies merge. We find that the merger rate is similar in all models, but that the initial black hole seed mass could be distinguished through their detected gravitational waveforms. Hence, the characteristic gravitational wave signals detected by eLISA will provide profound insight into the origin of supermassive black holes and the initial mass distribution of black hole seeds.
Sonic analog of gravitational black holes in Bose-Einstein condensates
Garay, Luis Javier; Anglin, J. R.; Cirac, J. I.; Zoller, P.
2000-01-01
It is shown that, in dilute-gas Bose-Einstein condensates, there exist both dynamically stable and unstable configurations which, in the hydrodynamic limit, exhibit a behavior resembling that of gravitational black holes. The dynamical instabilities involve creation of quasiparticle pairs in positive and negative energy states, as in the well-known suggested mechanism for black-hole evaporation. We propose a scheme to generate a stable sonic black hole in a ring trap.
Sonic analog of gravitational black holes in bose-einstein condensates
Garay; Anglin; Cirac; Zoller
2000-11-27
It is shown that, in dilute-gas Bose-Einstein condensates, there exist both dynamically stable and unstable configurations which, in the hydrodynamic limit, exhibit a behavior resembling that of gravitational black holes. The dynamical instabilities involve creation of quasiparticle pairs in positive and negative energy states, as in the well-known suggested mechanism for black-hole evaporation. We propose a scheme to generate a stable sonic black hole in a ring trap. PMID:11082617
Detection of gravitational waves from black holes: Is there a window for alternative theories?
Roman Konoplya; Alexander Zhidenko
2016-01-01
Recently the LIGO and VIRGO Collaborations reported the observation of gravitational-wave signal corresponding to the inspiral and merger of two black holes, resulting into formation of the final black hole. It was shown that the observations are consistent with the Einstein theory of gravity with high accuracy, limited mainly by the statistical error. Angular momentum and mass of the final black hole were determined with rather large allowance of tens of percents. Here we shall show that thi...
On the rarity of double black hole binaries: consequences for gravitational-wave detection
Belczynski, Krzysztof; Taam, Ronald E.; Kalogera, Vassiliki; Rasio, Frederic A.; Bulik, Tomasz
2006-01-01
Double black hole binaries are among the most important sources of gravitational radiation for ground-based detectors such as LIGO or VIRGO. Even if formed with lower efficiency than double neutron star binaries, they could dominate the predicted detection rates, since black holes are more massive than neutron stars and therefore could be detected at greater distances. Here we discuss an evolutionary process that can very significantly limit the formation of close double black hole binaries: ...
Aspects of Black Holes in Gravitational Theories with Broken Lorentz and Diffeomorphism Symmetries
Satheeshkumar, V H
2015-01-01
Since Stephen Hawking discovered that black holes emit thermal radiation, black holes have become the theoretical laboratories for testing our ideas on quantum gravity. This dissertation is devoted to the study of singularities, the formation of black holes by gravitational collapse and the global structure of spacetime. All our investigations are in the context of a recently proposed approach to quantum gravity, which breaks Lorentz and diffeomorphism symmetries at very high energies.
Gravitational torque-driven black hole growth and feedback in cosmological simulations
Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Özel, Feryal; Hopkins, Philip F
2016-01-01
We investigate black hole-host galaxy scaling relations in cosmological simulations with a self-consistent black hole growth and feedback model. The sub-grid accretion model captures the key scalings governing angular momentum transport from galactic scales down to parsec scales, while our kinetic feedback implementation enables the injection of outflows with properties chosen to match observed nuclear outflows. We show that "quasar mode" feedback can have a large impact on the thermal properties of the intergalactic medium and the growth of galaxies and massive black holes for kinetic feedback efficiencies as low as 0.1% relative to the bolometric luminosity. Nonetheless, our simulations suggest that the black hole-host scaling relations are only weakly dependent on the effects of black hole feedback on galactic scales, owing to feedback suppressing the growth of galaxies and massive black holes by a similar amount. In contrast, the rate at which gravitational torques feed the central black hole relative to ...
Aligned spin neutron star-black hole mergers: a gravitational waveform amplitude model
Pannarale, Francesco; Kyutoku, Koutarou; Lackey, Benjamin D; Shibata, Masaru
2015-01-01
The gravitational radiation emitted during the merger of a black hole with a neutron star is rather similar to the radiation from the merger of two black holes when the neutron star is not tidally disrupted. When tidal disruption occurs, gravitational waveforms can be broadly classified in two groups, depending on the spatial extent of the disrupted material. Extending previous work by some of us, here we present a phenomenological model for the gravitational waveform amplitude in the frequency domain encompassing the three possible outcomes of the merger: no tidal disruption, "mild" and "strong" tidal disruption. The model is calibrated to 134 general-relativistic numerical simulations of binaries where the black hole spin is either aligned or antialigned with the orbital angular momentum. All simulations were produced using the SACRA code and piecewise polytropic neutron star equations of state. The present model can be used to determine when black-hole binary waveforms are sufficient for gravitational-wave...
The black hole symphony: probing new physics using gravitational waves.
Gair, Jonathan R
2008-12-13
The next decade will very likely see the birth of a new field of astronomy as we become able to directly detect gravitational waves (GWs) for the first time. The existence of GWs is one of the key predictions of Einstein's theory of general relativity, but they have eluded direct detection for the last century. This will change thanks to a new generation of laser interferometers that are already in operation or which are planned for the near future. GW observations will allow us to probe some of the most exotic and energetic events in the Universe, the mergers of black holes. We will obtain information about the systems to a precision unprecedented in astronomy, and this will revolutionize our understanding of compact astrophysical systems. Moreover, if any of the assumptions of relativity theory are incorrect, this will lead to subtle, but potentially detectable, differences in the emitted GWs. Our observations will thus provide very precise verifications of the theory in an as yet untested regime. In this paper, I will discuss what GW observations could tell us about known and (potentially) unknown physics. PMID:18812300
Black hole production in the center of a nondissipative gravitational singularity
International Nuclear Information System (INIS)
The combined dynamics of baryon and nondissipative matter is considered. The conditions of appearance of a nondissipative gravitational singularity are elucidated. It is shown that due to the emission of energy and the action of the gravitational field in the center of the nondissipative singularity, enhanced spherical compression of the baryon matter occurs. Ultimately this leads to the formation of a massive black hole. Subsequently the black hole increases rapidly due to the absorption of both the baryon and nondissipative matter
A Model of the Stochastic Gravitational-Wave Background due to Core Collapse to Black Holes
Crocker, K; Regimbau, T; Belczynski, K; Gladysz, W; Olive, K; Prestegard, T; Vangioni, E
2015-01-01
Superposition of gravitational waves generated by astrophysical sources is expected to give rise to the stochastic gravitational-wave background. We focus on the background generated by the ring-down of black holes produced in the stellar core collapse events across the universe. We systematically study the parameter space in this model, including the most recent information about the star formation rate and about the population of black holes as a function of redshift and of metallicity. We investigate the accessibility of this gravitational wave background to the upcoming gravitational-wave detectors, such as Advanced LIGO and Einstein Telescope.
Constraining the Black Hole Mass Spectrum with Gravitational Wave Observations I: The Error Kernel
Jacobs, Danny C.; Plowman, Joseph E.; Hellings, Ronald W.; Tsuruta, Sachiko; Larson, Shane L.
2009-01-01
Many scenarios have been proposed for the origin of the supermassive black holes (SMBHs) that are found in the centres of most galaxies. Many of these formation scenarios predict a high-redshift population of intermediate-mass black holes (IMBHs), with masses M• in the range 102≲M•≲ 105 M⊙. A powerful way to observe these IMBHs is via gravitational waves the black holes emit as they merge. The statistics of the observed black hole population should, in principle, allow us to discriminate betw...
Gravitational Wave Signatures of Dark Matter Sub-Millimeter Primordial Black Holes
Davoudiasl, Hooman
2016-01-01
We entertain the possibility that primordial black holes of mass $\\sim (10^{24} - 10^{26})$ g, with sub-millimeter Schwarzschild radii, constitute all or a significant fraction of cosmic dark matter, as allowed by various constraints. In case such primordial black holes get captured in orbits around neutron stars or astrophysical black holes in our galactic neighborhood, gravitational waves from the resulting "David & Goliath" binaries could be detectable at Advanced LIGO or Advanced Virgo from days to years, for a range of possible parameters. The proposed Einstein Telescope would further expand the reach for dark matter primordial black holes in this search mode.
Quantum entropies of electromagnetic and gravitational fields on Taub-NUT black hole background
Institute of Scientific and Technical Information of China (English)
LIU Xiao-ying; XIAO Shi-fa; LI Fang-yu
2005-01-01
The main characteristics and Petrov type of Taub-NUT spacetime are studied, and the quantum entropy of Taub-NUT black hole due to electromagnetic and gravitational fields is calculated via brick-wall model. It is shown that the quantum entropy has both the linearly and the logarithmically divergent terms. For electromagnetic field, these terms depend on the characteristic of the black hole; while for gravitational field, they depend not only on the characteristic of the black hole but also on the spin of the fields.
Saleh, Mahamat; Crépin, Kofané Timoléon
2016-01-01
In this work, quasinormal modes (QNMs) of the Schwarzschild black hole are investigated by taking into account the quantum fluctuations. Gravitational and Dirac perturbations were considered for this case. The Regge-Wheeler gauge and the Dirac equation were used to derive the perturbation equations of the gravitational and Dirac fields respectively and the third order Wentzel-Kramers-Brillouin (WKB) approximation method is used for the computing of the quasinormal frequencies. The results show that due to the quantum fluctuations in the background of the Schwarzschild black hole, the QNMs of the black hole damp more slowly when increasing the quantum correction factor (a), and oscillate more slowly.
Sesana, A
2012-01-01
Space based gravitational wave astronomy will open a completely new window on the Universe and massive black holes binaries are expected to be among the primary actors on this upcoming stage. The New Gravitational-wave Observatory (NGO) is a space interferometer proposal derived from the former Laser Interferometer Space Antenna (LISA) concept. We describe here its capabilities of observing massive black hole binaries throughout the Universe, measuring their relevant parameters (masses, spins, distance to the observer) to high precision. The statistical properties of the population of detected systems can be used to constrain the massive black hole cosmic history, providing deep insights into the faint, high redshift Universe.
Quasinormal modes of gravitational field perturbation of regular phantom black holes
Li, Jin; Wen, Hao
2016-01-01
We study the gravitational quasi-normal modes (QNMs) for a kind of regular black hole named as phantom black hole (BH), which is a solution of a self-gravitating minimally coupled scalar field with an arbitrary potential.The parameter conditions of such BH are investigated in asymptotically flat, de sitter (dS), and anti de sitter (AdS) spacetimes separately. Considering the standard odd parity and even parity of gravitational perturbation, the corresponding master equations are derived and quasi-normal perturbation are discussed in asymptotically flat and dS spacetimes. The dynamic evolution of the perturbation field indicates the stability of gravitational perturbation directly. On the whole in asymptotically flat and dS spacetimes, the gravitational perturbations have the similar characteristics for odd and even parities. The decay speed of perturbation is strongly dependent on the scale $b$. Furthermore through the analysis of Hawking radiation, the thermodynamics of such regular phantom black hole is als...
Gravitational-wave energy and radiation reaction on quasi-spherical black holes
Hayward, S A
2000-01-01
Gravitational waves are given a local definition in a quasi-spherical approximation, describing roughly spherical but otherwise dynamical astrophysical objects, such as a black hole forming by binary black-hole coalescence. A local effective energy tensor is defined for the gravitational waves, satisfying standard energy conditions. Radiation reaction, such as the back-reaction of the gravitational waves on the black hole, may then be described by including the gravitational-wave energy tensor as a source in the truncated Einstein equations. This can be formulated as a second quasi-spherical approximation, which retains non-linear terms in the fields encoding the gravitational waves. The energy-momentum in a canonical frame is covariantly conserved. The strain to be measured by a distant detector is simply defined.
Aranha, R F; Soares, I Damião; Tonini, E V
2008-01-01
We examine the efficiency of gravitational bremsstrahlung production in the process of head-on collision of two boosted Schwarzschild black holes. We constructed initial data for the characteristic initial value problem in Robinson-Trautman spacetimes, that represent two instantaneously stationary Schwarzschild black holes in motion towards each other with the same velocity. The Robinson-Trautman equation was integrated for these initial data using a numerical code based on the Galerkin method. The final resulting configuration is a boosted black hole with Bondi mass greater than the sum of the individual mass of each initial black hole. Two relevant aspects of the process are presented. The first relates the efficiency $\\Delta$ of the energy extraction by gravitational wave emission to the mass of the final black hole. This relation is fitted by a distribution function of non-extensive thermostatistics with entropic parameter $q \\simeq 1/2$; the result extends and validates analysis based on the linearized t...
Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers
Mandic, Vuk; Cholis, Ilias
2016-01-01
Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational wave detectors, and discuss the possibility of using the stochastic gravitational-wave background measurement to constrain the dark matter component in the form of black holes.
On the Gravitational Wave Background from Black Hole Binaries after the First LIGO Detections
Cholis, Ilias
2016-01-01
The detection of gravitational waves from the merger of binary black holes by the LIGO Collaboration has opened a new window to astrophysics. With the sensitivities of ground based detectors in the coming years we can only detect the local black hole binary mergers. The integrated merger rate can instead be probed by the gravitational-wave background, the incoherent superposition of the released energy in gravitational waves during binary-black-hole coalescence. Through that, the properties of the binary black holes can be studied. In this work we show that by measuring the energy density $\\Omega_{GW}$ (in units of the cosmic critical density) of the gravitational-wave background, we can search for the rare $\\sim 100 M_{\\odot}$ massive black holes formed in the Universe. In addition, we can answer how often the least massive BHs of mass $> 3 M_{\\odot}$ form. Finally, if there are multiple channels for the formation of binary black holes and if any of them predicts a narrow mass range for the black holes, then...
Gauge theory duals of black hole – black string transitions of gravitational theories on a circle
International Nuclear Information System (INIS)
We study the black hole – black string phase transitions of gravitational theories compactified on a circle using the holographic duality conjecture. The gauge theory duals of these theories are maximally supersymmetric and strongly coupled 1 + 1 dimensional SU(N) Yang-Mills theories compactified on a circle, in the large N limit. We perform the strongly coupled finite temperature gauge theory calculations on a lattice, using the recently developed exact lattice supersymmetry methods based on topological twisting and orbifolding. The spatial Polyakov line serves as relevant order parameter of the confinement – deconfinement phase transitions in the gauge theory duals
Strong field gravitational lensing in the noncommutative black-hole spacetime
Ding, Chikun; Kang, Shuai; Jing, Jiliang
2010-01-01
Adopting the strong field limit approach, we studied the properties of strong field gravitational lensing in the noncommutative black-hole spacetime and obtained the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy described by this metric, we estimated the numerical values of the coefficients and observables for gravitational lensing in the strong field limit. Comparing with the Reissner-Norstr\\"{om} black hole, we find that with the increase of parameter $\\vartheta$, the angular position $\\theta_{\\infty}$ decreases more slowly and $r_m$ more quickly, but angular separation $s$ increases more rapidly. This may offer a way to distinguish a noncommutative black hole from a Reissner-Norstr\\"{om} black hole by the astronomical instruments in the future.
Strong gravitational lensing in a rotating Kaluza-Klein black hole with squashed horizons
International Nuclear Information System (INIS)
We have investigated the strong gravitational lensing in a rotating squashed Kaluza-Klein (KK) black hole spacetime. Our result show that the strong gravitational lensings in the rotating squashed KK black hole spacetime have some distinct behaviors from those in the backgrounds of the four-dimensional Kerr black hole and of the squashed KK Gödel black hole. In the rotating squashed KK black hole spacetime, the marginally circular photon radius ρps , the coefficient a-bar, b-bar, the deflection angle α(θ) in the ϕ direction and the corresponding observational variables are independent of whether the photon goes with or against the rotation of the background, which is different with those in the usual four-dimensional Kerr black hole spacetime. Moreover, we also find that with the increase of the scale of extra dimension ρ0, the marginally circular photon radius ρps and the angular position of the relativistic images θ∞ first decreases and then increases in the rotating squashed KK black hole for fixed rotation parameter b, but in the squashed KK Gödel black hole they increase for the smaller global rotation parameter j and decrease for the larger one. In the extremely squashed case ρ0=0, the coefficient a-bar in the rotating squashed KK black hole increases monotonously with the rotation parameter, but in the squashed KK Gödel black hole it is a constant and independent of the global rotation of the Gödel Universe. These information could help us to understand further the effects of the rotation parameter and the scale of extra dimension on the strong gravitational lensing in the black hole spacetimes
Gravitational waves from the collision of tidally disrupted stars with massive black holes
International Nuclear Information System (INIS)
We use simulations of hydrodynamics coupled with full general relativity to investigate the gravitational waves produced by a star colliding with a massive black hole when the star's tidal disruption radius lies far outside of the black hole horizon. We consider both main-sequence and white-dwarf compaction stars, and nonspinning black holes, as well as those with near-extremal spin. We study the regime in between where the star can be accurately modeled by a point particle, and where tidal effects completely suppress the gravitational wave signal. We find that nonnegligible gravitational waves can be produced even when the star is strongly affected by tidal forces, as well as when it collides with large angular momentum. We discuss the implications that these results have for the potential observation of gravitational waves from these sources with future detectors.
Black Holes, Firewalls and Chaos from Gravitational Collapse
Joshi, Pankaj S
2014-01-01
One of the most spectacular predictions of the general theory of relativity is the black hole, an object that plays a central role in modern physics [1,2,3] and astrophysics [4,5]. Black holes are, however, plagued by fundamental paradoxes that remain unresolved to this day. First, the black hole event horizon is teleological in nature [6], which means that we need to know the entire future space-time of the universe to determine the current location of the horizon. This is essentially impossible. Second, any information carried by infalling matter is lost once the material falls through the event horizon. Even though the black hole may later evaporate by emitting Hawking radiation [7], the lost information does not reappear, which has the rather serious and disturbing consequence that quantum unitarity is violated [8]. Here we propose that the above paradoxes are restricted to a particular idealized model of collapse first studied in the 1930s [9, 10] in which the event horizon, which defines the boundary of...
Centrella, Joan M.
2010-01-01
The final merger of two massive black holes produces a powerful burst of gravitational radiation, emitting more energy than all the stars in the observable universe combined. The resulting gravitational waveforms will be easily detectable by the space-based LISA out to redshifts z greater than 10, revealing the masses and spins of the black holes to high precision. If the merging black holes have unequal masses, or asymmetric spins, the final black hole that forms can recoil with a velocity exceeding 1000 km/s. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new results that are revealing the dynamics and waveforms of binary black hole mergers, recoil velocities, and the possibility of accompanying electromagnetic outbursts.
Conference: Seeing two black holes merge (with gravitational waves!) | 14 September | Uni Dufour
2016-01-01
GW150914: the first direct observation of gravitational waves from the inspiral and merger of two black holes - Conference by Prof. Bruce Allen, Albert Einstein Institute Hannover. "Seeing two black holes merge (with gravitational waves!)" Uni Dufour - Auditorium U300 Wednesday, 14 September at 7 p.m. Bruce Allen. (Photo: ©F. Vinken/MPG) Abstract: On 14 September 2015, the advanced LIGO gravitational wave instruments detected the gravitational wave signal emitted as two black holes, about one billion light years away from Earth, made a final few orbits around each other then merged together. This was big news around the world, because scientists have tried to make such observations for more than half a century. Before they merged, the two black holes were about 29 and 36 times as massive as the sun; after the merger was complete, a single black hole about 62 times the sun's mass was left behind. I'll describe what black holes are, how they (...
Gravitational-wave dynamics and black-hole dynamics second quasi-spherical approximation
Hayward, S A
2001-01-01
Gravitational radiation with roughly spherical wavefronts, produced by roughly spherical black holes or other astrophysical objects, is described by an approximation scheme. The first quasi-spherical approximation, describing radiation propagation on a background, is generalized to include additional non-linear effects, due to the radiation itself. The gravitational radiation is locally defined and admits an energy tensor, satisfying all standard local energy conditions and entering the truncated Einstein equations as an effective energy tensor. This second quasi-spherical approximation thereby includes gravitational radiation reaction, such as the back-reaction on the black hole. With respect to a canonical flow of time, the combined energy-momentum of the matter and gravitational radiation is covariantly conserved. The corresponding Noether charge is a local gravitational mass-energy. Energy conservation is formulated as a local first law relating the gradient of the gravitational mass to work and energy-su...
Aligned spin neutron star-black hole mergers: A gravitational waveform amplitude model
Pannarale, Francesco; Berti, Emanuele; Kyutoku, Koutarou; Lackey, Benjamin D.; Shibata, Masaru
2015-10-01
The gravitational radiation emitted during the merger of a black hole with a neutron star is rather similar to the radiation from the merger of two black holes when the neutron star is not tidally disrupted. When tidal disruption occurs, gravitational waveforms can be broadly classified in two groups, depending on the spatial extent of the disrupted material. Extending previous work by some of us, here we present a phenomenological model for the gravitational waveform amplitude in the frequency domain encompassing the three possible outcomes of the merger: no tidal disruption, and "mild" and "strong" tidal disruption. The model is calibrated to 134 general-relativistic numerical simulations of binaries where the black hole spin is either aligned or antialigned with the orbital angular momentum. All simulations were produced using the SACRA code and piecewise polytropic neutron star equations of state. The present model can be used to determine when black-hole binary waveforms are sufficient for gravitational-wave detection, to extract information on the equation of state from future gravitational-wave observations, to obtain more accurate estimates of black hole-neutron star merger event rates, and to determine the conditions under which these systems are plausible candidates as central engines of gamma-ray bursts and macronovae/kilonovae.
Wiggly tails: a gravitational wave signature of massive fields around black holes
Degollado, Juan Carlos
2014-01-01
Massive fields can exist in long-lived configurations around black holes. We examine how the gravitational wave signal of a perturbed black hole is affected by such `dirtiness' within linear theory. As a concrete example, we consider the gravitational radiation emitted by the infall of a massive scalar field into a Schwarzschild black hole. Whereas part of the scalar field is absorbed/scattered by the black hole and triggers gravitational wave emission, another part lingers in long-lived quasi-bound states. Solving numerically the Teukolsky master equation for gravitational perturbations coupled to the massive Klein-Gordon equation, we find a characteristic gravitational wave signal, composed by a quasi-normal ringing followed by a late time tail. In contrast to `clean' black holes, however, the late time tail contains small amplitude wiggles with the frequency of the dominating quasi-bound state. Additionally, an observer dependent beating pattern may also be seen. These features were already observed in ful...
Cardoso, V; Yoshida, S; Cardoso, Vitor; Lemos, Jose' P.S.; Yoshida, Shijun
2003-01-01
We calculate the quasinormal modes (QNMs) for gravitational perturbations of the Schwarzschild black hole in the five dimensional (5D) spacetime with a continued fraction method. As shown by Kodama and Ishibashi, the gravitational perturbations of higher-dimensional (higher-D) Schwarzschild black holes can be divided into three decoupled classes, namely scalar-gravitational, vector-gravitational, and tensor-gravitational perturbations. In order to examine the QNMs, we make use of Schr\\"odinger-type wave equations for determining the dynamics of the gravitational perturbations. We apply the continued fraction method and expand the eigenfunctions around the black hole horizon in terms of Fr\\"obenius series. It is found that the resulting recurrence relations become an eight-term relation for the scalar-gravitational perturbations and four-term relations for the vector-gravitational and tensor-gravitational perturbations. For all the types of perturbations, the QNMs associated with $l=2$, $l=3$, and $l=4$ are ca...
Sesana, A; Volonteri, M
2008-01-01
Massive black holes are key components of the assembly and evolution of cosmic structures and a number of surveys are currently on-going or planned to probe the demographics of these objects and to gain insight into the relevant physical processes. Pulsar Timing Arrays (PTAs) currently provide the only means to observe gravitational radiation from massive black hole binary systems with masses >10^7 solar masses. The whole cosmic population produces a stochastic background that could be detectable with upcoming Pulsar Timing Arrays. Sources sufficiently close and/or massive generate gravitational radiation that significantly exceeds the level of the background and could be individually resolved. We consider a wide range of massive black hole binary assembly scenarios, we investigate the distribution of the main physical parameters of the sources, such as masses and redshift, and explore the consequences for Pulsar Timing Arrays observations. Depending on the specific massive black hole population model, we est...
Searching for intermediate-mass black holes in globular clusters with gravitational microlensing
Kains, N.; Bramich, D.M.; Sahu, K. C.; Calamida, A.
2016-01-01
We discuss the potential of the gravitational microlensing method as a unique tool to detect unambiguous signals caused by intermediate-mass black holes in globular clusters. We select clusters near the line of sight to the Galactic Bulge and the Small Magellanic Cloud, estimate the density of background stars for each of them, and carry out simulations in order to estimate the probabilities of detecting the astrometric signatures caused by black hole lensing. We find that for several cluster...
Dark matter annihilation in the gravitational field of a black hole
Baushev, A. N.
2008-01-01
In this paper we consider dark matter particle annihilation in the gravitational field of black holes. We obtain exact distribution function of the infalling dark matter particles, and compute the resulting flux and spectra of gamma rays coming from the objects. It is shown that the dark matter density significantly increases near a black hole. Particle collision energy becomes very high affecting relative cross-sections of various annihilation channels. We also discuss possible experimental ...
Detection of gravitational waves from black holes: Is there a window for alternative theories?
Directory of Open Access Journals (Sweden)
Roman Konoplya
2016-05-01
Full Text Available Recently the LIGO and VIRGO Collaborations reported the observation of gravitational-wave signal corresponding to the inspiral and merger of two black holes, resulting into formation of the final black hole. It was shown that the observations are consistent with the Einstein theory of gravity with high accuracy, limited mainly by the statistical error. Angular momentum and mass of the final black hole were determined with rather large allowance of tens of percents. Here we shall show that this indeterminacy in the range of the black-hole parameters allows for some non-negligible deformations of the Kerr spacetime leading to the same frequencies of the black-hole ringing. This means that at the current precision of the experiment there remains some possibility for alternative theories of gravity.
Detection of gravitational waves from black holes: Is there a window for alternative theories?
Konoplya, Roman; Zhidenko, Alexander
2016-05-01
Recently the LIGO and VIRGO Collaborations reported the observation of gravitational-wave signal corresponding to the inspiral and merger of two black holes, resulting into formation of the final black hole. It was shown that the observations are consistent with the Einstein theory of gravity with high accuracy, limited mainly by the statistical error. Angular momentum and mass of the final black hole were determined with rather large allowance of tens of percents. Here we shall show that this indeterminacy in the range of the black-hole parameters allows for some non-negligible deformations of the Kerr spacetime leading to the same frequencies of the black-hole ringing. This means that at the current precision of the experiment there remains some possibility for alternative theories of gravity.
Detection of gravitational waves from black holes: Is there a window for alternative theories?
Konoplya, Roman
2016-01-01
Recently LIGO and VIRGO collaborations reported about observation of gravitational-wave signal corresponding to the inspiral and merger of two black holes, resulting into formation of the final black hole. It was shown that the observations are consistent with the Einstein theory of gravity with high accuracy limited mainly by the statistical error. Angular momentum and mass of the final black hole were determined with rather large allowance of tens of percents. Here we shall show that this indeterminacy in the range of the black-hole parameters allows for some not negligible deformations of the Kerr spacetime leading to the same frequencies of black-hole ringing. This means that at the current precision of the experiment there remain some possibilities for alternative theories of gravity.
Binary-black-hole encounters, gravitational bursts, and maximum final spin.
Washik, Matthew C; Healy, James; Herrmann, Frank; Hinder, Ian; Shoemaker, Deirdre M; Laguna, Pablo; Matzner, Richard A
2008-08-01
The spin of the final black hole in the coalescence of nonspinning black holes is determined by the "residual" orbital angular momentum of the binary. This residual momentum consists of the orbital angular momentum that the binary is not able to shed in the process of merging. We study the angular momentum radiated, the spin of the final black hole, and the gravitational bursts in a sequence of equal mass encounters. The initial orbital configurations range from those producing an almost direct infall to others leading to numerous orbits before infall, with multiple bursts of radiation. Our sequence consists of orbits with fixed impact parameter. What varies is the initial linear momentum of the black holes. For this sequence, the final black hole of mass M_{h} gets a maximum spin parameter a/M_{h} approximately 0.823, with this maximum occurring for initial orbital angular momentum L/M_{h};{2} approximately 1.176. PMID:18764445
International Nuclear Information System (INIS)
The next generation of ground-based gravitational wave detectors may detect a few mergers of comparable-mass M≅100-1000M·[''intermediate-mass'' (IMBH)] spinning black holes. Black hole spin is known to have a significant impact on the orbit, merger signal, and post-merger ringdown of any binary with non-negligible spin. In particular, the detection volume for spinning binaries depends significantly on the component black hole spins. We provide a fit to the single-detector and isotropic-network detection volume versus (total) mass and arbitrary spin for equal-mass binaries. Our analysis assumes matched filtering to all significant available waveform power (up to l=6 available for fitting, but only l≤4 significant) estimated by an array of 64 numerical simulations with component spins as large as S1,2/M2≤0.8. We provide a spin-dependent estimate of our uncertainty, up to S1,2/M2≤1. For the initial (advanced) LIGO detector, our fits are reliable for M(set-membership sign)[100,500]M· (M(set-membership sign)[100,1600]M·). In the online version of this article, we also provide fits assuming incomplete information, such as the neglect of higher-order harmonics. We briefly discuss how a strong selection bias towards aligned spins influences the interpretation of future gravitational wave detections of IMBH-IMBH mergers.
Barausse, Enrico; Yunes, Nicolás; Chamberlain, Katie
2016-06-17
The aLIGO detection of the black-hole binary GW150914 opens a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by 6 orders of magnitude relative to current constraints, provided that eLISA is not dramatically descoped. PMID:27367380
Equatorial gravitational lensing by accelerating and rotating black hole with NUT parameter
Sharif, M.; Iftikhar, Sehrish
2016-01-01
This paper is devoted to study equatorial gravitational lensing in accelerating and rotating black hole with a NUT parameter in the strong field limit. For this purpose, we first calculate null geodesic equation using the Hamilton-Jacobi separation method. We then numerically obtain deflection angle and deflection coefficients which depend on acceleration and spin parameter of the black hole. We also investigate observables in the strong field limit by taking the example of a black hole in the center of galaxy. It is concluded that acceleration parameter has a significant effect on the strong field lensing in the equatorial plane.
Phase transition for black holes in Dilatonic Einstein-Gauss-Bonnet theory of gravitation
Khimphun, Sunly; Lee, Wonwoo
2016-01-01
We study the thermodynamic properties of a black hole and the Hawking-Page phase transition in the asymptotically anti-de Sitter spacetime in the Dilatonic Einstein-Gauss-Bonnet theory of gravitation. We show how the higher-order curvature terms can influence both the thermodynamic properties and the phase transition. We evaluate both heat capacity and free energy difference to determine the local and global thermodynamic stabilities, respectively. We show that the phase transition occurs from the thermal anti-de Sitter to a small spherical black hole geometry and occurs to a large hyperbolic black hole geometry in the (Dilatonic) Einstein-Gauss-Bonnet theory of gravitation unlike those in Einstein's theory of gravitation.
Search for gravitational waves from binary black hole inspiral, merger and ringdown
Abadie, J; Abbott, R; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Ajith, P; Allen, B; Allen, G S; Ceron, E Amador; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Arain, M A; Araya, M C; Aronsson, M; Aso, Y; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballinger, T; Ballmer, S; Barker, D; Barnum, S; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauchrowitz, J; Bauer, Th S; Behnke, B; Beker, M G; Belletoile, A; Benacquista, M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Birindelli, S; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Boccara, C; Bock, O; Bodiya, T P; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Boyle, M; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brau, J E; Breyer, J; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Budzyński, R; Bulik, T; Bulten, H J; Buonanno, A; Burguet-Castell, J; Burmeister, O; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cain, J; Calloni, E; Camp, J B; Campagna, E; Campsie, P; Cannizzo, J; Cannon, K; Canuel, B; Cao, J; Capano, C; Carbognani, F; Caride, S; Caudill, S; Cavaglia`, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chaibi, O; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chelkowski, S; Chen, Y; Chincarini, A; Christensen, N; Chua, S S Y; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coulon, J -P; Coward, D M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Danilishin, S L; Dannenberg, R; D'Antonio, S; Danzmann, K; Das, K; Dattilo, V; Daudert, B; Davier, M; Davies, G; Davis, A; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; del Prete, M; Dergachev, V; DeRosa, R; DeSalvo, R; Devanka, P; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Dorsher, S; Douglas, E S D; Drago, M; Drever, R W P; Driggers, J C; Dueck, J; Dumas, J -C; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Ely, G; Engel, R; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Fan, Y; Farr, B F; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flanigan, M; Flasch, K; Foley, S; Forrest, C; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Galimberti, M; Gammaitoni, L; Garofoli, J A; Garufi, F; Gáspár, M E; Gemme, G; Genin, E; Gennai, A; Gholami, I; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gill, C; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Goßler, S; Gouaty, R; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Gustafson, E K; Gustafson, R; Hage, B; Hall, P; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Hayau, J -F; Hayler, T; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A W; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Howell, E J; Hoyland, D; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Jaranowski, P; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J B; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, H; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kondrashov, V; Kopparapu, R; Koranda, S; Kowalska, I; Kozak, D; Krause, T; Kringel, V; Krishnamurthy, S; Krishnan, B; Królak, A; Kuehn, G; Kullman, J; Kumar, R; Kwee, P; Landry, M; Lang, M; Lantz, B; Lastzka, N; Lazzarini, A; Leaci, P; Leong, J; Leonor, I; Leroy, N; Letendre, N; Li, J; Li, T G F; Liguori, N; Lin, H; Lindquist, P E; Lockerbie, N A; Lodhia, D; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Luan, J; Lubinski, M; Lucianetti, A; Lück, H; Lundgren, A D; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majorana, E; Mak, C; Maksimovic, I; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIvor, G; McKechan, D J A; Meadors, G; Mehmet, M; Meier, T; Melatos, A; Melissinos, A C; Mendell, G; Menéndez, D F; Mercer, R A; Merill, L; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Milano, L; Miller, J; Minenkov, Y; Mino, Y; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moraru, D; Moreau, J; Moreno, G; Morgado, N; Morgia, A; Morioka, T; Mors, K; Mosca, S; Moscatelli, V; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Mukherjee, S; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Nash, T; Nawrodt, R; Nelson, J; Neri, I; Newton, G; Nishizawa, A; Nocera, F; Nolting, D; Ochsner, E; O'Dell, J; Ogin, G H; Oldenburg, R G; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Page, A; Pagliaroli, G; Palladino, L; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Pardi, S; Pareja, M; Parisi, M; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pathak, D; Pedraza, M; Pekowsky, L; Penn, S; Peralta, C; Perreca, A; Persichetti, G; Pichot, M; Pickenpack, M; Piergiovanni, F; Pietka, M; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Postiglione, F; Prato, M; Predoi, V; Price, L R; Prijatelj, M; Principe, M; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Raab, F J; Rabeling, D S; Rácz, I; Radke, T; Radkins, H; Raffai, P; Rakhmanov, M; Rankins, B; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sakata, S; Sakosky, M; Salemi, F; Sammut, L; de la Jordana, L Sancho; Sandberg, V; Sannibale, V; Santamaría, L; Santostasi, G; Saraf, S; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Schilling, R; Schnabel, R; Schofield, R M S; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D A; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Singer, A; Sintes, A M; Skelton, G; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, N D; Somiya, K; Sorazu, B; Speirits, F C; Sperandio, L; Stein, A J; Stein, L C; Steinlechner, S; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Sung, M; Susmithan, S; Sutton, P J; Swinkels, B; Szokoly, G P; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Thüring, A; Titsler, C; Tokmakov, K V; Toncelli, A; Tonelli, M; Torre, O; Torres, C; Torrie, C I; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Tseng, K; Turner, L; Ugolini, D; Urbanek, K; Vahlbruch, H; Vaishnav, B; Vajente, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Veggel, A A; Vass, S; Vasuth, M; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A E; Vinet, J -Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Wanner, A; Ward, R L; Was, M; Wei, P; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D; Whiting, B F; Wilkinson, C; Willems, P A; Williams, L; Willke, B; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Yakushin, I; Yamamoto, H; Yamamoto, K; Yeaton-Massey, D; Yoshida, S; Yu, P; Yvert, M; Zanolin, M; Zhang, L; Zhang, Z; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J
2011-01-01
We present the first modeled search for gravitational waves using the complete binary black hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data taken between November 2005 and September 2007 for systems with component masses of 1-99 solar masses and total masses of 25-100 solar masses. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for binary black hole systems with component masses between 19 and 28 solar masses and negligible spin to be no more than 2.0 per Mpc^3 per Myr at 90% confidence.
MASSIVE BLACK HOLE PAIRS IN CLUMPY, SELF-GRAVITATING CIRCUMNUCLEAR DISKS: STOCHASTIC ORBITAL DECAY
Energy Technology Data Exchange (ETDEWEB)
Fiacconi, Davide; Mayer, Lucio; Roškar, Rok [Institute for Theoretical Physics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Colpi, Monica, E-mail: fiacconi@physik.uzh.ch [Dipartimento di Fisica ' G. Occhialini' , Università di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy)
2013-11-01
We study the dynamics of massive black hole pairs in clumpy gaseous circumnuclear disks. We track the orbital decay of the light, secondary black hole M {sub .2} orbiting around the more massive primary at the center of the disk, using N-body/smoothed particle hydrodynamic simulations. We find that the gravitational interaction of M {sub .2} with massive clumps M {sub cl} erratically perturbs the otherwise smooth orbital decay. In close encounters with massive clumps, gravitational slingshots can kick the secondary black hole out of the disk plane. The black hole moving on an inclined orbit then experiences the weaker dynamical friction of the stellar background, resulting in a longer orbital decay timescale. Interactions between clumps can also favor orbital decay when the black hole is captured by a massive clump that is segregating toward the center of the disk. The stochastic behavior of the black hole orbit emerges mainly when the ratio M {sub .2}/M {sub cl} falls below unity, with decay timescales ranging from ∼1 to ∼50 Myr. This suggests that describing the cold clumpy phase of the interstellar medium in self-consistent simulations of galaxy mergers, albeit so far neglected, is important to predict the black hole dynamics in galaxy merger remnants.
Massive Black Hole Pairs in Clumpy, Self-gravitating Circumnuclear Disks: Stochastic Orbital Decay
Fiacconi, Davide; Mayer, Lucio; Roškar, Rok; Colpi, Monica
2013-11-01
We study the dynamics of massive black hole pairs in clumpy gaseous circumnuclear disks. We track the orbital decay of the light, secondary black hole M •2 orbiting around the more massive primary at the center of the disk, using N-body/smoothed particle hydrodynamic simulations. We find that the gravitational interaction of M •2 with massive clumps M cl erratically perturbs the otherwise smooth orbital decay. In close encounters with massive clumps, gravitational slingshots can kick the secondary black hole out of the disk plane. The black hole moving on an inclined orbit then experiences the weaker dynamical friction of the stellar background, resulting in a longer orbital decay timescale. Interactions between clumps can also favor orbital decay when the black hole is captured by a massive clump that is segregating toward the center of the disk. The stochastic behavior of the black hole orbit emerges mainly when the ratio M •2/M cl falls below unity, with decay timescales ranging from ~1 to ~50 Myr. This suggests that describing the cold clumpy phase of the interstellar medium in self-consistent simulations of galaxy mergers, albeit so far neglected, is important to predict the black hole dynamics in galaxy merger remnants.
Black holes and gravitational waves in models of minicharged dark matter
Cardoso, Vitor; Macedo, Caio F. B.; Pani, Paolo; Ferrari, Valeria
2016-05-01
In viable models of minicharged dark matter, astrophysical black holes might be charged under a hidden U(1) symmetry and are formally described by the same Kerr-Newman solution of Einstein-Maxwell theory. These objects are unique probes of minicharged dark matter and dark photons. We show that the recent gravitational-wave detection of a binary black-hole coalescence by aLIGO provides various observational bounds on the black hole's charge, regardless of its nature. The pre-merger inspiral phase can be used to constrain the dipolar emission of (ordinary and dark) photons, whereas the detection of the quasinormal modes set an upper limit on the final black hole's charge. By using a toy model of a point charge plunging into a Reissner-Nordstrom black hole, we also show that in dynamical processes the (hidden) electromagnetic quasinormal modes of the final object are excited to considerable amplitude in the gravitational-wave spectrum only when the black hole is nearly extremal. The coalescence produces a burst of low-frequency dark photons which might provide a possible electromagnetic counterpart to black-hole mergers in these scenarios.
Gravitational anomalies and one-dimensional behavior of black holes
Energy Technology Data Exchange (ETDEWEB)
Majhi, Bibhas Ranjan, E-mail: bibhas.majhi@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam (India)
2015-12-08
It has been pointed out by Bekenstein and Mayo that the behavior of the black hole’s entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S{sup .}) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S{sup .} on the power is S{sup .} ∝P{sup 1/2}, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry’s formula, while in the latter situation its value decreases.
Gravitational anomalies and one-dimensional behavior of black holes
International Nuclear Information System (INIS)
It has been pointed out by Bekenstein and Mayo that the behavior of the black hole’s entropy or information flow is similar to information flow through one-dimensional channel. Here I analyze the same issue with the use of gravitational anomalies. The rate of the entropy change (S.) and the power (P) of the Hawking emission are calculated from the relevant components of the anomalous stress tensor under the Unruh vacuum condition. I show that the dependence of S. on the power is S. ∝P1/2, which is identical to that for the information flow in a one-dimensional system. This is established by using the (1+1)-dimensional gravitational anomalies first. Then the fact is further bolstered by considering the (1+3)-dimensional gravitational anomalies. It is found that, in the former case, the proportionality constant is exactly identical to the one-dimensional situation, known as Pendry’s formula, while in the latter situation its value decreases
International Nuclear Information System (INIS)
In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.
Blázquez-Salcedo, Jose Luis; Cardoso, Vitor; Ferrari, Valeria; Gualtieri, Leonardo; Khoo, Fech Scen; Kunz, Jutta; Pani, Paolo
2016-01-01
Gravitational waves emitted by distorted black holes---such as those arising from the coalescence of two neutron stars or black holes---carry not only information about the corresponding spacetime but also about the underlying theory of gravity. Although general relativity remains the simplest, most elegant and viable theory of gravitation, there are generic and robust arguments indicating that it is not the ultimate description of the gravitational universe. Here we focus on a particularly appealing extension of general relativity, which corrects Einstein's theory through the addition of terms which are second order in curvature: the topological Gauss-Bonnet invariant coupled to a dilaton. We study gravitational-wave emission from black holes in this theory, and (i) find strong evidence that black holes are linearly (mode) stable against both axial and polar perturbations; (ii) discuss how the quasinormal modes of black holes can be excited during collisions involving black holes, and finally (iii) show that...
Higher dimensional black holes with a generalized gravitational action
Matyjasek, J; Tryniecki, D; Matyjasek, Jerzy; Telecka, Malgorzata; Tryniecki, Dariusz
2006-01-01
We consider the most general higher order corrections to the pure gravity action in $D$ dimensions constructed from the basis of the curvature monomial invariants of order 4 and 6, and degree 2 and 3, respectively. Perturbatively solving the resulting sixth-order equations we analyze the influence of the corrections upon a static and spherically symmetric back hole. Treating the total mass of the system as the boundary condition we calculate location of the event horizon, modifications to its temperature and the entropy. The entropy is calculated by integrating the local geometric term constructed from the derivative of the Lagrangian with respect to the Riemann tensor over a spacelike section of the event horizon. It is demonstrated that identical result can be obtained by integration of the first law of the black hole thermodynamics with a suitable choice of the integration constant. We show that reducing coefficients to the Lovelock combination, the approximate expression describing entropy becomes exact. ...
Frederick, Sara; Privitera, Stephen; Weinstein, Alan J.; LIGO Scientific Collaboration
2015-01-01
The Advanced LIGO and Virgo gravitational wave detectors will come online within the year and are expected to outperform the strain sensitivity of initial LIGO/Virgo detectors by an order of magnitude and operate with greater bandwidth, possibly to frequencies as low as 10 Hz. Coalescing binary black holes (BBH) are anticipated to be among the most likely sources of gravitational radiation observable by the detectors. Searches for such systems benefit greatly from the use of accurate predictions for the gravitational wave signal to filter the data. The component black holes of these systems are predicted to have substantial spin, which greatly influences the gravitational waveforms from these sources; however, recent LIGO/Virgo searches have made use of banks of waveform models which neglect the effects of the component spins. The inclusion of spinning components is relatively simplified when the spins are taken to be aligned with the orbital angular momentum, though the difficult task of including precession (allowing for mis-aligned component spins) remains a goal of this work. We aim to assess the ability of the GSTLAL gravitational wave search pipeline using IMR aligned-spin template waveforms to recover signals from generically spinning black hole binaries injected into simulated Advanced LIGO and Virgo detector noise. If black holes are highly spinning as predicted, use of aligned-spin template banks in upcoming searches could increase the detection rate of these systems in Advanced LIGO and Virgo data, providing the opportunity for a deeper understanding of the sources.
Cardoso, V; Cardoso, Vitor; Lemos, Jos\\'e P. S.
2003-01-01
In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss possible connections between these results and the black hole-black hole collision at the speed of light process. With these results at hand, we predict that during the high speed collision of a non-rotating hole with a rotating one, about 35% of the total energy gets converted into gravitational waves. Thus, if one is able to produce black holes at the Large Hadron Collider, 35% of the partons' energy should be emitted during the so called balding phase. This energy will be missing, since we don't have gravitational wave detectors able to measure such amp...
Self-gravitating warped discs around supermassive black holes
Ulubay-Siddiki, A; Arnaboldi, M
2009-01-01
We consider warped equilibrium configurations for stellar and gaseous disks in the Keplerian force-field of a supermassive black hole, assuming that the self-gravity of the disk provides the only acting torques. Modeling the disk as a collection of concentric circular rings, and computing the torques in the non-linear regime, we show that stable, strongly warped precessing equilibria are possible. These solutions exist for a wide range of disk-to-black hole mass ratios $M_d/M_{bh}$, can span large warp angles of up to $\\pm\\sim 120\\deg$, have inner and outer boundaries, and extend over a radial range of a factor of typically two to four. These equilibrium configurations obey a scaling relation such that in good approximation $\\phidot/\\Omega\\propto M_d/M_{bh}$ where $\\phidot$ is the (retrograde) precession frequency and $\\Omega$ is a characteristic orbital frequency in the disk. Stability was determined using linear perturbation theory and, in a few cases, confirmed by numerical integration of the equations of ...
Gravitational waves from supermassive stars collapsing to a supermassive black hole
Shibata, Masaru; Sekiguchi, Yuichiro; Uchida, Haruki; Umeda, Hideyuki
2016-07-01
We derive the gravitational waveform from the collapse of a rapidly rotating supermassive star (SMS) core leading directly to a seed of a supermassive black hole (SMBH) in axisymmetric numerical-relativity simulations. We find that the peak strain amplitude of gravitational waves emitted during the black hole formation is ≈5 ×10-21 at the frequency f ≈5 mHz for an event at the cosmological redshift z =3 , if the collapsing SMS core is in the hydrogen-burning phase. Such gravitational waves will be detectable by space laser interferometric detectors like eLISA with signal-to-noise ratio ≈10 , if the sensitivity is as high as LISA for f =1 - 10 mHz . The detection of the gravitational wave signal will provide a potential opportunity for testing the direct-collapse scenario for the formation of a seed of SMBHs.
:,; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kremin, A; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C -H; Lee, H K; Lee, H M; Lee, J; Leonardi, M; Leong, J R; Roux, A Le; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Litvine, V; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Luijten, E; Lundgren, A P; Lynch, R; Ma, Y; Macarthur, J; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyers, P; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Milde, S; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moesta, P; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Kumar, D Nanda; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Qin, J; Quetschke, V; Quintero, E; Quiroga, G; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Re, V; Read, J; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Rhoades, E; Ricci, F; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Rodruck, M; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Stebbins, J; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Urban, A L; Urbanek, K; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Walker, M; Wallace, L; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yang, Z; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Boyle, M; Brügmann, B; Buchman, L T; Campanelli, M; Chu, T; Etienne, Z B; Hannam, M; Healy, J; Hinder, I; Kidder, L E; Laguna, P; Liu, Y T; London, L; Lousto, C O; Lovelace, G; MacDonald, I; Marronetti, P; Mösta, P; Müller, D; Mundim, B C; Nakano, H; Paschalidis, V; Pekowsky, L; Pollney, D; Pfeiffer, H P; Ponce, M; Pürrer, M; Reifenberger, G; Reisswig, C; Santamaría, L; Scheel, M A; Shapiro, S L; Shoemaker, D; Sopuerta, C F; Sperhake, U; Szilágyi, B; Taylor, N W; Tichy, W; Tsatsin, P; Zlochower, Y
2014-01-01
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered w...
Gravitational waves from supermassive stars collapsing to a supermassive black hole
Shibata, Masaru; Uchida, Haruki; Umeda, Hideyuki
2016-01-01
We derive the gravitational waveform from the collapse of a rapidly rotating supermassive star (SMS) core leading directly to a seed of a supermassive black hole (SMBH) in axisymmetric numerical-relativity simulations. We find that the peak strain amplitude of gravitational waves emitted during the black-hole formation is $\\approx 5 \\times 10^{-21}$ at the frequency $f \\approx 5$\\,mHz for an event at the cosmological redshift $z=3$, if the collapsing SMS core is in the hydrogen-burning phase. Such gravitational waves will be detectable by space laser interferometric detectors like eLISA with signal-to-noise ratio $\\approx 10$, if the sensitivity is as high as LISA for $f=1$--10\\,mHz. The detection of the gravitational-wave signal will provide a potential opportunity for testing the direct-collapse scenario for the formation of a seed of SMBHs.
Baker, Paul T; Hodge, Kari A; Talukder, Dipongkar; Capano, Collin; Cornish, Neil J
2014-01-01
Searches for gravitational waves produced by coalescing black hole binaries with total masses $\\gtrsim25\\,$M$_\\odot$ use matched filtering with templates of short duration. Non-Gaussian noise bursts in gravitational wave detector data can mimic short signals and limit the sensitivity of these searches. Previous searches have relied on empirically designed statistics incorporating signal-to-noise ratio and signal-based vetoes to separate gravitational wave candidates from noise candidates. We report on sensitivity improvements achieved using a multivariate candidate ranking statistic derived from a supervised machine learning algorithm. We apply the random forest of bagged decision trees technique to two separate searches in the high mass $\\left( \\gtrsim25\\,\\mathrm{M}_\\odot \\right)$ parameter space. For a search which is sensitive to gravitational waves from the inspiral, merger, and ringdown (IMR) of binary black holes with total mass between $25\\,$M$_\\odot$ and $100\\,$M$_\\odot$, we find sensitive volume impr...
Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity
International Nuclear Information System (INIS)
Dynamical Chern-Simons gravity is an extension of general relativity in which the gravitational field is coupled to a scalar field through a parity-violating Chern-Simons term. In this framework, we study perturbations of spherically symmetric black hole spacetimes, assuming that the background scalar field vanishes. Our results suggest that these spacetimes are stable, and small perturbations die away as a ringdown. However, in contrast to standard general relativity, the gravitational waveforms are also driven by the scalar field. Thus, the gravitational oscillation modes of black holes carry imprints of the coupling to the scalar field. This is a smoking gun for Chern-Simons theory and could be tested with gravitational-wave detectors, such as LIGO or LISA. For negative values of the coupling constant, ghosts are known to arise, and we explicitly verify their appearance numerically. Our results are validated using both time evolution and frequency domain methods.
Black holes and gravitational waves in models of minicharged dark matter
Cardoso, Vitor; Pani, Paolo; Ferrari, Valeria
2016-01-01
In viable models of minicharged dark matter, astrophysical black holes might be charged under a hidden $U(1)$ symmetry and are formally described by the same Kerr-Newman solution of Einstein-Maxwell theory. These objects are unique probes of minicharged dark matter and dark photons. We show that the recent gravitational-wave detection of a binary black-hole coalescence by aLIGO provides various observational bounds on the black hole's charge, regardless of its nature. The pre-merger inspiral phase can be used to constrain the dipolar emission of (ordinary and dark) photons, whereas the detection of the quasinormal modes set an upper limit on the final black hole's charge. By using a toy model of a point charge plunging into a Reissner-Nordstrom black hole, we also show that in dynamical processes the (hidden) electromagnetic quasinormal modes of the final object are excited to considerable amplitude in the gravitational-wave spectrum only when the black hole is nearly extremal. The coalescence produces a burs...
Salcido, Jaime; Theuns, Tom; McAlpine, Stuart; Schaller, Matthieu; Crain, Robert A; Schaye, Joop; Regan, John
2016-01-01
We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilising cosmological hydrodynamical simulations from the EAGLE suite. These simulations assume a $\\Lambda$CDM cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with a model to calculate the gravitational waves signals from the intrinsic parameters of the black holes. The EAGLE models predict $\\sim2$ detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between $10^5 \\textrm{M}_{\\odot} h^{-1}$ seed mass black holes merging at redshifts between $z\\sim2.5...
Lang, Ryan
2012-03-01
Massive black holes (MBHs) can be found at the centers of nearly all galaxies. When galaxies merge, the black holes form a binary, which eventually coalesces due to the emission of gravitational waves. The final merger is a complicated process which can only be understood by numerically integrating Einstein's equations of general relativity. For many years, this was an impossible task; however, breakthroughs in 2005 and 2006 led to the first evolutions of binary black hole spacetimes through the merger process. Far from being esoteric results interesting only to hardcore relativists, these simulations have turned out to be very important for astrophysics. For example, if the gravitational waves are emitted asymmetrically, conservation of momentum implies that the resulting black hole will experience a recoil or ``kick.'' Numerical studies have shown that in some configurations, the kick can reach values as large as ˜5000 km/s. The simulations also allow the final spins of the black holes to be calculated. In the future, astrophysical information about coalescing MBH binaries will be obtained by directly measuring the gravitational waves with space-based detectors. In this case, the inclusion of accurate merger and ringdown waveforms into the signal model allows for significant improvement in measuring system parameters like mass, spin, and luminosity distance.
Cardoso, Vitor(CENTRA, Departamento de F´ısica, Instituto Superior Técnico, Universidade de Lisboa — UL, Av. Rovisco Pais 1, 1049, Lisboa, Portugal); Lemos, José P. S.
2002-01-01
In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss possible connections between these ...
Gravitational-wave dynamics and black-hole dynamics: second quasi-spherical approximation
Hayward, Sean A.
2001-01-01
Gravitational radiation with roughly spherical wavefronts, produced by roughly spherical black holes or other astrophysical objects, is described by an approximation scheme. The first quasi-spherical approximation, describing radiation propagation on a background, is generalized to include additional non-linear effects, due to the radiation itself. The gravitational radiation is locally defined and admits an energy tensor, satisfying all standard local energy conditions and entering the trunc...
Search for gravitational waves from binary black hole inspirals in LIGO data
Abbott, B; Adhikari, R; Ageev, A; Agresti, J; Ajith, P; Allen, B; Allen, J; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Dalrymple, J; Danzmann, K; Davies, G; Daw, E; De Bra, D; DeSalvo, R; Delker, T; Dergachev, V; Desai, S; Dhurandhar, S V; Di Credico, A; Ding, H; Drever, R W P; Dupuis, R J; Díaz, M; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; Goggin, L; Goler, S; González, G; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Gustafson, E; Gustafson, R; Günther, M; Hamilton, W O; Hammond, M; Hanna, C; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, G; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Luna, M; Lyons, T T; MacInnis, M; Machenschalk, B; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mandic, V; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Mukherjee, S; Murray, P; Myers, E; Myers, J; Müller, G; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; O'Reilly, B; Olson, T; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robinson, C; Robison, L; Roddy, S; Rodríguez, A; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Ruet, L; Russell, P; Ryan, K; Rüdiger, A; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sarin, P; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sellers, D; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Spjeld, O; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sung, M; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tarallo, M; Tariq, H; Taylor, I; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ward, R; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C
2006-01-01
We report on a search for gravitational waves from binary black hole inspirals in the data from the second science run of the LIGO interferometers. The search focused on binary systems with component masses between 3 and 20 solar masses. Optimally oriented binaries with distances up to 1 Mpc could be detected with efficiency of at least 90%. We found no events that could be identified as gravitational waves in the 385.6 hours of data that we searched.
Saleh, Mahamat; Thomas, Bouetou Bouetou; Crépin, Kofané Timoléon
2016-01-01
In this work, quasinormal modes (QNMs) of the Schwarzschild black hole are investigated by taking into account the quantum fluctuations. Gravitational and Dirac perturbations were considered for this case. The Regge-Wheeler gauge and the Dirac equation were used to derive the perturbation equations of the gravitational and Dirac fields respectively and the third order Wentzel-Kramers-Brillouin (WKB) approximation method is used for the computing of the quasinormal frequencies. The results sho...
Virbhadra, K S
2007-01-01
We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for the Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due the Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginally strongly naked singularity lenses always have positive time delays. On the other hand, the strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image ...
Quasi-stationary solutions of self-gravitating scalar fields around black holes
Sanchis-Gual, Nicolas; Montero, Pedro J; Font, José A
2014-01-01
Recent perturbative studies have shown the existence of long-lived, quasi-stationary configurations of scalar fields around black holes. In particular, such configurations have been found to survive for cosmological timescales, which is a requirement for viable dark matter halo models in galaxies based on such type of structures. In this paper we perform a series of numerical relativity simulations of dynamical non-rotating black holes surrounded by self-gravitating scalar fields. We solve numerically the coupled system of equations formed by the Einstein and the Klein-Gordon equations under the assumption of spherical symmetry using spherical coordinates. Our results confirm the existence of oscillating, long-lived, self-gravitating scalar fields configurations around non-rotating black holes in highly dynamical spacetimes with a rich scalar field environment. Our numerical simulations are long-term stable and allow for the extraction of the resonant frequencies to make a direct comparison with results obtai...
Gravitational waves from a plunge into a nearly extremal Kerr black hole
Burko, Lior M
2016-01-01
We study numerically in the time domain the linearized gravitational waves emitted from a plunge into a nearly extremal Kerr black hole by solving the inhomogeneous Teukolsky equation. We consider spinning black holes for which the specific spin angular momentum $a/M=1-\\epsilon$, and we consider values of $\\epsilon\\geq 10^{-6}$. We find an effective transient behavior for the quasi-normal ringdown: the early phase of the quasi-normal ringdown is governed by a decay according to inverse time, with frequency equaling twice the black hole's horizon frequency. The smaller $\\epsilon$ the later the transition from this transient inverse time decay to exponential decay. Such sources, if exist, may be interesting potential sources for terrestrial or space borne gravitational wave observatories.
Gravitational Lensing by Self-Dual Black Holes in Loop Quantum Gravity
Sahu, Satyabrata; Narasimha, D
2015-01-01
We study gravitational lensing by a recently proposed black hole solution in Loop Quantum Gravity. We highlight the fact that the quantum gravity corrections to the Schwarzschild metric in this model evade the `mass suppression' effects (that the usual quantum gravity corrections are susceptible to) by virtue of one of the parameters in the model being dimensionless, which is unlike any other quantum gravity motivated parameter. Gravitational lensing in the strong and weak deflection regimes is studied and a sample consistency relation is presented which could serve as a test of this model. We discuss that though the consistency relation for this model is qualitatively similar to what would have been in Brans-Dicke, in general it can be a good discriminator between many alternative theories. Although the observational prospects do not seem to be very optimistic even for a galactic supermassive black hole case, time delay between relativistic images for billion solar mass black holes in other galaxies might be...
The formation and gravitational-wave detection of massive stellar black hole binaries
International Nuclear Information System (INIS)
If binaries consisting of two ∼100 M☉ black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several ≳ 150 M☉ stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.
The formation and gravitational-wave detection of massive stellar black hole binaries
Energy Technology Data Exchange (ETDEWEB)
Belczynski, Krzysztof; Walczak, Marek [Astronomical Observatory, Warsaw University, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Buonanno, Alessandra [Maryland Center for Fundamental Physics and Joint Space-Science Institute, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Cantiello, Matteo [Kavli Institute for Theoretical Physics, University of California, Kohn Hall, Santa Barbara, CA 93106 (United States); Fryer, Chris L. [Computational Computer Science Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Holz, Daniel E. [Enrico Fermi Institute, Department of Physics, and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Mandel, Ilya [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Miller, M. Coleman, E-mail: kbelczyn@astrouw.edu.pl [Department of Astronomy and Joint Space-Science Institute University of Maryland, College Park, MD 20742-2421 (United States)
2014-07-10
If binaries consisting of two ∼100 M{sub ☉} black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several ≳ 150 M{sub ☉} stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.
Pavan, A B; Roque, Luís Filipe de Almeida
2015-01-01
The quasinormal modes of the electromagnetic and gravitational perturbation on Schwarzschild-AdS black hole calculated by Cardoso and Lemos has been revisited. Although the equations of motion are correct some frequencies calculated previously by the authors are not. We present the new values of quasinormal modes and discuss the possible sources of problems and implications on the conclusions presented.
A simple estimate of gravitational wave memory in binary black hole systems
Garfinkle, David
2016-09-01
A simple estimate is given of gravitational wave memory for the inspiral and merger of a binary black hole system. Here the memory is proportional to the total energy radiated and has a simple angular dependence. Estimates of this sort might be helpful as a consistency check for numerical relativity memory waveforms.
International Nuclear Information System (INIS)
We investigate the correlation between the mass of a central supermassive black hole (SMBH) and the total gravitational mass of the host galaxy (M tot). The results are based on 43 galaxy-scale strong gravitational lenses from the Sloan Lens ACS Surveys (SLACS) Survey whose black hole masses were estimated through two scaling relations: the relation between black hole mass and Sersic index (M bh-n) and the relation between black hole mass and stellar velocity dispersion (M bh-σ*). We use the enclosed mass within R 200, the radius within which the density profile of the early type galaxy exceeds the critical density of the universe by a factor of 200, determined by gravitational lens models fitted to Hubble Space Telescope imaging data, as a tracer of the total gravitational mass. The best-fit correlation, where M bh is determined from M bh-σ* relation, is log(M bh) = (8.18 ± 0.11) + (1.55 ± 0.31)(log(M tot)-13.0) over 2 orders of magnitude in M bh. From a variety of tests, we find that we cannot reliably infer a connection between M bh and M tot from the M bh-n relation. The M bh-M tot relation provides some of the first, direct observational evidence to test the prediction that SMBH properties are determined by the halo properties of the host galaxy.
GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.
2016-06-01
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ . The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3. 4-0.9+0.7×10-22 . The inferred source-frame initial black hole masses are 14.2-3.7+8.3 M⊙ and 7. 5-2.3+2.3 M⊙, and the final black hole mass is 20.8-1.7+6.1 M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 44 0-190+180 Mpc corresponding to a redshift of 0.0 9-0.04+0.03. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
A simple estimate of gravitational wave memory in binary black hole systems
Garfinkle, David
2016-01-01
A simple estimate is given of gravitational wave memory for the inspiral and merger of a binary black hole system. Here the memory is proportional to the total energy radiated and has a simple angular dependence. This estimate might be helpful in finding better numerical relativity memory waveforms.
Gravitational waves from the Papaloizou-Pringle instability in black-hole-torus systems.
Kiuchi, Kenta; Shibata, Masaru; Montero, Pedro J; Font, José A
2011-06-24
Black hole (BH)-torus systems are promising candidates for the central engine of γ-ray bursts (GRBs), and also possible outcomes of the collapse of supermassive stars to supermassive black holes (SMBHs). By three-dimensional general relativistic numerical simulations, we show that an m = 1 nonaxisymmetric instability grows for a wide range of self-gravitating tori orbiting BHs. The resulting nonaxisymmetric structure persists for a time scale much longer than the dynamical one, becoming a strong emitter of large amplitude, quasiperiodic gravitational waves. Our results indicate that both, the central engine of GRBs and newly formed SMBHs, can be strong gravitational wave sources observable by forthcoming ground-based and spacecraft detectors. PMID:21770625
McWilliams, Sean T; Pretorius, Frans
2012-01-01
Recent observations of massive galaxies indicate that they double in mass and quintuple in size between redshift z = 1 and the present, despite undergoing very little star formation, suggesting that galaxy mergers drive the evolution. Since these galaxies will contain supermassive black holes, this suggests a larger black hole merger rate, and therefore a larger gravitational-wave signal, than previously expected. We calculate the merger-driven evolution of the mass function, and find that merger rates are 10 to 30 times higher and gravitational waves are 3 to 5 times stronger than previously estimated, so that the gravitational-wave signal may already be detectable with existing data from pulsar timing arrays. We also provide an explanation for the disagreement with past estimates that were based on dark matter halo simulations.
Gravitational-wave memory revisited: memory from the merger and recoil of binary black holes
Favata, Marc
2009-01-01
Gravitational-wave memory refers to the permanent displacement of the test masses in an idealized (freely-falling) gravitational-wave interferometer. Inspiraling binaries produce a particularly interesting form of memory--the Christodoulou memory. Although it originates from nonlinear interactions at 2.5 post-Newtonian order, the Christodoulou memory affects the gravitational-wave amplitude at leading (Newtonian) order. Previous calculations have computed this non-oscillatory amplitude correction during the inspiral phase of binary coalescence. Using an "effective-one-body" description calibrated with the results of numerical relativity simulations, the evolution of the memory during the inspiral, merger, and ringdown phases, and the memory's final saturation value, are calculated. Using this model for the memory, the prospects for its detection are examined, particularly for supermassive black hole binary coalescences that LISA will detect with high signal-to-noise ratios. Coalescing binary black holes also ...
Gravitational Lensing by Spinning Black Holes in Astrophysics, and in the Movie Interstellar
James, Oliver; Franklin, Paul; Thorne, Kip S
2015-01-01
Interstellar is the first Hollywood movie to attempt depicting a black hole as it would actually be seen by somebody nearby. For this we developed a code called DNGR (Double Negative Gravitational Renderer) to solve the equations for ray-bundle (light-beam) propagation through the curved spacetime of a spinning (Kerr) black hole, and to render IMAX-quality, rapidly changing images. Our ray-bundle techniques were crucial for achieving IMAX-quality smoothness without flickering. This paper has four purposes: (i) To describe DNGR for physicists and CGI practitioners . (ii) To present the equations we use, when the camera is in arbitrary motion at an arbitrary location near a Kerr black hole, for mapping light sources to camera images via elliptical ray bundles. (iii) To describe new insights, from DNGR, into gravitational lensing when the camera is near the spinning black hole, rather than far away as in almost all prior studies. (iv) To describe how the images of the black hole Gargantua and its accretion disk,...
GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence
,
2016-01-01
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 $\\sigma$. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of $3.4_{-0.9}^{+0.7} \\times 10^{-22}$. The inferred source-frame initial black hole masses are $14.2_{-3.7}^{+8.3} M_{\\odot}$ and $7.5_{-2.3}^{+2.3} M_{\\odot}$ and the final black hole mass is $20.8_{-1.7}^{+6.1} M_{\\odot}$. We find that at least one of the component black holes has spin greater than 0.2....
Schutz, Katelin; Ma, Chung-Pei
2016-06-01
Pulsar timing arrays (PTAs) are placing increasingly stringent constraints on the strain amplitude of continuous gravitational waves emitted by supermassive black hole binaries on subparsec scales. In this paper, we incorporate independent information about the dynamical masses Mbh of supermassive black holes in specific galaxies at known distances and use this additional information to further constrain whether or not those galaxies could host a detectable supermassive black hole binary. We estimate the strain amplitudes from individual binaries as a function of binary mass ratio for two samples of nearby galaxies: (1) those with direct dynamical measurements of Mbh in the literature, and (2) the 116 most massive early-type galaxies (and thus likely hosts of the most massive black holes) within 108 Mpc from the MASSIVE Survey. Our exploratory analysis shows that the current PTA upper limits on continuous waves (as a function of angular position in the sky) can already constrain the mass ratios of hypothetical black hole binaries in many galaxies in our samples. The constraints are stronger for galaxies with larger Mbh and at smaller distances. For the black holes with Mbh ≳ 5 × 109 M⊙ at the centres of NGC 1600, NGC 4889, NGC 4486 (M87), and NGC 4649 (M60), any binary companion in orbit within the PTA frequency bands would have to have a mass ratio of a few per cent or less.
Sela, Orr
2016-01-01
In this paper we employ the results of a previous paper on the late-time decay of scalar-field perturbations of an extreme Reissner-Nordstrom black hole, in order to find the late-time decay of coupled electromagnetic and gravitational perturbations of this black hole. We explicitly write the late-time tails of Moncrief's gauge invariant variables and of the perturbations of the metric tensor and the electromagnetic field tensor in the Regge-Wheeler gauge. We discuss some of the consequences of the results and relations to previous works.
Cardy-Verlinde Formula and Its Self-Gravitational Corrections for Regular Black Holes
International Nuclear Information System (INIS)
We check the consistency of the entropy of Bardeen and Ayón Beato-García-Bronnikov black holes with the entropy of particular conformal field theory via Cardy-Verlinde formula. We also compute the first-order semiclassical corrections of this formula due to self-gravitational effects by modifying pure extensive and Casimir energy in the context of Keski-Vakkuri, Kraus and Wilczek analysis. It is concluded that the correction term remains positive for both black holes, which leads to the violation of the holographic bound
Gravitational waves, black holes and cosmic strings in cylindrical symmetry
Hayward, Sean A.
1999-01-01
Gravitational waves in cylindrically symmetric Einstein gravity are described by an effective energy tensor with the same form as that of a massless Klein- Gordon field, in terms of a gravitational potential generalizing the Newtonian potential. Energy-momentum vectors for the gravitational waves and matter are defined with respect to a canonical flow of time. The combined energy-momentum is covariantly conserved, the corresponding charge being the modified Thorne energy. Energy conservation ...
Electromagnetic counterparts to gravitational waves from black hole mergers and naked singularities
Malafarina, Daniele
2016-01-01
We consider the question here whether the proposed electromagnetic counterpart of the gravitational wave signals in binary black hole coalescence may be due to the appearance of a `short lived' naked singularity during the merger. We point out that the change in topology that the spacetime undergoes during the merger can cause the appearance of a naked singularity. In case some matter, in the form of a small accretion disk, is present in the surroundings of the black hole system then the emitted luminosity during the merger would allow to distinguish the scenario where the naked singularity forms from the scenario where the horizon exists at all times. In fact the emitted luminosity spectrum would be much higher in the case where a naked singularity forms as opposed to the `pure' black hole case. We suggest that the presence of such a transient naked singularity will explain the high luminosity of an electromagnetic counterpart during the merger much more easily.
Lidov-Kozai Cycles with Gravitational Radiation: Merging Black Holes in Isolated Triple Systems
Silsbee, Kedron
2016-01-01
We show that a black-hole binary with a massive companion on an orbit with semi-major axis no more than $\\sim 10$ times the semi-major axis of the inner binary can undergo Lidov-Kozai cycles which bring the binary within a few times $10^{-4}$ AU at pericenter, causing it to rapidly merge due to gravitational-wave emission. The total predicted rate of these mergers is within the low end of the 90\\% credible interval for the total black-hole black-hole merger rate inferred from the current LIGO results. A few percent of these systems will have eccentricity greater than 0.999 when they first enter the frequency band detectable by aLIGO (above 10 Hz).
The Euclidean gravitational action as black hole entropy, singularities, and spacetime voids
International Nuclear Information System (INIS)
We argue why the static spherically symmetric vacuum solutions of Einstein's equations described by the textbook Hilbert metric gμν(r) is not diffeomorphic to the metric gμν(|r|) corresponding to the gravitational field of a point mass delta function source at r=0. By choosing a judicious radial function R(r)=r+2G|M|Θ(r) involving the Heaviside step function, one has the correct boundary condition R(r=0)=0, while displacing the horizon from r=2G|M| to a location arbitrarily close to r=0 as one desires, rh→0, where stringy geometry and quantum gravitational effects begin to take place. We solve the field equations due to a delta function point mass source at r=0, and show that the Euclidean gravitational action (in (ℎ/2π) units) is precisely equal to the black hole entropy (in Planck area units). This result holds in any dimensions D≥3. In the Reissner-Nordstrom (massive charged) and Kerr-Newman black hole case (massive rotating charged) we show that the Euclidean action in a bulk domain bounded by the inner and outer horizons is the same as the black hole entropy. When one smears out the point-mass and point-charge delta function distributions by a Gaussian distribution, the area-entropy relation is modified. We postulate why these modifications should furnish the logarithmic corrections (and higher inverse powers of the area) to the entropy of these smeared black holes. To finalize, we analyze the Bars-Witten stringy black hole in 1+1 dimension and its relation to the maximal acceleration principle in phase spaces and Finsler geometries
Ahn, Eun-Joo; Cavaglia, Marco
2003-01-01
Production of high-energy gravitational objects is a common feature of gravitational theories. The primordial universe is a natural setting for the creation of black holes and other nonperturbative gravitational entities. Cosmic black holes can be used to probe physical properties of the very early universe which would usually require the knowledge of the theory of quantum gravity. They may be the only tool to explore thermalisation of the early universe. Whereas the creation of cosmic black ...
GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J
2016-04-01
The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict Ω_{GW}(f=25 Hz)=1.1_{-0.9}^{+2.7}×10^{-9} with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity. PMID:27081965
GW150914: Implications for the stochastic gravitational wave background from binary black holes
,
2016-01-01
The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses $\\gtrsim 30\\, \\text{M}_\\odot$, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO/Virgo band for stochastic backgrounds (near 25 Hz), we predict $\\Omega_\\text{GW}(f=25 Hz) = 1.1_{-0.9}^{+2.7} \\times 10^{-9}$ with 90\\% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We co...
Kyutoku, Koutarou; Taniguchi, Keisuke
2010-01-01
We report results of a numerical-relativity simulation for the merger of a black hole-neutron star binary with a variety of equations of state (EOSs) modeled by piecewise polytropes. We focus in particular on the dependence of the gravitational waveform at the merger stage on the EOSs. The initial conditions are computed in the moving-puncture framework, assuming that the black hole is nonspinning and the neutron star has an irrotational velocity field. For a small mass ratio of the binaries (e.g., MBH/MNS = 2 where MBH and MNS are the masses of the black hole and neutron star, respectively), the neutron star is tidally disrupted before it is swallowed by the black hole irrespective of the EOS. Especially for less-compact neutron stars, the tidal disruption occurs at a more distant orbit. The tidal disruption is reflected in a cutoff frequency of the gravitational-wave spectrum, above which the spectrum amplitude exponentially decreases. A clear relation is found between the cutoff frequency of the gravitatio...
GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-04-01
The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30 M⊙, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict ΩGW(f =25 Hz )=1. 1-0.9+2.7×10-9 with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.
Cárdenas-Avendaño, Alejandro; Jiang, Jiachen; Bambi, Cosimo
2016-09-01
The recent announcement of the detection of gravitational waves by the LIGO/Virgo Collaboration has opened a new window to test the nature of astrophysical black holes. Konoplya & Zhidenko have shown how the LIGO data of GW 150914 can constrain possible deviations from the Kerr metric. In this letter, we compare their constraints with those that can be obtained from accreting black holes by fitting their X-ray reflection spectrum, the so-called iron line method. We simulate observations with eXTP, a next generation X-ray mission, finding constraints much stronger than those obtained by Konoplya & Zhidenko. Our results can at least show that, contrary to what is quite commonly believed, it is not obvious that gravitational waves are the most powerful approach to test strong gravity. In the presence of high quality data and with the systematics under control, the iron line method may provide competitive constraints.
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
Abbott, B; Adhikari, R; Ageev, A; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Danzmann, K; Daw, E; De Bra, D; Delker, T; Dergachev, V; DeSalvo, R; Dhurandhar, S V; Di Credico, A; Ding, H; Drever, R W P; Dupuis, R J; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; González, G; Goler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Günther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Müller, G; Mukherjee, S; Murray, P; Myers, J; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robison, L; Roddy, S; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Russell, P; Ryan, K; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Zhang, L; Zhu, R; Zotov, N P; Zucker, M; Zweizig, J
2005-01-01
We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--$1.0 M_\\odot$. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--$1.0 M_\\odot$, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.
Black Holes And Thermodynamics Of Non-gravitational Theories (maldacena's Conjecture)
Sahakian, V V
1999-01-01
We study the thermodynamics of a class of non-gravitational theories by making use of Maldacena's conjecture. We chart their thermodynamic phase diagrams well into regimes of strongly coupled dynamics while taking into account finite size effects. We find that black holes arise readily at low entropies as metastable phases. We study the scaling of the various phase transition curves, and demonstrate how the symmetries that patch various string theories together into a single theory consistently mold a myriad of thermodynamic vacua into the phase diagram of a single non-gravitational theory. We show that the statement of an earlier conjecture, the Matrix conjecture, is entirely encoded in Maldacena's proposal. Finally, we study the statistical mechanics of a strongly coupled supersymmetric Yang-Mills theory and identify the signature of black hole formation in the dynamics.
Cardenas-Avendano, Alejandro; Bambi, Cosimo
2016-01-01
The recent announcement of the detection of gravitational waves by the LIGO/Virgo collaboration has opened a new window to test the nature of astrophysical black holes. Konoplya & Zhidenko have shown how the LIGO data of GW 150914 can constrain possible deviations from the Kerr metric. In this letter, we compare their constraints with those that can be obtained from accreting black holes by fitting their reflected X-ray spectrum, the so-called iron line method. We simulate observations with eXTP, a next generation X-ray mission, finding constraints much stronger than those obtained by Konoplya & Zhidenko. Our results can at least show that, contrary to what is quite commonly believed, it is not obvious that gravitational waves are the most powerful approach to test strong gravity. In the presence of high quality data and with the systematics under control, the iron line method may provide competitive constraints.
Ortaggio, M
2004-01-01
We investigate the ultrarelativistic boost of a Schwarzschild black hole immersed in an external electromagnetic field, described by an exact solution of the Einstein-Maxwell equations found by Ernst (the ``Schwarzschild-Melvin'' metric). Following the classical method of Aichelburg and Sexl, the gravitational field generated by a black hole moving ``with the speed of light'' and the transformed electromagnetic field are determined. The corresponding exact solution describes an impulsive gravitational wave propagating in the static, cylindrically symmetric, electrovac universe of Melvin, and for a vanishing electromagnetic field it reduces to the well known Aichelburg-Sexl pp-wave. In the boosting process, the original Petrov type I of the Schwarzschild-Melvin solution simplifies to the type II on the impulse, and to the type D elsewhere. The geometry of the wave front is studied, in particular its non-constant Gauss curvature. In addition, a more general class of impulsive waves in the Melvin universe is con...
International Nuclear Information System (INIS)
Recently, the Banados-Teitelboim-Zanelli (BTZ) black hole in the presence of the gravitational Chern-Simons term has been studied, and it is found that the usual thermodynamic quantities, like the black hole mass, angular momentum, and entropy, are modified. But, for large values of the gravitational Chern-Simons coupling where the modification terms dominate the original terms some exotic behaviors occur, like the roles of the mass and angular momentum are interchanged and the entropy depends more on the inner horizon area than the outer one. A basic physical problem of this system is that the form of entropy does not guarantee the second law of thermodynamics, in contrast to the Bekenstein-Hawking entropy. Moreover, this entropy does not agree with the statistical entropy, in contrast to a good agreement for small values of the gravitational Chern-Simons coupling. Here I find that there is another entropy formula where the usual Bekenstein-Hawking form dominates the inner-horizon term again, as in the small gravitational Chern-Simons coupling case, such that the second law of thermodynamics can be guaranteed. I also find that the new entropy formula agrees with the statistical entropy based on the holographic anomalies for the whole range of the gravitational Chern-Simons coupling. This reproduces, in the limit of a vanishing Einstein-Hilbert term, the recent result about the exotic BTZ black holes, where their masses and angular momenta are completely interchanged and the entropies depend only on the area of the inner horizon. I compare the result of the holographic approach with the classical-symmetry-algebra-based approach, and I find exact agreements even with the higher-derivative corrections of the gravitational Chern-Simons term. This provides a nontrivial check of the AdS/CFT correspondence, in the presence of higher-derivative terms in the gravity action
Lovelace, Geoffrey; Simulating eXtreme Collaboration; LIGO Scientific Collaboration
2016-03-01
The Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) began searching for gravitational waves in September 2015, with three times the sensitivity of the initial LIGO experiment. Merging black holes are among the most promising sources of gravitational waves for Advanced LIGO, but near the time of merger, the emitted waves can only be computed using numerical relativity. In this talk, I will present new numerical-relativity simulations of merging black holes, made using the Spectral Einstein Code [black-holes.org/SpEC.html], including cases with black-hole spins that are nearly as fast as possible. I will discuss how such simulations will be able to rapidly follow up gravitational-wave observations, improving our understanding of the waves' sources.
GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S
2016-06-17
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180} Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity. PMID:27367379
Phase transition for black holes in Dilatonic Einstein-Gauss-Bonnet theory of gravitation
Khimphun, Sunly; Lee, Bum-Hoon(Center for Quantum Spacetime, Sogang University, Seoul, 121-742, Republic of Korea); Lee, Wonwoo
2016-01-01
We study the thermodynamic properties of a black hole and the Hawking-Page phase transition in the asymptotically anti-de Sitter spacetime in the Dilatonic Einstein-Gauss-Bonnet theory of gravitation. We show how the higher-order curvature terms can influence both the thermodynamic properties and the phase transition. We evaluate both heat capacity and free energy difference to determine the local and global thermodynamic stabilities, respectively. We show that the phase transition occurs fro...
Primordial black holes as a novel probe of primordial gravitational waves II: detailed analysis
Nakama, Tomohiro; Suyama, Teruaki
2016-01-01
Recently we have proposed a novel method to probe primordial gravitational waves from upper bounds on the abundance of primordial black holes (PBHs). When the amplitude of primordial tensor perturbations generated in the early universe is very large, they induce large scalar perturbations due to their second-order effects. If the amplitude of resultant scalar perturbations is too large at the moment of their horizon reenty, then PBHs are overproduced to a level that is inconsistent with a var...
Lu, Xu; Yang, Feng-Wei; Xie, Yi
2016-01-01
We analyse strong gravitational field time delay for photons coupled to the Weyl tensor in a Schwarzschild black hole. By making use of the method of strong deflection limit, we find that these time delays between relativistic images are significantly affected by polarization directions of such a coupling. A practical problem about determination of the polarization direction by observations is investigated. It is found that if the first and second relativistic images can be resolved, the meas...
Kashlinsky, A.
2016-01-01
LIGO's discovery of a gravitational wave from two merging black holes (BHs) of similar masses rekindled suggestions that primordial BHs (PBHs) make up the dark matter (DM). If so, PBHs would add a Poissonian isocurvature density fluctuation component to the inflation-produced adiabatic density fluctuations. For LIGO's BH parameters, this extra component would dominate the small-scale power responsible for collapse of early DM halos at z>10, where first luminous sources formed. We quantify the...
Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Lewis, J.; Barone, F; Li, T. G. F.; Libbrecht, K.
2014-01-01
The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion mo...
Modeling gravitational recoil from black-hole binaries using numerical relativity
International Nuclear Information System (INIS)
We review the developments in modeling gravitational recoil from merging black-hole binaries and introduce a new set of 20 simulations to test our previously proposed empirical formula for the recoil. The configurations are chosen to represent generic binaries with unequal masses and precessing spins. Results of these simulations indicate that the recoil formula is accurate to within a few km s-1 in the similar mass-ratio regime for the out-of-plane recoil.
Relativistic theory of di-Holeums - quantized gravitational bound states of two micro black holes
Chavda, A. L.; Chavda, L. K.
2014-01-01
The Klein-Gordon equation is solved for di-Holeums (gravitational bound states of two micro black holes) for scalar and vector gravity in its static limit. The relativistic models confirm the predictions of the nonrelativistic Newtonian gravity model, correct to about six significant figures over almost the entire sub-Planck domain. All three models possess a mass range devoid of physics. This is interpreted as evidence that the universe must have more than four dimensions. We show that the f...
Inayoshi, Kohei; Kashiyama, Kazumi; Visbal, Eli; Haiman, Zoltan
2016-01-01
The recent discovery of the gravitational wave source GW150914 has revealed a coalescing binary black hole (BBH) with masses of $\\sim 30~M_\\odot$. Previous proposals for the origin of such a massive binary include Population III (PopIII) stars. PopIII stars are efficient producers of BBHs and of a gravitational wave background (GWB) in the $10-100$ Hz band, and also of ionizing radiation in the early Universe. We quantify the relation between the amplitude of the GWB ($\\Omega_{\\rm gw}$) and t...
GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence
Abbott, B. P.; Sakellariadou, Maria
2016-01-01
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a signifi...
Yunes, Nicolas
2016-01-01
The recent observation of gravitational waves by the LIGO/Virgo collaboration provides a unique opportunity to probe the extreme gravity of coalescing binary black holes. In this regime, the gravitational interaction is not only strong, but the spacetime curvature is large, characteristic velocities are a non-negligible fraction of the speed of light, and the time scale on which the curvature and gravity change is small. This contribution discusses some consequences of these observations on modifications to General Relativity, with a special emphasis on Lorentz-violating theories.
Gravitational waves from quasicircular black-hole binaries in dynamical Chern-Simons gravity.
Yagi, Kent; Yunes, Nicolás; Tanaka, Takahiro
2012-12-21
Dynamical Chern-Simons gravity cannot be strongly constrained with current experiments because it reduces to general relativity in the weak-field limit. This theory, however, introduces modifications in the nonlinear, dynamical regime, and thus it could be greatly constrained with gravitational waves from the late inspiral of black-hole binaries. We complete the first self-consistent calculation of such gravitational waves in this theory. For favorable spin orientations, advanced ground-based detectors may improve existing solar system constraints by 6 orders of magnitude. PMID:23368447
Gravitational-wave memory revisited: Memory from the merger and recoil of binary black holes
International Nuclear Information System (INIS)
Gravitational-wave memory refers to the permanent displacement of the test masses in an idealized (freely-falling) gravitational-wave interferometer. Inspiraling binaries produce a particularly interesting form of memory-the Christodoulou memory. Although it originates from nonlinear interactions at 2.5 post-Newtonian order, the Christodoulou memory affects the gravitational-wave amplitude at leading (Newtonian) order. Previous calculations have computed this non-oscillatory amplitude correction during the inspiral phase of binary coalescence. Using an 'effective-one-body' description calibrated with the results of numerical relativity simulations, the evolution of the memory during the inspiral, merger, and ringdown phases, as well as the memory's final saturation value, are calculated. Using this model for the memory, the prospects for its detection are examined, particularly for supermassive black hole binary coalescences that LISA will detect with high signal-to-noise ratios. Coalescing binary black holes also experience center-of-mass recoil due to the anisotropic emission of gravitational radiation. These recoils can manifest themselves in the gravitational-wave signal in the form of a 'linear' memory and a Doppler shift of the quasi-normal-mode frequencies. The prospects for observing these effects are also discussed.
Stavridis, Adamantios; Will, Clifford M.
2009-01-01
Observations of gravitational waves from massive binary black hole systems at cosmological distances can be used to search for a dependence of the speed of propagation of the waves on wavelength, and thereby to bound the mass of a hypothetical graviton. We study the effects of precessions of the spins of the black holes and of the orbital angular momentum on the process of parameter estimation using matched filtering of gravitational-wave signals vs. theoretical template waveforms. For the pr...
Gravitational-wave cutoff frequencies of tidally disruptive neutron star-black hole binary mergers
Pannarale, Francesco; Kyutoku, Koutarou; Lackey, Benjamin D; Shibata, Masaru
2015-01-01
Tidal disruption has a dramatic impact on the outcome of neutron star-black hole mergers. The phenomenology of these systems can be divided in three classes: nondisruptive, mildly disruptive or disruptive. The cutoff frequency of the gravitational radiation produced during the merger (which is potentially measurable by interferometric detectors) is very different in each regime, and when the merger is disuptive it carries information on the neutron star equation of state. Here we use semianalytical tools to derive a formula for the critical binary mass ratio $Q=M_{\\rm BH}/M_{\\rm NS}$ below which mergers are disruptive as a function of the stellar compactness $\\mathcal{C}=M_{\\rm NS}/R_{\\rm NS}$ and the dimensionless black hole spin $\\chi$. We then employ a new gravitational waveform amplitude model, calibrated to $134$ general relativistic numerical simulations of binaries with black hole spin (anti-)aligned with the orbital angular momentum, to obtain a fit to the gravitational-wave cutoff frequency in the di...
Mukherjee, N; Mukherjee, Nupur
2006-01-01
We consider the metric exterior to a charged dilaton black hole in a de Sitter universe. We study the motion of a test particle in this metric. Conserved quantities are identified and the Hamilton-Jacobi method is employed for the solutions of the equations of motion. We then study the phenomenon of strong field gravitational lensing by these black holes. Expressions for the various lensing quantities are obtained in terms of the metric coefficients. Numerical estimates of several lensing observables are provided for the black hole at the centre of our galaxy and comparisons are made with the values of these observables for other black hole geometries.
Kinugawa, Tomoya; Nakano, Hiroyuki; Nakamura, Takashi
2016-01-01
Focusing on the remnant black holes after merging binary black holes, we show that ringdown gravitational waves of Population III binary black holes mergers can be detected with the rate of $5.9-500~{\\rm events~yr^{-1}}~({\\rm SFR_p}/ (10^{-2.5}~M_\\odot~{\\rm yr^{-1}~Mpc^{-3}})) \\cdot ({\\rm [f_b/(1+f_b)]/0.33})$ for various parameters and functions. This rate is estimated for the events with SNR$>8$ for the second generation gravitational wave detectors such as KAGRA. Here, ${\\rm SFR_p}$ and ${...
Gravitational collapse and evolution of holographic black holes
International Nuclear Information System (INIS)
Gravitational collapse is analyzed in the Brane-World by arguing that regularity of five-dimensional geodesics require that stars on the brane have an atmosphere. For the simple case of a spherically symmetric cloud of non-dissipating dust, conditions are found for which the collapsing star evaporates and approaches the Hawking behavior as the (apparent) horizon is being formed. The effective energy of the star vanishes at a finite radius and the star afterwards re-expands and 'anti-evaporates'. Israel junction conditions across the brane (holographically related to the matter trace anomaly) and the projection of the Weyl tensor on the brane (holographically interpreted as the quantum back-reaction on the brane metric) contribute to the total energy as, respectively, an 'anti-evaporation' and an 'evaporation' term
Black hole solution and strong gravitational lensing in Eddington-inspired Born-Infeld gravity
International Nuclear Information System (INIS)
A new theory of gravity called Eddington-inspired Born-Infeld (EiBI) gravity was recently proposed by Banados and Ferreira. This theory leads to some exciting new features, such as free of cosmological singularities. In this paper, we first obtain a charged EiBI black hole solution with a nonvanishing cosmological constant when the electromagnetic field is included in. Then based on it, we study the strong gravitational lensing by the asymptotic flat charged EiBI black hole. The strong deflection limit coefficients and observables are shown to closely depend on the additional coupling parameter κ in the EiBI gravity. It is found that, compared with the corresponding charged black hole in general relativity, the positive coupling parameter κ will shrink the black hole horizon and photon sphere. Moreover, the coupling parameter will decrease the angular position and relative magnitudes of the relativistic images, while increase the angular separation, which may shine new light on testing such gravity theory in near future by the astronomical instruments. (orig.)
Effects of gravitational-wave recoil on the dynamics and growth of supermassive black holes
Blecha, Laura
2008-01-01
Simulations of binary black hole mergers indicate that asymmetrical gravitational wave (GW) emission can cause black holes to recoil at speeds up to thousands of km/s. These GW recoil events can dramatically affect the coevolution of recoiling supermassive black holes (SMBHs) and their host galaxies. However, theoretical studies of SMBH-galaxy evolution almost always assume a stationary central black hole. In light of the numerical results on GW recoil velocities, we relax that assumption here and consider the consequences of recoil for SMBH evolution. We follow the trajectories of SMBHs ejected in a smooth background potential that includes both a stellar bulge and a multi-component gaseous disk. In addition, we calculate the accretion rate onto the SMBH as a function of time using a hybrid prescription of viscous (alpha-disk) and Bondi accretion. We find that recoil kicks between 100 km/s and the escape speed cause SMBHs to wander though the galaxy and halo for about 1 Myr - 1 Gyr before settling back to th...
Techniques of Global analysis applied to gravitation theories: A cosmological black hole?
Debney, G.
1977-01-01
An elementary model of freely falling observers and emitters within a black hole's radius is examined to determine the redshift spectrum reaching a typical observer. The model is independent of scale, the fundamental unit being the radius (mass) of the black hole. The observers/emitters all follow the same kinds of trajectories: radially inward and starting from rest at spatial infinity. The test-particle role is assumed throughout; i.e., the observers/emitters do not themselves contribute to the gravitational field of the system. By means of redshift formulas and luminosity distance to the emitters, a picture of actual redshifts and blueshifts, with their intensities, emerges for an observer within the black hole's radius. No luminosity distances greater than approximately one-half the radius are considered in this particular study; nevertheless, redshifts and blueshifts up to approximately 0.6 are seen in portions of the observer's celestial sphere. An exotic application can be made, as a curiosity, to a black hole the size of the universe, resulting in a particular anisotropic "cosmology."
The Formation and Gravitational-Wave Detection of Massive Stellar Black-Hole Binaries
Belczynski, Krzysztof; Cantiello, Matteo; Holz, Daniel E; Fryer, Chris L; Mandel, Ilya; Miller, M Coleman; Walczak, Marek
2014-01-01
If binaries consisting of two 100 Msun black holes exist they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z=2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several stars with mass greater than 150 Msun in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black-hole--black-hole binary remains too wide to be able to coalesce wi...
Precise analytic treatment of Kerr and Kerr-(anti) de Sitter black holes as gravitational lenses
International Nuclear Information System (INIS)
The null geodesic equations that describe the motion of photons in Kerr spacetime are solved exactly in the presence of the cosmological constant Λ. The exact solution for the deflection angle for generic light orbits (i.e. non-polar, non-equatorial) is calculated in terms of the generalized hypergeometric functions of Appell and Lauricella. We then consider the more involved issue in which the black hole acts as a 'gravitational lens'. The constructed Kerr black hole gravitational lens geometry consists of an observer and a source located far away and placed at arbitrary inclination with respect to the black hole's equatorial plane. The resulting lens equations are solved elegantly in terms of Appell-Lauricella hypergeometric functions and the Weierstrass elliptic function. We then, systematically, apply our closed form solutions for calculating the image and source positions of generic photon orbits that solve the lens equations and reach an observer located at various values of the polar angle for various values of the Kerr parameter and the first integrals of motion. In this framework, the magnification factors for generic orbits are calculated in closed analytic form for the first time. The exercise is repeated with the appropriate modifications for the case of a non-zero cosmological constant.
Quasistationary solutions of self-gravitating scalar fields around black holes
Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Montero, Pedro J.; Font, José A.
2015-02-01
Recent perturbative studies have shown the existence of long-lived, quasistationary configurations of scalar fields around black holes. In particular, such configurations have been found to survive for cosmological time scales, which is a requirement for viable dark matter halo models in galaxies based on such types of structures. In this paper we perform a series of numerical relativity simulations of dynamical nonrotating black holes surrounded by self-gravitating scalar fields. We solve numerically the coupled system of equations formed by the Einstein and the Klein-Gordon equations under the assumption of spherical symmetry using spherical coordinates. Our results confirm the existence of oscillating, long-lived, self-gravitating scalar field configurations around nonrotating black holes in highly dynamical spacetimes with a rich scalar field environment. Our numerical simulations are long-term stable and allow for the extraction of the resonant frequencies to make a direct comparison with results obtained in the linearized regime. A by-product of our simulations is the existence of a degeneracy in plausible long-lived solutions of Einstein equations that would induce the same motion of test particles, either with or without the existence of quasibound states.
The Role of Gravitational Instabilities in the Feeding of Supermassive Black Holes
Directory of Open Access Journals (Sweden)
Giuseppe Lodato
2012-01-01
Full Text Available I review the recent progresses that have been obtained, especially through the use of high-resolution numerical simulations, on the dynamics of self-gravitating accretion discs. A coherent picture is emerging, where the disc dynamics is controlled by a small number of parameters that determine whether the disc is stable or unstable, whether the instability saturates in a self-regulated state or runs away into fragmentation, and whether the dynamics is local or global. I then apply these concepts to the case of AGN discs, discussing the implications of such evolution on the feeding of supermassive black holes. Nonfragmenting, self-gravitating discs appear to play a fundamental role in the process of formation of massive black hole seeds at high redshift (∼ 10–15 through direct gas collapse. On the other hand, the different cooling properties of the interstellar gas at low redshifts determine a radically different behaviour for the outskirts of the accretion discs feeding typical AGNs. Here the situation is much less clear from a theoretical point of view, and while several observational clues point to the important role of massive discs at a distance of roughly a parsec from their central black hole, their dynamics is still under debate.
Gravitational instability of the inner static region of a Reissner-Nordstroem black hole
Energy Technology Data Exchange (ETDEWEB)
Dotti, Gustavo; Gleiser, Reinaldo J, E-mail: gdotti@famaf.unc.edu.a [Facultad de Matematica, Astronomia y Fisica (FaMAF), Universidad Nacional de Cordoba and Instituto de Fisica Enrique Gaviola, CONICET, Ciudad Universitaria, 5000 Cordoba (Argentina)
2010-09-21
Reissner-Nordstroem black holes have two static regions: r > r{sub o} and 0 < r < r{sub i}, where r{sub i} and r{sub o} are the inner and outer horizon radii, respectively. The stability of the exterior static region was established a long time ago. In this work we prove that the interior static region is unstable under linear gravitational perturbations, by showing that field perturbations compactly supported within this region will generically excite a mode that grows exponentially in time. This result gives an alternative reason to mass inflation to consider the spacetime extension beyond the Cauchy horizon as physically irrelevant, and thus provides support to the strong cosmic censorship conjecture, which is also backed by recent evidence of a linear gravitational instability in the interior region of Kerr black holes found by the authors. The use of intertwiners to solve the evolution of initial data plays a key role, and adapts without a change to the case of super-extremal Reissner-Nordstroem black holes, allowing us to complete the proof of the linear instability of this naked singularity. A particular intertwiner is found such that the intertwined Zerilli field has a geometrical meaning-it is the first-order variation of a particular Riemann tensor invariant. Using this, calculations can be carried out explicitly for every harmonic number.
Energy Technology Data Exchange (ETDEWEB)
Kojima, Yasufumi; Nakamura, Takashi (Kyoto Univ. (Japan). Dept. of Physics)
1984-01-01
Using the Sasaki-Nakamura equation, we have computed the energy, linear and angular momentum of the gravitational radiation induced by a particle of mass ..mu.. and angular momentum ..mu..Lsub(z) plunging in an equatorial plane into a Kerr black hole of mass M(>>..mu..) and angular momentum Ma. It is found that the total energy ..delta..E approximately equal (..mu../M)..mu..c/sup 2/ is emitted by the particle with sufficient large orbital angular momentum. For the same value of /sup +/Lsub(z)/sup +/, a corotating particle emits more energy than a counter-rotating one. We have also calculated the energy from a rotating ring plunging into a Kerr black hole. In this case, we have found that a corotating ring emits less gravitational energy than a counter-rotating one for the same /sup +/Lsub(z)/sup +/. The maximum of the linear momentum is 6 x 10/sup -2/ (..mu../M)..mu..c, which suggests the recoil velocity of the coalesced black hole is 160 km/s for ..mu.. = 0.1 M.
Gravitational lensing by self-dual black holes in loop quantum gravity
Sahu, Satyabrata; Lochan, Kinjalk; Narasimha, D.
2015-03-01
We study gravitational lensing by a recently proposed black hole solution in loop quantum gravity. We highlight the fact that the quantum gravity corrections to the Schwarzschild metric in this model evade the "mass suppression" effects (that the usual quantum gravity corrections are susceptible to) by virtue of one of the parameters in the model being dimensionless, which is unlike any other quantum gravity motivated parameter. Gravitational lensing in the strong and weak deflection regimes is studied, and a sample consistency relation is presented which could serve as a test of this model. We discuss that, though the consistency relation for this model is qualitatively similar to what would have been in Brans-Dicke, in general it can be a good discriminator between many alternative theories. Although the observational prospects do not seem to be very optimistic even for a galactic supermassive black hole case, time delay between relativistic images for a billion solar mass black holes in other galaxies might be within reach of future relativistic lensing observations.
Can we measure individual black-hole spins from gravitational-wave observations?
Pürrer, Michael; Hannam, Mark; Ohme, Frank
2016-04-01
Measurements of black-hole spins from gravitational-wave observations of black-hole binaries with ground-based detectors are known to be hampered by partial degeneracies in the gravitational-wave phasing: between the two component spins, and between the spins and the binary's mass ratio, at least for signals that are dominated by the binary's inspiral. Through the merger and ringdown, however, a different set of degeneracies apply. This suggests the possibility that, if the inspiral, merger and ringdown are all within the sensitive frequency band of a detector, we may be able to break these degeneracies and more accurately measure both spins. In this work we investigate our ability to measure individual spins for nonprecessing binaries, for a range of configurations and signal strengths, and conclude that in general the spin of the larger black hole will be measurable (at best) with observations from Advanced LIGO and Virgo. This implies that in many applications waveform models parameterized by only one effective spin will be sufficient. Our work does not consider precessing binaries or subdominant harmonics, although we provide some arguments why we expect that these will not qualitatively change our conclusions.
Making and Testing Hybrid Gravitational Waves from Colliding Black Holes and Neutron Stars
Garcia, Alyssa; Lovelace, Geoffrey; SXS Collaboration
2016-03-01
The Laser Interferometer Gravitational-wave Observatory (LIGO) is a detector that is currently working to observe gravitational waves (GW) from astronomical sources, such as colliding black holes and neutron stars, which are among LIGO's most promising sources. Observing as many waves as possible requires accurate predictions of what the waves look like, which are only possible with numerical simulations. In this poster, I will present results from new simulations of colliding black holes made using the Spectral Einstein Code (SpEC). In particular, I will present results for extending new and existing waveforms and using an open-source library. To construct a waveform that spans the frequency range where LIGO is most sensitive, we combine inexpensive, post-Newtonian approximate waveforms (valid far from merger) and numerical relativity waveforms (valid near the time of merger, when all approximations fail), making a hybrid GW. This work is one part of a new prototype framework for Numerical INJection Analysis with Matter (Matter NINJA). The complete Matter NINJA prototype will test GW search pipelines' abilities to find hybrid waveforms, from simulations containing matter (such as black hole-neutron star binaries), hidden in simulated detector noise.
Gravitational self-force on eccentric equatorial orbits around a Kerr black hole
van de Meent, Maarten
2016-01-01
This paper presents the first calculation of the gravitational self-force on a small compact object on an eccentric equatorial orbit around a Kerr black hole to first order in the mass-ratio. That is the pointwise correction to the object's equations of motion (both conservative and dissipative) due to its own gravitational field treated as a linear perturbation to the background Kerr spacetime generated by the much larger spinning black hole. The calculation builds on recent advances on constructing the local metric and self-force from solutions of the Teukolsky equation, which led to the calculation of the Detweiler-Barack-Sago redshift invariant on eccentric equatorial orbits around a Kerr black hole in a previous paper. After deriving the necessary expression to obtain the self-force from the Weyl scalar $\\psi_4$, we perform several consistency checks of the method and numerical implementation, including a check of the balance law relating orbital average of the self-force to average flux of energy and an...
Gravitational instability of the inner static region of a Reissner-Nordstroem black hole
International Nuclear Information System (INIS)
Reissner-Nordstroem black holes have two static regions: r > ro and 0 i, where ri and ro are the inner and outer horizon radii, respectively. The stability of the exterior static region was established a long time ago. In this work we prove that the interior static region is unstable under linear gravitational perturbations, by showing that field perturbations compactly supported within this region will generically excite a mode that grows exponentially in time. This result gives an alternative reason to mass inflation to consider the spacetime extension beyond the Cauchy horizon as physically irrelevant, and thus provides support to the strong cosmic censorship conjecture, which is also backed by recent evidence of a linear gravitational instability in the interior region of Kerr black holes found by the authors. The use of intertwiners to solve the evolution of initial data plays a key role, and adapts without a change to the case of super-extremal Reissner-Nordstroem black holes, allowing us to complete the proof of the linear instability of this naked singularity. A particular intertwiner is found such that the intertwined Zerilli field has a geometrical meaning-it is the first-order variation of a particular Riemann tensor invariant. Using this, calculations can be carried out explicitly for every harmonic number.
Gravitational waves from binary supermassive black holes missing in pulsar observations.
Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J
2015-09-25
Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves. PMID:26404832
Computer-games for gravitational wave science outreach: Black Hole Pong and Space Time Quest
International Nuclear Information System (INIS)
We have established a program aimed at developing computer applications and web applets to be used for educational purposes as well as gravitational wave outreach activities. These applications and applets teach gravitational wave physics and technology. The computer programs are generated in collaboration with undergraduates and summer students as part of our teaching activities, and are freely distributed on a dedicated website. As part of this program, we have developed two computer-games related to gravitational wave science: 'Black Hole Pong' and 'Space Time Quest'. In this article we present an overview of our computer related outreach activities and discuss the games and their educational aspects, and report on some positive feedback received.
Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar
International Nuclear Information System (INIS)
Interstellar is the first Hollywood movie to attempt depicting a black hole as it would actually be seen by somebody nearby. For this, our team at Double Negative Visual Effects, in collaboration with physicist Kip Thorne, developed a code called Double Negative Gravitational Renderer (DNGR) to solve the equations for ray-bundle (light-beam) propagation through the curved spacetime of a spinning (Kerr) black hole, and to render IMAX-quality, rapidly changing images. Our ray-bundle techniques were crucial for achieving IMAX-quality smoothness without flickering; and they differ from physicists’ image-generation techniques (which generally rely on individual light rays rather than ray bundles), and also differ from techniques previously used in the film industry’s CGI community. This paper has four purposes: (i) to describe DNGR for physicists and CGI practitioners, who may find interesting and useful some of our unconventional techniques. (ii) To present the equations we use, when the camera is in arbitrary motion at an arbitrary location near a Kerr black hole, for mapping light sources to camera images via elliptical ray bundles. (iii) To describe new insights, from DNGR, into gravitational lensing when the camera is near the spinning black hole, rather than far away as in almost all prior studies; we focus on the shapes, sizes and influence of caustics and critical curves, the creation and annihilation of stellar images, the pattern of multiple images, and the influence of almost-trapped light rays, and we find similar results to the more familiar case of a camera far from the hole. (iv) To describe how the images of the black hole Gargantua and its accretion disk, in the movie Interstellar, were generated with DNGR—including, especially, the influences of (a) colour changes due to doppler and gravitational frequency shifts, (b) intensity changes due to the frequency shifts, (c) simulated camera lens flare, and (d) decisions that the film makers made about
Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar
James, Oliver; von Tunzelmann, Eugénie; Franklin, Paul; Thorne, Kip S.
2015-03-01
Interstellar is the first Hollywood movie to attempt depicting a black hole as it would actually be seen by somebody nearby. For this, our team at Double Negative Visual Effects, in collaboration with physicist Kip Thorne, developed a code called Double Negative Gravitational Renderer (DNGR) to solve the equations for ray-bundle (light-beam) propagation through the curved spacetime of a spinning (Kerr) black hole, and to render IMAX-quality, rapidly changing images. Our ray-bundle techniques were crucial for achieving IMAX-quality smoothness without flickering; and they differ from physicists’ image-generation techniques (which generally rely on individual light rays rather than ray bundles), and also differ from techniques previously used in the film industry’s CGI community. This paper has four purposes: (i) to describe DNGR for physicists and CGI practitioners, who may find interesting and useful some of our unconventional techniques. (ii) To present the equations we use, when the camera is in arbitrary motion at an arbitrary location near a Kerr black hole, for mapping light sources to camera images via elliptical ray bundles. (iii) To describe new insights, from DNGR, into gravitational lensing when the camera is near the spinning black hole, rather than far away as in almost all prior studies; we focus on the shapes, sizes and influence of caustics and critical curves, the creation and annihilation of stellar images, the pattern of multiple images, and the influence of almost-trapped light rays, and we find similar results to the more familiar case of a camera far from the hole. (iv) To describe how the images of the black hole Gargantua and its accretion disk, in the movie Interstellar, were generated with DNGR—including, especially, the influences of (a) colour changes due to doppler and gravitational frequency shifts, (b) intensity changes due to the frequency shifts, (c) simulated camera lens flare, and (d) decisions that the film makers made about
Background of gravitational waves from pre-galactic black hole formation
International Nuclear Information System (INIS)
We study the generation of a gravitational wave (GW) background produced from a population of core-collapse supernovae, which form black holes in scenarios of structure formation of the Universe. We obtain, for example, that a pre-galactic population of black holes, formed at redshifts z ≅ 30-10, could generate a stochastic GW background with a maximum amplitude of hBG ≅ 10-24 in the frequency band νobs ≅ 30-470 Hz (considering a maximum efficiency of generation of GWs, namely, εGW = 7x10-4). In particular, we discuss what astrophysical information could be obtained from a positive, or even a negative, detection of such a GW background produced in scenarios such as those studied here. One of them is the possibility of obtaining the initial and final redshifts of the emission period from the observed spectrum of GWs
Gravitational perturbation induced by a rotating ring around a Kerr black hole
Sano, Yasumichi
2014-01-01
The linear perturbation of a Kerr black hole induced by a rotating massive circular ring is discussed by using the formalism by Teukolsky, Chrzanowski, Cohen and Kegeles. In these formalism, the perturbed Weyl scalars, $\\psi_0$ and $\\psi_4$, are first obtained from the Teukolsky equation. The perturbed metric is obtained in a radiation gauge via the Hertz potential. The computation can be done in the same way as in our previous paper, in which we considered the perturbation of a Schwarzschild black hole induced by a rotating ring. By adding lower multipole modes such as mass and angular momentum perturbation which are not computed by the Teukolsky equation, and by appropriately setting the parameters which are related to the gauge freedom, we obtain the perturbed gravitational field which is smooth except on the equatorial plane outside the ring.
Gravitational waves from scattering of stellar-mass black holes in galactic nuclei
O'Leary, Ryan M; Loeb, Abraham
2008-01-01
Stellar mass black holes (BHs) are expected to segregate and form a steep density cusp around supermassive black holes in galactic nuclei. We follow the evolution of a multi-mass system of BHs and stars by numerically integrating the Fokker-Planck energy diffusion equations for a variety of BH mass distributions. We find that the BHs ``self-segregate'', and that the rarest, most massive BHs dominate the scattering rate closest to the SMBH ( 0.9), and are therefore distinguishable from other binaries, which circularize before becoming detectable. We also show that eccentric mergers can be detected to larger distances and greater BH masses than circular mergers, up to ~700 M_sun. Future ground-based gravitational wave observatories will be able to constrain both the mass function of BHs and stars in galactic nuclei.
Mergers of non-spinning black-hole binaries: Gravitational radiation characteristics
Baker, John G; Centrella, Joan; Kelly, Bernard J; McWilliams, Sean T; van Meter, James R
2008-01-01
We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an {\\em implicit rotating source}. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the $\\ell=m$ modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the $\\ell=m$ modes among all mass-ratios. We identify relationships, with...
Ultra-low frequency gravitational radiation from massive black hole binaries
Rajagopal, M; Rajagopal, Mohan; Romani, Roger W
1994-01-01
For massive black hole binaries produced in galactic mergers, we examine the possibility of inspiral induced by interaction with field stars. We model the evolution of such binaries for a range of galaxy core and binary parameters, using numerical results from the literature to compute the binary's energy and angular momentum loss rates due to stellar encounters and including the effect of back-action on the field stars. We find that only a small fraction of binary systems can merge within a Hubble time via unassisted stellar dynamics. External perturbations may, however, cause efficient inspiral. Averaging over a population of central black holes and galaxy mergers, we compute the expected background of gravitational radiation with periods Pw ~1-10y. Comparison with sensitivities from millisecond pulsar timing suggests that the strongest sources may be detectable with modest improvements to present experiments.
Lang, R N; Hughes, Scott A.; Lang, Ryan N.
2006-01-01
The coalescence of massive black holes generates gravitational waves (GWs) that will be measurable by space-based detectors such as LISA to large redshifts. The spins of a binary's black holes have an important impact on its waveform. Specifically, geodetic and gravitomagnetic effects cause the spins to precess; this precession then modulates the waveform, adding periodic structure which encodes useful information about the binary's members. Following pioneering work by Vecchio, we examine the impact upon GW measurements of including these precession-induced modulations in the waveform model. We find that the additional periodicity due to spin precession breaks degeneracies among certain parameters, greatly improving the accuracy with which they may be measured. In particular, mass measurements are improved tremendously, by one to several orders of magnitude. Localization of the source on the sky is also improved, though not as much -- low redshift systems can be localized to an ellipse which is roughly $10- ...
International Nuclear Information System (INIS)
We investigate the ultrarelativistic boost of a Schwarzschild black hole immersed in an external electromagnetic field, described by an exact solution of the Einstein-Maxwell equations found by Ernst (the 'Schwarzschild-Melvin' metric). Following the classical method of Aichelburg and Sexl, the gravitational field generated by a black hole moving 'with the speed of light' and the transformed electromagnetic field are determined. The corresponding exact solution describes an impulsive gravitational wave propagating in the static, cylindrically symmetric, electrovac universe of Melvin, and for a vanishing electromagnetic field it reduces to the well known Aichelburg-Sexl pp wave. In the boosting process, the original Petrov type I of the Schwarzschild-Melvin solution simplifies to type II on the impulse, and to type D elsewhere. The geometry of the wave front is studied, in particular its nonconstant Gauss curvature. In addition, a more general class of impulsive waves in the Melvin universe is constructed by means of a six-dimensional embedding formalism adapted to the background. A coordinate system is also presented in which all the impulsive metrics take a continuous form. Finally, it is shown that these solutions are a limiting case of a family of exact gravitational waves with an arbitrary profile. This family is identified with a solution previously found by Garfinkle and Melvin. We thus complement their analysis, in particular demonstrating that such spacetimes are of type II and belong to the Kundt class
Measuring the spin of black holes in binary systems using gravitational waves.
Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo
2014-06-27
Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries. PMID:25014800
Nakamura, Takashi; Nakano, Hiroyuki; Tanaka, Takahiro
2016-02-01
Recent population synthesis simulations of Pop III stars suggest that the event rate of coalescence of ˜30 M⊙-30 M⊙ binary black holes can be high enough for the detection by the second generation gravitational wave detectors. The frequencies of chirp signal as well as quasinormal modes are near the best sensitivity of these detectors so that it would be possible to confirm Einstein's general relativity. Using the WKB method, we suggest that for the typical value of spin parameter a /M ˜0.7 from numerical relativity results of the coalescence of binary black holes, the strong gravity of the black hole space-time at around the radius 2 M , which is just ˜1.17 times the event horizon radius, would be confirmed as predicted by general relativity. The expected event rate with the signal-to-noise ratio >35 needed for the determination of the quasinormal mode frequency with a meaningful accuracy is 0.17 -7.2 events yr-1 [(SFRp/(1 0-2.5M⊙ yr-1 Mpc-3)) .([fb/(1 +fb)]/0.33 ) ], where SFRp and fb are the peak value of the Pop III star formation rate and the fraction of binaries, respectively. As for the possible optical counterpart, if the merged black hole of mass M ˜60 M⊙ is in the interstellar matter with n ˜100 cm-3 and the proper motion of the black hole is ˜1 km s-1 , the luminosity is ˜1040 erg s-1 which can be detected up to ˜300 Mpc , for example, by Subaru-HSC and LSST with the limiting magnitude 26.
Gravitational-wave limits from pulsar timing constrain supermassive black hole evolution.
Shannon, R M; Ravi, V; Coles, W A; Hobbs, G; Keith, M J; Manchester, R N; Wyithe, J S B; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Khoo, J; Levin, Y; Osłowski, S; Sarkissian, J M; van Straten, W; Verbiest, J P W; Wang, J-B
2013-10-18
The formation and growth processes of supermassive black holes (SMBHs) are not well constrained. SMBH population models, however, provide specific predictions for the properties of the gravitational-wave background (GWB) from binary SMBHs in merging galaxies throughout the universe. Using observations from the Parkes Pulsar Timing Array, we constrain the fractional GWB energy density (Ω(GW)) with 95% confidence to be Ω(GW)(H0/73 kilometers per second per megaparsec)(2) formation model implemented in the Millennium Simulation Project is inconsistent with our limit with 50% probability. PMID:24136962
Lu, Xu; Yang, Feng-Wei; Xie, Yi
2016-07-01
We analyze strong gravitational field time delay for photons coupled to the Weyl tensor in a Schwarzschild black hole. By making use of the method of strong deflection limit, we find that these time delays between relativistic images are significantly affected by polarization directions of such a coupling. A practical problem about determination of the polarization direction by observations is investigated. It is found that if the first and second relativistic images can be resolved, the measurement of time delay can more effectively improve detectability of the polarization direction.
Lu, Xu; Xie, Yi
2016-01-01
We analyse strong gravitational field time delay for photons coupled to the Weyl tensor in a Schwarzschild black hole. By making use of the method of strong deflection limit, we find that these time delays between relativistic images are significantly affected by polarization directions of such a coupling. A practical problem about determination of the polarization direction by observations is investigated. It is found that if the first and second relativistic images can be resolved, the measurement of time delay can more effectively improve detectability of the polarization direction.
Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica
2016-01-01
Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.
Collapse of dense star clusters to supermassive black holes - binaries and gravitational radiation
International Nuclear Information System (INIS)
The formation of binaries as a result of normal stellar-dynamic processes in dense clusters of compact stars is investigated analytically. The results of numerical simulations based on a simple homological model for the evolution of a cluster up to the point of catastrophic collapse are presented in extensive graphs and characterized in detail. It is shown that gravitational radiation begins to have a significant effect long before the onset of the high-redshift state. In the later stages, radiative dissipation from binary captures and flyby orbits acts to increase the final core mass that can undergo catastrophic collapse. Realistic initial conditions are found to lead to final cores of 100-100,000 solar masses, which can then collapse in a few dynamical time scales to form black holes 10-150 times larger. It is suggested that gravitational radiation from compact-star binaries may be detectable by ground-based interferometers. 55 references
A Proposed Search for the Detection of Gravitational Waves from Eccentric Binary Black Holes
Tiwari, Vaibhav; Christensen, Nelson; Huerta, Eliu; Mohapatra, Satya; Gopakumar, Achamveedu; Haney, Maria; Parameswaran, Ajith; McWilliams, Sean; Vedovato, Gabriele; Drago, Marco; Salemi, Francesco; Prodi, Giovanni; Lazzaro, Claudia; Tiwari, Shubhanshu; Mitselmakher, Guenakh; Da Silva, Filipe
2015-01-01
Most of compact binary systems are expected to circularize before the frequency of emitted gravitational waves (GWs) enters the sensitivity band of the ground based interferometric detectors. However, several mechanisms have been proposed for the formation of binary systems, which retain eccentricity throughout their lifetimes. Since no matched-filtering algorithm has been developed to extract continuous GW signals from compact binaries on orbits with low to moderate values of eccentricity, and available algorithms to detect binaries on quasi-circular orbits are sub-optimal to recover these events, in this paper we propose a search method for detection of gravitational waves produced from the coalescences of eccentric binary black holes (eBBH). We study the search sensitivity and the false alarm rates on a segment of data from the second joint science run of LIGO and Virgo detectors, and discuss the implications of the eccentric binary search for the advanced GW detectors.
Komossa, S
2008-01-01
We consider the consequences of gravitational wave recoil for unified models of active galactic nuclei (AGNs). Spatial oscillations of supermassive black holes (SMBHs) around the cores of galaxies following gravitational wave (GW) recoil imply that the SMBHs spend a significant fraction of time off-nucleus, at scales beyond that of the molecular obscuring torus. Assuming reasonable distributions of recoil velocities, we compute the off-core timescale of (intrinsically type-2) quasars. We find that roughly one-half of major mergers result in a SMBH being displaced beyond the torus for a time of 30 Myr or more, comparable to quasar activity timescales. Since major mergers are most strongly affected by GW recoil, our results imply a deficiency of type 2 quasars in comparison to Seyfert 2 galaxies. Other consequences of the recoil oscillations for the observable properties of AGNs are also discussed.
Searching for intermediate-mass black holes in globular clusters with gravitational microlensing
Kains, N.; Bramich, D. M.; Sahu, K. C.; Calamida, A.
2016-08-01
We discuss the potential of the gravitational microlensing method as a unique tool to detect unambiguous signals caused by intermediate-mass black holes in globular clusters. We select clusters near the line of sight to the Galactic bulge and the Small Magellanic Cloud, estimate the density of background stars for each of them, and carry out simulations in order to estimate the probabilities of detecting the astrometric signatures caused by black hole lensing. We find that for several clusters, the probability of detecting such an event is significant with available archival data from the Hubble Space Telescope. Specifically, we find that M 22 is the cluster with the best chances of yielding an intermediate-mass black hole (IMBH) detection via astrometric microlensing. If M 22 hosts an IMBH of mass 105 M⊙, then the probability that at least one star will yield a detectable signal over an observational baseline of 20 years is ˜86 per cent, while the probability of a null result is around 14 per cent. For an IMBH of mass 106 M⊙, the detection probability rises to >99 per cent. Future observing facilities will also extend the available time baseline, improving the chance of detections for the clusters we consider.
Gravitational amplitudes in black hole evaporation: the effect of non-commutative geometry
International Nuclear Information System (INIS)
Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat spacetime and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in non-commutative geometry have shown that, in general relativity, the effects of non-commutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. The present paper, relying on the recently obtained non-commutativity effect on a static, spherically symmetric metric, considers from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes is shown to be modified by a multiplicative factor F depending on a constant non-commutativity parameter and on the upper limit R of the radial coordinate. Limiting forms of F are derived which are compatible with the adiabatic approximation here exploited. Approximate formulae for the particle emission rate are also obtained within this framework
Gravitational amplitudes in black hole evaporation: the effect of non-commutative geometry
Energy Technology Data Exchange (ETDEWEB)
Grezia, Elisabetta Di [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S Angelo, Via Cintia, Edificio N' , 80126 Naples (Italy); Esposito, Giampiero [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S Angelo, Via Cintia, Edificio N' , 80126 Naples (Italy); Miele, Gennaro [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Complesso Universitario di Monte S Angelo, Via Cintia, Edificio N' , 80126 Naples (Italy)
2006-11-21
Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat spacetime and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in non-commutative geometry have shown that, in general relativity, the effects of non-commutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. The present paper, relying on the recently obtained non-commutativity effect on a static, spherically symmetric metric, considers from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes is shown to be modified by a multiplicative factor F depending on a constant non-commutativity parameter and on the upper limit R of the radial coordinate. Limiting forms of F are derived which are compatible with the adiabatic approximation here exploited. Approximate formulae for the particle emission rate are also obtained within this framework.
Barausse, Enrico; Chamberlain, Katherine
2016-01-01
The aLIGO detection of the black-hole binary GW150914 opened a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by five orders of magnitude relative to current constraints, probing extreme gravity with unprecedented accuracy.
Stavridis, A.; Will, C. M.
2010-05-01
Observations of gravitational waves from massive binary black hole systems at cosmological distances can be used to search for a dependence of the speed of propagation of the waves on wavelength, and thereby to bound the mass of a hypothetical graviton. We study the effects of precession of the spins of the black holes and of the orbital angular momentum on the process of parameter estimation based on the method of matched filtering of gravitational-wave signals vs. theoretical template waveforms. For the proposed space interferometer LISA, we show that precession, and the accompanying modulations of the gravitational waveforms, are effective in breaking degeneracies among the parameters being estimated, and effectively restore the achievable graviton-mass bounds to levels obtainable from binary inspirals without spin. For spinning, precessing binary black hole systems of equal masses 106 Modot at 3 Gpc, the lower bounds on the graviton Compton wavelength achievable are of the order of 5 × 1016 km.
International Nuclear Information System (INIS)
Observations of gravitational waves from massive binary black hole systems at cosmological distances can be used to search for a dependence of the speed of propagation of the waves on wavelength, and thereby to bound the mass of a hypothetical graviton. We study the effects of precession of the spins of the black holes and of the orbital angular momentum on the process of parameter estimation based on the method of matched filtering of gravitational-wave signals vs. theoretical template waveforms. For the proposed space interferometer LISA, we show that precession, and the accompanying modulations of the gravitational waveforms, are effective in breaking degeneracies among the parameters being estimated, and effectively restore the achievable graviton-mass bounds to levels obtainable from binary inspirals without spin. For spinning, precessing binary black hole systems of equal masses 106 Mo-dot at 3 Gpc, the lower bounds on the graviton Compton wavelength achievable are of the order of 5 x 1016 km.
International Nuclear Information System (INIS)
Observations of gravitational waves from massive binary black-hole systems at cosmological distances can be used to search for a dependence of the speed of propagation of the waves on wavelength, and thereby to bound the mass of a hypothetical graviton. We study the effects of precessions of the spins of the black holes and of the orbital angular momentum on the process of parameter estimation based on the method of matched filtering of gravitational-wave signals vs theoretical template waveforms. For the proposed Laser Interferometer Space Antenna, we show that precessions, and the accompanying modulations of the gravitational waveforms, are effective in breaking degeneracies among the parameters being estimated, and effectively restore the achievable graviton-mass bounds to levels obtainable from binary inspirals without spin. For spinning, precessing binary black-hole systems of equal masses 106M· at 3 Gpc, the lower bounds on the graviton Compton wavelength achievable are of the order of 5x1016 km.
Stavridis, Adamantios
2009-01-01
Observations of gravitational waves from massive binary black hole systems at cosmological distances can be used to search for a dependence of the speed of propagation of the waves on wavelength, and thereby to bound the mass of a hypothetical graviton. We study the effects of precessions of the spins of the black holes and of the orbital angular momentum on the process of parameter estimation using matched filtering of gravitational-wave signals vs. theoretical template waveforms. For the proposed space interferometer LISA, we show that precessions, and the accompanying modulations of the gravitational waveforms, are effective in breaking degeneracies among the parameters being estimated, and effectively restore the achievable graviton-mass bounds to levels obtainable from binary inspirals without spin. For spinning, precessing binary black hole systems of equal masses (10^6 solar masses) at 3 Gpc, the bounds on the graviton Compton wavelength achievable are of the order of 5 X 10^{16} km.
Stavridis, Adamantios; Will, Clifford M.
2009-08-01
Observations of gravitational waves from massive binary black-hole systems at cosmological distances can be used to search for a dependence of the speed of propagation of the waves on wavelength, and thereby to bound the mass of a hypothetical graviton. We study the effects of precessions of the spins of the black holes and of the orbital angular momentum on the process of parameter estimation based on the method of matched filtering of gravitational-wave signals vs theoretical template waveforms. For the proposed Laser Interferometer Space Antenna, we show that precessions, and the accompanying modulations of the gravitational waveforms, are effective in breaking degeneracies among the parameters being estimated, and effectively restore the achievable graviton-mass bounds to levels obtainable from binary inspirals without spin. For spinning, precessing binary black-hole systems of equal masses 106M⊙ at 3 Gpc, the lower bounds on the graviton Compton wavelength achievable are of the order of 5×1016km.
Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers
Mandic, Vuk; Bird, Simeon; Cholis, Ilias
2016-01-01
Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the universe and compare it to the similar background spectrum due to binary black hole systems of stellar origi...
Backreaction of Hawking radiation on a gravitationally collapsing star I: Black holes?
Directory of Open Access Journals (Sweden)
Laura Mersini-Houghton
2014-11-01
Full Text Available Particle creation leading to Hawking radiation is produced by the changing gravitational field of the collapsing star. The two main initial conditions in the far past placed on the quantum field from which particles arise, are the Hartle–Hawking vacuum and the Unruh vacuum. The former leads to a time-symmetric thermal bath of radiation, while the latter to a flux of radiation coming out of the collapsing star. The energy of Hawking radiation in the interior of the collapsing star is negative and equal in magnitude to its value at future infinity. This work investigates the backreaction of Hawking radiation on the interior of a gravitationally collapsing star, in a Hartle–Hawking initial vacuum. It shows that due to the negative energy Hawking radiation in the interior, the collapse of the star stops at a finite radius, before the singularity and the event horizon of a black hole have a chance to form. That is, the star bounces instead of collapsing to a black hole. A trapped surface near the last stage of the star's collapse to its minimum size may still exist temporarily. Its formation depends on the details of collapse. Results for the case of Hawking flux of radiation with the Unruh initial state, will be given in a companion paper II.
Backreaction of Hawking radiation on a gravitationally collapsing star I: Black holes?
Energy Technology Data Exchange (ETDEWEB)
Mersini-Houghton, Laura [DAMTP, University of Cambridge, Wilberforce Rd., Cambridge, CB3 0WA, England (United Kingdom); Department of Physics and Astronomy, UNC, Chapel Hill, NC 27599 (United States)
2014-11-10
Particle creation leading to Hawking radiation is produced by the changing gravitational field of the collapsing star. The two main initial conditions in the far past placed on the quantum field from which particles arise, are the Hartle–Hawking vacuum and the Unruh vacuum. The former leads to a time-symmetric thermal bath of radiation, while the latter to a flux of radiation coming out of the collapsing star. The energy of Hawking radiation in the interior of the collapsing star is negative and equal in magnitude to its value at future infinity. This work investigates the backreaction of Hawking radiation on the interior of a gravitationally collapsing star, in a Hartle–Hawking initial vacuum. It shows that due to the negative energy Hawking radiation in the interior, the collapse of the star stops at a finite radius, before the singularity and the event horizon of a black hole have a chance to form. That is, the star bounces instead of collapsing to a black hole. A trapped surface near the last stage of the star's collapse to its minimum size may still exist temporarily. Its formation depends on the details of collapse. Results for the case of Hawking flux of radiation with the Unruh initial state, will be given in a companion paper II.
Gravitational field of a Schwarzschild black hole and a rotating mass ring
Sano, Yasumichi
2014-01-01
The linear perturbation of the Kerr black hole has been discussed by using the Newman--Penrose and the perturbed Weyl scalars, $\\psi_0$ and $\\psi_4$ can be obtained from the Teukolsky equation. In order to obtain the other Weyl scalars and the perturbed metric, a formalism was proposed by Chrzanowski and by Cohen and Kegeles (CCK) to construct these quantities in a radiation gauge via the Hertz potential. As a simple example of the construction of the perturbed gravitational field with this formalism, we consider the gravitational field produced by a rotating circular ring around a Schwarzschild black hole. In the CCK method, the metric is constructed in a radiation gauge via the Hertz potential, which is obtained from the solution of the Teukolsky equation. Since the solutions $\\psi_0$ and $\\psi_4$ of the Teukolsky equations are spin-2 quantities, the Hertz potential is determined up to its monopole and dipole modes. Without these lower modes, the constructed metric and Newman--Penrose Weyl scalars have unph...
Entropy function from the gravitational surface action for an extremal near horizon black hole
Energy Technology Data Exchange (ETDEWEB)
Majhi, Bibhas Ranjan [Indian Institute of Technology, Department of Physics, Guwahati, Assam (India)
2015-11-15
It is often argued that all the information of a gravitational theory is encoded in the surface term of the action; which means one can find several physical quantities just from the surface term without incorporating the bulk part of the action. This has been observed in various instances; e.g. the derivation of the Einstein's equations, the surface term calculated on the horizon leads to the entropy, etc. Here I investigate the role of it in the context of the entropy function and the entropy of extremal near horizon black holes. Considering only the Gibbons-Hawking-York (GHY) surface term to define an entropy function for the extremal near horizon black hole solution, it is observed that the extremization of such a function leads to the exact value of the horizon entropy. This analysis again supports the previous claim that the gravitational action is of a ''holographic'' nature - the surface term contains information of the bulk. (orig.)
Entropy function from the gravitational surface action for an extremal near horizon black hole
Energy Technology Data Exchange (ETDEWEB)
Majhi, Bibhas Ranjan, E-mail: bibhas.majhi@iitg.ernet.in [Department of Physics, Indian Institute of Technology, 781039, Guwahati, Assam (India)
2015-11-02
It is often argued that all the information of a gravitational theory is encoded in the surface term of the action; which means one can find several physical quantities just from the surface term without incorporating the bulk part of the action. This has been observed in various instances; e.g. the derivation of the Einstein’s equations, the surface term calculated on the horizon leads to the entropy, etc. Here I investigate the role of it in the context of the entropy function and the entropy of extremal near horizon black holes. Considering only the Gibbons–Hawking–York (GHY) surface term to define an entropy function for the extremal near horizon black hole solution, it is observed that the extremization of such a function leads to the exact value of the horizon entropy. This analysis again supports the previous claim that the gravitational action is of a “holographic” nature – the surface term contains information of the bulk.
International Nuclear Information System (INIS)
In this work we constructed a two modes matched digital filter for a burst signal of gravitational radiation. The source is a binary black hole system, where this one is in coalescence time and has 0.5 solar mass. For determination of waveform, we have utilized the equations of the General Relativity Theory, and the Friedmann's theory for the expansion of the universe. We considered the formation of black holes in the very early universe when the temperature was about 1 GeV. The characteristics of the ALLEGRO detector were studied and we showed that this detector is sensitive to the studied signal. The events rate calculated are 5 x 10-2 events per year and various per year for the local group. The power spectral density curve of the noises was determined. With the data of the signal and the noise we obtained the coefficients of the digital filter and elaborated the computer routines for the signals analysis. After filtering the data of the year 1997, we identified several candidates for gravitational wave. We showed that the constructed filter is more effective than the previous one because the temperature of the noise was reduced. We also demonstrated that the filters for impulsive sources have the characteristic of the detect signals of another types of impulsive sources. (author)
Arzoumanian, Z; Burke-Spolaor, S; Chamberlin, S J; Chatterjee, S; Cordes, J M; Demorest, P B; Deng, X; Dolch, T; Ellis, J A; Ferdman, R D; Finn, L S; Garver-Daniels, N; Jenet, F; Jones, G; Kaspi, V M; Koop, M; Lam, M; Lazio, T J W; Lommen, A N; Lorimer, D R; Luo, J; Lynch, R S; Madison, D R; McLaughlin, M; McWilliams, S T; Nice, D J; Palliyaguru, N; Pennucci, T T; Ransom, S M; Sesana, A; Siemens, X; Stairs, I H; Stinebring, D R; Stovall, K; Swiggum, J; Vallisneri, M; van Haasteren, R; Wang, Y; Zhu, W W
2014-01-01
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project currently observes 43 pulsars using the Green Bank and Arecibo radio telescopes. In this work we use a subset of 17 pulsars timed for a span of roughly five years (2005--2010). We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Within the timing data, we perform a search for continuous gravitational waves from individual supermassive black hole binaries in circular orbits using robust frequentist and Bayesian techniques. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar dataset we place a 95% upper limit on the sky-averaged strain amplitude of $h_0\\lesssim 3.8\\times 10^{-14}$ at a frequency of 10 nHz. Furthermore, we place 95% ...
Bekenstein, Jacob D.
1997-01-01
In some respects the black hole plays the same role in gravitation that the atom played in the nascent quantum mechanics. This analogy suggests that black hole mass $M$ might have a discrete spectrum. I review the physical arguments for the expectation that black hole horizon area eigenvalues are uniformly spaced, or equivalently, that the spacing between stationary black hole mass levels behaves like 1/M. This sort of spectrum has also emerged in a variety of formal approaches to black hole ...
Yang, Huan; Lehner, Luis
2014-01-01
We show that rapidly-spinning black holes can display turbulent gravitational behavior which is mediated by a new type of parametric instability. This instability transfers energy from higher temporal and azimuthal spatial frequencies to lower frequencies--- a phenomenon reminiscent of the inverse energy cascade displayed by 2+1-dimensional turbulent fluids. Our finding reveals a path towards gravitational turbulence for perturbations of rapidly-spinning black holes, and provides the first evidence for gravitational turbulence in an asymptotically flat spacetime. Interestingly, this finding predicts observable gravitational wave signatures from such phenomena in black hole binaries with high spins and gives a gravitational description of turbulence relevant to the fluid-gravity duality.
Topics in black hole evaporation
International Nuclear Information System (INIS)
Two major aspects of particle creation by gravitational fields of black holes are studied: the neutrino emission from rotating black holes; and interactions between scalar particles emitted by a black hole. Neutrino emission is investigated under three topics: The asymmetry of the angular dependence of neutrino emission from rotating black holes; the production of a local matter excess by rotating black holes in a baryon symmetric universe; and cosmological magnetic field generation by neutrinos from evaporating black holes. Finally the author studies the effects of interactions on the black hole evaporation process
'Kludge' gravitational waveforms for a test-body orbiting a Kerr black hole
International Nuclear Information System (INIS)
One of the most exciting potential sources of gravitational waves for low-frequency, space-based gravitational wave (GW) detectors such as the proposed Laser Interferometer Space Antenna (LISA) is the inspiral of compact objects into massive black holes in the centers of galaxies. The detection of waves from such 'extreme mass ratio inspiral' systems (EMRIs) and extraction of information from those waves require template waveforms. The systems' extreme mass ratio means that their waveforms can be determined accurately using black hole perturbation theory. Such calculations are computationally very expensive. There is a pressing need for families of approximate waveforms that may be generated cheaply and quickly but which still capture the main features of true waveforms. In this paper, we introduce a family of such kludge waveforms and describe ways to generate them. Different kinds of kludges have already been used to scope out data analysis issues for LISA. The models we study here are based on computing a particle's inspiral trajectory in Boyer-Lindquist coordinates, and subsequent identification of these coordinates with flat-space spherical polar coordinates. A gravitational waveform may then be computed from the multipole moments of the trajectory in these coordinates, using well-known solutions of the linearised gravitational perturbation equations in flat space time. We compute waveforms using a standard slow-motion quadrupole formula, a quadrupole/octupole formula, and a fast-motion, weak-field formula originally developed by Press. We assess these approximations by comparing to accurate waveforms obtained by solving the Teukolsky equation in the adiabatic limit (neglecting GW backreaction). We find that the kludge waveforms do extremely well at approximating the true gravitational waveform, having overlaps with the Teukolsky waveforms of 95% or higher over most of the parameter space for which comparisons can currently be made. Indeed, we find these
Sima, Jozef; Sukenik, Miroslav
1999-01-01
The paper summarizes the background of Expensive Nondecelerative Universe model and its main consequences for gravitation. Applying the Vaidya metrics, the model allows for the localization and determination of the density and quantity of gravitational energy created by a body with the mass m in the distance r. The consequences are manifested both in a macrosystem (Hawking's phenomenon of black holes evaporation) and microworld phenomenon (far-infrared spectral properties)
Stuchlík, Zdeněk
2015-01-01
To test the role of large-scale magnetic fields in accretion processes, we study dynamics of charged test particles in vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes od the charged particle dynamics provides mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is larg...
Isoyama, Soichiro; Barack, Leor; Dolan, Sam R; Le Tiec, Alexandre; Nakano, Hiroyuki; Shah, Abhay G; Tanaka, Takahiro; Warburton, Niels
2014-10-17
For a self-gravitating particle of mass μ in orbit around a Kerr black hole of mass M ≫ μ, we compute the O(μ/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the innermost stable circular equatorial orbit frequency shift as a function of the black hole's spin amplitude, and compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem. PMID:25361245
Seshavatharam, U. V. S.; Lakshminarayana, S.
If one is willing to consider the current cosmic microwave back ground temperature as a quantum gravitational effect of the evolving primordial cosmic black hole (universe that constitutes dynamic space-time and exhibits quantum behavior) automatically general theory of relativity and quantum mechanics can be combined into a `scale independent' true unified model of quantum gravity. By considering the `Planck mass' as the initial mass of the baby Hubble volume, past and current physical and thermal parameters of the cosmic black hole can be understood. Current rate of cosmic black hole expansion is being stopped by the microscopic quantum mechanical lengths. In this new direction authors observed 5 important quantum mechanical methods for understanding the current cosmic deceleration. To understand the ground reality of current cosmic rate of expansion, sensitivity and accuracy of current methods of estimating the magnitudes of current CMBR temperature and current Hubble constant must be improved and alternative methods must be developed. If it is true that galaxy constitutes so many stars, each star constitutes so many hydrogen atoms and light is coming from the excited electron of galactic hydrogen atom, then considering redshift as an index of `whole galaxy' receding may not be reasonable. During cosmic evolution, at any time in the past, in hydrogen atom emitted photon energy was always inversely proportional to the CMBR temperature. Thus past light emitted from older galaxy's excited hydrogen atom will show redshift with reference to the current laboratory data. As cosmic time passes, in future, the absolute rate of cosmic expansion can be understood by observing the rate of increase in the magnitude of photon energy emitted from laboratory hydrogen atom. Aged super novae dimming may be due to the effect of high cosmic back ground temperature. Need of new mathematical methods & techniques, computer simulations, advanced engineering skills seem to be essential
Directory of Open Access Journals (Sweden)
Šubr L.
2012-12-01
Full Text Available We further study the idea that a self-gravitating accretion disc around a supermassive black hole can increase the rate of gradual orbital decay of stellar trajectories (and hence tidal disruption events by setting some stars on eccentric trajectories. Cooperation between the gravitational field of the disc and the dissipative environment can provide a mechanism explaining the origin of stars that become bound tightly to the central black hole. We examine this process as a function of the black hole mass and conclude that it is most efficient for intermediate central masses of the order of ∼ 104Mʘ. Members of the cluster experience the stage of orbital decay via collisions with an accretion disc and by other dissipative processes, such as tidal effects, dynamical friction and the emission of gravitational waves. Our attention is concentrated on the region of gravitational dominance of the central body. Mutual interaction between stars and the surrounding environment establishes a non-spherical shape and anisotropy of the nuclear cluster. In some cases, the stellar sub-system acquires ring-type geometry. Stars of the nuclear cluster undergo a tidal disruption event as they plunge below the tidal radius of the supermassive black hole.
Bustillo, Juan Calderón; Sintes, Alicia M; Püerrer, Michael
2015-01-01
Current template-based gravitational wave searches for compact binary coalescences (CBC) use waveform models that neglect the higher order modes content of the gravitational radiation emitted, considering only the quadrupolar $(\\ell,|m|)=(2,2)$ modes. We study the effect of such a neglection for the case of aligned-spin CBC searches for equal-spin (and non-spinning) binary black holes in the context of two versions of Advanced LIGO: the upcoming 2015 version, known as early Advanced LIGO (eaLIGO) and its Zero-Detuned High Energy Power version, that we will refer to as Advanced LIGO (AdvLIGO). In addition, we study the case of a non-spinning search for initial LIGO (iLIGO). We do this via computing the effectualness of the aligned-spin SEOBNRv1 ROM waveform family, which only considers quadrupolar modes, towards hybrid post-Newtonian/Numerical Relativity waveforms which contain higher order modes. We find that for all LIGO versions, losses of more than $10\\%$ of events occur for mass ratio $q\\geq6$ and $M \\geq...
Mergers of Non-spinning Black-hole Binaries: Gravitational Radiation Characteristics
Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.
2008-01-01
We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an implicit rotating source. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the l = m modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the l = m modes among all mass-ratios. We identify relationships, with a simple interpretation in terms of the implicit rotating source, among the evolution of frequency and amplitude, which hold for the late-time radiation. These detailed relationships provide sufficient information about the late-time radiation to yield a predictive model for the late-time waveforms, an alternative to the common practice of modeling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.
Implementing a search for gravitational waves from non-precessing, spinning binary black holes
Capano, Collin; Privitera, Stephen; Buonanno, Alessandra
2016-01-01
Searching for gravitational waves (GWs) from binary black holes (BBHs) with LIGO and Virgo involves matched-filtering data against a set of representative signal waveforms --- a template bank --- chosen to cover the full signal space of interest with as few template waveforms as possible. Although the component black holes may have significant angular momenta (spin), previous searches for BBHs have filtered LIGO and Virgo data using only waveforms where both component spins are zero. This leads to a loss of signal-to-noise ratio for signals where this is not the case. Combining the best available template placement techniques and waveform models, we construct a template bank of GW signals from BBHs with component spins $\\chi_{1,2}\\in [-0.99, 0.99]$ aligned with the orbital angular momentum, component masses $m_{1,2}\\in [2, 48]\\,\\mathrm{M}_\\odot$, and total mass $M_\\mathrm{total} \\leq 50\\,\\mathrm{M}_\\odot$. Using effective-one-body waveforms with spin effects, we show that less than $3\\%$ of the maximum signal...
Searching for intermediate-mass black holes in globular clusters with gravitational microlensing
Kains, N; Sahu, K C; Calamida, A
2016-01-01
We discuss the potential of the gravitational microlensing method as a unique tool to detect unambiguous signals caused by intermediate-mass black holes in globular clusters. We select clusters near the line of sight to the Galactic Bulge and the Small Magellanic Cloud, estimate the density of background stars for each of them, and carry out simulations in order to estimate the probabilities of detecting the astrometric signatures caused by black hole lensing. We find that for several clusters, the probability of detecting such an event is significant with available archival data from the Hubble Space Telescope. Specifically, we find that M 22 is the cluster with the best chances of yielding an IMBH detection via astrometric microlensing. If M 22 hosts an IMBH of mass $10^5M_\\odot$, then the probability that at least one star will yield a detectable signal over an observational baseline of 20 years is $\\sim 86\\%$, while the probability of a null result is around $14\\%$. For an IMBH of mass $10^6M_\\odot$, the ...
Asymptotically flat black holes and gravitational waves in three-dimensional massive gravity
Troessaert, Cédric; Troncoso, Ricardo
2015-01-01
Different classes of exact solutions for the BHT massive gravity theory are constructed and analyzed. We focus in the special case of the purely quadratic Lagrangian, whose field equations are irreducibly of fourth order and are known to admit asymptotically locally flat black holes endowed with gravitational hair. The first class corresponds to a Kerr-Schild deformation of Minkowski spacetime along a covariantly constant null vector. As in the case of General Relativity, the field equations linearize so that the solution can be easily shown to be described by four arbitrary functions of a single null coordinate. These solutions can be regarded as a new sort of pp-waves. The second class is obtained from a deformation of the static asymptotically locally flat black hole, that goes along the spacelike (angular) Killing vector. Remarkably, although the deformation is not of Kerr-Schild type, the field equations also linearize, and hence the generic solution can be readily integrated. It is neither static nor sp...
Harms, Enno; Bernuzzi, Sebastiano; Nagar, Alessandro
2016-01-01
We consider a spinning test-body in circular motion around a nonrotating black hole and analyze different prescriptions for the body's dynamics. We compare, for the first time, the Mathisson-Papapetrou formalism under the Tulczyjew spin-supplementary-condition (SSC), the Pirani SSC and the Ohashi-Kyrian-Semerak SSC, and the spinning particle limit of the effective-one-body Hamiltonian of [Phys.~Rev.~D.90,~044018(2014)]. We analyze the four different dynamics in terms of the ISCO shifts and in terms of the coordinate invariant binding energies, separating higher-order spin contributions from spin-orbit contributions. The asymptotic gravitational wave fluxes produced by the spinning body are computed by solving the inhomogeneous $(2+1)D$ Teukolsky equation and contrasted for the different cases. For small orbital frequencies $\\Omega$, all the prescriptions reduce to the same dynamics and the same radiation fluxes. For large frequencies, ${x \\equiv (M \\Omega)^{2/3} >0.1 }$, where $M$ is the black hole mass, and ...
Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914.
Sasaki, Misao; Suyama, Teruaki; Tanaka, Takahiro; Yokoyama, Shuichiro
2016-08-01
We point out that the gravitational-wave event GW150914 observed by the LIGO detectors can be explained by the coalescence of primordial black holes (PBHs). It is found that the expected PBH merger rate would exceed the rate estimated by the LIGO Scientific Collaboration and the Virgo Collaboration if PBHs were the dominant component of dark matter, while it can be made compatible if PBHs constitute a fraction of dark matter. Intriguingly, the abundance of PBHs required to explain the suggested lower bound on the event rate, >2 events Gpc^{-3} yr^{-1}, roughly coincides with the existing upper limit set by the nondetection of the cosmic microwave background spectral distortion. This implies that the proposed PBH scenario may be tested in the not-too-distant future. PMID:27541453
Taylor, Nicholas W; Reisswig, Christian; Scheel, Mark A; Chu, Tony; Kidder, Lawrence E; Szilagyi, Bela
2013-01-01
We extract gravitational waveforms from numerical simulations of black hole binaries computed using the Spectral Einstein Code. We compare two extraction methods: direct construction of the Newman-Penrose (NP) scalar $\\Psi_4$ at a finite distance from the source and Cauchy-characteristic extraction (CCE). The direct NP approach is simpler than CCE, but NP waveforms can be contaminated by near-zone effects---unless the waves are extracted at several distances from the source and extrapolated to infinity. Even then, the resulting waveforms can in principle be contaminated by gauge effects. In contrast, CCE directly provides, by construction, gauge-invariant waveforms at future null infinity. We verify the gauge invariance of CCE by running the same physical simulation using two different gauge conditions. We find that these two gauge conditions produce the same CCE waveforms but show differences in extrapolated-$\\Psi_4$ waveforms. We examine data from several different binary configurations and measure the domi...
Quantum collapse of a self-gravitating thin shell and statistical model of quantum black hole
International Nuclear Information System (INIS)
The quantum collapse of a self-gravitating thin shell in the minisuperspace models is revisited on the assumption that the shell is composed of N distinguishable identical particles. The ground state of the shell is found and defined as a quantum black hole (QBH). We show that the energy of single particle in the QBH is dependent on N, and N has an up-limit for a stable QBH. The effective exciting energy of single particle is determined, which is universally 1/2 of the Planck energy for the full-filled QBHs. We also propose a simple statistical model of QBH and show that a QBH is full-filled at low temperatures and half-filled at high temperatures. The specific heat of QBH is found to be positive at low temperatures and the relation of the QBH mass with its temperature is obtained in the high-temperature limit of our model
Gravitational lensing by a massive black hole at the Galactic center
Wardle, Mark; Yusef-Zadeh, Farhad
1992-01-01
The manifestations of gravitational lensing by a massive black hole at the Galactic center, with particular attention given to lensing of stars in the stellar cluster that lie behind Sgr A*, and of Sgr A east, a nonthermal extended radio source which is known with certainty to lie behind the Galactic center. Lensing of the stellar cluster produces a deficit of stellar images within 10 mas of the center, and a surplus between 30 and 300 mas. The results suggest that the proper motion of the stars will produce brightness variations of stellar images on a time scale of a few years or less. Both images of such a source should be visible, and will rise and fall in luminosity together.
Primordial black hole scenario for the gravitational wave event GW150914
Sasaki, Misao; Tanaka, Takahiro; Yokoyama, Shuichiro
2016-01-01
We point out that the gravitational wave event GW150914 observed by the LIGO detectors can be explained by the coalescence of primordial black holes (PBHs). It is found that the expected PBH merger rate would exceed the rate estimated by the LIGO scientific collaboration and Virgo collaboration if PBHs were the dominant component of dark matter, while it can be made compatible if PBHs constitute a fraction of dark matter. Intriguingly, the abundance of PBHs required to explain the suggested lower bound on the event rate, $> 2$ events/year/${\\rm Gpc}^3$, roughly coincides with the existing upper limit set by the non-detection of the CMB spectral distortion. This implies that the proposed PBH scenario may be tested in the not-too-distant future.
Primordial black holes as a novel probe of primordial gravitational waves II: detailed analysis
Nakama, Tomohiro
2016-01-01
Recently we have proposed a novel method to probe primordial gravitational waves from upper bounds on the abundance of primordial black holes (PBHs). When the amplitude of primordial tensor perturbations generated in the early universe is very large, they induce large scalar perturbations due to their second-order effects. If the amplitude of resultant scalar perturbations is too large at the moment of their horizon reenty, then PBHs are overproduced to a level that is inconsistent with a variety of existing observations constraining the abundance of PBHs. This consideration leads to upper bounds on the amplitude of primordial tensor perturbations on super-horizon scales. In contrast to our recent paper in which we only present simple estimations of the upper bounds from PBHs, in this paper, we present detailed derivations, by solving the Einstein equations for scalar perturbations induced at second order in tensor perturbations. We also derive an approximate formula for the probability density function of in...
High Accuracy Gravitational Waveforms from Black Hole Binary Inspirals Using OpenCL
McKennon, Justin; Khanna, Gaurav
2012-01-01
There is a strong need for high-accuracy and efficient modeling of extreme-mass-ratio binary black hole systems because these are strong sources of gravitational waves that would be detected by future observatories. In this article, we present sample results from our Teukolsky EMRI code: a time-domain Teukolsky equation solver (a linear, hyperbolic, partial differential equation solver using finite-differencing), that takes advantage of several mathematical and computational enhancements to efficiently generate long-duration and high-accuracy EMRI waveforms. We emphasize here the computational advances made in the context of this code. Currently there is considerable interest in making use of many-core processor architectures, such as Nvidia and AMD graphics processing units (GPUs) for scientific computing. Our code uses the Open Computing Language (OpenCL) for taking advantage of the massive parallelism offered by modern GPU architectures. We present the performance of our Teukolsky EMRI code on multiple mod...
Test of a General Formula for Black Hole Gravitational Wave Kicks
van Meter, James R.; Miller, M. Coleman; Baker, John G.; Boggs, William D.; Kelly, Bernard J.
2010-01-01
Although the gravitational wave kick velocity in the orbital plane of coalescing black holes has been understood for some time, apparently conflicting formulae have been proposed for the dominant outof- plane kick, each a good fit to different data sets. This is important to resolve because it is only the out-of-plane kicks that can reach more than 500 km s-l and can thus eject merged remnants from galaxies. Using a different ansatz for the out-of-plane kick, we show that we can fit almost all existing data to better than 5%. This is good enough for any astrophysical calculation and shows that the previous apparent conflict was only because the two data sets explored different aspects of the kick parameter space.
Towards a Theory of Quantum Black Hole
Berezin, V.
2001-01-01
We describe some specific quantum black hole model. It is pointed out that the origin of a black hole entropy is the very process of quantum gravitational collapse. The quantum black hole mass spectrum is extracted from the mass spectrum of the gravitating source. The classical analog of quantum black hole is constructed.
Dvorkin, Irina; Vangioni, Elisabeth; Silk, Joseph; Uzan, Jean-Philippe; Olive, Keith A.
2016-01-01
The recent detection of the binary black hole merger GW150914 demonstrates the existence of black holes more massive than previously observed in X-ray binaries in our Galaxy. This article explores different scenarios of black hole formation in the context of self-consistent cosmic chemical evolution models that simultaneously match observations of the cosmic star formation rate, optical depth to reionization and metallicity of the interstellar medium. This framework is used to calculate the m...
ULTRAMASSIVE BLACK HOLE COALESCENCE
International Nuclear Information System (INIS)
Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production
Hajdukovic, D
2006-01-01
We speculate about impact of antigravity (i.e. gravitational repulsion between matter and antimatter) on the creation and emission of particles by a black hole. If antigravity is present a black hole made of matter may radiate particles as a black body, but this shouldn't be true for antiparticles. It may lead to radical change of radiation process predicted by Hawking and should be taken into account in preparation of the attempt to create and study mini black holes at CERN. Gravity, including antigravity is more than ever similar to electrodynamics and such similarity with a successfully quantized interaction may help in quantization of gravity.
International Nuclear Information System (INIS)
Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for instance, the UK
Aranha, R F; Tonini, E V
2012-01-01
We examine numerically the process of gravitational wave recoil in the merger of two black holes in non head-on collision, in the realm of Robinson-Trautman spacetimes. Characteristic initial data for the system are constructed, and the evolution covers the post-merger phase up to the final configuration of the remnant black hole. The net momentum flux carried out by gravitational waves and the associated impulses are evaluated. Our analysis is based on the Bondi-Sachs conservation laws for the energy momentum of the system. The net kick velocity $V_{k}$ imparted to the merged system by the total gravitational wave impulse is also evaluated. Typically for a non head-on collision the net momentum flux carried out by gravitational waves is nonzero for equal-mass colliding black holes. The distribution of $V_{k}$ as a function of the symmetric mass ratio $\\eta$ is well fitted by a modified Fitchett $\\eta$-scaling law, the additional parameter modifying the law being a measure of the nonzero gravitational wave mo...
International Nuclear Information System (INIS)
The pulsar timing residuals induced by gravitational waves from non-evolving single binary sources with general elliptical orbits are analyzed. For different orbital eccentricities, the timing residuals present different properties. The standard deviations of the timing residuals induced by a fixed gravitational wave source are calculated for different values of the eccentricity. We also analyze the timing residuals of PSR J0437-4715 induced by one of the best known single gravitational wave sources, the supermassive black hole binary in the blazar OJ287
Baker, John
2010-01-01
Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.
Rasskazov, Alexander
2016-01-01
We compute the isotropic gravitational wave (GW) background produced by binary supermassive black holes (SBHs) in galactic nuclei. In our model, massive binaries evolve at early times via gravitational-slingshot interaction with nearby stars, and at later times by the emission of GWs. Our expressions for the rate of binary hardening in the "stellar" regime are taken from the recent work of Vasiliev et al., who show that in the non-axisymmetric galaxies expected to form via mergers, stars are supplied to the center at high enough rates to ensure binary coalescence on Gyr timescales. We also include, for the first time, the extra degrees of freedom associated with evolution of the binary's orbital plane; in rotating nuclei, interaction with stars causes the orientation and the eccentricity of a massive binary to change in tandem, leading in some cases to very high eccentricities (e>0.9) before the binary enters the GW-dominated regime. We argue that previous studies have over-estimated the mean ratio of SBH mas...
Roedig, Constanze
2013-01-01
We study the interplay between mass transfer, accretion and gravitational torques onto a black hole binary migrating in a self-gravitating, retrograde circumbinary disc. A direct comparison with an identical prograde disc shows that: (i) because of the absence of resonances, the cavity size is a factor a(1+e) smaller for retrograde discs; (ii) nonetheless the shrinkage of a circular binary semi--major axis, a, is identical in both cases; (iii) a circular binary in a retrograde disc remains circular while eccentric binaries grow more eccentric. For non-circular binaries, we measure the orbital decay rates and the eccentricity growth rates to be exponential as long as the binary orbits in the plane of its disc. Additionally, for these co-planar systems, we find that interaction (~ non--zero torque) stems only from the cavity edge plus a(1+e) in the disc, i.e. for dynamical purposes, the disc can be treated as a annulus of small radial extent. We find that simple 'dust' models in which the binary- disc interacti...
Gravitational waves from black hole-neutron star binaries I: Classification of waveforms
Shibata, Masaru; Yamamoto, Tetsuro; Taniguchi, Keisuke
2009-01-01
Using our new numerical-relativity code SACRA, long-term simulations for inspiral and merger of black hole (BH)-neutron star (NS) binaries are performed, focusing particularly on gravitational waveforms. As the initial conditions, BH-NS binaries in a quasiequilibrium state are prepared in a modified version of the moving-puncture approach. The BH is modeled by a nonspinning moving puncture and for the NS, a polytropic equation of state with $\\Gamma=2$ and the irrotational velocity field are employed. The mass ratio of the BH to the NS, $Q=M_{\\rm BH}/M_{\\rm NS}$, is chosen in the range between 1.5 and 5. The compactness of the NS, defined by ${\\cal C}=GM_{\\rm NS}/c^2R_{\\rm NS}$, is chosen to be between 0.145 and 0.178. For a large value of $Q$ for which the NS is not tidally disrupted and is simply swallowed by the BH, gravitational waves are characterized by inspiral, merger, and ringdown waveforms. In this case, the waveforms are qualitatively the same as that from BH-BH binaries. For a sufficiently small va...
On a Separatrix in the Gravitational Collapse to an Overcritical Electromagnetic Black Hole
Ruffini, R; Xue, S S
2003-01-01
The dynamical properties of an electron--positron--photon plasma created by the vacuum polarization process occurring around a charged gravitationally collapsing core of an initially neutral star are examined within the framework of General Relativity and Quantum Field Theory. The Reissner--Nordstr\\"{o}m geometry is assumed to apply between the collapsing core and the oppositely charged remnant of the star. The appearance of a separatrix at radius $\\bar{R}$, well outside the asymptotic approach to the horizon, is evidenced. The neutral electron--positron--photon plasma created at radii $r>\\bar{R}$ self-propels outwards to infinity, following the classical PEM--pulse analysis. The plasma created at $r<\\bar{R}$ remains trapped and follows the gravitational collapse of the core only contributing to the reduction of the electromagnetic energy of the black hole and to the increase of its irreducible mass. This phenomenon has consequences for the observational properties of gamma--ray bursts and is especially re...
Inayoshi, Kohei; Visbal, Eli; Haiman, Zoltan
2016-01-01
The recent discovery of the gravitational wave source GW150914 has revealed a coalescing binary black hole (BBH) with masses of $\\sim 30~\\odot$. A possible origin of such a massive binary is Population III (PopIII) stars. PopIII stars are efficient producers of BBHs and of a gravitational wave background (GWB) in the $10-100$ Hz band, and also of ionizing radiation in the early Universe. We show that PopIII stars that are consistent with the recent Planck measurement of a low electron scattering optical depth $\\tau_{\\rm e}=0.066\\pm0.016$ could still produce a GWB dominating other binary populations. Moreover, the spectral index of the background from PopIII BBHs becomes flatter at $f\\gtrsim 20$ Hz than the value ${\\rm d}\\ln \\Omega_{\\rm gw}/{\\rm d}\\ln f\\approx 2/3$ generically produced by lower-redshift and less-massive BBHs. A detection of this unique flattening by the future O5 LIGO/Virgo would be a smoking gun of a high-chirp mass, high-redshift BBH population, as expected from PopIII stars. It would also c...
Quantum aspects of black holes
2015-01-01
Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.
International Nuclear Information System (INIS)
The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated with the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black-white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black-white holes. These studies can be used to interpret the results of optical, infrared, and radio interferometric observations
Shatskiy, Alexander; Novikov, I D
2016-01-01
The characteristic and distinctive features of the visibility amplitude of interferometric observations for compact objects like stars in the immediate vicinity of the central black hole in our Galaxy are considered. These features are associated with the specifics of strong gravitational scattering of point sources by black holes, wormholes, or black_white holes. The revealed features will help to determine the most important topological characteristics of the central object in our Galaxy: whether this object possesses the properties of only a black hole or also has characteristics unique to wormholes or black_white holes. These studies can be used to interpret the results of optical, infrared, and radio interferometric observations.
Institute of Scientific and Technical Information of China (English)
ZHANG Hong-Bao; CAO Zhou-Jian; GAO Chong-Shou
2004-01-01
Si-Jie Gao has recently investigated Hawking radiation from spherically symmetrical gravitational collapse to an extremal R-N black hole for a real scalar field. Especially he estimated the upper bound for the expected number of particles in any wave packet belonging to Hout spontaneously produced from the state |0＞in, which confirms the traditional belief that extremal black holes do not radiate particles. Making some modifications, we demonstrate that the analysis can go through for a charged scalar field.
Null Geodesics and Strong Field Gravitational Lensing of Black Hole with Global Monopole
Directory of Open Access Journals (Sweden)
M. Sharif
2015-01-01
Full Text Available We study two interesting features of a black hole with an ordinary as well as phantom global monopole. Firstly, we investigate null geodesics which imply unstable orbital motion of particles for both cases. Secondly, we evaluate deflection angle in strong field regime. We then find Einstein rings, magnifications, and observables of the relativistic images for supermassive black hole at the center of galaxy NGC4486B. We also examine time delays for different galaxies and present our results numerically. It is found that the deflection angle for ordinary/phantom global monopole is greater/smaller than that of Schwarzschild black hole. In strong field limit, the remaining properties of these black holes are quite different from the Schwarzschild black hole.
Null Geodesics and Strong Field Gravitational Lensing of Black Hole with Global Monopole
International Nuclear Information System (INIS)
We study two interesting features of a black hole with an ordinary as well as phantom global monopole. Firstly, we investigate null geodesics which imply unstable orbital motion of particles for both cases. Secondly, we evaluate deflection angle in strong field regime. We then find Einstein rings, magnifications, and observables of the relativistic images for supermassive black hole at the center of galaxy NGC4486B. We also examine time delays for different galaxies and present our results numerically. It is found that the deflection angle for ordinary/phantom global monopole is greater/smaller than that of Schwarzschild black hole. In strong field limit, the remaining properties of these black holes are quite different from the Schwarzschild black hole
Observable signatures of a black hole ejected by gravitational-radiation recoil in a galaxy merger.
Loeb, Abraham
2007-07-27
According to recent simulations, the coalescence of two spinning black holes (BHs) could lead to a BH remnant with recoil speeds of up to thousands of km s(-1). Here we examine the circumstances resulting from a gas-rich galaxy merger under which the ejected BH would carry an accretion disk and be observable. As the initial BH binary emits gravitational radiation and its orbit tightens, a hole is opened in the disk which delays the consumption of gas prior to the eventual BH ejection. The punctured disk remains bound to the ejected BH within the region where the gas orbital velocity is larger than the ejection speed. For a approximately 10(7) M[middle dot in circle] BH the ejected disk has a characteristic size of tens of thousands of Schwarzschild radii and an accretion lifetime of approximately 10(7) yr. During that time, the ejected BH could traverse a considerable distance and appear as an off-center quasar with a feedback trail along the path it left behind. PMID:17678347
Energy Technology Data Exchange (ETDEWEB)
Kocsis, Bence, E-mail: bkocsis@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2013-02-15
It is commonly assumed that ground-based gravitational wave (GW) instruments will not be sensitive to supermassive black holes (SMBHs) because the characteristic GW frequencies are far below the {approx}10-1000 Hz sensitivity bands of terrestrial detectors. Here, however, we explore the possibility of SMBH GWs to leak to higher frequencies. In particular, if the high-frequency spectral tail asymptotes to h-tilde (f){proportional_to}f{sup -{alpha}}, where {alpha} {<=} 2, then the spectral amplitude is a constant or increasing function of the mass M at a fixed frequency f >> c {sup 3}/GM. This will happen if the time-domain waveform or its derivative exhibits a discontinuity. Ground-based instruments could search for these universal spectral tails to detect or rule out such features irrespective of their origin. We identify the following processes which may generate high-frequency signals: (1) gravitational bremsstrahlung of ultrarelativistic objects in the vicinity of an SMBH, (2) ringdown modes excited by an external process that has a high-frequency component or terminates abruptly, and (3) gravitational lensing echoes and diffraction. We estimate the order of magnitude of the detection signal-to-noise ratio for each mechanism (1, 2, and 3) as a function of the waveform parameters. In particular for (3), SMBHs produce GW echoes of inspiraling stellar mass binaries in galactic nuclei with a delay of a few minutes to hours. The lensed primary signal and GW echo are both amplified if the binary is within a {approx}10 deg (r/100M){sup -1/2} cone behind the SMBH relative to the line of sight at a distance r from the SMBH. For the rest of the binaries near SMBHs, the amplitude of the GW echo is {approx}0.1(r/100M){sup -1} of the primary signal on average.
Calderón Bustillo, Juan; Husa, Sascha; Sintes, Alicia M.; Pürrer, Michael
2016-04-01
Current template-based gravitational wave searches for compact binary coalescences use waveform models that omit the higher order modes content of the gravitational radiation emitted, considering only the quadrupolar (ℓ,|m |)=(2 ,2 ) modes. We study the effect of such omission for the case of aligned-spin compact binary coalescence searches for equal-spin (and nonspinning) binary black holes in the context of two versions of Advanced LIGO: the upcoming 2015 version, known as early Advanced LIGO (eaLIGO) and its zero-detuned high-energy power version, which we will refer to as Advanced LIGO (AdvLIGO). In addition, we study the case of a nonspinning search for initial LIGO (iLIGO). We do this via computing the effectualness of the aligned-spin SEOBNRv1 reduced order model waveform family, which only considers quadrupolar modes, toward hybrid post-Newtonian/numerical relativity waveforms which contain higher order modes. We find that for all LIGO versions losses of more than 10% of events occur in the case of AdvLIGO for mass ratio q ≥6 and total mass M ≥100 M⊙ due to the omission of higher modes, this region of the parameter space being larger for eaLIGO and iLIGO. Moreover, while the maximum event loss observed over the explored parameter space for AdvLIGO is of 15% of events, for iLIGO and eaLIGO, this increases up to (39,23)%. We find that omission of higher modes leads to observation-averaged systematic parameter biases toward lower spin, total mass, and chirp mass. For completeness, we perform a preliminar, nonexhaustive comparison of systematic biases to statistical errors. We find that, for a given signal-to-noise ratio, systematic biases dominate over statistical errors at much lower total mass for eaLIGO than for AdvLIGO.
Implementing a search for gravitational waves from binary black holes with nonprecessing spin
Capano, Collin; Harry, Ian; Privitera, Stephen; Buonanno, Alessandra
2016-06-01
Searching for gravitational waves (GWs) from binary black holes (BBHs) with LIGO and Virgo involves matched-filtering data against a set of representative signal waveforms—a template bank—chosen to cover the full signal space of interest with as few template waveforms as possible. Although the component black holes may have significant angular momenta (spin), previous searches for BBHs have filtered LIGO and Virgo data using only waveforms where both component spins are zero. This leads to a loss of signal-to-noise ratio for signals where this is not the case. Combining the best available template placement techniques and waveform models, we construct a template bank of GW signals from BBHs with component spins χ1 ,2∈[-0.99 ,0.99 ] aligned with the orbital angular momentum, component masses m1 ,2∈[2 ,48 ]M⊙ , and total mass Mtotal≤50 M⊙ . Using effective-one-body waveforms with spin effects, we show that less than 3% of the maximum signal-to-noise ratio (SNR) of these signals is lost due to the discreetness of the bank, using the early Advanced LIGO noise curve. We use simulated Advanced LIGO noise to compare the sensitivity of this bank to a nonspinning bank covering the same parameter space. In doing so, we consider the competing effects between improved SNR and signal-based vetoes and the increase in the rate of false alarms of the aligned-spin bank due to covering a larger parameter space. We find that the aligned-spin bank can be a factor of 1.3-5 more sensitive than a nonspinning bank to BBHs with dimensionless spins >+0.6 and component masses ≳20 M⊙ . Even larger gains are obtained for systems with equally high spins but smaller component masses.
Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.
Veitch, John; Pürrer, Michael; Mandel, Ilya
2015-10-01
We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater. PMID:26551801
Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors
Veitch, John; Pürrer, Michael; Mandel, Ilya
2015-10-01
We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50 M⊙ and 500 M⊙ and mass ratios between 0.1 and 1. We find that (i) at total masses below ˜200 M⊙, where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100 M⊙ can be confirmed with 95% confidence in any binary that includes a component with a mass of 130 M⊙ or greater.
Energy Technology Data Exchange (ETDEWEB)
Antonini, Fabio [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 George St., Toronto, Ontario M5S 3H8 (Canada); Perets, Hagai B. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)
2012-09-20
The environment near supermassive black holes (SMBHs) in galactic nuclei contains a large number of stars and compact objects. A fraction of these are likely to be members of binaries. Here we discuss the binary population of stellar black holes and neutron stars near SMBHs and focus on the secular evolution of such binaries, due to the perturbation by the SMBH. Binaries with highly inclined orbits with respect to their orbit around the SMBH are strongly affected by secular Kozai processes, which periodically change their eccentricities and inclinations (Kozai cycles). During periapsis approach, at the highest eccentricities during the Kozai cycles, gravitational wave (GW) emission becomes highly efficient. Some binaries in this environment can inspiral and coalesce at timescales much shorter than a Hubble time and much shorter than similar binaries that do not reside near an SMBH. The close environment of SMBHs could therefore serve as a catalyst for the inspiral and coalescence of binaries and strongly affect their orbital properties. Such compact binaries would be detectable as GW sources by the next generation of GW detectors (e.g., advanced-LIGO). Our analysis shows that {approx}0.5% of such nuclear merging binaries will enter the LIGO observational window while on orbits that are still very eccentric (e {approx}> 0.5). The efficient GW analysis for such systems would therefore require the use of eccentric templates. We also find that binaries very close to the SMBH could evolve through a complex dynamical (non-secular) evolution, leading to emission of several GW pulses during only a few years (though these are likely to be rare). Finally, we note that the formation of close stellar binaries, X-ray binaries, and their merger products could be induced by similar secular processes, combined with tidal friction rather than GW emission as in the case of compact object binaries.
Centrella, Joan
2012-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics
International Nuclear Information System (INIS)
We analyze the gravitational perturbations induced by particles falling into a three dimensional, asymptotically AdS black hole geometry. More specifically, we solve the linearized perturbation equations obtained from the geodesic motion of a ringlike distribution of test particles in the BTZ background. This setup ensures that the U(1) symmetry of the background is preserved. The nonasymptotic flatness of the background raises difficulties in attributing the significance of energy and angular momentum to the conserved quantities of the test particles. This issue is well known but, to the best of our knowledge, has never been addressed in the literature. We confirm that the naive expressions for energy and angular momentum are the correct definitions. Finally, we put an asymptotically AdS version of the weak cosmic censorship to a test: by attempting to overspin the BTZ black hole with test particles it is found that the black hole cannot be spun-up past its extremal limit.
International Nuclear Information System (INIS)
We perform a search for continuous gravitational waves from individual supermassive black hole binaries using robust frequentist and Bayesian techniques. We augment standard pulsar timing models with the addition of time-variable dispersion measure and frequency variable pulse shape terms. We apply our techniques to the Five Year Data Release from the North American Nanohertz Observatory for Gravitational Waves. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar data set we place a 95% upper limit on the strain amplitude of h 0 ≲ 3.0 × 10–14 at a frequency of 10 nHz. Furthermore, we place 95% sky-averaged lower limits on the luminosity distance to such gravitational wave sources, finding that dL ≳ 425 Mpc for sources at a frequency of 10 nHz and chirp mass 1010 M ☉. We find that for gravitational wave sources near our best timed pulsars in the sky, the sensitivity of the pulsar timing array is increased by a factor of ∼four over the sky-averaged sensitivity. Finally we place limits on the coalescence rate of the most massive supermassive black hole binaries.
Energy Technology Data Exchange (ETDEWEB)
Arzoumanian, Z. [Center for Research and Exploration in Space Science and Technology and X-Ray Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Brazier, A.; Chatterjee, S.; Cordes, J. M.; Dolch, T.; Lam, M. T. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Burke-Spolaor, S. [California Institute of Technology, Pasadena, CA 91125 (United States); Chamberlin, S. J.; Ellis, J. A. [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States); Demorest, P. B. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Deng, X.; Koop, M. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Ferdman, R. D.; Kaspi, V. M. [Department of Physics, McGill University, 3600 University Street, Montreal, QC H3A 2T8 (Canada); Garver-Daniels, N.; Lorimer, D. R. [Department of Physics, West Virginia University, P.O. Box 6315, Morgantown, WV 26505 (United States); Jenet, F. [Center for Gravitational Wave Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Jones, G. [Department of Physics, Columbia University, New York, NY 10027 (United States); Lazio, T. J. W. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91106 (United States); Lommen, A. N., E-mail: justin.ellis18@gmail.com [Department of Physics and Astronomy, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604 (United States); Collaboration: NANOGrav Collaboration; and others
2014-10-20
We perform a search for continuous gravitational waves from individual supermassive black hole binaries using robust frequentist and Bayesian techniques. We augment standard pulsar timing models with the addition of time-variable dispersion measure and frequency variable pulse shape terms. We apply our techniques to the Five Year Data Release from the North American Nanohertz Observatory for Gravitational Waves. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar data set we place a 95% upper limit on the strain amplitude of h {sub 0} ≲ 3.0 × 10{sup –14} at a frequency of 10 nHz. Furthermore, we place 95% sky-averaged lower limits on the luminosity distance to such gravitational wave sources, finding that d{sub L} ≳ 425 Mpc for sources at a frequency of 10 nHz and chirp mass 10{sup 10} M {sub ☉}. We find that for gravitational wave sources near our best timed pulsars in the sky, the sensitivity of the pulsar timing array is increased by a factor of ∼four over the sky-averaged sensitivity. Finally we place limits on the coalescence rate of the most massive supermassive black hole binaries.
Characterizing Black Hole Mergers
Baker, John; Boggs, William Darian; Kelly, Bernard
2010-01-01
Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.
Kinugawa, Tomoya; Nakamura, Takashi
2016-01-01
Focusing on the remnant black holes after merging binary black holes, we show that ringdown gravitational waves of Population III binary black holes mergers can be detected with the rate of $5.9-500~{\\rm events~yr^{-1}}~({\\rm SFR_p}/ (10^{-2.5}~M_\\odot~{\\rm yr^{-1}~Mpc^{-3}})) \\cdot ({\\rm [f_b/(1+f_b)]/0.33})$ for various parameters and functions. This rate is estimated for the events with SNR$>8$ for the second generation gravitational wave detectors such as KAGRA. Here, ${\\rm SFR_p}$ and ${\\rm f_b}$ are the peak value of the Population III star formation rate and the fraction of binaries, respectively. When we consider only the events with SNR$>35$, the event rate becomes $0.046-4.21~{\\rm events~yr^{-1}}~({\\rm SFR_p}/ (10^{-2.5}~M_\\odot~{\\rm yr^{-1}~Mpc^{-3}})) \\cdot ({\\rm [f_b/(1+f_b)]/0.33})$. This suggest that for remnant black hole's spin $q_f>0.95$ we have the event rate with SNR$>35$ less than $0.037~{\\rm events~yr^{-1}}~({\\rm SFR_p}/ (10^{-2.5}~M_\\odot~{\\rm yr^{-1}~Mpc^{-3}})) \\cdot ({\\rm [f_b/(1+f_b...
Indian Academy of Sciences (India)
Koustubh Ajit Kabe
2012-09-01
In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.
International Nuclear Information System (INIS)
We present long-term-stable and convergent evolutions of head-on black-hole collisions and extraction of gravitational waves generated during the merger and subsequent ring-down. The new ingredients in this work are the use of fixed mesh-refinement and dynamical singularity excision techniques. We are able to carry out head-on collisions with large initial separations and demonstrate that our excision infrastructure is capable of accommodating the motion of the individual black holes across the computational domain as well as their merger. We extract gravitational waves from these simulations using the Zerilli-Moncrief formalism and find the ring-down radiation to be, as expected, dominated by the l=2, m=0 quasinormal mode. The total radiated energy is about 0.1% of the total Arnowitt-Deser-Misner mass of the system
Nakamura, Takashi; Nakano, Hiroyuki
2016-04-01
Using the Wentzel-Kramers-Brillouin method, we show that the peak location (r_peak) of the potential, which determines the quasinormal mode frequency of the Kerr black hole, obeys an accurate empirical relation as a function of the specific angular momentum a and the gravitational mass M. If the quasinormal mode with a/M ˜ 1 is observed by gravitational wave detectors, we can confirm the black-hole space-time around the event horizon, r_peak=r_+ +O(√{1-q}), where r_+ is the event horizon radius. However, if the quasinormal mode is different from that of general relativity, we are forced to seek the true theory of gravity and/or face the existence of the naked singularity.
Inayoshi, Kohei; Kashiyama, Kazumi; Visbal, Eli; Haiman, Zoltán
2016-09-01
The recent discovery of the gravitational wave source GW150914 has revealed a coalescing binary black hole (BBH) with masses of ˜30 M⊙. Previous proposals for the origin of such a massive binary include Population III (PopIII) stars. PopIII stars are efficient producers of BBHs and of a gravitational wave background (GWB) in the 10-100 Hz band, and also of ionizing radiation in the early Universe. We quantify the relation between the amplitude of the GWB (Ωgw) and the electron scattering optical depth (τe), produced by PopIII stars, assuming that fesc ≈ 10 per cent of their ionizing radiation escapes into the intergalactic medium. We find that PopIII stars would produce a GWB that is detectable by the future O5 LIGO/Virgo if τe ≳ 0.07, consistent with the recent Planck measurement of τe = 0.055 ± 0.09. Moreover, the spectral index of the background from PopIII BBHs becomes as small as dln Ωgw/dln f ≲ 0.3 at f ≳ 30 Hz, which is significantly flatter than the value ˜2/3 generically produced by lower redshift and less-massive BBHs. A detection of the unique flattening at such low frequencies by the O5 LIGO/Virgo will indicate the existence of a high-chirp mass, high-redshift BBH population, which is consistent with the PopIII origin. A precise characterization of the spectral shape near 30-50 Hz by the Einstein Telescope could also constrain the PopIII initial mass function and star formation rate.
Gravitational deflection of light and massive particles by a moving Kerr-Newman black hole
He, Guansheng; Lin, Wenbin
2016-05-01
The gravitational deflection of test particles including light, due to a radially moving Kerr-Newman (KN) black hole with an arbitrary constant velocity that is perpendicular to its angular momentum, is investigated. In harmonic coordinates, we derive the second post-Minkowskian (2PM) equations of motion for test particles, and solve them by high-accuracy numerical calculations. We then concentrate on discussing the kinematical corrections caused by the motion of the gravitational source to second-order deflection. The analytical formula of the light-deflection angle up to the second order by a moving lens is obtained. For a massive particle moving with a relativistic velocity, there are two different analytical results for the Schwarzschild deflection angle up to the second order reported in the previous works, i.e. α (w)=2≤ft(1+\\tfrac{1}{{w}2}\\right)\\tfrac{M}{b}+3π ≤ft(\\tfrac{1}{4}+\\tfrac{1}{{w}2}\\right)\\tfrac{{M}2}{{b}2} and α (w)=2≤ft(1+\\tfrac{1}{{w}2}\\right)\\tfrac{M}{b}+≤ft[3π ≤ft(\\tfrac{1}{4}+\\tfrac{1}{{w}2}\\right)+2≤ft(1-\\tfrac{1}{{w}4}\\right)\\right]\\tfrac{{M}2}{{b}2}, where M, b, and w are the mass of the lens, the impact parameter, and the particle’s initial velocity, respectively. Our numerical result is in perfect agreement with the former result. Furthermore, the analytical formula for massive particle deflection up to the second order in the Kerr geometry is achieved. Finally, the possibilities of detecting the motion effects on the second-order deflection are also analyzed.
de Souza, Rafael S.; Opher, Reuven
2008-01-01
The origin of magnetic fields in astrophysical objects is a challenging problem in astrophysics. Throughout the years, many scientists have suggested that non-minimal gravitational-electromagnetic coupling (NMGEC) could be the origin of the ubiquitous astrophysical magnetic fields. We investigate the possible origin of intense magnetic fields $\\sim 10^{15}-10^{16}$ by NMGEC near rotating neutron stars and black holes, connected with magnetars, quasars, and gamma-ray bursts. Whereas these inte...
Kashlinsky, A
2016-01-01
LIGO's discovery of a gravitational wave from two merging black holes (BHs) of similar masses rekindled suggestions that primordial BHs (PBHs) make up the dark matter (DM). If so, PBHs would add a Poissonian isocurvature density fluctuation component to the inflation-produced adiabatic density fluctuations. For LIGO's BH parameters, this extra component would dominate the small-scale power responsible for collapse of early DM halos at z>10, where first luminous sources formed. We quantify the resultant increase in high-z abundances of collapsed halos that are suitable for producing the first generation of stars and luminous sources. The significantly increased abundance of the early halos would naturally explain the observed source-subtracted near-IR cosmic infrared background (CIB) fluctuations, which cannot be accounted for by known galaxy populations. For LIGO's BH parameters this increase is such that the observed CIB fluctuation levels at 2 to 5 micron can be produced if only a tiny fraction of baryons i...
Babak, Stanislav; Sesana, Alberto; Brem, Patrick; Rosado, Pablo A; Taylor, Stephen R; Lassus, Antoine; Hessels, Jason W T; Bassa, Cees G; Burgay, Marta; Caballero, R Nicolas; Champion, David J; Cognard, Ismael; Desvignes, Gregory; Gair, Jonathan R; Guillemot, Lucas; Janssen, Gemma H; Karuppusamy, Ramesh; Kramer, Michael; Lazarus, Patrick; Lee, K J; Lentati, Lindley; Liu, Kuo; Mingarelli, Chiara M F; Oslowsky, Stefan; Perrodin, Delphine; Possenti, Andrea; Purver, Mark B; Sanidas, Sotiris; Smits, Roy; Stappers, Ben; Theureau, Gilles; Tiburzi, Caterina; van Haasteren, Rutger; Vecchio, Alberto; Verbiest, Joris P W
2015-01-01
We have searched for continuous gravitational wave (CGW) signals produced by individually resolvable, circular supermassive black hole binaries (SMBHBs) in the latest EPTA dataset, which consists of ultra-precise timing data on 41 millisecond pulsars. We develop frequentist and Bayesian detection algorithms to search both for monochromatic and frequency-evolving systems. None of the adopted algorithms show evidence for the presence of such a CGW signal, indicating that the data are best described by pulsar and radiometer noise only. Depending on the adopted detection algorithm, the 95\\% upper limit on the sky-averaged strain amplitude lies in the range $6\\times 10^{-15}10^9$M$_\\odot$ out to a distance of about 25Mpc, and with $\\cal{M}_c>10^{10}$M$_\\odot$ out to a distance of about 1Gpc ($z\\approx0.2$). We show that state-of-the-art SMBHB population models predict $<1\\%$ probability of detecting a CGW with the current EPTA dataset, consistent with the reported non-detection. We stress, however, that PTA lim...
Taylor, Nicholas W.; Boyle, Michael; Reisswig, Christian; Scheel, Mark A.; Chu, Tony; Kidder, Lawrence E.; Szilágyi, Béla
2013-12-01
We extract gravitational waveforms from numerical simulations of black hole binaries computed using the Spectral Einstein Code. We compare two extraction methods: direct construction of the Newman-Penrose (NP) scalar Ψ4 at a finite distance from the source and Cauchy-characteristic extraction (CCE). The direct NP approach is simpler than CCE, but NP waveforms can be contaminated by near-zone effects—unless the waves are extracted at several distances from the source and extrapolated to infinity. Even then, the resulting waveforms can in principle be contaminated by gauge effects. In contrast, CCE directly provides, by construction, gauge-invariant waveforms at future null infinity. We verify the gauge invariance of CCE by running the same physical simulation using two different gauge conditions. We find that these two gauge conditions produce the same CCE waveforms but show differences in extrapolated-Ψ4 waveforms. We examine data from several different binary configurations and measure the dominant sources of error in the extrapolated-Ψ4 and CCE waveforms. In some cases, we find that NP waveforms extrapolated to infinity agree with the corresponding CCE waveforms to within the estimated error bars. However, we find that in other cases extrapolated and CCE waveforms disagree, most notably for m=0 “memory” modes.
Gravitational Lensing Effect on the Hawking Radiation of Dyonic Black Holes
Sakalli, I; Mirekhtiary, S F
2014-01-01
In this paper, we analyze the Hawking radiation (HR) of a non-asymptotically flat (NAF) dyonic black hole (dBH) in four-dimensional (4D) Einstein-Maxwell-Dilaton (EMD) gravity by using one of the semiclassical approaches which is the so-called Hamilton-Jacobi (HJ) method. We particularly motivate on the isotropic coordinate system (ICS) of the dBH in order to highlight the ambiguity to be appeared in the derivation of the Hawking temperature (T_{H}) via the HJ method. Besides, it will be shown that the ICS allows us to write the metric of the dBH in form of the Fermat metric, which renders possible of identification of the refractive index (n) of the dBH. It is shown that the value of n and therefore the gravitational lensing effect is decisive on the the tunneling rate of the HR. We also uncloak how one can resolve the discrepancy about the T_{H} of the dBH in spite of that lensing effect.
Detecting Black-Hole Binary Clustering via the Second-Generation Gravitational-Wave Detectors
Namikawa, Toshiya; Taruya, Atsushi
2016-01-01
First discovery of the gravitational wave (GW) event, GW150914, suggests a higher merger rate of black-hole (BH) binaries. If this is true, a number of BH binaries will be observed via the second-generation GW detectors, and the statistical properties of the observed BH binaries can be scrutinized. A naive but important question to ask is whether the spatial distribution of BH binaries faithfully traces the matter inhomogeneities in the Universe or not. Although the BH binaries are thought to be formed inside the galaxies in most of the scenarios, there is no observational evidence to confirm such a hypothesis. Here, we estimate how well the second-generation GW detectors can statistically confirm the BH binaries to be a tracer of the large-scale structure by looking at the auto- and cross-correlation of BH binaries with photometric galaxies and weak lensing measurements, finding that, with a three-year observation, the $>3\\sigma$ detection of non-zero signal is possible if the BH merger rate today is $\\dot{n...
Gravitational Wave Driven Mergers and Coalescence Time of Supermassive Black Holes
Khan, Fazeel Mahmood; Berczik, Peter; Just, Andreas
2016-07-01
The evolution of Supermassive Black Holes (SMBHs) initially embedded in the centers of merging galaxies is studied from the onset of galaxy mergers till coalescence. We performed direct N-body simulations using the highly efficient and massively parallel phi-GPU code capable to run on GPU supported high performance computer clusters. Post-Newtonian terms up to order 3.5 are used to drive the SMBH binary evolution in the relativistic regime. We find that SMBH binaries coalesce well within one billion year when our models are scaled to dense cuspy galaxies at low redshift. Here higher central densities provide larger supply of stars to efficiently extract energy from the SMBH binary orbit and shrink it to the phase where gravitational wave (GW) emission becomes dominant leading to the coalescence of the SMBHs. On the other hand, mergers of models that are representative of giant elliptical galaxies having central cores result in less efficient extraction of binary's orbit energy due to the lower stellar densities in the center. However, high value of eccentricities witnessed for SMBH binaries in such galaxy mergers ensure that the GW emission dominated phase sets in at larger values of the semi-major axis. This helps to compensate for the less efficient energy extraction during the phase dominated by stellar encounters resulting in mergers of SMBHs in about one billion years after the formation of binary.
Ravi, V; Shannon, R M; Hobbs, G
2014-01-01
[Abridged] Large-area sky surveys show that massive galaxies undergo at least one major merger in a Hubble time. If all massive galaxies host central supermassive black holes (SMBHs), as is inferred from observations in the local Universe, it is likely that there is a population of binary SMBHs at the centres of galaxy merger remnants. Numerous authors have proposed pulsar timing array (PTA) experiments to measure the gravitational wave (GW) emission from binary SMBHs. In this paper, using the latest observational estimates for a range of galaxy properties and scaling relations, we predict the amplitude of the GW background generated by the binary SMBH population. We also predict counts of individual binary SMBH GW sources. We assume that all binary SMBHs are in circular orbits evolving under GW emission alone, which is likely to be correct for binaries emitting GWs at frequencies >~10^-8 Hz. Our fiducial model results in a characteristic strain amplitude of the GW background of A_yr=1.2(+0.6-0.3)*10^-15 at a...
Haiman, Zoltán; Menou, Kristen
2009-01-01
Supermassive black hole binaries (SMBHBs) in galactic nuclei are thought to be a common by-product of major galaxy mergers. We use simple disk models for the circumbinary gas and for the binary-disk interaction to follow the orbital decay of SMBHBs with a range of total masses (M) and mass ratios (q), through physically distinct regions of the disk, until gravitational waves (GWs) take over their evolution. Prior to the GW-driven phase, the viscous decay is in the stalled "secondary-dominated" regime. SMBHBs spend a non-negligible fraction of 10^7 years at orbital periods t_var between a day and a year. A dedicated optical or X-ray survey could identify coalescing SMBHBs statistically, as a population of periodically variable quasars, whose abundance N_var is proportional to t_var^alpha, in a range of periods t_var around tens of weeks. SMBHBs with M < 10^7 M_sun, with 0.5 < alpha < 1.5, would probe the physics of viscous orbital decay, whereas the detection of a population of higher-mass binaries, w...
Measuring intermediate mass black hole binaries with advanced gravitational wave detectors
Veitch, John; Mandel, Ilya
2015-01-01
We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger and ringdown signals of aligned-spin effective-one-body waveforms (SEOBNR) to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50 and 500 $M_\\odot$ and mass ratios between 0.1 and 1. We find that (i) at total masses below ~200 $M_\\odot$, where the signal-to-noise-ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; (iv) sp...
Vacuum polarization of massless fields in the gravitational field of a black hole
International Nuclear Information System (INIS)
In order to investigate the reverse influence of particles created by the gravitational field and vacuum polarization on the metric of a black hole we need information relating to the average values of the local observables in a quantum state. Using concepts based on an analysis of the dimensionalities the authors demonstrate that the characteristic value of the component of the vacuum average energy-momentum tensor has, in a regular coordinate system, the order μν> -- hc/L4, where L is the characteristic radius of curvature of space--time. Hence when L >> lpl (lpl = √hG/c3) the change in curvature created by μν> will be significantly [by a factor of (lpl/L)2] less than the initial curvature. The standard routine for calculating averages of local observables is called the point separation method and involves performing the following operations: finding Green's function G(chi, chi'), renormalization by subtracting from it the invariantly-determined part diverging when chi' → chi, formulating by means of the renormalized Green function the expressions associated with the local observables of interest to us and passing to the limit chi → chi'. This method is discussed in detail
Chamblin, A; Reall, H S
2000-01-01
Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.
Chamblin, A.; Hawking, S. W.; Reall, H. S.
2000-03-01
Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five-dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.
Berman, M S
2004-01-01
We show that the gravitational collapse of a black-hole terminates in the birth of a white-hole, due to repulsive gravitation (antigravitation); in particular, the infinite energy density singularity does NOT occur.
International Nuclear Information System (INIS)
In this review we shall concentrate on the application of the concept of black hole to different areas in astrophysics. Models in which this idea is involved are connected with basically two areas in astrophysics: a) The death of massive stars due to gravitational collapse. This process would lead to the formation of black holes with stellar masses (10-20 M sun). The detection of these kind of - objects is in principle possible, by means of studying the so-called X-ray binary system. b) Active nuclei of galaxies, including quasars as an extreme case. In this case, the best model available to explain the generation of the enormous amounts of energy observed as well as several other properties, is accretion into a supermassive black hole (106-1010 M sun) in the center. The problem of the origin of such black holes is related to cosmology. (author)
International Nuclear Information System (INIS)
No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references
Trova, A; Slany, P; Kovar, J
2016-01-01
We present an analytical approach for the equilibrium of a self-gravitating charged fluid embedded in a spherical gravitational and dipolar magnetic fields produced by a central mass. Our scheme is proposed, as a toy-model, in the context of gaseous/dusty tori surrounding supermassive black holes in galactic nuclei. While the central black hole dominates the gravitational field and it remains electrically neutral, the surrounding material has a non-negligible self-gravitational effect on the torus structure. By charging mechanisms it also acquires non-zero electric charge density, so the two influences need to be taken into account to achieve a self-consistent picture. With our approach we discuss the impact of self-gravity, represented by the term dt (ratio of the torus total mass to the mass of the central body), on the conditions for existence of the equilibrium and the morphology and typology of the tori. By comparison with a previous work without self-gravity, we show that the conditions can be different...
Gravitational string-membrane hedgehog and internal structure of black holes
Kawai, Hikaru
2010-01-01
We investigate charged Nambu-Goto strings/membrane systems in the Einstein-Maxwell theory in 3+1 dimensions. We first construct a charged string hedgehog solution that has a single horizon and conical singularity. Then we examine a charged membrane system, and give a simple derivation of its self energy. We find that the membrane may form an extremal Reissner-Nordstrom black hole, but its interior is a flat spacetime. Finally by combining the charged strings and the membrane we construct black hole solutions that have no singularities inside the horizons. We study them in detail by varying the magnitude of the two parameters, namely, the charge times the membrane tension and the string tension. We also argue that the strings have, due to the large redshift inside the system, a fair amount of degrees of freedom that may explain the entropy of the corresponding black holes.
Kashlinsky, A.
2016-06-01
LIGO's discovery of a gravitational wave from two merging black holes (BHs) of similar masses rekindled suggestions that primordial BHs (PBHs) make up the dark matter (DM). If so, PBHs would add a Poissonian isocurvature density fluctuation component to the inflation-produced adiabatic density fluctuations. For LIGO's BH parameters, this extra component would dominate the small-scale power responsible for collapse of early DM halos at z ≳ 10, where first luminous sources formed. We quantify the resultant increase in high-z abundances of collapsed halos that are suitable for producing the first generation of stars and luminous sources. The significantly increased abundance of the early halos would naturally explain the observed source-subtracted near-IR cosmic infrared background (CIB) fluctuations, which cannot be accounted for by known galaxy populations. For LIGO's BH parameters, this increase is such that the observed CIB fluctuation levels at 2–5 μm can be produced if only a tiny fraction of baryons in the collapsed DM halos forms luminous sources. Gas accretion onto these PBHs in collapsed halos, where first stars should also form, would straightforwardly account for the observed high coherence between the CIB and unresolved cosmic X-ray background in soft X-rays. We discuss modifications possibly required in the processes of first star formation if LIGO-type BHs indeed make up the bulk or all of DM. The arguments are valid only if the PBHs make up all, or at least most, of DM, but at the same time the mechanism appears inevitable if DM is made of PBHs.
Bhagwat, Swetha; Ballmer, Stefan W
2016-01-01
Motivated by the recent discoveries of binary black-hole mergers by the Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO), we investigate the prospects of ground-based detectors to perform a spectroscopic analysis of signals emitted during the ringdown of the final Kerr black-hole formed by a stellar mass binary black-hole merger. Although it is unlikely that Advanced LIGO can measure multiple modes of the ringdown, assuming an optimistic rate of 240 Gpc$^{-3}$yr$^{-1}$, upgrades to the existing LIGO detectors could measure multiple ringdown modes in $\\sim$6 detections per year. New ground-based facilities such as Einstein Telescope or Cosmic Explorer could measure multiple ringdown modes in over 300 events per year. We perform Monte-Carlo injections of $10^{6}$ binary black-hole mergers in a search volume defined by a sphere of radius 1500 Mpc centered at the detector, for various proposed ground-based detector models. We assume a uniform random distribution in component masses of ...
Search for small-mass black-hole dark matter with space-based gravitational wave detectors
International Nuclear Information System (INIS)
If the halo dark matter were composed of primordial black holes (PBHs) with mass between 1016 and 1020 g, their gravitational interaction with test masses of laser interferometer may lead to a detectable pulselike signal during the fly-by. If a proof-mass noise of 3x10-15 m/s2/Hz1/2 down to ∼10-5 Hz is achieved by the Laser Interferometer Space Antenna, the event rate, with signal-to-noise ratios greater than 5, could become ∼0.1 per decade, involving black holes of mass ∼1017 g. The detection rate could improve significantly for future space-based interferometers, though these events must be distinguished from those involving perturbations due to near-Earth asteroids. While the presence of primordial black holes below a mass of ∼1016 g is now constrained based on the radiation released during their evaporation, the gravitational-wave detectors could potentially extend the search for PBHs to several orders of magnitude higher masses
Image formation in weak gravitational lensing by tidal charged black holes
International Nuclear Information System (INIS)
We derive a generic weak lensing equation and apply it for the study of images produced by tidal charged brane black holes. We discuss the similarities and point out the differences with respect to the Schwarzschild black hole weak lensing, to both first- and second-order accuracy, when either the mass or the tidal charge dominates. In the case of mass-dominated weak lensing, we analyze the position of the images, the magnification factors and the flux ratio, as compared to the Schwarzschild lensing. The most striking modification appears in the flux ratio. When the tidal charge represents the dominating lensing effect, the number and orientation of the images with respect to the optical axis resembles the lensing properties of a Schwarzschild geometry, where the sign associated with the mass is opposite to that for the tidal charge. Finally it is found that the ratio of the brightness of the images as a function of image separation in the case of tidal charged black holes obeys a power-law relation significantly different from that of Schwarzschild black holes. This might provide a means for determining the underlying spacetime structure.
Gravitational Aharonov–Bohm effect due to noncommutative BTZ black hole
Energy Technology Data Exchange (ETDEWEB)
Anacleto, M.A., E-mail: anacleto@df.ufcg.edu.br; Brito, F.A., E-mail: fabrito@df.ufcg.edu.br; Passos, E., E-mail: passos@df.ufcg.edu.br
2015-04-09
In this paper we consider the scattering of massless planar scalar waves by a noncommutative BTZ black hole. We compute the differential cross section via the partial wave approach, and we mainly show that the scattering of planar waves leads to a modified Aharonov-Bohm effect due to spacetime noncommutativity.
Gravitational Aharonov–Bohm effect due to noncommutative BTZ black hole
Directory of Open Access Journals (Sweden)
M.A. Anacleto
2015-04-01
Full Text Available In this paper we consider the scattering of massless planar scalar waves by a noncommutative BTZ black hole. We compute the differential cross section via the partial wave approach, and we mainly show that the scattering of planar waves leads to a modified Aharonov–Bohm effect due to spacetime noncommutativity.
Gravitational Aharonov–Bohm effect due to noncommutative BTZ black hole
International Nuclear Information System (INIS)
In this paper we consider the scattering of massless planar scalar waves by a noncommutative BTZ black hole. We compute the differential cross section via the partial wave approach, and we mainly show that the scattering of planar waves leads to a modified Aharonov-Bohm effect due to spacetime noncommutativity
Gravitational Aharonov-Bohm effect due to noncommutative BTZ black hole
Anacleto, M A; Passos, E
2014-01-01
In this paper we consider the scattering of massless planar scalar waves by a noncommutative BTZ black hole. We compute the differential cross section via the partial wave approach, and we mainly show that the scattering of planar waves leads to a modified Aharonov-Bohm effect due to spacetime noncommutativity
Gravitational Aharonov–Bohm effect due to noncommutative BTZ black hole
M.A. Anacleto; Brito, F. A.; E. Passos
2015-01-01
In this paper we consider the scattering of massless planar scalar waves by a noncommutative BTZ black hole. We compute the differential cross section via the partial wave approach, and we mainly show that the scattering of planar waves leads to a modified Aharonov–Bohm effect due to spacetime noncommutativity.
Gravitational Aharonov-Bohm effect due to noncommutative BTZ black hole
Anacleto, M. A.; Brito, F. A.; Passos, E.
2015-04-01
In this paper we consider the scattering of massless planar scalar waves by a noncommutative BTZ black hole. We compute the differential cross section via the partial wave approach, and we mainly show that the scattering of planar waves leads to a modified Aharonov-Bohm effect due to spacetime noncommutativity.
Energy conservation for dynamical black holes
Hayward, Sean A.
2004-01-01
An energy conservation law is described, expressing the increase in mass-energy of a general black hole in terms of the energy densities of the infalling matter and gravitational radiation. For a growing black hole, this first law of black-hole dynamics is equivalent to an equation of Ashtekar & Krishnan, but the new integral and differential forms are regular in the limit where the black hole ceases to grow. An effective gravitational-radiation energy tensor is obtained, providing measures o...
Haster, Carl-Johan; Wang, Zhilu; Berry, Christopher P. L.; Stevenson, Simon; Veitch, John; Mandel, Ilya
2016-04-01
Gravitational waves from coalescences of neutron stars or stellar-mass black holes into intermediate-mass black holes (IMBHs) of ≳100 solar masses represent one of the exciting possible sources for advanced gravitational-wave detectors. These sources can provide definitive evidence for the existence of IMBHs, probe globular-cluster dynamics, and potentially serve as tests of general relativity. We analyse the accuracy with which we can measure the masses and spins of the IMBH and its companion in intermediate-mass-ratio coalescences. We find that we can identify an IMBH with a mass above 100 M⊙ with 95 per cent confidence provided the massive body exceeds 130 M⊙. For source masses above ˜200 M⊙, the best measured parameter is the frequency of the quasi-normal ringdown. Consequently, the total mass is measured better than the chirp mass for massive binaries, but the total mass is still partly degenerate with spin, which cannot be accurately measured. Low-frequency detector sensitivity is particularly important for massive sources, since sensitivity to the inspiral phase is critical for measuring the mass of the stellar-mass companion. We show that we can accurately infer source parameters for cosmologically redshifted signals by applying appropriate corrections. We investigate the impact of uncertainty in the model gravitational waveforms and conclude that our main results are likely robust to systematics.
Aarseth, Sverre J
2007-01-01
We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.
Energy Technology Data Exchange (ETDEWEB)
Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.
1987-01-01
This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging.
International Nuclear Information System (INIS)
This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging
International Nuclear Information System (INIS)
The superstrong gravitational field is the protagonist of this book. This gravitation is the power that warps space and time into a funnel and generates a black hole when a cosmic body undergoes catastrophic collapse. This superstrong gravitation reigns in the Universe, controlling the motion of infinitely large masses. The book describes natural phenomena caused by superstrong gravitation but perceived as nothing short of miracles, but it also explains how these miracles are studied and understood. (author)
Energy Technology Data Exchange (ETDEWEB)
NONE
2002-02-01
Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids. PMID:25768746
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-01
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability—which is triggered above a certain perturbation amplitude threshold—akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies—a phenomenon reminiscent of the inverse cascade displayed by (2 +1 )-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
Gravitational-wave background as a probe of the primordial black-hole abundance.
Saito, Ryo; Yokoyama, Jun'ichi
2009-04-24
The formation of a significant number of black holes (PBHs) is realized if and only if primordial density fluctuations have a large amplitude, which means that tensor perturbations generated from these scalar perturbations as a second-order effect are also large and comparable to the observational data. We show that pulsar timing data essentially rule out PBHs with 10;{2}-10;{4}M_{middle dot in circle}, which were previously considered as a candidate of intermediate-mass black holes, and that PBHs with a mass range of 10;{20} to 10;{26} g, which serves as a candidate of dark matter, may be probed by future space-based laser interferometers and atomic interferometers. PMID:19518692
Pekowsky, Larne; Healy, Jim; Shoemaker, Deirdre
2013-01-01
Previous analytic and numerical calculations suggest that, at each instant, the emission from a precessing black hole binary closely resembles the emission from a nonprecessing analog. In this paper we quantitatively explore the validity and limitations of that correspondence, extracting the radiation from a large collection of roughly two hundred generic black hole binary merger simulations both in the simulation frame and in a corotating frame that tracks precession. To a first approximation, the corotating-frame waveforms resemble nonprecessing analogs, based on similarity over a band-limited frequency interval defined using a fiducial detector (here, advanced LIGO) and the source's total mass $M$. By restricting attention to masses $M\\in 200, 2500 M_\\odot$, we insure our comparisons are sensitive only to our simulated late-time inspiral, merger, and ringdown signals. In this mass region, every one of our precessing simulations can be fit by some physically similar member of the \\texttt{IMRPhenomB} phenome...
Kalaghatgi, Chinmay; Arun, K G
2015-01-01
Searches for gravitational waves (GWs) from binary black holes using interferometric GW detectors require the construction of template banks for performing matched filtering while analyzing the data. Placement of templates over the parameter space of binaries, as well as coincidence tests of GW triggers from multiple detectors make use of the definition of a metric over the space of gravitational waveforms. Although recent searches have employed waveform templates coherently describing the inspiral, merger and ringdown (IMR) of the coalescence, the metric used in the template banks and coincidence tests was derived from post-Newtonian inspiral waveforms. In this paper, we compute the template-space metric of the IMR waveform family IMRPhenomB over the parameter space of masses and the effective spin parameter. We also propose a coordinate system, which is a modified version of post-Newtonian chirp time coordinates, in which the metric is slowly varying over the parameter space. The match function analytically...
Energy Technology Data Exchange (ETDEWEB)
Hezaveh, Yashar D. [Kavli Institute for Particle Astrophysics and Cosmology Stanford University, Stanford, CA (United States)
2014-08-20
Application of the most robust method of measuring black hole masses, spatially resolved kinematics of gas and stars, is presently limited to nearby galaxies. The Atacama Large Millimeter/sub-millimeter Array (ALMA) and 30m class telescopes (the Thirty Meter Telescope, the Giant Magellan Telescope, and the European Extremely Large Telescope) with milli-arcsecond resolution are expected to extend such measurements to larger distances. Here, we study the possibility of exploiting the angular magnification provided by strong gravitational lensing to measure black hole masses at high redshifts (z ∼ 1-6), using resolved gas kinematics with these instruments. We show that in ∼15% and ∼20% of strongly lensed galaxies, the inner 25 and 50 pc could be resolved, allowing the mass of ≳ 10{sup 8} M {sub ☉} black holes to be dynamically measured with ALMA, if moderately bright molecular gas is present at these small radii. Given the large number of strong lenses discovered in current millimeter surveys and future optical surveys, this fraction could constitute a statistically significant population for studying the evolution of the M-σ relation at high redshifts.
International Nuclear Information System (INIS)
Application of the most robust method of measuring black hole masses, spatially resolved kinematics of gas and stars, is presently limited to nearby galaxies. The Atacama Large Millimeter/sub-millimeter Array (ALMA) and 30m class telescopes (the Thirty Meter Telescope, the Giant Magellan Telescope, and the European Extremely Large Telescope) with milli-arcsecond resolution are expected to extend such measurements to larger distances. Here, we study the possibility of exploiting the angular magnification provided by strong gravitational lensing to measure black hole masses at high redshifts (z ∼ 1-6), using resolved gas kinematics with these instruments. We show that in ∼15% and ∼20% of strongly lensed galaxies, the inner 25 and 50 pc could be resolved, allowing the mass of ≳ 108 M ☉ black holes to be dynamically measured with ALMA, if moderately bright molecular gas is present at these small radii. Given the large number of strong lenses discovered in current millimeter surveys and future optical surveys, this fraction could constitute a statistically significant population for studying the evolution of the M-σ relation at high redshifts
Direct Gravitational Imaging of Intermediate Mass Black Holes in Extragalactic Halos
Inoue, Kaiki Taro; Silk, Joseph; Madau, Piero
2013-01-01
A galaxy halo may contain a large number of intermediate mass black holes (IMBHs) with masses in the range of 10^{2-6} solar mass. We propose to directly detect these IMBHs by observing multiply imaged QSO-galaxy or galaxy-galaxy strong lens systems in the submillimeter bands with high angular resolution. The silhouette of an IMBH in the lensing galaxy halo would appear as either a monopole-like or a dipole-like variation at the scale of the Einstein radius against the Einstein ring of the dust-emitting region surrounding the QSO. We use a particle tagging technique to dynamically populate a Milky Way-sized dark matter halo with black holes, and show that the surface mass density and number density of IMBHs have power-law dependences on the distance from the center of the host halo if smoothed on a scale of ~ 1 kpc. Most of the black holes orbiting close to the center are freely roaming as they have lost their dark matter hosts during infall due to tidal stripping. Next generation submillimeter telescopes wit...
Sheykhi, A.; Naeimipour, F.; Zebarjad, S. M.
2015-06-01
Considering the Lagrangian of the logarithmic nonlinear electrodynamics in the presence of a scalar dilaton field, we obtain a new class of topological black hole solutions of Einstein-dilaton gravity with two Liouville-type dilaton potentials. Black hole horizons and cosmological horizons, in these spacetimes, can be a two-dimensional positive, zero, or negative constant curvature surface. We find that the behavior of the electric field crucially depends on the dilaton coupling constant α . For small α , the electric field diverges near the origin, although its divergency is weaker than the linear Maxwell field. However, with increasing α , the behavior of the electric field, near the origin, approaches to that of the Maxwell field. We also study casual structure, asymptotic behavior, and physical properties of the solutions. We find that, depending on the model parameters, the topological dilaton black holes may have one or two horizons, and even in some cases we encounter a naked singularity without horizon. We compute the conserved and thermodynamic quantities of the spacetime and investigate that these quantities satisfy the first law of thermodynamics. We also probe thermal stability in the canonical and grand canonical ensembles and disclose the effects of the dilaton field as well as nonlinear parameter on the thermal stability of the solutions. Finally, we investigate thermodynamical geometry of the obtained solutions by introducing a new metric and studying the phase transition points due to the divergency of the Ricci scalar. We find that the dilaton field affects the phase transition points of the system.
Trifirò, Daniele; O'Shaughnessy, Richard; Gerosa, Davide; Berti, Emanuele; Kesden, Michael; Littenberg, Tyson; Sperhake, Ulrich
2016-02-01
Gravitational waves from coalescing binary black holes encode the evolution of their spins prior to merger. In the post-Newtonian regime and on the precession time scale, this evolution has one of three morphologies, with the spins either librating around one of two fixed points ("resonances") or circulating freely. In this paper we perform full parameter estimation on resonant binaries with fixed masses and spin magnitudes, changing three parameters: a conserved "projected effective spin" ξ and resonant family Δ Φ =0 ,π (which uniquely label the source); the inclination θJ N of the binary's total angular momentum with respect to the line of sight (which determines the strength of precessional effects in the waveform); and the signal amplitude. We demonstrate that resonances can be distinguished for a wide range of binaries, except for highly symmetric configurations where precessional effects are suppressed. Motivated by new insight into double-spin evolution, we introduce new variables to characterize precessing black hole binaries which naturally reflects the time scale separation of the system and therefore better encode the dynamical information carried by gravitational waves.
Haster, Carl-Johan; Berry, Christopher P L; Stevenson, Simon; Veitch, John; Mandel, Ilya
2015-01-01
Gravitational waves from coalescences of neutron stars or stellar-mass black holes into intermediate-mass black holes (IMBHs) of $\\gtrsim 100$ solar masses represent one of the exciting possible sources for advanced gravitational-wave detectors. These sources can provide definitive evidence for the existence of IMBHs, probe globular-cluster dynamics, and potentially serve as tests of general relativity. We analyse the accuracy with which we can measure the masses and spins of the IMBH and its companion in intermediate-mass ratio coalescences. We find that we can identify an IMBH with a mass above $100 ~ M_\\odot$ with $95\\%$ confidence provided the massive body exceeds $130 ~ M_\\odot$. For source masses above $\\sim200 ~ M_\\odot$, the best measured parameter is the frequency of the quasi-normal ringdown. Consequently, the total mass is measured better than the chirp mass for massive binaries, but the total mass is still partly degenerate with spin, which cannot be accurately measured. Low-frequency detector sen...
Strong Gravitational Lensing as a Probe of Gravity, Dark-Matter and Super-Massive Black Holes
Koopmans, L V E; Barnabe, M; Bolton, A; Bradac, M; Ciotti, L; Congdon, A; Czoske, O; Dye, S; Dutton, A; Elliasdottir, A; Evans, E; Fassnacht, C D; Jackson, N; Keeton, C; Lazio, J; Marshall, P; Meneghetti, M; McKean, J; Moustakas, L; Myers, S; Nipoti, C; Suyu, S; van de Ven, G; Vegetti, S; Wambsganss, J; Webster, R; Wucknitz, O; Zhao, H-S
2009-01-01
Whereas considerable effort has been afforded in understanding the properties of galaxies, a full physical picture, connecting their baryonic and dark-matter content, super-massive black holes, and (metric) theories of gravity, is still ill-defined. Strong gravitational lensing furnishes a powerful method to probe gravity in the central regions of galaxies. It can (1) provide a unique detection-channel of dark-matter substructure beyond the local galaxy group, (2) constrain dark-matter physics, complementary to direct-detection experiments, as well as metric theories of gravity, (3) probe central super-massive black holes, and (4) provide crucial insight into galaxy formation processes from the dark matter point of view, independently of the nature and state of dark matter. To seriously address the above questions, a considerable increase in the number of strong gravitational-lens systems is required. In the timeframe 2010-2020, a staged approach with radio (e.g. EVLA, e-MERLIN, LOFAR, SKA phase-I) and optica...
Harms, Enno; Bernuzzi, Sebastiano; Nagar, Alessandro
2015-01-01
We present a new computation of the asymptotic gravitational wave energy fluxes emitted by a {\\it spinning} particle in circular equatorial orbits about a Kerr black hole. The particle dynamics is computed in the pole-dipole approximation, solving the Mathisson-Papapetrou equations with the Tulczyjew spin-supplementary-condition. The fluxes are computed, for the first time, by solving the 2+1 Teukolsky equation in the time-domain using hyperboloidal and horizon-penetrating coordinates. Denoting by $M$ the black hole mass and by $\\mu$ the particle mass, we cover dimensionless background spins $a/M=(0,\\pm0.9)$ and dimensionless particle spins $-0.9\\leq S/\\mu^2 \\leq +0.9$. Our results span orbits of Boyer-Lindquist coordinate radii $4\\leq r/M \\leq 30$; notably, we investigate the strong-field regime, in some cases even beyond the last-stable-orbit. We confirm, numerically, the Tanaka {\\it et al.} [Phys.\\ Rev.\\ D 54, 3762] 2.5th order accurate Post-Newtonian (PN) predictions for the gravitational wave fluxes of a...
Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Blackburn, Lindy L.; Camp, J. B.; Gehrels, N.; Graff, P. B.
2014-01-01
We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency 50 less than or equal to italic f0/Hz less than or equal to 2000 and decay timescale 0.0001 approximately less than t/s approximately less than 0.1 characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass 50 less than or equal to M/solar mass less than or equal to 450 and component mass ratios of either 1:1 or 4:1. For systems with total mass 100 less than or equal to M/solar mass 150, we report a 90%-confidence upper limit on the rate of binary IMBH mergers with non-spinning and equal mass components of 6:9 x 10(exp 8) Mpc(exp -3)yr(exp -1). We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, l=m=2, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.
Directory of Open Access Journals (Sweden)
Christian Corda
2015-01-01
Full Text Available Some recent important results on black hole (BH quantum physics concerning the BH effective state and the natural correspondence between Hawking radiation and BH quasi-normal modes (QNMs are reviewed, clarified, and refined. Such a correspondence permits one to naturally interpret QNMs as quantum levels in a semiclassical model. This is a model of BH somewhat similar to the historical semiclassical model of the structure of a hydrogen atom introduced by Bohr in 1913. In a certain sense, QNMs represent the “electron” which jumps from a level to another one and the absolute values of the QNMs frequencies, “triggered” by emissions (Hawking radiation and absorption of particles, represent the energy “shells” of the “gravitational hydrogen atom.” Important consequences on the BH information puzzle are discussed. In fact, it is shown that the time evolution of this “Bohr-like BH model” obeys a time dependent Schrödinger equation which permits the final BH state to be a pure quantum state instead of a mixed one. Thus, information comes out in BH evaporation in agreement with the assumption by ’t Hooft that Schröedinger equations can be used universally for all dynamics in the universe. We also show that, in addition, our approach solves the entanglement problem connected with the information paradox.
International Nuclear Information System (INIS)
Some recent important results on black hole (BH) quantum physics concerning the BH effective state and the natural correspondence between Hawking radiation and BH quasi-normal modes (QNMs) are reviewed, clarified, and refined. Such a correspondence permits one to naturally interpret QNMs as quantum levels in a semiclassical model. This is a model of BH somewhat similar to the historical semiclassical model of the structure of a hydrogen atom introduced by Bohr in 1913. In a certain sense, QNMs represent the “electron” which jumps from a level to another one and the absolute values of the QNMs frequencies, “triggered” by emissions (Hawking radiation) and absorption of particles, represent the energy “shells” of the “gravitational hydrogen atom.” Important consequences on the BH information puzzle are discussed. In fact, it is shown that the time evolution of this “Bohr-like BH model” obeys a time dependent Schrödinger equation which permits the final BH state to be a pure quantum state instead of a mixed one. Thus, information comes out in BH evaporation in agreement with the assumption by ’t Hooft that Schröedinger equations can be used universally for all dynamics in the universe. We also show that, in addition, our approach solves the entanglement problem connected with the information paradox
Energy Technology Data Exchange (ETDEWEB)
Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others
1995-07-01
Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.
Signatures of black holes at the LHC
Cavaglia, Marco; Godang, Romulus; Cremaldi, Lucien M.; Summers, Donald J.
2007-01-01
Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.
Gravitational Waves from a Fissioning White Hole
Gomez, R.; Husa, S.; Lehner, L.; Winicour, J.
2002-01-01
We present a fully nonlinear calculation of the waveform of the gravitational radiation emitted in the fission of a vacuum white hole. At early times, the waveforms agree with close approximation perturbative calculations but they reveal dramatic time and angular dependence in the nonlinear regime. The results pave the way for a subsequent computation of the radiation emitted after a binary black hole merger.
From Schwinger Balls to Black Holes
Allahbakhshi, Davood
2016-01-01
We have shown intriguing similarities between Schwinger balls and black holes. By considering black hole as a gravitational Schwinger ball, we have derived the Bekenstein-Hawking entropy and the first law of black hole thermodynamics as a direct result of the inverse area dependence of the gravitational force. It is also shown that the Planck length is nothing but the gravitational Schwinger length. The relation between the mass and the radius of the black hole is derived by considering the black hole as a Schwinger ball of gravitons. We show how the evolution of the entanglement entropy of the black hole, as Page introduced many years ago, can be obtained by including gravitons in the black hole's evaporation process and using a deformed EPR mechanism. Also this deformed EPR mechanism can solve the information paradox. We show how naive simultaneous usage of Page's argument and equivalence principle leads to firewall problem.
On the Induced Gravitational Collapse of a Neutron Star to a Black Hole by a Type Ib/c Supernova
Rueda, Jorge A
2012-01-01
It is understood that the Supernovae (SNe) associated to Gamma Ray Bursts (GRBs) are of type Ib/c. The temporal coincidence of the GRB and the SN represents still a major enigma of Relativistic Astrophysics. We elaborate here, from the earlier paradigm, that the concept of induced gravitational collapse is essential to explain the GRB-SN connection. The specific case of a close (period $<1$ h) binary system composed of an evolved C+O core with a neutron star companion is considered. We evaluate the accretion rate onto the neutron star when the C+O star explodes as a type Ib/c SN and the explicit expression of the accreted mass as a function of the nature of the components and binary parameters is given. We show that the neutron star can reach, in a few seconds, the critical mass and consequently gravitationally collapses to a black hole. This gravitational collapse process leads to the emission of the GRB.
ON THE INDUCED GRAVITATIONAL COLLAPSE OF A NEUTRON STAR TO A BLACK HOLE BY A TYPE Ib/c SUPERNOVA
Energy Technology Data Exchange (ETDEWEB)
Rueda, Jorge A.; Ruffini, Remo, E-mail: jorge.rueda@icra.it, E-mail: ruffini@icra.it [Dipartimento di Fisica and ICRA, Sapienza Universita di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy)
2012-10-10
It is understood that the supernovae (SNe) associated with gamma-ray bursts (GRBs) are of Type Ib/c. The temporal coincidence of the GRB and the SN continues to represent a major enigma of Relativistic Astrophysics. We elaborate here, from the earlier paradigm, that the concept of induced gravitational collapse is essential to explain the GRB-SN connection. The specific case of a close (orbital period <1 hr) binary system composed of an evolved star with a neutron star (NS) companion is considered. We evaluate the accretion rate onto the NS of the material expelled from the explosion of the core progenitor as a Type Ib/c SN and give the explicit expression of the accreted mass as a function of the nature of the components and binary parameters. We show that the NS can reach, in a few seconds, critical mass and consequently gravitationally collapse to a black hole. This gravitational collapse process leads to the emission of the GRB.
Aasi, J; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Bavigadda, V; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Benacquista, M; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dolique, V; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Goggin, L M; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K
2014-01-01
We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency $50\\le f_{0}/\\mathrm{Hz} \\le 2000$ and decay timescale $0.0001\\lesssim \\tau/\\mathrm{s} \\lesssim 0.1$ characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass $50 \\le M/\\mathrm{M}_\\odot \\le 450$ and component mass ratios of either 1:1 or 4:1. For systems with total mass $100 \\le M/\\mathrm{M}_\\odot \\le 150$, we report a 90%-confidence upper limit on the rate of binary IMBH mergers with non-spinning and equal mass components of $6.9\\times10^{-8}\\,$Mpc$^{-3}$yr$^{-1}$. We also report a rate upper limit for ringdown waveforms from perturbed IMBHs,...
International Nuclear Information System (INIS)
We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole
Black holes and the multiverse
Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun
2016-02-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.
On minor black holes in galactic nuclei
McKernan, Barry; Ford, K. E. Saavik; Yaqoob, Tahir; Winter, Lisa M.
2011-01-01
Small and intermediate mass black holes should be expected in galactic nuclei as a result of stellar evolution, minor mergers and gravitational dynamical friction. If these minor black holes accrete as X-ray binaries or ultra-luminous X-ray sources, and are associated with star formation, they could account for observations of many low luminosity AGN or LINERs. Accreting and inspiralling intermediate mass black holes could provide a crucial electromagnetic counterpart to strong gravitational ...
Joint evolution of black holes and galaxies
Colpi, M; Haardt, F
2006-01-01
OBSERVATIONAL EVIDENCE FOR SUPERMASSIVE BLACK HOLES Introduction Some Useful Formalism General Considerations Resolved Stellar Dynamics Gas as a Tracer of the Gravitational Potential Tackling the Unresolvable: Reverberation Mapping Scaling Relations for SMBHs Black Hole Demographics The Future JOINT EVOLUTION OF BLACK HOLES AND GALAXIES: OBSERVATIONAL ISSUES Galaxy Activity: Generalities Local Evidence on the Interplay Between the Stellar and Gravitational Origin of AGN Activity The Cosmic History of Galaxy Activity Constraints on the Cosmic Energy Budget Current Observational Programs and Fut
Trifirò, Daniele; Gerosa, Davide; Berti, Emanuele; Kesden, Michael; Littenberg, Tyson; Sperhake, Ulrich
2015-01-01
Gravitational waves from coalescing binary black holes encode the evolution of their spins prior to merger. In the post-Newtonian regime and on the precession timescale, this evolution has one of three morphologies, with the spins either librating around one of two fixed points ("resonances") or circulating freely. In this work we perform full parameter estimation on resonant binaries with fixed masses and spin magnitudes, changing three parameters: a conserved "projected effective spin" $\\xi$ and resonant family $\\Delta\\Phi=0,\\pi$ (which uniquely label the source); the inclination $\\theta_{JN}$ of the binary's total angular momentum with respect to the line of sight (which determines the strength of precessional effects in the waveform); and the signal amplitude. We demonstrate that resonances can be distinguished for a wide range of binaries, except for highly symmetric configurations where precessional effects are suppressed. Motivated by new insight into double-spin evolution, we introduce new variables t...
International Nuclear Information System (INIS)
The observation of massive black hole binaries with pulsar timing arrays (PTAs) is one of the goals of gravitational-wave astronomy in the coming years. Massive (> or approx. 108M·) and low-redshift (2 and the other parameters as 1/SNR. For a fiducial PTA of 100 pulsars uniformly distributed in the sky and a coherent SNR=10, we find ΔΩ≅40 deg2, a fractional error on the signal amplitude of ≅30% (which constrains only very poorly the chirp mass-luminosity distance combination M5/3/DL), and the source inclination and polarization angles are recovered at the ≅0.3 rad level. The ongoing Parkes PTA is particularly sensitive to systems located in the southern hemisphere, where at SNR=10 the source position can be determined with ΔΩ≅10 deg2, but has poorer (by an order of magnitude) performance for sources in the northern hemisphere.
Myers, R C
2001-01-01
This is a short summary of my lectures given at the Fourth Mexican School on Gravitation and Mathematical Physics. These lectures gave a brief introduction to black holes in string theory, in which I primarily focussed on describing some of the recent calculations of black hole entropy using the statistical mechanics of D-brane states. The following overview will also provide the interested students with an introduction to the relevant literature.
Geometric inequalities for black holes
Dain, Sergio
2014-01-01
It is well known that the three parameters that characterize the Kerr black hole (mass, angular momentum and horizon area) satisfy several important inequalities. Remarkably, some of these inequalities remain valid also for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this article recent results in this subject are reviewed.
Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew
2016-01-01
It has recently been shown that BMS supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft ($i.e.$ zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This paper gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that com...
Black holes and the multiverse
Garriga, Jaume; Zhang, Jun
2015-01-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive blac...
International Nuclear Information System (INIS)
Coalescing neutron-star-black-hole (NS-BH) binaries are a promising source of gravitational-wave (GW) signals detectable with large-scale laser interferometers such as the Advanced Laser Interferometer Gravitational-Wave Observatory and Virgo. They are also one of the main short gamma-ray burst (SGRB) progenitor candidates. If the black hole (BH) tidally disrupts its companion, an SGRB may be ignited when a sufficiently massive accretion disk forms around the remnant BH. Detecting an NS-BH coalescence both in the GW and electromagnetic (EM) spectrum offers a wealth of information about the nature of the source. How much can actually be inferred from a joint detection is unclear, however, as a mass/spin degeneracy may reduce the GW measurement accuracy. To shed light on this problem and on the potential of joint EM+GW observations, we here combine recent semi-analytical predictions for the remnant disk mass with estimates of the parameter-space portion that is selected by a GW detection. We identify cases in which an SGRB ignition is supported, others in which it can be excluded, and finally others in which the outcome depends on the chosen model for the currently unknown NS equation of state. We pinpoint a range of systems that would allow us to place lower bounds on the equation of state stiffness if both the GW emission and its EM counterpart are observed. The methods we develop can broaden the scope of existing GW detection and parameter-estimation algorithms and could allow us to disregard about half of the templates in an NS-BH search following an SGRB trigger, increasing its speed and sensitivity
Khan, Sebastian; Husa, Sascha; Hannam, Mark; Ohme, Frank; Pürrer, Michael; Forteza, Xisco Jiménez; Bohé, Alejandro
2016-02-01
We present a new frequency-domain phenomenological model of the gravitational-wave signal from the inspiral, merger and ringdown of nonprecessing (aligned-spin) black-hole binaries. The model is calibrated to 19 hybrid effective-one-body-numerical-relativity waveforms up to mass ratios of 1 ∶18 and black-hole spins of |a /m |˜0.85 (0.98 for equal-mass systems). The inspiral part of the model consists of an extension of frequency-domain post-Newtonian expressions, using higher-order terms fit to the hybrids. The merger ringdown is based on a phenomenological ansatz that has been significantly improved over previous models. The model exhibits mismatches of typically less than 1% against all 19 calibration hybrids and an additional 29 verification hybrids, which provide strong evidence that, over the calibration region, the model is sufficiently accurate for all relevant gravitational-wave astronomy applications with the Advanced LIGO and Virgo detectors. Beyond the calibration region the model produces physically reasonable results, although we recommend caution in assuming that any merger-ringdown waveform model is accurate outside its calibration region. As an example, we note that an alternative nonprecessing model, SEOBNRv2 (calibrated up to spins of only 0.5 for unequal-mass systems), exhibits mismatch errors of up to 10% for high spins outside its calibration region. We conclude that waveform models would benefit most from a larger number of numerical-relativity simulations of high-aligned-spin unequal-mass binaries.
International Nuclear Information System (INIS)
We study conservative finite-mass corrections to the motion of a particle in a bound (eccentric) strong-field orbit around a Schwarzschild black hole. We assume the particle's mass μ is much smaller than the black hole mass M, and explore post-geodesic corrections of O(μ/M). Our analysis uses numerical data from a recently developed code that outputs the Lorenz-gauge gravitational self-force (GSF) acting on the particle along the eccentric geodesic. First, we calculate the O(μ/M) conservative correction to the periastron advance of the orbit, as a function of the (gauge-dependent) semilatus rectum and eccentricity. A gauge-invariant description of the GSF precession effect is made possible in the circular-orbit limit, where we express the correction to the periastron advance as a function of the invariant azimuthal frequency. We compare this relation with results from fully nonlinear numerical-relativistic simulations. In order to obtain a gauge-invariant measure of the GSF effect for fully eccentric orbits, we introduce a suitable generalization of Detweiler's circular-orbit ''redshift'' invariant. We compute the O(μ/M) conservative correction to this invariant, expressed as a function of the two invariant frequencies that parametrize the orbit. Our results are in good agreement with results from post-Newtonian calculations in the weak-field regime, as we shall report elsewhere. The results of our study can inform the development of analytical models for the dynamics of strongly gravitating binaries. They also provide an accurate benchmark for future numerical-relativistic simulations.
Are black holes totally black?
Grib, A A
2014-01-01
Geodesic completeness needs existence near the horizon of the black hole of "white hole" geodesics coming from the region inside of the horizon. Here we give the classification of all such geodesics with the energies $E/m \\le 1$ for the Schwarzschild and Kerr's black hole. The collisions of particles moving along the "white hole" geodesics with those moving along "black hole" geodesics are considered. Formulas for the increase of the energy of collision in the centre of mass frame are obtained and the possibility of observation of high energy particles arriving from the black hole to the Earth is discussed.
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747
Resource Letter BH-2: Black Holes
Gallo, Elena
2008-01-01
This resource letter is designed to guide students, educators, and researchers through (some of) the literature on black holes. Both the physics and astrophysics of black holes are discussed. Breadth has been emphasized over depth, and review articles over primary sources. We include resources ranging from non-technical discussions appropriate for broad audiences to technical reviews of current research. Topics addressed include classification of stationary solutions, perturbations and stability of black holes, numerical simulations, collisions, the production of gravity waves, black hole thermodynamics and Hawking radiation, quantum treatments of black holes, black holes in both higher and lower dimensions, and connections to nuclear and condensed matter physics. On the astronomical end, we also cover the physics of gas accretion onto black holes, relativistic jets, gravitationally red-shifted emission lines, evidence for stellar-mass black holes in binary systems and super-massive black holes at the centers...
Husa, Sascha; Khan, Sebastian; Hannam, Mark; Pürrer, Michael; Ohme, Frank; Forteza, Xisco Jiménez; Bohé, Alejandro
2016-02-01
In this paper we discuss the anatomy of frequency-domain gravitational-wave signals from nonprecessing black-hole coalescences with the goal of constructing accurate phenomenological waveform models. We first present new numerical-relativity simulations for mass ratios up to 18, including spins. From a comparison of different post-Newtonian approximants with numerical-relativity data we select the uncalibrated SEOBNRv2 model as the most appropriate for the purpose of constructing hybrid post-Newtonian/numerical-relativity waveforms, and we discuss how we prepare time-domain and frequency-domain hybrid data sets. We then use our data together with results in the literature to calibrate simple explicit expressions for the final spin and radiated energy. Equipped with our prediction for the final state we then develop a simple and accurate merger-ringdown model based on modified Lorentzians in the gravitational-wave amplitude and phase, and we discuss a simple method to represent the low frequency signal augmenting the TaylorF2 post-Newtonian approximant with terms corresponding to higher orders in the post-Newtonian expansion. We finally discuss different options for modelling the small intermediate frequency regime between inspiral and merger ringdown. A complete phenomenological model based on the present work is presented in a companion paper [S. Khan et al., following paper, Phys. Rev. D 93 044007 (2016)].
The coalescence rates of double black holes
Belczynski, Krzysztof; Bulik, Tomasz; Dominik, Michal; Prestwich, Andrea
2011-01-01
We present the summary of the recent investigations of double black hole binaries in context of their formation and merger rates. In particular we discuss the spectrum of black hole masses, the formation scenarios in the local Universe and the estimates of detection rates for gravitational radiation detectors like LIGO and VIRGO. Our study is based on observed properties of known Galactic and extra-galactic stellar mass black holes and evolutionary predictions. We argue that the binary black ...
The horizon of the lightest black hole
Calmet, Xavier; Casadio, Roberto
2015-09-01
We study the properties of the poles of the resummed graviton propagator obtained by resumming bubble matter diagrams which correct the classical graviton propagator. These poles have been previously interpreted as black holes precursors. Here, we show using the horizon wave-function formalism that these poles indeed have properties which make them compatible with being black hole precursors. In particular, when modeled with a Breit-Wigner distribution, they have a well-defined gravitational radius. The probability that the resonance is inside its own gravitational radius, and thus that it is a black hole, is about one half. Our results confirm the interpretation of these poles as black hole precursors.
The horizon of the lightest black hole
Calmet, Xavier
2015-01-01
We study the properties of the poles of the resummed graviton propagator obtained by resumming bubble matter diagrams which correct the classical graviton propagator. These poles have been previously interpreted as black holes precursors. Here, we show using the Horizon Wave-Function formalism that these poles indeed have properties which make them compatible with being black hole precursors. In particular, when modeled with a Breit-Wigner distribution, they have a well defined gravitational radius. The probability that the resonance is inside its own gravitational radius, and thus that it is black hole, is about one half. Our results confirm the interpretation of these poles as black hole precursors.
The horizon of the lightest black hole
Energy Technology Data Exchange (ETDEWEB)
Calmet, Xavier [University of Sussex, Physics and Astronomy, Falmer, Brighton (United Kingdom); Casadio, Roberto [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, Bologna (Italy)
2015-09-15
We study the properties of the poles of the resummed graviton propagator obtained by resumming bubble matter diagrams which correct the classical graviton propagator. These poles have been previously interpreted as black holes precursors. Here, we show using the horizon wave-function formalism that these poles indeed have properties which make them compatible with being black hole precursors. In particular, when modeled with a Breit-Wigner distribution, they have a well-defined gravitational radius. The probability that the resonance is inside its own gravitational radius, and thus that it is a black hole, is about one half. Our results confirm the interpretation of these poles as black hole precursors. (orig.)
The horizon of the lightest black hole
International Nuclear Information System (INIS)
We study the properties of the poles of the resummed graviton propagator obtained by resumming bubble matter diagrams which correct the classical graviton propagator. These poles have been previously interpreted as black holes precursors. Here, we show using the horizon wave-function formalism that these poles indeed have properties which make them compatible with being black hole precursors. In particular, when modeled with a Breit-Wigner distribution, they have a well-defined gravitational radius. The probability that the resonance is inside its own gravitational radius, and thus that it is a black hole, is about one half. Our results confirm the interpretation of these poles as black hole precursors. (orig.)
Nonstationary analogue black holes
International Nuclear Information System (INIS)
We study the existence of analogue nonstationary spherically symmetric black holes. The prime example is the acoustic model see Unruh (1981 Phys. Rev. Lett. 46 1351). We consider also a more general class of metrics that could be useful in other physical models of analogue black and white holes. We give examples of the appearance of black holes and of disappearance of white holes. We also discuss the relation between the apparent and the event horizons for the case of analogue black holes. In the end we study the inverse problem of determination of black or white holes by boundary measurements for the spherically symmetric nonstationary metrics. (paper)
Hayward, Sean A.
2008-01-01
This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...
Energy Technology Data Exchange (ETDEWEB)
Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)
2007-11-15
We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.
Strominger, Andrew
1993-01-01
The quantum statistics of charged, extremal black holes is investigated beginning with the hypothesis that the quantum state is a functional on the space of closed three-geometries, with each black hole connected to an oppositely charged black hole through a spatial wormhole. From this starting point a simple argument is given that a collection of extremal black holes obeys neither Bose nor Fermi statistics. Rather they obey an exotic variety of particle statistics known as ``infinite statist...
Gao, C. J.; Zhang, S. N.
2006-01-01
The exact solutions of electrically charged phantom black holes with the cosmological constant are constructed. They are labelled by the mass, the electrical charge, the cosmological constant and the coupling constant between the phantom and the Maxwell field. It is found that the phantom has important consequences on the properties of black holes. In particular, the extremal charged phantom black holes can never be achieved and so the third law of thermodynamics for black holes still holds. ...
Liouvillian perturbations of black holes
Couch, W. E.; Holder, C. L.
2007-10-01
We apply the well-known Kovacic algorithm to find closed form, i.e., Liouvillian solutions, to the differential equations governing perturbations of black holes. Our analysis includes the full gravitational perturbations of Schwarzschild and Kerr, the full gravitational and electromagnetic perturbations of Reissner-Nordstrom, and specialized perturbations of the Kerr-Newman geometry. We also include the extreme geometries. We find all frequencies ω, in terms of black hole parameters and an integer n, which allow Liouvillian perturbations. We display many classes of black hole parameter values and their corresponding Liouvillian perturbations, including new closed-form perturbations of Kerr and Reissner-Nordstrom. We also prove that the only type 1 Liouvillian perturbations of Schwarzschild are the known algebraically special ones and that type 2 Liouvillian solutions do not exist for extreme geometries. In cases where we do not prove the existence or nonexistence of Liouvillian perturbations we obtain sequences of Diophantine equations on which decidability rests.
Decoding the final state in binary black hole mergers
Healy, James; Shoemaker, Deirdre
2014-01-01
We demonstrate that in binary black hole mergers there is a direct correlation between the frequency of the gravitational wave at peak amplitude and the mass and spin of the final black hole. This correlation could potentially assist with the analysis of gravitational wave observations from binary black hole mergers.
Black holes and cosmic censorship
International Nuclear Information System (INIS)
It is widely accepted that the complete gravitational collapse of a body always yields a black hole, and that naked singularities are never produced (the cosmic censorship hypothesis). The local (or strong) cosmic censorship hypothesis states that singularities which are even locally naked (e.g., to an observer inside a black hole) are never produced. This dissertation studies the validity of these two conjectures. The Kerr-Newman metrics describes the black holes only when M2 greater than or equal to Q2 + P2, where M is the mass of the black hole, a = J/M its specific angular momentum, Q its electric charge, and P its magnetic charge. In the first part of this dissertation, the possibility of converting an extreme Kerr-Newman black hole (M2 = a2 + Q2 + P2) into a naked singularity by the accretion of test particles is considered. The motion of test particles is studied with a large angular momentum to energy ratio, and also test particles with a large charge to energy ratio. The final state is always found to be a black hole if the angular momentum, electric charge, and magnetic charge of the black hole are all much greater than the corresponding angular momentum, electric charge, and magnetic charge of the test particle. In Part II of this dissertation possible black hole interior solutions are studied. The Cauchy horizons and locally naked timelike singularities of the charged (and/or rotating) solutions are contrasted with the spacelike all-encompassing singularity of the Schwarzschild solution. It is determined which portions of the analytic extension of the Reissner-Nordstroem solution are relevant to realistic gravitational collapse
Levin, Janna; D'Orazio, Daniel
2016-03-01
Black holes are dark dead stars. Neutron stars are giant magnets. As the neutron star orbits the black hole, an electronic circuit forms that generates a blast of power just before the black hole absorbs the neutron star whole. The black hole battery conceivably would be observable at cosmological distances. Possible channels for luminosity include synchro-curvature radiation, a blazing fireball, or even an unstable, short-lived black hole pulsar. As suggested by Mingarelli, Levin, and Lazio, some fraction of the battery power could also be reprocessed into coherent radio emission to populate a subclass of fast radio bursts.
Adler, Stephen L
2016-01-01
A frame dependent effective action motivated by the postulates of three-space general coordinate invariance and Weyl scaling invariance exactly mimics a cosmological constant in Robertson-Walker spacetimes. However, in a static spherically symmetric Schwarzschild-like geometry it modifies the black hole horizon structure within microscopic distances of the nominal horizon, in such a way that $g_{00}$ never vanishes. This could have important implications for the black hole "information paradox".
International Nuclear Information System (INIS)
Recent observations suggested that star formation quenching in galaxies is related to galaxy structure. Here we propose a new mechanism to explain the physical origin of this correlation. We assume that while quenching is maintained in quiescent galaxies by a feedback mechanism, cooling flows in the hot halo gas can still develop intermittently. We study cooling flows in a large suite of around 90 hydrodynamic simulations of an isolated galaxy group, and find that the flow development depends significantly on the gravitational potential well in the central galaxy. If the galaxy's gravity is not strong enough, cooling flows result in a central cooling catastrophe, supplying cold gas and feeding star formation to galactic bulges. When the bulge grows prominent enough, compressional heating starts to offset radiative cooling and maintains cooling flows in a long-term hot mode without producing a cooling catastrophe. Our model thus describes a self-limited growth channel for galaxy bulges and naturally explains the connection between quenching and bulge prominence. In particular, we explicitly demonstrate that M∗/Reff1.5 is a good structural predictor of quenching. We further find that the gravity from the central supermassive black hole also affects the bimodal fate of cooling flows, and we predict a more general quenching predictor to be Mbh1.6M∗/Reff1.5, which may be tested in future observational studies
Cho, Hee-Suk
2016-01-01
Recently, two gravitational wave (GW) signals, named as GW150914 and GW151226, have been detected by the two LIGO detectors. Although both signals were identified as originating from merging black hole (BH) binaries, GWs from systems containing neutron stars (NSs) are also expected to be detected in the near future by the Advanced detector network. In this work, we assess the accuracy in measuring the NS mass ($M_{ns}$) for the GWs from BH-NS binaries adopting the Advanced LIGO sensitivity with a signal-to-noise ratio of 10. By using the Fisher matrix method, we calculate the measurement errors ($\\sigma$) in $M_{ns}$ assuming the NS mass of $1 \\leq M_{ns}/M_{\\odot} \\leq 2$ and low mass BHs with the range of $4 \\leq M_{bh}/M_{\\odot} \\leq 10$. We used the TaylorF2 waveform model where the spins are aligned with the orbital angular momentum, but here we only consider the BH spins. We find that the fractional errors ($\\sigma/M_{ns} \\times 100$) are in the range of $10\\% - 50\\%$ in our mass region for a given dime...
Mishra, Chandra Kant; Kela, Aditya; Arun, K. G.; Faye, Guillaume
2016-04-01
For black-hole binaries whose spins are (anti-) aligned with respect to the orbital angular momentum of the binary, we compute the frequency-domain phasing coefficients including the quadratic-in-spin terms up to the third post-Newtonian (3PN) order, the cubic-in-spin terms at the leading order, 3.5PN, and the spin-orbit effects up to the 4PN order. In addition, we obtain the 2PN spin contributions to the amplitude of the frequency-domain gravitational waveforms for nonprecessing binaries, using recently derived expressions for the time-domain polarization amplitudes of binaries with generic spins, complete at that accuracy level. These two results are updates to [K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner, Phys. Rev. D 79, 104023 (2009).] for amplitude and [M. Wade, J. D. E. Creighton, E. Ochsner, and A. B. Nielsen, Phys. Rev. D 88, 083002 (2013).] for phasing. They should be useful for constructing banks of templates that accurately model nonprecessing inspiraling binaries, for parameter estimation studies, and for constructing analytical template families that account for the inspiral-merger-ringdown phases of the binary.
Ajith, P
2009-01-01
(Abridged): We assess the statistical errors in estimating the parameters of non-spinning black-hole binaries using ground-based gravitational-wave detectors. While past assessments were based on only the inspiral/ring-down pieces of the coalescence signal, the recent progress in analytical and numerical relativity enables us to make more accurate projections using "complete" inspiral-merger-ringdown waveforms. We employ the Fisher matrix formalism to estimate how accurately the source parameters will be measurable using a single interferometer as well as a network of interferometers. Those estimates are further vetted by Monte-Carlo simulations. We find that the parameter accuracies of the complete waveform are, in general, significantly better than those of just the inspiral waveform in the case of binaries with total mass M > 20 M_sun. For the case of the Advanced LIGO detector, parameter estimation is the most accurate in the M=100-200 M_sun range. For an M=100M_sun system, the errors in measuring the tot...
Mishra, Chandra Kant; Arun, K G; Faye, Guillaume
2016-01-01
For black-hole binaries whose spins are (anti-) aligned with respect to the orbital angular momentum of the binary, we compute the frequency domain phasing coefficients including the quadratic-in-spin terms up to the third post-Newtonian (3PN) order, the cubic-in-spin terms at the leading order, 3.5PN, and the spin-orbit effects up to the 4PN order. In addition, we obtain the 2PN spin contributions to the amplitude of the frequency-domain gravitational waveforms for non-precessing binaries, using recently derived expressions for the time-domain polarization amplitudes of binaries with generic spins, complete at that accuracy level. These two results are updates to Arun et al. (2009) [1] for amplitude and Wade et al. (2013) [2] for phasing. They should be useful to construct banks of templates that model accurately non-precessing inspiraling binaries, for parameter estimation studies, and or constructing analytical template families that accounts for the inspiral-merger-ringdown phases of the binary.
Black Hole Based Tests of General Relativity
Yagi, Kent
2016-01-01
General relativity has passed all solar system experiments and neutron star based tests, such as binary pulsar observations, with flying colors. A more exotic arena for testing general relativity is in systems that contain one or more black holes. Black holes are the most compact objects in the universe, providing probes of the strongest-possible gravitational fields. We are motivated to study strong-field gravity since many theories give large deviations from general relativity only at large field strengths, while recovering the weak-field behavior. In this article, we review how one can probe general relativity and various alternative theories of gravity by using electromagnetic waves from a black hole with an accretion disk, and gravitational waves from black hole binaries. We first review model-independent ways of testing gravity with electromagnetic/gravitational waves from a black hole system. We then focus on selected examples of theories that extend general relativity in rather simple ways. Some impor...
A New Model of Black Hole Formation
Directory of Open Access Journals (Sweden)
Thayer G. D.
2013-10-01
Full Text Available The formation of a black hole and its event horizon are described. Conclusions, which are the result of a thought experiment, show that Schwarzschild [1] was correct: A singularity develops at the event horizon of a newly-formed black hole. The intense gravitational field that forms near the event horizon results in the mass-energy of the black hole accumulating in a layer just inside the event horizon, rather than collapsing into a central singularity.
Modeling Flows Around Merging Black Hole Binaries
van Meter, James R.; Wise, John H.; Miller, M. Coleman; Reynolds, Christopher S.; Centrella, Joan M.; Baker, John G.; Boggs, William D.; Kelly, Bernard J.; McWilliams, Sean T.
2009-01-01
Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the stron...
Measuring the black hole parameters from space
International Nuclear Information System (INIS)
Recently Holz and Wheeler considered a very attracting possibility to detect retro-MACHOs, i.e., retro-images of the Sun by a Schwarzschild black hole. In this paper we discuss glories (mirages) formed near rapidly rotating Kerr black hole horizons and propose a procedure to measure masses and rotation parameters analyzing these forms of mirages. In some sense that is a manifestation of gravitational lens effect in the strong gravitational field near black hole horizon and a generalization of the retro-gravitational lens phenomenon. We analyze the case of a Kerr black hole rotating at arbitrary speed for some selected positions of a distant observer with respect to the equatorial plane of a Kerr black hole. Some time ago suggested to search shadows at the Galactic Center. In this paper we present the boundaries for shadows. We also propose to use future radio interferometer RADIOASTRON facilities to measure shapes of mirages (glories) and to evaluate the black hole spin as a function of the position angle of a distant observer. We propose also a procedure to measure a black hole charge with future space missions. Keywords: black hole physics, gravitational lenses, microlensing. (authors)
Black Hole - Neutron Star Binary Mergers
National Aeronautics and Space Administration — Gravitational radiation waveforms for black hole-neutron star coalescence calculations. The physical input is Newtonian physics, an ideal gas equation of state with...
Black hole entropy and the renormalization group
Satz, Alejandro
2013-01-01
Four decades after its first postulation by Bekenstein, black hole entropy remains mysterious. It has long been suggested that the entanglement entropy of quantum fields on the black hole gravitational background should represent at least an important contribution to the total Bekenstein-Hawking entropy, and that the divergences in the entanglement entropy should be absorbed in the renormalization of the gravitational couplings. In this talk, we describe how an improved understanding of black hole entropy is obtained by combining these notions with the renormalization group. By introducing an RG flow scale, we investigate whether the total entropy of the black hole can be partitioned in a "gravitational" part related to the flowing gravitational action, and a "quantum" part related to the unintegrated degrees of freedom. We describe the realization of this idea for free fields, and the complications and qualifications arising for interacting fields.
Quantum and thermodynamic aspects of Black Holes
International Nuclear Information System (INIS)
The main results originating from the attempts of trying to incorporate quantum and thermodynamic properties and concepts to the gravitational system black hole, essentially the Hawking effect and the four laws of thermodynamics are reviewed. (Author)
On the distribution of stellar-sized black hole spins
Nielsen, Alex B
2016-01-01
Black hole spin will have a large impact on searches for gravitational waves with advanced detectors. While only a few stellar mass black hole spins have been measured using X-ray techniques, gravitational wave detectors have the capacity to greatly increase the statistics of black hole spin measurements. We show what we might learn from these measurements and how the black hole spin values are influenced by their formation channels.
Amaro-Seoane, P.; Eichhorn, C.; Porter, E. K.; Spurzem, R.
2010-02-01
The dynamical evolution of binaries of intermediate-mass black holes (IMBHs; massive black holes with a mass ranging between 102 and 104Msolar) in stellar clusters has recently received an increasing amount of attention. This is at least partially due to the fact that if the binary is hard enough to evolve to the phase at which it will start emitting gravitational waves (GWs) efficiently, there is a good probability that it will be detectable by future space-borne detectors like Laser Interferometer Space Antenna. We study this evolution in the presence of rotation in the cluster by carrying out a series of simulations of an equal-mass binary of IMBHs embedded in a stellar distribution with different rotational parameters. The survey indicates that eccentricities and inclinations are primarily determined by the initial conditions of the IMBHs and the influence of dynamical friction, even though they are finally perturbed by the scattering of field stars. In particular, the eccentricity is strongly connected to the initial IMBHs velocities, and values of ~0.7 up to 0.9 are reached for low initial velocities, while almost circular orbits result if the initial velocities are increased. Evidence suggests a dependency of the eccentricity on the rotation parameter. We found only weak changes in the inclination, with slight variations of the orientation of the angular momentum vector of the binary. Counter-rotation simulations yield remarkably different results in eccentricity. A Monte Carlo study indicates that these sources will be detectable by a detector such as Laser Interferometer Space Antenna (LISA) with median signal-to-noise ratios (SNR) of between 10 and 20 over a three-year period, although some events had SNR of 300 or greater. Furthermore, one should also be able to estimate the chirp mass with median fractional errors of 10-4, reduced mass of the order of 10-3 and luminosity distance of the order of 10-1. Finally, these sources will have a median angular
Energy Technology Data Exchange (ETDEWEB)
Stuchlik, Zdenek; Kolos, Martin [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Opava (Czech Republic)
2016-01-15
To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of the charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes of the charged particle dynamics provides a mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause a transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is largest and it can be ultra-relativistic. We discuss the consequences of the model of ionization of test particles forming a neutral accretion disc, or heavy ions following off-equatorial circular orbits, and we explore the fate of heavy charged test particles after ionization where no kick of heavy ions is assumed and only the switch-on effect of the magnetic field is relevant. We demonstrate that acceleration and escape of the ionized particles can be efficient along the Kerr black hole symmetry axis parallel to the magnetic field lines. We show that a strong acceleration of the ionized particles to ultra-relativistic velocities is preferred in the direction close to the magnetic field lines. Therefore, the process of ionization of Keplerian discs around the Kerr black holes can serve as a model of relativistic jets. (orig.)
International Nuclear Information System (INIS)
To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of the charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes of the charged particle dynamics provides a mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause a transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is largest and it can be ultra-relativistic. We discuss the consequences of the model of ionization of test particles forming a neutral accretion disc, or heavy ions following off-equatorial circular orbits, and we explore the fate of heavy charged test particles after ionization where no kick of heavy ions is assumed and only the switch-on effect of the magnetic field is relevant. We demonstrate that acceleration and escape of the ionized particles can be efficient along the Kerr black hole symmetry axis parallel to the magnetic field lines. We show that a strong acceleration of the ionized particles to ultra-relativistic velocities is preferred in the direction close to the magnetic field lines. Therefore, the process of ionization of Keplerian discs around the Kerr black holes can serve as a model of relativistic jets. (orig.)
Backreaction of Hawking Radiation on a Gravitationally Collapsing Star I: Black Holes?
Laura Mersini-Houghton
2014-01-01
Particle creation leading to Hawking radiation is produced by the changing gravitational field of the collapsing star. The two main initial conditions in the far past placed on the quantum field from which particles arise, are the Hartle–Hawking vacuum and the Unruh vacuum. The former leads to a time-symmetric thermal bath of radiation, while the latter to a flux of radiation coming out of the collapsing star. The energy of Hawking radiation in the interior of the collapsing star is negative ...
Black holes: the membrane paradigm
International Nuclear Information System (INIS)
The physics of black holes is explored in terms of a membrane paradigm which treats the event horizon as a two-dimensional membrane embedded in three-dimensional space. A 3+1 formalism is used to split Schwarzschild space-time and the laws of physics outside a nonrotating hole, which permits treatment of the atmosphere in terms of the physical properties of thin slices. The model is applied to perturbed slowly or rapidly rotating and nonrotating holes, and to quantify the electric and magnetic fields and eddy currents passing through a membrane surface which represents a stretched horizon. Features of tidal gravitational fields in the vicinity of the horizon, quasars and active galalctic nuclei, the alignment of jets perpendicular to accretion disks, and the effects of black holes at the center of ellipsoidal star clusters are investigated. Attention is also given to a black hole in a binary system and the interactions of black holes with matter that is either near or very far from the event horizon. Finally, a statistical mechanics treatment is used to derive a second law of thermodynamics for a perfectly thermal atmosphere of a black hole
Asymptotic black hole quasinormal frequencies
Motl, Lubos; Neitzke, Andrew
2003-01-01
We give a new derivation of the quasinormal frequencies of Schwarzschild black holes in d greater than or equal to 4 and Reissner-Nordstrom black holes in d = 4, in the limit of infinite damping. For Schwarzschild in d greater than or equal to 4 we find that the asymptotic real part is THawkinglog(3) for scalar perturbations and for some gravitational perturbations; this confirms a result previously obtained by other means in the case d = 4. For Reissner-Nordstrom in d = 4 w...
Geometric inequalities for black holes
Energy Technology Data Exchange (ETDEWEB)
Dain, Sergio [Universidad Nacional de Cordoba (Argentina)
2013-07-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
Black holes and warped spacetime
International Nuclear Information System (INIS)
Black holes (BHs) and their warping effect on spacetime are described, beginning with a discussion on stellar evolution that includes white dwarfs, supernovas and neutron stars. The structure of static, rotating, and electrically charged BHs are considered, as well as the general theory of relativity, quantum mechanics, the Einstein-Rosen bridge, and wormholes in spacetime. Attention is also given to gravitational lenses, various space geometries, quasars, Seyfert galaxies, supermassive black holes, the evaporation and particle emission of BHs, and primordial BHs, including their temperature and lifetime
Black holes and relativitic gravity theories
Fennelly, A. J.; Pavelle, R.
1977-01-01
All presently known relativistic gravitation theories were considered which have a Riemannian background geometry and possess exact static, spherically symmetric solutions which are asymptotically flat. Each theory predicts the existence of trapped surfaces (black holes). For a general static isotropic metric, MACSYMA was used to compute the Newman-Penrose equations, the black hole radius, the impact parameter, and capture radius for photon accretion. These results were then applied to several of the better known gravitation theories.
Black hole thermodynamical entropy
Energy Technology Data Exchange (ETDEWEB)
Tsallis, Constantino [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil); Santa Fe Institute, Santa Fe, NM (United States); Cirto, Leonardo J.L. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil)
2013-07-15
As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S{sub BG} of a (3+1) black hole is proportional to its area L{sup 2} (L being a characteristic linear length), and not to its volume L{sup 3}. Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S{sub BG} is proportional to lnL if d=1, and to L{sup d-1} if d>1, instead of being proportional to L{sup d} (d {>=} 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)
Quantum black hole evaporation
Schoutens, K; Verlinde, Erik; Schoutens, Kareljan; Verlinde, Erik; Verlinde, Herman
1993-01-01
We investigate a recently proposed model for a full quantum description of two-dimensional black hole evaporation, in which a reflecting boundary condition is imposed in the strong coupling region. It is shown that in this model each initial state is mapped to a well-defined asymptotic out-state, provided one performs a certain projection in the gravitational zero mode sector. We find that for an incoming localized energy pulse, the corresponding out-going state contains approximately thermal radiation, in accordance with semi-classical predictions. In addition, our model allows for certain acausal strong coupling effects near the singularity, that give rise to corrections to the Hawking spectrum and restore the coherence of the out-state. To an asymptotic observer these corrections appear to originate from behind the receding apparent horizon and start to influence the out-going state long before the black hole has emitted most of its mass. Finally, by putting the system in a finite box, we are able to deriv...
Stimulated Black Hole Evaporation
Spaans, Marco
2016-01-01
Black holes are extreme expressions of gravity. Their existence is predicted by Einstein's theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_f\\sim 3\\times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $\\sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f \\sim 3\\times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P \\sim 2\\times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $\\lambda \\sim 3\\times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.
Black hole mimickers: Regular versus singular behavior
International Nuclear Information System (INIS)
Black hole mimickers are possible alternatives to black holes; they would look observationally almost like black holes but would have no horizon. The properties in the near-horizon region where gravity is strong can be quite different for both types of objects, but at infinity it could be difficult to discern black holes from their mimickers. To disentangle this possible confusion, we examine the near-horizon properties, and their connection with far away asymptotic properties, of some candidates to black mimickers. We study spherically symmetric uncharged or charged but nonextremal objects, as well as spherically symmetric charged extremal objects. Within the uncharged or charged but nonextremal black hole mimickers, we study nonextremal ε-wormholes on the threshold of the formation of an event horizon, of which a subclass are called black foils, and gravastars. Within the charged extremal black hole mimickers we study extremal ε-wormholes on the threshold of the formation of an event horizon, quasi-black holes, and wormholes on the basis of quasi-black holes from Bonnor stars. We elucidate whether or not the objects belonging to these two classes remain regular in the near-horizon limit. The requirement of full regularity, i.e., finite curvature and absence of naked behavior, up to an arbitrary neighborhood of the gravitational radius of the object enables one to rule out potential mimickers in most of the cases. A list ranking the best black hole mimickers up to the worst, both nonextremal and extremal, is as follows: wormholes on the basis of extremal black holes or on the basis of quasi-black holes, quasi-black holes, wormholes on the basis of nonextremal black holes (black foils), and gravastars. Since in observational astrophysics it is difficult to find extremal configurations (the best mimickers in the ranking), whereas nonextremal configurations are really bad mimickers, the task of distinguishing black holes from their mimickers seems to be less
Modeling Flows Around Merging Black Hole Binaries
van Meter, James R; Miller, M Coleman; Reynolds, Christopher S; Centrella, Joan M; Baker, John G; Boggs, William D; Kelly, Bernard J; McWilliams, Sean T
2009-01-01
Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a step towards solving this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We find qualitative differences in collision and outflow speeds, including a signature of the merger when the net angular momentum of the matter is low, between the results from single and binary black holes, and between nonrotating and rotating holes in binaries. If future magnetohydrodynamic results confirm ...
Begelman, Mitchell C
2003-06-20
Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity. PMID:12817138
International Nuclear Information System (INIS)
The quantum statistics of charged, extremal black holes is investigated beginning with the hypothesis that the quantum state is a functional on the space of closed three-geometries, with each black hole connected to an oppositely charged black hole through a spatial wormhole. From this starting point a simple argument is given that a collection of extremal black holes obeys neither Bose nor Fermi statistics. Rather, they obey an exotic variety of particle statistics known as ''infinite statistics'' which resembles that of distinguishable particles and is realized by a q deformation of the quantum commutation relations
Neves, J C S
2015-01-01
In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass terms. Using linear constraints in the energy-momentum tensor, the solutions are either regular or singular. That is, with this approach, it is possible to generate singular black holes from regular black holes and vice versa. Moreover, contrary to the Bardeen and Hayward regular solutions, the regular deformed metrics may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.
Quantum gravitational dust collapse does not result in a black hole
Energy Technology Data Exchange (ETDEWEB)
Vaz, Cenalo, E-mail: Cenalo.Vaz@uc.edu
2015-02-15
Quantum gravity suggests that the paradox recently put forward by Almheiri et al. (AMPS) can be resolved if matter does not undergo continuous collapse to a singularity but condenses on the apparent horizon. One can then expect a quasi-static object to form even after the gravitational field has overcome any degeneracy pressure of the matter fields. We consider dust collapse. If the collapse terminates on the apparent horizon, the Misner–Sharp mass function of the dust ball is predicted and we construct static solutions with no tangential pressure that would represent such a compact object. The collapse wave functions indicate that there will be processes by which energy extraction from the center occurs. These leave behind a negative point mass at the center which contributes to the total energy of the system but has no effect on the energy density of the dust ball. The solutions describe a compact object whose boundary lies outside its Schwarzschild radius and which is hardly distinguishable from a neutron star.
Quantum gravitational dust collapse does not result in a black hole
Directory of Open Access Journals (Sweden)
Cenalo Vaz
2015-02-01
Full Text Available Quantum gravity suggests that the paradox recently put forward by Almheiri et al. (AMPS can be resolved if matter does not undergo continuous collapse to a singularity but condenses on the apparent horizon. One can then expect a quasi-static object to form even after the gravitational field has overcome any degeneracy pressure of the matter fields. We consider dust collapse. If the collapse terminates on the apparent horizon, the Misner–Sharp mass function of the dust ball is predicted and we construct static solutions with no tangential pressure that would represent such a compact object. The collapse wave functions indicate that there will be processes by which energy extraction from the center occurs. These leave behind a negative point mass at the center which contributes to the total energy of the system but has no effect on the energy density of the dust ball. The solutions describe a compact object whose boundary lies outside its Schwarzschild radius and which is hardly distinguishable from a neutron star.
White holes and eternal black holes
International Nuclear Information System (INIS)
We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)
White holes and eternal black holes
Stephen D. H. Hsu
2010-01-01
We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi- thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal.
Aranha, R F; Tonini, E V
2011-01-01
We examine numerically the post-merger regime of two Schwarzschild black holes in non head-on collision. Our treatment is made in the realm of non-axisymmetric Robinson-Trautman spacetimes which are appropriate for the description of the system. Characteristic initial data for the system are constructed and the Robinson-Trautman equation is integrated using a numerical code based on the Galerkin spectral method. The collision is planar, restricted to the plane determined by the directions of the two initial colliding black holes, with the net momentum fluxes of gravitational waves confined to this plane. We evaluate the efficiency of mass-energy extraction, the total energy and momentum carried out by gravitational waves and the momentum distribution of the remnant black hole. Our analysis is based on the Bondi-Sachs four momentum conservation laws. Head-on collisions and orthogonal collisions constitute, respectively, upper and lower bounds to the power emission and to the efficiency of mass-energy extractio...
Rotating Black Holes and Coriolis Effect
Wu, Xiaoning; Yuan, Pei-Hung; Cho, Chia-Jui
2015-01-01
In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the Petrov-like boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.
Energy on black hole spacetimes
Corichi, Alejandro
2012-01-01
We consider the issue of defining energy for test particles on a background black hole spacetime. We revisit the different notions of energy as defined by different observers. The existence of a time-like isometry allows for the notion of a total conserved energy to be well defined, and subsequently the notion of a gravitational potential energy is also meaningful. We then consider the situation in which the test particle is adsorbed by the black hole, and analyze the energetics in detail. In particular, we show that the notion of horizon energy es defined by the isolated horizons formalism provides a satisfactory notion of energy compatible with the particle's conserved energy. As another example, we comment a recent proposal to define energy of the black hole as seen by an observer at rest. This account is intended to be pedagogical and is aimed at the level of and as a complement to the standard textbooks on the subject.
The Innermost Extremes of Black Hole Accretion
Fabian, A C
2015-01-01
The inner 20 gravitational radii around the black hole at the centre of luminous Active Galactic Nuclei and stellar mass Black Hole Binaries are now being routinely mapped by X-ray spectral-timing techniques. Spectral blurring and reverberation of the reflection spectrum are key tools in this work. In the most extreme AGN cases with high black hole spin, when the source appears in a low state, observations probe the region within 1 gravitational radius of the event horizon. The location, size and operation of the corona, which generates the power-law X-ray continuum, are also being revealed.
Quantum production of black holes at colliders
Arsene, Nicusor; Micu, Octavian
2016-01-01
We investigate black hole production in pp collisions at the Large Hadron Collider by employing the horizon quantum mechanics for models of gravity with extra spatial dimensions. This approach can be applied to processes around the fundamental gravitational scale and naturally yields a suppression below the fundamental gravitational scale and for increasing number of extra dimensions. The results of numerical simulations performed with the black hole event generator BLACKMAX are here reported in order to illustrate the main differences in the number of expected black hole events and mass distributions.
Gamma ray bursts of black hole universe
Zhang, T. X.
2015-07-01
Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.
Tests and applications of the SXS binary black hole catalog
Scheel, Mark; Simulations of Extreme Spacetimes (SXS) Collaboration Collaboration
2016-03-01
Numerical relativity is the only reliable method of computing the full gravitational waveform--including inspiral, merger, and ringdown--for strongly-gravitating systems like coalescing black holes, which are of foremost importance to gravitational-wave interferometers such as LIGO. We have used the Spectral Einstein Code [black-holes.org/SpEC.html] to construct a public catalog of hundreds of binary black hole simulations, for use by gravitational-wave science, and for calibration of fast analytic models of binary black-hole waveforms. We discuss the current status of the catalog, tests of the resulting waveforms, and selected applications.
Royzen, Ilya I
2009-01-01
Along with compacting baryon (neutron) spacing, two very important factors come into play at once: the lack of self-stabilization within a compact neutron star (NS) associated with possible black hole (BH) horizon appearance and the phase transition - color deconfinement and QCD-vacuum reconstruction - within the nuclear matter. That is why both phenomena should be taken into account side by side, as the gravitational collapse is considered. Since, under the above transition, the hadronic-phase vacuum (filled up with gluon and chiral $q\\bar q$-condensates) turns into the "empty" (perturbation) subhadronic-phase one and, thus, the corresponding (very high) pressure falls down rather abruptly, the formerly cold (degenerated) nuclear medium starts to implode into the new vacuum. If the mass of a star is sufficiently large, then this implosion produces an enormous heating, which stops only after quark-gluon plasma of a temperature about 100 MeV (or even higher) is formed to withstand the gravitational compression...
Energy conservation for dynamical black holes.
Hayward, Sean A
2004-12-17
An energy conservation law is described, expressing the increase in mass-energy of a general black hole in terms of the energy densities of the infalling matter and gravitational radiation. This first law of black-hole dynamics describes how a black hole grows and is regular in the limit where it ceases to grow. An effective gravitational-radiation energy tensor is obtained, providing measures of both ingoing and outgoing, transverse and longitudinal gravitational radiation on and near a black hole. Corresponding energy-tensor forms of the first law involve a preferred time vector which plays the role of a stationary Killing vector. Identifying an energy flux, vanishing if and only if the horizon is null, allows a division into energy supply and work terms. The energy supply can be expressed in terms of area increase and a newly defined surface gravity, yielding a Gibbs-like equation. PMID:15697889
On the outside of cold black holes
International Nuclear Information System (INIS)
Some general features of the behaviour of fields and particles around extreme (or nearly extreme) black holes are outlined, with emphasis on their simplicity. Simple solutions representing interacting electromagnetic and gravitational perturbations of an extreme Reissner-Nordstroem black hole are presented. The motion of the hole in an asymptotically uniform weak electric field is examined as an application and ''Newton's second law'' is thus explicitly verified for a geometrodynamical object. (author)
Czech Academy of Sciences Publication Activity Database
Karas, Vladimír; Šubr, L.
Les Ulis: EDP Sciences, 2012 - (Saxton, R.), 01003/1-01003/4. (EPJ Web of Conferences. 39). ISSN 2100-014X. [Tidal Disruption Events and AGN Outbursts. Madrid (ES), 25.6.2012-27.6.2012] Institutional support: RVO:67985815 Keywords : black hole s * accretion disks Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
Noncommutative Singular Black Holes
International Nuclear Information System (INIS)
In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t - r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.
Noncommutative Singular Black Holes
Hamid Mehdipour, S.
2010-11-01
In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t — r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.
DEFF Research Database (Denmark)
Kragh, Helge Stjernholm
2016-01-01
Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....
Bousso, R.; Hawking, S. W.
1997-08-01
We summarise recent work on the quantum production of black holes in the inflationary era. We describe, in simple terms, the Euclidean approach used, and the results obtained both for the pair creation rate and for the evolution of the black holes.
Andersson, N
2000-01-01
This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.
Black Hole Thermodynamics and Electromagnetism
Sidharth, Burra G.
2005-01-01
We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in...
Black Holes and Abelian Symmetry Breaking
Chagoya, Javier; Tasinato, Gianmassimo
2016-01-01
Black hole configurations offer insights on the non-linear aspects of gravitational theories, and can suggest testable predictions for modifications of General Relativity. In this work, we examine exact black hole configurations in vector-tensor theories, originally proposed to explain dark energy by breaking the Abelian symmetry with a non-minimal coupling of the vector to gravity. We are able to evade the no-go theorems by Bekenstein on the existence of regular black holes in vector-tensor theories with Proca mass terms, and exhibit regular black hole solutions with a profile for the longitudinal vector polarization, characterised by an additional charge. We analytically find the most general static, spherically symmetric black hole solutions with and without a cosmological constant, and study in some detail their features, such as how the geometry depends on the vector charges. We also include angular momentum, and find solutions describing slowly-rotating black holes. Finally, we extend some of these solu...
The thermal radiation from dynamic black holes
Institute of Scientific and Technical Information of China (English)
2008-01-01
Using the related formula of dynamic black holes, the instantaneous radiation energy density of the general spherically symmetric charged dynamic black hole and the arbitrarily accelerating charged dynamic black hole is calculated. It is found that the instantaneous radiation energy density of black hole is always proportional to the quartic of the temperature of event horizon in the same direction. The proportional coefficient of generalized Stefan-Boltzmann is no longer a constant, and it becomes a dynamic coefficient that is related to the event horizon changing rate, space-time structure near event horizon and the radiation absorption coefficient of the black hole. It is shown that there should be an internal relation between the gravitational field around black hole and its thermal radiation.
Entropy, area, and black hole pairs
Hawking, Stephen William; Ross, S F; Hawking, S W; Horowitz, Gary T; Ross, Simon F
1995-01-01
We clarify the relation between gravitational entropy and the area of horizons. We first show that the entropy of an extreme Reissner-Nordstr\\"om black hole is zero, despite the fact that its horizon has nonzero area. Next, we consider the pair creation of extremal and nonextremal black holes. It is shown that the action which governs the rate of this pair creation is directly related to the area of the acceleration horizon and (in the nonextremal case) the area of the black hole event horizon. This provides a simple explanation of the result that the rate of pair creation of non-extreme black holes is enhanced by precisely the black hole entropy. Finally, we discuss black hole annihilation, and argue that Planck scale remnants are not sufficient to preserve unitarity in quantum gravity.
Entropy, area, and black hole pairs
Hawking, S. W.; Horowitz, Gary T.; Ross, Simon F.
1995-04-01
We clarify the relation between gravitational entropy and the area of horizons. We first show that the entropy of an extreme Reissner-Nordström black hole is zero, despite the fact that its horizon has nonzero area. Next, we consider the pair creation of extremal and nonextremal black holes. It is shown that the action which governs the rate of this pair creation is directly related to the area of the acceleration horizon and (in the nonextremal case) the area of the black hole event horizon. This provides a simple explanation of the result that the rate of pair creation of nonextreme black holes is enhanced by precisely the black hole entropy. Finally, we discuss black hole annihilation, and argue that Planck scale remnants are not sufficient to preserve unitarity in quantum gravity.
Quantum Creation of a Black Hole
Chao, W Z
1997-01-01
Using the Hartle-Hawking no-boundary proposal for the wave function of the universe, we can study the wave function and probability of a single black hole created at the birth of the universe. The black hole originates from a constrained gravitational instanton with conical singularities. The wave function and probability of a universe with a black hole are calculated at the $WKB$ level. The probability of a black hole creation is the exponential of one quarter of the sum of areas of the black hole and cosmological horizons. One quarter of this sum is the total entropy of the universe. We show that these arguments apply to all kinds of black holes in the de Sitter space background.
String condensation: Nemesis of Black Holes?
Hewitt, Michael
2015-01-01
This paper puts forward a conjecture that there are no black holes in M theory. We will show that a mechanism to prevent black hole formation is needed in 4 dimensions to make string theory a viable high energy model of quantum gravity. Black hole formation may be averted by a gravity regulation mechanism based on string condensation. In this scenario, black holes are replaced by `hot holograms' that form during gravitational collapse. The geometric conditions based on the properties of free thermalon solutions that are proposed for conversion to a high temperature hologram to occur, however, are local and generic in dimension and could apply throughout M space. This idea can be applied to resolve the problems presented by the process of black hole evaporation, which appears to be inconsistent with quantum information theory. Whereas, in the conventional view, black holes are real and firewalls are probably a chimera, in the scenario proposed here that situation would be reversed.
Eda, Kazunari; Itoh, Yousuke; Kuroyanagi, Sachiko; Silk, Joseph
2013-05-31
An intermediate-mass black hole (IMBH) may have a dark-matter (DM) minihalo around it and develop a spiky structure within less than a parsec from the IMBH. When a stellar mass object is captured by the minihalo, it eventually infalls into such an IMBH due to gravitational wave backreaction which in turn could be observed directly by future space-borne gravitational wave experiments such as eLISA and NGO. In this Letter, we show that the gravitational wave (GW) detectability strongly depends on the radial profile of the DM distribution. So if the GW is detected, the power index, that is, the DM density distribution, would be determined very accurately. The DM density distribution obtained would make it clear how the IMBH has evolved from a seed black hole and whether the IMBH has experienced major mergers in the past. Unlike the γ-ray observations of DM annihilation, GW is just sensitive to the radial profile of the DM distribution and even to noninteracting DM. Hence, the effect we demonstrate here can be used as a new and powerful probe into DM properties. PMID:23767709
Kuchiev, M Yu
2003-01-01
Black holes are presumed to have an ideal ability to absorb and keep matter. Whatever comes close to the event horizon, a boundary separating the inside region of a black hole from the outside world, inevitably goes in and remains inside forever. This work shows, however, that quantum corrections make possible a surprising process, reflection: a particle can bounce back from the event horizon. For low energy particles this process is efficient, black holes behave not as holes, but as mirrors, which changes our perception of their physical nature. Possible ways for observations of the reflection and its relation to the Hawking radiation process are outlined.
Evolution of massive black holes
Volonteri, Marta
2007-01-01
Supermassive black holes are nowadays believed to reside in most local galaxies. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I'll discuss black hole formation processes that are likely to place at early cosmic epochs, and how massive black hole evolve in a hierarchical Universe...
Fluctuating Black Hole Horizons
Mei, Jianwei
2013-01-01
In this paper we treat the black hole horizon as a physical boundary to the spacetime and study its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as an example we derive an effective action that describes, in the large wave number limit, a massless Klein-Gordon field living on the average location of the boundary. Complete solutions can be found in the small rotation limit of the black hole. The formulation suggests that the boundary can be treated in the same way as any other matter contributions. In particular, the angular momentum of the boundary matches exactly with that of the black hole, suggesting an interesting possibility that all charges (including the entropy) of the black hole are carried by the boundary. Using this as input, we derive predictions on the Planck scale properties of the boundary.
Introduction to General Relativity and Black Holes (3/5)
CERN. Geneva
2001-01-01
Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.
Introduction to General Relativity and Black Holes (5/5)
CERN. Geneva
2001-01-01
Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.
Introduction to General Relativity and Black Holes (2/5)
CERN. Geneva
2001-01-01
Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.
Introduction to General Relativity and Black Holes (1/5)
CERN. Geneva
2001-01-01
Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.
Introduction to General Relativity and Black Holes (4/5)
CERN. Geneva
2001-01-01
Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.
Growth of supermassive black holes, galaxy mergers and supermassive binary black holes
Komossa, S.; Baker, J G; Liu, F. K.
2016-01-01
The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the universe, and...
Shapes of rotating nonsingular black hole shadows
Amir, Muhammed; Ghosh, Sushant G.
2016-07-01
It is believed that curvature singularities are a creation of general relativity and, hence, in the absence of a quantum gravity, models of nonsingular black holes have received significant attention. We study the shadow (apparent shape), an optical appearance because of its strong gravitational field, cast by a nonsingular black hole which is characterized by three parameters, i.e., mass (M ), spin (a ), and a deviation parameter (k ). The nonsingular black hole under consideration is a generalization of the Kerr black hole that can be recognized asymptotically (r ≫k ,k >0 ) explicitly as the Kerr-Newman black hole, and in the limit k →0 as the Kerr black hole. It turns out that the shadow of a nonsingular black hole is a dark zone covered by a deformed circle. Interestingly, it is seen that the shadow of a black hole is affected due to the parameter k . Indeed, for a given a , the size of a shadow reduces as the parameter k increases, and the shadow becomes more distorted as we increase the value of the parameter k when compared with the analogous Kerr black hole shadow. We also investigate, in detail, how the ergoregion of a black hole is changed due to the deviation parameter k .
2002-10-01
. PR Photo 23b/02 : NACO image of the central region of the Milky Way (close-up) . PR Photo 23c/02 : Orbit of the star "S2" around the central Black Hole. PR Video Clip 02/02 : Motion of "S2" and other stars around the central Black Hole. Quasars and Black Holes Ever since the discovery of the quasars (quasi-stellar radio sources) in 1963, astrophysicists have searched for an explanation of the energy production in these most luminous objects in the Universe. Quasars reside at the centres of galaxies, and it is believed that the enormous energy emitted by these objects is due to matter falling onto a supermassive Black Hole, releasing gravitational energy through intense radiation before that material disappears forever into the hole (in physics terminology: "passes beyond the event horizon" [4]). To explain the prodigious energy production of quasars and other active galaxies, one needs to conjecture the presence of black holes with masses of one million to several billion times the mass of the Sun. Much evidence has been accumulating during the past years in support of the above "accreting black hole" model for quasars and other galaxies, including the detection of dark mass concentrations in their central regions. However, an unambiguous proof requires excluding all possible other, non-black hole configurations of the central mass concentration. For this, it is imperative to determine the shape of the gravitational field very close to the central object - and this is not possible for the distant quasars due to technological limitations of the currently available telescopes. The centre of the Milky Way ESO PR Photo 23a/02 ESO PR Photo 23a/02 [Preview - JPEG: 400 x 427 pix - 95k [Normal - JPEG: 800 x 853 pix - 488k] Caption : PR Photo 23a/02 is a reproduction of an image of the innermost area of the Milky Way, only a few light-years across, obtained in mid-2002 with the NACO instrument [3] at the 8.2-m VLT YEPUN telescope. It combines frames in three infrared
Constrained instanton and black hole creation
Institute of Scientific and Technical Information of China (English)
WU; Zhongchao; XU; Donghui
2004-01-01
A gravitational instanton is considered as the seed for the creation of a universe. However, there exist too few instantons. To include many interesting phenomena in the framework of quantum cosmology, the concept of constrained gravitational instanton is inevitable. In this paper we show how a primordial black hole is created from a constrained instanton. The quantum creation of a generic black hole in the closed or open background is completely resolved. The relation of the creation scenario with gravitational thermodynamics and topology is discussed.
International Nuclear Information System (INIS)
We assess the statistical errors in estimating the parameters of nonspinning black hole binaries using ground-based gravitational-wave detectors. While past assessments were based on partial information provided by only the inspiral and/or ring-down pieces of the coalescence signal, the recent progress in analytical and numerical relativity enables us to make more accurate projections using complete inspiral-merger-ring-down waveforms. We employ the Fisher information-matrix formalism to estimate how accurately the source parameters will be measurable using a single interferometric detector as well as a network of interferometers. Those estimates are further vetted by full-fledged Monte Carlo simulations. We find that the parameter accuracies of the complete waveform are, in general, significantly better than those of just the inspiral waveform in the case of binaries with total mass M > or approx. 20M·. In particular, for the case of the Advanced LIGO detector, parameter estimation is the most accurate in the M=100-200M· range. For an M=100M· system, the errors in measuring the total mass and the symmetric mass-ratio are reduced by an order of magnitude or more compared to inspiral waveforms. Furthermore, for binaries located at a fixed luminosity distance dL, and observed with the Advanced LIGO-Advanced Virgo network, the sky-position error is expected to vary widely across the sky: For M=100M· systems at dL=1 Gpc, this variation ranges mostly from about a hundredth of a square degree to about a square degree, with an average value of nearly a tenth of a square degree. This is more than 40 times better than the average sky-position accuracy of inspiral waveforms at this mass range. For the mass parameters as well as the sky position, this improvement in accuracy is due partly to the increased signal-to-noise ratio and partly to the information about these parameters harnessed through the post-inspiral phases of the waveform. The error in estimating dL is
Fundamental Dynamics of Black Hole Physics
Haramein, Nassim
2002-04-01
The dynamics of rotating, charged black holes, obeying the Kerr-Newman metric is presented. These dynamical high-density, gravitationally collapsing, black hole systems for stellar, galactic, intergalactic and cosmogenesis appear to obey similar constraints on their mass, apparent density and radius. Under these extreme conditions, the gravitational force becomes "balanced" with the larger coupling constant of the electromagnetic force. Thus, the gravitational attraction forms dynamic pseudo equilibrium with the plasma dynamics surrounding the black holes. Thermodynamic-type processes occupy a role in energy transfer between gravitational attraction and electro-dynamic repulsion. Solving the modified Einstein-Maxwell's equations under high magnetic field conditions, with additional thermodynamic conditions, leads to a good description of the processes occurring externally, near and in the event horizons of the Kerr-Newman geometry and leads to a unification possibility. Reference; N. Haramein, Bull. Amer. Phys. Soc. AB06, 1154(2001)
Black Holes in Modified Gravity (MOG)
Moffat, J W
2014-01-01
The field equations for Scalar-Tensor-Vector-Gravity (STVG) or modified gravity (MOG) have a static, spherically symmetric black hole solution determined by the mass $M$ with either two horizons or no horizon depending on the strength of the gravitational constant $G=G_N(1+\\alpha)$ where $\\alpha$ is a parameter. A regular singularity-free MOG black hole solution is derived using a nonlinear, repulsive gravitational field dynamics and a reasonable physical energy-momentum tensor. The Kruskal-Szekeres completions of the MOG black hole solutions are obtained. The Kerr-MOG black hole solution is determined by the mass $M$, the parameter $\\alpha$ and the spin angular momentum $J=Ma$. The equations of motion and the stability condition of a test particle orbiting the MOG black hole are derived, and the radius of the black hole photosphere and its shadow cast by the Kerr-MOG black hole are calculated. A traversable wormhole solution is constructed with a throat stabilized by the repulsive gravitational field.