The Thermodynamics of Black Holes
Directory of Open Access Journals (Sweden)
Wald Robert M.
2001-01-01
Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.
On Noncommutative Black Holes Thermodynamics
Faizal, Mir; Ulhoa, S C
2015-01-01
In this paper, we will analyze noncommutative deformation of the Schwarzschild black holes and Kerr black holes. We will perform our analysis by relating the commutative and the noncommutative metrics using an Moyal product. We will also analyze the thermodynamics of these noncommutative black hole solutions. We will explicitly derive expression for the corrected entropy and temperature of these black hole solutions.
Thermodynamics of Accelerating Black Holes
Appels, Michael; Kubiznak, David
2016-01-01
We address a long-standing problem of describing the thermodynamics of a charged accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon -- even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability and phase structure of these black holes.
Noncommutative black hole thermodynamics
International Nuclear Information System (INIS)
We give a general derivation, for any static spherically symmetric metric, of the relation Th=(K/2π) connecting the black hole temperature (Th) with the surface gravity (K), following the tunneling interpretation of Hawking radiation. This derivation is valid even beyond the semi-classical regime, i.e. when quantum effects are not negligible. The formalism is then applied to a spherically symmetric, stationary noncommutative Schwarzschild space-time. The effects of backreaction are also included. For such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals interesting features regarding the variation of the Hawking temperature (including corrections due to noncommutativity and backreaction) with the small radius of the black hole. The entropy and tunneling rate valid for the leading order in the noncommutative parameter are calculated. We also show that the noncommutative Bekenstein-Hawking area law has the same functional form as the usual one
Thermodynamics of Lifshitz black holes
Devecioǧlu, Deniz Olgu; Sarıoǧlu, Özgür
2011-06-01
We apply the recently extended conserved Killing charge definition of Abbott-Deser-Tekin formalism to compute, for the first time, the energies of analytic Lifshitz black holes in higher dimensions. We then calculate the temperature and the entropy of this large family of solutions, and study and discuss the first law of black hole thermodynamics. Along the way we also identify the possible critical points of the relevant quadratic curvature gravity theories. Separately, we also apply the generalized Killing charge definition to compute the energy and the angular momentum of the warped AdS3 black hole solution of the three-dimensional new massive gravity theory.
Massive BTZ black hole thermodynamics
Hendi, S H; Panahiyan, S
2016-01-01
Motivated by large applications of BTZ black holes and interesting results of massive gravity, we investigate massive BTZ black holes in presence of Maxwell and Born-Infeld (BI) electrodynamics. We study geometric as well as thermodynamic structure of the solutions through canonical ensemble. Despite the existence of massive term, obtained solutions are asymptotically (a)dS and have a curvature singularity at the origin. Next, we regard varying cosmological constant and examine Van der Waals like behavior of the solutions in the extended phase space. In addition, we employ geometrical thermodynamic approaches and show that using Weinhold, Ruppeiner and Quevedo metrics leads to existence of ensemble dependency while HPEM metric yields uniform picture. For neutral case, it will be shown that generalization to massive gravity leads to presence of non-zero temperature and heat capacity for vanishing horizon radius. Such behavior is not observed for linearly charged solutions while generalization to nonlinearly on...
Black Hole Thermodynamics and Electromagnetism
Sidharth, B G
2005-01-01
We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.
Black Hole Thermodynamics and Electromagnetism
Sidharth, Burra G.
2005-01-01
We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in...
Black hole chemistry: thermodynamics with Lambda
Kubiznak, David; Teo, Mae
2016-01-01
We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities, in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality - an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at exten...
Thermodynamics of Horava-Lifshitz black holes
Energy Technology Data Exchange (ETDEWEB)
Myung, Yun Soo; Kim, Yong-Wan [Inje University, Institute of Basic Science and School of Computer Aided Science, Gimhae (Korea)
2010-07-15
We study black holes in the Horava-Lifshitz gravity with a parameter {lambda}. For 1/3{<=}{lambda}<3, the black holes behave the Lifshitz black holes with dynamical exponent 0
The thermodynamics in a dynamical black hole
Institute of Scientific and Technical Information of China (English)
Bo LIU; Wen-biao LIU
2009-01-01
Considering the back-reaction of emitting particles to the black hole, a "new" horizon is suggested where thermodynamics can be built in the dynamical black hole. It, at least, means that the thermodynamics of a dynamical black hole should not be constructed at the original event horizon any more. The temperature, "new" horizon position and radiating particles' energy will be consistent again under the theory of equilibrium thermodynamical system.
Quantum and thermodynamic aspects of Black Holes
International Nuclear Information System (INIS)
The main results originating from the attempts of trying to incorporate quantum and thermodynamic properties and concepts to the gravitational system black hole, essentially the Hawking effect and the four laws of thermodynamics are reviewed. (Author)
Black Hole Thermodynamics in an Undergraduate Thermodynamics Course.
Parker, Barry R.; McLeod, Robert J.
1980-01-01
An analogy, which has been drawn between black hole physics and thermodynamics, is mathematically broadened in this article. Equations similar to the standard partial differential relations of thermodynamics are found for black holes. The results can be used to supplement an undergraduate thermodynamics course. (Author/SK)
On the thermodynamics of hairy black holes
International Nuclear Information System (INIS)
We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild–AdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the Hawking–Page phase transition
Black Hole Thermodynamics Based on Unitary Evolutions
Feng, Yu-Lei
2015-01-01
In this paper, we try to construct black hole thermodynamics based on the fact that, the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy $S_{BH}$ cannot be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's "first law" cannot be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described in a unitary manner effectively, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.
Black hole thermodynamics based on unitary evolutions
Feng, Yu-Lei; Chen, Yi-Xin
2015-10-01
In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy SBH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.
Thermodynamics of noncommutative quantum Kerr black holes
Escamilla-Herrera, L F; Torres-Arenas, J
2016-01-01
Thermodynamic formalism for rotating black holes, characterized by noncommutative and quantum corrections, is constructed. From a fundamental thermodynamic relation, equations of state and thermodynamic response functions are explicitly given and the effect of noncommutativity and quantum correction is discussed. It is shown that the well known divergence exhibited in specific heat is not removed by any of these corrections. However, regions of thermodynamic stability are affected by noncommutativity, increasing the available states for which the system is thermodynamically stable.
Black Hole Thermodynamics and Lorentz Symmetry
Jacobson, Ted
2008-01-01
Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe the arguments leading to that conclusion. We suggest the implication that Lorentz symmetry should be viewed as an emergent property of the macroscopic world, required by the second law of black hole thermodynamics.
Thermodynamics of black holes in rainbow gravity
Banerjee, Ritwick
2016-01-01
In this paper, we investigate the thermodynamic properties of black holes under the influence of rainbow gravity. In the metric of Schwarzschild, Reissner-Nordstrom and Reissner-Nordstrom-de-Sitter black hole surrounded by quintessence, we consider a rainbow function and derive the existence of remnant and critical masses of a black hole. Using the Hawking temperature relation we derive the heat capacity and the entropy of the rainbow gravity inspired black holes and closely study the relation between entropy and area of the horizon for different values of n of the rainbow function.
Black hole thermodynamics from Euclidean horizon constraints.
Carlip, S
2007-07-13
To explain black hole thermodynamics in quantum gravity, one must introduce constraints to ensure that a black hole is actually present. I show that for a large class of black holes, such "horizon constraints" allow the use of conformal field theory techniques to compute the density of states, reproducing the Bekenstein-Hawking entropy in a nearly model-independent manner. One standard string theory approach to black hole entropy arises as a special case, lending support to the claim that the mechanism may be "universal." I argue that the relevant degrees of freedom are Goldstone-boson-like excitations arising from the weak breaking of symmetry by the constraints. PMID:17678209
The Conformal Version of Black Hole Thermodynamics
Wu, S Q
2004-01-01
The conformal thermodynamics of rotating charged black holes in general relativity and string theory is proposed by considering the first laws of thermodynamics for a pair of systems made up of the two horizons of a Kerr-Newman or Kerr-Sen black hole. These two systems are constructed by only demanding their ``horizon areas'' to be the sum and difference of that of the outer and inner horizons of their prototype. The thermodynamics present here is a ``conformal version'' of black hole thermodynamics, since it is closely related to the near-horizon conformal symmetry of black holes. The concept of non-quasinormal modes recently proposed by D. Birmingham and S. Carlip [7] is compatible with this ``conformal thermodynamics'', rather than the usual ``horizon thermodynamics''. In addition, we show that this conformal thermodynamics resembles to the thermodynamics of effective string or D-brane models, since the two newly-constructed systems bear a striking resemblance to the right- and left-movers in string theory...
On the thermodynamics of Lifshitz black holes
Devecioglu, Deniz Olgu
2011-01-01
We apply the recently extended conserved Killing charge definition of Abbott-Deser-Tekin formalism to compute, for the first time, the energies of analytic Lifshitz black holes in higher dimensions. We then calculate the temperature and the entropy of this large family of solutions and find that imposing the first law of black hole thermodynamics puts, sometimes severe, extra constraints on the allowed values of the dynamical exponent, which is a characteristic of these spacetimes. Separately, we also apply the generalized Killing charge definition to compute the energy and the angular momentum of the warped AdS_3 black hole solution of the three-dimensional New Massive Gravity theory.
Black hole thermodynamics in finite time
Gruber, Christine
2016-01-01
Finite-time thermodynamics provides the means to revisit ideal thermodynamic equilibrium processes in the light of reality and investigate the energetic "price of haste", i.e. the consequences of carrying out a process in finite time, when perfect equilibrium cannot be awaited due to economic reasons or the nature of the process. Employing the formalism of geometric thermodynamics, a lower bound on the energy dissipated during a process is derived from the thermodynamic length of that process. The notion of length is hereby defined via a metric structure on the space of equilibrium thermodynamics, spanned by a set of thermodynamic variables describing the system. Since the aim of finite-time thermodynamics is to obtain realistic limitations on idealized scenarios, it is a useful tool to reassess the efficiency of thermodynamic processes. We examine its implications for black hole thermodynamics, in particular scenarios inspired by the Penrose process, a thought experiment by which work can be extracted from a...
Thermodynamics and evaporation of the noncommutative black hole
Energy Technology Data Exchange (ETDEWEB)
Myung, Yun Soo [Institute of Mathematical Science and School of Computer Aided Science, Inje University, Gimhae 621-749 (Korea, Republic of); Kim, Yong-Wan [National Creative Research Initiative Center for Controlling Optical Chaos, Pai-Chai University, Daejeon 302-735 (Korea, Republic of); Park, Young-Jai [Department of Physics and Center for Quantum Spacetime, Sogang University, Seoul 121-742 (Korea, Republic of)
2007-02-15
We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.
Thermodynamics and evaporation of the noncommutative black hole
International Nuclear Information System (INIS)
We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process
Thermodynamics and evaporation of the noncommutative black hole
Myung, Yun Soo; Kim, Yong-Wan; Park, Young-Jai
2006-01-01
We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.
The thermodynamics and thermodynamic geometry of the Park black hole
Energy Technology Data Exchange (ETDEWEB)
Suresh, Jishnu; Tharanath, R.; Varghese, Nijo; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Cochin, Kerala (India)
2014-03-15
We study the thermodynamics and thermodynamic geometry of the Park black hole in Horava gravity. By incorporating the ideas of differential geometry, we investigate the thermodynamics by using the Weinhold and the Ruppeiner geometry. We have also analyzed it in the context of the newly developed geometrothermodynamics (GTD). The divergence of the specific heat is associated with a second-order phase transition. Here in the context of the Park black hole, both Weinhold's metric and Ruppeiner's metric well explain this phase transition. But these explanations depend on the choice of the potential. Hence the Legendre invariant GTD is used, and with the true singularities in the curvature scalar, they well explain the second-order phase transition. All these methods together give an exact idea of all the behaviors of the Park black hole thermodynamics. (orig.)
Perturbative String Thermodynamics near Black Hole Horizons
Mertens, Thomas G; Zakharov, Valentin I
2014-01-01
We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work JHEP 1403 (2014) 086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of $\\alpha'$-corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large $k$ limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O'Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string p...
Thermodynamics of higher dimensional black holes
Energy Technology Data Exchange (ETDEWEB)
Accetta, F.S.; Gleiser, M.
1986-05-01
We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs.
Black holes thermodynamics, information, and firewalls
Mann, Robert B
2015-01-01
This book reflects the resurgence of interest in the quantum properties of black holes, culminating most recently in controversial discussions about firewalls. On the thermodynamic side, it describes how new developments allowed the inclusion of pressure/volume terms in the first law, leading to a new understanding of black holes as chemical systems, experiencing novel phenomena such as triple points and reentrant phase transitions. On the quantum-information side, the reader learns how basic arguments undergirding quantum complementarity have been shown to be flawed; and how this suggests that a black hole may surround itself with a firewall: a violent and chaotic region of highly excited states. In this thorough and pedagogical treatment, Robert Mann traces these new developments from their roots to our present-day understanding, highlighting their relationships and the challenges they present for quantum gravity.
Thermodynamics of BTZ black hole and entanglement entropy
International Nuclear Information System (INIS)
The BTZ black Hole is (2+1) dimensional black hole solution asymptotic to anti-de-Sitter space-time. We study the discretized quantum scalar fields in background of non-rotating BTZ black hole space-time and construct the entanglement thermodynamics for massless scalar field. The behavior of the entanglement energy is understood by red shift factor caused by the curved background. The entanglement thermodynamics is compared with the black hole thermodynamics
Kim, Wontae; Son, Edwin J.; Yoon, Myungseok
2008-01-01
We study thermodynamic quantities and examine the stability of a black hole in a cavity inspired by the noncommutative geometry. It turns out that thermodynamic behavior of the noncommutative black hole is analogous to that of the Reissner-Nordstr\\"om black hole in the near extremal limit. Moreover, we identify the noncommutative parameter with the squared electric charge with some constants.
International Nuclear Information System (INIS)
We study thermodynamic quantities and examine the stability of a black hole in a cavity inspired by the noncommutative geometry. It turns out that thermodynamic behavior of the noncommutative black hole is analogous to that of the Reissner-Nordstroem black hole in the near extremal limit. Moreover, we identify the noncommutative parameter with the squared electric charge with some constants
Thermodynamics of noncommutative BTZ black hole
Jahangir, Rashida; Saifullah, K.
2011-01-01
Thermodynamics of the BTZ black hole in noncommutative geometry is studied. We work out the Hawking temperature and entropy which reduce to their commutative limits when the noncommutativity parameter tends to zero. We also discuss the range of validity of the Hawking area law in the noncommutative case and provide graphical analysis. We see that the law is not valid unless the outer horizon is very large.
Black Hole Thermodynamics and Lorentz Symmetry
Jacobson, Ted; Wall, Aron C.
2010-08-01
Recent developments point to a breakdown in the generalized second law of thermodynamics for theories with Lorentz symmetry violation. It appears possible to construct a perpetual motion machine of the second kind in such theories, using a black hole to catalyze the conversion of heat to work. Here we describe and extend the arguments leading to that conclusion. We suggest the inference that local Lorentz symmetry may be an emergent property of the macroscopic world with origins in a microscopic second law of causal horizon thermodynamics.
Reissner-Nordstroem Black Hole Thermodynamics In Noncommutative Spaces
International Nuclear Information System (INIS)
This paper considers the effects of space noncommutativity on the thermodynamics of a Reissner-Nordstroem black hole. In the first step, we extend the ordinary formalism of Bekenstein-Hawking to the case of charged black holes in commutative space. In the second step we investigate the effect of space noncommutativity on the thermodynamics of charged black holes. Finally we compare thermodynamics of charged black holes in commutative space with thermodynamics of Schwarzschild black hole in noncommutative space. In this comparison we explore some conceptual relation between charge and space noncommutativity. (author)
Offshell thermodynamic metrics of the Schwarzschild black hole
Wen, Wen-Yu
2016-01-01
Thermodynamic metric usually works only for those black holes with more than one conserved charge, therefore the Schwarzschild black hole was excluded. In this letter, we compute and compare different versions of offshell thermodynamic metric for the Schwarzschild-like black hole by introducing a new degree of freedom. This new degree of freedom could be the running Newton constant, a cutoff scale for regular black hole, a noncommutative deformation, or the deformed parameter in the nonextens...
Effects of quintessence on thermodynamics of the black holes
Ghaderi, K.; Malakolkalami, B.
2016-05-01
In this letter, we investigate the effects of quintessence on thermodynamics of the Bardeen black hole and compare them with the results of our former paper. Black hole thermodynamic stability can be determined by studying the nature of heat capacity of the system. We use the first-law of thermodynamics to derive the thermodynamic quantities of these black holes and we compare and analyse the results. We plot the variation of mass, temperature and heat capacity as a functions of entropy related to the quintessence. Finally, we study the equation of state of these black holes with quintessence.
Hamiltonian thermodynamics of the Schwarzschild black hole
Louko, J
1994-01-01
Kucha\\v{r} has recently given a detailed analysis of the classical and quantum geometrodynamics of the Kruskal extension of the Schwarzschild black hole. In this paper we adapt Kucha\\v{r}'s analysis to the exterior region of a Schwarzschild black hole with a timelike boundary. The reduced Lorentzian Hamiltonian is shown to contain two independent terms, one from the timelike boundary and the other from the bifurcation two-sphere. After quantizing the theory, a thermodynamical partition function is obtained by analytically continuing the Lorentzian time evolution operator to imaginary time and taking the trace. This partition function is in agreement with the partition function obtained from the Euclidean path integral method; in particular, the bifurcation two-sphere term in the Lorentzian Hamiltonian gives rise to the black hole entropy in a way that is related to the Euclidean variational problem. We also outline how Kucha\\v{r}'s analysis of the Kruskal spacetime can be adapted to the \\RPthree geon, which i...
Thermodynamics of charged Lovelock: AdS black holes
Energy Technology Data Exchange (ETDEWEB)
Prasobh, C.B.; Suresh, Jishnu; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Cochin (India)
2016-04-15
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)
Thermodynamics of charged Lovelock: AdS black holes
Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.
2016-04-01
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.
Thermodynamics of charged Lovelock: AdS black holes
International Nuclear Information System (INIS)
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)
Thermodynamic phase transition in the rainbow Schwarzschild black hole
Energy Technology Data Exchange (ETDEWEB)
Gim, Yongwan; Kim, Wontae, E-mail: yongwan89@sogang.ac.kr, E-mail: wtkim@sogang.ac.kr [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of)
2014-10-01
We study the thermodynamic phase transition in the rainbow Schwarzschild black hole where the metric depends on the energy of the test particle. Identifying the black hole temperature with the energy from the modified dispersion relation, we obtain the modified entropy and thermodynamic energy along with the modified local temperature in the cavity to provide well defined black hole states. It is found that apart from the conventional critical temperature related to Hawking-Page phase transition there appears an additional critical temperature which is of relevance to the existence of a locally stable tiny black hole; however, the off-shell free energy tells us that this black hole should eventually tunnel into the stable large black hole. Finally, we discuss the reason why the temperature near the horizon is finite in the rainbow black hole by employing the running gravitational coupling constant, whereas it is divergent near the horizon in the ordinary Schwarzschild black hole.
Thermodynamic properties of black holes in de Sitter space
Li, Huai-Fan; Ma, Ya-Qin
2016-01-01
We study the thermodynamic properties of Schwarzschild-de Sitter (SdS) black hole and Reissner-Nordstr\\"{o}m-de Sitter (RNdS) black hole in the view of global and effective thermodynamic quantities. Making use of the effective first law of thermodynamics, we can derive the effective thermodynamic quantities of de Sitter black holes. It is found that these effective thermodynamic quantities also satisfy Smarr-like formula. Especially, the effective temperatures are nonzero in the Nariai limit, which is consistent with the idea of Bousso and Hawking. By calculating heat capacity and Gibbs free energy, we find SdS black hole is always thermodynamically stable and RNdS black hole may undergoes phase transition at some points.
Thermodynamic products for Sen black hole
International Nuclear Information System (INIS)
We investigate the properties of inner and outer horizon thermodynamics of Sen black hole (BH) both in Einstein frame (EF) and string frame (SF). We also compute area (or entropy) product, area (or entropy) sum of the said BH in EF as well as SF. In the EF, we observe that the area (or entropy) product is universal, whereas area (or entropy) sum is not universal. On the other hand, in the SF, area (or entropy) product and area (or entropy) sum don't have any universal behaviour because they all are depends on Arnowitt-Deser-Misner (ADM) mass parameter. We also verify that the first law is satisfied at the Cauchy horizon as well as event horizon (EH). In addition, we also compute other thermodynamic products and sums in the EF as well as in the SF. We further compute the Smarr mass formula and Christodoulou's irreducible mass formula for Sen BH. Moreover, we compute the area bound and entropy bound for both the horizons. The upper area bound for EH is actually the Penrose like inequality, which is the first geometric inequality in BHs. Furthermore, we compute the central charges of the left and right moving sectors of the dual CFT in Sen/CFT correspondence using thermodynamic relations. These thermodynamic relations on the multi-horizons give us further understanding the microscopic nature of BH entropy (both interior and exterior). (orig.)
Thermodynamic products for Sen black hole
Energy Technology Data Exchange (ETDEWEB)
Pradhan, Parthapratim [Vivekananda Satavarshiki Mahavidyalaya (Affiliated to Vidyasagar University), Department of Physics, Manikpara, West Bengal (India)
2016-03-15
We investigate the properties of inner and outer horizon thermodynamics of Sen black hole (BH) both in Einstein frame (EF) and string frame (SF). We also compute area (or entropy) product, area (or entropy) sum of the said BH in EF as well as SF. In the EF, we observe that the area (or entropy) product is universal, whereas area (or entropy) sum is not universal. On the other hand, in the SF, area (or entropy) product and area (or entropy) sum don't have any universal behaviour because they all are depends on Arnowitt-Deser-Misner (ADM) mass parameter. We also verify that the first law is satisfied at the Cauchy horizon as well as event horizon (EH). In addition, we also compute other thermodynamic products and sums in the EF as well as in the SF. We further compute the Smarr mass formula and Christodoulou's irreducible mass formula for Sen BH. Moreover, we compute the area bound and entropy bound for both the horizons. The upper area bound for EH is actually the Penrose like inequality, which is the first geometric inequality in BHs. Furthermore, we compute the central charges of the left and right moving sectors of the dual CFT in Sen/CFT correspondence using thermodynamic relations. These thermodynamic relations on the multi-horizons give us further understanding the microscopic nature of BH entropy (both interior and exterior). (orig.)
Thermodynamics and Geometrothermodynamics of Charged black holes in Massive Gravity
Suresh, Jishnu; Prabhakar, Geethu; Kuriakose, V C
2016-01-01
The objective of this paper is to study the thermodynamics and thermodynamic geometry of charged de-Sitter and charged anti de-Sitter black hole solutions in massive gravity. In this study, the presence of a negative cosmological constant is identified as a thermodynamic variable, the pressure. By incorporating this idea, we study the effect of curvature parameter as well as the mass of graviton in the thermodynamics of the black hole system. We further extend our studies to different topology of the space time and its effects on phase transition and thermodynamics. In addition, the phase transition structure of the black hole and its interactions are reproduced using geometrothermodynamics.
Black Hole Thermodynamics and Hamilton-Jacobi Counterterm
Bergamin, Luzi; McNees, Robert; Meyer, Rene
2007-01-01
We review the construction of the universal Hamilton-Jacobi counterterm for dilaton gravity in two dimensions, derive the corresponding result in the Cartan formulation and elaborate further upon black hole thermodynamics and semi-classical corrections. Applications include spherically symmetric black holes in arbitrary dimensions with Minkowski- or AdS-asymptotics, the BTZ black hole and black holes in two-dimensional string theory.
Thermodynamics of black holes: an analogy with glasses
Nieuwenhuizen, Th. M.
1998-01-01
The present equilibrium formulation of thermodynamics for black holes has several drawbacks, such as assuming the same temperature for black hole and heat bath. Recently the author formulated non-equilibrium thermodynamics for glassy systems. This approach is applied to black holes, with the cosmic background temperature being the bath temperature, and the Hawking temperature the internal temperature. Both Hawking evaporation and absorption of background radiation are taken into account. It i...
Thermodynamics of Sultana-Dyer black hole
International Nuclear Information System (INIS)
The thermodynamical entities on the dynamical horizon are not naturally defined like the usual static cases. Here I find the temperature, Smarr formula and the first law of thermodynamics for the Sultana-Dyer metric which is related to the Schwarzschild spacetime by a time dependent conformal factor. To find the temperature (T), the chiral anomaly expressions for the two dimensional spacetime are used. This shows an application of the anomaly method to study Hawking effect for a dynamical situation. Moreover, the analysis singles out one expression for temperature among two existing expressions in the literature. Interestingly, the present form satisfies the first law of thermodynamics. Also, it relates the Misner-Sharp energy (Ē) and the horizon entropy ( S-bar ) by an algebraic expression Ē = 2 S-bar T which is the general form of the Smarr formula. This fact is similar to the usual static black hole cases in Einstein's gravity where the energy is identified as the Komar conserved quantity
Stability of black holes based on horizon thermodynamics
Directory of Open Access Journals (Sweden)
Meng-Sen Ma
2015-12-01
Full Text Available On the basis of horizon thermodynamics we study the thermodynamic stability of black holes constructed in general relativity and Gauss–Bonnet gravity. In the framework of horizon thermodynamics there are only five thermodynamic variables E, P, V, T, S. It is not necessary to consider concrete matter fields, which may contribute to the pressure of black hole thermodynamic system. In non-vacuum cases, we can derive the equation of state, P=P(V,T. According to the requirements of stable equilibrium in conventional thermodynamics, we start from these thermodynamic variables to calculate the heat capacity at constant pressure and Gibbs free energy and analyze the local and global thermodynamic stability of black holes. It is shown that P>0 is the necessary condition for black holes in general relativity to be thermodynamically stable, however this condition cannot be satisfied by many black holes in general relativity. For black hole in Gauss–Bonnet gravity negative pressure can be feasible, but only local stable black hole exists in this case.
Thermodynamic Relations for Kiselev and Dilaton Black Hole
International Nuclear Information System (INIS)
We investigate the thermodynamics and phase transition for Kiselev black hole and dilaton black hole. Specifically we consider Reissner-Nordström black hole surrounded by radiation and dust and Schwarzschild black hole surrounded by quintessence, as special cases of Kiselev solution. We have calculated the products relating the surface gravities, surface temperatures, Komar energies, areas, entropies, horizon radii, and the irreducible masses at the Cauchy and the event horizons. It is observed that the product of surface gravities, product of surface temperature, and product of Komar energies at the horizons are not universal quantities for the Kiselev solutions while products of areas and entropies at both the horizons are independent of mass of the above-mentioned black holes (except for Schwarzschild black hole surrounded by quintessence). For charged dilaton black hole, all the products vanish. The first law of thermodynamics is also verified for Kiselev solutions. Heat capacities are calculated and phase transitions are observed, under certain conditions
Thermodynamics of acoustic black holes in two dimensions
Zhang, Baocheng
2016-01-01
It is well-known that the thermal Hawking-like radiation can be emitted from the acoustic horizon, but the thermodynamic-like understanding for acoustic black holes was rarely made. In this paper, we will show that the kinematic connection can lead to the dynamic connection at the horizon between the fluid and gravitational models in two dimension, which implies that there exists the thermodynamic-like description for acoustic black holes. Then, we discuss the first law of thermodynamics for ...
Thermodynamics of Rotating Black Holes and Black Rings: Phase Transitions and Thermodynamic Volume
Directory of Open Access Journals (Sweden)
Natacha Altamirano
2014-03-01
Full Text Available In this review we summarize, expand, and set in context recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. We specifically consider the thermodynamics of higher-dimensional rotating asymptotically flat and AdS black holes and black rings in a canonical (fixed angular momentum ensemble. We plot the associated thermodynamic potential—the Gibbs free energy—and study its behavior to uncover possible thermodynamic phase transitions in these black hole spacetimes. We show that the multiply-rotating Kerr-AdS black holes exhibit a rich set of interesting thermodynamic phenomena analogous to the “every day thermodynamics” of simple substances, such as reentrant phase transitions of multicomponent liquids, multiple first-order solid/liquid/gas phase transitions, and liquid/gas phase transitions of the van derWaals type. Furthermore, the reentrant phase transitions also occur for multiply-spinning asymptotically flat Myers–Perry black holes. These phenomena do not require a variable cosmological constant, though they are more naturally understood in the context of the extended phase space. The thermodynamic volume, a quantity conjugate to the thermodynamic pressure, is studied for AdS black rings and demonstrated to satisfy the reverse isoperimetric inequality; this provides a first example of calculation confirming the validity of isoperimetric inequality conjecture for a black hole with non-spherical horizon topology. The equation of state P = P(V,T is studied for various black holes both numerically and analytically—in the ultraspinning and slow rotation regimes.
Stability of black holes based on horizon thermodynamics
Ma, Meng-Sen
2015-01-01
On the basis of horizon thermodynamics we study the thermodynamic stability of black holes constructed in general relativity and Gauss-Bonnet gravity. In the framework of horizon thermodynamics there are only five thermodynamic variables $E,P,V,T,S$. It is not necessary to consider concrete matter fields, which may contribute to the pressure of black hole thermodynamic system. In non-vacuum cases, we can derive the equation of state, $P=P(V,T)$. According to the requirements of stable equilibrium in conventional thermodynamics, we start from these thermodynamic variables to calculate the heat capacity at constant pressure and Gibbs free energy and analyze the local and global thermodynamic stability of black holes. It is shown that $P>0$ is the necessary condition for black holes in general relativity to be thermodynamically stable, however this condition cannot be satisfied by many black holes in general relativity. For black hole in Gauss-Bonnet gravity negative pressure can be feasible, but only local stab...
On the Thermodynamic Geometry of BTZ Black Holes
Sarkar, Tapobrata; Tiwari, Bhupendra Nath; Sarkar, Tapobrata; Sengupta, Gautam; Tiwari, Bhupendra Nath
2006-01-01
We investigate the Ruppeiner geometry of the thermodynamic state space of a general class of BTZ black holes. It is shown that the thermodynamic geometry is flat for both the rotating BTZ and the BTZ Chern Simons black holes in the canonical ensemble. We further investigate the inclusion of thermal fluctuations to the canonical entropy of the BTZ Chern Simons black holes and show that the leading logartithmic correction due to Carlip is reproduced. We establish that the inclusion of thermal fluctuations induces a non zero scalar curvature to the thermodynamic geometry.
Thermodynamic product formula for a Taub-NUT black hole
Pradhan, P.
2016-01-01
We derive various important thermodynamic relations of the inner and outer horizons in the background of the Taub-NUT (Newman-Unti-Tamburino) black hole in four-dimensional Lorentzian geometry. We compare these properties with the properties of the Reissner-Nordström black hole. We compute the area product, area sum, area subtraction, and area division of black hole horizons. We show that they all are not universal quantities. Based on these relations, we compute the area bound of all horizons. From the area bound, we derive an entropy bound and an irreducible mass bound for both horizons. We further study the stability of such black holes by computing the specific heat for both horizons. It is shown that due to the negative specific heat, the black hole is thermodynamically unstable. All these calculations might be helpful in understanding the nature of the black hole entropy (both interior and exterior) at the microscopic level.
Thermodynamic Product Formula for Taub-NUT Black Hole
Pradhan, Parthapratim
2016-01-01
We derive various important thermodynamic relations of the inner and outer horizon in the background of Taub-NUT(Newman-Unti-Tamburino) black hole in four dimensional \\emph{Lorentzian geometry}. We compare these properties with the properties of Reissner Nordstr{\\o}m black hole. We compute \\emph{area product, area sum, area minus and area division} of black hole horizons. We show that they all are not universal quantities. Based on these relations, we compute the area bound of all horizons. From area bound, we derive entropy bound and irreducible mass bound for both the horizons. We further study the stability of such black hole by computing the specific heat for both the horizons. It is shown that due to negative specific heat the black hole is thermodynamically unstable. All these calculations might be helpful to understanding the nature of black hole entropy both \\emph{interior} and exterior at the microscopic level.
Black-hole thermodynamics: Entropy, information and beyond
Indian Academy of Sciences (India)
Saurya Das
2004-10-01
We review some recent advances in black-hole thermodynamics including statistical mechanical origins of black-hole entropy and its leading order corrections from the view points of various quantum gravity theories. We then examine the problem of information loss and some possible approaches to its resolution. Finally, we study some proposed experiments which may be able to provide experimental signatures of black holes.
Black hole thermodynamics and information loss in two dimensions
Fiola, T M; Strominger, A; Trivedi, S P; Thomas M Fiola; John Preskill; Andrew Strominger; Sandip P Trivedi
1994-01-01
Black hole evaporation is investigated in a (1+1)-dimensional model of quantum gravity. Quantum corrections to the black hole entropy are computed, and the fine-grained entropy of the Hawking radiation is studied. A generalized second law of thermodynamics is formulated, and shown to be valid under suitable conditions. It is also shown that, in this model, a black hole can consume an arbitrarily large amount of information.
Quantum Gravity Effects On Charged Micro Black Holes Thermodynamics
Abbasvandi, N; Radiman, Shahidan; Abdullah, W A T Wan
2016-01-01
The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type I and the minimal length, minimal momentum, and maximal momentum as GUP type II on thermodynamics of the charged TeV-scale black holes. We also generalized our study to the universe with the extra dimensions based on the ADD model. In this framework, the effect of the electrical charge on thermodynamics of the black hole and existence of the charged black hole remnants as a potential candidate for the dark matter particles are discussed.
Black Hole Thermodynamics from a Noncommutative Area Operator
Pérez-Payán, S.; Sabido, M.
2012-01-01
One key element to calculate thermodynamical properties for a black hole is the partition function. In this paper we have incorporated the idea of a two dimensional area in a noncommutative space and were able to calculate the partition function with such a spectra. Employing the canonical quantum statistics formalism we compute the temperature, entropy and time of evaporation for a Schwarzschild black hole.
On black hole thermodynamics with a momentum relaxation
Park, Chanyong
2016-01-01
We investigate black hole thermodynamics involving a scalar hair which is dual to a momentum relaxation of the dual field theory. This black hole geometry is able to be classified by two parameters. One is a momentum relaxation and the other is a mass density of another matter localized at the center. Even though all parameters are continuous, there exists a specific point where its thermodynamic interpretation is not continuously connected to the one defined in the other parameter regime. The similar feature also appears in a topological AdS black hole. In this work, we show why such an unusual thermodynamic feature happens and provide a unified way to understand such an exotic black hole thermodynamically in the entire parameter range.
Lovelock black hole thermodynamics in a string cloud model
Lee, Tae-Hun; Ghosh, Sushant G.; Maharaj, Sunil D.(Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag 54001, 4000, Durban, South Africa); Baboolal, Dharmanand
2015-01-01
The Lovelock theory is an extension of general relativity to higher dimensions. We study the Lovelock black hole for a string cloud model in arbitrary dimensional spacetime, and in turn also analyze its thermodynamical properties. Indeed, we compute the mass, temperature and entropy of the black hole and also perform a thermodynamical stability analysis. The phase structure suggests that the Hawking-Page phase transition is achievable. It turns out that the presence of the Lovelock terms and/...
Thermodynamics of Third Order Lovelock-Born-Infeld Black Holes
Institute of Scientific and Technical Information of China (English)
李鹏; 岳瑞宏; 邹德成
2011-01-01
We here explore black holes in the third order Lovelock gravity coupling with nonlinear Born-Infeld electro- magnetic field. Considering special second and third order coefficients （＆g = 363 = a2）, we analyze the thermodynamics of third order Lovelock-Born-Infeld black holes and, in 7-dimensional AdS space-time, discuss the stability of black holes in different event horizon structures. We find that the cosmological constant A plays an important role in the distribution of black hole stable regions.
Quantum Corrected Schwarzschild Black Hole: Inner Horizon Thermodynamic Behaviors
Mandal, Abhijit
2015-01-01
The thermodynamic properties of Cauchy horizon is a matter of interest. Event horizon and Cauchy horizon together can enlighten us about the micro-states of a black hole. In addition, if we consider a black hole metric modified with quantum terms, which is not forcing the geodesics to focus at a singularity, the study of horizons becomes much more interesting. The spacelike behavior inside the Cauchy horizon has a deep impact on the related thermodynamics. We analyze different thermodynamic product to check whether a right left string theory mode's addition type representation for the concerned thermodynamic parameters is possible or not. Stability of Cauchy horizon is studied.
Failure of standard thermodynamics in planck scale black hole system
International Nuclear Information System (INIS)
The final stage of the black hole evaporation is a matter of debates in the existing literature. In this paper, we consider this problem within two alternative approaches: noncommutative geometry (NCG) and the generalized uncertainty principle (GUP). We compare the results of two scenarios to find a relation between parameters of these approaches. Our results show some extraordinary thermodynamical behavior for Planck size black hole evaporation. These extraordinary behavior may reflect the need for a fractal non-extensive thermodynamics for Planck size black hole evaporation process.
Failure of standard thermodynamics in planck scale black hole system
Energy Technology Data Exchange (ETDEWEB)
Nozari, Kourosh [Department of Physics, Faculty of Basic Sciences, University of Mazandaran, P.O. Box 47416-1467, Babolsar (Iran, Islamic Republic of)], E-mail: knozari@umz.ac.ir; Mehdipour, S. Hamid [Department of Physics, Faculty of Basic Sciences, University of Mazandaran, P.O. Box 47416-1467, Babolsar (Iran, Islamic Republic of)
2009-01-30
The final stage of the black hole evaporation is a matter of debates in the existing literature. In this paper, we consider this problem within two alternative approaches: noncommutative geometry (NCG) and the generalized uncertainty principle (GUP). We compare the results of two scenarios to find a relation between parameters of these approaches. Our results show some extraordinary thermodynamical behavior for Planck size black hole evaporation. These extraordinary behavior may reflect the need for a fractal non-extensive thermodynamics for Planck size black hole evaporation process.
Boundary Counterterms and the Thermodynamics of 2-D Black Holes
Davis, J L; Davis, Joshua L.; Nees, Robert Mc
2005-01-01
We utilize a novel method to study the thermodynamics of two dimensional type 0A black holes with constant RR flux. Our approach is based on the Hamilton-Jacobi method of deriving boundary counterterms. We demonstrate this approach by recovering the standard results for a well understood example, Witten's black hole. Between this example and the 0A black hole we find universal expressions for the entropy and black hole mass, as well as the infra-red divergence of the partition function. As a non-trivial check of our results we verify the first law of thermodynamics for these systems. Our results for the mass disagree with the predictions of a proposed matrix model dual of the 0A black hole.
Offshell thermodynamic metrics of the Schwarzschild black hole
Wen, Wen-Yu
2016-01-01
Thermodynamic metric usually works only for those black holes with more than one conserved charge, therefore the Schwarzschild black hole was excluded. In this letter, we compute and compare different versions of offshell thermodynamic metric for the Schwarzschild-like black hole by introducing a new degree of freedom. This new degree of freedom could be the running Newton constant, a cutoff scale for regular black hole, a noncommutative deformation, or the deformed parameter in the nonextensive Tsallis-Renyi entropy. The onshell metric of the deformed Schwarzschild solution would correspond to the submanifold by gauge fixing of this additional degree of freedom. In particular, the thermal Ricci scalar for the Schwarzschild black hole, though different for various deformation, could be obtained by switching off the deformation.
Black holes and thermodynamics -- The first half century
Grumiller, Daniel; Salzer, Jakob
2014-01-01
Black hole thermodynamics emerged from the classical general relativistic laws of black hole mechanics, summarized by Bardeen-Carter-Hawking, together with the physical insights by Bekenstein about black hole entropy and the semi-classical derivation by Hawking of black hole evaporation. The black hole entropy law inspired the formulation of the holographic principle by 't Hooft and Susskind, which is famously realized in the gauge/gravity correspondence by Maldacena, Gubser-Klebanov-Polaykov and Witten within string theory. Moreover, the microscopic derivation of black hole entropy, pioneered by Strominger-Vafa within string theory, often serves as a consistency check for putative theories of quantum gravity. In this book chapter we review these developments over five decades, starting in the 1960ies.
Thermodynamic Geometry and Extremal Black Holes in String Theory
Sarkar, Tapobrata; Tiwari, Bhupendra Nath
2008-01-01
We study a generalisation of thermodynamic geometry to degenerate quantum ground states at zero temperatures exemplified by charged extremal black holes in type II string theories. Several examples of extremal charged black holes with non degenerate thermodynamic geometries and finite but non zero state space scalar curvatures are established. These include black holes described by D1-D5-P and D2-D6-NS5-P brane systems and also two charged small black holes in Type II string theories. We also explore the modifications to the state space geometry and the scalar curvature due to the higher derivative contributions and string loop corrections as well as an exact entropy expression from quantum information theory. Our construction describes state space geometries arising out of a possible limiting thermodynamic characterisation of degenerate quantum ground states at zero temperatures.
Thermodynamics and Phase Transition in Rotational Kiselev Black Hole
Xu, Zhaoyi
2016-01-01
We calculate the thermodynamical features of rotational Kiselev black holes, specifically we use one order approximate of horizon to calculate thermodynamical features for all $\\omega$. The thermodynamics features include areas, entropies, horizon radii, surface gravities, surface temperatures, Komar energies and irreducible masses at the Cauchy horizon and Event horizon. At the same time the products of these features have been discussed. We find that the products are independent with mass of black hole and determined by $\\omega$ and $\\alpha$. The features in the situations of $\\omega=-2/3,1/3$ and $0$ (quintessence matter, radiation and dust) have been discussed in detail. We also generalize the Smarr mass formula and Christodoulou-Ruffini mass formula to these black holes. Finally we study the phase transition for black holes with different $\\omega$ and obtain the state equation. We analyze the phase transition for $\\omega=1/3$, and find that $\\alpha$ shifts the critical point of phase transition.
Geometro-thermodynamics of tidal charged black holes
Energy Technology Data Exchange (ETDEWEB)
Gergely, Laszlo Arpad [University of Szeged, Department of Theoretical Physics, Szeged (Hungary); University of Szeged, Department of Experimental Physics, Szeged (Hungary); Pidokrajt, Narit [Stockholm University, Department of Physics, Stockholm (Sweden); Winitzki, Sergei [Ludwig-Maximilians University, Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Munich (Germany)
2011-03-15
Tidal charged spherically symmetric vacuum brane black holes are characterized by their mass m and tidal charge q, an imprint of the five-dimensional Weyl curvature. For q>0 they are formally identical to the Reissner-Nordstroem black hole of general relativity. We study the thermodynamics and thermodynamic geometries of tidal charged black holes and discuss similarities and differences as compared to the Reissner-Nordstroe m black hole. As a similarity, we show that (for q>0) the heat capacity of the tidal charged black hole diverges on a set of measure zero of the parameter space, nevertheless both the regularity of the Ruppeiner metric and a Poincare stability analysis show no phase transition at those points. The thermodynamic state spaces being different indicates that the underlying statistical models could be different. We find that the q<0 parameter range, which enhances the localization of gravity on the brane, is thermodynamically preferred. Finally we constrain for the first time the possible range of the tidal charge from the thermodynamic limit on gravitational radiation efficiency at black hole mergers. (orig.)
Thermodynamic stability of black holes surrounded by quintessence
Ma, Meng-Sen; Ma, Ya-Qin
2016-01-01
We study the thermodynamic stabilities of uncharged and charged black holes surrounded by quintessence (BHQ) by means of effective thermodynamic quantities. When the state parameter of quintessence $\\omega_q$ is appropriately chosen, the structures of BHQ are something like that of black holes in de Sitter space. Constructing the effective first law of thermodynamics in two different ways, we can derive the effective thermodynamic quantities of BHQ. Especially, these effective thermodynamic quantities also satisfy Smarr-like formulae. It is found that the uncharged BHQ is always thermodynamically unstable due to negative heat capacity, while for the charged BHQ there are phase transitions of the second order. We also show that there is a great deal of difference on the thermodynamic properties and critical behaviors of BHQ between the two ways we employed.
Thermodynamics of Black Holes: Semi-Classical Approaches and Beyond
Modak, Sujoy Kumar
2012-01-01
This thesis is focussed to study various aspects of black hole physics. Our approach is a semi-classical type, where the spacetime geometry of black holes is considered to be classical but the fields moving in the background are quantum in nature. Some notable facets of this thesis are the following. We start by looking into the issue of generalized Smarr mass formula for arbitrary dimensional black holes in Einstein-Maxwell gravity. We derive this formula for these black holes and also demonstrate that such a formula can be expressed in the form of a dimension independent identity $K_{\\chi^{\\mu}}=2ST$ (where the l.h.s is the Komar conserved charge corresponding to the null Killing vector $\\chi^{\\mu}$ and in the r.h.s $S, T$ are the semi-classical entropy and temperature of a black hole) defined at the black hole event horizon. We highlight the role of exact differentials in computations involving black hole thermodynamics. Some results like the first law of black hole thermodynamics and semi-classical entrop...
Black hole thermodynamics, stringy dualities and double field theory
Arvanitakis, Alex S
2016-01-01
We discuss black hole thermodynamics in the manifestly duality invariant formalism of double field theory (DFT). We reformulate and prove the first law of black hole thermodynamics in DFT, using the covariant phase space approach. After splitting the full O(D, D) invariant DFT into a Kaluza-Klein-inspired form where only n coordinates are doubled, our results provide explicit duality invariant mass and entropy formulas. We illustrate how this works by discussing the black fundamental string solution and its T-duals.
Quantum Thermodynamics of Black Hole Horizons
Moretti, Valter; Pinamonti, Nicola
2005-01-01
Exploiting results recently proved in a technical paper (and some of them are reviewed herein in the language of theoretical physicists) we focus on quantization of the metric of a black hole restricted to the Killing horizon with universal radius r0. The metric is represented in a suitable manner after imposing spherical symmetry and, after restriction to the Killing horizon, it is quantized employing chiral currents. Two "components of the metric" are in fact quantized: one behaves as an af...
String Solitons and Black Hole Thermodynamics
Khuri, R R
1997-01-01
We discuss the role of string solitons in duality and examine the feature of compositeness, which allows for the interpretation of general solutions as bound states of supersymmetric fundamental constituents. This feature lies at the heart of the recent success of string theory in reproducing the Bekenstein-Hawking black hole entropy formula. Talk given at 19th annual MRST meeting, Syracuse, NY, May 12-13, 1997.
Constraints on the Generalized Uncertainty Principle from Black Hole Thermodynamics
Gangopadhyay, Sunandan; Faizal, Mir
2015-01-01
In this paper, we calculate the modification to the thermodynamics of a Schwarzschild black hole in higher dimensions because of Generalized Uncertainty Principle (GUP). We use the fact that the leading order corrections to the entropy of a black hole has to be logarithmic in nature to restrict the form of GUP. We observe that in six dimensions, the usual GUP produces the correct form for the leading order corrections to the entropy of a black hole. However, in five and seven dimensions a linear GUP, which is obtained by a combination of DSR with the usual GUP, is needed to produce the correct form of the corrections to the entropy of a black hole. Finally, we demonstrate that in five dimensions, a new form of GUP containing quadratic and cubic powers of the momentum also produces the correct form for the leading order corrections to the entropy of a black hole.
Thermodynamic instability of nonlinearly charged black holes in gravity's rainbow
Hendi, S H; Panah, B Eslam; Momennia, M
2015-01-01
Motivated by the violation of Lorentz invariancy in quantum gravity, we study black hole solutions in gravity's rainbow in the context of Einstein gravity coupled with various models of nonlinear electrodynamics. We regard an energy dependent spacetime and obtain related metric functions and electric fields. We show that there is an essential singularity at the origin which is covered with an event horizon. We also compute the conserved and thermodynamical quantities and examine the validity of the first law of thermodynamics in the presence of rainbow functions. Finally we investigate thermal stability conditions for these black hole solutions in context of canonical ensemble. We show that although there is not physical small black hole, large black holes are physical and enjoy thermal stability in gravity's rainbow.
Einstein-Maxwell-Dilatonic phantom black holes: Thermodynamics and geometrothermodynamics
Quevedo, H.(Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, AP 70543, 04510, México, DF, Mexico); M. N. Quevedo; Sanchez, A
2016-01-01
We use the Legendre invariant formalism of geometrothermodynamics to investigate the geometric properties of the equilibrium space of a spherically symmetric phantom black hole with electric charge and dilaton. We find that at certain points of the equilibrium space, the thermodynamic curvature is characterized by the presence of singularities that are interpreted as phase transitions. We also investigate the phase transition structure by using the standard approach of black hole thermodynami...
Quantum Gravity Effects On Charged Micro Black Holes Thermodynamics
Abbasvandi, N.; Soleimani, M. J.; Radiman, Shahidan; Abdullah, W. A. T. Wan
2016-01-01
The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type...
Thermodynamics of an Evaporating Schwarzschild Black Hole in Noncommutative Space
Nozari, Kourosh; Fazlpour, Behnaz
2006-01-01
We investigate the effects of space noncommutativity and the generalized uncertainty principle on the thermodynamics of a radiating Schwarzschild black hole. We show that evaporation process is in such a way that black hole reaches to a maximum temperature before its final stage of evolution and then cools down to a nonsingular remnant with zero temperature and entropy. We compare our results with more reliable results of string theory. This comparison Shows that GUP and space noncommutativit...
Failure of Standard Thermodynamics in Planck Scale Black Hole System
Nozari, Kourosh; Mehdipour, S. Hamid
2006-01-01
The final stage of the black hole evaporation is a matter of debates in the existing literature. In this paper, we consider this problem within two alternative approaches: noncommutative geometry(NCG) and the generalized uncertainty principle(GUP). We compare the results of two scenarios to find a relation between parameters of these approaches. Our results show some extraordinary thermodynamical behavior for Planck size black hole evaporation. These extraordinary behavior may reflect the nee...
Thermodynamics of a Bardeen black hole in noncommutative space
Sharif, M.; Javed, Wajiha
2011-01-01
In this paper, we examine the effects of space noncommutativity on the thermodynamics of a Bardeen charged regular black hole. For a suitable choice of sets of parameters, the behavior of the singularity, horizon, mass function, black hole mass, temperature, entropy and its differential, area and energy distribution of the Bardeen solution have been discussed graphically for both noncommutative and commutative spaces. Graphs show that the commutative coordinates extrapolate all such quantitie...
A Liquid Model Analogue for Black Hole Thermodynamics
Hochberg, D; Hochberg, David; Pérez-Mercader, Juan
1996-01-01
We are able to characterize a 2--dimensional classical fluid sharing some of the same thermodynamic state functions as the Schwarzschild black hole. This phenomenological correspondence between black holes and fluids is established by means of the model liquid's pair-correlation function and the two-body atomic interaction potential. These latter two functions are calculated exactly in terms of the black hole internal (quasilocal) energy and the isothermal compressibility. We find the existence of a ``screening" like effect for the components of the liquid.
Effects of cosmic acceleration on black hole thermodynamics
Mandal, Abhijit
2016-07-01
Direct local impacts of cosmic acceleration upon a black hole are matters of interest. Babichev et. al. had published before that the Friedmann equations which are prevailing the part of fluid filled up in the universe to lead (or to be very specific, `dominate') the other constituents of universe and are forcing the universe to undergo present-day accelerating phase (or to lead to violate the strong energy condition and latter the week energy condition), will themselves tell that the rate of change of mass of the central black hole due to such exotic fluid's accretion will essentially shrink the mass of the black hole. But this is a global impact indeed. The local changes in the space time geometry next to the black hole can be analysed from a modified metric governing the surrounding space time of a black hole. A charged deSitter black hole solution encircled by quintessence field is chosen for this purpose. Different thermodynamic parameters are analysed for different values of quintessence equation of state parameter, ω_q. Specific jumps in the nature of the thermodynamic space near to the quintessence or phantom barrier are noted and physically interpreted as far as possible. Nature of phase transitions and the situations at which these transitions are taking place are also explored. It is determined that before quintessence starts to work (ω_q=-0.33>-1/3) it was preferable to have a small unstable black hole followed by a large stable one. But in quintessence (-1/3>ω_q>-1), black holes are destined to be unstable large ones pre-quelled by stable/ unstable small/ intermediate mass black holes.
Foliation and the First Law of Black Hole Thermodynamics
Institute of Scientific and Technical Information of China (English)
Azad A.Siddiqui; Syed Muhammad Jawwad Riaz; M.Akbar
2011-01-01
@@ There has been lots of interest in exploring the thermodynamic properties at the horizon of a black hole spacetime.It has been shown earlier that for different spacetimes,the Einstein field equations at the horizon can be expressed as the first law of black hole thermodynamics.Using the idea of foliation,we develop a simpler procedure toobtain such results.We consider γ = constant slices,for the Schwarzschild and Reissner-Nordstrom black hole spacetimes.The Einstein field equations for the induced 3-dimensional metrics of the hypersurfaces are expressed in thermodynamic quantities under the virtual displacements of the hypersurfaces.As expected,it is found that the field equations of the induced metric corresponding to the horizon can be written as afirst law of black hole thermodynamics.It is to be mentioned here that our procedure is much easier,to obtain such results,as here one has to essentially deal with(n - 1)-dimensional induced metric for an n-dimensional spacetime.%There has been lots of interest in exploring the thermodynamic properties at the horizon ofa black hole spacetime.It has been shown earlier that for different spacetimes, the Einstein field equations at the horizon can be expressed as the first law of black hole thermodynamics. Using the idea of foliation, we develop a simpler procedure to obtain such results. We consider Υ = constant slices, for the Schwarzschild and Reissner-Nordstrom black hole spacetimes. The Einstein field equations for the induced 3-dimensionai metrics of the hypersurfaces are expressed in thermodynamic quantities under the virtual displacements of the hypersurfaces. As expected, it is found that the field equations of the induced metric corresponding to the horizon can be written as a first law of black hole thermodynamics. It is to be mentioned here that our procedure is much easier, to obtain such results, as here one has to essentially deal with (n - 1)-dimensional induced metric for an n-dimensional spacetime.
A Particle Probing Thermodynamics in Rotating AdS Black Hole
Gwak, Bogeun; Lee, Bum-Hoon
2016-07-01
We briefly review the thermodynamics of a probe particle absorption to a black hole in this proceeding. The particle energy has a relation to its momenta at the horizon of the black hole. Following this relation, the particle infinitesimally changes the black hole mass and momenta. Under these changes, the changes of properties of the black hole are consistent with the laws of thermodynamics.
Extremal Black Holes and First Law of Thermodynamics
Johnstone, Maria; Simon, Joan; Yavartanoo, Hossein
2013-01-01
We study the low temperature expansion of the first law of thermodynamics for near-extremal black holes. We show that for extremal black holes with non-vanishing entropy, the leading order contribution yields an expression for their extremal entropy in agreement with the entropy function result and the Cardy formula for the entropy of a two dimensional chiral conformal field theory (CFT). When their entropy vanishes due to the vanishing of a one-cycle on the horizon, such leading contribution is always compatible with the first law satisfied by a BTZ black hole. These results are universal and consistent both with the presence of local AdS2 and AdS3 near horizon throats for extremal black holes and with the suggested quantum microscopic descriptions (AdS2/CFT1, Kerr/CFT and EVH/CFT).
Horava gravity vs. thermodynamics: the black hole case
Blas, D
2011-01-01
Under broad assumptions breaking of Lorentz invariance in gravitational theories leads to tension with unitarity because it allows for processes that apparently violate the second law of thermodynamics. The crucial ingredient of this argument is the existence of black hole solutions with the interior shielded from infinity by a causal horizon. We study how the paradox can be resolved in the healthy extension of Horava gravity. To this aim we analyze classical solutions describing large black holes in this theory with the emphasis on their causal structure. The notion of causality is subtle in this theory due to the presence of instantaneous interactions. Despite this fact, we find that within exact spherical symmetry a black hole solution contains a space-time region causally disconnected from infinity by a surface of finite area -- the `universal horizon'. We then consider small perturbations of arbitrary angular dependence in the black hole background. We argue that aspherical perturbations destabilize the ...
Einstein-Maxwell-Dilatonic phantom black holes: Thermodynamics and geometrothermodynamics
Quevedo, H; Sanchez, A
2016-01-01
We use the Legendre invariant formalism of geometrothermodynamics to investigate the geometric properties of the equilibrium space of a spherically symmetric phantom black hole with electric charge and dilaton. We find that at certain points of the equilibrium space, the thermodynamic curvature is characterized by the presence of singularities that are interpreted as phase transitions. We also investigate the phase transition structure by using the standard approach of black hole thermodynamics based upon the analysis of the heat capacity and response functions. We show compatibility between the two approaches. In addition, a new type of phase transition is found which is due to the presence of phantom energy and corresponds to a transition between black hole states with different stability properties.
Thermodynamics of acoustic black holes in two dimensions
Zhang, Baocheng
2016-01-01
It is well-known that the thermal Hawking-like radiation can be emitted from the acoustic horizon, but the thermodynamic-like understanding for acoustic black holes was rarely made. In this paper, we will show that the kinematic connection can lead to the dynamic connection at the horizon between the fluid and gravitational models in two dimension, which implies that there exists the thermodynamic-like description for acoustic black holes. Then, we discuss the first law of thermodynamics for the acoustic black hole via an intriguing connection between the gravitational-like dynamics of the acoustic horizon and thermodynamics, as well-built in the gravity theory. We obtain a universal form for the entropy of acoustic black holes, which has an interpretation similar to the entropic gravity. We also discuss the specific heat, and find that the derivative of the velocity of background fluid can be regarded as a novel acoustic analogue of the two-dimensional dilaton potential, which interprets why the two-dimensio...
The Thermodynamic Limit for Black Holes in Loop Quantum Gravity
Barbero, Fernando; Villaseñor, Eduardo J. S.
2015-01-01
This contribution discusses the thermodynamic limit for black holes in loop quantum gravity by using the number-theoretic methods introduced to compute their entropy in this framework. We show how that the subdominant corrections for the entropy in this limit differ from the ones corresponding to the statistical entropy.
Thermodynamic optimization of a Penrose process: an engineers' approach to black hole thermodynamics
Bravetti, Alessandro; Lopez-Monsalvo, Cesar S
2015-01-01
In this work we present a new view on the thermodynamics of black holes introducing effects of irreversibility by employing thermodynamic optimization and finite-time thermodynamics. These questions are of importance both in physics and in engineering, combining standard thermodynamics with optimal control theory in order to find optimal protocols and bounds for realistic processes without assuming anything about the microphysics involved. We find general bounds on the maximum work and the efficiency of thermodynamic processes involving black holes that can be derived exclusively from the knowledge of thermodynamic relations at equilibrium. Since these new bounds consider the finite duration of the processes, they are more realistic and stringent than their reversible counterparts. To illustrate our arguments, we consider in detail the thermodynamic optimization of a Penrose process, i.e. the problem of finding the least dissipative process extracting all the angular momentum from a Kerr black hole in finite ...
Saida, Hiromi
2013-01-01
Comparing black hole thermodynamics with the axiomatic formulation of thermodynamics for laboratory systems, it is found that some basic assumptions (required by experimental facts) in laboratory thermodynamics do not hold for black hole thermodynamics. Hence, at present, it is not obvious whether black hole thermodynamics retains some crucial theorems of laboratory thermodynamics (e.g. Carnot's theorem, increase of entropy by arbitrary adiabatic process, and uniqueness of entropy) whose proofs use the basic assumptions which do not hold for black holes. This paper aims to clarify such nontriviality in black hole thermodynamics, and propose a suitable set of basic assumptions in black hole thermodynamics, which are regarded as the rigorous foundation of black hole thermodynamics as phenomenology.
Thermodynamic Geodesics of a Reissner Nordstr\\"om Black Hole
Farrugia, Christine
2016-01-01
Starting from a Geometrothermodynamics metric for the space of thermodynamic equilibrium states in the mass representation, we use numerical techniques to analyse the thermodynamic geodesics of a supermassive Reissner Nordstr\\"om black hole in isolation. Appropriate constraints are obtained by taking into account the processes of Hawking radiation and Schwinger pair-production. We model the black hole in line with the work of Hiscock and Weems. It can be deduced that the relation which the geodesics establish between the entropy $S$ and electric charge $Q$ of the black hole extremises changes in the black hole's mass. Indeed, at any given point along a geodesic, the value of $\\text{d}S/\\text{d}Q$ is of the same order of magnitude as the rate at which entropy changes with charge during a constant-mass perturbation. Our claim is further justified by the fact that the expression for the entropy of an extremal black hole is an exact solution to the geodesic equation.
Thermodynamics of Black Holes and the Symmetric Generalized Uncertainty Principle
Dutta, Abhijit; Gangopadhyay, Sunandan
2016-06-01
In this paper, we have investigated the thermodynamics of Schwarzschild and Reissner-Nordström black holes using the symmetric generalised uncertainty principle which contains correction terms involving momentum and position uncertainty. The mass-temperature relationship and the heat capacity for these black holes have been computed using which the critical and remnant masses have been obtained. The entropy is found to satisfy the area law upto leading order logarithmic corrections and corrections of the form A 2 (which is a new finding in this paper) from the symmetric generalised uncertainty principle.
Constraints on rainbow gravity functions from black hole thermodynamics
Gangopadhyay, Sunandan
2016-01-01
In this paper, we investigate the thermodynamic properties of black holes in the framework of rainbow gravity. By considering rainbow functions in the metric of Schwarzschild and Reissner-Nordstr\\"{o}m black holes, remnant and critical masses are found to exist. Demanding the universality of logarithmic corrections to the semi-classical area law for the entropy leads to constraining the form of the rainbow functions. The mass output and the radiation rate for these constrained form of rainbow functions have been computed for different values of the rainbow parameter $\\eta$ and have striking similarity to those derived from the generalized uncertainty principle.
Thermodynamic optimization of a Penrose process: An engineers' approach to black hole thermodynamics
Bravetti, A.; Gruber, C.; Lopez-Monsalvo, C. S.
2016-03-01
In this work we present a new view on the thermodynamics of black holes introducing effects of irreversibility by employing thermodynamic optimization and finite-time thermodynamics. These questions are of importance both in physics and in engineering, combining standard thermodynamics with optimal control theory in order to find optimal protocols and bounds for realistic processes without assuming anything about the microphysics involved. We work out the details of the thermodynamic optimization of a Penrose process, i.e. the problem of finding the maximum work that can be extracted from a Kerr black hole in finite time. This problem has already been addressed in the case of an isolated black hole. Here we consider the case of a black hole immersed in a reservoir and show that the presence of the reservoir can dramatically improve the work output. We discuss the relevance of our results for real astrophysical phenomena, for the comparison with laboratory black holes analogues and for other theoretical aspects of black hole thermodynamics.
Thermodynamics of a Bardeen black hole in noncommutative space
Sharif, M
2011-01-01
In this paper, we examine the effects of space noncommutativity on the thermodynamics of a Bardeen charged regular black hole. For a suitable choice of sets of parameters, the behavior of the singularity, horizon, mass function, black hole mass, temperature, entropy and its differential, area and energy distribution of the Bardeen solution have been discussed graphically for both noncommutative and commutative spaces. Graphs show that the commutative coordinates extrapolate all such quantities (except temperature) for a given set of parameters. It is interesting to mention here that these sets of parameters provide the singularity (essential for $r_h>0$) and horizon ($f(r_h)=0$ for $r_h>0$) for the black hole solution in noncommutative space, while for commutative space no such quantity exists.
Thermodynamics of a Bardeen black hole in noncommutative space
Sharif, M.; Javed, Wajiha
2011-10-01
In this paper, we examine the effects of space noncommutativity on the thermodynamics of a Bardeen charged regular black hole. For a suitable choice of sets of parameters, the behavior of the singularity, horizon, mass function, black hole mass, temperature, entropy and its differential, area and energy distribution of the Bardeen solution have been discussed graphically for both noncommutative and commutative spaces. Graphs show that the commutative coordinates extrapolate all such quantities (except temperature) for a given set of parameters. It is interesting to mention here that these sets of parameters provide the singularity (essential for $r_h>0$) and horizon ($f(r_h)=0$ for $r_h>0$) for the black hole solution in noncommutative space, while for commutative space no such quantity exists.
Reissner-Nordstr\\"{o}m Black Hole Thermodynamics in Noncommutative Spaces
Nozari, Kourosh; Fazlpour, Behnaz
2006-01-01
This paper considers the effects of space noncommutativity on the thermodynamics of a Reissner-Nordstr\\"{o}m black hole. In the first step, we extend the ordinary formalism of Bekenstein-Hawking to the case of charged black holes in commutative space. In the second step we investigate the effects of space noncommutativity and the generalized uncertainty principle on the thermodynamics of charged black holes. Finally we compare thermodynamics of charged black holes in commutative space with th...
Black Hole Thermodynamic Products in Einstein Gauss Bonnet Gravity
Biswas, Ritabrata
2016-07-01
By now, there are many hints from string theory that collective excitations of solitonic objects can be described by effective low energy theories. The entropy of general rotating black holes in five dimensions may be interpreted as an indication that, it derives from two independent microscopic contributions and each of these may be attributed to a gas of strings. In the present work, we consider a charged black hole in five dimensional Einstein Gauss Bonnet gravity. In spite of presenting the thermodynamic quantities' product as summation/ subtraction of two independent integers, our motive is to check whether the product of the same quantity for event horizon and Cauchy horizon is free of mass, i.e., global, or not. We derive the thermodynamic products of characteristic parameters to mark which are global. We further interpret the stability of the black holes by computing the specific heat for both horizons. Stable and unstable phases of horizons are pointed out. The phase transitions with respect to the charge in nature of specific heat are also observed. All these calculation might be helpful to understand the microscopic nature of such black holes.
Hairy Black Holes in Massive Gravity: Thermodynamics and Phase Structure
Capela, Fabio
2012-01-01
The thermodynamic properties of a static and spherically-symmetric hairy black hole of massive gravity are investigated. The analysis is carried out by enclosing the black hole in a spherical cavity whose surface is maintained at a fixed temperature $T$. It turns out that the ensemble is well-defined only if the "hair" parameter $Q$ characterizing the solution is conserved. Under this condition we compute some relevant thermodynamic quantities, such as thermal energy and entropy, and we study stability and phase structure of the ensemble. In particular, for negative values of the hair parameter, the phase structure is isomorphic to the one of Reissner-Nordstrom black holes in the canonical ensemble. Moreover, the phase-diagram in the plan ($Q,T$) has a line of first-order phase transition that at a critical value of $Q$ terminates in a second-order phase transition. Below this line the dominant phase consists of small, cold black holes that are long-lived and may thus contribute much more to the energy densit...
Thermodynamics of Einstein-Proca AdS Black Holes
Liu, Hai-Shan; Pope, C N
2014-01-01
We study static spherically-symmetric solutions of the Einstein-Proca equations in the presence of a negative cosmological constant. We show that the theory admits solutions describing both black holes and also solitons in an asymptotically AdS background. Interesting subtleties can arise in the computation of the mass of the solutions and also in the derivation of the first law of thermodynamics. We make use of holographic renormalisation in order to calculate the mass, even in cases where the solutions have a rather slow approach to the asymptotic AdS geometry. By using the procedure developed by Wald, we derive the first law of thermodynamics for the black hole and soliton solutions. This includes a non-trivial contribution associated with the Proca "charge." The solutions cannot be found analytically, and so we make use of numerical integration techniques to demonstrate their existence.
Black hole thermodynamics from a variational principle: Asymptotically conical backgrounds
An, Ok Song; Papadimitriou, Ioannis
2016-01-01
The variational problem of gravity theories is directly related to black hole thermodynamics. For asymptotically locally AdS backgrounds it is known that holographic renormalization results in a variational principle in terms of equivalence classes of boundary data under the local asymptotic symmetries of the theory, which automatically leads to finite conserved charges satisfying the first law of thermodynamics. We show that this connection holds well beyond asymptotically AdS black holes. In particular, we formulate the variational problem for $\\mathcal{N}=2$ STU supergravity in four dimensions with boundary conditions corresponding to those obeyed by the so called `subtracted geometries'. We show that such boundary conditions can be imposed covariantly in terms of a set of asymptotic second class constraints, and we derive the appropriate boundary terms that render the variational problem well posed in two different duality frames of the STU model. This allows us to define finite conserved charges associat...
Subleading terms of thermodynamic quantities around static spherical black holes
Institute of Scientific and Technical Information of China (English)
Li Gu-Qiang
2009-01-01
The thermodynamic quantities for the gases of massless particles with spin s = 1/2, 1, 3/2, 2 around static spherical black holes are investigated by using the brick-wall method. The appearance of the spin-dependent subleading terms is demonstrated and the terms are shown to contain not only the linear and quadratic terms of the spins but also a zero-power term of the spins.
Geometric approaches to the thermodynamics of black holes
Gruber, Christine; Quevedo, Hernando
2016-01-01
In this summary, we present the main topics of the talks presented in the parallel session "Black holes - 5" of the 14th Marcel Grossmann Meeting held in Rome, Italy in July 2015. We first present a short review of the main approaches used to understand thermodynamics by using differential geometry. Then, we present a brief summary of each presentation, including some general remarks and comments.
Thermodynamics of topological black holes in $R^{2}$ gravity
Cognola, Guido; Vanzo, Luciano; Zerbini, Sergio
2015-01-01
We study topological black hole solutions of the simplest quadratic gravity action and we find that two classes are allowed. The first is asymptotically flat and mimics the Reissner-Nordstr\\"om solution, while the second is asymptotically de Sitter or anti-de Sitter. In both classes, the geometry of the horizon can be spherical, toroidal or hyperbolic. We focus in particular on the thermodynamical properties of the asymptotically anti-de Sitter solutions and we compute the entropy and the internal energy with Euclidean methods. We find that the entropy is positive-definite for all horizon geometries and this allows to formulate a consistent generalized first law of black hole thermodynamics, which keeps in account the presence of two arbitrary parameters in the solution. The two-dimensional thermodynamical state space is fully characterized by the underlying scale invariance of the action and it has the structure of a projective space. We find a kind of duality between black holes and other objects with the s...
Lorentz violation and black-hole thermodynamics
International Nuclear Information System (INIS)
We consider nonstandard photons from nonbirefringent modified Maxwell theory and discuss their propagation in a fixed Schwarzschild spacetime background. This particular modification of Maxwell theory is Lorentz-violating and allows for maximal photon velocities differing from the causal speed c of the asymptotic background spacetime. In the limit of geometrical optics, light rays from modified Maxwell theory are found to propagate along null geodesics in an effective metric. We observe that not every Lorentz-violating theory with multiple maximal velocities different from the causal speed c modifies the notion of the event horizon, contrary to naive expectations. This result implies that not every Lorentz-violating theory with multiple maximal velocities necessarily leads to a contradiction with the generalized second law of thermodynamics.
Thermodynamic and classical instability of AdS black holes in fourth-order gravity
International Nuclear Information System (INIS)
We study thermodynamic and classical instability of AdS black holes in fourth-order gravity. These include the BTZ black hole in new massive gravity, Schwarzschild-AdS black hole, and higher-dimensional AdS black holes in fourth-order gravity. All thermodynamic quantities which are computed using the Abbot-Deser-Tekin method are used to study thermodynamic instability of AdS black holes. On the other hand, we investigate the s-mode Gregory-Laflamme instability of the massive graviton propagating around the AdS black holes. We establish the connection between the thermodynamic instability and the GL instability of AdS black holes in fourth-order gravity. This shows that the Gubser-Mitra conjecture holds for AdS black holes found from fourth-order gravity
Thermodynamics of Third Order Lovelock Anti-de Sitter Black Holes Revisited
Institute of Scientific and Technical Information of China (English)
ZOU De-Cheng; YUE Rui-Hong; YANG Zhan-Ying
2011-01-01
We compute the mass and temperature of third order Lovelock black holes with negative Gauss-Bonnet coefficient α2 ＜ 0 in anti-de Sitter space and perform the stability analysis of topological black holes. When k = -1,the third order Lovelock black holes are thermodynamically stable for the whole range r+. When k = 1, we found that the black hole has an intermediate unstable phase for D = 7. In eight dimensional spacetimes, however, a new phase of thermodynamically unstable small black holes appears if the coefficient (α) is under a critical value. For D ＞ 9, black holes have similar the distributions of thermodynamically stable regions to the case where the coefficient α is under a critical value for D = 8. It is worth to mention that all the thermodynamic and conserved quantities of the black holes with flat horizon do not depend on the Lovelock coefficients and are the same as those of black holes in general gravity.
Black hole thermodynamics, conformal couplings, and R 2 terms
Chernicoff, Mariano; Galante, Mario; Giribet, Gaston; Goya, Andres; Leoni, Matias; Oliva, Julio; Perez-Nadal, Guillem
2016-06-01
Lovelock theory provides a tractable model of higher-curvature gravity in which several questions can be studied analytically. This is the reason why, in the last years, this theory has become the favorite arena to study the effects of higher-curvature terms in the context of AdS/CFT correspondence. Lovelock theory also admits extensions that permit to accommodate matter coupled to gravity in a non-minimal way. In this setup, problems such as the backreaction of matter on the black hole geometry can also be solved exactly. In this paper, we study the thermodynamics of black holes in theories of gravity of this type, which include both higher-curvature terms, U(1) gauge fields, and conformal couplings with matter fields in D dimensions. These charged black hole solutions exhibit a backreacting scalar field configuration that is regular everywhere outside and on the horizon, and may exist both in asymptotically flat and asymptotically Anti-de Sitter (AdS) spaces. We work out explicitly the boundary action for this theory, which renders the variational problem well-posed and suffices to regularize the Euclidean action in AdS. We also discuss several interrelated properties of the theory, such as its duality symmetry under field redefinition and how it acts on black holes and gravitational wave solutions.
Black Hole Thermodynamics from the point of view of Superstring Theory
Akhmedov, E. T.
1997-01-01
In this review we try to give a pedagogical introduction to the recent progress in the resolution of old problems of black hole thermodynamics within superstring theory. We start with a brief description of classical black hole dynamics. Then, follow with the consideration of general properties of supersymmetric black holes. We conclude with the review of the statistical explanation of the black hole entropy and string theory description of the black hole evaporation.
Thermodynamics and quasinormal modes of Park black hole in Horava gravity
Energy Technology Data Exchange (ETDEWEB)
Suresh, Jishnu; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Cochin, Kerala (India)
2013-10-15
We study the quasinormal modes of the massless scalar field of Park black hole in the Horava gravity using the third-order WKB approximation method and find that the black hole is stable against these perturbations. We compare and discuss the results with that of Schwarzschild-de Sitter black hole. Thermodynamic properties of Park black hole are investigated and the thermodynamic behavior of upper mass bound is also studied. (orig.)
Liang, Jun; Liu, Yan-Chun; Zhu, Qiao
2014-02-01
In order to further explore the effects of non-Gaussian smeared mass distribution on the thermodynamical properties of noncommutative black holes, we consider noncommutative black holes based on Maxwell-Boltzmann smeared mass distribution in (2+1)-dimensional spacetime. The thermodynamical properties of the black holes are investigated, including Hawking temperature, heat capacity, entropy and free energy. We find that multiple black holes with the same temperature do not exist, while there exists a possible decay of the noncommutative black hole based on Maxwell-Boltzmann smeared mass distribution into the rotating (commutative) BTZ black hole.
International Nuclear Information System (INIS)
In order to further explore the effects of non-Gaussian smeared mass distribution on the thermodynamical properties of noncommutative black holes, we consider noncommutative black holes based on Maxwell-Boltzmann smeared mass distribution in (2+1)-dimensional spacetime. The thermodynamical properties of the black holes are investigated, including Hawking temperature, heat capacity, entropy and free energy. We find that multiple black holes with the same temperature do not exist, while there exists a possible decay of the noncommutative black hole based on Maxwell-Boltzmann smeared mass distribution into the rotating (commutative) BTZ black hole. (authors)
Thermodynamics of the Schwarzschild and the Reissner–Nordström black holes with quintessence
Directory of Open Access Journals (Sweden)
K. Ghaderi
2016-02-01
Full Text Available In this paper, we study the thermodynamics of the Schwarzschild and the Reissner–Nordström black holes surrounded by quintessence. By using the thermodynamical laws of the black holes, we derive the thermodynamic properties of these black holes and we compare the results with each other. We investigate the mass, temperature and heat capacity as functions of entropy for these black holes. We also discuss the equation of state of the Schwarzschild and the Reissner–Nordström black holes surrounded by quintessence.
Semiclassical Loop Quantum Gravity and Black Hole Thermodynamics
Directory of Open Access Journals (Sweden)
Arundhati Dasgupta
2013-02-01
Full Text Available In this article we explore the origin of black hole thermodynamics using semiclassical states in loop quantum gravity. We re-examine the case of entropy using a density matrix for a coherent state and describe correlations across the horizon due to SU(2 intertwiners. We further show that Hawking radiation is a consequence of a non-Hermitian term in the evolution operator, which is necessary for entropy production or depletion at the horizon. This non-unitary evolution is also rooted in formulations of irreversible physics.
Black hole thermodynamics, conformal couplings, and R^2 terms
Chernicoff, Mariano; Giribet, Gaston; Goya, Andres; Leoni, Matias; Oliva, Julio; Perez-Nadal, Guillem
2016-01-01
Lovelock theory provides a tractable model of higher-curvature gravity in which several questions can be studied analytically. This is the reason why, in the last years, this theory has become the favorite arena to study the effects of higher-curvature terms in the context of AdS/CFT correspondence. Lovelock theory also admits extensions that permit to accommodate matter coupled to gravity in a non-minimal way. In this setup, problems such as the backreaction of matter on the black hole geometry can also be solved exactly. In this paper, we study the thermodynamics of black holes in theories of gravity of this type, which include both higher-curvature terms, U(1) gauge fields, and conformal couplings with matter fields in D dimensions. These charged black hole solutions exhibit a backreacting scalar field configuration that is regular everywhere outside and on the horizon, and may exist both in asymptotically flat and asymptotically Anti-de Sitter (AdS) spaces. We work out explicitly the boundary action for t...
Phase transition and thermodynamic geometry of Einstein-Maxwell-dilaton black holes
Hendi, S H; Panahiyan, S; Panah, B Eslam
2015-01-01
In this paper, we consider a linearly charged dilatonic black holes and study their thermodynamical behavior in the context of phase transition and thermodynamic geometry. We show that, depending on the values of the parameters, these type of black holes may enjoy two types of phase transition. We also find that there are three critical behaviors near the critical points for these black holes; nonphysical unstable to physical stable, large to small, and small to large black holes phase transition. Next, we employ a thermodynamical metric for studying thermodynamical geometry of these black holes. We show that the characteristic behavioral of Ricci scalar of this metric enables one to recognize the type of phase transition and critical behavior of the black holes near phase transition points. Finally, we will extend thermodynamical space by considering dilaton parameter as extensive parameter. We will show that by this consideration, Weinhold, Ruppeiner and Quevedo metrics provide extra divergencies which are ...
Liang, Jun; Liu, Bo
2012-11-01
A noncommutative BTZ black hole is constructed in three-dimensional anti-de Sitter space. In this black-hole model, the noncommutative smearing is obtained by replacing the point-like source term with a Lorentzian distribution. We mainly investigate the thermodynamical properties of this black hole, including Hawking temperature, entropy, heat capacity and free energy.
Thermodynamics of Horndeski black holes with non-minimal derivative coupling
Miao, Yan-Gang
2016-01-01
We explore thermodynamic properties of a new class of Horndeski black holes whose action contains a non-minimal kinetic coupling of a massless real scalar and the Einstein tensor. Our treatment is based on the well-accepted consideration, where the cosmological constant is dealt with as thermodynamic pressure and the mass of black holes as thermodynamic enthalpy. We resort to a newly introduced intensive thermodynamic variable, i.e., the coupling strength of the scalar and tensor whose dimension is length square, and thus yield both the generalized first law of thermodynamics and the generalized Smarr relation. Our result indicates that this class of Horndeski black holes presents rich thermodynamic behaviors and critical phenomena. Especially in the case of the presence of an electric field, these black holes undergo two phase transitions. Once the charge parameter exceeds its critical value, or the cosmological parameter does not exceed its critical value, no phase transitions happen and the black holes are...
THERMODYNAMICS OF THE SLOWLY ROTATING KERR-NEWMAN BLACK HOLE IN THE GRAND CANONICAL ENSEMBLE
Institute of Scientific and Technical Information of China (English)
CHEN JU-HUA; JING JI-LIANG
2001-01-01
We investigate the thermodynamics of the slowly rotating Kerr-Newman (K-N) black hole in the grand canonical ensemble with York's formalism. Some thermodynamical properties, such as the thermodynamical action, entropy,thermodynamical energy and heat capacity are studied, and solutions of the slowly rotating K-N black hole with different boundary conditions are analysed. We find stable solutions and instantons under certain boundary conditions.
Thermodynamic Curvature and Phase Transitions from Black Hole with a Coulomb-Like Field
Institute of Scientific and Technical Information of China (English)
HAN Yi-Wen; BAO Zhi-Qing; HONG Yun
2011-01-01
In this paper, we first investigate the thermodynamic features of the black hole with a coulomb-like field.Moreover, we obtain the geometric description of the black hole thermodynamics.We find that for the black hole with a coulomb-like field the Weinhold geometry is flat, whereas its Ruppeiner geometry is curved.For the heat capacity and curvature calculation shows the Ruppeiner geometry has a transition point.
(Anti-)de Sitter Black Hole Thermodynamics and the Generalized Uncertainty Principle
Bolen, Brett; Cavaglia, Marco
2004-01-01
We extend the derivation of the Hawking temperature of a Schwarzschild black hole via the Heisenberg uncertainty principle to the de Sitter and anti-de Sitter spacetimes. The thermodynamics of the Schwarzschild-(anti-)de Sitter black holes is obtained from the generalized uncertainty principle of string theory and non-commutative geometry. This may explain why the thermodynamics of (anti-)de Sitter-like black holes admits a holographic description in terms of a dual quantum conformal field th...
Thermodynamical quantities around a RNAdS black hole
Institute of Scientific and Technical Information of China (English)
Mi Li-Qin; Li Zhong-Heng
2006-01-01
The entropy density, energy density, pressure and equation of state around the RNAdS black hole are calculated in the WKB approximation on the Teukolsky-type master equation. The appearance of spin-dependent terms is demonstrated. The existence of these terms shows that the black hole radiation is not exactly thermal radiation and the black hole entropy is not strictly proportional to the area of the event horizon.
Hamiltonian thermodynamics of 2D vacuum dilatonic black holes
Bose, S; Parker, L; Peleg, Y; Bose, Sukanta; Louko, Jorma; Parker, Leonard; Peleg, Yoav
1996-01-01
We consider the Hamiltonian dynamics and thermodynamics of the two-dimensional vacuum dilatonic black hole in the presence of a timelike boundary with a fixed value of the dilaton field. A canonical transformation, previously developed by Varadarajan and Lau, allows a reduction of the classical dynamics into an unconstrained Hamiltonian system with one canonical pair of degrees of freedom. The reduced theory is quantized, and a partition function of a canonical ensemble is obtained as the trace of the analytically continued time evolution operator. The partition function exists for any values of the dilaton field and the temperature at the boundary, and the heat capacity is always positive. For temperatures higher than \\beta_c^{-1} = \\hbar\\lambda/(2\\pi), the partition function is dominated by a classical black hole solution, and the dominant contribution to the entropy is the two-dimensional Bekenstein-Hawking entropy. For temperatures lower than \\beta_c^{-1}, the partition function remains well-behaved and t...
Lorentz violation and black-hole thermodynamics: Compton scattering process
International Nuclear Information System (INIS)
A Lorentz-noninvariant modification of quantum electrodynamics (QED) is considered, which has photons described by the nonbirefringent sector of modified Maxwell theory and electrons described by the standard Dirac theory. These photons and electrons are taken to propagate and interact in a Schwarzschild spacetime background. For appropriate Lorentz-violating parameters, the photons have an effective horizon lying outside the Schwarzschild horizon. A particular type of Compton scattering event, taking place between these two horizons (in the photonic ergoregion) and ultimately decreasing the mass of the black hole, is found to have a nonzero probability. These events perhaps allow for a violation of the generalized second law of thermodynamics in the Lorentz-noninvariant theory considered.
Hamiltonian thermodynamics of three-dimensional dilatonic black hole
Dias, Gonçalo A S
2008-01-01
The action for a class of three-dimensional dilaton-gravity theories with a cosmological constant can be recast in a Brans-Dicke type action, with its free $\\omega$ parameter. These theories have static spherically symmetric black holes. Those with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ($\\omega\\to\\infty$), a dimensionally reduced cylindrical four-dimensional general relativity theory ($\\omega=0$), and a theory representing a class of theories ($\\omega=-3$). The Hamiltonian formalism is setup in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unc...
Thermodynamics of a Sufficient Small Singly Spinning Kerr-AdS Black Hole
Pourhassan, Behnam
2016-01-01
In this paper, we will analyze the thermodynamics of a small singly spinning Kerr-AdS black hole. As the black hole will be sufficient small, its temperature will be large and so we can not neglect the effects of thermal fluctuations. We will demonstrate that these thermal fluctuations correct the entropy of singly spinning Kerr-AdS black hole by a logarithmic correction term. We will analyze the implications of the logarithmic correction on other thermodynamic properties of this black hole, and analyze the stability of such a black hole. We will observe that this form of correction becomes important when the size of the black hole is sufficient small. We will also analyze the effect of these thermal fluctuations on the critical phenomena for such a black hole.
Saleh, Mahamat; Crepin, Kofane Timoleon
2016-01-01
We investigate thermodynamics and Phase transition of the Reissner-Nordstr\\"om black hole surrounded by quintessence. Using thermodynamical laws of black holes, we derive the expressions of some thermodynamics quantities for the Reissner-Nordstr\\"om black hole surrounded by quintessence. The variations of the temperature and heat capacity with the entropy were plotted for different values of the state parameter related to the quintessence, $\\omega_{q}$, and the normalization constant related to the density of quintessence $c$. We show that when varying the entropy of the black hole a phase transition is observed in the black hole. Moreover, when increasing the density of quintessence, the transition point is shifted to lower entropy and the temperature of the black hole decreases.
Thermodynamics and phase transition of black hole in an asymptotically safe gravity
International Nuclear Information System (INIS)
We study the effects of quantum gravitational correction on the thermodynamics of black holes in the asymptotic safety scenario. Owing to the quantum-corrected Schwarzschild metric, the thermodynamic quantities are also corrected and a Hawking–Page-type phase transition may exist. We also employ the concept of thermodynamic geometry to the black hole to characterize the phase transition. By introducing a cavity enclosing the black hole, we apply the spatially finite boundary conditions to further investigate the thermodynamic phase transition of the black hole. It is shown that the larger and small black holes are both locally stable according to heat capacity. According to free energy, we find that the quantum-corrected black hole has similar thermodynamic phase structure to that of RN–AdS black hole. In addition, we also discuss the possibility of the phase transition between the black hole and the hot curved space. Above a certain temperature T0, the black hole is more probable than the hot space
Thermodynamic Properties of Higher-Dimensional RN Black Holes
Institute of Scientific and Technical Information of China (English)
WEI Yi-Huan
2009-01-01
A general calculation formula of the heat capacity for the HRN black holes is derived.The heat capacities for Q,Φ_+ and τ_- fixed are obtained. Assuming that the charge-mass ratio of fluctuation modes does not exceed the extremal value, the minimum charge-mass ratio of the black holes for which the heat capacity is positive is determined.
Thermodynamics of the Schwarzschild Black Hole in Noncommutative Space
International Nuclear Information System (INIS)
In this paper we study noncommutative black holes. In particular, we use a deform Schwarzschild solution in noncommutative gauge theory of gravity. By means of euclidean quantum gravity we obtain the entropy, temperatute and the time of evaporation of the noncommutative black hole.
Generalized thermodynamic identity and new Maxwell's law for charged AdS black hole
Zhao, Zixu
2016-01-01
We study the thermodynamic properties of the RN-AdS black hole in full phase space and propose a generalized thermodynamic identity. As an example, we use it to find relations of thermodynamical coefficients between the grand canonical and canonical ensembles. We also show, for the first order phase transition, that the usual Maxwell's equal area law should be extended to a new form for the RN-AdS black hole.
Bohr's Semiclassical Model of the Black Hole Thermodynamics
Directory of Open Access Journals (Sweden)
Panković, V.
2008-06-01
Full Text Available We propose a simple procedure for evaluating the main attributes of a Schwarzschild's black hole: Bekenstein-Hawking entropy, Hawking temperature and Bekenstein's quantization of the surface area. We make use of the condition that the circumference of a great circle on the black hole horizon contains finite and whole number of the corresponding reduced Compton's wavelength. It is essentially analogous to Bohr's quantization postulate in Bohr's atomic model interpreted by de Broglie's relation. It implies the standard meaning of the black hole entropy corresponding to surface of the quantum variation of the great circles on the black hole horizon surface area. We present black hole radiation in the form conceptually analogous to Bohr's postulate on the photon emission by discrete quantum jump of the electron within the Old quantum theory. This enables us, in accordance with Heisenberg's uncertainty relation and Bohr's correspondence principle, to make a rough estimate of the time interval for black hole evaporation, which turns out very close to time interval predicted by the standard Hawking's theory. Our calculations confirm Bekenstein's semiclassical result for the energy quantization, in variance with Frasca's (2005 calculations. Finally we speculate about the possible source-energy distribution within the black hole horizon.
Renormalized thermodynamic entropy of black holes in higher dimensions
Kim, Sang Pyo; Kim, Sung Ku; Soh, Kwang-Sup; Yee, Jae Hyung
1997-02-01
We study the ultraviolet divergent structures of the matter (scalar) field in a higher D-dimensional Reissner-Nordström black hole and compute the matter field contribution to the Bekenstein-Hawking entropy by using the Pauli-Villars regularization method. We find that the matter field contribution to the black hole entropy does not, in general, yield the correct renormalization of the gravitational coupling constants. In particular, we show that the matter field contribution in odd dimensions does not give the term proportional to the area of the black hole event horizon.
Renormalized thermodynamic entropy of black holes in higher dimensions
Energy Technology Data Exchange (ETDEWEB)
Kim, S.P. [Department of Physics, Kunsan National University, Kunsan 573-701 (Korea); Kim, S.K. [Department of Physics, Ewha Womans University, Seoul 120-750 (Korea); Soh, K. [Department of Physics Education, Seoul National University, Seoul 151-742 (Korea); Yee, J.H. [Department of Physics and Institute for Mathematical Sciences, Yonsei University, Seoul 120-749 (Korea)
1997-02-01
We study the ultraviolet divergent structures of the matter (scalar) field in a higher D-dimensional Reissner-Nordstr{umlt o}m black hole and compute the matter field contribution to the Bekenstein-Hawking entropy by using the Pauli-Villars regularization method. We find that the matter field contribution to the black hole entropy does not, in general, yield the correct renormalization of the gravitational coupling constants. In particular, we show that the matter field contribution in odd dimensions does not give the term proportional to the area of the black hole event horizon. {copyright} {ital 1997} {ital The American Physical Society}
On thermodynamics of AdS black holes in M-theory
Energy Technology Data Exchange (ETDEWEB)
Belhaj, A. [Universite Sultan Moulay Slimane, Departement de Physique, LIRST, Faculte Polydisciplinaire, Beni Mellal (Morocco); Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Chabab, M.; Masmar, K. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); El Moumni, H. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Universite Ibn Zohr, Departement de Physique, Faculte des Sciences, Agadir (Morocco); Sedra, M.B. [Universite Ibn Tofail, Departement de Physique, LASIMO, Faculte des Sciences, Kenitra (Morocco)
2016-02-15
Motivated by recent work on asymptotically AdS{sub 4} black holes in M-theory, we investigate the thermodynamics and thermodynamical geometry of AdS black holes from M2- and M5-branes. Concretely, we consider AdS black holes in AdS{sub p+2} x S{sup 11-p-2}, where p = 2,5 by interpreting the number of M2- (and M5-branes) as a thermodynamical variable. More precisely, we study the corresponding phase transition to examine their stabilities by calculating and discussing various thermodynamical quantities including the chemical potential. Then we compute the thermodynamical curvatures from the Quevedo metric for M2- and M5-branes geometries to reconsider the stability of such black holes. The Quevedo metric singularities recover similar stability results provided by the phase-transition program. It has been shown that similar behaviors are also present in the limit of large N. (orig.)
Effects of thermal fluctuations on the thermodynamics of modified Hayward black hole
International Nuclear Information System (INIS)
In this work, we analyze the effects of thermal fluctuations on the thermodynamics of a modified Hayward black hole. These thermal fluctuations will produce correction terms for various thermodynamical quantities like entropy, pressure, internal energy, and specific heats. We also investigate the effect of these correction terms on the first law of thermodynamics. Finally, we study the phase transition for the modified Hayward black hole. It is demonstrated that the modified Hayward black hole is stable even after the thermal fluctuations are taken into account, as long as the event horizon is larger than a certain critical value. (orig.)
Effects of thermal fluctuations on the thermodynamics of modified Hayward black hole
Energy Technology Data Exchange (ETDEWEB)
Pourhassan, Behnam [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of); Faizal, Mir [University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Debnath, Ujjal [Indian Institute of Engineering Science and Technology, Shibpur, Department of Mathematics, Howrah (India)
2016-03-15
In this work, we analyze the effects of thermal fluctuations on the thermodynamics of a modified Hayward black hole. These thermal fluctuations will produce correction terms for various thermodynamical quantities like entropy, pressure, internal energy, and specific heats. We also investigate the effect of these correction terms on the first law of thermodynamics. Finally, we study the phase transition for the modified Hayward black hole. It is demonstrated that the modified Hayward black hole is stable even after the thermal fluctuations are taken into account, as long as the event horizon is larger than a certain critical value. (orig.)
Thermodynamic stability of modified Schwarzschild-AdS black hole in rainbow gravity
Kim, Yong-Wan; Park, Young-Jai
2016-01-01
In this paper, we have extended the previous study of the thermodynamics and phase transition of the Schwarzschild black hole in the rainbow gravity to the Schwarzschild-AdS black hole where metric depends on the energy of a probe. Making use of the Heisenberg uncertainty principle and the modified dispersion relation, we have obtained the modified local Hawking temperature and thermodynamic quantities in an isothermal cavity. Moreover, we carry out the analysis of constant temperature slices of a black hole. As a result, we have shown that there also exists another Hawking-Page-like phase transition in which case a locally stable small black hole tunnels into a globally stable large black hole as well as the standard Hawking-Page phase transition from a hot flat space to a black hole.
Renormalized Thermodynamic Entropy of Black Holes in Higher Dimensions
Kim, Sang Pyo; Kim, Sung Ku; Soh, Kwang-Sup; Yee, Jae Hyung
1996-01-01
We study the ultraviolet divergent structures of the matter (scalar) field in a higher D-dimensional Reissner-Nordstr\\"{o}m black hole and compute the matter field contribution to the Bekenstein-Hawking entropy by using the Pauli-Villars regularization method. We find that the matter field contribution to the black hole entropy does not, in general, yield the correct renormalization of the gravitational coupling constants. In particular we show that the matter field contribution in odd dimens...
Thermodynamic Phase Transition and Critical Behavior of a Spherical Symmetric Black Hole
Jiang, Ji-Jian; Li, Chuan-An; Cheng, Xie-Feng
2016-04-01
In this paper, we builded the thermodynamics model of black hole based on the method of York. We obtained the reduced temperature reciprocal function using the action of the system. We studied the phase structure of black holes and Hawking-Page phase transition. We obtained the first order phase transition and critical values of black hole in Rerssner-NordstrÖm space time. The results showed that only when two-phase coexistence appeared only when | q| < | q c |.
Thermodynamics of DBI Black Holes in Anti-de Sitter Spacetime
Institute of Scientific and Technical Information of China (English)
JIA Dong-Yan; YUE Rui-Hong; HUANG Shi-Ming
2011-01-01
Through the gauge field theory, we obtain the solution of the DBI-AdS black hole.In the meantime,according to the relations between the action and the grand partition function, we obtain the grand partition function in the DBI-AdS black hole.The temperature and the potential of the DBI-AdS black hole are gained from differential of the grand partition function.With the thermodynamic relations, other thermodynamics are also obtained.The solution and the thermodynamics of the DBI-AdS black hole are turned out that they can reduce to the case of a charged black hole in four-dimensional spacetimes.
Thermodynamics of the two-dimensional black hole in the Teitelboim-Jackiw theory
Lemos, Jose P. S.
1996-01-01
The two-dimensional theory of Teitelboim and Jackiw has constant and negative curvature. In spite of this, the theory admits a black hole solution with no singularities. In this work we study the thermodynamics of this black hole using York's formalism.
Black holes in the Einstein -Gauss-Bonnet theory and the geometry of their thermodynamics-II
Biswas, Ritabrata; Chakraborty, Subenoy
2009-01-01
In the present work we study (i) charged black hole in Einstein-Gauss-Bonnet (EGB) theory, known as Einstein-Maxwell-Gauss-Bonnet (EMGB) black hole and (ii) black hole in EGB gravity with Yang-Mills field. The thermodynamic geometry of these two black hole solutions has been investigated, using the modified entropy in Gauss-Bonnet theory.
Thermodynamics of Lovelock black holes with a nonminimal scalar field
Correa, Francisco
2013-01-01
We source the Lovelock gravity theories indexed by an integer k and fixed by requiring a unique anti-de Sitter vacuum with a self-interacting nonminimal scalar field in arbitrary dimension d. For each inequivalent Lovelock gravity theory indexed by the integer k, we establish the existence of a two-parametric self-interacting potential that permits to derive a class of black hole solutions with planar horizon for any arbitrary value of the nonminimal coupling parameter. In the thermodynamical analysis of the solution, we show that, once regularized the Euclidean action, the mass contribution coming form the gravity side exactly cancels, order by order, the one arising from the matter part yielding to a vanishing mass. This result is in accordance with the fact that the entropy of the solution, being proportional to the lapse function evaluated at the horizon, also vanishes. Consequently, the integration constant appearing in the solution is interpreted as a sort of hair which turns out to vanish at high tempe...
Thermodynamic Properties of a Reissner-Nordstr(o)m Quintessence Black Hole
Institute of Scientific and Technical Information of China (English)
WEI Yi-Huan; CHU Zhong-Hui
2011-01-01
The first law of thermodynamics for the three horizons of Reissner-Nordstr(o)m quintessence (RNQ) spacetime is obtained.For a general process of RNQ spacetime,the expressions for the radius changes of the three horizons are derived.When only mass changes,the heat fluxes through the three horizons are equivalent and no heat is left in the black hole region.Finally,a further discussion on the thermal properties of an RNQ black hole is given.Black holes satisfy the four laws of thermodynamics,which indicates a deep connection between gravity and thermodynamics,[1-4] where the entropy of black hole is proportional to the area of event horizon and the temperature of black hole is proportional to the surface gravity of event horizon.For a static and spherically symmetric spacetime,the field equation may be written as the first law of thermodynamics.[5-10]%The first law f thermodynamics for the three horizons of Reissner-Nordstrom quintessence (RNQ) spacetime is obtained. For a general process of RNQ spacetime, the expressions for the radius changes of the three horizons are derived. When only mass changes, the heat fluxes through the three horizons are equivalent and no heat is left in the black hole region. Finally, a further discussion on the thermal properties of an RNQ black hole is given.
THERMODYNAMICS OF GLOBAL MONOPOLE ANTI-DE-SITTER BLACK HOLE IN GRAND CANONICAL ENSEMBLE
Institute of Scientific and Technical Information of China (English)
陈菊华; 荆继良; 王永久
2001-01-01
In this paper, we investigate the thermodynamics of the global monopole anti-de-Sitter black hole in the grand canonical ensemble following the York's formalism. The black hole is enclosed in a cavity with a finite radius where the temperature and potential are fixed. We have studied some thermodynamical properties, i.e. the reduced action,thermal energy and entropy. By investigating the stability of the solutions, we find stable solutions and instantons.
On Thermodynamical Relation Between Rotating Charged BTZ Black Holes and Effective String Theory
Institute of Scientific and Technical Information of China (English)
Alexis Larra(~n)aga
2008-01-01
In this paper we study the first law of thermodynamics for the (2+1)-dimensional rotating charged BTZ black hole considering a pair of thermodynamical systems constructed with the two horizons of this solution. We show that these two systems are similar to the right and left movers of string theory and that the temperature associated with the black hole is the harmonic mean of the temperatures associated with these two systems.
Unified First Law and Thermodynamics of Dynamical Black Hole in n-dimensional Vaidya Spacetime
Ren, Ji-Rong; Li, Ran
2007-01-01
As a simple but important example of dynamical black hole, we analysis the dynamical black hole in $n$-dimensional Vaidya spacetime in detail. We investigated the thermodynamics of field equation in $n$-dimensional Vaidya spacetime. The unified first law was derived in terms of the methods proposed by Sean A Hayward. The first law of dynamical black hole was obtained by projecting the unified first law along the trapping horizon. At last, the second law of dynamical black hole is also discussed.
MicroBlack Holes Thermodynamics in the Presence of Quantum Gravity Effects
Directory of Open Access Journals (Sweden)
H. Soltani
2014-01-01
Full Text Available Black hole thermodynamics is corrected in the presence of quantum gravity effects. Some phenomenological aspects of quantum gravity proposal can be addressed through generalized uncertainty principle (GUP which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of both a minimal measurable length and a maximal momentum on the thermodynamics of TeV-scale black holes. We then extend our study to the case that there are all natural cutoffs as minimal length, minimal momentum, and maximal momentum simultaneously. We also generalize our study to the model universes with large extra dimensions (LED. In this framework existence of black holes remnants as a possible candidate for dark matter is discussed. We study probability of black hole production in the Large Hadronic Collider (LHC and we show this rate decreasing for sufficiently large values of the GUP parameter.
MicroBlack Holes Thermodynamics in the Presence of Quantum Gravity Effects
International Nuclear Information System (INIS)
Black hole thermodynamics is corrected in the presence of quantum gravity effects. Some phenomenological aspects of quantum gravity proposal can be addressed through generalized uncertainty principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of both a minimal measurable length and a maximal momentum on the thermodynamics of TeV-scale black holes. We then extend our study to the case that there are all natural cutoffs as minimal length, minimal momentum, and maximal momentum simultaneously. We also generalize our study to the model universes with large extra dimensions (LED). In this framework existence of black holes remnants as a possible candidate for dark matter is discussed. We study probability of black hole production in the Large Hadronic Collider (LHC) and we show this rate decreasing for sufficiently large values of the GUP parameter
New perspective for black hole thermodynamics in Gauss-Bonnet-Born-Infeld massive gravity
Hendi, Seyed Hossein; Mo, Jie-Xiong; Panahiyan, Shahram; Panah, Behzad Eslam
2016-01-01
Following earlier study regarding Einstein-Gauss-Bonnet-massive black holes in the presence of Born-Infeld nonlinear electromagnetic field [S. H. Hendi, B. Eslam Panah and S. Panahiyan, arXiv:1510.00108], we study thermodynamical structure and critical behavior of these black holes through different methods in this paper. Geometrical thermodynamics is employed to give a picture regarding phase transition of these black holes. Next, a new method is used to derive critical pressure and horizon radius of these black holes. In addition, Maxwell equal area law is employed to study the Van der Waals like behavior of these black holes. Moreover, the critical exponents are calculated and by using Ehrenfest equations, the type of the phase transitions are determined.
Black hole thermodynamics from calculations in strongly coupled gauge theory.
Kabat, D; Lifschytz, G; Lowe, D A
2001-02-19
We develop an approximation scheme for the quantum mechanics of N D0-branes at finite temperature in the 't Hooft large- N limit. The entropy of the quantum mechanics calculated using this approximation agrees well with the Bekenstein-Hawking entropy of a ten-dimensional nonextremal black hole with 0-brane charge. This result is in accordance with the duality conjectured by Itzhaki, Maldacena, Sonnenschein, and Yankielowicz [Phys. Rev. D 58, 046004 (1998)]. Our approximation scheme provides a model for the density matrix which describes a black hole in the strongly coupled quantum mechanics. PMID:11290159
Feng, Z. W.; Li, H. L.; Zu, X. T.; Yang, S. Z.
2016-04-01
We investigate the thermodynamics of Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle (GUP). The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of the Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the radius or mass of the black hole approaches the order of Planck scale, it stops radiating and leads to a black hole remnant. Meanwhile, the Planck scale remnant can be confirmed through the analysis of the heat capacity. Those phenomena imply that the GUP may give a way to solve the information paradox. Besides, we also investigate the possibilities to observe the black hole at the Large Hadron Collider (LHC), and the results demonstrate that the black hole cannot be produced in the recent LHC.
Energy Technology Data Exchange (ETDEWEB)
Feng, Z.W.; Zu, X.T. [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Li, H.L. [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China); Yang, S.Z. [China West Normal University, Physics and Space Science College, Nanchong (China)
2016-04-15
We investigate the thermodynamics of Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle (GUP). The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of the Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the radius or mass of the black hole approaches the order of Planck scale, it stops radiating and leads to a black hole remnant. Meanwhile, the Planck scale remnant can be confirmed through the analysis of the heat capacity. Those phenomena imply that the GUP may give a way to solve the information paradox. Besides, we also investigate the possibilities to observe the black hole at the Large Hadron Collider (LHC), and the results demonstrate that the black hole cannot be produced in the recent LHC. (orig.)
Phase transition of charged Black Holes in Brans-Dicke theory through geometrical thermodynamics
Hendi, S H; Panah, B Eslam; Armanfard, Z
2015-01-01
In this paper, we take into account black hole solutions of Brans-Dicke-Maxwell theory and investigate their stability and phase transition points. We apply the concept of geometry in thermodynamics to obtain phase transition points and compare its results with those of calculated in canonical ensemble through heat capacity. We show that these black holes enjoy second order phase transitions. We also show that there is a lower bound for the horizon radius of physical charged black holes in Brans-Dicke theory which is originated from restrictions of positivity of temperature. In addition, we find that employing specific thermodynamical metric in the context of geometrical thermodynamics yields divergencies for thermodynamical Ricci scalar in places of phase transitions. It will be pointed out that due to characteristics behavior of thermodynamical Ricci scalar around its divergence points, one is able to distinguish the physical limitation point from the phase transitions.
Black Hole Horizons and Thermodynamics: A Quantum Approach
Directory of Open Access Journals (Sweden)
Nicola Pinamonti
2010-07-01
Full Text Available We focus on quantization of the metric of a black hole restricted to the Killing horizon with universal radius r0. After imposing spherical symmetry and after restriction to the Killing horizon, the metric is quantized employing the chiral currents formalism. Two "components of the metric" are indeed quantized: The former behaves as an affine scalar field under changes of coordinates, the latter is instead a proper scalar field. The action of the symplectic group on both fields is realized in terms of certain horizon diffeomorphisms. Depending on the choice of the vacuum state, such a representation is unitary. If the reference state of the scalar field is a coherent state rather than a vacuum, spontaneous breaking of conformal symmetry arises and the state contains a Bose-Einstein condensate. In this case the order parameter fixes the actual size of the black hole with respect to r0. Both the constructed state together with the one associated with the affine scalar are thermal states (KMS with respect to Schwarzschild Killing time when restricted to half horizon. The value of the order parameter fixes the temperature at the Hawking value as well. As a result, it is found that the quantum energy and entropy densities coincide with the black hole mass and entropy, provided the universal parameter r0 is suitably chosen, not depending on the size of the actual black hole in particular.
Moduli and (un)attractor black hole thermodynamics
Astefanesei, D.; Goldstein, K.D.; Mahapatra, S.
2008-01-01
We investigate four-dimensional spherically symmetric black hole solutions in gravity theories with massless, neutral scalars non-minimally coupled to gauge fields. In the non-extremal case, we explicitly show that, under the variation of the moduli, the scalar charges appear in the first law of bla
Does the third law of black hole thermodynamics really have a serious failure?
Rácz, I
2000-01-01
The almost perfect correspondence between certain laws of classical black hole mechanics and the ordinary laws of thermodynamics is spoiled by the failure of the conventional back hole analogue of the third law. Our aim here is to contribute to the associated discussion by flashing light on some simple facts of black hole physics. However, no attempt is made to lay to rest the corresponding long lasting debate. Instead, merely some evidence is provided to make it clear that although the borderline between extremal and non-extremal black holes is very thin they are essentially different. Hopefully, a careful investigation of the related issues will end up with an appropriate form of the third law and hence with an unblemished setting of black hole thermodynamics.
The intrinsic curvature of thermodynamic potentials for black holes with critical points
Dolan, Brian P
2015-01-01
The geometry of thermodynamic state space is studied for asymptotically anti-de Sitter black holes in D-dimensional space times. Convexity of thermodynamic potentials and the analytic structure of the response functions is analysed. The thermodynamic potentials can be used to define a metric on the space of thermodynamic variables and two commonly used such metrics are the Weinhold metric, derived from the internal energy, and the Ruppeiner metric, derived from the entropy. The intrinsic curvature of these metrics is calculated for charged and for rotating black holes and it is shown that the curvature diverges when heat capacities diverge but, contrary to general expectations, the singularities in the Ricci scalars do not reflect the critical behaviour. When a cosmological constant is included as a state space variable it can be interpreted as a pressure and the thermodynamically conjugate variable as a thermodynamic volume. The geometry of the resulting extended thermodynamic state space is also studied, in...
A class of black holes in dRGT massive gravity and their thermodynamical properties
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Suchant G. [Jamia Millia Islamia, Centre of Theoretical Physics, New Delhi (India); University of Kwazulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Private Bag 54001, Durban (South Africa); Tannukij, Lunchakorn [Mahidol University, Department of Physics, Faculty of Science, Bangkok (Thailand); Wongjun, Pitayuth [Naresuan University, The Institute for Fundamental Study, Phitsanulok (Thailand); Ministry of Education, Thailand Center of Excellence in Physics, Bangkok (Thailand)
2016-03-15
We present an exact spherical black hole solution in de Rham, Gabadadze, and Tolley (dRGT) massive gravity for a generic choice of the parameters in the theory, and also discuss the thermodynamical and phase structure of the black hole in both the grand canonical and the canonical ensembles (for the charged case). It turns out that the dRGT black hole solution includes other known solutions to the Einstein field equations, such as the monopole-de Sitter-Schwarzschild solution with the coefficients of the third and fourth terms in the potential and the graviton mass in massive gravity naturally generates the cosmological constant and the global monopole term. Furthermore, we compute the mass, temperature and entropy of the dRGT black hole, and also perform thermodynamical stability analysis. It turns out that the presence of the graviton mass completely changes the black hole thermodynamics, and it can provide the Hawking-Page phase transition which also occurs for the charged black holes. Interestingly, the entropy of a black hole is barely affected and still obeys the standard area law. In particular, our results, in the limit m{sub g} → 0, reduced exactly to the results of general relativity. (orig.)
A class of black holes in dRGT massive gravity and their thermodynamical properties
International Nuclear Information System (INIS)
We present an exact spherical black hole solution in de Rham, Gabadadze, and Tolley (dRGT) massive gravity for a generic choice of the parameters in the theory, and also discuss the thermodynamical and phase structure of the black hole in both the grand canonical and the canonical ensembles (for the charged case). It turns out that the dRGT black hole solution includes other known solutions to the Einstein field equations, such as the monopole-de Sitter-Schwarzschild solution with the coefficients of the third and fourth terms in the potential and the graviton mass in massive gravity naturally generates the cosmological constant and the global monopole term. Furthermore, we compute the mass, temperature and entropy of the dRGT black hole, and also perform thermodynamical stability analysis. It turns out that the presence of the graviton mass completely changes the black hole thermodynamics, and it can provide the Hawking-Page phase transition which also occurs for the charged black holes. Interestingly, the entropy of a black hole is barely affected and still obeys the standard area law. In particular, our results, in the limit mg → 0, reduced exactly to the results of general relativity. (orig.)
International Nuclear Information System (INIS)
We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole
Effective first law of thermodynamics of black holes with two horizons
Institute of Scientific and Technical Information of China (English)
Wei Yi-Huan
2009-01-01
For a black hole with two horizons, the effective entropy is assumed to be a linear combination of the two entropies of the outer and inner horizons. In terms of the effective thermodynamic quantities the effective Bekenstein-Smarr formula and the effective first law of thermodynamics are derived.
New Formulations of First Law of Black Hole Thermodynamics: A "Stringy" Analogy
Wu, S Q
2005-01-01
We consider the first laws of thermodynamics for a pair of systems made up of the two horizons of a Kerr-Newman black hole. These two systems are constructed in such a way that we only demand their ``horizon areas'' to be the sum and difference of that of the outer and inner horizons of their prototype. Remarkably, these two copies bear a striking resemblance to the right- and left-movers in string theory and D-brane physics. Our reformulation of the first law of black hole thermodynamics can be thought of as an analogy of thermodynamics of effective string or D-brane models.
Thermodynamic analysis of topological black holes in Gauss-Bonnet gravity with nonlinear source
Energy Technology Data Exchange (ETDEWEB)
Hendi, S.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Panahiyan, S.; Mahmoudi, E. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)
2014-10-15
Employing two classes of nonlinear electrodynamics, we obtain topological black hole solutions of Gauss-Bonnet gravity. We investigate geometric properties of the solutions and find that there is an intrinsic singularity at the origin. We investigate the thermodynamic properties of the asymptotically flat black holes and also asymptotically adS solutions. Using a suitable local transformation, we generalize static horizon-flat solutions to rotating ones. We discuss their conserved and thermodynamic quantities as well as the first law of thermodynamics. Finally, we calculate the heat capacity of the solutions to obtain a constraint on the horizon radius of stable solutions. (orig.)
New formulation of the first law of black hole thermodynamics: a stringy analogy
International Nuclear Information System (INIS)
We consider the first laws of thermodynamics for a pair of systems made up of the two horizons of a Kerr-Newman black hole. These two systems are constructed in such a way that we only demand their 'horizon areas' to be the sum and difference of that of the outer and inner horizons of their prototype. Remarkably, these two copies bear a striking resemblance to the right- and left-movers in string theory and D-brane physics. Our reformulation of the first law of black hole thermodynamics can be thought of as an analogy of thermodynamics of effective string or D-brane models
Minimal Length Effects in Black Hole Thermodynamics from Tunneling Formalism
Gangopadhyay, Sunandan
2016-01-01
The tunneling formalism in the Hamilton-Jacobi approach is adopted to study Hawking radiation of massless Dirac particles from spherically symmetric black hole spacetimes incorporating the effects of the generalized uncertainty principle. The Hawking temperature is found to contain corrections from the generalized uncertainty principle. Further, we show from this result that the ratio of the GUP corrected energy of the particle to the GUP corrected Hawking temperature is equal to the ratio of the corresponding uncorrected quantities. This result is then exploited to compute the Hawking temperature for more general forms of the uncertainty principle having infinite number of terms. Choosing the coefficients of the terms in the series in a specific way enables one to sum the infinite series exactly. This leads to a Hawking temperature for the Schwarzschild black hole that agrees with the result which accounts for the one loop back reaction effect. The entropy is finally computed and yields the area theorem upto logarithmic corrections.
Minimal length effects in black hole thermodynamics from tunneling formalism
Gangopadhyay, Sunandan
2016-01-01
The tunneling formalism in the Hamilton-Jacobi approach is adopted to study Hawking radiation of massless Dirac particles from spherically symmetric black hole spacetimes incorporating the effects of the generalized uncertainty principle. The Hawking temperature is found to contain corrections from the generalized uncertainty principle. An alternative derivation of this result is also presented which makes use of the tunneling result for the probability of the outgoing particle in the absence of quantum gravity effects. This approach is then exploited to compute the Hawking temperature for more general forms of the uncertainty principle having infinite number of terms. Choosing the coefficients of the terms in the series in a specific way enables one to sum the infinite series exactly. This leads to a Hawking temperature for the Schwarzschild black hole that agrees with the result which accounts for the one loop back reaction effect. The entropy is finally computed and yields the area theorem upto logarithmic...
Feng, Z W; Zu, X T
2016-01-01
We investigate the thermodynamics of Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle. The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the black hole evaporates down to the order of Planck scale, it makes the Hawking radiating stop and leads to remnant. It finds the endpoint of evaporation is a Planck-scale remnant with zero heat capacity. Those phenomenons imply that the GUP may give a way to solve the information. Besides, we also analysis the possibilities to find the black hole at LHC, and show that the black hole can not be produced in the recent LHC.
A Note on Physical Mass and the Thermodynamics of AdS-Kerr Black Holes
McInnes, Brett
2015-01-01
As with any black hole, asymptotically anti-de Sitter Kerr black holes are described by a small number of parameters, including a "mass parameter" $M$ that reduces to the AdS-Schwarzschild mass in the limit of vanishing angular momentum. In sharp contrast to the asymptotically flat case, the horizon area of such a black hole increases with the angular momentum parameter $a$ if one fixes $M$; this appears to mean that the Penrose process in this case would violate the Second Law of black hole thermodynamics. We show that the correct procedure is to fix not $M$ but rather the "physical" mass $E=M/(1-a^2/L^2)^2$; this is motivated by the First Law. For then the horizon area decreases with $a$. We recommend that $E$ always be used as the mass: for example, in attempts to "over-spin" AdS-Kerr black holes.
Another new form of the rotating squashed black hole solution and its thermodynamics
Zhu, Xiao-Dan; Wu, Shuang-Qing; Yang, Shu-Zheng
2016-01-01
In a previous work, we had obtained a new simple form for the five-dimensional rotating squashed black hole solution by solving directly the vacuum Einstein field equations. In this paper, using a different metric ansatz, we have obtained another new but relatively simple form for the rotating uncharged black hole with squashed horizons. We then found its relation to our previous solution and investigated its thermodynamics by means of the counterterm method. Compared with the previous results given by the other author, both of our new metric forms and their associated thermodynamic expressions of the neutral rotating squashed black hole solution are very concise and elegant. Our work serves as a warmup excises for studying the rotating charged squashed black holes in the next step.
Conserved charges and first law of thermodynamics for Kerr-de Sitter black holes
Hajian, Kamal
2016-08-01
Recently, a general method for calculating conserved charges for (black hole) solutions to generally covariant gravitational theories, in any dimensions and with arbitrary asymptotic behaviors has been introduced. Equipped with this method, which can be dubbed as "solution phase space method," we calculate mass and angular momentum for the Kerr-dS black holes. Furthermore, for any choice of horizons, associated entropy and the first law of thermodynamics are derived. Interestingly, according to insensitivity of the analysis to the chosen cosmological constant, the analysis unifies the thermodynamics of rotating stationary black holes in 4 (and other) dimensions with either AdS, flat or dS asymptotics. We extend the analysis to include electric charge, i.e. to the Kerr-Newman-dS black holes.
Another new form of the rotating squashed black hole solution and its thermodynamics
Zhu, Xiao-Dan; Wu, Di; Wu, Shuang-Qing; Yang, Shu-Zheng
2016-01-01
In a previous work, we had obtained a new simple form for the five-dimensional rotating squashed black hole solution by solving directly the vacuum Einstein field equations. In this paper, using a different metric ansatz, we have obtained another new but relatively simple form for the rotating uncharged black hole with squashed horizons. We then found its relation to our previous solution and investigated its thermodynamics by means of the counterterm method. Compared with the previous result...
Thermodynamic properties of the noncommutative black hole in (z = 3)-Horava-Lifshitz gravity
NACH, Mourad; BILAL, Khadija; SEDRA, My Brahim; BOUKILI, Abderrahman EL
2013-01-01
In this work, we investigate the effects of noncommutative spaces on the Horava-Lifshitz black hole. We construct the black hole solutions in the noncommutative space of (z = 3)-Horava-Lifshitz gravity. We calculate the horizon and the thermodynamic properties such as the Hawking temperature, the ADM-Mass, and entropy, which reduce to their commutative limits when the noncommutativity parameter tends to zero.
On Thermodynamics of 2d Black Holes in Brane Inflationary Potentials
Belhaj, A; Moumni, H El; Sedra, M B; Segui, A
2013-01-01
Inspired from the inflation brane world cosmology, we study the thermodynamics of a black hole solution in two dimensional dilaton gravity with an arctangent potential background. We first derive the two dimensional black hole geometry, then we examine its asymptotic behaviors. More precisely, we find that such behaviors exhibit properties appearing in some known cases including the Anti de Sitter and the Schwarzchild black holes. Using the complex path method, we compute the Hawking radiation. The entropy function can be related to the value of the potential at the horizon.
Thermodynamic Interpretation of Field Equations at Horizon of BTZ Black Hole
Institute of Scientific and Technical Information of China (English)
M. Akbar
2007-01-01
A spacetime horizon comprising with a black hole singularity acts like a boundary of a thermal system associated with the notions of temperature and entropy. In the case of static metric of Banados-Teitelboim-Zanelli (BTZ) black hole, the Reid equations near the horizon boundary can be expressed as a thermal identity dE = TdS+PrdA, where E = M is the mass of BTZ black hole, dA is the change in the area of the black hole horizon when the horizon is displaced innnitesimally small, Pr is the radial pressure provided by the source of Einstein equations, S = 4πa is the entropy and T = κ/2π is the Hawking temperature associated with the horizon. This approach is studied further to generalize it for non-static BTZ black hole, showing that it is also possible to interpret the field equation near horizon as a thermodynamic identity dE = TdS + PrdA + Ω+dJ, where Ω+ is the angular velocity and J is the angular momentum of BTZ black hole. These results indicate that the Geld equations for BTZ black hole possess intrinsic thermodynamic properties near the horizon.
A class of black holes in dRGT massive gravity and their thermodynamical properties
Ghosh, Sushant G; Wongjun, Pitayuth
2015-01-01
We present exact spherical black hole solutions in de Rham, Gabadadze and Tolley (dRGT) massive gravity for a generic choice of the parameters in the theory, and also discuss the thermodynamical and phase structure of the black hole in both the grand canonical and canonical ensembles (for charged case). It turns out that the dGRT black hole solutions includes the known solutions to the Einstein field equations, such as, the monopole-de Sitter-Schwarzschild ones with the coefficients for the third and fourth terms in the potential and the graviton mass in massive gravity naturally generates the cosmological constant and the global monopole term. Furthermore, we compute the mass, temperature, and entropy of dGRT black hole solutions and also perform thermodynamical stability. It turns out that the presence of the graviton mass completely changes the black hole thermodynamics, and it can provide the Hawking-Page phase transition which is also true for the obtained charged black holes. Interestingly, the entropy ...
Thermodynamic response functions and Maxwell relations for a Kerr black hole
Escamilla, L
2015-01-01
Assuming the existence of a fundamental thermodynamic relation, the classical thermodynamics of a black hole with mass and angular momentum is given. New definitions of response functions and $TdS$ equations are introduced and mathematical analogous of the Euler equation and Gibbs-Duhem relation are founded. Thermodynamic stability is studied from concavity conditions, resulting in an unstable equilibrium at all the domain except for a region of local stable equilibrium. Maxwell relations are written, allowing to build the thermodynamic squares. Our results shown an interesting analogy between thermodynamics of gravitational and magnetic systems.
Thermodynamics and Phase transition of Schwarzschild black hole in Gravity's Rainbow
Feng, Zhong-Wen; Li, Hui-Ling; Zu, Xiao-Tao
2016-01-01
The Planck length and Planck energy should be taken as invariant scales are in agreement with various theories of quantum gravity. In this scenario, the original general relativity can be changed to the so-called gravity's rainbow which produces significant modifications to the black holes' evolution. In this paper, using two kinds of rainbow functions, we investigate the thermodynamics and the phase transition of Schwarzschild black hole in the context of gravity's rainbow theory. Firstly, with the help of the Heisenberg uncertainty principle, we calculate the modified Hawking temperature. Then, based on this modification, we derive the local temperature, free energy and other thermodynamic quantities in an isothermal cavity. Finally, the critical behavior, the thermodynamic stability and phase transition of the rainbow Schwarzschild black hole are analyzed. It turns out that our results are different from the those of Hawking-Page phase transition. Meanwhile, it is found that there are many similarities and...
Prasia, P
2016-01-01
In this work we study the Quasi Normal Modes(QNMs) under massless scalar perturbations and the thermodynamics of linearly charged BTZ black holes in massive gravity in the (Anti)de Sitter((A)dS) space time. It is found that the behavior of QNMs changes with the massive parameter and also with the charge of the black hole. The thermodynamics of such black holes in the (A)dS space time is also analyzed in detail. The behavior of specific heat with temperature for such black holes gives an indication of a phase transition that depends on the massive parameter and also on the charge of the black hole.
Thermodynamics of two-dimensional conformal field theory dual to black holes
International Nuclear Information System (INIS)
In this letter we investigate the first law of thermodynamics of the two-dimensional conformal field theory (CFT) that is dual to black holes. We start from the Cardy formula and get the CFT thermodynamics with minimal reasonable assumptions. We use both the microcanonical ensemble and canonical ensemble versions of the Cardy formula. In the black hole/CFT correspondence the black hole is dual to a CFT with excitations, and the black hole mass M and charge N correspond to the energy and charge of the excited CFT. The CFT left- and right-moving central charges cL,R should be quantized, and so we assume that they are mass-independent. Also we assume the difference of the left- and right-moving sector levels NL–NR is mass-independent dual to level matching condition. The thermodynamics of two-dimensional CFT we get is universal and supports the thermodynamics method of black hole/CFT correspondence
Black hole thermodynamics: No inconsistency via the inclusion of the missing P -V terms
Azreg-Aïnou, Mustapha
2015-03-01
The early literature on black hole thermodynamics ignored the P -V term associated with the existence of a fundamental physical constant in the black hole solution. The inclusion of this constant in the first law becomes inconsistent with the Smarr relation. Once the missing P -V term is introduced, it becomes customary to introduce it only in problems where there is a negative cosmological constant. This practice is inherited from cosmological approaches which consider the quantity -Λ /8 π as the constant pressure due to a cosmological fluid. However, the notions of pressure and thermodynamic volume in black hole thermodynamics are very different from their counterparts in classical thermodynamics. From this point of view, there is a priori no compelling reason to not extend this notion of pressure and associate a partial pressure with each "external" density 8π Tt t . In this work, we associate a partial pressure with a variable mass parameter as well as with each t t component of the effective stress-energy tensor Teffμ ν but not with the linear component of the electromagnetic field. Using the field equations Gμ ν=8 π Teffμ ν , we derive universal expressions for the enthalpy, internal energy, free energies, thermodynamic volume, equation of state, law of corresponding states, criticality, and critical exponents of static (nonrotating) charged black holes, with possibly a variable mass parameter, whether they are solutions to the Einstein field equations or not. We extend the derivation to the case where the black hole is immersed in the field of a quintessence force and to the multiforce case. Many applications and extensions are considered, including applications to regular black holes derived in previous and present work. No inconsistency has been noticed in their thermodynamics.
New Formulation of the First Law of Black Hole Thermodynamics: A Stringy Analogy
Wu, S Q
2004-01-01
We consider the first laws of thermodynamics for a pair of systems made up of the two horizons of a Kerr-Newman black hole. These two systems are constructed in such a way that we only demand their ``horizon areas'' to be the sum and difference of that of the outer and inner horizons of their prototype. Remarkably, these two copies bear a striking resemblance to the right- and left-movers in string theory and D-brane physics. Our reformulation of the first law of black hole thermodynamics can...
Phase transition of charged Black Holes in Brans-Dicke theory through geometrical thermodynamics
Hendi, S. H.; Panahiyan, S.; Panah, B. Eslam; Armanfard, Z.
2016-07-01
In this paper, we take into account black hole solutions of Brans-Dicke-Maxwell theory and investigate their stability and phase transition points. We apply the concept of geometry in thermodynamics to obtain phase transition points and compare its results with those, calculated in the canonical ensemble through heat capacity. We show that these black holes enjoy second order phase transitions. We also show that there is a lower bound for the horizon radius of physical charged black holes in Brans-Dicke theory, which originates from restrictions of positivity of temperature. In addition, we find that employing a specific thermodynamical metric in the context of geometrical thermodynamics yields divergencies for the thermodynamical Ricci scalar in places of the phase transitions. It will be pointed out that due to the characteristic behavior of the thermodynamical Ricci scalar around its divergence points, one is able to distinguish the physical limitation point from the phase transitions. In addition, the free energy of these black holes will be obtained and its behavior will be investigated. It will be shown that the behavior of the free energy in the place where the heat capacity diverges demonstrates second order phase transition characteristics.
Thermodynamic phase structure of charged anti-de Sitter scalar-tensor black holes
International Nuclear Information System (INIS)
When electromagnetic field with nonlinear lagrangian acts as a source of gravity the no-scalar-hair theorems can be eluded and black holes with non-trivial scalar field can be found in scalar tensor theories. Black holes with secondary scalar hair exist also when a cosmological constant is added in the theory. The thermodynamics of black holes in anti-de Sitter (AdS) space-time has attracted considerable interest due to the AdS/CFT conjecture. A natural question that arises is whether the non-trivial scalar field would alter the black-hole thermodynamical phase structure. In the current work we present the phase structure of charged hairy black holes coupled to nonlinear Born-Infeld electrodynamics in canonical ensemble which is naturally related to AdS space-time. In certain regions of the parameter space we find the existence of a first-order phase transition between small and very large black holes. An unexpected result is that for a small subinterval of charge values two phase transitions are observed – one of zeroth and one of first order
Ma, Meng-Sen; Liu, Yan-Song
2016-01-01
On the basis of horizon thermodynamics we study the thermodynamic stability and $P-V$ criticality of topological black holes constructed in Ho\\v{r}ava-Lifshitz (HL) gravity without the detailed-balance condition (with general $\\epsilon$). In the framework of horizon thermodynamics, the temperature $T$ and pressure $P$ are independent quantities. It is not necessary to derive $T$ according to the metric function and $P$ according to any matter content. It is shown that the HL black hole for $k=0$ is always thermodynamically stable. For $k=1$, the temperature of HL black hole can be classified in five different cases. In one case, the thermodynamic behaviors of HL black hole is similar to that of Reissner- Nordstr\\"{o}m (RN) black hole. There are larger/smaller black hole phase transition and smaller/larger black hole phase transition in different cases. For $k=-1$, there are six cases for the temperature of HL black hole, in one of which the HL black hole exhibits itself like Schwarzschild-AdS black hole. It i...
On the Thermodynamic Geometry and Critical Phenomena of AdS Black Holes
Sahay, Anurag; Sengupta, Gautam
2010-01-01
In this paper, we study various aspects of the equilibrium thermodynamic state space geometry of AdS black holes. We first examine the Reissner-Nordstrom-AdS (RN-AdS) and the Kerr-AdS black holes. In this context, the state space scalar curvature of these black holes are analysed in various regions of their thermodynamic parameter space. This provides important new insights into the structure and significance of the scalar curvature. We further investigate critical phenomena, and the behaviour of the scalar curvature near criticality, for KN-AdS black holes in two mixed ensembles, introduced and elucidated in our earlier work arXiv:1002.2538 [hep-th]. The critical exponents are identical to those in the RN-AdS and Kerr-AdS cases in the canonical ensemble. This suggests an universality in the scaling behaviour near critical points of AdS black holes. Our results further highlight qualitative differences in the thermodynamic state space geometry for electric charge and angular momentum fluctuations of these.
Energy Technology Data Exchange (ETDEWEB)
Tawfik, A., E-mail: a.tawfik@eng.mti.edu.eg [Egyptian Center for Theoretical Physics (ECTP), MTI University, 11571 Cairo (Egypt)
2013-07-01
We investigate the impacts of Generalized Uncertainty Principle (GUP) proposed by some approaches to quantum gravity such as String Theory and Doubly Special Relativity on black hole thermodynamics and Salecker-Wigner inequalities. Utilizing Heisenberg uncertainty principle, the Hawking temperature, Bekenstein entropy, specific heat, emission rate and decay time are calculated. As the evaporation entirely eats up the black hole mass, the specific heat vanishes and the temperature approaches infinity with an infinite radiation rate. It is found that the GUP approach prevents the black hole from the entire evaporation. It implies the existence of remnants at which the specific heat vanishes. The same role is played by the Heisenberg uncertainty principle in constructing the hydrogen atom. We discuss how the linear GUP approach solves the entire-evaporation-problem. Furthermore, the black hole lifetime can be estimated using another approach; the Salecker-Wigner inequalities. Assuming that the quantum position uncertainty is limited to the minimum wavelength of measuring signal, Wigner second inequality can be obtained. If the spread of quantum clock is limited to some minimum value, then the modified black hole lifetime can be deduced. Based on linear GUP approach, the resulting lifetime difference depends on black hole relative mass and the difference between black hole mass with and without GUP is not negligible.
Tawfik, A
2013-01-01
We investigate the impacts of Generalized Uncertainty Principle (GUP) proposed by some approaches to quantum gravity such as String Theory and Doubly Special Relativity on black hole thermodynamics and Salecker-Wigner inequalities. Utilizing Heisenberg uncertainty principle, the Hawking temperature, Bekenstein entropy, specific heat, emission rate and decay time are calculated. As the evaporation entirely eats up the black hole mass, the specific heat vanishes and the temperature approaches infinity with an infinite radiation rate. It is found that the GUP approach prevents the black hole from the entire evaporation. It implies the existence of remnants at which the specific heat vanishes. The same role is played by the Heisenberg uncertainty principle in constructing the hydrogen atom. We discuss how the linear GUP approach solves the entire-evaporation-problem. Furthermore, the black hole lifetime can be estimated using another approach; the Salecker-Wigner inequalities. Assuming that the quantum position u...
R\\'enyi entropy and the thermodynamic stability of black holes
Czinner, Viktor G
2016-01-01
Thermodynamic stability of black holes, described by the R\\'enyi formula as equilibrium compatible entropy function, is investigated. It is shown that within this approach, asymptotically flat, Schwarzschild black holes can be in stable equilibrium with thermal radiation at a fixed temperature. This implies that the canonical ensemble exists just like in anti-de Sitter space, and nonextensive effects can stabilize the black holes in a very similar way as it is done by the gravitational potential of an anti-de Sitter space. Furthermore, it is also shown that a Hawking-Page-like black hole phase transition occurs at a critical temperature which depends on the $q$-parameter of the R\\'enyi formula.
Tawfik, Abdel Nasser
2015-01-01
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking (black hole) entropy, which relates the entropy to the cross-sectional area of the black hole horizon. Using generalized uncertainty principle (GUP), corrections to the geometric entropy and thermodynamics of black hole will be introduced. The impact of GUP on the entropy near the horizon of three types of black holes; Schwarzschild, Garfinkle-Horowitz-Strominger and Reissner-Nordstr\\"om is determined. It is found that the logarithmic divergence in the entropy-area relation turns to be positive. The entropy $S$, which is assumed to be related to horizon's two-dimensional area, gets an additional terms, for instance $2\\, \\sqrt{\\pi}\\, \\alpha\\, \\sqrt{S}$, where $\\alpha$ is the GUP parameter.
Geometric Description of the Thermodynamics of the Noncommutative Schwarzschild Black Hole
Directory of Open Access Journals (Sweden)
Alexis Larrañaga
2013-01-01
Full Text Available The thermodynamics of the noncommutative Schwarzschild black hole is reformulated within the context of the recently developed formalism of geometrothermodynamics (GTD. Using a thermodynamic metric which is invariant with respect to Legendre transformations, we determine the geometry of the space of equilibrium states and show that phase transitions, which correspond to divergencies of the heat capacity, are represented geometrically as singularities of the curvature scalar. This further indicates that the curvature of the thermodynamic metric is a measure of thermodynamic interaction.
Thermodynamics of "exotic" Bañados-Teitelboim-Zanelli black holes.
Townsend, Paul K; Zhang, Baocheng
2013-06-14
A number of three-dimensional (3D) gravity models, such as 3D conformal gravity, admit "exotic" black hole solutions: the metric is the same as the Bañados-Teitelboim-Zanelli metric of 3D Einstein gravity but with reversed roles for mass and angular momentum, and an entropy proportional to the length of the inner horizon instead of the event horizon. Here we show that the Bañados-Teitelboim-Zanelli solutions of the exotic 3D Einstein gravity (with parity-odd action but Einstein field equations) are exotic black holes, and we investigate their thermodynamics. The first and second laws of black hole thermodynamics still apply, and the entropy still has a statistical interpretation.
Conformal Symmetry Breaking and Thermodynamics of Near-Extremal Black Holes
Almheiri, Ahmed
2016-01-01
It has been argued recently by Almheiri and Polchinski that the near-horizon conformal symmetry of extremal black holes must be broken due to gravitational backreaction at an IR scale linear in $G_N$. In this paper, we show that this scale coincides with the so-called `thermodynamic mass gap' of near-extremal black holes, a scale which signals the breakdown of their thermodynamic description. We also develop a method which extends the analysis of Almheiri and Polchinski to more complicated models with extremal throats by studying the bulk linearized quantum field theory. Moreover, we show how their original model correctly captures the universal physics of the near-horizon region of near-extremal black holes at tree level, and conclude that this equivalence of the conformal breaking and mass gap scale is general.
Geometric Description of the Thermodynamics of the Noncommutative Schwarzschild Black Hole
Alexis Larrañaga; Natalia Herrera; Juliana Garcia
2013-01-01
The thermodynamics of the noncommutative Schwarzschild black hole is reformulated within the context of the recently developed formalism of geometrothermodynamics (GTD). Using a thermodynamic metric which is invariant with respect to Legendre transformations, we determine the geometry of the space of equilibrium states and show that phase transitions, which correspond to divergencies of the heat capacity, are represented geometrically as singularities of the curvature scalar. This further in...
Black-hole thermodynamics with modified dispersion relations and generalized uncertainty principles
Energy Technology Data Exchange (ETDEWEB)
Amelino-Camelia, Giovanni [Dip. Fisica Univ. Roma ' La Sapienza' and Sez. Roma1 INFN, Piazzale Moro 2, Rome (Italy); Arzano, Michele [Institute of Field Physics, Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Yi Ling [Center for Gravity and Relativity, Department of Physics, Nanchang University, Nanchang 330047 (China); Mandanici, Gianluca [Dip. Fisica Univ. Roma ' La Sapienza' and Sez. Roma1 INFN, Piazzale Moro 2, Rome (Italy)
2006-04-07
In several approaches to the quantum-gravity problem evidence has emerged of the validity of a 'GUP' (a generalized position-momentum uncertainty principle) and/or a 'MDR' (a modification of the energy-momentum dispersion relation), but very little is known about the implications of GUPs and MDRs for black-hole thermodynamics, another key topic for quantum-gravity research. We investigate an apparent link, already suggested in an earlier exploratory study involving two of us, between the possibility of a GUP and/or an MDR and the possibility of a log term in the area-entropy black-hole formula. We then obtain, from that same perspective, a modified relation between the mass of a black hole and its temperature, and we examine the validity of the 'generalized second law of black-hole thermodynamics' in theories with a GUP and/or an MDR. After an analysis of GUP- and MDR-modifications of the black-body radiation spectrum, we conclude the study with a description of the black-hole evaporation process.
Thermodynamics of Reissner-Nordstroem-de Sitter black hole in York's formalism
International Nuclear Information System (INIS)
By using York's path-integral formalism, we investigate the Reissner-Nordstroem-de Sitter (RNdS) spacetimes. We obtain not only the entropies of the lukewarm, the cold, the charged Nariai and the ultracold black holes, but also their first laws of thermodynamics. The entropy of the charged Nariai is given for the first time, to our knowledge
Thermodynamics of a higher dimensional noncommutative anti-de Sitter-Einstein-Born-infeld black hole
González, Angélica; Linares, Román; Maceda, Marco; Sánchez-Santos, Oscar
2015-01-01
We analyze noncommutative deformations of a higher dimensional anti-de Sitter-Einstein-Born-Infeld black hole. Two models based on noncommutative inspired distributions of mass and charge are discussed and their thermodynamical properties are calculated. In the (3+1)-dimensional case, the equation of state and the Gibbs energy function of each model are found.
Thermodynamics of Higher Spin Black Holes in AdS3
J. de Boer; J.I. Jottar
2014-01-01
We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N, R) × SL(N, R) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN
Bohr's Semiclassical Model of the Black Hole Thermodynamics
Pankovic, V.; Predojevic, M.; Grujic, P.
2008-06-01
ekenstein, J. D. 1973, Phys. Rev. D, 7, 2333 Bekenstein, J. D. 1994, gr-qc/9409015v2 Bekenstein, J. D. 1998, gr-qc/9808028v3 Frasca, M. 2005, hep-th/0411245v4 Grujic, P. V. 1993, Bull. Astron. Belgrade, 147, 15 Hawking, S. W. 1975, Comm. Math. Phys., 43, 199 Hawking, S. W. 1979, in "General Relativity, an Einstein Centenary Survey," Eds. S. W. Hawking and W. Israel (Cambridge: Cambridge University Press) Nagatani, Y. 2007, Progr. Theor. Phys. Suppl., 164, 54 Nicolai,H., Peeters, K., & Zamaklar, M. 2005, Class. Quantum Grav., 22, R193 Norcliffe A. 1975, in "Case Studies in Atomic Physics - Vol. 4," Eds. E. W. McDaniel and M. R. McDowell (Amsterdam: North-Holland), 46 Page, D. N. 2004, hep-th/0409024 Pavon, D. 2007, J. Phys. A, 40, 6865 Proline, B. 2006, hep-th/0607227 Ram, B. 2000, Phys. Lett. A, 265, 1 Ram, B., Ram, A, Ram, N. 2005, The Quantum Black Hole, gr-qc/0504030 Samuel, J., & Chowdhury, S. R. 2007, Class. Quantum Grav., 24, F47 Strominger, D. N., Vafa, C. 1996, Phys. Lett. B, 339, 99 Wald, R. M. 1997, gr-qc/9702022 Wald, R. M. 1999, gr-qc/9912119
Black Holes And Thermodynamics Of Non-gravitational Theories (maldacena's Conjecture)
Sahakian, V V
1999-01-01
We study the thermodynamics of a class of non-gravitational theories by making use of Maldacena's conjecture. We chart their thermodynamic phase diagrams well into regimes of strongly coupled dynamics while taking into account finite size effects. We find that black holes arise readily at low entropies as metastable phases. We study the scaling of the various phase transition curves, and demonstrate how the symmetries that patch various string theories together into a single theory consistently mold a myriad of thermodynamic vacua into the phase diagram of a single non-gravitational theory. We show that the statement of an earlier conjecture, the Matrix conjecture, is entirely encoded in Maldacena's proposal. Finally, we study the statistical mechanics of a strongly coupled supersymmetric Yang-Mills theory and identify the signature of black hole formation in the dynamics.
Thermodynamic instability of nonlinearly charged black holes in gravity's rainbow
International Nuclear Information System (INIS)
Motivated by the violation of Lorentz invariance in quantum gravity, we study black hole solutions in gravity's rainbow in the context of Einstein gravity coupled with various models of nonlinear electrodynamics. We regard an energy dependent spacetime and obtain the related metric functions and electric fields. We show that there is an essential singularity at the origin which is covered by an event horizon. We also compute the conserved and thermodynamical quantities and examine the validity of the first law of thermodynamics in the presence of rainbow functions. Finally, we investigate the thermal stability conditions for these black hole solutions in the context of canonical ensemble. We show that the thermodynamical structure of the solutions depends on the choices of nonlinearity parameters, charge, and energy functions. (orig.)
Thermodynamic stability of charged BTZ black holes: Ensemble dependency problem and its solution
Hendi, S H; Mamasani, R
2015-01-01
Motivated by the wide applications of thermal stability and phase transition, we investigate thermodynamic properties of charged BTZ black holes. We apply the standard method to calculate the heat capacity and the Hessian matrix and find that thermal stability of charged BTZ solutions depends on the choice of ensemble. To overcome this problem, we take into account cosmological constant as a thermodynamical variable. By this modification, we show that the ensemble dependency is eliminated and thermal stability conditions are the same in both ensembles. Then, we generalize our solutions to the case of nonlinear electrodynamics. We show how nonlinear matter field modifies the geometrical behavior of the metric function. We also study phase transition and thermal stability of these black holes in context of both canonical and grand canonical ensembles. We show that by considering the cosmological constant as a thermodynamical variable and modifying the Hessian matrix, the ensemble dependency of thermal stability...
Thermodynamic instability of nonlinearly charged black holes in gravity's rainbow
Energy Technology Data Exchange (ETDEWEB)
Hendi, S.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Panahiyan, S. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Shahid Beheshti University, Physics Department, Tehran (Iran, Islamic Republic of); Panah, B.E.; Momennia, M. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)
2016-03-15
Motivated by the violation of Lorentz invariance in quantum gravity, we study black hole solutions in gravity's rainbow in the context of Einstein gravity coupled with various models of nonlinear electrodynamics. We regard an energy dependent spacetime and obtain the related metric functions and electric fields. We show that there is an essential singularity at the origin which is covered by an event horizon. We also compute the conserved and thermodynamical quantities and examine the validity of the first law of thermodynamics in the presence of rainbow functions. Finally, we investigate the thermal stability conditions for these black hole solutions in the context of canonical ensemble. We show that the thermodynamical structure of the solutions depends on the choices of nonlinearity parameters, charge, and energy functions. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)
2007-11-15
We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.
Thermodynamics of higher spin black holes in AdS3
de Boer, Jan; Jottar, Juan I.
2014-01-01
We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL( N, ) × SL( N, ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.
Thermodynamics of higher spin black holes in AdS3
International Nuclear Information System (INIS)
We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N,ℝ)×SL(N,ℝ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges
Institute of Scientific and Technical Information of China (English)
Mahamat Saleh; Bouetou Bouetou Thomas; Timoleon Crepin Kofane
2011-01-01
We investigate quasi-local energy distribution and thermodynamics of the Reissner-Nordstrom black hole space-time surrounded by quintessence.We use the quasi-local energy distribution from Einstein energy-momentum complex.We plot the variation of the energies, temperature and heat capacity with the state parameter related to the quintessence ωq.We show that due to the presence of quintessence, the total energy of the outer region as well as the temperature and heat capacity decreases with the increase of the density of quintessence, while the total energy of the black hole region increases.
Directory of Open Access Journals (Sweden)
Olga Kichakova
2015-07-01
Full Text Available We investigate the thermodynamics of spherically symmetric black hole solutions in a four-dimensional Einstein–Yang–Mills-SU(2 theory with a negative cosmological constant. Special attention is paid to configurations with a unit magnetic charge. We find that a set of Reissner–Nordström–Anti-de Sitter black holes can become unstable to forming non-Abelian hair. However, the hairy black holes are never thermodynamically favoured over the full set of abelian monopole solutions. The thermodynamics of the generic configurations possessing a noninteger magnetic charge is also discussed.
Thermodynamic Geometry and Phase Transitions in Kerr-Newman-AdS Black Holes
Sahay, Anurag; Sengupta, Gautam
2010-01-01
We investigate phase transitions and critical phenomena in Kerr-Newman-Anti de Sitter black holes in the framework of the geometry of their equilibrium thermodynamic state space. The scalar curvature of these state space Riemannian geometries is computed in various ensembles. The scalar curvature diverges at the critical point of second order phase transitions for these systems. Remarkably, however, we show that the state space scalar curvature also carries information about the liquid-gas like first order phase transitions and the consequent instabilities and phase coexistence for these black holes. This is encoded in the turning point behavior and the multi-valued branched structure of the scalar curvature in the neighborhood of these first order phase transitions. We re-examine this first for the conventional Van der Waals system, as a preliminary exercise. Subsequently, we study the Kerr-Newman-AdS black holes for a grand canonical and two "mixed" ensembles and establish novel phase structures. The state ...
Phase transition in extended thermodynamic phase space and charged Horava-Lifshitz black holes
Poshteh, Mohammad Bagher Jahani
2016-01-01
For charged black holes in Horava-Lifshitz gravity, it is shown that a second order phase transition takes place in extended phase space. We study the behavior of specific heat and free energy at the point of transition in canonical and grand canonical ensembles and show that the black hole falls into a state which is locally and globally stable. We relate the second order nature of phase transition to the fact that the phase transition occurs at a sharp temperature and not over a temperature interval. By taking cosmological constant as thermodynamic pressure for charged black holes, we extend Ehrenfest's equations. We obtain nine equations and show that, all of them are satisfied at the point in which the specific heat diverges. We also apply geometrothermodynamics to extended phase space and show that the scalar curvature of Quevedo metric diverges at the point at which the second order phase transition takes place.
Thermodynamic analysis of non-linear Reissner-Nordstrom black holes
Cembranos, Jose A R; Jarillo, Javier
2015-01-01
In the present article we study the Inverse Electrodynamics Model. This model is a gauge and parity invariant non-linear Electrodynamics theory, which respects the conformal invariance of standard Electrodynamics. This modified Electrodynamics model, when minimally coupled to General Relativity, is compatible with static and spherically symmetric Reissner-Nordstrom-like black-hole solutions. However, these black-hole solutions present more complex thermodynamic properties than their Reissner-Nordstrom black-hole solutions counterparts in standard Electrodynamics. In particular, in the Inverse Model a new stability region, with both the heat capacity and the free energy negative, arises. Moreover, unlike the scenario in standard Electrodynamics, a sole transition phase is possible for a suitable choice in the set of parameters of these solutions.
Thermodynamic product formula for Hořava–Lifshitz black hole
International Nuclear Information System (INIS)
We examine the thermodynamic properties of inner and outer horizons in the background of Hořava–Lifshitz black hole. We compute the horizon radii product, the surface area product, the entropy product, the surface temperature product, the Komar energy product and the specific heat product for both the horizons. We show that surface area product, entropy product and irreducible mass product are universal (mass-independent) quantities, whereas the surface temperature product, Komar energy product and specific heat product are not universal quantities because they all depend on mass parameter. We further study the stability of such black hole by computing the specific heat for both the horizons. It has been observed that under certain condition the black hole possesses second order phase transition
Temperature and thermodynamic structure of Einstein's equations for a cosmological black hole
Bhattacharya, Krishnakanta; Majhi, Bibhas Ranjan
2016-07-01
It is expected that the cosmological black holes are the closest realistic solutions of gravitational theories and they evolve with time. Moreover, the natural way of defining thermodynamic entities for the stationary ones is not applicable in the case of a time dependent spacetime. Here we confine our discussion within the Sultana-Dyer metric, which is a cosmological black hole solution of Einstein's gravity. In the literature, there exist two expressions of horizon temperature—one is time dependent and the other does not depend on time. To single out the correct one we find the temperature by studying the Hawking effect in the tunneling formalism. This leads to time dependent structure. After identifying the correct one, Einstein's equations are written on the horizon and we show that this leads to the first law of thermodynamics. In this process the expressions for horizon entropy and energy, obtained earlier by explicit calculations, are being used. This provides the evidence that Einstein's equations have thermodynamic structure even for a cosmological black hole spacetime. Moreover, this study further clarifies the correctness of the expressions for the thermodynamic quantities, like temperature, entropy, and internal energy.
Miao, Yan-Gang; Xu, Zhen-Ming
2015-01-01
Considering non-Gaussian smeared matter distributions, we investigate thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the 6- and higher-dimensional black holes due to the hoop conjecture. In particular, the phas...
Spacetime Duality of BTZ Black Hole
Ho, Jeongwon; Kim, Won T.; Park, Young-Jai
1999-01-01
We consider the duality of the quasilocal black hole thermodynamics, explicitly the quasilocal black hole thermodynamic first law, in BTZ black hole solution as a special one of the three-dimensional low energy effective string theory.
Thermodynamics of Charged Black Holes in Einstein-Horndeski-Maxwell Theory
Feng, Xing-Hui; Lü, H; Pope, C N
2015-01-01
We extend an earlier investigation of the thermodynamics of static black holes in an Einstein-Horndeski theory of gravity coupled to a scalar field, by including now an elec- tromagnetic field as well. By studying the two-parameter families of charged static black holes, we obtain much more powerful constraints on the thermodynamics since, unlike in the uncharged one-parameter case, now the right-hand side of the first law is not automatically integrable. In fact, this allows us to demonstrate that there must be an additional contribution in the first law, over and above the usual terms expected for charged black holes. The origin of the extra contribution can be attributed to the behaviour of the scalar field on the horizon of the black hole. We carry out the calculations in four dimensions and also in general dimensions. We also derive the ratio of viscosity to entropy for the dual boundary field theory, showing that the usual viscosity bound for isotropic solutions can be violated, with the ratio depending...
Thermodynamics of the Schwarzschild-AdS black hole with a minimal length
Miao, Yan-Gang
2016-01-01
Using the mass-smeared scheme of black holes, we study the thermodynamics of black holes. Two interesting models are considered. One is the self-regular Schwarzschild-AdS black hole whose mass density is given by the analogue to probability densities of quantum hydrogen atoms. The other model is the same black hole but whose mass density is chosen to be a rational fractional function of radial coordinates. Both mass densities are in fact analytic expressions of the ${\\delta}$-function. We analyze the phase structures of the two models by investigating the heat capacity at constant pressure and the Gibbs free energy in an isothermal-isobaric ensemble. Both models fail to decay into the pure thermal radiation even with the positive Gibbs free energy due to the existence of a minimal length. Furthermore, we extend our analysis to a general mass-smeared form that is also associated with the ${\\delta}$-function, and indicate the similar thermodynamic properties for various possible mass-smeared forms based on the ...
Thermodynamics of AdS Black Holes in Einstein-Scalar Gravity
Lu, H; Wen, Qiang
2014-01-01
We study the thermodynamics of $n$-dimensional static asymptotically AdS black holes in Einstein gravity coupled to a scalar field with a potential admitting a stationary point with an AdS vacuum. Such black holes with non-trivial scalar hair can exist provided that the mass-squared of the scalar field is negative, and above the Breitenlohner-Freedman bound. We use the Wald procedure to derive the first law of thermodynamics for these black holes, showing how the scalar hair (or charge) contributes non-trivially in the expression. We show in general that the black hole mass can be deduced by isolating an integrable contribution to the (non-integrable) variation of the Hamiltonian arising in the Wald construction, and that this is consistent with the mass calculated using the renormalised holographic stress tensor and also, in those cases where it is defined, with the mass calculated using the conformal method of Ashtekar, Magnon and Das. Similar arguments can also be given for the smooth solitonic solutions i...
Gonzalez, P A; Saavedra, Joel; Vasquez, Yerko
2014-01-01
We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole solutions with the scalar field regular everywhere. We go to the zero temperature limit and we study the effect of the scalar field on the near horizon geometry of an extremal black hole. We find that except a critical value of the charge of the black hole there is also a critical value of the charge of the scalar field beyond of which the extremal black hole is destabilized. We study the thermodynamics of these solutions and we find that if the space is flat then at low temperature the Reissner-Nordstr\\"om black hole is thermodynamically preferred, while if the space is AdS the hairy charged black hole is thermodynamically preferred at low temperature.
Thermodynamics of spinning AdS4 black holes in gauged supergravity
Toldo, Chiara
2016-09-01
In this paper we study the thermodynamics of rotating black hole solutions arising from four-dimensional gauged N =2 supergravity. We analyze two different supergravity models, characterized by prepotentials F =-i X0X1 and F =-2 i √{X0(X1)3 } . The black hole configurations are supported by electromagnetic charges and scalar fields with different kinds of boundary conditions. We perform our analysis in the canonical ensemble, where we find a first order phase transition for a suitable range of charges and angular momentum. We perform the thermodynamic stability check on the configurations. Using the holographic dictionary, we interpret the phase transition in terms of expectation values of operators in the dual field theory, which pertains to the class of ABJM theories living on a rotating Einstein universe. We extend the analysis to dyonic configurations as well. Lastly, we show the computation of the on shell action and mass via holographic renormalization techniques.
Koley, Ratna; Pal, Supratik; SenGupta, Soumitra
2009-01-01
Thermodynamic properties of Schwarzschild-Anti de-Sitter (Sch-AdS) and Reissner-Nordstr\\"om-Anti de-Sitter (RN-AdS) blackholes in 3+1 dimensional spacetime are studied critically with special reference to the warped braneworld black holes with non-vanishing cosmological constant on the brane. Explicit dependence of the thermodynamic variables on the parameters of the braneworld model such as the induced three brane cosmological constant as well as the bulk cosmological constant have been determined. Hawking-Page phase transition has been discussed for both Sch-AdS and RN-AdS black holes. At the phase transition point it is shown that the parameters mass, charge and cosmological constant get correlated by an inequality relation which originates from the background warped geometry model.
Zangeneh, M Kord; Sheykhi, A; Dehghani, M H
2016-01-01
In this paper, we construct a new class of topological black hole Lifshitz solutions in the presence of nonlinear exponential electrodynamics for Einstein-dilaton gravity. We show that the reality of Lifshitz supporting Maxwell matter fields exclude the negative horizon curvature solutions except for the asymptotic AdS case. Calculating the conserved and thermodynamical quantities, we obtain a Smarr type formula for the mass and confirm that thermodynamics first law is satisfied on the black hole horizon. Afterward, we study the thermal stability of our solutions and figure out the effects of different parameters on the stability of solutions under thermal perturbations. Next, we apply the gauge/gravity duality in order to calculate the ratio of shear viscosity to entropy for a three-dimensional hydrodynamic system by using the pole method. Furthermore, we study the behavior of holographic conductivity for two-dimensional systems such as graphene. We consider linear Maxwell and nonlinear exponential electrody...
Thermodynamics of spinning AdS4 black holes in gauged supergravity
Toldo, Chiara
2016-01-01
In this paper we study the thermodynamics of rotating black hole solutions arising from four-dimensional gauged N=2 supergravity. We analyze two different supergravity models, characterized by prepotentials $F = -i X^0 X^1$ and $F= -2i \\sqrt{X^0 (X^1)^3}$. The black hole configurations are supported by electromagnetic charges and scalar fields with different kinds of boundary conditions. We perform our analysis in the canonical ensemble, where we find a first order phase transition for a suitable range of charges and angular momentum. We perform the thermodynamic stability check on the configurations. Using the holographic dictionary we interpret the phase transition in terms of expectation values of operators in the dual field theory, which pertains to the class of ABJM theories living on a rotating Einstein universe. We extend the analysis to dyonic configurations as well. Lastly, we show the computation of the on-shell action and mass via holographic renormalization techniques.
Temperature and thermodynamic structure of Einstein's equations for a cosmological black hole
Bhattacharya, Krishnakanta
2016-01-01
It is expected that the cosmological black holes are the closest realistic solutions of gravitational theories and they evolve with time. Moreover, the natural way of defining thermodynamic entities for the stationary ones is not applicable in the case of a time dependent spacetime. Here we confine our discussion within the Sultana-Dyer metric which is a cosmological black hole solution of Einstein's gravity. In literature, there exists two expressions of horizon temperature -- one is time dependent and the other does not depend on time. To single out the correct one we find the temperature by studying the Hawking effect in the tunnelling formalism. This leads to time dependent structure. After identifying the correct one, the Einstein's equations are written on the horizon and we show that this leads to the first law of thermodynamics. In this process the expressions for horizon entropy and energy, obtained earlier by explicit calculations, are being used. This provides the evidence that Einstein's equations...
Thermodynamics of Regular Cosmological Black Holes with the de Sitter Interior
Directory of Open Access Journals (Sweden)
Irina Dymnikova
2011-11-01
Full Text Available We address the question of thermodynamics of regular cosmological spherically symmetric black holes with the de Sitter center. Space-time is asymptotically de Sitter as r → 0 and as r → ∞. A source term in the Einstein equations connects smoothly two de Sitter vacua with different values of cosmological constant: 8πGTμν = Λδμν as r → 0, 8πGTμν = λδμν as r → ∞ with λ < Λ. It represents an anisotropic vacuum dark fluid defined by symmetry of its stress-energy tensor which is invariant under the radial boosts. In the range of the mass parameter Mcr1 ≤ M ≤ Mcr2 it describes a regular cosmological black hole. Space-time in this case has three horizons: a cosmological horizon rc, a black hole horizon rb < rc, and an internal horizon ra < rb, which is the cosmological horizon for an observer in the internal R-region asymptotically de Sitter as r → 0. We present the basicfeatures of space-time geometry and the detailed analysis of thermodynamics of horizons using the Padmanabhan approach relevant for a multi-horizon space-time with a non-zero pressure. We find that in a certain range of parameters M and q =√Λ/λ there exist a global temperature for an observer in the R-region between the black hole horizon rb and cosmological horizon rc. We show that a second-order phase transition occurs in the course of evaporation, where a specific heat is broken and a temperature achieves its maximal value. Thermodynamical preference for a final point of evaporation is thermodynamically stable double-horizon (ra = rb remnant with the positive specific heat and zero temperature.
Luminet, Jean-Pierre
1992-09-01
Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.
Hendi, Seyed Hossein
2015-01-01
In this paper, we obtain topological black hole solutions of third order Lovelock gravity couple with two classes of Born-Infeld type nonlinear electrodynamics with anti-de Sitter asymptotic structure. We investigate geometric and thermodynamics properties of the solutions and obtain conserved quantities of the black holes. We examine the first law of thermodynamics and find that the conserved and thermodynamic quantities of the black hole solutions satisfy the first law of thermodynamics. Finally, we calculate the heat capacity and determinant of Hessian matrix to evaluate thermal stability in both canonical and grand canonical ensembles. Moreover, we consider extended phase space thermodynamics to obtain generalized first law of thermodynamics as well as extended Smarr formula.
Zhang, Jia-Lin; Cai, Rong-Gen; Yu, Hongwei
2015-01-01
We study the thermodynamics and thermodynamic geometry of a five-dimensional Reissner-Nordstr\\"om-AdS black hole in the extended phase space by treating the cosmological constant as being related to the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the contribution of the charge of the black hole to the chemical potential is always positive and the existence of charge make the chemical potential become positive ...
On conserved charges and thermodynamics of the AdS4 dyonic black hole
Cárdenas, Marcela; Fuentealba, Oscar; Matulich, Javier
2016-05-01
We consider four-dimensional gravity in the presence of a dilatonic scalar field and an Abelian gauge field. This theory corresponds to the bosonic sector of a Kaluza-Klein reduction of eleven-dimensional supergravity which induces a specific self-interacting potential for the scalar field. We compute the conserved charges and carry out the thermodynamics of an anti-de Sitter (AdS) dyonic black hole solution that was proposed recently. The charges coming from symmetries of the action are computed using the Regge-Teitelboim Hamiltonian approach. They correspond to the mass, which acquires contributions from the scalar field, and the electric charge. We introduce integrability conditions because the scalar field leads to non-integrable terms in the variation of the mass. These conditions are generically solved by introducing boundary conditions that relate the leading and subleading terms of the scalar field fall-off. The Hamiltonian Euclidean action, computed in the grand canonical ensemble, is obtained by demanding the action to have an extremum. Its value is given by a radial boundary term plus an additional polar angle boundary term due to the presence of a magnetic monopole. Remarkably, the magnetic charge can be identified from the variation of the additional polar angle boundary term, confirming that the first law of black hole thermodynamics is a consequence of having a well-defined and finite Hamiltonian action principle, even if the charge does not come from a symmetry of the action. The temperature and electrostatic potential are determined by demanding regularity of the black hole solution, whereas the value of the magnetic potential is determined by the variation of the additional polar angle boundary term. Consequently, the first law of black hole thermodynamics is identically satisfied by construction.
Azreg-Aïnou, Mustapha
2014-01-01
The early literature on black hole thermodynamics ignored the $P$-$V$ term which has led to inconsistencies in the thermodynamic treatments of some black holes. Once the missing $P$-$V$ term introduced, it has become custom to introduce it only in problems where there is a negative cosmological constant. This practice is inherited from cosmological approaches which consider the quantity $-\\Lambda/8\\pi$ as the constant pressure due to a cosmological fluid. However, the notions of pressure and thermodynamic volume in black hole thermodynamics are very different from their counterparts in classical thermodynamics. From this point of view, there is a priori no compelling reason to not extend this notion of pressure and associate a partial pressure with each "external" density $8\\pi T_{t}{}^{t}$. In this work we associate a partial pressure with a variable mass parameter as well as with each $tt$-component of the effective stress-energy tensor $T_{\\text{eff}\\,\\mu}{}^{\
Thermodynamics of Higher Spin Black Holes in AdS$_{3}$
de Boer, Jan
2013-01-01
We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in $SL(N,\\mathds{R})\\times SL(N,\\mathds{R})$ Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with $\\mathcal{W}_{N}$ symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural...
Hagedorn String Thermodynamics in Curved Spacetimes and near Black Hole Horizons
Mertens, Thomas G
2015-01-01
This thesis concerns the study of high-temperature string theory on curved backgrounds, generalizing the notions of Hagedorn temperature and thermal scalar to general backgrounds. Chapter 2 contains a review on string thermodynamics in flat space, setting the stage. Chapters 3 and 4 contain the detailed study of the random walk picture in a general curved background. Chapters 5 and 6 then apply this to Rindler space, the near-horizon approximation of a generic (uncharged) black hole. Chapters 7 and 8 contain a study of the AdS3 and BTZ WZW models where we study the thermal spectrum and the resulting random walk picture that emerges. Chapters 9 and 10 attempt to draw general conclusions from the study of the two specific examples earlier: we draw lessons on string thermodynamics in general and on (perturbative) string thermodynamics around black hole horizons. For the latter, we point out a possible link to the firewall paradox. Finally, chapter 11 contains a detailed discussion on the near-Hagedorn (and high-...
Indian Academy of Sciences (India)
Koustubh Ajit Kabe
2012-09-01
In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.
Ghaffarnejad, H
2016-01-01
One of the authors studied thermodynamical aspect of single Reiss-ner-Nordst\\"om (RN) black hole where first order phase transition is happened [1] at critical temperature $T_c$. Same work is followed here but for mean metric of RN black holes statistical ensembles (RNBHSE). Results of this work satisfies qualitatively but not quantitatively with ones which obtained for a single RN black hole. To calculate the mean metric we use Chevalier et al approach to average metric components of the RNBHSE. Using Bekenstein-Hawking entropy theorem for mean metric, we calculate interior and exterior entropy, temperature, Gibbs free energy and heat capacity at constant electric charge $e$ and ensembles parameter $a$. We obtained that exterior horizon of mean metric is exhibited with a first order phase transition at a critical temperature, because sign of Gibbs free energy first order derivative is changed by increasing the temperature. The mean metric Gibbs free energy of exterior (interior) horizon takes two set of diff...
Institute of Scientific and Technical Information of China (English)
Chen Gang; Liu Zhan-Fang; Lan Ming-Jian
2011-01-01
The thermodynamic properties of a (2 + 1)-dimensional black hole with non-linear electrodynamics from the viewpoint of geometry is studied and some kinds of temperatures of the black hole have been obtained.Weinhold curvature and Ruppeiner curvature are explored as information geometry.Moreover,based on Quevedo's theory,the Legendre invariant geometry is investigated for the black hole. We also study the relationship between the scalar curvatures of the above several metrics and the phase transitions produced from the heat capacity.
Övgün, Ali; Jusufi, Kimet
2016-05-01
In this paper, we investigate the tunneling process of charged massive bosons W^{±} (spin-1 particles) from noncommutative charged black holes such as charged RN black holes and charged BTZ black holes. By applying the WKB approximation and by using the Hamilton-Jacobi equation we derive the tunneling rate and the corresponding Hawking temperature for those black holes configuration. Furthermore, we show the quantum gravity effects using the GUP on the Hawking temperature for the noncommutative RN black holes. The tunneling rate shows that the radiation deviates from pure thermality and is consistent with an underlying unitary theory.
Zangeneh, M. Kord; Dehyadegari, A.; Sheykhi, A.; Dehghani, M. H.
2016-03-01
In this paper, we construct a new class of topological black hole Lifshitz solutions in the presence of nonlinear exponential electrodynamics for Einstein-dilaton gravity. We show that the reality of Lifshitz supporting Maxwell matter fields exclude the negative horizon curvature solutions except for the asymptotic AdS case. Calculating the conserved and thermodynamical quantities, we obtain a Smarr type formula for the mass and confirm that thermodynamics first law is satisfied on the black hole horizon. Afterward, we study the thermal stability of our solutions and figure out the effects of different parameters on the stability of solutions under thermal perturbations. Next, we apply the gauge/gravity duality in order to calculate the ratio of shear viscosity to entropy for a three-dimensional hydrodynamic system by using the pole method. Furthermore, we study the behavior of holographic conductivity for two-dimensional systems such as graphene. We consider linear Maxwell and nonlinear exponential electrodynamics separately and disclose the effect of nonlinearity on holographic conductivity. We indicate that holographic conductivity vanishes for z > 3 in the case of nonlinear electrodynamics while it does not in the linear Maxwell case. Finally, we solve perturbative additional field equations numerically and plot the behaviors of real and imaginary parts of conductivity for asymptotic AdS and Lifshitz cases. We present experimental results match with our numerical ones.
Zurek, Wojciech H
2015-01-01
We investigate thermodynamic equilibrium of a self-gravitating perfect fluid in a spherically symmetric system containing a black hole of mass M by means of the Tolman-Oppenheimer-Volkoff (TOV) equation. At r >> 2M its solutions describe a black-body radiation atmosphere with the Hawking temperature T_BH~1/(8 \\pi M) that is increasingly blueshifted as r approaches 2M. However, there is no horizon at the Schwarzschild radius. Instead, the fluid becomes increasingly hot and dense there, piling up into a "firewall" with the peak temperatures and densities reaching Planck values somewhat below r = 2M. This firewall surrounds a negative point mass residing at r=0, the only singularity of the solution. The entropy of the firewall is comparable to the Bekenstein-Hawking entropy.
Zangeneh, M Kord; Sheykhi, A
2016-01-01
In their Letter [Phys. Rev. Lett. 115, 111302 (2015)], Shao-Wen Wei and Yu-Xiao Liu have introduced the number density of the black hole molecules as a measure for microscopic degrees of freedom of the black hole. Based on this, they have figured out some microscopic properties of the $4$-dimensional charged AdS black hole as an example relying on the thermodynamic phase transition and thermodynamic geometry, specially the behavior of the Ricci scalar of Ruppeiner geometry \\cite{Rup0}. At first glance, the obtained Ricci scalar seems surprising since shows no divergency as one usually expects for black holes \\cite{Rup1}. This motivates us to check whether the obtained Ricci scalar is correct. We observed that Ricci scalar is not correct as we guessed and therefore discussions and insights about microscopic structure of charged AdS black holes relying on this should be revised. In this Letter, we address the correct Ricci scalar of the $4$-dimensional charged AdS black holes and disclose the correct properties...
Thermodynamic properties of Reissner-Nordstr(o)m-de Sitter quintessence black holes
Institute of Scientific and Technical Information of China (English)
Wei Yi-Huan; Ren Jun
2013-01-01
The mass,electric charge,and temperature of black holes in the Reissner-Nordstr(o)m-de Sitter quintessence (RN-dSQ) spacetime are obtained.The heat capacities of the RN-dSQ black holes for certain electric charges and masses are analyzed.The electrostatic energy and dark energy in the RN-dSQ black holes are also calculated.
International Nuclear Information System (INIS)
Considering non-Gaussian smeared matter distributions, we investigate the thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and we obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the six- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law holds for the noncommutative black hole whose Hawking temperature is within a specific range, but fails for one whose the Hawking temperature is beyond this range. (orig.)
Miao, Yan-Gang; Xu, Zhen-Ming
2016-04-01
Considering non-Gaussian smeared matter distributions, we investigate the thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and we obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the six- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law holds for the noncommutative black hole whose Hawking temperature is within a specific range, but fails for one whose the Hawking temperature is beyond this range.
Miao, Yan-Gang
2015-01-01
Considering non-Gaussian smeared matter distributions, we investigate thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the 6- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law maintains for the noncommutative black hole with the Hawking temperature within a specific range, but fails with the Hawking temperature beyond this range.
Energy Technology Data Exchange (ETDEWEB)
Miao, Yan-Gang [Nankai University, School of Physics, Tianjin (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China); CERN, PH-TH Division, Geneva 23 (Switzerland); Xu, Zhen-Ming [Nankai University, School of Physics, Tianjin (China)
2016-04-15
Considering non-Gaussian smeared matter distributions, we investigate the thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and we obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the six- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law holds for the noncommutative black hole whose Hawking temperature is within a specific range, but fails for one whose the Hawking temperature is beyond this range. (orig.)
Lifshitz Topological Black Holes
Mann, R B
2009-01-01
I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.
Towards noncommutative quantum black holes
International Nuclear Information System (INIS)
In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole
Towards Noncommutative Quantum Black Holes
Lopez-Dominguez, J. C.; Obregon, O.; Ramirez, C.; Sabido, M.
2006-01-01
In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole.
Hendi, S H; Panahiyan, S
2015-01-01
Motivated by gauge/gravity group in the low energy effective theory of the heterotic string theory, the minimal coupling of Gauss-Bonnet-massive gravity with Born-Infeld electrodynamics is considered. At first the metric function is calculated and then the geometrical properties of the solutions are investigated. It is found that there is an essential singularity at the origin and the intrinsic curvature is regular elsewhere. In addition, the effects of massive parameters on the horizons of black holes are studied and the conserved and thermodynamic quantities are calculated. Also, it is shown that the solutions satisfy the first law of thermodynamics. Furthermore using heat capacity of these black holes, thermal stability and phase transitions are investigated. The variation of different parameters and related modifications on the (number of) phase transition are examined. Next, the critical behavior of the Gauss-Bonnet-Born-Infeld-massive black holes in context of extended phase space is studied. It is show...
Chrúsciel, P T
2002-01-01
This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usual one for gravity, and leads to the one associated with the Unruh metric in the case of Euler equations. We review the global conditions which have been used in the Scri-based definition of a black hole and point out the deficiencies of the Scri approach. Various results on the structure of horizons and apparent horizons are presented, and a new proof of semi-convexity of horizons based on a variational principle is given. Recent results on the classification of stationary singularity-free vacuum solutions are reviewed. ...
Zhao, Ying-Jie
2016-01-01
We have introduced an improved exponential GUP, derived the maximally localized states, calculated quantum corrections to the thermodynamic quantities of the Schwardzschild black hole in our previous work. In this paper we continue to investigate how the maximally localized states and thermodynamic quantities such as Hawking temperature, the entropy, the heat capacity, the evaporation rate, and the decay time change in the extreme case that the integer n in our GUP rises to infinity.
Thermodynamics at the BPS bound for Black Holes in AdS
Silva, P J
2006-01-01
In this work we define a new limiting procedure that extends the usual thermodynamics treatment of Black Hole physics, to the supersymmetric regime. This procedure is inspired on equivalent statistical mechanics derivations in the dual CFT theory, where the BPS partition function at zero temperature is obtained by a double scaling limit of temperature and the relevant chemical potentials. The resulting partition function depends on emergent generalized chemical potentials for the different conserved charges of the BPS supergravity solitons. With this new approach, studies on stability and phase transitions of supersymmetric solutions are presented. We find stable and unstable regimes with first order phase transitions, as suggested by previous studies on free supersymmetric Yang Mills theory.
Geometric model of black hole quantum $N$-portrait, extradimensions and thermodynamics
Frassino, Antonia M; Nicolini, Piero
2016-01-01
Recently a short scale modified black hole metric, known as holographic metric, has been proposed in order to capture the self-complete character of gravity. In this paper we show that such a metric can reproduce some geometric features expected from the quantum $N$-portrait beyond the semi-classical limit. We show that for a generic $N$ this corresponds to having an effective energy momentum tensor in Einstein equations or, equivalently, non-local terms in the gravity action. We also consider the higher dimensional extension of the metric and the case of an AdS cosmological term. We provide a detailed thermodynamic analysis of both cases, with particular reference to the repercussions on the Hawking-Page phase transition.
Electron Thermodynamics in GRMHD Simulations of Low-Luminosity Black Hole Accretion
Ressler, Sean M; Quataert, Eliot; Chandra, Mani; Gammie, Charles F
2015-01-01
Simple assumptions made regarding electron thermodynamics often limit the extent to which general relativistic magnetohydrodynamic (GRMHD) simulations can be applied to observations of low-luminosity accreting black holes. We present, implement, and test a model that self-consistently evolves an electron entropy equation and takes into account the effects of spatially varying electron heating and relativistic anisotropic thermal conduction along magnetic field lines. We neglect the back-reaction of electron pressure on the dynamics of the accretion flow. Our model is appropriate for systems accreting at $\\ll 10^{-5}$ of the Eddington rate, so radiative cooling by electrons can be neglected. It can be extended to higher accretion rates in the future by including electron cooling and proton-electron Coulomb collisions. We present a suite of tests showing that our method recovers the correct solution for electron heating under a range of circumstances, including strong shocks and driven turbulence. Our initial a...
Hanada, Masanori; Hyakutake, Yoshifumi; Nishimura, Jun; Takeuchi, Shingo
2009-05-15
We perform a direct test of the gauge-gravity duality associated with the system of N D0-branes in type IIA superstring theory at finite temperature. Based on the fact that higher derivative corrections to the type IIA supergravity action start at the order of alpha;{'3}, we derive the internal energy in expansion around infinite 't Hooft coupling up to the subleading term with one unknown coefficient. The power of the subleading term is shown to be nicely reproduced by the Monte Carlo data obtained nonperturbatively on the gauge theory side at finite but large effective (dimensionless) 't Hooft coupling constant. This suggests, in particular, that the open strings attached to the D0-branes provide the microscopic origin of the black hole thermodynamics of the dual geometry including alpha;{'} corrections. The coefficient of the subleading term extracted from the fit to the Monte Carlo data provides a prediction for the gravity side. PMID:19518941
On conserved charges and thermodynamics of the AdS$_{4}$ dyonic black hole
Cárdenas, Marcela; Matulich, Javier
2016-01-01
Four-dimensional gravity in the presence of a dilatonic scalar field and an Abelian gauge field is considered. This theory corresponds to the bosonic sector of a Kaluza-Klein dimensional reduction of eleven-dimensional supergravity which induces a determined self-interacting potential for the scalar field. We compute the conserved charges and carry out the thermodynamics of an anti-de Sitter (AdS) dyonic black hole solution recently proposed. The charges coming from symmetries of the action are computed by using the Regge-Teitelboim Hamiltonian approach. These correspond to the mass, which acquires contributions from the scalar field, and the electric charge. Integrability conditions are introduced because the scalar field leads to non-integrable terms in the variation of the mass. These conditions are generically solved by introducing boundary conditions that arbitrarily relates the leading and subleading terms of the scalar field fall-off. The Hamiltonian Euclidean action, computed in the grand canonical en...
Thermodynamics of Charged AdS Black Holes in Extended Phases Space via M2-branes Background
Chabab, M; Masmar, K
2015-01-01
Motivated by a recent work on asymptotically Ad$S_4$ black holes in M-theory, we investigate both thermodynamics and thermodynamical geometry of Raissner-Nordstrom-AdS black holes from M2-branes. More precisely, we study AdS black holes in $AdS_{4}\\times S^{7}$, with the number of M2-branes interpreted as a thermodynamical variable. In this context, we calculate various thermodynamical quantities including the chemical potential, and examine their phase transitions along with the corresponding stability behaviors. In addition, we also evaluate the thermodynamical curvatures of the Weinhold, Ruppeiner and Quevedo metrics for M2-branes geometry to study the stability of such black object. We show that the singularities of these scalar curvature's metrics reproduce similar stability results obtained by the phase transition program via the heat capacities in different ensembles either when the number of the M2 branes or the charge are held fixed. Also, we note that all results derived in [1] are recovered in the ...
On thermodynamics of charged AdS black holes in extended phases space via M2-branes background
Chabab, M.; El Moumni, H.; Masmar, K.
2016-06-01
Motivated by a recent work on asymptotically AdS_4 black holes in M-theory, we investigate both thermodynamics and the thermodynamical geometry of Reissner-Nordstrom-AdS black holes from M2-branes. More precisely, we study AdS black holes in AdS4× S7, with the number of M2-branes interpreted as a thermodynamical variable. In this context, we calculate various thermodynamical quantities including the chemical potential, and examine their phase transitions along with the corresponding stability behaviors. In addition, we also evaluate the thermodynamical curvatures of the Weinhold, Ruppeiner, and Quevedo metrics for M2-branes geometry to study the stability of such a black object. We show that the singularities of these scalar curvature's metrics reproduce similar stability results to those obtained by the phase transition diagram via the heat capacities in different ensembles either when the number of the M2 branes or the charge is held fixed. Also, we note that all results derived in Belhaj et al. (Eur Phys J C 76(2):73, 2016) are recovered in the limit of the vanishing charge.
On thermodynamics of charged AdS black holes in extended phases space via M2-branes background
Energy Technology Data Exchange (ETDEWEB)
Chabab, M.; Masmar, K. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); El Moumni, H. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Universite Ibn Zohr, Departement de Physique, Faculte des Sciences, Agadir (Morocco)
2016-06-15
Motivated by a recent work on asymptotically AdS{sub 4} black holes in M-theory, we investigate both thermodynamics and the thermodynamical geometry of Reissner-Nordstrom-AdS black holes from M2-branes. More precisely, we study AdS black holes in AdS{sub 4} x S{sup 7}, with the number of M2-branes interpreted as a thermodynamical variable. In this context, we calculate various thermodynamical quantities including the chemical potential, and examine their phase transitions along with the corresponding stability behaviors. In addition, we also evaluate the thermodynamical curvatures of the Weinhold, Ruppeiner, and Quevedo metrics for M2-branes geometry to study the stability of such a black object. We show that the singularities of these scalar curvature's metrics reproduce similar stability results to those obtained by the phase transition diagram via the heat capacities in different ensembles either when the number of the M2 branes or the charge is held fixed. Also, we note that all results derived in Belhaj et al. (Eur Phys J C 76(2):73, 2016) are recovered in the limit of the vanishing charge. (orig.)
Sohrab, Siavash
2016-03-01
A scale-invariant model of statistical mechanics is applied to described modified forms of four laws of classical thermodynamics. Following de Broglie formula λrk = h /mkvrk , frequency of matter waves is defined as νrk = k /mkvrk leading to stochastic definitions of (Planck, Boltzmann) universal constants (h =mk c , k =mk c), λrkνrk = c , relating to spatiotemporal Casimir vacuum fluctuations. Invariant Mach number Maβ = v /vrβ is introduced leading to hierarchy of ``supersonic'' flow separated by shock front, viewed as ``event-horizon'' EHβ, from subsonic flow that terminates at surface of stagnant condensate of ``atoms'' defined as ``black-hole'' BHβ at scale β thus resulting in hierarchy of embedded ``black holes'' at molecular- atomic-, electron-, photon-, tachyon-. . . scales, ad infinitum. Classical black hole will correspond to solid phase photon or solid-light. It is argued that Bardeen-Carter-Hawking (1973) first law of black hole mechanics δM = (κ / 8 π) δA +ΩH δJ +ΦH δQ , instead of dE = TdS - PdV suggested by Bekenstein (1973), is analogous to first law of thermodynamics expressed as TdS = PdV + dE such that entropy of black hole, rather than to its horizon surface area, will be related to its total energy hence enthalpy H = TS leading to SBH = 4 kN in exact agreement with prediction of Major and Setter.
Regular black hole in three dimensions
Myung, Yun Soo; Yoon, Myungseok
2008-01-01
We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.
Regular black hole in three dimensions
International Nuclear Information System (INIS)
We find a new black hole in three-dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare the thermodynamics of this black hole with that of a non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy. (orig.)
Regular black hole in three dimensions
Energy Technology Data Exchange (ETDEWEB)
Myung, Yun Soo [Inje University, Institute of Basic Science and School of Computer Aided Science, Gimhae (Korea); Yoon, Myungseok [Sogang University, Center for Quantum Spacetime, Seoul (Korea)
2009-07-15
We find a new black hole in three-dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare the thermodynamics of this black hole with that of a non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy. (orig.)
Philosophical Issues of Black Holes
Romero, Gustavo E
2014-01-01
Black holes are extremely relativistic objects. Physical processes around them occur in a regime where the gravitational field is extremely intense. Under such conditions, our representations of space, time, gravity, and thermodynamics are pushed to their limits. In such a situation philosophical issues naturally arise. In this chapter I review some philosophical questions related to black holes. In particular, the relevance of black holes for the metaphysical dispute between presentists and eternalists, the origin of the second law of thermodynamics and its relation to black holes, the problem of information, black holes and hypercomputing, the nature of determinisim, and the breakdown of predictability in black hole space-times. I maintain that black hole physics can be used to illuminate some important problems in the border between science and philosophy, either epistemology and ontology.
International Nuclear Information System (INIS)
's research councils have yet to put any real money behind these ideas. Black holes are best described by the general theory of relativity. However, general relativity is a classical theory of gravity, and although its predictions have been verified in many experiments, a quantum theory of gravity remains one of the holy grails of physics. One of the first physicists to make real progress in this quest to reconcile general relativity and quantum mechanics was Stephen Hawking. In 1974 Hawking calculated what would happen if a quantum fluctuation occurred near an event horizon. He concluded that the black hole would radiate, and that the amount of radiation would be inversely proportional to the mass of the black hole. However, black holes tend to be very heavy, so their output of Hawking radiation would be too low to detect experimentally. One intriguing exception could be much smaller primordial black holes created in the big bang: these should radiate observable amounts of gamma rays, but they have not been detected yet. This whole body of work - in which thermodynamic concepts such as temperature and entropy are also associated with the black hole - is Hawking's major achievement in physics. The detection of Hawking radiation is the ultimate goal of experiments on artificial black holes, although a lot of theoretical and experimental work has to be done first. The successful experiment is likely to involve a flowing Bose-Einstein condensate or a medium in which the speed of light can be reduced to zero. After years of groundwork, physicists have recently made rapid progress in both these fields. Meanwhile, the recent observation of neutrons in discrete quantum states in a gravitational potential shows that quantum gravity effects can be seen in the laboratory. All that is needed now is an act of faith. (U.K.)
Quantum aspects of black holes
2015-01-01
Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.
On The Phase Structure and Thermodynamic Geometry of R-Charged Black Holes
Sahay, Anurag; Sengupta, Gautam
2010-01-01
We study the phase structure and equilibrium state space geometry of R-charged black holes in $D = 5$, 4 and 7 and the corresponding rotating $D3$, $M2$ and $M5$ branes. For various charge configuratins of the compact black holes in the canonical ensemble we demonstrate new liquid-gas like phase coexistence behaviour culminating in second order critical points. The critical exponents turn out to be the same as that of four dimensional asymptotically AdS black holes in Einstein Maxwell theory. We further establish that the regions of stability for R-charged black holes are, in some cases, more constrained than is currently believed, due to properties of some of the response coefficients. The equilibrium state space scalar curvature is calculated for various charge configurations, both for the case of compact as well as flat horizons and its asymptotic behaviour with temperature is established.
Thermodynamics of topological black holes in Brans-Dicke gravity with a power-law Maxwell field
Zangeneh, M Kord; Sheykhi, A
2015-01-01
In this paper, we present a new class of higher dimensional exact topological black hole solutions of the Brans-Dicke theory in the presence of a power-law Maxwell field as the matter source. For this aim, we introduce a conformal transformation which transforms the Einstein-dilaton-power-law Maxwell gravity Lagrangian to the Brans-Dicke-power-law Maxwell theory one. Then, by using this conformal transformation, we obtain the desired solutions. Next, we study the properties of the solutions and conditions under which we have black holes. Interestingly enough, we show that there is a cosmological horizon in the presence of a negative cosmological constant. Finally, we calculate the temperature and charge and then by calculating the Euclidean action, we obtain the mass, the entropy and the electromagnetic potential energy. We find that the entropy does not respect the area law, and also the conserved and thermodynamic quantities are invariant under conformal transformation. Using these thermodynamic and conserv...
Thermodynamics of topological black holes in Brans-Dicke gravity with a power-law Maxwell field
Zangeneh, M. Kord; Dehghani, M. H.; Sheykhi, A.
2015-11-01
In this paper, we present a new class of higher-dimensional exact topological black hole solutions of the Brans-Dicke theory in the presence of a power-law Maxwell field as the matter source. For this aim, we introduce a conformal transformation which transforms the Einstein-dilaton-power-law Maxwell gravity Lagrangian to the Brans-Dicke-power-law Maxwell theory one. Then, by using this conformal transformation, we obtain the desired solutions. Next, we study the properties of the solutions and conditions under which we have black holes. Interestingly enough, we show that there is a cosmological horizon in the presence of a negative cosmological constant. Finally, we calculate the temperature and charge and then by calculating the Euclidean action, we obtain the mass, the entropy and the electromagnetic potential energy. We find that the entropy does not respect the area law, and also the conserved and thermodynamic quantities are invariant under conformal transformation. Using these thermodynamic and conserved quantities, we show that the first law of black hole thermodynamics is satisfied on the horizon.
Bak, Dongsu; Gutperle, Michael; Janik, Romuald A.
2011-10-01
In this paper Janus black holes in A dS 3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ blackhole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.
Directory of Open Access Journals (Sweden)
Shuang-Qing Wu
2015-06-01
Full Text Available We study thermodynamical properties of static dyonic AdS black holes in four-dimensional ω-deformed Kaluza–Klein gauged supergravity theory, and find that the differential first law requires a modification via introducing a new pair of thermodynamical conjugate variables (X,Y. To ensure such a modification, we then apply the quasi-local ADT formalism developed in Kim et al. (2013 [20] to calculate the quasi-local conserved charge and identify that the new pair is precisely the one previously introduced to modify the differential form of the first law.
Hennigar, Robie A; Tjoa, Erickson
2016-01-01
We present what we believe is the first example of a "$\\lambda$-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid $^4$He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
Nonlinear Electrodynamics and black holes
Breton, N; Breton, Nora; Garcia-Salcedo, Ricardo
2007-01-01
It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.
Institute of Scientific and Technical Information of China (English)
WANG Shuang; WU Shuang-Qing; XIE Fei; DAN Lin
2006-01-01
@@ We investigate the first law of thermodynamics in the case of the (2 + 1)-dimensional Banados-Teitelboim-Zanelli black holes and Kerr-de Sitter spacetimes. In particular, we focus on the integral mass formulas. It is found that by assuming the cosmological constant as a variable state parameter, both the differential and integral mass formulas of the first law of black hole thermodynamics in the asymptotic flat spacetimes can be directly extended to those of rotating black holes in anti-de Sitter and de Sitter backgrounds. It should be pointed that these formulae come into existence in any dimensions.
Phase transition in extended thermodynamic phase space and charged Horava-Lifshitz black holes
Poshteh, Mohammad Bagher Jahani; Riazi, Nematollah
2016-01-01
For charged black holes in Horava-Lifshitz gravity, it is shown that a second order phase transition takes place in extended phase space. We study the behavior of specific heat and free energy at the point of transition in canonical and grand canonical ensembles and show that the black hole falls into a state which is locally and globally stable. We relate the second order nature of phase transition to the fact that the phase transition occurs at a sharp temperature and not over a temperature...
Black Hole Thermodynamics from Calculations in Strongly-Coupled Gauge Theory
Kabat, D; Lowe, D A; Kabat, Daniel; Lifschytz, Gilad; Lowe, David A.
2001-01-01
We develop an approximation scheme for the quantum mechanics of N D0-branes at finite temperature in the 't Hooft large-N limit. The entropy of the quantum mechanics calculated using this approximation agrees well with the Bekenstein-Hawking entropy of a ten-dimensional non-extremal black hole with 0-brane charge. This result is in accord with the duality conjectured by Itzhaki, Maldacena, Sonnenschein and Yankielowicz. Our approximation scheme provides a model for the density matrix which describes a black hole in the strongly-coupled quantum mechanics.
Thermodynamic Products for Einstein-Gauss-Bonnet Black Hole with {\\alpha}-Corrected Entropy Term
Mandal, Abhijit; Biswas, Ritabrata(Indian Institute of Engineering Sceince and Technology Shibpur (Formerly, Bengal Engineering and Science University Shibpur), 711 013, Howrah, West Bengal, India)
2015-01-01
In the present work, we consider a charged black hole in five dimensional Einstein-Gauss-Bonnet gravity where the {\\alpha} corrected entropy term is considered. We examine the horizon radii product, entropy product, Hawking temperature product and free energy product for both event horizon and Cauchy horizon. Our motive is to check whether the same quantity for event horizon and Cauchy horizon is free of mass, i.e., global or not. We further study the stability of such black hole by computing...
Strange Metallic Behaviour and the Thermodynamics of Charged Dilatonic Black Holes
Meyer, Rene; Kim, Bom Soo
2011-01-01
We review a recent holographic analysis arXiv:1005.4690 of charged black holes with scalar hair in view of their applications to the cuprate high temperature superconductors. We show in particular that these black holes show an interesting phase structure including critical behaviour at zero temperature or charge, describe both conductors and insulators (including holographic Mott-like insulators), generically have no residual entropy and exhibit experimentally observed scaling relations between electronic entropy, specific heat and (linear) DC resistivity. Transport properties are discussed in the companion contribution to these proceedings.
Effect of Spin on Thermodynamical Quantities around Reissner-Nordstrom Black Holes
Institute of Scientific and Technical Information of China (English)
LI Zhong-Heng
2005-01-01
@@ Using the quantization procedure involving in the Boulware vacuum state and Killing time t, we evaluate the entropy density, energy density, pressure and equation of state around the Reissner-Nordstrom black hole by the Wentzel-Kramers-Brillouin approximation on the Teukolsky-type master equation. We find that, near the event horizon, there exist subleading order terms with spin dependence beyond the expected Minkowskian hightemperature contribution. In particular, the terms are important and cannot be neglected for near-extremal black hole cases. At large r, the Boulware state approaches the Minkowski vacuum and the theory agrees with that performed in Minkowski spacetime.
Vaz, Cenalo; Wijewardhana, L. C. R.
2013-12-01
General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a "cold", stable remnant.
Quantum mechanics of black holes.
Witten, Edward
2012-08-01
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.
Small black holes on cylinders
International Nuclear Information System (INIS)
We find the metric of small black holes on cylinders, i.e. neutral and static black holes with a small mass in d-dimensional Minkowski space times a circle. The metric is found using an ansatz for black holes on cylinders proposed in J. High Energy Phys. 05, 032 (2002). We use the new metric to compute corrections to the thermodynamics which is seen to deviate from that of the (d+1)-dimensional Schwarzschild black hole. Moreover, we compute the leading correction to the relative binding energy which is found to be non-zero. We discuss the consequences of these results for the general understanding of black holes and we connect the results to the phase structure of black holes and strings on cylinders
Regular Black Holes with Cosmological Constant
Institute of Scientific and Technical Information of China (English)
MO Wen-Juan; CAI Rong-Gen; SU Ru-Keng
2006-01-01
We present a class of regular black holes with cosmological constant Λ in nonlinear electrodynamics. Instead of usual singularity behind black hole horizon, all fields and curvature invariants are regular everywhere for the regular black holes. Through gauge invariant approach, the linearly dynamical stability of the regular black hole is studied. In odd-parity sector, we find that the Λ term does not appear in the master equations of perturbations, which shows that the regular black hole is stable under odd-parity perturbations. On the other hand, for the even-parity sector, the master equations are more complicated than the case without the cosmological constant. We obtain the sufficient conditions for stability of the regular black hole. We also investigate the thermodynamic properties of the regular black hole, and find that those thermodynamic quantities do not satisfy the differential form of first law of black hole thermodynamics. The reason for violating the first law is revealed.
Bastos, C; Dias, N C; Prata, J N
2010-01-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity regime and it is shown that the wave function vanishes in this limit.
Zhang, Jia-Lin; Cai, Rong-Gen; Yu, Hongwei
2014-01-01
We study the thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in AdS 5 × S 5 spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole thermodynamics and it has a chance to be positive, but appears in the unstable branch. We calculate the scalar curva...
Zhang, Jia-Lin; Yu, Hongwei
2015-01-01
We study the thermodynamics and thermodynamic geometry of a five-dimensional Reissner-Nordstr\\"om-AdS black hole in the extended phase space by treating the cosmological constant as being related to the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the contribution of the charge of the black hole to the chemical potential is always positive and the existence of charge make the chemical potential become positive more easily. We calculate the scalar curvatures of the thermodynamical Weinhold metric, Ruppeiner metric and Quevedo metric, respectively, in the fixed $N^2$ case and the fixed $q$ case. It is found that in the fixed $N^2$ case the divergence of the scalar curvature is related to the divergence of the specific heat with fixed electric potential in the Weinhold metric and Ruppeiner metric, and the divergence of the scalar curvature in the Quevedo metric corresponds to the divergence of the specific heat with fixed electric...
Hendi, S. H.; Panahiyan, S.; Eslam Panah, B.
2016-10-01
In this paper, we take into account the black-hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. At first, we consider the cosmological constant as a dynamical pressure to study the phase transitions and analogy of the black holes with the Van der Waals liquid-gas system in the extended phase space. We make a comparison between linear and nonlinear electrodynamics and show that the lowest critical temperature belongs to Maxwell theory. Also, we make some arguments regarding how power of nonlinearity brings the system to Schwarzschild-like and Reissner-Nordström-like limitations. Next, we study the critical behavior of the system in the context of heat capacity. We show that critical behavior of system is similar to the one in phase diagrams of extended phase space. We also extend the study of phase transition points through geometrical thermodynamics (GTs). We introduce two new thermodynamical metrics for extended phase space and show that divergencies of thermodynamical Ricci scalar (TRS) of the new metrics coincide with phase transition points of the system. Then, we introduce a new method for obtaining critical pressure and horizon radius by considering denominator of the heat capacity.
Sun, Yuan; Zhao, Liu
2016-01-01
The holographic entanglement entropy is studied numerically in (4+1)-dimensional spherically symmetric Gauss-Bonnet AdS black hole spacetime with compact boundary. On the bulk side the black hole spacetime undergoes a van der Waals-like phase transition in the extended phase space, which is reviewed with emphasis on the behavior on the temperature-entropy plane. On the boundary, we calculated the regularized HEE of a disk region of different sizes. We find strong numerical evidence for the failure of equal area law for isobaric curves on the temperature-HEE plane and for the correctness of first law of entanglement entropy, and briefly give an explanation for why the latter may serve as a reason for the former, i.e. the failure of equal area law on the temperature-HEE plane.
How objective is black hole entropy?
Lau, Y K
1994-01-01
The objectivity of black hole entropy is discussed in the particular case of a Schwarzchild black hole. Using Jaynes' maximum entropy formalism and Euclidean path integral evaluation of partition function, it is argued that in the semiclassical limit when the fluctutation of metric is neglected, the black hole entropy of a Schwarzchild black hole is equal to the maximal information entropy of an observer whose sole knowledge of the black hole is its mass. Black hole entropy becomes a measure of number of its internal mass eigenstates in accordance with the Boltzmann principle only in the limit of negligible relative mass fluctutation. {}From the information theoretic perspective, the example of a Schwarzchild black hole seems to suggest that black hole entropy is no different from ordinary thermodynamic entropy. It is a property of the experimental data of a black hole, rather than being an intrinsic physical property of a black hole itself independent of any observer. However, it is still weakly objective in...
Classical and quantum Reissner-Nordström black hole thermodynamics and first order phase transition
Ghaffarnejad, Hossein
2016-01-01
First we consider classical Reissner-Nordström black hole (CRNBH) metric which is obtained by solving Einstein-Maxwell metric equation for a point electric charge e inside of a spherical static body with mass M. It has 2 interior and exterior horizons. Using Bekenstein-Hawking entropy theorem we calculate interior and exterior entropy, temperature, Gibbs free energy and heat capacity at constant electric charge. We calculate first derivative of the Gibbs free energy with respect to temperature which become a singular function having a singularity at critical point Mc=2|e|/√{3} with corresponding temperature Tc=1/24π√{3|e|}. Hence we claim first order phase transition is happened there. Temperature same as Gibbs free energy takes absolutely positive (negative) values on the exterior (interior) horizon. The Gibbs free energy takes two different positive values synchronously for 0evaporating quantum Reissner-Nordström black hole (QRNBH) and obtained results same as one in case of the CRNBH. Finally, we solve mass loss equation of QRNBH against advance Eddington-Finkelstein time coordinate and derive luminosity function. We obtain switching off of QRNBH evaporation before than the mass completely vanishes. It reaches to a could Lukewarm type of RN black hole which its final remnant mass is m_{final}=|e| in geometrical units. Its temperature and luminosity vanish but not in Schwarzschild case of evaporation. Our calculations can be take some acceptable statements about information loss paradox (ILP).
Energy Technology Data Exchange (ETDEWEB)
Hendi, S.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P. O. Box 55134-441, Maragha (Iran, Islamic Republic of); Tad, R.M.; Armanfard, Z.; Talezadeh, M.S. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)
2016-05-15
Motivated by a thermodynamic analogy of black holes and Van der Waals liquid/gas systems, in this paper, we study P-V criticality of both dilatonic Born-Infeld black holes and their conformal solutions, Brans-Dicke-Born-Infeld solutions. Due to the conformal constraint, we have to neglect the old Lagrangian of dilatonic Born-Infeld theory and its black hole solutions, and introduce a new one. We obtain spherically symmetric nonlinearly charged black hole solutions in both Einstein and Jordan frames and then we calculate the related conserved and thermodynamic quantities. After that, we extend the phase space by considering the proportionality of the cosmological constant and thermodynamical pressure. We obtain critical values of the thermodynamic coordinates through numerical methods and plot the relevant P-V and G-T diagrams. Investigation of the mentioned diagrams helps us to study the thermodynamical phase transition. We also analyze the effects of varying different parameters on the phase transition of black holes. (orig.)
Energy Technology Data Exchange (ETDEWEB)
NONE
2002-02-01
instance, the UK's research councils have yet to put any real money behind these ideas. Black holes are best described by the general theory of relativity. However, general relativity is a classical theory of gravity, and although its predictions have been verified in many experiments, a quantum theory of gravity remains one of the holy grails of physics. One of the first physicists to make real progress in this quest to reconcile general relativity and quantum mechanics was Stephen Hawking. In 1974 Hawking calculated what would happen if a quantum fluctuation occurred near an event horizon. He concluded that the black hole would radiate, and that the amount of radiation would be inversely proportional to the mass of the black hole. However, black holes tend to be very heavy, so their output of Hawking radiation would be too low to detect experimentally. One intriguing exception could be much smaller primordial black holes created in the big bang: these should radiate observable amounts of gamma rays, but they have not been detected yet. This whole body of work - in which thermodynamic concepts such as temperature and entropy are also associated with the black hole - is Hawking's major achievement in physics. The detection of Hawking radiation is the ultimate goal of experiments on artificial black holes, although a lot of theoretical and experimental work has to be done first. The successful experiment is likely to involve a flowing Bose-Einstein condensate or a medium in which the speed of light can be reduced to zero. After years of groundwork, physicists have recently made rapid progress in both these fields. Meanwhile, the recent observation of neutrons in discrete quantum states in a gravitational potential shows that quantum gravity effects can be seen in the laboratory. All that is needed now is an act of faith. (U.K.)
Li, Gu-Qiang
2016-01-01
The phase transition of four-dimensional charged AdS black hole solution in the $R+f(R)$ gravity with constant curvature is investigated in the grand canonical ensemble, where we find novel characteristics quite different from that in canonical ensemble. There exists no critical point for $T-S$ curve while in former research critical point was found for both the $T-S$ curve and $T-r_+$ curve when the electric charge of $f(R)$ black holes is kept fixed. Moreover, we derive the explicit expression for the specific heat, the analog of volume expansion coefficient and isothermal compressibility coefficient when the electric potential of $f(R)$ AdS black hole is fixed. The specific heat $C_\\Phi$ encounters a divergence when $0b$. This finding also differs from the result in the canonical ensemble, where there may be two, one or no divergence points for the specific heat $C_Q$. To examine the phase structure newly found in the grand canonical ensemble, we appeal to the well-known thermodynamic geometry tools and de...
Black Hole Monodromy and Conformal Field Theory
A. Castro; J.M. Lapan; A. Maloney; M.J. Rodriguez
2013-01-01
The analytic structure of solutions to the Klein-Gordon equation in a black hole background, as represented by monodromy data, is intimately related to black hole thermodynamics. It encodes the "hidden conformal symmetry" of a nonextremal black hole, and it explains why features of the inner event h
Yang, I-Ching
2016-01-01
The Schwarzschild-de Sitter (SdS) black hole solution, which has two event horizons, is considered to examine the relation between the quasi-localized energy complexes on ${\\cal M}$ and the heat flows passing through its boundary $\\partial {\\cal M}$. Here ${\\cal M}$ is the patch between cosmological event horizon and black hole event horizon of the SdS black hole solution. Conclusively, the relation, like the Legendre transformation, between the quasi-localized Einstein and M{\\o}ller energy complex and the heat flows passing through the boundary is obeyed, and these two quasi-localized energy complexes could be corresponding to thermodynamic potentials.
Black Hole Final State Conspiracies
McInnes, Brett
2008-01-01
The principle that unitarity must be preserved in all processes, no matter how exotic, has led to deep insights into boundary conditions in cosmology and black hole theory. In the case of black hole evaporation, Horowitz and Maldacena were led to propose that unitarity preservation can be understood in terms of a restriction imposed on the wave function at the singularity. Gottesman and Preskill showed that this natural idea only works if one postulates the presence of "conspiracies" between systems just inside the event horizon and states at much later times, near the singularity. We argue that some AdS black holes have unusual internal thermodynamics, and that this may permit the required "conspiracies" if real black holes are described by some kind of sum over all AdS black holes having the same entropy.
Sahay, Anurag
2016-01-01
Thermodynamic fluctuation metrics in Ruppeiner's formalism are worked out for general rotating black holes in extended state space, which includes the cosmological constant $\\Lambda$ as a thermodynamic variable. The implications of constraints upon the state space geometry are explicitly worked out. The corresponding state space scalar curvature is found to be sensitive to the instabilities/phase transitions associated with the constrained thermodynamic process. In particular, it is found that the appropriate scalar curvature does encode critical phenomena in these black holes. A detailed study is undertaken of the landscape of the state space as determined by the scalar curvature and suitable inferences have been drawn. The extrinsic curvature of the ensemble hypersurfaces is introduced and its relevance discussed.
Hayward, Sean A.; Mukohyama, Shinji; Ashworth, M. C.
1998-01-01
We consider two non-statistical definitions of entropy for dynamic (non-stationary) black holes in spherical symmetry. The first is analogous to the original Clausius definition of thermodynamic entropy: there is a first law containing an energy-supply term which equals surface gravity times a total differential. The second is Wald's Noether-charge method, adapted to dynamic black holes by using the Kodama flow. Both definitions give the same answer for Einstein gravity: one-quarter the area ...
Charged rotating noncommutative black holes
International Nuclear Information System (INIS)
In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.
Charged rotating noncommutative black holes
Modesto, Leonardo; Nicolini, Piero
2010-11-01
In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.
Charged rotating noncommutative black holes
Modesto, Leonardo
2010-01-01
In this paper we complete the program of the Noncomutative Geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newmann-Janis algorithm in case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.
Resource Letter BH-2: Black Holes
Gallo, Elena
2008-01-01
This resource letter is designed to guide students, educators, and researchers through (some of) the literature on black holes. Both the physics and astrophysics of black holes are discussed. Breadth has been emphasized over depth, and review articles over primary sources. We include resources ranging from non-technical discussions appropriate for broad audiences to technical reviews of current research. Topics addressed include classification of stationary solutions, perturbations and stability of black holes, numerical simulations, collisions, the production of gravity waves, black hole thermodynamics and Hawking radiation, quantum treatments of black holes, black holes in both higher and lower dimensions, and connections to nuclear and condensed matter physics. On the astronomical end, we also cover the physics of gas accretion onto black holes, relativistic jets, gravitationally red-shifted emission lines, evidence for stellar-mass black holes in binary systems and super-massive black holes at the centers...
Directory of Open Access Journals (Sweden)
Aruna Rajagopal
2014-10-01
Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.
International Nuclear Information System (INIS)
In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters) all three weak, strong, and dominant energy conditions
Analytic continuation of real Loop Quantum Gravity : Lessons from black hole thermodynamics
Achour, Jibril Ben
2015-01-01
This contribution is devoted to summarize the recent results obtained in the construction of an "analytic continuation" of Loop Quantum Gravity (LQG). By this, we mean that we construct analytic continuation of physical quantities in LQG from real values of the Barbero-Immirzi parameter $\\gamma$ to the purely imaginary value $\\gamma = \\pm i$. This should allow us to define a quantization of gravity with self-dual Ashtekar variables. We first realized in [1] that this procedure, when applied to compute the entropy of a spherical black hole in LQG for $\\gamma=\\pm i$, allows to reproduce exactly the Bekenstein-Hawking area law at the semi-classical limit. The rigorous construction of the analytic continuation of spherical black hole entropy has been done in [2]. Here, we start with a review of the main steps of this construction: we recall that our prescription turns out to be unique (under natural assumptions) and leads to the right semi-classical limit with its logarithmic quantum corrections. Furthermore, the...
Comments on Black Holes in Matrix Theory
Horowitz, Gary T.; Martinec, Emil J.
1997-01-01
The recent suggestion that the entropy of Schwarzschild black holes can be computed in matrix theory using near-extremal D-brane thermodynamics is examined. It is found that the regime in which this approach is valid actually describes black strings stretched across the longitudinal direction, near the transition where black strings become unstable to the formation of black holes. It is argued that the appropriate dynamics on the other (black hole) side of the transition is that of the zero m...
Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N.
2010-04-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.
Energy Technology Data Exchange (ETDEWEB)
Bastos, C; Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)
2010-04-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, {eta}. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.
International Nuclear Information System (INIS)
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.
Hayward, Sean A.
2008-01-01
This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...
Larjo, Klaus; Lowe, David A.; Thorlacius, Larus
2013-05-01
The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and reemits information, determines whether infalling observers experience anything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of the order of the black hole scrambling time.
Zhang, Jia-Lin; Yu, Hongwei
2014-01-01
We study thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in $AdS_5\\times{S^5}$ spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole thermodynamics and it has a chance to be positive, but appears in the unstable branch. We calculate scalar curvatures of the thermodynamical Weinhold metric, Ruppeiner metric and Quevedo metric, respectively and we find that the divergence of scalar curvature is related to the divergence of specific heat with fixed chemical potential in the Weinhold metric and Ruppeiner metric, while in the Quevedo metric the divergence of scalar curvature is related to the divergence of specific heat with fixed number of colors and the vanishing of the specific heat with fixed chemical potential.
Anabalón, Andrés; Deruelle, Nathalie; Julié, Félix-Louis
2016-08-01
In this paper we describe 4-dimensional gravity coupled to scalar and Maxwell fields by the Einstein-Katz action, that is, the covariant version of the "Gamma-Gamma -Gamma-Gamma" part of the Hilbert action supplemented by the divergence of a generalized "Katz vector". We consider static solutions of Einstein's equations, parametrized by some integration constants, which describe an ensemble of asymptotically AdS black holes. Instead of the usual Dirichlet boundary conditions, which aim at singling out a specific solution within the ensemble, we impose that the variation of the action vanishes on shell for the broadest possible class of solutions. We will see that, when a long-range scalar "hair" is present, only sub-families of the solutions can obey that criterion. The Katz-Bicak-Lynden-Bell ("KBL") superpotential built on this (generalized) vector will then give straightforwardly the Noether charges associated with the spacetime symmetries (that is, in the static case, the mass). Computing the action on shell, we will see next that the solutions which obey the imposed variational principle, and with Noether charges given by the KBL superpotential, satisfy the Gibbs relation, the Katz vectors playing the role of "counterterms". Finally, we show on the specific example of dyonic black holes that the sub-class selected by our variational principle satisfies the first law of thermodynamics when their mass is defined by the KBL superpotential.
Fan, Zhong-Ying
2016-09-01
In this paper, we consider Einstein gravity coupled to a vector field, either minimally or non-minimally, together with a vector potential of the type V = 2{Λ}_0+1/2{m}^2{A}^2 + {γ}_4{A}^4 . For a simpler non-minimally coupled theory with Λ0 = m = γ4 = 0, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first law of the extremal black holes is modified by a one form associated with the vector field. In particular, due to the existence of the non-minimal coupling, the vector forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first law. For a minimally coupled theory with Λ0 ≠ 0, we also obtain one class of asymptotically flat extremal black hole solutions in general dimensions. This is possible because the parameters ( m 2 , γ4) take certain values such that V = 0. In particular, we find that the vector also forms thermodynamic conjugates with the graviton mode and contributes to the corresponding first law, although the non-minimal coupling has been turned off. Thus all the extremal black hole solutions that we obtain provide highly non-trivial examples how the first law of thermodynamics can be modified by a either minimally or non-minimally coupled vector field. We also study Gauss-Bonnet gravity non-minimally coupled to a vector and obtain asymptotically flat black holes and Lifshitz black holes.
Arbona, A; Carot, J; Mas, L; Massó, J; Stela, J
1998-01-01
Initial data corresponding to spacetimes containing black holes are considered in the time symmetric case. The solutions are obtained by matching across the apparent horizon different, conformally flat, spatial metrics. The exterior metric is the vacuum solution obtained by the well known conformal imaging method. The interior metric for every black hole is regular everywhere and corresponds to a positive energy density. The resulting matched solutions cover then the whole initial (Cauchy) hypersurface, without any singularity, and can be useful for numerical applications. The simpler cases of one black hole (Schwarzschild data) or two identical black holes (Misner data) are explicitly solved. A procedure for extending this construction to the multiple black hole case is also given, and it is shown to work for all time symmetric vacuum solutions obtained by the conformal imaging method. The numerical evolution of one such 'stuffed' black hole is compared with that of a pure vacuum or 'plain' black hole in the...
Directory of Open Access Journals (Sweden)
I. Cabrera-Munguia
2015-04-01
Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.
Thermodynamics of Charged Kalb Ramond AdS black hole in presence of Gauss-Bonnet coupling
Choudhury, Sayantan
2013-01-01
We study the role of the Gauss-Bonnet corrections to the gravity action on the charged AdS black hole in presence of rank 3 antisymmetric Kalb Ramond tensor field strength. Analyzing the branch singularity and the killing horizon, we explicitly derive various thermodynamic parameters and study their behaviour in presence of five dimensional Gauss-Bonnet coupling in AdS space-time. The possibility of a second order phase transition is explored in the light of AdS/CMT correspondence and various critical exponents associated with the discontinuities of the various thermodynamic parameters are determined. We further comment on the universality of the well known Rushbrooke Josephson scaling law and derive a relation between the degree of homogeneity appearing in various free energies and the critical exponents by homogeneous hypothesis test. By making use of the constraints appearing from Hawking temperature and Gauss-Bonnet extended gravity version of Kubo formula we introduce a bound on the five dimensional Gaus...
Gibbons, G W; Pope, C N
2005-01-01
We show that one may pass from bulk to boundary thermodynamic quantities for rotating AdS black holes in arbitrary dimensions so that if the bulk quantities satisfy the first law of thermodynamics then so do the boundary CFT quantities. This corrects recent claims that boundary CFT quantities satisfying the first law may only be obtained using bulk quantities measured with respect to a certain frame rotating at infinity, and which therefore do not satisfy the first law. We show that the bulk black hole thermodynamic variables, or equivalently therefore the boundary CFT variables, do not always satisfy a Cardy-Verlinde type formula, but they do always satisfy an AdS-Bekenstein bound. The universal validity of the Bekenstein bound is a consequence of the more fundamental cosmic censorship bound, which we find to hold in all cases examined. We also find that at fixed entropy, the temperature of a rotating black hole is bounded above by that of a non-rotating black hole, in four and five dimensions, but not in si...
Charged dilatonic black holes in gravity's rainbow
Hendi, S. H.; Faizal, Mir; Panah, B. Eslam; Panahiyan, S.
2016-05-01
In this paper, we present charged dilatonic black holes in gravity's rainbow. We study the geometric and thermodynamic properties of black hole solutions. We also investigate the effects of rainbow functions on different thermodynamic quantities for these charged black holes in dilatonic gravity's rainbow. Then we demonstrate that the first law of thermodynamics is valid for these solutions. After that, we investigate thermal stability of the solutions using the canonical ensemble and analyze the effects of different rainbow functions on the thermal stability. In addition, we present some arguments regarding the bound and phase transition points in context of geometrical thermodynamics. We also study the phase transition in extended phase space in which the cosmological constant is treated as the thermodynamic pressure. Finally, we use another approach to calculate and demonstrate that the obtained critical points in extended phase space represent a second order phase transition for these black holes.
Stimulated Black Hole Evaporation
Spaans, Marco
2016-01-01
Black holes are extreme expressions of gravity. Their existence is predicted by Einstein's theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_f\\sim 3\\times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $\\sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f \\sim 3\\times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P \\sim 2\\times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $\\lambda \\sim 3\\times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.
Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica
2016-01-01
Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.
Quantum Evaporation of Liouville Black Holes
Mann, R. B.
1993-01-01
The classical field equations of a Liouville field coupled to gravity in two spacetime dimensions are shown to have black hole solutions. Exact solutions are also obtained when quantum corrections due to back reaction effects are included, modifying both the ADM mass and the black hole entropy. The thermodynamic limit breaks down before evaporation of the black hole is complete, indicating that higher-loop effects must be included for a full description of the process. A scenario for the fina...
Test fields cannot destroy extremal black holes
Natário, José; Queimada, Leonel; Vicente, Rodrigo
2016-09-01
We prove that (possibly charged) test fields satisfying the null energy condition at the event horizon cannot overspin/overcharge extremal Kerr–Newman or Kerr–Newman–anti de Sitter black holes, that is, the weak cosmic censorship conjecture cannot be violated in the test field approximation. The argument relies on black hole thermodynamics (without assuming cosmic censorship), and does not depend on the precise nature of the fields. We also discuss generalizations of this result to other extremal black holes.
Test fields cannot destroy extremal black holes
Natário, José; Queimada, Leonel; Vicente, Rodrigo
2016-09-01
We prove that (possibly charged) test fields satisfying the null energy condition at the event horizon cannot overspin/overcharge extremal Kerr-Newman or Kerr-Newman-anti de Sitter black holes, that is, the weak cosmic censorship conjecture cannot be violated in the test field approximation. The argument relies on black hole thermodynamics (without assuming cosmic censorship), and does not depend on the precise nature of the fields. We also discuss generalizations of this result to other extremal black holes.
Perturbations around black holes
Wang, B
2005-01-01
Perturbations around black holes have been an intriguing topic in the last few decades. They are particularly important today, since they relate to the gravitational wave observations which may provide the unique fingerprint of black holes' existence. Besides the astrophysical interest, theoretically perturbations around black holes can be used as testing grounds to examine the proposed AdS/CFT and dS/CFT correspondence.
From Schwinger Balls to Black Holes
Allahbakhshi, Davood
2016-01-01
We have shown intriguing similarities between Schwinger balls and black holes. By considering black hole as a gravitational Schwinger ball, we have derived the Bekenstein-Hawking entropy and the first law of black hole thermodynamics as a direct result of the inverse area dependence of the gravitational force. It is also shown that the Planck length is nothing but the gravitational Schwinger length. The relation between the mass and the radius of the black hole is derived by considering the black hole as a Schwinger ball of gravitons. We show how the evolution of the entanglement entropy of the black hole, as Page introduced many years ago, can be obtained by including gravitons in the black hole's evaporation process and using a deformed EPR mechanism. Also this deformed EPR mechanism can solve the information paradox. We show how naive simultaneous usage of Page's argument and equivalence principle leads to firewall problem.
Begelman, Mitchell C
2003-06-20
Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity. PMID:12817138
Ho, Pei-Ming
2016-01-01
Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.
Arsiwalla, Xerxes D
2009-01-01
We study the problem of spatially stabilising four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes kept in external fields we find that taking a continuum limit of Denef et al's multi-center solutions provides a supergravity description of such backgrounds within which a black hole can be trapped in a given volume. This is realised by levitating a black hole over a magnetic dipole base. We comment on how such a construction resembles a mechanical Levitron.
Neves, J C S
2015-01-01
In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass terms. Using linear constraints in the energy-momentum tensor, the solutions are either regular or singular. That is, with this approach, it is possible to generate singular black holes from regular black holes and vice versa. Moreover, contrary to the Bardeen and Hayward regular solutions, the regular deformed metrics may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.
Fan, Zhong-Ying
2016-01-01
In this paper, we consider Einstein gravity coupled to a Proca field, either minimally or non-minimally, together with a vector potential of the type $V=2\\Lambda_0+ m^2 A^2/2 + \\gamma_4 A^4$. For a simpler non-minimally coupled theory with $\\Lambda_0=m=\\gamma_4=0$, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first laws of the extremal black holes are modified by a one form associated with the Proca. In particular, due to the existence of the non-minimal coupling, the Proca forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first laws. For a minimally coupled theory with $\\Lambda_0\
Institute of Scientific and Technical Information of China (English)
ZOU De-Cheng; YANG Zhan-Ying; YUE Rui-Hong
2011-01-01
@@ By using a new approach, we demonstrate the analytic expressions for slowly rotating Gauss-Bonnet charged black hole solutions with one non-vanishing angular momentum in higher-dimensional anti-de Sitter spaces.Up to linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the charged black holes get no corrections from rotation.%By using a new approach, we demonstrate the analytic expressions for slowly rotating Gauss-Bonnet charged black hole solutions with one non-vanishing angular momentum in higher-dimensionalanti-de Sitter spaces. Up to linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the charged black holes get no corrections from rotation.
Noncommutative geometry inspired dirty black holes
Nicolini, Piero; Spallucci, Euro
2009-01-01
We provide a new exact solution of the Einstein equations which generalizes the noncommutative geometry inspired Schwarzschild metric, we previously obtained. We consider here more general relations between the energy density and the radial pressure and find new a geometry describing a regular ``dirty black hole''. We discuss strong and weak energy condition violations and various aspects of the regular dirty black hole thermodynamics.
DEFF Research Database (Denmark)
Kragh, Helge Stjernholm
2016-01-01
Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....
Andersson, N
2000-01-01
This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.
Noncommutative Singular Black Holes
International Nuclear Information System (INIS)
In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t - r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.
Noncommutative Singular Black Holes
Hamid Mehdipour, S.
2010-11-01
In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t — r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.
Topological Black Holes in Weyl Conformal Gravity
Klemm, Dietmar
1998-01-01
We present a class of exact solutions of Weyl conformal gravity, which have an interpretation as topological black holes. Solutions with negative, zero or positive scalar curvature at infinity are found, the former generalizing the well-known topological black holes in anti-de Sitter gravity. The rather delicate question of thermodynamic properties of such objects in Weyl conformal gravity is discussed; suggesting that the thermodynamics of the found solutions should be treated within the fra...
Black holes and galaxy formation
Propst, Raphael J
2010-01-01
Galaxies are the basic unit of cosmology. The study of galaxy formation is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning. The physics of galaxy formation is complicated because it deals with the dynamics of stars, thermodynamics of gas and energy production of stars. A black hole is a massive object whose gravitational field is so intense that it prevents any form of matter or radiation to escape. It is hypothesized that the most massive galaxies in the universe- "elliptical galaxies"- grow simultaneously with the supermassive black holes at their centers, giving us much stronger evidence that black holes control galaxy formation. This book reviews new evidence in the field.
Fluctuating Black Hole Horizons
Mei, Jianwei
2013-01-01
In this paper we treat the black hole horizon as a physical boundary to the spacetime and study its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as an example we derive an effective action that describes, in the large wave number limit, a massless Klein-Gordon field living on the average location of the boundary. Complete solutions can be found in the small rotation limit of the black hole. The formulation suggests that the boundary can be treated in the same way as any other matter contributions. In particular, the angular momentum of the boundary matches exactly with that of the black hole, suggesting an interesting possibility that all charges (including the entropy) of the black hole are carried by the boundary. Using this as input, we derive predictions on the Planck scale properties of the boundary.
Evolution of massive black holes
Volonteri, Marta
2007-01-01
Supermassive black holes are nowadays believed to reside in most local galaxies. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I'll discuss black hole formation processes that are likely to place at early cosmic epochs, and how massive black hole evolve in a hierarchical Universe...
Ahn, Eun-Joo; Cavaglia, Marco
2003-01-01
Production of high-energy gravitational objects is a common feature of gravitational theories. The primordial universe is a natural setting for the creation of black holes and other nonperturbative gravitational entities. Cosmic black holes can be used to probe physical properties of the very early universe which would usually require the knowledge of the theory of quantum gravity. They may be the only tool to explore thermalisation of the early universe. Whereas the creation of cosmic black ...
Black Hole Critical Phenomena Without Black Holes
Liebling, S L
2000-01-01
Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.
Entropy Inequality Violations from Ultraspinning Black Holes.
Hennigar, Robie A; Mann, Robert B; Kubizňák, David
2015-07-17
We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold. PMID:26230779
Entropy Inequality Violations from Ultraspinning Black Holes.
Hennigar, Robie A; Mann, Robert B; Kubizňák, David
2015-07-17
We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold.
Charge Fluctuations of an Uncharged Black Hole
Schiffer, Marcelo
2016-01-01
In this paper we calculate charge fluctuations of a Schwarzschild black-hole of mass $M$ confined within a perfectly reflecting cavity of radius R in thermal equilibrium with various species of radiation and fermions . Charge conservation is constrained by a Lagrange multiplier (the chemical potential). Black hole charge fluctuations are expected owing to continuous absorption and emission of particles by the black hole. For black holes much more massive than $10^{16} g$ , these fluctuations are exponentially suppressed. For black holes lighter than this, the Schwarzschild black hole is unstable under charge fluctuations for almost every possible size of the confining vessel. The stability regime and the fluctuations are calculated through the second derivative of the entropy with respect to the charge. The expression obtained contains many puzzling terms besides the expected thermodynamical fluctuations: terms corresponding to instabilities that do not depend on the specific value of charge of the charge car...
Reversible Carnot cycle outside a black hole
Institute of Scientific and Technical Information of China (English)
Deng Xi-Hao; Gao Si-Jie
2009-01-01
A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T1 and a black hole with Hawking temperature Th. By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1-TH/T1 Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible.
Kleihaus, Burkhard; Yazadjiev, Stoytcho
2015-01-01
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Noncommutative Solitonic Black Hole
Chang-Young, Ee; Lee, Daeho; Lee, Youngone
2012-01-01
We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field using the Moyal product expanded up to first order in the noncommutativity parameter in the two noncommutative spatial directions. By numerical simulation we look for black hole solutions by increasing the non- commutativity parameter value starting from regular solutions with vanishing noncommutativity. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.
Energy Technology Data Exchange (ETDEWEB)
Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)
2015-05-11
In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Directory of Open Access Journals (Sweden)
Burkhard Kleihaus
2015-05-01
Full Text Available In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Hayward, Sean Alan
2013-01-01
Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h
International Nuclear Information System (INIS)
In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn
Noether charge, black hole volume and complexity
Couch, Josiah; Nguyen, Phuc H
2016-01-01
In this paper, we study the physical significance of the thermodynamic volumes of black holes along two different, but complementary, directions. In the first half of the paper, we make use of the Iyer-Wald charge formalism to compute the volume of a particularly hairy black hole. Our computation clarifies and explains existing results, and serves as a prototype for computations of this kind for complicated black hole solutions. In the second half of the paper, we establish a connection between the extended thermodynamics and the Brown et al's "complexity=action" proposal. We show that, in a broad class of AdS black holes, the thermodynamic volume arises as the late-time rate of growth of the bulk action evaluated on the Wheeler-deWitt patch.
Mo, Jie-Xiong; Xu, Xiao-Bao
2016-01-01
In this paper, we investigate the thermodynamics of higher-dimensional $f(R)$ black holes in the extended phase space. Both the analytic expressions and numerical results for the possible critical physical quantities are obtained. It is proved that meaningful critical specific volume only exists when $p$ is odd. This unique phenomenon may be attributed to the combined effect of $f(R)$ gravity and conformally invariant Maxwell field. It is also shown that the ratio $P_cv_c/T_c$ differs from that of higher dimensional charged AdS black holes in Einstein gravity. However, the ratio for four-dimensional $f(R)$ black holes is the same as that of four-dimensional RN-AdS black holes, implying that $f(R)$ gravity does not influence the ratio. So the ratio may be related to conformally invariant Maxwell field. To probe the phase transition, we derive the explicit expression of the Gibbs free energy with its graph plotted. Phase transition analogous to the van der Waals liquid-gas system take place between the small bl...
Ruffini, Remo; Wheeler, John A.
1971-01-01
discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)
Topics in black hole evaporation
International Nuclear Information System (INIS)
Two major aspects of particle creation by gravitational fields of black holes are studied: the neutrino emission from rotating black holes; and interactions between scalar particles emitted by a black hole. Neutrino emission is investigated under three topics: The asymmetry of the angular dependence of neutrino emission from rotating black holes; the production of a local matter excess by rotating black holes in a baryon symmetric universe; and cosmological magnetic field generation by neutrinos from evaporating black holes. Finally the author studies the effects of interactions on the black hole evaporation process
Stornaiolo, Cosimo
2001-01-01
In this paper we propose a model for the formation of the cosmological voids. We show that cosmological voids can form directly after the collapse of extremely large wavelength perturbations into low-density black holes or cosmological black holes (CBH). Consequently the voids are formed by the comoving expansion of the matter that surrounds the collapsed perturbation. It follows that the universe evolves, in first approximation, according to the Einstein-Straus cosmological model. We discuss...
International Nuclear Information System (INIS)
No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references
Govindarajan, T R
2016-01-01
Novel bound states are obtained for manifolds with singular potentials. These singular potentials require proper boundary conditions across boundaries. The number of bound states match nicely with what we would expect for black holes. Also they serve to model membrane mechanism for the black hole horizons in simpler contexts. The singular potentials can also mimic expanding boundaries elegantly, there by obtaining appropriately tuned radiation rates.
Black hole critical phenomena without black holes
Indian Academy of Sciences (India)
Steven L Liebling
2000-10-01
Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I brieﬂy review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.
Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar
2015-05-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.
Ultramassive Black Hole Coalescence
Khan, Fazeel; Berczik, Peter
2015-01-01
Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gr...
Science Teacher, 2005
2005-01-01
Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…
Cosmic censorship inside black holes
Thorlacius, L
2006-01-01
A simple argument is given that a traversable Cauchy horizon inside a black hole is incompatible with unitary black hole evolution. The argument assumes the validity of black hole complementarity and applies to a generic black hole carrying angular momentum and/or charge. In the second part of the paper we review recent work on the semiclassical geometry of two-dimensional charged black holes.
Noncommutative Geometry Inspired Rotating Black Hole in Three Dimensions
Tejeiro, Juan Manuel; Larranaga, Alexis
2010-01-01
We find a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution.
Noncommutative geometry-inspired rotating black hole in three dimensions
Tejeiro, Juan Manuel; Larrañaga, Alexis
2012-01-01
We find a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution.
Three Dimensional Charged Black Hole Inspired by Noncommutative Geometry
Larranaga, Alexis
2010-01-01
We find a new charged black hole in three-dimensional anti-de Sitter space using an anisotropic perfect fluid inspired by the noncommutative black hole as the source of matter and a gaussian distribution of electric charge. We deduce the thermodynamical quantities of this black hole and compare them with those of a charged BTZ solution.
Geometric Product Formula for Charged Accelerating Black Hole
Pradhan, Parthapratim
2016-01-01
We evaluate the geometric product formula i.e. area (or entropy) product formula of outer horizon (${\\cal H}^{+}$) and inner horizon (${\\cal H}^{-}$) for charged accelerating black hole. We find that mass-independent area functional relation of ${\\cal H}^{\\pm}$ for this black hole in terms of black hole charge, acceleration, cosmological constant and \\emph{cosmic string tension} respectively. We also compute the \\emph{Penrose inequality} for this black hole. Finally we compute the specific heat for this BH to determine the local thermodynamic stability of this black hole. Under certain criterion the black hole displayed second order phase transition.
Cosmological production of noncommutative black holes
Mann, Robert B
2011-01-01
We investigate the pair creation of noncommutative black holes in a background with positive cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild deSitter solution. By varying the mass and the cosmological constant parameters, we find several spacetimes compatible with the new solution: positive mass spacetimes admit one cosmological horizon and two, one or no black hole horizons, while negative mass spacetimes have just a cosmological horizon. All these manifolds are everywhere regular, since the noncommutative fluctuations at the origin improve the curvature singularity. On the thermodynamic side, the black hole temperature, instead of a divergent behavior for small length scales, admits a maximum value. Then the black hole evaporation proceeds until an equilibrium configuration with the deSitter background temperature. On the other hand, the cosmological horizon is thermalized by the presence of the black hole and has a temperature higher than that of the conv...
Black holes in Asymptotically Safe Gravity
Saueressig, Frank; D'Odorico, Giulio; Vidotto, Francesca
2015-01-01
Black holes are among the most fascinating objects populating our universe. Their characteristic features, encompassing spacetime singularities, event horizons, and black hole thermodynamics, provide a rich testing ground for quantum gravity ideas. In this note we observe that the renormalization group improved Schwarzschild black holes constructed by Bonanno and Reuter within Weinberg's asymptotic safety program constitute a prototypical example of a Hayward geometry used to model non-singular black holes within quantum gravity phenomenology. Moreover, they share many features of a Planck star: their effective geometry naturally incorporates the one-loop corrections found in the effective field theory framework, their Kretschmann scalar is bounded, and the black hole singularity is replaced by a regular de Sitter patch. The role of the cosmological constant in the renormalization group improvement process is briefly discussed.
Black hole evaporation rates without spacetime.
Braunstein, Samuel L; Patra, Manas K
2011-08-12
Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem.
Black hole evaporation rates without spacetime.
Braunstein, Samuel L; Patra, Manas K
2011-08-12
Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem. PMID:21902381
Black hole evaporation and higher-derivative gravity
International Nuclear Information System (INIS)
The authors examine the role which higher-derivative gravity interactions may play in black hole evaporation. The thermodynamic properties of black holes in Lovelock gravity are described. In certain cases, the specific heat of a black hole becomes positive at a small mass. This results in an infinite lifetime for the black hole (and also allows it to achieve stable equilibrium with a thermal environment). Thus no conflict with unitary time evolution would arise in such theories
Better Late than Never: Information Retrieval from Black Holes
Braunstein, Sam; Pirandola, Stefano; Zyczkowski, Karol
2009-01-01
We show that, in order to preserve the equivalence principle until late times in unitarily evaporating black holes, the thermodynamic entropy of a black hole must be primarily entropy of entanglement across the event horizon. For such black holes, we show that the information entering a black hole becomes encoded in correlations within a tripartite quantum state, the quantum analogue of a one-time pad, and is only decoded into the outgoing radiation very late in the evaporation. This behavior...
Babichev, Eugeny; Hassaine, Mokhtar
2015-01-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematic...
Mehdipour, S. Hamid
2014-01-01
We try to study the thermodynamical features of a non-commutative inspired Schwarzschild-anti-deSitter black hole in the context of entropic gravity model, particularly for the model that is employed in a broad range of scales, from the short distances to the large distances. At small length scales, the Newtonian force is failed because one finds a linear relation between the entropic force and the distance. In addition, there are some deviations from the standard Newtonian gravity at large l...
Black hole with quantum potential
Ali, Ahmed Farag; Khalil, Mohammed M.
2016-08-01
In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.
Black Hole with Quantum Potential
Ali, Ahmed Farag
2015-01-01
In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which introduces a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. It also ameliorates the black hole singularity and the information loss problem.
Black hole with quantum potential
Directory of Open Access Journals (Sweden)
Ahmed Farag Ali
2016-08-01
Full Text Available In this work, we investigate black hole (BH physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian trajectories and hence form a quantum Raychaudhuri equation (QRE. From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.
Evaporation Time of Horava Gravity Black Holes
International Nuclear Information System (INIS)
Recently it has been a lot of interest in the theory proposed by Horava because is a remormalizable theory of gravity and may be a candidate for the UV completion of Einstein gravity. In the present work we study thermodynamical properties of black hole type solutions in this setup. In particular we are able to obtain times of evaporation for black hole solution in this formalism.
Noncommutative geometry-inspired dirty black holes
International Nuclear Information System (INIS)
We provide a new exact solution of the Einstein equations which generalize the noncommutative geometry-inspired Schwarzschild metric, we previously obtained. We consider here a more general relation between the energy density and the radial pressure and find new geometries describing a regular 'dirty black hole'. We discuss strong and weak energy condition violation and various aspects of the regular dirty black hole thermodynamics.
Noncommutative geometry-inspired dirty black holes
Energy Technology Data Exchange (ETDEWEB)
Nicolini, Piero [Physics Department, California State University Fresno, Fresno, CA 93740-8031 (United States); Spallucci, Euro, E-mail: nicolini@th.physik.uni-frankfurt.d, E-mail: spallucci@trieste.infn.i [Dipartimento di Fisica, Universita degli Studi di Trieste, and INFN, Strada Costiera 11, 34014 Trieste (Italy)
2010-01-07
We provide a new exact solution of the Einstein equations which generalize the noncommutative geometry-inspired Schwarzschild metric, we previously obtained. We consider here a more general relation between the energy density and the radial pressure and find new geometries describing a regular 'dirty black hole'. We discuss strong and weak energy condition violation and various aspects of the regular dirty black hole thermodynamics.
Asymptotically hyperbolic black holes in Horava gravity
Janiszewski, Stefan
2014-01-01
Solutions of Hořava gravity that are asymptotically Lifshitz are explored. General near boundary expansions allow the calculation of the mass of these spacetimes via a Hamiltonian method. Both analytic and numeric solutions are studied which exhibit a causal boundary called the universal horizon, and are therefore black holes of the theory. The thermodynamics of an asymptotically Anti-de Sitter Hořava black hole are verified.
BTZ black holes inspired by noncommutative geometry
Rahaman, Farook; Kuhfittig, P. K. F.; Bhui, B. C.; Rahaman, Mosiur; Ray, Saibal; Mondal, U. F.
2013-04-01
In this paper, a Bañados-Teitelboim-Zanelli (BTZ) black hole [Phys. Rev. Lett. 69, 1849 (1992)] is constructed from an exact solution of the Einstein field equations in a (2+1)—dimensional anti—de Sitter spacetime in the context of noncommutative geometry. The BTZ black hole turns out to have either two horizons, no horizon, or a single horizon corresponding to a minimal mass. Certain thermodynamical properties are investigated, including Hawking temperature, entropy, and heat capacity. Also discussed is the geodesic structure of BTZ black holes for both massless and massive particles. In particular, it is shown that bound orbits for test particles are possible.
BTZ black holes inspired by noncommutative geometry
Rahaman, Farook; Bhui, B C; Rahaman, Masiur; Ray, Saibal; Mondal, U F
2013-01-01
In this paper a Banados, Teitelboim and Zanelli (BTZ) black hole is constructed from an exact solution of the Einstein field equations in a (2+1)-dimensional anti-de Sitter spacetime in the context of noncommutative geometry. The BTZ black hole turns out to have two horizons, no horizon or a single horizon corresponding to a minimal mass. Certain thermodynamical properties are investigated, including Hawking temperature, entropy and heat capacity. Also discussed is the geodesic structure of BTZ black holes for both massless and massive particles. In particular, it is shown that bound orbits for test particles are possible.
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
Black hole entropy quantization
Corichi, A; Fernandez-Borja, E; Corichi, Alejandro; Diaz-Polo, Jacobo; Fernandez-Borja, Enrique
2006-01-01
Ever since the pioneer works of Bekenstein and Hawking, black hole entropy has been known to have a quantum origin. Furthermore, it has long been argued by Bekenstein that entropy should be quantized in discrete (equidistant) steps given its identification with horizon area in (semi-)classical general relativity and the properties of area as an adiabatic invariant. This lead to the suggestion that black hole area should also be quantized in equidistant steps to account for the discrete black hole entropy. Here we shall show that loop quantum gravity, in which area is not quantized in equidistant steps can nevertheless be consistent with Bekenstein's equidistant entropy proposal in a subtle way. For that we perform a detailed analysis of the number of microstates compatible with a given area and show that an observed oscillatory behavior in the entropy-area relation, when properly interpreted yields an entropy that has discrete, equidistant values that are consistent with the Bekenstein framework.
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids. PMID:25768746
Scale-Invariant Rotating Black Holes in Quadratic Gravity
Directory of Open Access Journals (Sweden)
Guido Cognola
2015-07-01
Full Text Available Black hole solutions in pure quadratic theories of gravity are interesting since they allow the formulation of a set of scale-invariant thermodynamics laws. Recently, we have proven that static scale-invariant black holes have a well-defined entropy, which characterizes equivalent classes of solutions. In this paper, we generalize these results and explore the thermodynamics of rotating black holes in pure quadratic gravity.
Quantum gravity effects on charged microblack holes thermodynamics
Abbasvandi, Niloofar; Soleimani, M. J.; Radiman, Shahidan; Wan Abdullah, W. A. T.
2016-08-01
The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type I and the minimal length, minimal momentum and maximal momentum as GUP type II on thermo dynamics of the charged TeV-scale black holes. We also generalized our study to the universe with the extra dimensions based on the ADD model. In this framework, the effect of the electrical charge on thermodynamics of the black hole and existence of the charged black hole remnants as a potential candidate for the dark matter particles are discussed.
International Nuclear Information System (INIS)
The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πc(ℎ/2π)), where Φ∞≅2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.
Good, Michael R R
2014-01-01
A $(3+1)$-dimensional asymptotically flat Kerr black hole angular speed $\\Omega_+$ can be used to define an effective spring constant, $k=m\\Omega_+^2$. Its maximum value is the Schwarzschild surface gravity, $k = \\kappa $, which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: $2\\pi T = \\kappa - k$. Hooke's law, in the extremal limit, provides the force $F = 1/4$, which is consistent with the conjecture of maximum force in general relativity.
Noncommutative solitonic black hole
International Nuclear Information System (INIS)
We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value. (paper)
Noncommutative solitonic black hole
Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone
2012-05-01
We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.
Horndeski black hole geodesics
Tretyakova, D A
2016-01-01
We examine geodesics for the scalar-tensor black holes in the Horndeski-Galileon framework. Our analysis shows that first kind relativistic orbits may not be present within some model parameters range. This is a highly pathological behavior contradicting to the black hole accretion and Solar System observations. We also present a new (although very similar to those previously known) solution, which contains the orbits we expect from a compact object, admits regular scalar field at the horizon and and can fit into the known stability criteria.
Aarseth, Sverre J
2007-01-01
We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.
Modeling black hole evaporation
Fabbri, Alessandro
2005-01-01
The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.
On the evaporation and on other properties of black holes
International Nuclear Information System (INIS)
After a short discussion of the basic properties of black-hole physics, including the 'no-hair' theorems, the hypothesis of the 'cosmic censor' and the first and second law of black-hole dynamics, we proceed to the thermodynamics of black holes. The concepts of entropy and temperature of a black hole are explained and the generalized second law of black-hole dynamics is presented. We then discuss particle creation in the gravitational fields of black holes and their lifetime due to evaporation. After a digression on chaotic cosmology the possible formation of black holes in the carly universe is treated. Finally we discuss the last violent stages of the evaporation process of black holes and possible observational tests. A few remarks on white holes - though a totally different phenomenon - are included at the end for the sake of clarity. (orig.) 891 HK/orig. 892 MB
Lyutikov, Maxim; McKinney, Jonathan C.
2011-10-01
The “no-hair” theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively “frozen in” the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πcℏ), where Φ∞≈2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole’s magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.
Horowitz, Gary T.; Maldacena, Juan
2003-01-01
We propose that in quantum gravity one needs to impose a final state boundary condition at black hole singularities. This resolves the apparent contradiction between string theory and semiclassical arguments over whether black hole evaporation is unitary.
Energy Technology Data Exchange (ETDEWEB)
Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)
2011-09-22
A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.
Growth of Primordial Black Holes
Harada, Tomohiro
Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.
Fan, Zhong-Ying
2016-01-01
In this paper, we consider Einstein gravity coupled to a vector field, either minimally or non-minimally, together with a vector potential of the type $V=2\\Lambda_0+\\ft 12 m^2 A^2+\\gamma_4 A^4$. For a simpler non-minimally coupled theory with $\\Lambda_0=m=\\gamma_4=0$, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find...
Black Hole Evaporation. A Survey
Benachenhou, Farid
1994-01-01
This thesis is a review of black hole evaporation with emphasis on recent results obtained for two dimensional black holes. First, the geometry of the most general stationary black hole in four dimensions is described and some classical quantities are defined. Then, a derivation of the spectrum of the radiation emitted during the evaporation is presented. In section four, a two dimensional model which has black hole solutions is introduced, the so-called CGHS model. These two dimensional blac...
Black Hole: The Interior Spacetime
Ong, Yen Chin
2016-01-01
The information loss paradox is often discussed from the perspective of the observers who stay outside of a black hole. However, the interior spacetime of a black hole can be rather nontrivial. We discuss the open problems regarding the volume of a black hole, and whether it plays any role in information storage. We also emphasize the importance of resolving the black hole singularity, if one were to resolve the information loss paradox.
Duff, M J
2012-01-01
Quantum entanglement lies at the heart of quantum information theory, with applications to quantum computing, teleportation, cryptography and communication. In the apparently separate world of quantum gravity, the Hawking effect of radiating black holes has also occupied centre stage. Despite their apparent differences, it turns out that there is a correspondence between the two.
Energy Technology Data Exchange (ETDEWEB)
Bambi, Cosimo, E-mail: bambi@fudan.edu.cn; Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn
2013-04-25
The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this Letter, we apply the Newman–Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer–Lindquist coordinates. These special solutions are of Petrov type D, they are singularity free, but they violate the weak energy condition for a non-vanishing spin and their curvature invariants have different values at r=0 depending on the way one approaches the origin. We propose a natural prescription to have rotating solutions with a minimal violation of the weak energy condition and without the questionable property of the curvature invariants at the origin.
Bena, Iosif; Chowdhury, Borun D.; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki
2012-03-01
We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no black holes were thought to exist.
Baker, John
2010-01-01
Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.
Black holes in higher derivative gravity.
Lü, H; Perkins, A; Pope, C N; Stelle, K S
2015-05-01
Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this Letter we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics.
Black holes in higher derivative gravity.
Lü, H; Perkins, A; Pope, C N; Stelle, K S
2015-05-01
Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this Letter we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics. PMID:25978224
Black Holes in Higher-Derivative Gravity
Lu, H; Pope, C N; Stelle, K S
2015-01-01
Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this paper we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics.
Energy Technology Data Exchange (ETDEWEB)
Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others
1995-07-01
Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.
Warped products and black holes
International Nuclear Information System (INIS)
We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes
Warped products and black holes
Hong, S T
2005-01-01
We apply the warped product spacetime scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstr\\"om-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes.
Black Holes in Higher Dimensions
International Nuclear Information System (INIS)
In four space-time dimensions black holes of Einstein-Maxwell theory satisfy a number of theorems. In more than four space-time dimensions, however, some of the properties of black holes can change. In particular, uniqueness of black holes no longer holds. In five and more dimensions black rings arise. Thus in a certain region of the phase diagram there are three black objects with the same global charges present. Here we discuss properties of higher-dimensional vacuum and charged black holes, which possess a spherical horizon topology, and of vacuum and charged black rings, which have a ringlike horizon topology
Hernández, X; Mendoza, S; Sussman, R A
2005-01-01
We study the relationship between the energy and entropy of a black body photon gas, within an idealised spherical adiabatic enclosure of radius R, as this is compressed into a self-gravitating regime. We show that this regime approximately coincides with the black hole regime for the system, i.e., R ~ R_{s}, where R_{s} denotes the Schwarzschild radius of the system. The entropy of this system is always below the suggested Holographic bound, even as R \\to R_{s}. A plausible quantum configuration for the photon gas at R \\to R_{s} is suggested, which satisfies all energy, entropy and temperature black hole conditions. Finally we examine our results from the point of view of recent Loop Quantum Gravity ideas.
Quantum tunneling radiation from self-dual black holes
Energy Technology Data Exchange (ETDEWEB)
Silva, C.A.S., E-mail: calex@fisica.ufc.br [Instituto Federal de Educação Ciência e Tecnologia da Paraíba (IFPB), Campus Campina Grande, Rua Tranquilino Coelho Lemos, 671, Jardim Dinamérica I (Brazil); Brito, F.A., E-mail: fabrito@df.ufcg.edu.br [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil)
2013-10-01
Black holes are considered as objects that can reveal quantum aspects of spacetime. Loop Quantum Gravity (LQG) is a theory that propose a way to model the quantum spacetime behavior revealed by a black hole. One recent prediction of this theory is the existence of sub-Planckian black holes, which have the interesting property of self-duality. This property removes the black hole singularity and replaces it with another asymptotically flat region. In this work, we obtain the thermodynamical properties of this kind of black holes, called self-dual black holes, using the Hamilton–Jacobi version of the tunneling formalism. Moreover, using the tools of the tunneling approach, we investigate the emission spectrum of self-dual black holes, and investigate if some information about the black hole initial state can be recovered during the evaporation process. Back-reaction effects are included.
Quantum tunneling radiation from self-dual black holes
Silva, C. A. S.; Brito, F. A.
2013-10-01
Black holes are considered as objects that can reveal quantum aspects of spacetime. Loop Quantum Gravity (LQG) is a theory that propose a way to model the quantum spacetime behavior revealed by a black hole. One recent prediction of this theory is the existence of sub-Planckian black holes, which have the interesting property of self-duality. This property removes the black hole singularity and replaces it with another asymptotically flat region. In this work, we obtain the thermodynamical properties of this kind of black holes, called self-dual black holes, using the Hamilton-Jacobi version of the tunneling formalism. Moreover, using the tools of the tunneling approach, we investigate the emission spectrum of self-dual black holes, and investigate if some information about the black hole initial state can be recovered during the evaporation process. Back-reaction effects are included.
Canonical Entropy and Phase Transition of Rotating Black Hole
Institute of Scientific and Technical Information of China (English)
ZHAO Ren; WU Yue-Qin; ZHANG Li-Chun
2008-01-01
Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein-Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole.
Observational Evidence for Black Holes
Narayan, Ramesh; McClintock, Jeffrey E.
2013-01-01
Astronomers have discovered two populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range 10^6 to 10^{10} solar masses, one each in the nucleus of every galaxy. There is strong circumstantial evidence that all these objects are true black holes with event horizons. The measured masses of supermassive black hole are strongly corr...
Charged Black Hole Solutions in Gauss-Bonnet-Massive Gravity
Hendi, S H; Panah, B Eslam
2015-01-01
Motivated by high interest in the close relation between string theory and black hole solutions, in this paper, we take into account the Einstein-Gauss-Bonnet Lagrangian in the context of massive gravity. We examine the possibility of black hole in this regard, and discuss the types of horizons. Next, we calculate conserved and thermodynamic quantities and check the validity of the first law of thermodynamics. In addition, we investigate the stability of these black holes in context of canonical ensemble. We show that number, type and place of phase transitions points may be significantly affected by the different parameters. Next, by considering cosmological constant as thermodynamical pressure, we will extend phase space and calculate critical values. Then, we construct thermodynamical spacetime by considering mass as thermodynamical potential. We study geometrical thermodynamics of these black holes in context of heat capacity and extended phase space. We show that studying heat capacity, geometrical therm...
Gravity, quantum theory and the evaporation of black holes
International Nuclear Information System (INIS)
Recent developments in blackhole physics are reviewed. It is pointed out that black hole thermodynamics is a theory of exceptional unity and elegance. Starting from the discovery of thermal emission from black holes (evaporation process) by Hawking, the four thermodynamic laws they obey, the nonzero temperature and entropy, angular momentum and charge of the black holes are dealt with. The influence of this thermodynamics on quantum theory and gravitation is discussed in relation to particle creation and quantum gravity. The formation and basic properties of black holes are described in terms of significant milestones. The decade-long development of black hole thermodynamics from 1963-73 is highlighted. The fundamental issues arising in particle physics as a result of these discoveries are discussed. (A.K.)
Curiel, Erik
2014-01-01
In the early 1970s it is was realized that there is a striking formal analogy between the Laws of black-hole mechanics and the Laws of classical thermodynamics. Before the discovery of Hawking radiation, however, it was generally thought that the analogy was only formal, and did not reflect a deep connection between gravitational and thermodynamical phenomena. It is still commonly held that the surface gravity of a stationary black hole can be construed as a true physical temperature and its area as a true entropy only when quantum effects are taken into account; in the context of classical general relativity alone, one cannot cogently construe them so. Does the use of quantum field theory in curved spacetime offer the only hope for taking the analogy seriously? I think the answer is `no'. To attempt to justify that answer, I shall begin by arguing that the standard argument to the contrary is not physically well founded, and in any event begs the question. Looking at the various ways that the ideas of "tempe...
CFT duals for accelerating black holes
Astorino, Marco
2016-09-01
The near horizon geometry of the rotating C-metric, describing accelerating Kerr-Newman black holes, is analysed. It is shown that, at extremality, even though it is not isomorphic to the extremal Kerr-Newman, it remains a warped and twisted product of AdS2 ×S2. Therefore the methods of the Kerr/CFT correspondence can successfully be applied to build a CFT dual model, whose entropy reproduces, through the Cardy formula, the Bekenstein-Hawking entropy of the accelerating black hole. The mass of accelerating Kerr-Newman black hole, which fulfils the first law of thermodynamics, is presented. Further generalisation in presence of an external Melvin-like magnetic field, used to regularise the conical singularity characteristic of the C-metrics, shows that the Kerr/CFT correspondence can be applied also for the accelerating and magnetised extremal black holes.
CFT Duals for Accelerating Black Holes
Astorino, Marco
2016-01-01
The near horizon geometry of the rotating C-metric, describing accelerating Kerr-Newman black holes, is analysed. It is shown that, at extremality, even though not it is isomorphic to the extremal Kerr-Newman, it remains a warped and twisted product of $AdS_2 \\times S^2$. Therefore the methods of the Kerr/CFT correspondence can successfully be applied to build a CFT dual model, whose entropy reproduce, through the Cardy formula, the Beckenstein-Hawking entropy of the accelerating black hole. The mass of accelerating Kerr-Newman black hole, which fulfil the first law of thermodynamics, is presented. Further generalisation in presence of an external Melvin-like magnetic field, used to regularise the conical singularity characteristic of the C-metrics, shows that the Kerr/CFT correspondence can be applied also for the accelerating and magnetised extremal black holes.
Better late than never: information retrieval from black holes.
Braunstein, Samuel L; Pirandola, Stefano; Życzkowski, Karol
2013-03-01
We show that, in order to preserve the equivalence principle until late times in unitarily evaporating black holes, the thermodynamic entropy of a black hole must be primarily entropy of entanglement across the event horizon. For such black holes, we show that the information entering a black hole becomes encoded in correlations within a tripartite quantum state, the quantum analogue of a one-time pad, and is only decoded into the outgoing radiation very late in the evaporation. This behavior generically describes the unitary evaporation of highly entangled black holes and requires no specially designed evolution. Our work suggests the existence of a matter-field sum rule for any fundamental theory.
Correction value to charged Bekenstein-Hawking black hole entropy
Institute of Scientific and Technical Information of China (English)
ZHANG LiChun; WU YueQin; ZHAO Ren
2008-01-01
Recently, based on the study of black hole Hawking radiation with the tunnel effect method, we found that the radiation spectrum of the black hole is not a strict pure thermal spectrum. It is a very interesting problem to determine how the departure of the black hole radiation spectrum from the pure thermal spectrum affects entropy. We calculate the partition function by the energy spectrum obtained using tunnel effect. Using the relation between the partition function and entropy, we derive the correction value to Bekenstein-Hawking entropy of the charged black hole. Furthermore, we obtain the conditions that various thermodynamic quantities must satisfy, when phase transition of the charged black hole occurs.
Cosmic censorship of rotating Anti-de Sitter black hole
Gwak, Bogeun; Lee, Bum-Hoon
2016-02-01
We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.
Prisons of light : black holes
Ferguson, Kitty
What is a black hole? Could we survive a visit to one -- perhaps even venture inside? Have we yet discovered any real black holes? And what do black holes teach us about the mysteries of our Universe? These are just a few of the tantalizing questions examined in this tour-de-force, jargon-free review of one of the most fascinating topics in modern science. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light - Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.
Point mass Cosmological Black Holes
Firouzjaee, Javad T
2016-01-01
Real black holes in the universe are located in the expanding accelerating background which are called the cosmological black holes. Hence, it is necessary to model these black holes in the cosmological background where the dark energy is the dominant energy. In this paper, we argue that most of the dynamical cosmological black holes can be modeled by point mass cosmological black holes. Considering the de Sitter background for the accelerating universe, we present the point mass cosmological background in the cosmological de Sitter space time. Our work also includes the point mass black holes which have charge and angular momentum. We study the mass, horizons, redshift structure and geodesics properties for these black holes.
Thermal Fluctuations in a Charged AdS Black Hole
Pourhassan, B
2015-01-01
In this paper, we will analyze the effects of thermal fluctuations on a charged AdS black hole. This will be done by analyzing the corrections to black hole thermodynamics due to these thermal fluctuations. We will demonstrate that the entropy of this black hole get corrected by logarithmic term. We will also calculate other corrections to other important thermodynamic quantities for this black hole. Finally, we will use the corrected value of the specific heat to analyze the phase transition in this system.
Geometrothermodynamics of BTZ black hole in new massive gravity
Suresh, Jishnu
2016-01-01
We investigate the thermodynamics as well as thermodynamic geometry of chargeless BTZ black hole solution in new massive gravity. Phase structure and thermodynamic stability of the system is analyzed using the Geometrothermodynamic approach. The phase transition between BTZ black hole space time and thermal AdS$_{3}$ soliton is studied using the same approach and the existence of a second order phase transition is examined.
Black hole as a wormhole factory
Directory of Open Access Journals (Sweden)
Sung-Won Kim
2015-12-01
Full Text Available There have been lots of debates about the final fate of an evaporating black hole and the singularity hidden by an event horizon in quantum gravity. However, on general grounds, one may argue that a black hole stops radiation at the Planck mass (ħc/G1/2∼10−5 g, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a wormhole-like structure, known as “spacetime foam”, due to large fluctuations below the Planck length (ħG/c31/2∼10−33 cm. In this paper, as an explicit example, we consider an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called “Black Wormhole”, consists of two different states, depending on its mass parameter M and an IR parameter ω: For the black hole state (with ωM2>1/2, a non-traversable wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state (with ωM2<1/2, the interior wormhole is exposed to an outside observer as the black hole horizon is disappearing from evaporation. The black hole state becomes thermodynamically stable as it approaches the merging point where the interior wormhole throat and the black hole horizon merges, and the Hawking temperature vanishes at the exact merge point (with ωM2=1/2. This solution suggests the “Generalized Cosmic Censorship” by the existence of a wormhole-like structure which protects the naked singularity even after the black hole evaporation. One could understand the would-be wormhole inside the black hole horizon as the result of microscopic wormholes created by “negative” energy quanta which have entered the black hole horizon in Hawking radiation process; the quantum black hole could be a wormhole factory! It is found that this speculative picture may be consistent with the
Bena, Iosif; Vercnocke, Bert
2012-01-01
We establish the relation between the structure governing supersymmetric and non-supersymmetric four- and five-dimensional black holes and multicenter solutions and Calabi-Yau flux compactifications of M-theory and type IIB string theory. We find that the known BPS and almost-BPS multicenter black hole solutions can be interpreted as GKP compactifications with (2,1) and (0,3) imaginary self-dual flux. We also show that the most general GKP compactification leads to new classes of BPS and non-BPS multicenter solutions. We explore how these solutions fit into N=2 truncations, and elucidate how supersymmetry becomes camouflaged. As a necessary tool in our exploration we show how the fields in the largest N=2 truncation fit inside the six-torus compactification of eleven-dimensional supergravity.
Clement, María E Gabach
2015-01-01
It is well known that celestial bodies tend to be spherical due to gravity and that rotation produces deviations from this sphericity. We discuss what is known and expected about the shape of black holes' horizons from their formation to their final, stationary state. We present some recent results showing that black hole rotation indeed manifests in the widening of their central regions, limits their global shapes and enforces their whole geometry to be close to the extreme Kerr horizon geometry at almost maximal rotation speed. The results depend only on the horizon area and angular momentum. In particular they are entirely independent of the surrounding geometry of the spacetime and of the presence of matter satisfying the strong energy condition. We also discuss the the relation of this result with the Hoop conjecture.
Romero, Gustavo E
2014-01-01
Presentism is, roughly, the metaphysical doctrine that maintains that whatever exists, exists in the present. The compatibility of presentism with the theories of special and general relativity was much debated in recent years. It has been argued that at least some versions of presentism are consistent with time-orientable models of general relativity. In this paper we confront the thesis of presentism with relativistic physics, in the strong gravitational limit where black holes are formed. We conclude that the presentist position is at odds with the existence of black holes and other compact objects in the universe. A revision of the thesis is necessary, if it is intended to be consistent with the current scientific view of the universe.
Polchinski, Joseph
2015-04-01
Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.
Black Holes in Higher Dimensions
Directory of Open Access Journals (Sweden)
Reall Harvey S.
2008-09-01
Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.
Black hole versus cosmological horizon entropy
Davis, T M; Lineweaver, C H; Davis, Tamara M.; Lineweaver, Charles H.
2003-01-01
The generalized second law of thermodynamics states that entropy always increases when all event horizons are attributed with an entropy proportional to their area. We test the generalized second law by investigating the change in entropy when dust, radiation and black holes cross a cosmological event horizon. We generalize for flat, open and closed Friedmann-Robertson-Walker universes by using numerical calculations to determine the cosmological horizon evolution. In most cases the loss of entropy from within the cosmological horizon is more than balanced by an increase in cosmological event horizon entropy, maintaining the validity of the generalized second law of thermodynamics. However, an intriguing set of open universe models show an apparent entropy decrease when black holes disappear over the cosmological event horizon. We anticipate that this apparent violation of the generalized second law will disappear when solutions are available for black holes embedded in arbitrary backgrounds.
Black holes in Einsteinian cubic gravity
Hennigar, Robie A
2016-01-01
Using numerical and perturbative methods, we construct the first examples of black hole solutions in Einsteinian cubic gravity and study their thermodynamics. Focusing first on four dimensional solutions, we show that these black holes have a novel equation of state in which the pressure is a quadratic function of the temperature. Despite this, they undergo a first order phase transition with associated van der Waals behaviour. We then construct perturbative solutions for general $D \\ge 5$ and study the properties of these solutions for $D=5$ and $D=6$ in particular. We find novel examples of zeroth order phase transitions and find super-entropic behaviour over a large portion of the parameter space. We analyse the specific heat, determining that the black holes are thermodynamically stable over large regions of parameter space.
Black holes and phase-space noncommutativity
International Nuclear Information System (INIS)
We use the solutions of the noncommutative Wheeler-DeWitt equation arising from a Kantowski-Sachs cosmological model to compute thermodynamic properties of the Schwarzschild black hole. We show that the noncommutativity in the momentum sector introduces a quadratic term in the potential function of the black hole minisuperspace model. This potential has a local minimum and thus the partition function can be computed by resorting to a saddle point evaluation in the neighborhood of the minimum. The thermodynamics of the black hole is derived and the corrections to the usual Hawking temperature and entropy exhibit a dependence on the momentum noncommutative parameter, η. Moreover, we study the t=r=0 singularity in the noncommutative regime and show that in this case the wave function of the system vanishes in the neighborhood of t=r=0.
Black hole versus cosmological horizon entropy
International Nuclear Information System (INIS)
The generalized second law of thermodynamics states that entropy always increases when all event horizons are attributed with an entropy proportional to their area. We test the generalized second law by investigating the change in entropy when dust, radiation and black holes cross a cosmological event horizon. We generalize for flat, open and closed Friedmann-Robertson-Walker universes by using numerical calculations to determine the cosmological horizon evolution. In most cases, the loss of entropy from within the cosmological horizon is more than balanced by an increase in cosmological event horizon entropy, maintaining the validity of the generalized second law of thermodynamics. However, an intriguing set of open universe models shows an apparent entropy decrease when black holes disappear over the cosmological event horizon. We anticipate that this apparent violation of the generalized second law will disappear when solutions are available for black holes embedded in arbitrary backgrounds
Noncommutative Solitonic Black Hole
Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone
2011-01-01
We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find t...
Caged Black Holes: Black Holes in Compactified Spacetimes II - 5d Numerical Implementation
Sorkin, E; Piran, T; Sorkin, Evgeny; Kol, Barak; Piran, Tsvi
2003-01-01
We describe the first convergent numerical method to determine static black hole solutions (with S^3 horizon) in 5d compactified spacetime. We obtain a family of solutions parametrized by the ratio of the black hole size and the size of the compact extra dimension. The solutions satisfy the demanding integrated first law. For small black holes our solutions approach the 5d Schwarzschild solution and agree very well with new theoretical predictions for the small corrections to thermodynamics and geometry. The existence of such black holes is thus established. We report on thermodynamical (temperature, entropy, mass and tension along the compact dimension) and geometrical measurements. Most interestingly, for large masses (close to the Gregory-Laflamme critical mass) the scheme destabilizes. We interpret this as evidence for an approach to a physical tachyonic instability. Using extrapolation we speculate that the system undergoes a first order phase transition.
Lyutikov, Maxim
2011-01-01
The "no hair" theorem, a key result in General Relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the "no hair" theorem is not formally applicable for black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes $N_B = e \\Phi_\\infty /(\\pi c \\hbar)$, where $\\Phi_\\infty \\approx 2 \\pi^2 B_{NS} R_{NS}^3 /(P_{\\rm NS} c)$ is the initial magnetic flux through the hemisphere...
Thermal corpuscular black holes
Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio
2015-06-01
We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number N of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy m (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy ω >m ). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding N -particle state can be collectively described by a single-particle wave function given by a superposition of a total ground state with energy M =N m and a Planckian distribution for E >M at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction precisely related with the Hawking component. By means of the horizon wave function for the system, we finally show the backreaction of modes with ω >m reduces the Hawking flux. Both corrections, to the entropy and to the Hawking flux, suggest the evaporation properly stops for vanishing mass, if the black hole is in this particular quantum state.
Bena, Iosif; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki
2011-01-01
We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no b...
Rotating black holes with scalar hair in three dimensions
Zou, De-Cheng; Wang, Bin; Xu, Wei
2014-01-01
We examine the first law of thermodynamics in (2+1)-dimensional rotating hairy black holes and find that the first law of black hole thermodynamics can be protected when the scalar field parameter $B$ is constrained to relate to the black hole size. We disclose the Hawking-Page phase transition between the hairy black holes and the pure thermal radiation. Moreover, we find that the free energies of the rotating hairy black holes depend on the ratio between the horizon size to the scalar field parameter $B$. We also compare the free energies for the hairy black hole and the BTZ black hole when they have the same temperature and angular momentum, and find that when this ratio is large, the BTZ black hole has smaller free energy which is a thermodynamically more preferred phase; but when the ratio is small, the hairy black hole has smaller free energy and there exists the possibility for the BTZ black hole to dress up scalar field and become hairy.
Canonical Ensemble Model for Black Hole Radiation
Indian Academy of Sciences (India)
Jingyi Zhang
2014-09-01
In this paper, a canonical ensemble model for the black hole quantum tunnelling radiation is introduced. In this model the probability distribution function corresponding to the emission shell is calculated to second order. The formula of pressure and internal energy of the thermal system is modified, and the fundamental equation of thermodynamics is also discussed.
Lower-Dimensional Black Hole Chemistry
Frassino, Antonia M; Mureika, Jonas R
2015-01-01
The connection between black hole thermodynamics and chemistry is extended to the lower-dimensional regime by considering the rotating and charged BTZ metric in the $(2+1)$-D and a $(1+1)$-D limits of Einstein gravity. The Smarr relation is naturally upheld in both BTZ cases, where those with $Q \
Bose condensation and the BTZ black hole
Vaz, Cenalo; Wijewardhana, L. C. R.
2010-03-01
Although all popular approaches to quantum gravity are able to recover the Bekenstein-Hawking entropy-area law in the thermodynamic limit, there are significant differences in their descriptions of the microstates and in the application of statistics. Therefore, they can have significantly different phenomenological implications. For example, requiring indistinguishability of the elementary degrees of freedom should lead to changes in the black hole's radiative properties away from the thermodynamic limit and at low temperatures. We demonstrate this for the Bañados-Teitelboim-Zanelli (BTZ) black hole. The energy eigenstates and statistical entropy in the thermodynamic limit of the BTZ black hole were obtained earlier by us via symmetry reduced canonical quantum gravity. In that model the BTZ black hole behaves as a system of Bosonic mass shells moving in a one-dimensional harmonic trap. Bose condensation does not occur in the thermodynamic limit but this system possesses a finite critical temperature, Tc, and exhibits a large condensate fraction below Tc when the number of shells is finite.
Black Hole as a Wormhole Factory
Kim, Sung-Won
2015-01-01
On general grounds, one may argue that a black hole stops radiation at the Planck mass, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a "wormhole-like" structure, known as "space-time foam", due to large fluctuations below the Planck length. In this paper, we show that there is actually an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called "Black Wormhole", consists of two different states, depending on its mass M and an IR parameter omega: For the black hole state, a wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state, the interior wormhole is exposed to an outside observer as the black hole horizon is disappeared from evaporation. The black hole state becomes thermodynamically stable as it approaches to the merg...
Charged dilatonic black holes in gravity's rainbow
Energy Technology Data Exchange (ETDEWEB)
Hendi, S.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Faizal, Mir [University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Panah, B.E. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Panahiyan, S. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Shahid Beheshti University, Physics Department, Tehran (Iran, Islamic Republic of)
2016-05-15
In this paper, we present charged dilatonic black holes in gravity's rainbow. We study the geometric and thermodynamic properties of black hole solutions. We also investigate the effects of rainbow functions on different thermodynamic quantities for these charged black holes in dilatonic gravity's rainbow. Then we demonstrate that the first law of thermodynamics is valid for these solutions. After that, we investigate thermal stability of the solutions using the canonical ensemble and analyze the effects of different rainbow functions on the thermal stability. In addition, we present some arguments regarding the bound and phase transition points in context of geometrical thermodynamics. We also study the phase transition in extended phase space in which the cosmological constant is treated as the thermodynamic pressure. Finally, we use another approach to calculate and demonstrate that the obtained critical points in extended phase space represent a second order phase transition for these black holes. (orig.)
Geometry of black hole spacetimes
Andersson, Lars; Blue, Pieter
2016-01-01
These notes, based on lectures given at the summer school on Asymptotic Analysis in General Relativity, collect material on the Einstein equations, the geometry of black hole spacetimes, and the analysis of fields on black hole backgrounds. The Kerr model of a rotating black hole in vacuum is expected to be unique and stable. The problem of proving these fundamental facts provides the background for the material presented in these notes. Among the many topics which are relevant for the uniqueness and stability problems are the theory of fields on black hole spacetimes, in particular for gravitational perturbations of the Kerr black hole, and more generally, the study of nonlinear field equations in the presence of trapping. The study of these questions requires tools from several different fields, including Lorentzian geometry, hyperbolic differential equations and spin geometry, which are all relevant to the black hole stability problem.
Hidden Structures of Black Holes
Vercnocke, Bert
2010-01-01
This thesis investigates two main topics concerning black holes in extensions of general relativity inspired by string theory. First, the structure of the equations of motion underlying black hole solutions is considered, in theories of D-dimensional gravity coupled to scalars and vectors. For solutions preserving supersymmetry, the equations of motion have a dramatic simplification: they become first-order instead of the second-order equations one would expect. Recently, it was found that this is a feature some non-supersymmetric black hole solutions exhibit as well. We investigate if this holds more generally, by examining what the conditions are to have first-order equations for the scalar fields of non-supersymmetric black holes, that mimic the form of their supersymmetric counterparts. This is illustrated in examples. Second, the structure of black holes themselves is investigated. String theory has been successful in explaining the Bekenstein-Hawking entropy for (mainly supersymmetric) black holes from ...
Dvali, Gia
2013-01-01
According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.
Dilatonic Black Holes with Gauss-Bonnet Term
TORII, Takashi; Yajima, Hiroki; Maeda, Kei-ichi
1996-01-01
We discuss black holes in an effective theory derived from a superstring model, which includes a dilaton field, a gauge field and the Gauss-Bonnet term. Assuming U(1) or SU(2) symmetry for the gauge field, we find four types of spherically symmetric solutions, i.e., a neutral, an electrically charged, a magnetically charged and a ``colored'' black hole, and discuss their thermodynamical properties and fate via the Hawking evaporation process. For neutral and electrically charged black holes, ...
Noncommutative geometry-inspired rotating black hole in three dimensions
Indian Academy of Sciences (India)
Juan Manuel Tejeiro; Alexis Larrañaga
2012-01-01
We ﬁnd a new rotating black hole in three-dimensional anti-de Sitter space using an anisotropic perfect ﬂuid inspired by the noncommutative black hole. We deduce the thermodynamical quantities of this black hole and compare them with those of a rotating BTZ solution and give corrections to the area law to get the exact nature of the Bekenstein–Hawking entropy.
Holographical aspects of dyonic black holes: Massive gravity generalization
Hendi, S H; Panahiyan, S
2016-01-01
The content of this paper includes studying holographical and thermodynamical aspects of dyonic black holes in the presence of massive gravity. For the first part of paper, the thermodynamical properties of the bulk which includes black holes are studied. The main focus is on critical behavior. It will be shown that the existence of massive gravitons introduces remnant for temperature for evaporation of black holes, van der Waals phase transition for non-spherical black holes and etc. The consistency of different thermodynamical approaches toward critical behavior of the black holes is proven and the physical properties near to the region of thermal instability are given. Next part of paper studies holographical aspects of the boundary theory. Magnetization and susceptibility of the boundary are extracted and the conditions for having diamagnetic and paramagnetic behaviors are investigated. It will be shown that generalization to massive gravity results into the existences of diamagnetic/paramagnetic phases i...
Entropy bound of horizons for charged and rotating black holes
International Nuclear Information System (INIS)
We revisit the entropy product, entropy sum and other thermodynamic relations of charged and rotating black holes. Based on these relations, we derive the entropy (area) bound for both event horizon and Cauchy horizon. We establish these results for variant class of 4-dimensional charged and rotating black holes in Einstein(–Maxwell) gravity and higher derivative gravity. We also generalize the discussion to black holes with NUT charge. The validity of this formula, which seems to be universal for black holes with two horizons, gives further clue on the crucial role that the thermodynamic relations of multi-horizons play in black hole thermodynamics and understanding the entropy at the microscopic level
Black Hole Entropy from Entropy of Hawking Radiation
Aghapour, Sajad
2016-01-01
We provide a simple way for calculating the entropy of a Schwarzschild black hole from the entropy of its Hawking radiation. To this end, we show that if a thermodynamic system loses its energy only through the black body radiation, its loss of entropy is always 3/4 of the entropy of the emitted radiation. This proposition enables us to relate the entropy of an evaporating black hole to the entropy of its Hawking radiation. Explicitly, by calculating the entropy of the Hawking radiation emitted in the full period of evaporation of the black hole, we find the Bekenstein-Hawking entropy of the initial black hole.
Information Storage in Black Holes
Maia, M. D.
2005-01-01
The information loss paradox for Schwarzschild black holes is examined, using the ADS/CFT correspondence extended to the $M_6 (4,2)$ bulk. It is found that the only option compatible with the preservation of the quantum unitarity is when a regular remnant region of the black hole survives to the black hole evaporation process, where information can be stored and eventually retrieved.
Origin of supermassive black holes
Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S. G.
2007-01-01
The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...
International Nuclear Information System (INIS)
In this talk, I present and discuss a number of attempts to construct black hole solutions in models with Warped Extra Dimensions. Then, a contact is made with models with Large Extra Dimensions, where black-hole solutions are easily constructed - here the focus will be on the properties of microscopic black holes and the possibility of using phenomena associated with them, such as the emission of Hawking radiation, to discover fundamental properties of our spacetime.
Cosmological production of noncommutative black holes
International Nuclear Information System (INIS)
We investigate the pair creation of noncommutative black holes in a background with a positive cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild-de Sitter solution. By varying the mass and the cosmological constant parameters, we find several spacetimes compatible with the new solution: positive-mass spacetimes admit one cosmological horizon and two, one, or no black hole horizons, while negative-mass spacetimes have just a cosmological horizon. These new black holes share the properties of the corresponding asymptotically flat solutions, including the nonsingular core and thermodynamic stability in the final phase of the evaporation. As a second step we determine the action which generates the matter sector of gravitational field equations and we construct instantons describing the pair production of black holes and the other admissible topologies. As a result we find that for current values of the cosmological constant the de Sitter background is quantum mechanically stable according to experience. However, positive-mass noncommutative black holes and solitons would have plentifully been produced during inflationary times for Planckian values of the cosmological constant. As a special result we find that, in these early epochs of the Universe, Planck size black holes production would have been largely disfavored. We also find a potential instability for production of negative-mass solitons.
Cosmological production of noncommutative black holes
Mann, Robert B.; Nicolini, Piero
2011-09-01
We investigate the pair creation of noncommutative black holes in a background with a positive cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild-de Sitter solution. By varying the mass and the cosmological constant parameters, we find several spacetimes compatible with the new solution: positive-mass spacetimes admit one cosmological horizon and two, one, or no black hole horizons, while negative-mass spacetimes have just a cosmological horizon. These new black holes share the properties of the corresponding asymptotically flat solutions, including the nonsingular core and thermodynamic stability in the final phase of the evaporation. As a second step we determine the action which generates the matter sector of gravitational field equations and we construct instantons describing the pair production of black holes and the other admissible topologies. As a result we find that for current values of the cosmological constant the de Sitter background is quantum mechanically stable according to experience. However, positive-mass noncommutative black holes and solitons would have plentifully been produced during inflationary times for Planckian values of the cosmological constant. As a special result we find that, in these early epochs of the Universe, Planck size black holes production would have been largely disfavored. We also find a potential instability for production of negative-mass solitons.
Black-Hole Polarization and Cosmic Censorship
Hod, S
1999-01-01
The destruction of the black-hole event horizon is ruled out by both cosmic censorship and the generalized second law of thermodynamics. We test the consistency of this prediction in a (more) `dangerous' version of the gedanken experiment suggested by Bekenstein and Rosenzweig. A $U(1)$-charged particle is lowered {\\it slowly} into a near extremal black hole which is not endowed with a $U(1)$ gauge field. The energy delivered to the black hole can be {\\it red-shifted} by letting the assimilation point approach the black-hole horizon. At first sight, therefore, the particle is not hindered from entering the black hole and removing its horizon. However, we show that this dangerous situation is excluded by a combination of {\\it two} factors not considered in former gedanken experiments: the effect of the spacetime curvature on the electrostatic {\\it self-interaction} of the charged system (the black-hole polarization), and the {\\it finite} size of the charged body.
Black holes and the multiverse
Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun
2016-02-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.
How black holes saved relativity
Prescod-Weinstein, Chanda
2016-02-01
While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.
Acceleration of black hole universe
Zhang, T. X.; Frederick, C.
2014-01-01
Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.
Directory of Open Access Journals (Sweden)
Armen Yeranyan
2008-10-01
Full Text Available The general solutions of the radial attractor flow equations for extremal black holes, both for non-BPS with non-vanishing central charge Z and for Z = 0, are obtained for the so-called stu model, the minimal rank-3 N = 2 symmetric supergravity in d = 4 space-time dimensions. Comparisons with previous partial results, as well as the fake supergravity (first order formalism and an analysis of the marginal stability of corresponding D-brane configurations, are given.
Directory of Open Access Journals (Sweden)
Roberto Casadio
2015-10-01
Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce
Anabalón, Andrés; Julié, Félix
2016-01-01
In this paper we describe 4-dimensional gravity coupled to scalar and Maxwell fields by the Einstein-Katz action, that is, the covariant version of the "Gamma-Gamma $-$ Gamma-Gamma" part of the Hilbert action supplemented by the divergence of a generalized "Katz vector". We consider static solutions of Einstein's equations, parametrized by some integration constants, which describe an ensemble of asymptotically AdS black holes. Instead of the usual Dirichlet boundary conditions, which aim at singling out a specific solution within the ensemble, we impose that the variation of the action vanishes on shell for the broadest possible class of solutions. We will see that, when a long-range scalar "hair" is present, only sub-families of the solutions can obey that criterion. The Katz superpotential built on his (generalized) vector will then give straightforwardly the Noether charges associated with the spacetime symmetries (that is, in the static case, the mass). Computing the action on shell, we will see next tha...
Quantum criticality and black holes.
Sachdev, Subir; Müller, Markus
2009-04-22
Many condensed matter experiments explore the finite temperature dynamics of systems near quantum critical points. Often, there are no well-defined quasiparticle excitations, and so quantum kinetic equations do not describe the transport properties completely. The theory shows that the transport coefficients are not proportional to a mean free scattering time (as is the case in the Boltzmann theory of quasiparticles), but are completely determined by the absolute temperature and by equilibrium thermodynamic observables. Recently, explicit solutions of this quantum critical dynamics have become possible via the anti-de Sitter/conformal field theory duality discovered in string theory. This shows that the quantum critical theory provides a holographic description of the quantum theory of black holes in a negatively curved anti-de Sitter space, and relates its transport coefficients to properties of the Hawking radiation from the black hole. We review how insights from this connection have led to new results for experimental systems: (i) the vicinity of the superfluid-insulator transition in the presence of an applied magnetic field, and its possible application to measurements of the Nernst effect in the cuprates, (ii) the magnetohydrodynamics of the plasma of Dirac electrons in graphene and the prediction of a hydrodynamic cyclotron resonance. PMID:21825396
Black hole entropy in higher curvature gravity
Jacobson, T; Myers, R C; Jacobson, Ted; Kang, Gungwon; Myers, Robert C
1995-01-01
We discuss some recent results on black hole thermodynamics within the context of effective gravitational actions including higher-curvature interactions. Wald's derivation of the First Law demonstrates that black hole entropy can always be expressed as a local geometric density integrated over a space-like cross-section of the horizon. In certain cases, it can also be shown that these entropy expressions satisfy a Second Law. One such simple example is considered from the class of higher curvature theories where the Lagrangian consists of a polynomial in the Ricci scalar.
Charged black holes in colored Lifshitz spacetimes
Directory of Open Access Journals (Sweden)
Zhong-Ying Fan
2015-04-01
Full Text Available We consider Einstein gravities coupled to a cosmological constant and SU(2 Yang–Mills fields in four and five dimensions. We find that the theories admit colored Lifshitz solutions with dynamic exponents z>1. We study the wave equations of the SU(2 scalar triplet in the bulk, and find that the vacuum color modifies the scaling dimensions of the dual operators. We also introduce a Maxwell field and construct exact solutions of electrically-charged black holes that approach the D=4, z=3 and D=5, z=4 colored Lifshitz spacetimes. We derive the thermodynamical first law for general colored and charged Lifshitz black holes.
Constrained instanton and black hole creation
Institute of Scientific and Technical Information of China (English)
WU; Zhongchao; XU; Donghui
2004-01-01
A gravitational instanton is considered as the seed for the creation of a universe. However, there exist too few instantons. To include many interesting phenomena in the framework of quantum cosmology, the concept of constrained gravitational instanton is inevitable. In this paper we show how a primordial black hole is created from a constrained instanton. The quantum creation of a generic black hole in the closed or open background is completely resolved. The relation of the creation scenario with gravitational thermodynamics and topology is discussed.
Lifshitz black holes in higher spin gravity
International Nuclear Information System (INIS)
We study asymptotically Lifshitz solutions to three dimensional higher spin gravity in the SL(3,ℝ)×SL(3,ℝ) Chern-Simons formulation. We begin by specifying the most general connections satisfying Lifshitz boundary conditions, and we verify that their algebra of symmetries contains a Lifshitz sub-algebra. We then exhibit connections that can be viewed as higher spin Lifshitz black holes. We show that when suitable holonomy conditions are imposed, these black holes obey sensible thermodynamics and possess a gauge in which the corresponding metric exhibits a regular horizon
Entropy of the Kerr–Sen black hole
Indian Academy of Sciences (India)
Alexis Larrañaga
2011-04-01
We study the entropy of Kerr–Sen black hole of heterotic string theory beyond semiclassical approximations. Applying the properties of exact differentials for three variables to the ﬁrst law of thermodynamics, we derive the corrections to the entropy of the black hole. The leading (logarithmic) and non-leading corrections to the area law are obtained.
Neitzke, A; Vandoren, S; Neitzke, Andrew; Pioline, Boris; Vandoren, Stefan
2007-01-01
Motivated by black hole physics in N=2, D=4 supergravity, we study the geometry of quaternionic-Kahler manifolds M obtained by the c-map construction from projective special Kahler manifolds M_s. Improving on earlier treatments, we compute the Kahler potentials on the twistor space Z and Swann space S in the complex coordinates adapted to the Heisenberg symmetries. The results bear a simple relation to the Hesse potential \\Sigma of the special Kahler manifold M_s, and hence to the Bekenstein-Hawking entropy for BPS black holes. We explicitly construct the ``covariant c-map'' and the ``twistor map'', which relate real coordinates on M x CP^1 (resp. M x R^4/Z_2) to complex coordinates on Z (resp. S). As applications, we solve for the general BPS geodesic motion on M, and provide explicit integral formulae for the quaternionic Penrose transform relating elements of H^1(Z,O(-k)) to massless fields on M annihilated by first or second order differential operators. Finally, we compute the exact radial wave function ...
Belloni, T M
2016-01-01
The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...
Quantum black hole evaporation
Schoutens, K; Verlinde, Erik; Schoutens, Kareljan; Verlinde, Erik; Verlinde, Herman
1993-01-01
We investigate a recently proposed model for a full quantum description of two-dimensional black hole evaporation, in which a reflecting boundary condition is imposed in the strong coupling region. It is shown that in this model each initial state is mapped to a well-defined asymptotic out-state, provided one performs a certain projection in the gravitational zero mode sector. We find that for an incoming localized energy pulse, the corresponding out-going state contains approximately thermal radiation, in accordance with semi-classical predictions. In addition, our model allows for certain acausal strong coupling effects near the singularity, that give rise to corrections to the Hawking spectrum and restore the coherence of the out-state. To an asymptotic observer these corrections appear to originate from behind the receding apparent horizon and start to influence the out-going state long before the black hole has emitted most of its mass. Finally, by putting the system in a finite box, we are able to deriv...
Casadio, Roberto; Micu, Octavian; Orlandi, Alessio
2015-01-01
We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a...
Thermal corpuscular black holes
Casadio, Roberto; Orlandi, Alessio
2015-01-01
We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number $N$ of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy $m$ (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy $\\omega>m$). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M=N\\,m$ and a Planckian distribution for $E>M$ at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction preci...
Lovelock black holes in a string cloud background
Energy Technology Data Exchange (ETDEWEB)
Lee, Tae-Hun; Baboolal, Dharmanand [University of KwaZulu-Natal, School of Mathematical Sciences, Durban (South Africa); Ghosh, Sushant G. [University of KwaZulu-Natal, School of Mathematical Sciences, Durban (South Africa); Centre for Theoretical Physics, New Delhi (India)
2015-07-15
We present an exact static, spherically symmetric black hole solution to the third-order Lovelock gravity with a string cloud background in seven dimensions for the special case when the second- and third-order Lovelock coefficients are related via α{sub 2}{sup 2} = 3α{sub 3} (≡ α{sup 2}). Further, we examine thermodynamic properties of this black hole to obtain exact expressions for mass, temperature, heat capacity and entropy, and also perform the thermodynamic stability analysis. We see that a string cloud background has a profound influence on the horizon structure, thermodynamic properties, and the stability of black holes. Interestingly the entropy of the black hole is unaffected due to the string cloud background. However, the critical solution for thermodynamic stability is affected by the string cloud background. (orig.)
Lovelock black holes in a string cloud background
International Nuclear Information System (INIS)
We present an exact static, spherically symmetric black hole solution to the third-order Lovelock gravity with a string cloud background in seven dimensions for the special case when the second- and third-order Lovelock coefficients are related via α22 = 3α3 (≡ α2). Further, we examine thermodynamic properties of this black hole to obtain exact expressions for mass, temperature, heat capacity and entropy, and also perform the thermodynamic stability analysis. We see that a string cloud background has a profound influence on the horizon structure, thermodynamic properties, and the stability of black holes. Interestingly the entropy of the black hole is unaffected due to the string cloud background. However, the critical solution for thermodynamic stability is affected by the string cloud background. (orig.)
Phenomenology of quantum gravity black holes
Energy Technology Data Exchange (ETDEWEB)
Nicolini, Piero [Johann Wolfgang Goethe Universitaet, Frankfurt am Main (Germany); Mureika, Jonas [Loyola Marymount University, Los Angeles, CA (United States); Spallucci, Euro [Universita di Trieste (Italy); INFN, Trieste (Italy); Winstanley, Elizabeth [University of Sheffield, Sheffield (United Kingdom)
2012-07-01
In this contribution we present a new scenario for the production and the evaporation of microscopic black holes in the presence of a quantum gravity induced fundamental length. After a brief analysis of the existing families of quantum gravity improved black hole geometries, we focus on their common thermodynamic behavior, namely the presence of a phase transition to a positive heat capacity cooling down in the final stages of the evaporation even in the non-rotating, neutral case. This fact has important repercussions of the evaporation spectra in terms of new profiles of grey body factors. Quantum gravity black holes would emit soft particles mainly on the brane, a distinctive signatures in marked contrast to results obtained with classical metrics. Then we present a first step in modeling black hole production in a post-semiclassical limit, by employing an effective ultraviolet cut off. We show that the new cross sections approach the usual ''black disk'' form at high energy, while they differ significantly near the fundamental scale. If this behavior is confirmed by all the class of quantum gravity black holes, such novel phenomenology is beyond the reach of current accelerators experiments, but is still potentially observable in ultra-high energy cosmic ray collisions.
Area spectrum of slowly rotating black holes
Myung, Yun Soo
2010-01-01
We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.
Holographic superconductor in the exact hairy black hole
Myung, Yun Soo
2010-01-01
We study the charged black hole of hyperbolic horizon with scalar hair (charged Martinez-Troncoso-Zanelli: CMTZ black hole) as a model of exact hairy black hole for holographic superconductor. This situation is opposite to a case of numerical hairy black holes that the charged black holes without scalar hair were known explicitly, while the charged black holes with scalar hair were found numerically. For this purpose, we investigate the second order phase transition between CMTZ and hyperbolic Reissner-Nordstr\\"om-AdS (HRNAdS) black holes. However, this transition unlikely occur, which means that HRNAdS black holes may not be the corresponding black hole without scalar hair. As an analytic treatment for holographic superconductor, we develop superconductor in the bulk and superfluidity on the boundary using the CMTZ black hole below the critical temperature. The presence of charge destroys the condensates around the zero temperature, which is in accord with the thermodynamic analysis of the CMTZ black hole.
What, no black hole evaporation
International Nuclear Information System (INIS)
Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)
DEFF Research Database (Denmark)
Vestergaard, Marianne
2004-01-01
The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....