Bini, Donato; Geralico, Andrea; Jantzen, Robert T
2015-01-01
A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.
Black Hole: The Interior Spacetime
Ong, Yen Chin
2016-01-01
The information loss paradox is often discussed from the perspective of the observers who stay outside of a black hole. However, the interior spacetime of a black hole can be rather nontrivial. We discuss the open problems regarding the volume of a black hole, and whether it plays any role in information storage. We also emphasize the importance of resolving the black hole singularity, if one were to resolve the information loss paradox.
Geometry of black hole spacetimes
Andersson, Lars; Blue, Pieter
2016-01-01
These notes, based on lectures given at the summer school on Asymptotic Analysis in General Relativity, collect material on the Einstein equations, the geometry of black hole spacetimes, and the analysis of fields on black hole backgrounds. The Kerr model of a rotating black hole in vacuum is expected to be unique and stable. The problem of proving these fundamental facts provides the background for the material presented in these notes. Among the many topics which are relevant for the uniqueness and stability problems are the theory of fields on black hole spacetimes, in particular for gravitational perturbations of the Kerr black hole, and more generally, the study of nonlinear field equations in the presence of trapping. The study of these questions requires tools from several different fields, including Lorentzian geometry, hyperbolic differential equations and spin geometry, which are all relevant to the black hole stability problem.
Black holes and warped spacetime
International Nuclear Information System (INIS)
Black holes (BHs) and their warping effect on spacetime are described, beginning with a discussion on stellar evolution that includes white dwarfs, supernovas and neutron stars. The structure of static, rotating, and electrically charged BHs are considered, as well as the general theory of relativity, quantum mechanics, the Einstein-Rosen bridge, and wormholes in spacetime. Attention is also given to gravitational lenses, various space geometries, quasars, Seyfert galaxies, supermassive black holes, the evaporation and particle emission of BHs, and primordial BHs, including their temperature and lifetime
Energy on black hole spacetimes
Corichi, Alejandro
2012-01-01
We consider the issue of defining energy for test particles on a background black hole spacetime. We revisit the different notions of energy as defined by different observers. The existence of a time-like isometry allows for the notion of a total conserved energy to be well defined, and subsequently the notion of a gravitational potential energy is also meaningful. We then consider the situation in which the test particle is adsorbed by the black hole, and analyze the energetics in detail. In particular, we show that the notion of horizon energy es defined by the isolated horizons formalism provides a satisfactory notion of energy compatible with the particle's conserved energy. As another example, we comment a recent proposal to define energy of the black hole as seen by an observer at rest. This account is intended to be pedagogical and is aimed at the level of and as a complement to the standard textbooks on the subject.
Spacetime and orbits of bumpy black holes
Vigeland, Sarah J
2009-01-01
Our universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure that general relativity demands. As a means of formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced "bumpy black holes": objects that are almost, but not quite, general relativity's black holes. The spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing to black holes when the deviation is zero. In this paper, we extend this work in two ways. First, we show how to introduce bumps which are smoother and lead to better behaved orbits than those in the original presentation. Second, we show how to make bumpy Kerr black holes -- objects which reduce to the Kerr solution when the deviation goes to zero. This greatly extends the astrophysical applicability of b...
Black hole evaporation rates without spacetime.
Braunstein, Samuel L; Patra, Manas K
2011-08-12
Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem.
Black hole evaporation rates without spacetime.
Braunstein, Samuel L; Patra, Manas K
2011-08-12
Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem. PMID:21902381
Spacetime and orbits of bumpy black holes
Vigeland, Sarah J.; Hughes, Scott A.
2010-01-01
Our Universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure that general relativity demands. As a means of formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced “bumpy black holes”: objects that are almost, but not quite, general relativity’s black holes. The spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing to black holes when the deviation is zero. In this paper, we extend this work in two ways. First, we show how to introduce bumps which are smoother and lead to better behaved orbits than those in the original presentation. Second, we show how to make bumpy Kerr black holes—objects which reduce to the Kerr solution when the deviation goes to zero. This greatly extends the astrophysical applicability of bumpy black holes. Using Hamilton-Jacobi techniques, we show how a spacetime’s bumps are imprinted on orbital frequencies, and thus can be determined by measurements which coherently track the orbital phase of a small orbiting body. We find that in the weak field, orbits of bumpy black holes are modified exactly as expected from a Newtonian analysis of a body with a prescribed multipolar structure, reproducing well-known results from the celestial mechanics literature. The impact of bumps on strong-field orbits is many times greater than would be predicted from a Newtonian analysis, suggesting that this framework will allow observations to set robust limits on the extent to which a spacetime’s multipoles deviate from the black hole expectation.
Charged black holes in colored Lifshitz spacetimes
Directory of Open Access Journals (Sweden)
Zhong-Ying Fan
2015-04-01
Full Text Available We consider Einstein gravities coupled to a cosmological constant and SU(2 Yang–Mills fields in four and five dimensions. We find that the theories admit colored Lifshitz solutions with dynamic exponents z>1. We study the wave equations of the SU(2 scalar triplet in the bulk, and find that the vacuum color modifies the scaling dimensions of the dual operators. We also introduce a Maxwell field and construct exact solutions of electrically-charged black holes that approach the D=4, z=3 and D=5, z=4 colored Lifshitz spacetimes. We derive the thermodynamical first law for general colored and charged Lifshitz black holes.
Principle of Spacetime and Black Hole Equivalence
Zhang, Tianxi
2016-06-01
Modelling the universe without relying on a set of hypothetical entities (HEs) to explain observations and overcome problems and difficulties is essential to developing a physical cosmology. The well-known big bang cosmology, widely accepted as the standard model, stands on two fundamentals, which are Einstein’s general relativity (GR) that describes the effect of matter on spacetime and the cosmological principle (CP) of spacetime isotropy and homogeneity. The field equation of GR along with the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric of spacetime derived from CP generates the Friedmann equation (FE) that governs the development and dynamics of the universe. The big bang theory has made impressive successes in explaining the universe, but still has problems and solutions of them rely on an increasing number of HEs such as inflation, dark matter, dark energy, and so on. Recently, the author has developed a new cosmological model called black hole universe, which, instead of making many those hypotheses, only includes a new single postulate (or a new principle) to the cosmology - Principle of Spacetime and Black Hole Equivalence (SBHEP) - to explain all the existing observations of the universe and overcome all the existing problems in conventional cosmologies. This study thoroughly demonstrates how this newly developed black hole universe model, which therefore stands on the three fundamentals (GR, CP, and SBHEP), can fully explain the universe as well as easily conquer the difficulties according to the well-developed physics, thus, neither needing any other hypotheses nor existing any unsolved difficulties. This work was supported by NSF/REU (Grant #: PHY-1263253) at Alabama A & M University.
Gravitational Tension, Spacetime Pressure and Black Hole Volume
Armas, Jay; Sanchioni, Marco
2015-01-01
We study the first law of black hole thermodynamics in the presence of surrounding gravitational fields and argue that variations of these fields are naturally incorporated in the first law by defining gravitational tension or gravitational binding energy. We demonstrate that this notion can also be applied in Anti-de Sitter spacetime, in which the surrounding gravitational field is sourced by a cosmological fluid, therefore showing that spacetime volume and gravitational tension encode the same physics as spacetime pressure and black hole volume. We furthermore show that it is possible to introduce a definition of spacetime pressure and black hole volume for any spacetime with characteristic length scales which does not necessarily require a cosmological constant sourcing Einstein equations. However, we show that black hole volume is non-universal in the flat spacetime limit, questioning its significance. We illustrate these ideas by studying the resulting black hole volume of Kaluza-Klein black holes and of...
Spacetime Duality of BTZ Black Hole
Ho, Jeongwon; Kim, Won T.; Park, Young-Jai
1999-01-01
We consider the duality of the quasilocal black hole thermodynamics, explicitly the quasilocal black hole thermodynamic first law, in BTZ black hole solution as a special one of the three-dimensional low energy effective string theory.
Gravitational tension, spacetime pressure and black hole volume
Armas, Jay; Obers, Niels A.; Sanchioni, Marco
2016-09-01
We study the first law of black hole thermodynamics in the presence of surrounding gravitational fields and argue that variations of these fields are naturally incorporated in the first law by defining gravitational tension or gravitational binding energy. We demonstrate that this notion can also be applied in Anti-de Sitter spacetime, in which the surrounding gravitational field is sourced by a cosmological fluid, therefore showing that spacetime volume and gravitational tension encode the same physics as spacetime pressure and black hole volume. We furthermore show that it is possible to introduce a definition of spacetime pressure and black hole volume for any spacetime with characteristic length scales which does not necessarily require a cosmological constant sourcing Einstein equations. However, we show that black hole volume is non-universal in the flat spacetime limit, questioning its significance. We illustrate these ideas by studying the resulting black hole volume of Kaluza-Klein black holes and of a toy model for a black hole binary system in five spacetime dimensions (the black saturn solution) as well as of several novel perturbative black hole solutions. These include the higher-dimensional Kerr-Newman solution in Anti-de Sitter spacetime as well as other black holes in plane wave and Lifshitz spacetimes.
Particles and scalar waves in noncommutative charged black hole spacetime
Bhar, Piyali; Rahaman, Farook; Biswas, Ritabrata(Indian Institute of Engineering Sceince and Technology Shibpur (Formerly, Bengal Engineering and Science University Shibpur), 711 013, Howrah, West Bengal, India); Mondal, U. F.
2015-01-01
In this paper we have discussed geodesics and the motion of test particle in the gravitational field of noncommutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately. A comparative study of noncommutative charged black hole and usual Reissner-Nordstrom black hole has been done. The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.
Particles and Scalar Waves in Noncommutative Charged Black Hole Spacetime
Piyali, Bhar; Farook, Rahaman; Ritabrata, Biswas; U. F., Mondal
2015-07-01
In this paper we have discussed geodesics and the motion of test particle in the gravitational field of non-commutative charged black hole spacetime. The motion of massive and massless particle have been discussed seperately. A comparative study of noncommutative charged black hole and usual Reissner-Nordström black hole has been done. The study of effective potential has also been included. Finally, we have examined the scattering of scalar waves in noncommutative charged black hole spacetime.
Spacetime noncommutative effect on black hole as particle accelerators
Ding, Chikun; Liu, Changqing; Qian GUO
2013-01-01
We study the spacetime noncommutative effect on black hole as particle accelerators and, find that particle falling from infinity with zero velocity cannot collide with unbound energy when the noncommutative Kerr black hole is exactly extremal. Our results also show that the bigger of the spinning black hole's mass is, the higher of center of mass energy that the particles obtain. For small and medium noncommutative Schwarzschild black hole, the collision energy depends on the black holes' mass.
Ergoregions in Magnetised Black Hole Spacetimes
Gibbons, G W; Pope, C N
2013-01-01
The spacetimes obtained by Ernst's procedure for appending an external magnetic field $B$ to a seed Kerr-Newman black hole are commonly believed to be asymptotic to the static Melvin solution. We show that this is not in general true. Unless the electric charge of the black hole satisfies $Q= jB(1+ 1/4 j^2 B^4)$, where $j$ is the angular momentum of the original seed solution, an ergoregion extends all the way from the black hole horizon to infinity. We give a self-contained account of the solution-generating procedure, including including explicit formulae for the metric and the vector potential. In the case when $Q= jB(1+ 1/4 j^2 B^4)$, we show that there is an arbitrariness in the choice of asymptotically timelike Killing field $K_\\Omega= \\partial/\\partial t+ \\Omega \\partial/\\partial \\phi$, because there is no canonical choice of $\\Omega$. For one choice, $\\Omega=\\Omega_s$, the metric is asymptotically static, and there is an ergoregion confined to the neighbourhood of the horizon. On the other hand, by ch...
Domain structure of black hole space-times
International Nuclear Information System (INIS)
We introduce the domain structure for stationary black hole space-times. The domain structure lives on the submanifold of fixed points of the Killing vector fields. Depending on which Killing vector field has fixed points the submanifold is naturally divided into domains. The domain structure provides invariants of the space-time, both topological and continuous. It is defined for any space-time dimension and any number of Killing vector fields. We examine the domain structure for asymptotically flat space-times and find a canonical form for the metric of such space-times. The domain structure generalizes the rod structure introduced for space-times with D-2 commuting Killing vector fields. We analyze in detail the domain structure for Minkowski space, the Schwarzschild-Tangherlini black hole and the Myers-Perry black hole in six and seven dimensions. Finally, we consider the possible domain structures for asymptotically flat black holes in six and seven dimensions.
A Practical Foundation for Mapping Black Hole Spacetimes
Vigeland, Sarah; Hughes, Scott
2010-02-01
Observations have shown that the universe contains many compact and massive objects that are believed to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure predicted by general relativity. We propose to compare strong-field observations of compact objects with the spacetime of bumpy black holes: objects whose multipolar structure is almost, but not quite, equal to that of the Kerr spacetime. We build bumpy black hole spacetimes by adding a perturbation onto a Kerr black hole, and we show how to map the perturbation onto changes in the multipole moments. The perturbation results in changes to the orbital frequencies which we calculate using Hamilton-Jacobi techniques. )
Spinning, Precessing, Black Hole Binary Spacetime via Asymptotic Matching
Nakano, Hiroyuki; Campanelli, Manuela; West, Eric J
2016-01-01
We briefly discuss a method to construct a global, analytic, approximate spacetime for precessing, spinning binary black holes. The spacetime construction is broken into three parts: the inner zones are the spacetimes close to each black hole, and are approximated by perturbed Kerr solutions; the near zone is far from the two black holes, and described by the post-Newtonian metric; and finally the wave (far) zone, where retardation effects need to be taken into account, is well modeled by the post-Minkowskian metric. These individual spacetimes are then stitched together using asymptotic matching techniques to obtain a global solution that approximately satisfies the Einstein field equations. Precession effects are introduced by rotating the black hole spin direction according to the precessing equations of motion, in a way that is consistent with the global spacetime construction.
Black hole spacetimes with Killing-Yano symmetries
Kubiznak, David
2009-01-01
We present a brief overview of black hole spacetimes admitting Killing-Yano tensors. In vacuum these include Kerr-NUT-(A)dS metrics and certain black brane solutions. In the presence of matter fields, (conformal) Killing-Yano symmetries are known to exist for the Plebanski-Demianski solution and (trivially) for any spacetime with spherical symmetry. Special attention is devoted to generalized Killing-Yano tensors of black holes in minimal gauged supergravity. Several aspects directly related ...
Classical black holes: the nonlinear dynamics of curved spacetime.
Thorne, Kip S
2012-08-01
Numerical simulations have revealed two types of physical structures, made from curved spacetime, that are attached to black holes: tendexes, which stretch or squeeze anything they encounter, and vortexes, which twist adjacent inertial frames relative to each other. When black holes collide, their tendexes and vortexes interact and oscillate (a form of nonlinear dynamics of curved spacetime). These oscillations generate gravitational waves, which can give kicks up to 4000 kilometers per second to the merged black hole. The gravitational waves encode details of the spacetime dynamics and will soon be observed and studied by the Laser Interferometer Gravitational Wave Observatory and its international partners.
Boosting jet power in black hole spacetimes
Neilsen, David; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garret, T
2010-01-01
The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.
Boosting jet power in black hole spacetimes
Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M.; Garrett, Travis
2011-01-01
The extraction of rotational energy from a spinning black hole via the Blandford–Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux. PMID:21768341
Boosting jet power in black hole spacetimes.
Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis
2011-08-01
The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.
Boosting jet power in black hole spacetimes
Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M; Garrett, Travis
2011-01-01
The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet tha...
Black hole particle emission in higher-dimensional spacetimes.
Cardoso, Vitor; Cavaglià, Marco; Gualtieri, Leonardo
2006-02-24
In models with extra dimensions, a black hole evaporates both in the bulk and on the visible brane, where standard model fields live. The exact emissivities of each particle species are needed to determine how the black hole decay proceeds. We compute and discuss the absorption cross sections, the relative emissivities, and the total power output of all known fields in the evaporation phase. Graviton emissivity is highly enhanced as the spacetime dimensionality increases. Therefore, a black hole loses a significant fraction of its mass in the bulk. This result has important consequences for the phenomenology of black holes in models with extra dimensions and black hole detection in particle colliders. PMID:16606074
Spacetime Noncommutative Effect on Black Hole as Particle Accelerators
Ding, Chikun; Liu, Changqing; Quo, Qian
2013-03-01
We study the spacetime noncommutative effect on black hole as particle accelerators and, find that the particles falling from infinity with zero velocity cannot collide with unbound energy, either near the horizon or on the prograde ISCO when the noncommutative Kerr black hole is exactly extremal. Our results also show that the bigger of the spinning black hole's mass is the higher of center of mass energy that the particles obtain. For small and medium noncommutative Schwarzschild black hole, the collision energy depends on the black hole's mass.
Vaidya spacetime as an evaporating black hole
International Nuclear Information System (INIS)
The energy-momentum tensor for an evaporating black hole modeled by the Vaidya metric is examined. It is shown that the energy flux from a naked singularity which is formed when a black hole disappears is divergent even when the mass M disappears with the condition dM/dv → 0 as M → 0 (v the usual advanced time). (author)
Strong gravitational lensing in a noncommutative black-hole spacetime
Ding, Chikun; Kang, Shuai; Chen, Chang-Yong; Chen, Songbai; Jing, Jiliang
2011-04-01
Noncommutative geometry may be a starting point to a quantum gravity. We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Schwarzschild black-hole spacetime and obtain the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy can be described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. In comparison to the Reissner-Norström black hole, we find that the influences of the spacetime noncommutative parameter is similar to those of the charge, but these influences are much smaller. This may offer a way to distinguish a noncommutative black hole from a Reissner-Norström black hole, and may permit us to probe the spacetime noncommutative constant ϑ by the astronomical instruments in the future.
Strong gravitational lensing in a noncommutative black-hole spacetime
International Nuclear Information System (INIS)
Noncommutative geometry may be a starting point to a quantum gravity. We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Schwarzschild black-hole spacetime and obtain the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy can be described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. In comparison to the Reissner-Norstroem black hole, we find that the influences of the spacetime noncommutative parameter is similar to those of the charge, but these influences are much smaller. This may offer a way to distinguish a noncommutative black hole from a Reissner-Norstroem black hole, and may permit us to probe the spacetime noncommutative constant θ by the astronomical instruments in the future.
Kerr black hole in canonically deformed space-time
Daszkiewicz, Marcin
2014-01-01
We investigate the Kerr black hole defined on canonically deformed space-time. Particulary, we find the corresponding event horizon, the ergosphere, the temperature and the entropy of such deformed object.
Clocks, computers, black holes, spacetime foam, and holographic principle
Ng, Y. Jack
2000-01-01
What do simple clocks, simple computers, black holes, space-time foam, and holographic principle have in common? I will show that the physics behind them is inter-related, linking together our concepts of information, gravity, and quantum uncertainty. Thus, the physics that sets the limits to computation and clock precision also yields Hawking radiation of black holes and the holographic principle. Moreover, the latter two strongly imply that space-time undergoes much larger quantum fluctuati...
Probing spacetime noncommutative constant via black hole shadow
Wei, Shao-Wen; Zhong, Yi; Zhou, Xiang-Nan
2015-01-01
In this paper, the shadow casted by the rotating black hole in a noncommutative spacetime is investigated. In addition to the spin parameter $a$ and inclination angle $i$, the noncommutative parameter $\\sqrt{\\vartheta}$ is also found to affect the shape of the black hole shadow. The result shows that the size of the shadow slightly decreases with the parameter $\\sqrt{\\vartheta}$, while the distortion increases with it. Compared to the Kerr black hole, the parameter $\\sqrt{\\vartheta}$ increases the deformation of the shadow. This may offer a way to probe and determine the spacetime noncommutative parameter via astronomical instruments in the near future.
Small black holes in global AdS spacetime
Jokela, Niko; Pönni, Arttu; Vuorinen, Aleksi
2016-04-01
We study the properties of two-point functions and quasinormal modes in a strongly coupled field theory holographically dual to a small black hole in global anti-de Sitter spacetime. Our results are seen to smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, demonstrating that the Son-Starinets prescription works even when there is no black hole in the spacetime. Omitting issues related to the internal space, the results can be given a field theory interpretation in terms of the microcanonical ensemble, which provides access to energy densities forbidden in the canonical description.
Inspiralling, nonprecessing, spinning black hole binary spacetime via asymptotic matching
Ireland, Brennan; Mundim, Bruno C.; Nakano, Hiroyuki; Campanelli, Manuela
2016-05-01
We construct a new global, fully analytic, approximate spacetime which accurately describes the dynamics of nonprecessing, spinning black hole binaries during the inspiral phase of the relativistic merger process. This approximate solution of the vacuum Einstein's equations can be obtained by asymptotically matching perturbed Kerr solutions near the two black holes to a post-Newtonian metric valid far from the two black holes. This metric is then matched to a post-Minkowskian metric even farther out in the wave zone. The procedure of asymptotic matching is generalized to be valid on all spatial hypersurfaces, instead of a small group of initial hypersurfaces discussed in previous works. This metric is well suited for long term dynamical simulations of spinning black hole binary spacetimes prior to merger, such as studies of circumbinary gas accretion which requires hundreds of binary orbits.
Near-extremal black hole evaporation in asymptotically flat spacetime
International Nuclear Information System (INIS)
We study black hole evaporation of near-extremal black holes in spherically reduced models with asymptotically Minkowskian spacetime, with the effects of the back reaction on the geometry included semiclassically. The stress-energy tensor is calculated for null in-falling observers. It is shown that the evaporation proceeds smoothly and there are no instabilities of the outer or inner apparent horizon before the end point of evaporation
Near-Extremal Black Hole Evaporation in Asymptotically Flat Spacetime
Diba, Kamran; Lowe, David A.
2002-01-01
We study black hole evaporation of near-extremal black holes in spherically reduced models with asymptotically Minkowskian spacetime, with the effects of the back-reaction on the geometry included semi-classically. The stress-energy tensor is calculated for null in-falling observers. It is shown that the evaporation proceeds smoothly and there are no instabilities of the outer or inner apparent horizon before the endpoint of evaporation.
Scalar fields in BTZ black hole spacetime and entanglement entropy
Veer Singh, Dharm; Siwach, Sanjay
2013-12-01
We study the quantum scalar fields in the background of BTZ black hole spacetime. We calculate the entanglement entropy using the discretized model, which resembles a system of coupled harmonic oscillators. The leading term of the entropy formula is standard Bakenstein-Hawking entropy and sub-leading corresponds to quantum corrections to black hole entropy. We calculate the coefficient of sub-leading logarithmic corrections numerically.
Black Holes and Spacetime Physics in String/M Theory
Li, Miao
2000-01-01
In addition to briefly reviewing recent progress in studying black hole physics in string/M theory, we describe several robust features pertaining to spacetime physics that one can glean by studying quantum physics of black holes. In particular, we review 't Hooft's S-matrix ansatz which results in a noncommutative horizon. A recent construction of fuzzy AdS2 is emphasized, this is a nice toy model for fuzzy black hole horizon. We demonstrate that this model captures some nonperturbative feat...
Probing spacetime noncommutative constant via charged astrophysical black hole lensing
Ding, Chikun; Jing, Jiliang
2011-01-01
We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Reissner-Nordstr\\"{o}m black-hole spacetime. Supposing that the gravitational field of the supermassive central object of the Galaxy is described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. Our results show that with the increase of the parameter $\\sqrt{\\vartheta}$, the observables $\\theta_{\\...
Strong gravitational lensing in a noncommutative black-hole spacetime
Ding, Chikun; Kang, Shuai; Chen, Chang-Yong; Chen, Songbai; Jing, Jiliang
2010-01-01
Noncommutative geometry may be a starting point to a quantum gravity. We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Schwarzschild black-hole spacetime and obtain the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy described by this metric, we estimate the numerical values of the coefficients and observables fo...
Probing spacetime noncommutative constant via charged astrophysical black hole lensing
Ding, Chikun; Jing, Jiliang
2011-10-01
We study the influence of the spacetime noncommutative parameter on the strong field gravitational lensing in the noncommutative Reissner-Nordström black-hole spacetime. Supposing that the gravitational field of the supermassive central object of the Galaxy is described by this metric, we estimate the numerical values of the coefficients and observables for strong gravitational lensing. Our results show that with the increase of the parameter sqrt {\\vartheta } , the observables θ ∞ and r m decrease, while s increases. Our results also show that i) if sqrt {\\vartheta } is strong, the observables are close to those of the noncommutative Schwarzschild black hole lensing; ii) if sqrt {\\vartheta } is weak, the observables are close to those of the commutative Reissner-Nordström black hole lensing; iii) the detectable scope of ϑ in a noncommutative Reissner-Nordström black hole lensing is 0.12 ≤ sqrt {\\vartheta } ≤ 0.26 , which is wider than that in a noncommutative Schwarzschild black hole lensing, 0.18 ≤ sqrt {\\vartheta } ≤ 0.26 . This may offer a way to probe the spacetime noncommutative constant ϑ by the astronomical instruments in the future.
Caged Black Holes: Black Holes in Compactified Spacetimes II - 5d Numerical Implementation
Sorkin, E; Piran, T; Sorkin, Evgeny; Kol, Barak; Piran, Tsvi
2003-01-01
We describe the first convergent numerical method to determine static black hole solutions (with S^3 horizon) in 5d compactified spacetime. We obtain a family of solutions parametrized by the ratio of the black hole size and the size of the compact extra dimension. The solutions satisfy the demanding integrated first law. For small black holes our solutions approach the 5d Schwarzschild solution and agree very well with new theoretical predictions for the small corrections to thermodynamics and geometry. The existence of such black holes is thus established. We report on thermodynamical (temperature, entropy, mass and tension along the compact dimension) and geometrical measurements. Most interestingly, for large masses (close to the Gregory-Laflamme critical mass) the scheme destabilizes. We interpret this as evidence for an approach to a physical tachyonic instability. Using extrapolation we speculate that the system undergoes a first order phase transition.
Gravitation, black holes and space-time physics
International Nuclear Information System (INIS)
A wide range of questions relating to the general theory of relativity, the physics of gravitation and space-time are discussed, including the relations between gravitation and the other fields of physics, mainly electromagnetism and the special theory of relativity, Einstein general relativity theory - the consequences of the principle of equivalence, the physics of curved space-time, equations of the gravitation fields, properties of gravitational energy and gravitational waves, the properties are analysed of certain significant solutions of Einstein field equations, causality and the global structure of space-time, horizons, the problem of space-time singularities, etc. The physics of black holes is discussed in detail as the extreme manifestation of gravitation also the problem of the structure and development of the universe with regard to present relativistic cosmology. Finally discussed is Mach principle, the quantizing of the field of gravitation and the problems of unified theories of the field. (V.U.)
Quantum Entanglement and Teleportation in Higher Dimensional Black Hole Spacetimes
Ge, Xian-Hui; Kim, Sang Pyo
2007-01-01
We study the properties of quantum entanglement and teleportation in the background of stationary and rotating curved space-times with extra dimensions. We show that a maximally entangled Bell state in an inertial frame becomes less entangled in curved space due to the well-known Hawking-Unruh effect. The degree of entanglement is found to be degraded with increasing the extra dimensions. For a finite black hole surface gravity, the observer may choose higher frequency mode to keep high level...
Cosmological and black hole spacetimes in twisted noncommutative gravity
International Nuclear Information System (INIS)
We derive noncommutative Einstein equations for abelian twists and their solutions in consistently symmetry reduced sectors, corresponding to twisted FRW cosmology and Schwarzschild black holes. While some of these solutions must be rejected as models for physical spacetimes because they contradict observations, we find also solutions that can be made compatible with low energy phenomenology, while exhibiting strong noncommutativity at very short distances and early times.
All electro--vacuum Majumdar--Papapetrou space--times with nonsingular black holes
Chrusciel, Piotr T.; Nadirashvili, Nikolai S.
1994-01-01
We show that all Majumdar--Papapetrou electrovacuum space--times with a non--empty black hole region and with a non--singular domain of outer communications are the standard Majumdar--Papapetrou space--times.
Finite differencing second order systems describing black hole spacetimes
Calabrese, G
2005-01-01
Keeping Einstein's equations in second order form can be appealing for computational efficiency, because of the reduced number of variables and constraints. Stability issues emerge, however, which are not present in first order formulations. We show that a standard discretization of the second order ``shifted'' wave equation leads to an unstable semi-discrete scheme if the shift parameter is too large. This implies that discretizations obtained using integrators such as Runge-Kutta, Crank-Nicholson, leap-frog are unstable for any fixed value of the Courant factor. We argue that this situation arises in numerical relativity, particularly in simulations of spacetimes containing black holes, and discuss several ways of circumventing this problem. We find that the first order reduction in time based on ``ADM'' type variables is very effective.
Generalized Black Holes in Three-dimensional Spacetime
Bunster, Claudio; Perez, Alfredo; Tempo, David; Troncoso, Ricardo
2014-01-01
Three-dimensional spacetime with a negative cosmological constant has proven to be a remarkably fertile ground for the study of gravity and higher spin fields. The theory is topological and, since there are no propagating field degrees of freedom, the asymptotic symmetries become all the more crucial. For pure (2+1) gravity they consist of two copies of the Virasoro algebra. There exists a black hole which may be endowed with all the corresponding charges. The pure (2+1) gravity theory may be reformulated in terms of two Chern-Simons connections for sl(2,R). An immediate generalization containing gravity and a finite number of higher spin fields may be achieved by replacing sl(2,R) by sl(3,R) or, more generally, by sl(N,R). The asymptotic symmetries are then two copies of the so-called W_N algebra, which contains the Virasoro algebra as a subalgebra. The question then arises as to whether there exists a generalization of the standard pure gravity (2+1) black hole which would be endowed with all the W_N charge...
Unified First Law and Thermodynamics of Dynamical Black Hole in n-dimensional Vaidya Spacetime
Ren, Ji-Rong; Li, Ran
2007-01-01
As a simple but important example of dynamical black hole, we analysis the dynamical black hole in $n$-dimensional Vaidya spacetime in detail. We investigated the thermodynamics of field equation in $n$-dimensional Vaidya spacetime. The unified first law was derived in terms of the methods proposed by Sean A Hayward. The first law of dynamical black hole was obtained by projecting the unified first law along the trapping horizon. At last, the second law of dynamical black hole is also discussed.
Non-Commutative Space-Times, Black Hole, and Elementary Particle
Park, Mu- in
2001-01-01
It is shown that elementary black hole can not be distinguished from an elementary particle in the non-commutative space-times (space/space and space/time) at the Planck scale. But, the non-commutative space-times can not be ``directly'' measured in the elementary black hole system. A time-varying non-commutative parameter $\\theta(t)$ is suggested in accordance with the time-varying-G scenario. By identifying the elementary black hole with an elementary particle, the large hierarchy between t...
Reflection from black holes and space-time topology
Kuchiev, M Yu
2004-01-01
The quantum corrections make the black hole capable of reflection: any particle that approaches the event horizon can bounce back in the outside world. The albedo of the black hole depends on its temperature. The reflection shares physical origins with the phenomenon of Hawking radiation; both effects are explained as consequences of the singular nature that the event horizon exhibits on the quantum level.
A Short Essay on Quantum Black Holes and Underlying Noncommutative Quantized Space-Time
Tanaka, Sho
2015-01-01
In our preceding paper: Where does Black-Hole Entropy Lie? - Some Remarks on Area-Entropy Law, Holographic Principle and Noncommutative Space-Time (2014) (see Introduction), we emphasized the importance of underlying noncommutative geometry or Lorenz-covariant quantized space-time towards ultimate theory of quantum gravity and Planck scale physics. We focused there our attention on the statistical and substantial understanding of Bekenstein-Hawking's Area-Entropy Law of black holes in terms o...
Moving mirrors and black hole evaporation in noncommutative space-times
International Nuclear Information System (INIS)
We study the evaporation of black holes in noncommutative space-times. We do this by calculating the correction to the detector's response function for a moving mirror in terms of the noncommutativity parameter Θ and then extracting the number density as modified by this parameter. We find that allowing space and time to be noncommutative increases the decay rate of a black hole
Brane world in a topological black holes in asymptotically flat spacetime
International Nuclear Information System (INIS)
We study static brane configurations in the bulk background of the topological black holes in asymptotically flat spacetime. We find that such configurations are possible even for flat black hole horizon, unlike the AdS black hole case. We construct the brane world model with an orbifold structure S1/Z2 in such bulk background. We also study massless bulk scalar field. (author)
Entropy in the NUT-Kerr-Newman Black Holes in the Background of de Sitter Spacetime
Institute of Scientific and Technical Information of China (English)
葛先辉; 沈有根
2002-01-01
We calculate the entropy of the fermion field in the NUT-Kerr-Newman black holes in the background of the de Sitter spacetime by using the improved brick-wall method and the membrane model. Here the Euler characteristic of the black holes is over two. The results show that, as the cut-off is properly chosen, the entropy in the black hole satisfies the Bekenstein-Hawking area law.
Phase Transition of the Higher Dimensional Charged Gauss-Bonnet Black Hole in de Sitter Spacetime
International Nuclear Information System (INIS)
We study the phase transition of charged Gauss-Bonnet-de Sitter (GB-dS) black hole. For black holes in de Sitter spacetime, there is not only black hole horizon, but also cosmological horizon. The thermodynamic quantities on both horizons satisfy the first law of the black hole thermodynamics, respectively; moreover, there are additional connections between them. Using the effective temperature approach, we obtained the effective thermodynamic quantities of charged GB-dS black hole. According to Ehrenfest classification, we calculate some response functions and plot their figures, from which one can see that the spacetime undergoes a second-order phase transition at the critical point. It is shown that the critical values of effective temperature and pressure decrease with the increase of the value of GB parameter α
Geometric properties of a 2 D spacetime arising in 4 D black hole physics
Casals, Marc; Nolan, Brien C.
2015-11-01
The Schwarzschild exterior space-time is conformally related to a direct product space-time, M2×S2 , where M2 is a 2 D space-time. This direct product structure arises naturally when considering the wave equation on the Schwarzschild background. Motivated by this, we establish some geometrical results relating to M2 that are useful for black hole physics. We prove that M2 has the rare property of being a causal domain. Consequently, Synge's world function and the Hadamard form for the Green function on this space-time are well defined globally. We calculate the world function and the van Vleck determinant on M2 numerically and point out how these results will be used to establish global properties of Green functions on the Schwarzschild black hole space-time.
Geometric properties of a 2-D space-time arising in 4-D black hole physics
Casals, Marc
2015-01-01
The Schwarzschild exterior space-time is conformally related to a direct product space-time, $\\mathcal{M}_2 \\times S_2$, where $\\mathcal{M}_2$ is a two-dimensional space-time. This direct product structure arises naturally when considering the wave equation on the Schwarzschild background. Motivated by this, we establish some geometrical results relating to $\\mathcal{M}_2$ that are useful for black hole physics. We prove that $\\mathcal{M}_2$ has the rare property of being a causal domain. Consequently, Synge's world function and the Hadamard form for the Green function on this space-time are well-defined globally. We calculate the world function and the van Vleck determinant on $\\mathcal{M}_2$ numerically and point out how these results will be used to establish global properties of Green functions on the Schwarzschild black hole space-time.
A Brief Observational History of the Black-Hole Spacetimes
Directory of Open Access Journals (Sweden)
Wolfgang Kundt
2015-01-01
Full Text Available In this year (2015, black holes (BHs celebrate their 100th birthday, if their birth is taken to be triggered by a handwritten letter from Martin Schwarzschild to Albert Einstein, in connection with his newly found spherically symmetric vacuum solution.
Inspiralling, Non-Precessing, Spinning Black Hole Binary Spacetime via Asymptotic Matching
Ireland, Brennan; Nakano, Hiroyuki; Campanelli, Manuela
2015-01-01
We construct a new global, fully analytic, approximate spacetime which accurately describes the dynamics of non-precessing, spinning black hole binaries during the inspiral phase of the relativistic merger process. This approximate solution of the vacuum Einstein's equations can be obtained by asymptotically matching perturbed Kerr solutions near the two black holes to a post-Newtonian metric valid far from the two black holes. This metric is then matched to a post-Minkowskian metric even farther out in the wave zone. The procedure of asymptotic matching is generalized to be valid on all spatial hypersurfaces, instead of a small group of initial hypersurfaces discussed in previous works. This metric is well suited for long term dynamical simulations of spinning black hole binary spacetimes prior to merger, such as studies of circumbinary gas accretion which requires hundreds of binary orbits.
Inspiralling, spinning, non-precessing binary black hole spacetime via asymptotic matching
Ireland, Brennan; Mundim, Bruno; Nakano, Hiroyuki; Campanelli, Manuela
2016-03-01
We construct and present a new global, fully analytic, approximate spacetime which accurately describes the dynamics of non-precessing, spinning black hole binaries during the inspiral phase of the relativistic merger process. This approximate solution of the vacuum Einstein's equations can be obtained by asymptotically matching perturbed Kerr solutions near the two black holes to a post-Newtonian metric valid far from the two black holes. This metric is then matched to a post-Minkowskian metric even farther out in the wave zone. The procedure of asymptotic matching is generalized to be valid on all spatial hypersurfaces, instead of a small group of initial hypersurfaces discussed in previous works. This metric is well suited for long term dynamical simulations of spinning black hole binary spacetimes prior to merger, such as studies of circumbinary gas accretion which requires hundreds of binary orbits.
Waveform propagation in black hole spacetimes evaluating the quality of numerical solutions
Rezzolla, L; Baumgarte, T W; Cook, G B; Scheel, M A; Shapiro, S L; Teukolsky, S A
1998-01-01
We compute the propagation and scattering of linear gravitational waves off a Schwarzschild black hole using a numerical code which solves a generalization of the Zerilli equation to a three dimensional cartesian coordinate system. Since the solution to this problem is well understood it represents a very good testbed for evaluating our ability to perform three dimensional computations of gravitational waves in spacetimes in which a black hole event horizon is present.
Moving mirrors and black hole evaporation in non-commutative space-times
Casadio, R.; Cox, P. H.; Harms, B.; Micu, O.
2005-01-01
We study the evaporation of black holes in non-commutative space-times. We do this by calculating the correction to the detector's response function for a moving mirror in terms of the noncommutativity parameter $\\Theta$ and then extracting the number density as modified by this parameter. We find that allowing space and time to be non-commutative increases the decay rate of a black hole.
Luminet, Jean-Pierre
1992-09-01
Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.
Fermion Fields in BTZ Black Hole Space-Time and Entanglement Entropy
International Nuclear Information System (INIS)
We study the entanglement entropy of fermion fields in BTZ black hole space-time and calculate prefactor of the leading and subleading terms and logarithmic divergence term of the entropy using the discretized model. The leading term is the standard Bekenstein-Hawking area law and subleading term corresponds to first quantum corrections in black hole entropy. We also investigate the corrections to entanglement entropy for massive fermion fields in BTZ space-time. The mass term does not affect the area law
Mechanics of higher dimensional black holes in asymptotically anti-de Sitter spacetimes
International Nuclear Information System (INIS)
We construct a covariant phase space for the Einstein gravity in dimensions d ≥ 4 with a negative cosmological constant, describing black holes in local equilibrium. Thus, spacetimes under consideration are asymptotically anti-de Sitter and admit an inner boundary representing an isolated horizon. This allows us to derive a first law of black hole mechanics that involves only quantities defined quasi-locally at the horizon, without having to assume that the bulk spacetime is stationary. The first law proposed by Gibbons et al for the Kerr-AdS family follows from a special case of this much more general first law
Fermion Fields in BTZ Black Hole Space-Time and Entanglement Entropy
Directory of Open Access Journals (Sweden)
Dharm Veer Singh
2015-01-01
Full Text Available We study the entanglement entropy of fermion fields in BTZ black hole space-time and calculate prefactor of the leading and subleading terms and logarithmic divergence term of the entropy using the discretized model. The leading term is the standard Bekenstein-Hawking area law and subleading term corresponds to first quantum corrections in black hole entropy. We also investigate the corrections to entanglement entropy for massive fermion fields in BTZ space-time. The mass term does not affect the area law.
Stability of black holes and solitons in Anti-de Sitter space-time
International Nuclear Information System (INIS)
The stability of black holes and solitons in d-dimensional Anti-de Sitter (AdSd) space-time against scalar field condensation is discussed. The resulting solutions are “hairy” black holes and solitons, respectively. In particular, we will discuss static black hole solutions with hyperbolic, flat and spherical horizon topology and emphasize that two different type of instabilities exist depending on whether the scalar field is charged or uncharged, respectively. We will also discuss the influence of Gauss-Bonnet curvature terms. The results have applications within the AdS/CFT correspondence and describe e.g. holographic insulator/conductor/superconductor phase transitions
Thermodynamics of DBI Black Holes in Anti-de Sitter Spacetime
Institute of Scientific and Technical Information of China (English)
JIA Dong-Yan; YUE Rui-Hong; HUANG Shi-Ming
2011-01-01
Through the gauge field theory, we obtain the solution of the DBI-AdS black hole.In the meantime,according to the relations between the action and the grand partition function, we obtain the grand partition function in the DBI-AdS black hole.The temperature and the potential of the DBI-AdS black hole are gained from differential of the grand partition function.With the thermodynamic relations, other thermodynamics are also obtained.The solution and the thermodynamics of the DBI-AdS black hole are turned out that they can reduce to the case of a charged black hole in four-dimensional spacetimes.
Static black holes and strictly static spacetimes in Einstein-Gauss-Bonnet gravity with gauge field
Rogatko, Marek
2014-01-01
We examine strictly static asymptotically flat spacetimes in Einstein-Gauss-Bonnet gravity with U(1) gauge field, revealing that, up to small curvature corrections, confomally flat slices of the spacetime in question are of Minkowski origin. We consider uncharged and charged black hole solutions in the theory, showing that, up to the small curvature limit, they are diffeomorphic to Schwarzschild_Tangherlini or Reissner-Nordstrom solutions, respectively.
Non-conservation of Carter in black hole spacetimes
Grant, Alexander; Flanagan, Éanna É.
2015-08-01
Freely falling point particles in the vicinity of Kerr black holes are subject to a conservation law, that of their Carter constant. We consider the conjecture that this conservation law is a special case of a more general conservation law, valid for arbitrary processes obeying local energy momentum conservation. Under some fairly general assumptions we prove that the conjecture is false: there is no conservation law for conserved stress-energy tensors on the Kerr background that reduces to conservation of Carter for a single point particle.
Black-hole horizons in modified spacetime structures arising from canonical quantum gravity
International Nuclear Information System (INIS)
Several properties of canonical quantum gravity modify spacetime structures, sometimes to the degree that no effective line elements exist to describe the geometry. An analysis of solutions, for instance in the context of black holes, then requires new insights. In this paper, standard definitions of horizons in spherical symmetry are first reformulated canonically, and then evaluated for solutions of equations and constraints modified by inverse-triad corrections of loop quantum gravity. When possible, a spacetime analysis is performed which reveals a mass threshold for black holes and small changes to Hawking radiation. For more general conclusions, canonical perturbation theory is developed to second order to include back-reaction from matter. The results shed light on the questions of whether renormalization of Newton's constant or other modifications of horizon conditions should be taken into account in computations of black-hole entropy in loop quantum gravity.
Spacetime completeness of non-singular black holes in conformal gravity
Bambi, Cosimo; Rachwal, Leslaw
2016-01-01
We explicitly prove that the Weyl conformal symmetry solves the black hole singularity problem, otherwise unavoidable in a generally covariant local or non-local gravitational theory. Moreover, we yield explicit examples of local and non-local theories enjoying Weyl and diffeomorphism symmetry (in short co-covariant theories). Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free spherically symmetric and axi-symmetric exact solutions for black hole spacetimes conformally equivalent to the Schwarzschild or the Kerr spacetime. We first check the absence of divergences in the Kretschmann invariant for the rescaled metrics. Afterwords, we show that the new types of black holes are geodesically complete and linked by a Newman-Janis transformation just as in standard general relativity (based on Einstein-Hilbert action). Furthermore, we argue that no massive or massless particles can reach the former Schwarzschild singularity or touch the former Kerr ring sin...
Towards a cross-correlation approach to strong-field dynamics in Black Hole spacetimes
Jaramillo, J L; Moesta, P; Rezzolla, L
2012-01-01
The qualitative and quantitative understanding of near-horizon gravitational dynamics in the strong-field regime represents a challenge both at a fundamental level and in astrophysical applications. Recent advances in numerical relativity and in the geometric characterization of black hole horizons open new conceptual and technical avenues into the problem. We discuss here a research methodology in which spacetime dynamics is probed through the cross-correlation of geometric quantities constructed on the black hole horizon and on null infinity. These two hypersurfaces respond to evolving gravitational fields in the bulk, providing canonical "test screens" in a "scattering"-like perspective onto spacetime dynamics. More specifically, we adopt a 3+1 Initial Value Problem approach to the construction of generic spacetimes and discuss the role and properties of dynamical trapping horizons as canonical inner "screens" in this context. We apply these ideas and techniques to the study of the recoil dynamics in post-...
International Nuclear Information System (INIS)
In this paper, we study static vacuum solutions of quantum gravity at a fixed Lifshitz point in (2+1) dimensions, and present all the diagonal solutions in closed forms in the infrared limit. The exact solutions represent spacetimes with very rich structures: they can represent generalized BTZ black holes, Lifshitz space-times or Lifshitz solitons, in which the spacetimes are free of any kind of space-time singularities, depending on the choices of the free parameters of the solutions. We also find several classes of exact static non-diagonal solutions, which represent similar space-time structures as those given in the diagonal case. The relevance of these solutions to the non-relativistic Lifshitz-type gauge/gravity duality is discussed
Hawking evaporation time scale of topological black holes in anti-de Sitter spacetime
Ong, Yen Chin
2016-02-01
It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size of order L, the AdS length scale. Our discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on the hyperbolic case, i.e. for black holes with negatively curved horizons.
Hawking evaporation time scale of topological black holes in anti-de Sitter spacetime
Directory of Open Access Journals (Sweden)
Yen Chin Ong
2016-02-01
Full Text Available It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size of order L, the AdS length scale. Our discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on the hyperbolic case, i.e. for black holes with negatively curved horizons.
Hawking Evaporation Time Scale of Topological Black Holes in Anti-de Sitter Spacetime
Ong, Yen Chin
2015-01-01
It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size. Our discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on the hyperbolic case, i.e. for black holes with negatively curved horizons.
Strong field gravitational lensing in the noncommutative black-hole spacetime
Ding, Chikun; Kang, Shuai; Jing, Jiliang
2010-01-01
Adopting the strong field limit approach, we studied the properties of strong field gravitational lensing in the noncommutative black-hole spacetime and obtained the angular position and magnification of the relativistic images. Supposing that the gravitational field of the supermassive central object of the galaxy described by this metric, we estimated the numerical values of the coefficients and observables for gravitational lensing in the strong field limit. Comparing with the Reissner-Norstr\\"{om} black hole, we find that with the increase of parameter $\\vartheta$, the angular position $\\theta_{\\infty}$ decreases more slowly and $r_m$ more quickly, but angular separation $s$ increases more rapidly. This may offer a way to distinguish a noncommutative black hole from a Reissner-Norstr\\"{om} black hole by the astronomical instruments in the future.
A Short Essay on Quantum Black Holes and Underlying Noncommutative Quantized Space-Time
Tanaka, Sho
2015-01-01
In our preceding paper, "Where does Black- Hole Entropy Lie? - Some Remarks on Area-Entropy Law, Holographic Principle and Noncommutative Space-Time" (Eur. Phys. J. Plus (2014) {\\bf 129}: 11), we emphasized the importance of underlying noncommutative geometry or Lorenz-covariant quantized space-time towards ultimate theory of quantum gravity and Planck scale physics. We focused there our attention on the {\\it statistical} and {\\it substantial} understanding of Bekenstein-Hawking's Area-Entropy Law of black holes on the bases of Kinematical Holographic Relation [KHR] which holds in Yang's quantized space-time. [KHR] really plays an important role in our approach in place of the familiar hypothesis, so called Holographic Principle. In the present paper, we find out a unified form of [KHR] applicable to the whole region ranging from macroscopic to microscopic scales of black holes in spatial dimension $ d=3.$ We notice the existence and behavior of two kinds of temperatures of black holes, $T_{H.R.}$ and $T_S,$ ...
Hawking Evaporation Time Scale of Topological Black Holes in Anti-de Sitter Spacetime
Yen Chin Ong
2015-01-01
It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size ...
Flowing along the edge: spinning up black holes in AdS spacetimes with test particles
Rocha, Jorge V
2014-01-01
We investigate the consequences of throwing point particles into odd-dimensional Myers-Perry black holes in asymptotically anti-de Sitter (AdS) backgrounds. We restrict our attention to the case in which the angular momenta of the background geometry are all equal. This process allows us to test the generalization of the weak cosmic censorship conjecture to asymptotically AdS spacetimes in higher dimensions. We find no evidence for overspinning in D = 5, 7, 9 and 11 dimensions. Instead, test particles carrying the maximum possible angular momentum that still fall into an extremal rotating black hole generate a flow along the curve of extremal solutions.
Analytical solutions for geodesics in black hole spacetimes
Hackmann, Eva
2015-01-01
We review the analytical solution methods for the geodesic equations in Kerr-Newman-Taub-NUT-de Sitter spacetimes and its subclasses in terms of elliptic and hyperelliptic functions. A short guide to corresponding literature for general timelike and lightlike motion is also presented.
Holographic Space-time and Black Holes: Mirages As Alternate Reality
Banks, Tom; Kundu, Sandipan; Pedraza, Juan F
2014-01-01
We revisit our investigation of the claim of [1] that old black holes contain a firewall, i.e. an in-falling observer encounters highly excited states at a time much shorter than the light crossing time of the Schwarzschild radius. We used the formalism of Holographic Space-time (HST) where there is no dramatic change in particle physics inside the horizon until a time of order the Schwarzschild radius. We correct our description of the interior of the black hole . HST provides a complete description of the quantum mechanics along any time-like trajectory, even those which fall through the black hole horizon. The latter are described as alternative factorizations of the description of an external observer, turning the mirage of the interior provided by that observer's membrane paradigm on the stretched horizon, into reality.
Simulation of black hole collisions in asymptotically Anti-de Sitter spacetimes.
Bantilan, Hans; Romatschke, Paul
2015-02-27
We present results from the evolution of spacetimes that describe the merger of asymptotically global anti-de Sitter black holes in 5D with an SO(3) symmetry. Prompt scalar field collapse provides us with a mechanism for producing distinct trapped regions on the initial slice, associated with black holes initially at rest. We evolve these black holes towards a merger, and follow the subsequent ring down. The boundary stress tensor of the dual conformal field theory is conformally related to a stress tensor in Minkowski space that inherits an axial symmetry from the bulk SO(3). We compare this boundary stress tensor to its hydrodynamic counterpart with viscous corrections of up to second order, and compare the conformally related stress tensor to ideal hydrodynamic simulations in Minkowski space, initialized at various time slices of the boundary data. Our findings reveal far-from-hydrodynamic behavior at early times, with a transition to ideal hydrodynamics at late times. PMID:25768753
Hidden symmetries and integrability in higher dimensional rotating black hole spacetimes
Energy Technology Data Exchange (ETDEWEB)
Cariglia, M. [Universidade Federal de Ouro Preto, ICEB, Departamento de Fisica. Campus Morro do Cruzeiro, Morro do Cruzeiro, Ouro Preto, MG (Brazil); Krtous, P. [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, Prague (Czech Republic); Kubiznak, D. [Perimeter Institute, 31 Caroline St. N. Waterloo Ontario, N2L 2Y5 (Canada)
2012-07-15
This is a short pedagogical introduction to the subject of Killing-Staeckel and Killing-Yano tensors and their role in the integrability of various types of equations that are of physical interest in curved space-time, the main application being higher dimensional rotating black holes with cosmological constant. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Flathmann, Kai
2015-01-01
In this article we study the geodesic motion of test particles and light in the Einstein-Maxwell-Dilaton-Axion black hole spacetime. We derive the equations of motion and present their solutions in terms of the Weierstra{\\ss} $\\wp$-, $\\sigma$- and $\\zeta$-functions. With the help of parametric diagrams and effective potentials we analyze the geodesic motion and give a list of all possible orbit types.
Critical phenomena of regular black holes in anti-de Sitter space-time
Fan, Zhong-Ying
2016-01-01
In General Relativity coupled to a non-linear electromagnetic field, together with a negative cosmological constant, we obtain the general static spherical symmetric black hole solution with magnetic charges, which is asymptotic to anti-de Sitter (AdS) space-times. In particular, for a degenerate case the solution becomes a Hayward-AdS black hole, which is regular everywhere in the full space-time. The existence of such a regular black hole solution preserves the weak energy condition while the strong energy condition is violated. We then derive the first law and the Smarr formula of the black hole solution. We further discuss its thermodynamic properties and study the critical phenomena in the extended phase space where the cosmological constant is treated as a thermodynamic variable as well as the parameter associated with the non-linear electrodynamics. We obtain many interesting results such as: the Maxwell's equal area law in the $P-V$ (or $S-T$) diagram is violated and consequently the critical point $(...
On Quantum Nature of Black-Hole Spacetime A Possible New Source of Intense Radiation
Ahluwalia, D V
1999-01-01
Atoms and the planets acquire their stability from the quantum mechanical incompatibility of the position and momentum measurements. This incompatibility is expressed by the fundamental commutator [x, p_x]=i hbar, or equivalently, via the Heisenberg's uncertainty principle Delta x Delta p_x sim hbar. A further stability-related phenomenon where the quantum realm plays a dramatic role is the collapse of certain stars into white dwarfs and neutron stars. Here, an intervention of the Pauli exclusion principle, via the fermionic degenerate pressure, stops the gravitational collapse. However, by the neutron-star stage the standard quantum realm runs dry. One is left with the problematic collapse of a black hole. This essay is devoted to a concrete argument on why the black-hole spacetime itself should exhibit a quantum nature. The proposed quantum aspect of spacetime is shown to prevent the general-relativistic dictated problematic collapse. The quantum nature of black-hole spacetime is deciphered from a recent re...
General Relativistic Radiative Transfer Code in Rotating Black Hole Spacetime: {ARTIST}
Takahashi, Rohta; Umemura, Masayuki
2016-10-01
We present a general relativistic radiative transfer code, {ARTIST} (Authentic Radiative Transfer In Space-Time), which is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of {ARTIST} is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole, which was originally explored by Hanni (1977). This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the {ARTIST} turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hot spot problem. All the simulations in the present study are performed in the equatorial plane around a Kerr black hole. The {ARTIST} is the first step to realize the general relativistic radiation hydrodynamics.
Michael, Fredrick
2010-01-01
Recently we have discussed the generalized parametrized Klein-Gordon equation for curved spacetime. We have also discussed its derivation from several approaches, the direct Feynman parametrization, the state function entropy or equivalently the information theory approach, and the stochastic differential equation approach. We have even suggested a generalization of the statistics of the entropy to the generalized entropies and derived the particular nonextensive statistics parametrized Klein-Gordon equation, and discussed its nonlinear FPE replacement of the complicated Gibbs-Boltzmann statistics entropy derived analog with complicated nonlinear potential or drift and diffusion coefficients. In this article we apply these previously derived results to the quantum transport in abruptly coupled curved space-time heterostructures, applied here specifically to Black-Hole event horizon coupling to normal curved space-time. We derive the coupling self energy, and the Garcia-Molliner surface Green's functions from ...
Are spacetime horizons higher dimensional sources of energy fields? (The black hole case)
Mbonye, M R
2001-01-01
We explore the possibility that spacetime horizons in 4D general relativity can be treated as manifestations of higher dimensions that induce fields on our 4D spacetime. In this paper we discuss the black hole event horizon, as an example (we leave the cosmological case for future discussion). Starting off from the field equations of gravity in 5D and some conditions on the metric we construct a spacetime whose imbedding is a 4D generalization of the Schwarzchild metric. The external region of the imbedded spacetime is found to contain two distinct fields. We discuss the properties of the fields and the potential implications. Taken as they are, the results suggest that the collapse of matter to form a horizon may have non-local consequences on the geomerty of spacetime. In general, the use of horizon-confined mass as a coordinate suggests three potential features of our universe. The first is that the observed 4D spacetime curvature and ordinary matter fields can be identified as hybrid features of 5D origin...
Owen, Robert; Brink, Jeandrew; Chen, Yanbei; Kaplan, Jeffrey D; Lovelace, Geoffrey; Matthews, Keith D; Nichols, David A; Scheel, Mark A; Zhang, Fan; Zimmerman, Aaron; Thorne, Kip S
2011-04-15
When one splits spacetime into space plus time, the spacetime curvature (Weyl tensor) gets split into an "electric" part E(jk) that describes tidal gravity and a "magnetic" part B(jk) that describes differential dragging of inertial frames. We introduce tools for visualizing B(jk) (frame-drag vortex lines, their vorticity, and vortexes) and E(jk) (tidal tendex lines, their tendicity, and tendexes) and also visualizations of a black-hole horizon's (scalar) vorticity and tendicity. We use these tools to elucidate the nonlinear dynamics of curved spacetime in merging black-hole binaries. PMID:21568540
Koley, Ratna; Pal, Supratik; SenGupta, Soumitra
2009-01-01
Thermodynamic properties of Schwarzschild-Anti de-Sitter (Sch-AdS) and Reissner-Nordstr\\"om-Anti de-Sitter (RN-AdS) blackholes in 3+1 dimensional spacetime are studied critically with special reference to the warped braneworld black holes with non-vanishing cosmological constant on the brane. Explicit dependence of the thermodynamic variables on the parameters of the braneworld model such as the induced three brane cosmological constant as well as the bulk cosmological constant have been determined. Hawking-Page phase transition has been discussed for both Sch-AdS and RN-AdS black holes. At the phase transition point it is shown that the parameters mass, charge and cosmological constant get correlated by an inequality relation which originates from the background warped geometry model.
Using clocks to determine the entropy of black holes and other space-time singularities
Ojo, A
2005-01-01
Space-time singularities, viz. Big bang, Big crunch and black holes have been shown to follow from the singularity theorems of General relativity. Whether the entropy at such infinite proper-time objects can be other than zero has also been a longstanding subject of research. Currently the property most commonly chosen to calculate their entropy is a multiple of the surface area of the event horizon and usually gives non-zero entropy values. Though popular, this choice still leaves some substantial questions unanswered hence the motivation for alternative methods for entropy derivation. Here, we use a different property, the proper-time at singularities based on the General relativity predicted behavior of clocks, to derive their entropy. We find, firstly within statistical and thermodynamic principles, secondly when this property is taken into account in the Bekenstein-Hawking formula and thirdly illustrating with a natural analogue, that the entropy of black holes and all other gravitational singularities c...
Barnich, Glenn; Troessaert, Cédric; Tempo, David; Troncoso, Ricardo
2016-04-01
The theory of massive gravity proposed by Bergshoeff, Hohm and Townsend is considered in the special case of the pure irreducibly fourth-order quadratic Lagrangian. It is shown that the asymptotically locally flat black holes of this theory can be consistently deformed to "black flowers" that are no longer spherically symmetric. Moreover, we construct radiating spacetimes settling down to these black flowers in the far future. The generic case can be shown to fit within a relaxed set of asymptotic conditions as compared to the ones of general relativity at null infinity, while the asymptotic symmetries remain the same. Conserved charges as surface integrals at null infinity are constructed following a covariant approach, and their algebra represents BMS3 , but without central extensions. For solutions possessing an event horizon, we derive the first law of thermodynamics from these surface integrals.
A rotating universe outside a Schwarzschild black hole where spacetime itself non-uniformly rotates
Saw, Vee-Liem
2014-01-01
We study a non-uniformly rotating universe outside a Schwarzschild black hole by generating a time-dependent manifold of revolution around a straight line. In this simple model where layers of spherical shells of the universe non-uniformly rotate, the Einstein field equations require this phenomenon to be caused by a static mass-energy distribution with time-dependent $T^{\\phi\\phi}$ (quadratic with time) and $T^{r\\phi}=T^{\\phi r}$ (linear with time). This indicates that a time-dependent stress along a certain direction results in a spacetime shift in that direction. For this model however, such material violates the null energy condition. Incidentally, the various coordinate systems describing the Schwarzschild solution can be viewed as arising from the freedom in parametrising the straight line and the radial function in the general method of constructing spacetime by generating manifolds of revolution around a given curve.
Black holes in anti-de Sitter: quasinormal modes, tails and tales of flat spacetime
Cardoso, Vitor
2015-01-01
Black holes in asymptotically anti-de Sitter (AdS) spacetimes have been the subject of intense scrutiny, including detailed frequency-domain analysis and full nonlinear evolutions. Remarkably, studies of linearized perturbations in the time-domain are scarce or non-existing. We close this gap by evolving linearized scalar wavepackets in the background of rotating BHs in AdS spacetimes. Our results show a number of interesting features. Small BHs in AdS behave as asymptotically flat BHs for early/intermediate times, displaying the same ringdown modes and power-law tails. As the field bounces back and forth between the horizon and the timelike boundary it "thermalizes" and the modes of AdS settle in. Finally, we have indications that wavepackets in the vicinity of fastly spinning BHs grow exponentially in time, signalling a superradiant instability of the geometry previously reported through a frequency-domain analysis.
Witek, Helvi; Gualtieri, Leonardo; Cardoso, Vitor; Herdeiro, Carlos; Nerozzi, Andrea; Sperhake, Ulrich
2010-01-01
Black objects in higher dimensional space-times have a remarkably richer structure than their four dimensional counterparts. They appear in a variety of configurations (e.g. black holes, black branes, black rings, black Saturns), and display complex stability phase diagrams. They might also play a key role in high energy physics: for energies above the fundamental Planck scale, gravity is the dominant interaction which, together with the hoop-conjecture, implies that the trans-Planckian scattering of point particles should be well described by black hole scattering. Higher dimensional scenarios with a fundamental Planck scale of the order of TeV predict, therefore, black hole production at the LHC, as well as in future colliders with yet higher energies. In this setting, accurate predictions for the production cross-section and energy loss (through gravitational radiation) in the formation of black holes in parton-parton collisions is crucial for accurate phenomenological modelling in Monte Carlo event genera...
Exact Black Hole Formation in Asymptotically (A)dS and Flat Spacetimes
Zhang, Xuefeng
2014-01-01
We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supegravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on values of the cosmological constant parameter $\\Lambda$ in the potential. As the advanced time $u$ increases, the spacetime reaches equilibrium in an exponential fashion, i.e., $e^{-u/u_0}$ with $u_0\\sim1/(\\alpha^4 M_0)^{1/3}$, where $M_0$ is the mass of the final black hole and $\\alpha$ is the second parameter in the potential. Similar to Vaidya solution, at $u=0$, the spacetime can be matched to an (A)dS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution gives rise to an (A)dS generalization of Roberts solution, thereby making it relevant to cosmic censorship. Our results provide a new model for studying the formation of r...
Circular geodesic of Bardeen and Ayon-Beato-Garcia regular black-hole and no-horizon spacetimes
Stuchlík, Zdeněk; Schee, Jan
2015-12-01
In this paper, we study circular geodesic motion of test particles and photons in the Bardeen and Ayon-Beato-Garcia (ABG) geometry describing spherically symmetric regular black-hole or no-horizon spacetimes. While the Bardeen geometry is not exact solution of Einstein's equations, the ABG spacetime is related to self-gravitating charged sources governed by Einstein's gravity and nonlinear electrodynamics. They both are characterized by the mass parameter m and the charge parameter g. We demonstrate that in similarity to the Reissner-Nordstrom (RN) naked singularity spacetimes an antigravity static sphere should exist in all the no-horizon Bardeen and ABG solutions that can be surrounded by a Keplerian accretion disc. However, contrary to the RN naked singularity spacetimes, the ABG no-horizon spacetimes with parameter g/m > 2 can contain also an additional inner Keplerian disc hidden under the static antigravity sphere. Properties of the geodesic structure are reflected by simple observationally relevant optical phenomena. We give silhouette of the regular black-hole and no-horizon spacetimes, and profiled spectral lines generated by Keplerian rings radiating at a fixed frequency and located in strong gravity region at or nearby the marginally stable circular geodesics. We demonstrate that the profiled spectral lines related to the regular black-holes are qualitatively similar to those of the Schwarzschild black-holes, giving only small quantitative differences. On the other hand, the regular no-horizon spacetimes give clear qualitative signatures of their presence while compared to the Schwarschild spacetimes. Moreover, it is possible to distinguish the Bardeen and ABG no-horizon spacetimes, if the inclination angle to the observer is known.
Exact black hole formation in asymptotically (AdS and flat spacetimes
Directory of Open Access Journals (Sweden)
Xuefeng Zhang
2014-09-01
Full Text Available We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supergravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a static scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on the value of the cosmological constant parameter Λ in the potential. As the advanced time u increases, the metric approaches the static limit in an exponential fashion, i.e., e−u/u0 with u0∼1/(α4M01/3, where M0 is the mass of the final black hole and α is the second parameter in the potential. Similarly to the Vaidya solution, at u=0, the spacetime can be matched to an (AdS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution with α=0 gives rise to an (AdS generalization of the Roberts solution. Our results provide a new model for investigating formation of real life black holes with Λ≥0. For Λ<0, it can be instead used to study non-equilibrium thermalization of certain strongly-coupled field theory.
On uniform decay of the Maxwell fields on black hole space-times
Ghanem, Sari
2014-01-01
This is the second in a series of papers in which we take a systematic study of gauge field theories such as the Maxwell equations and the Yang-Mills equations, on curved space-times. In this paper, we study the Maxwell equations in the domain of outer-communication of the Schwarzschild black hole. We show that if we assume that the middle components of the non-stationary solutions of the Maxwell equations verify a Morawetz type estimate supported around the trapped surface, then we can prove uniform decay properties for components of the Maxwell fields in the entire exterior of the Schwarzschild black hole, including the event horizon, by making only use of Sobolev inequalities combined with energy estimates using the Maxwell equations directly. This proof is entirely gauge independent, and does not pass through the scalar wave equation on the Schwarzschild black hole, and does not need to separate the middle components for the Maxwell fields. However, proving a Morawetz estimate directly using the Maxwell e...
Das, S R; Sumit R Das; Sudipta Mukherji
1994-01-01
We study black hole formation in a model of two dimensional dilaton gravity and $24$ massless scalar fields with a boundary. We find the most general boundary condition consistent with perfect reflection of matter and the constraints. We show that in the semiclassical approximation and for the generic value of a parameter which characterizes the boundary conditions, the boundary starts receeding to infinity at the speed of light whenever the {\\it total} energy of the incoming matter flux exceeds a certain critical value. This is also the critical energy which marks the onset of black hole formation. We then compute the quantum fluctuations of the boundary and of the rescaled scalar curvature and show that as soon as the incoming energy exceeds this critical value, an asymptotic observer using normal time resolutions will always measure large quantum fluctuations of space-time near the {\\it horizon}, even though the freely falling observer does not. This is an aspect of black hole complementarity relating dire...
Exact black hole formation in asymptotically (A)dS and flat spacetimes
International Nuclear Information System (INIS)
We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supergravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a static scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on the value of the cosmological constant parameter Λ in the potential. As the advanced time u increases, the metric approaches the static limit in an exponential fashion, i.e., e−u/u0 with u0∼1/(α4M0)1/3, where M0 is the mass of the final black hole and α is the second parameter in the potential. Similarly to the Vaidya solution, at u=0, the spacetime can be matched to an (A)dS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution with α=0 gives rise to an (A)dS generalization of the Roberts solution. Our results provide a new model for investigating formation of real life black holes with Λ≥0. For Λ<0, it can be instead used to study non-equilibrium thermalization of certain strongly-coupled field theory
Black hole evaporation in a spherically symmetric non-commutative spacetime
International Nuclear Information System (INIS)
Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat spacetime and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in non-commutative geometry have shown that, in general relativity, the effects of non-commutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. Relying on the recently obtained non-commutativity effect on a static, spherically symmetric metric, we have considered from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes has been shown to be modified by a multiplicative factor F depending on a constant non-commutativity parameter and on the upper limit R of the radial coordinate. Limiting forms of F have been derived which are compatible with the adiabatic approximation
Exact black hole formation in asymptotically (A)dS and flat spacetimes
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xuefeng, E-mail: zhxf@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China); Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Lü, H., E-mail: mrhonglu@gmail.com [Department of Physics, Beijing Normal University, Beijing 100875 (China)
2014-09-07
We consider four-dimensional Einstein gravity minimally coupled to a dilaton scalar field with a supergravity-inspired scalar potential. We obtain an exact time-dependent spherically symmetric solution describing gravitational collapse to a static scalar-hairy black hole. The solution can be asymptotically AdS, flat or dS depending on the value of the cosmological constant parameter Λ in the potential. As the advanced time u increases, the metric approaches the static limit in an exponential fashion, i.e., e{sup −u/u{sub 0}} with u{sub 0}∼1/(α{sup 4}M{sub 0}){sup 1/3}, where M{sub 0} is the mass of the final black hole and α is the second parameter in the potential. Similarly to the Vaidya solution, at u=0, the spacetime can be matched to an (A)dS or flat vacuum except that at the origin a naked singularity may occur. Moreover, a limiting case of our solution with α=0 gives rise to an (A)dS generalization of the Roberts solution. Our results provide a new model for investigating formation of real life black holes with Λ≥0. For Λ<0, it can be instead used to study non-equilibrium thermalization of certain strongly-coupled field theory.
Black hole evaporation in a spherically symmetric non-commutative space-time
Di Grezia, Elisabetta; Miele, Gennaro
2007-01-01
Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat space-time and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in noncommutative geometry have shown that, in general relativity, the effects of non-commutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. Relying on the recently obtained non-commutativity effect on a static, spherically symmetric metric, we have considered from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes has been shown to be modified by a multiplicative factor F depending o...
Black hole evaporation in a spherically symmetric non-commutative spacetime
Energy Technology Data Exchange (ETDEWEB)
Di Grezia, Elisabetta [Facolta di Ingegneria, Universita Statale di Bergamo, Viale Marconi 5, 24044 Dalmine (Bergamo) (Italy); Esposito, Giampiero; Miele, Gennaro [INFN, Sezione di Napoli, Complesso Universitario di Monte S Angelo, Via Cintia, Edificio 6, 80126 Napoli (Italy)
2008-04-25
Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat spacetime and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in non-commutative geometry have shown that, in general relativity, the effects of non-commutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. Relying on the recently obtained non-commutativity effect on a static, spherically symmetric metric, we have considered from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes has been shown to be modified by a multiplicative factor F depending on a constant non-commutativity parameter and on the upper limit R of the radial coordinate. Limiting forms of F have been derived which are compatible with the adiabatic approximation.
Integrability in conformally coupled gravity: Taub-NUT spacetimes and rotating black holes
Bardoux, Yannis; Charmousis, Christos
2013-01-01
We consider four dimensional stationary and axially symmetric spacetimes for conformally coupled scalar-tensor theories. We show that, in analogy to the Lewis-Papapetrou problem in General Relativity (GR), the theory at hand can be recast in an analogous integrable form. We give the relevant rod formalism, introduced by Weyl for vacuum GR, explicitly giving the rod structure of the black hole of Bocharova et al. and Bekenstein (BBMB), in complete analogy to the Schwarzschild solution. The additional scalar field is shown to play the role of an extra Weyl potential. We then employ the Ernst method as a concrete solution generating example to obtain the Taub-NUT version of the BBMB hairy black hole, with or without a cosmological constant. We show that the anti-de Sitter hyperbolic version of this solution is free of closed timelike curves that plague usual Taub-NUT metrics, and thus consists of a rotating, asymptotically locally anti-de Sitter black hole. This stationary solution has no curvature singularities...
Solitons and hairy black holes in Einstein-non-Abelian-Proca theory in anti-de Sitter space-time
Ponglertsakul, Supakchai
2016-01-01
We present new soliton and hairy black hole solutions of Einstein-non-Abelian-Proca theory in asymptotically anti-de Sitter space-time with gauge group ${\\mathfrak {su}}(2)$. For static, spherically symmetric configurations, we show that the gauge field must be purely magnetic, and solve the resulting field equations numerically. The equilibrium gauge field is described by a single function $\\omega (r)$, which must have at least one zero. The solitons and hairy black holes share many properties with the corresponding solutions in asymptotically flat space-time. In particular, all the solutions we study are unstable under linear, spherically symmetric, perturbations of the metric and gauge field.
Chrúsciel, P T
2002-01-01
This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usual one for gravity, and leads to the one associated with the Unruh metric in the case of Euler equations. We review the global conditions which have been used in the Scri-based definition of a black hole and point out the deficiencies of the Scri approach. Various results on the structure of horizons and apparent horizons are presented, and a new proof of semi-convexity of horizons based on a variational principle is given. Recent results on the classification of stationary singularity-free vacuum solutions are reviewed. ...
Rahaman, Farook; Bhar, Piyali; Sharma, Ranjan; Tiwari, Rishi Kumar
2015-03-01
We report a -D charged black hole solution in an anti-de Sitter space inspired by noncommutative geometry. In this construction, the black hole exhibits two horizons, which turn into a single horizon in the extreme case. We investigate the impacts of electromagnetic field on the location of the event horizon, mass and thermodynamic properties such as Hawking temperature, entropy, and heat capacity of the black hole. The geodesics of the charged black hole are also analyzed.
Wang, Jia; Meng, Xin-he
2014-01-01
We present a new universal property of entropy, that is the entropy sum relation of black holes in four dimensional (anti-)de-Sitter asymptotical back- ground. They depend only on the cosmological constant with the necessary e?ect of the un-physical virtual horizon included in the spacetime where only the cosmological constant, mass of black hole, rotation parameter and Maxwell ?eld exist. When there is more extra matter ?eld in the spacetime, one will ?nd the entropy sum is also dependent of the strength of these extra matter ?eld. For both cases, we conclude that the entropy sum does not depend on the con- versed charges M, Q and J, while it does depend on the property of background spacetime. We will mainly test the entropy sum relation in static, stationary black hole and some black hole with extra matter source (scalar hair and higher curvature) in the asymptotical (anti-)de-sitter spacetime background. Besides, we point out a newly found counter example of the mass independence of the "entropy product" ...
On black holes, space-time foam and the nature of time in string theory
International Nuclear Information System (INIS)
It is shown that the light particles in string theory obey an effective quantum mechanics modified by the inclusion of a quantum-gravitational friction term, induced by unavoidable couplings to unobserved massive string states in the space-time foam. This term is related to the W-symmetries that couple light particles to massive solitonic string states in black hole backgrounds, and has a formal similarity to simple models of environmental quantum friction. All properties follow from a definition of target-time as a Renormalization Group scale parameter and the associated (generic) properties of the renormalization group flow. Some experimental consequences, concerning CPT violation detectable in systems that are generally considered as sensitive probes of quantum mechanics (e.g. neutral kaons), are briefly discussed. (author). 52 refs., 1 fig
Static Self-Forces in a Five-Dimensional Black Hole Spacetime
Taylor, Peter
2015-01-01
We obtain the electric field and scalar field for a static point charge in closed form in the 5D Schwarzschild-Tangherlini black hole spacetime. We then compute the static self-force in each of these cases by assuming that the appropriate singular field is a 4D Hadamard Green's function on the constant time Riemannian slice. It is well known that the Hadamard Green's function involves an arbitrary regular biscalar $W_{0}(x,x')$, whose coincidence limit $w(x)$ appears in the expression for the self-force. We develop an axiomatic approach to reduce this arbitrary function to a single arbitrary dimensionless coefficient. We show that in the context of this approach to regularization, the self-force does not depend on any undetermined length-scale and need not depend on the internal structure of the charge.
Influence of Lorentz violation on Dirac quasinormal modes in the Schwarzschild black hole spacetime
Chen, S; Su, R; Chen, Songbai; Wang, Bin; Su, Rukeng
2006-01-01
Using the third-order WKB approximation and monodromy methods, we investigate the influence of Lorentz violating coefficient $b$ (associated with a special axial-vector $b_{\\mu}$ field) on Dirac quasinormal modes in the Schwarzschild black hole spacetime. At fundamental overtone, the real part decreases linearly as the parameter $b$ increases. But the variation of the imaginary part with $b$ becomes more complex. For the larger multiple moment $k$, the magnitude of imaginary part increases with the increase of $b$, which means that presence of Lorentz violation makes Dirac field damps more rapidly. At high overtones, it is found that the real part of high-damped quasinormal frequency does not tend to zero, which is quite a different from the symptotic Dirac quasinormal modes without Lorentz violation.
Symmetry operators and decoupled equations for linear fields on black hole spacetimes
Araneda, Bernardo
2016-01-01
In the class of vacuum Petrov type D spacetimes with cosmological constant, which includes the Kerr-(A)dS black hole as a particular case, we find a set of four-dimensional operators that, when composed {\\em off shell} with the Dirac, Maxwell and linearized gravity equations, give a system of equations for spin weighted scalars associated to the linear fields, that decouple on shell. Using these operator relations we give compact reconstruction formulae for solutions of the original spinor and tensor field equations in terms of solutions of the decoupled scalar equations. We also analyze the role of Killing spinors and Killing-Yano tensors in the spin weight zero equations and, in the case of spherical symmetry, we compare our four-dimensional formulation with the standard $2+2$ decomposition and particularize to the Schwarzschild-(A)dS black hole. Our results uncovers a pattern that generalizes a number of previous results on Teukolsky-like equations and Debye potentials for higher spin fields.
Circular geodesics of Bardeen and Ayon-Beato-Garcia regular black-hole and no-horizon spacetimes
Stuchlik, Zdenek
2015-01-01
We study circular geodesic motion of test particles and photons in the Bardeen and Ayon-Beato-Garcia (ABG) geometry describing spherically symmetric regular black-hole or no-horizon spacetimes. While the Bardeen geometry is not exact solution of Einstein's equations, the ABG spacetime is related to self-gravitating charged sources governed by Einstein's gravity and non-linear electrodynamics. They both are characterized by the mass parameter $m$ and the charge parameter $g$. We demonstrate that in similarity to the Reissner-Nordstrom (RN) naked singularity spacetimes an antigravity static sphere should exist in all the no-horizon Bardeen and ABG solutions that can be sorrounded by a Keplerian accretion disc. However, contrary to the RN naked singularity spacetimes, the ABG no-horizon spacetimes with parameter $g/m > 2$ can contain also an additional inner Keplerian disc hidden under the static antigravity sphere. Properties of the geodesic structure are reflected by simple observationally relevant optical phe...
Weak field black hole formation in asymptotically AdS spacetimes
International Nuclear Information System (INIS)
We use the AdS/CFT correspondence to study the thermalization of a strongly coupled conformal field theory that is forced out of its vacuum by a source that couples to a marginal operator. The source is taken to be of small amplitude and finite duration, but is otherwise an arbitrary function of time. When the field theory lives on Rd-1,1, the source sets up a translationally invariant wave in the dual gravitational description. This wave propagates radially inwards in AdSd+1 space and collapses to form a black brane. Outside its horizon the bulk spacetime for this collapse process may systematically be constructed in an expansion in the amplitude of the source function, and takes the Vaidya form at leading order in the source amplitude. This solution is dual to a remarkably rapid and intriguingly scale dependent thermalization process in the field theory. When the field theory lives on a sphere the resultant wave either slowly scatters into a thermal gas (dual to a glueball type phase in the boundary theory) or rapidly collapses into a black hole (dual to a plasma type phase in the field theory) depending on the time scale and amplitude of the source function. The transition between these two behaviors is sharp and can be tuned to the Choptuik scaling solution in Rd,1.
International Nuclear Information System (INIS)
We study the effect of ultrahigh energy collisions of two particles with different energies near the horizon of a 2+1 dimensional BTZ black hole (BSW effect). We find that the particle with the critical angular momentum could exist inside the outer horizon of the BTZ black hole regardless of the particle energy. Therefore, for the nonextremal BTZ black hole, the BSW process is possible on the inner horizon with the fine tuning of parameters which are characterized by the motion of particle, while, for the extremal BTZ black hole, the particle with the critical angular momentum could only exist on the degenerated horizon, and the BSW process could also happen there
Instability of Charged Gauss-Bonnet Black Hole in de Sitter Spacetime at Large $D$
Chen, Bin
2016-01-01
We study the stabilities of (A)dS charged Gauss-Bonnet(GB) black holes in the large $D$ dimensions. After integrating the equation of motion with respect to the radial direction, we obtain the effective equations at large $D$ to describe the nonlinear dynamical deformations of the black hole. From the perturbation analysis of the effective equations, we get the analytic expressions of the frequencies for the quasinormal modes of scalar type. Furthermore we show that the charged GB black hole becomes unstable only if the cosmological constant is positive, otherwise the black hole is always stable. At the onset of instabilities there is a non-trivial static zero-mode perturbation, which suggests the existence of a new non-spherical symmetric solution branch of static dS charged GB black holes. We construct the non-spherical symmetric static solution of the large $D$ effective equations explicitly.
Geodesic Motion in the Spacetime Of a SU(2)-Colored (A)dS Black Hole in Conformal Gravity
Hoseini, Bahareh; Soroushfar, Saheb
2016-01-01
In this paper we are interested to study the geodesic motion in the spacetime of a SU(2)-colored (A)dS black hole solving in conformal gravity. Using Weierstrass elliptic and Kleinian {\\sigma} hyperelliptic functions, we derive the analytical solutions for the equation of motion of test particles and light rays. Also, we classify the possible orbits according to the particle's energy and angular momentum.
Institute of Scientific and Technical Information of China (English)
Li Hui-Ling
2011-01-01
This paper is devoted to the investigation the fermion tunneling radiation of squashed black holes in the Godel universe and charged Kaluza-Klein space-time. For black holes with different dimensions, establishing a set of appropriate matrices γμ for the general covariant Dirac equation plays an important role in the semi-classical tunneling method. By constructing two sets of γμ matrices, we have successfully derived the tunneling probability and Hawking temperature of the black holes.
Andersson, N
2000-01-01
This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.
2016-01-01
A new technique is used to study a family of time-dependent null horizons, called “Evolving Null Horizons” (ENHs), of generalized Robertson-Walker (GRW) space-time (M¯,g¯) such that the metric g¯ satisfies a kinematic condition. This work is different from our early papers on the same issue where we used (1 + n)-splitting space-time but only some special subcases of GRW space-time have this formalism. Also, in contrast to previous work, we have proved that each member of ENHs is totally umbilical in (M¯,g¯). Finally, we show that there exists an ENH which is always a null horizon evolving into a black hole event horizon and suggest some open problems. PMID:27722202
Directory of Open Access Journals (Sweden)
Jie Yang
2014-01-01
Full Text Available We study the effect of ultrahigh energy collisions of two particles with different energies near the horizon of a 2+1 dimensional BTZ black hole (BSW effect. We find that the particle with the critical angular momentum could exist inside the outer horizon of the BTZ black hole regardless of the particle energy. Therefore, for the nonextremal BTZ black hole, the BSW process is possible on the inner horizon with the fine tuning of parameters which are characterized by the motion of particle, while, for the extremal BTZ black hole, the particle with the critical angular momentum could only exist on the degenerated horizon, and the BSW process could also happen there.
Institute of Scientific and Technical Information of China (English)
WANG Shuang; WU Shuang-Qing; XIE Fei; DAN Lin
2006-01-01
@@ We investigate the first law of thermodynamics in the case of the (2 + 1)-dimensional Banados-Teitelboim-Zanelli black holes and Kerr-de Sitter spacetimes. In particular, we focus on the integral mass formulas. It is found that by assuming the cosmological constant as a variable state parameter, both the differential and integral mass formulas of the first law of black hole thermodynamics in the asymptotic flat spacetimes can be directly extended to those of rotating black holes in anti-de Sitter and de Sitter backgrounds. It should be pointed that these formulae come into existence in any dimensions.
Arbona, A; Carot, J; Mas, L; Massó, J; Stela, J
1998-01-01
Initial data corresponding to spacetimes containing black holes are considered in the time symmetric case. The solutions are obtained by matching across the apparent horizon different, conformally flat, spatial metrics. The exterior metric is the vacuum solution obtained by the well known conformal imaging method. The interior metric for every black hole is regular everywhere and corresponds to a positive energy density. The resulting matched solutions cover then the whole initial (Cauchy) hypersurface, without any singularity, and can be useful for numerical applications. The simpler cases of one black hole (Schwarzschild data) or two identical black holes (Misner data) are explicitly solved. A procedure for extending this construction to the multiple black hole case is also given, and it is shown to work for all time symmetric vacuum solutions obtained by the conformal imaging method. The numerical evolution of one such 'stuffed' black hole is compared with that of a pure vacuum or 'plain' black hole in the...
Institute of Scientific and Technical Information of China (English)
高长军; 沈有根
2002-01-01
We present the classical solution of Lagrange equations for the Reissner-Nordstrom black hole with a global monopole in the background of de Sitter space-time. Then we obtain the wavefunction of the space-time by solving the Wheeler-De Witt equation. De Broglie-Bohm interpretation applied to the wavefunction gives the quantum solution of the space-time. Finally, the quantum effect on Hawking radiation is studied.
Begelman, Mitchell C
2003-06-20
Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity. PMID:12817138
Black Holes in Higher Dimensions
International Nuclear Information System (INIS)
In four space-time dimensions black holes of Einstein-Maxwell theory satisfy a number of theorems. In more than four space-time dimensions, however, some of the properties of black holes can change. In particular, uniqueness of black holes no longer holds. In five and more dimensions black rings arise. Thus in a certain region of the phase diagram there are three black objects with the same global charges present. Here we discuss properties of higher-dimensional vacuum and charged black holes, which possess a spherical horizon topology, and of vacuum and charged black rings, which have a ringlike horizon topology
Dynamical excision boundaries in spectral evolutions of binary black hole spacetimes
International Nuclear Information System (INIS)
Simulations of binary black hole systems using the Spectral Einstein Code (SpEC) are done on a computational domain that excises the regions inside the black holes. It is imperative that the excision boundaries are outflow boundaries with respect to the hyperbolic evolution equations used in the simulation. We employ a time-dependent mapping between the fixed computational frame and the inertial frame through which the black holes move. The time-dependent parameters of the mapping are adjusted throughout the simulation by a feedback control system in order to follow the motion of the black holes, to adjust the shape and size of the excision surfaces so that they remain outflow boundaries, and to prevent large distortions of the grid. We describe in detail the mappings and control systems that we use. We show how these techniques have been essential in the evolution of binary black hole systems with extreme configurations, such as large spin magnitudes and high mass ratios, especially during the merger, when apparent horizons are highly distorted and the computational domain becomes compressed. The techniques introduced here may be useful in other applications of partial differential equations that involve time-dependent mappings. (paper)
Hod, Shahar
2016-10-01
We determine the characteristic timescales associated with the linearized relaxation dynamics of the composed Reissner-Nordström-black-hole-charged-massive-scalar-field system. To that end, the quasinormal resonant frequencies {ωn(μ , q , M , Q) }n = 0 n = ∞ which characterize the dynamics of a charged scalar field of mass μ and charge coupling constant q in the charged Reissner-Nordström black-hole spacetime of mass M and electric charge Q are determined analytically in the eikonal regime 1 ≪ Mμ black-hole electric charge Q / M, the imaginary part of the resonant oscillation frequency is a monotonically decreasing function of the dimensionless ratio μ / q. In particular, it is shown that the quasinormal resonance spectrum is characterized by the asymptotic behavior ℑ ω → 0 in the limiting case Mμ → qQ. This intriguing finding implies that the composed Reissner-Nordström-black-hole-charged-massive-scalar-field system is characterized by extremely long relaxation times τrelax ≡ 1 / ℑ ω → ∞ in the Mμ / qQ →1- limit.
Directory of Open Access Journals (Sweden)
Shahar Hod
2016-10-01
Full Text Available We determine the characteristic timescales associated with the linearized relaxation dynamics of the composed Reissner–Nordström-black-hole-charged-massive-scalar-field system. To that end, the quasinormal resonant frequencies {ωn(μ,q,M,Q}n=0n=∞ which characterize the dynamics of a charged scalar field of mass μ and charge coupling constant q in the charged Reissner–Nordström black-hole spacetime of mass M and electric charge Q are determined analytically in the eikonal regime 1≪Mμ
International Nuclear Information System (INIS)
In this paper, we use the modified Hod's treatment and the Kunstatter's method to study the horizon area spectrum and entropy spectrum in Gauss—Bonnet de-Sitter space-time, which is regarded as the natural generalization of Einstein gravity by including higher derivative correction terms to the original Einstein—Hilbert action. The horizon areas have some properties that are very different from the vacuum solutions obtained from the frame of Einstein gravity. With the new physical interpretation of quasinormal modes, the area/entropy spectrum for the event horizon for near-extremal Gauss—Bonnet de Sitter black holes are obtained. Meanwhile, we also extend the discussion of area/entropy quantization to the non-extremal black holes solutions. (general)
Warped products and black holes
International Nuclear Information System (INIS)
We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes
Warped products and black holes
Hong, S T
2005-01-01
We apply the warped product spacetime scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstr\\"om-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes.
Local free-fall temperature of modified Schwarzschild black hole in rainbow spacetime
Kim, Yong-Wan; Park, Young-Jai
2016-06-01
We obtain a (5+1)-dimensional global flat embedding of modified Schwarzschild black hole in rainbow gravity. We show that local free-fall temperature in rainbow gravity, which depends on different energy ω of a test particle, is finite at the event horizon for a freely falling observer, while local temperature is divergent at the event horizon for a fiducial observer. Moreover, these temperatures in rainbow gravity satisfy similar relations to those of the Schwarzschild black hole except the overall factor g(ω), which plays a key role of rainbow functions in this embedding approach.
Spacetime Junctions and the Collapse to Black Holes in Higher Dimensions
Directory of Open Access Journals (Sweden)
Filipe C. Mena
2012-01-01
Full Text Available We review recent results about the modelling of gravitational collapse to black holes in higher dimensions. The models are constructed through the junction of two exact solutions of the Einstein field equations: an interior collapsing fluid solution and a vacuum exterior solution. The vacuum exterior solutions are either static or containing gravitational waves. We then review the global geometrical properties of the matched solutions which, besides black holes, may include the existence of naked singularities and wormholes. In the case of radiating exteriors, we show that the data at the boundary can be chosen to be, in some sense, arbitrarily close to the data for the Schwarzschild-Tangherlini solution.
Wang, Mingzhi; Jing, Jiliang
2016-01-01
We present firstly the equation of motion for the scalar particle coupling to Einstein tensor in the Schwarzschild-Melvin black hole spacetime through the short-wave approximation. Through analysing Poincar\\'{e} sections, the power spectrum, the fast Lyapunov exponent indicator, the bifurcation diagram and the basins of attraction of the dynamical system, we confirm that the chaos exists in the geodesic motion of the coupled scalar particles. Moreover, we probe the effects of the magnetic field parameter and coupling parameter on the chaotic behavior of the particles. Our results show that the coupling together with the magnetic field brings richer physics for the motion of particles.
Page, Don N
2015-01-01
In an asymptotically flat spacetime of dimension d > 3 and with the Newtonian gravitational constant G, a spherical black hole of initial horizon radius r_h and mass M ~ r_h^{d-3}/G has a total decay time to Hawking emission of t_d ~ r_h^{d-1}/G ~ G^{2/(d-3)}M^{(d-1)/(d-3)} which grows without bound as the radius r_h and mass M are taken to infinity. However, in asymptotically anti-de Sitter spacetime with a length scale l and with absorbing boundary conditions at infinity, the total Hawking decay time does not diverge as the mass and radius go to infinity but instead remains bounded by a time of the order of l^{d-1}/G.
Hod, Shahar
2016-01-01
We determine the characteristic timescales associated with the linearized relaxation dynamics of the composed Reissner-Nordstr\\"om-black-hole-charged-massive-scalar-field system. To that end, the quasinormal resonant frequencies $\\{\\omega_n(\\mu,q,M,Q)\\}_{n=0}^{n=\\infty}$ which characterize the dynamics of a charged scalar field of mass $\\mu$ and charge coupling constant $q$ in the charged Reissner-Nordstr\\"om black-hole spacetime of mass $M$ and electric charge $Q$ are determined {\\it analytically} in the eikonal regime $1\\ll M\\mu
Algebraically special space-time in relativity, black holes, and pulsar models
Adler, R. J.; Sheffield, C.
1973-01-01
The entire field of astronomy is in very rapid flux, and at the center of interest are problems relating to the very dense, rotating, neutron stars observed as pulsars. the hypothesized collapsed remains of stars known as black holes, and quasars. Degenerate metric form, or Kerr-Schild metric form, was used to study several problems related to intense gravitational fields.
Static black holes with axial symmetry in asymptotically AdS4 spacetime
Kichakova, Olga; Kunz, Jutta; Radu, Eugen; Shnir, Yasha
2016-02-01
The known static electrovacuum black holes in a globally AdS4 background have an event horizon which is geometrically a round sphere. In this work we argue that the situation is different in models with matter fields possessing an explicit dependence on the azimuthal angle φ , which, however, does not manifest at the level of the energy-momentum tensor. As a result, the full solutions are axially symmetric only, possessing a single (timelike) Killing vector field. Explicit examples of such static black holes are constructed in Einstein-(complex) scalar field and Einstein-Yang-Mills theories. The basic properties of these solutions are discussed, looking for generic features. For example, we notice that the horizon has an oblate spheroidal shape for solutions with a scalar field and a prolate one for black holes with Yang-Mills fields. The deviation from sphericity of the horizon geometry manifests itself in the holographic stress tensor. Finally, based on the results obtained in the probe limit, we conjecture the existence in Einstein-Maxwell theory of static black holes with axial symmetry only.
Big Black Hole, Little Neutron Star: Magnetic Dipole Fields in the Rindler Spacetime
D'Orazio, Daniel J
2013-01-01
As a black hole and neutron star approach during inspiral, the field lines of a magnetized neutron star eventually thread the black hole event horizon and a short-lived electromagnetic circuit is established. The black hole acts as a battery that provides power to the circuit, thereby lighting up the pair just before merger. Although originally suggested as a promising electromagnetic counterpart to gravitational-wave detection, the luminous signals are promising more generally as potentially detectable phenomena, such as short gamma-ray bursts. To aid in the theoretical understanding, we present a analytic solutions for the electromagnetic fields of a magnetic dipole in the presence of an event horizon. In the limit that the neutron star is very close to a Schwarzschild horizon, the Rindler limit, we can solve Maxwell's equations exactly for a magnetic dipole on an arbitrary worldline. We present these solutions here and investigate a proxy for a small segment of the neutron star orbit around a big black hol...
Institute of Scientific and Technical Information of China (English)
XU Dian-Yan
2003-01-01
The free energy and entropy of Reissner-Nordstrom black holes in higher-dimensional space-time are calculated by the quantum statistic method with a brick wall model. The space-time of the black holes is divided into three regions: region 1, (r > r0); region 2, (r0 > r > n); and region 3, (T-J > r > 0), where r0 is the radius of the outer event horizon, and r, is the radius of the inner event horizon. Detailed calculation shows that the entropy contributed by region 2 is zero, the entropy contributed by region 1 is positive and proportional to the outer event horizon area, the entropy contributed by region 3 is negative and proportional to the inner event horizon area. The total entropy contributed by all the three regions is positive and proportional to the area difference between the outer and inner event horizons. As rt approaches r0 in the nearly extreme case, the total quantum statistical entropy approaches zero.
Dafermos, Mihalis
2015-01-01
In this paper, we provide an elementary, unified treatment of two distinct blue-shift instabilities for the scalar wave equation on a fixed Kerr black hole background: the celebrated blue-shift at the Cauchy horizon (familiar from the strong cosmic censorship conjecture) and the time-reversed red-shift at the event horizon (relevant in classical scattering theory). Our first theorem concerns the latter and constructs solutions to the wave equation on Kerr spacetimes such that the radiation field along the future event horizon vanishes and the radiation field along future null infinity decays at an arbitrarily fast polynomial rate, yet, the local energy of the solution is infinite near any point on the future event horizon. Our second theorem constructs solutions to the wave equation on rotating Kerr spacetimes such that the radiation field along the past event horizon (extended into the black hole) vanishes and the radiation field along past null infinity decays at an arbitrarily fast polynomial rate, yet, th...
Static black holes with axial symmetry in asymptotically AdS$_4$ spacetime
Kichakova, Olga; Radu, Eugen; Shnir, Yasha
2015-01-01
The known static electro-vacuum black holes in a globally AdS$_4$ background have an event horizon which is geometrically a round sphere. In this work we argue that the situation is different in models with matter fields possessing an explicit dependence on the azimuthal angle $\\varphi$, which, however, does not manifest at the level of the energy-momentum tensor. As a result, the full solutions are axially symmetric only, possessing a single (timelike) Killing vector field. Explicit examples of such static black holes are constructed in Einstein--(complex) scalar field and Einstein--Yang-Mills theories. The basic properties of these solutions are discussed, looking for generic features. For example, we notice that the horizon has an oblate spheroidal shape for solutions with a scalar field and a prolate one for black holes with Yang-Mills fields. The deviation from sphericity of the horizon geometry manifests itself in the holographic stress-tensor. Finally, based on the results obtained in the probe limit, ...
Noncommutative Solitonic Black Hole
Chang-Young, Ee; Lee, Daeho; Lee, Youngone
2012-01-01
We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field using the Moyal product expanded up to first order in the noncommutativity parameter in the two noncommutative spatial directions. By numerical simulation we look for black hole solutions by increasing the non- commutativity parameter value starting from regular solutions with vanishing noncommutativity. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.
Hayward, Sean Alan
2013-01-01
Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h
Fluctuating Black Hole Horizons
Mei, Jianwei
2013-01-01
In this paper we treat the black hole horizon as a physical boundary to the spacetime and study its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as an example we derive an effective action that describes, in the large wave number limit, a massless Klein-Gordon field living on the average location of the boundary. Complete solutions can be found in the small rotation limit of the black hole. The formulation suggests that the boundary can be treated in the same way as any other matter contributions. In particular, the angular momentum of the boundary matches exactly with that of the black hole, suggesting an interesting possibility that all charges (including the entropy) of the black hole are carried by the boundary. Using this as input, we derive predictions on the Planck scale properties of the boundary.
International Nuclear Information System (INIS)
We report a 3-D charged black hole solution in an anti-de Sitter space inspired by noncommutative geometry. In this construction, the black hole exhibits two horizons, which turn into a single horizon in the extreme case. We investigate the impacts of electromagnetic field on the location of the event horizon, mass and thermodynamic properties such as Hawking temperature, entropy, and heat capacity of the black hole. The geodesics of the charged black hole are also analyzed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Rahaman, Farook; Bhar, Piyali [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Sharma, Ranjan [P. D. Women' s College, Department of Physics, Jalpaiguri (India); Tiwari, Rishi Kumar [Govt. Model Science College, Department of Mathematics, Rewa, MP (India)
2015-03-01
We report a 3-D charged black hole solution in an anti-de Sitter space inspired by noncommutative geometry. In this construction, the black hole exhibits two horizons, which turn into a single horizon in the extreme case. We investigate the impacts of electromagnetic field on the location of the event horizon, mass and thermodynamic properties such as Hawking temperature, entropy, and heat capacity of the black hole. The geodesics of the charged black hole are also analyzed. (orig.)
Rahaman, Farook; Bhar, Piyali; Sharma, Ranjan; Tiwari, Rishi Kumar
2015-01-01
We report a 3 -D charged black hole solution in an anti-de Sitter space inspired by noncommutative geometry. In this construction, the black hole exhibits two horizons, which turn into a single horizon in the extreme case. We investigate the impacts of electromagnetic field on the location of the event horizon, mass and thermodynamic properties such as Hawking temperature, entropy, and heat capacity of the black hole. The geodesics of the charged black hole are also analyzed.
Black hole field theory with a firewall in two spacetime dimensions
Ho, C. T. Marco; Su, Daiqin; Mann, Robert B.; Ralph, Timothy C.
2016-10-01
We propose that the vacuum state of a scalar field around a black hole is a modified Unruh vacuum. In (1 +1 ) dimensions, we show that a free-faller close to such an horizon can be modeled as an inertial observer in a modified Minkowski vacuum. The modification allows for information-leaking correlations at high frequencies. Using a Gaussian detector centered at k0, we find that the expectation value of the number operator for a detector crossing the horizon is proportional to 1 /|k0|, implying that the free-faller will observe unbounded numbers of high-energy photons, i.e. a firewall.
Black Hole Complementary Principle and Noncommutative Membrane
International Nuclear Information System (INIS)
In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.
Tanaka, Sho
2014-01-01
In confrontation with serious and fundamental problems towards ultimate theory of quantum gravity and Planck scale physics, we emphasize the importance of underlying noncommutative space-time such as Snyder's or Yang's Lorentz-covariant quantized space-time. The background of Bekenstein-Hawking's area-entropy law and holographic principle is now substantially understood in terms of Kinematical Holographic Relation (KHR), which holds in Yang's quantized space-time as the result of the kinematical reduction of spatial degrees of freedom caused by its own nature of noncommutative geometry. KHR implies a proportional relation, , between the number of spatial degrees of freedom inside any d -dimensional spherical volume with radius L and its boundary area . It yields a substantial basis for our new area-entropy law of black holes and further enables us to connect "the first law of black hole mechanics" with "the thermodynamics of black holes" towards our final goal: A statistical and substantial understanding of the area-entropy law of black holes under a novel concept of noncommutative quantized space-time.
Sbierski, Jan
2013-01-01
It is known that using the Gaussian beam approximation one can show that there exist solutions of the wave equation on a general globally hyperbolic Lorentzian manifold whose energy is localised along a given null geodesic for a finite, but arbitrarily long time. In this paper, we show that the energy of such a localised solution is determined by the energy of the underlying null geodesic. This result opens the door to various applications of Gaussian beams on Lorentzian manifolds that do not admit a globally timelike Killing vector field. In particular we show that trapping in the exterior of Kerr or at the horizon of an extremal Reissner-Nordstr\\"om black hole necessarily leads to a `loss of derivative' in a local energy decay statement. We also demonstrate the obstruction formed by the red-shift effect at the event horizon of a Schwarzschild black hole to scattering constructions from the future (where the red-shift turns into a blue-shift): we construct solutions to the backwards problem whose energies gr...
Complex frequencies of a massless scalar field in loop quantum black hole spacetime
Institute of Scientific and Technical Information of China (English)
Chen Ju-Hua; Wang Yong-Jiu
2011-01-01
Recently, considerable progress has been made in understanding the early universe by loop quantum cosmology. Modesto et at. investigated the loop quantum black hole (LQBH)using improved semiclassical analysis and they found that the LQBH has two horizons, an event horizon and a Cauchy horizon, just like the Reissner-Nordstr(o)m black hole. This paper focuses on the dynamical evolution of a massless scalar wave in the LQBH background. By investigating the relation between the complex frequencies of the massless scalar field and the LQBH parameters using the numerical method, we find that the polymeric parameter P makes the massless scalar field decay more quickly and makes the ground scalar wave oscillate slowly. However, the polymeric parameter P causes the frequency of the high harmonic massless scalar wave to shift according to its value. We also find that the loop quantum gravity area gap parameter a0 causes the massless scalar field to decay more slowly and makes the period of the massless scalar field wave become longer. In the complex ω plane, the frequency curves move counterclockwise when the polymeric parameter P increases and this spiral effect is more obvious for a higher harmonic scalar wave.
Hagedorn String Thermodynamics in Curved Spacetimes and near Black Hole Horizons
Mertens, Thomas G
2015-01-01
This thesis concerns the study of high-temperature string theory on curved backgrounds, generalizing the notions of Hagedorn temperature and thermal scalar to general backgrounds. Chapter 2 contains a review on string thermodynamics in flat space, setting the stage. Chapters 3 and 4 contain the detailed study of the random walk picture in a general curved background. Chapters 5 and 6 then apply this to Rindler space, the near-horizon approximation of a generic (uncharged) black hole. Chapters 7 and 8 contain a study of the AdS3 and BTZ WZW models where we study the thermal spectrum and the resulting random walk picture that emerges. Chapters 9 and 10 attempt to draw general conclusions from the study of the two specific examples earlier: we draw lessons on string thermodynamics in general and on (perturbative) string thermodynamics around black hole horizons. For the latter, we point out a possible link to the firewall paradox. Finally, chapter 11 contains a detailed discussion on the near-Hagedorn (and high-...
International Nuclear Information System (INIS)
An exhaustive classification of a certain class of static solutions for the five-dimensional Einstein-Gauss-Bonnet theory in vacuum is presented. The class of metrics under consideration is such that the spacelike section is a warped product of the real line with a nontrivial base manifold. It is shown that for generic values of the coupling constants the base manifold must be necessarily of constant curvature, and the solution reduces to the topological extension of the Boulware-Deser metric. It is also shown that the base manifold admits a wider class of geometries for the special case when the Gauss-Bonnet coupling is properly tuned in terms of the cosmological and Newton constants. This freedom in the metric at the boundary, which determines the base manifold, allows the existence of three main branches of geometries in the bulk. For the negative cosmological constant, if the boundary metric is such that the base manifold is arbitrary, but fixed, the solution describes black holes whose horizon geometry inherits the metric of the base manifold. If the base manifold possesses a negative constant Ricci scalar, two different kinds of wormholes in vacuum are obtained. For base manifolds with vanishing Ricci scalar, a different class of solutions appears resembling 'spacetime horns'. There is also a special case for which, if the base manifold is of constant curvature, due to a certain class of degeneration of the field equations, the metric admits an arbitrary redshift function. For wormholes and spacetime horns, there are regions for which the gravitational and centrifugal forces point towards the same direction. All of these solutions have finite Euclidean action, which reduces to the free energy in the case of black holes, and vanishes in the other cases. The mass is also obtained from a surface integral
Holographic p-Wave Superconductors in Quintessence AdS Black Hole Spacetime
International Nuclear Information System (INIS)
We construct a holographic p-wave superconductor model in the background of quintessence AdS black hole with an SU(2) Yang—Mills gauge field and then probe the effects of quintessence on the holographic p-wave superconductor. We investigate the relation between the critical temperature and the state parameter of quintessence, and present the numerical results for electric conductivity. It is shown that the condensation of the vector field becomes harder as the absolute value of the state parameter increases. Unlike the scalar condensate in the s-wave model, the condensation of the vector field in p-wave model can occur in the total value range of the state parameter wq of quintessence. These results could help us know more about holographic superconductor and dark energy. (physics of elementary particles and fields)
El-Menoufi, Basem Kamal
2016-05-01
In the context of effective field theory, we consider quantum gravity with minimally coupled massless particles. Fixing the background geometry to be of the Kerr-Schild type, we fully determine the one-loop effective action of the theory whose finite non-local part is induced by the long-distance portion of quantum loops. This is accomplished using the non-local expansion of the heat kernel in addition to a non-linear completion technique through which the effective action is expanded in gravitational curvatures. Via Euclidean methods, we identify a logarithmic correction to the Bekenstein-Hawking entropy of Schwarzschild black hole. Using dimensional transmutation the result is shown to exhibit an interesting interplay between the UV and IR properties of quantum gravity.
A scale dependent black hole in three-dimensional space-time
Koch, Benjamin; Rincón, Ángel
2016-01-01
Scale dependence at the level of the effective action is a generic result of quantum field theory. Allowing for scale dependence of the gravitational couplings leads to a generalization of the corresponding field equations. In this work, those equations are solved by imposing the "null energy condition" in three-dimensional space time with stationary spherical symmetry. The constants of integration are given in terms of the classical BTZ parameters plus one additional constant, that parametrizes the strength of the scale dependence. The properties such as asymptotics, horizon structure, and thermodynamics are discussed. It is found that the black hole entropy shows a remarkable transition from the usual "area~law" to an "area~$\\times$~radius" law.
Holographic Space-time, Newton's Law and the Dynamics of Black Holes
Banks, Tom
2016-01-01
We revisit the construction of models of quantum gravity in d dimensional Minkowski space in terms of random tensor models, and correct some mistakes in our previous treatment of the subject. We find a large class of models in which the large impact parameter scattering scales with energy and impact parameter like Newton`s law. These same models also have emergent energy, momentum and angular conservation laws, despite being based on time dependent Hamiltonians. Many of the scattering amplitudes have a Feynman diagram like structure: local interaction vertices connected by propagation of free particles (really Sterman-Weinberg jets of particles). However, there are also amplitudes where jets collide to form large meta-stable objects, with all the scaling properties of black holes: energy, entropy and temperature, as well as the characteristic time scale for the decay of perturbations. We generalize the conjecture of Sekino and Susskind, to claim that all of these models are fast scramblers. The rationale for ...
International Nuclear Information System (INIS)
In this talk, I present and discuss a number of attempts to construct black hole solutions in models with Warped Extra Dimensions. Then, a contact is made with models with Large Extra Dimensions, where black-hole solutions are easily constructed - here the focus will be on the properties of microscopic black holes and the possibility of using phenomena associated with them, such as the emission of Hawking radiation, to discover fundamental properties of our spacetime.
Directory of Open Access Journals (Sweden)
Shahar Hod
2015-10-01
Full Text Available Rotating black holes can support quasi-stationary (unstable bound-state resonances of massive scalar fields in their exterior regions. These spatially regular scalar configurations are characterized by instability timescales which are much longer than the timescale M set by the geometric size (mass of the central black hole. It is well-known that, in the small-mass limit α≡Mμ≪1 (here μ is the mass of the scalar field, these quasi-stationary scalar resonances are characterized by the familiar hydrogenic oscillation spectrum: ωR/μ=1−α2/2n¯02, where the integer n¯0(l,n;α→0=l+n+1 is the principal quantum number of the bound-state resonance (here the integers l=1,2,3,… and n=0,1,2,… are the spheroidal harmonic index and the resonance parameter of the field mode, respectively. As it depends only on the principal resonance parameter n¯0, this small-mass (α≪1 hydrogenic spectrum is obviously degenerate. In this paper we go beyond the small-mass approximation and analyze the quasi-stationary bound-state resonances of massive scalar fields in rapidly-spinning Kerr black-hole spacetimes in the regime α=O(1. In particular, we derive the non-hydrogenic (and, in general, non-degenerate resonance oscillation spectrum ωR/μ=1−(α/n¯2, where n¯(l,n;α=(l+1/22−2mα+2α2+1/2+n is the generalized principal quantum number of the quasi-stationary resonances. This analytically derived formula for the characteristic oscillation frequencies of the composed black-hole-massive-scalar-field system is shown to agree with direct numerical computations of the quasi-stationary bound-state resonances.
Black holes in loop quantum gravity: the complete space-time.
Gambini, Rodolfo; Pullin, Jorge
2008-10-17
We consider the quantization of the complete extension of the Schwarzschild space-time using spherically symmetric loop quantum gravity. We find an exact solution corresponding to the semiclassical theory. The singularity is eliminated but the space-time still contains a horizon. Although the solution is known partially numerically and therefore a proper global analysis is not possible, a global structure akin to a singularity-free Reissner-Nordström space-time including a Cauchy horizon is suggested. PMID:18999656
A note on the fuzzy sphere area spectrum, black hole luminosity, and the quantum nature of spacetime
Santos, Victor; Silva, C. A. S.; Almeida, C. A. S.
2014-01-01
Non-commutative corrections to the classical expression for the fuzzy sphere area are found out through the asymptotic expansion for its heat kernel trace. As an important consequence, some quantum gravity deviations in the luminosity of black holes must appear. We calculate these deviations for a static, spherically symmetric, black-hole with a horizon modeled by a fuzzy sphere. The results obtained could be verified through the radiation of black holes formed in the Large Hadron Collider (L...
A note on the fuzzy sphere area spectrum, black-hole luminosity and the quantum nature of spacetime
Santos, Victor; Silva, C. A. S.; Almeida, C. A. S.
2015-05-01
Noncommutative corrections to the classical expression for the fuzzy sphere area are found out through the asymptotic expansion for its heat kernel trace. As an important consequence, some quantum gravity deviations in the luminosity of black holes must appear. We calculate these deviations for a static, spherically symmetric, black hole with a horizon modeled by a fuzzy sphere. The results obtained could be verified through the radiation of black holes formed in the Large Hadron Collider (LHC).
Zhang, Jia-Lin; Cai, Rong-Gen; Yu, Hongwei
2014-01-01
We study the thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in AdS 5 × S 5 spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole thermodynamics and it has a chance to be positive, but appears in the unstable branch. We calculate the scalar curva...
Noncommutative solitonic black hole
International Nuclear Information System (INIS)
We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value. (paper)
Noncommutative solitonic black hole
Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone
2012-05-01
We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.
Rahaman, Farook; Sharma, Ranjan; Tiwari, Rishi Kumar
2014-01-01
We report a 3D charged black hole solution in an anti desetter space inspired by noncommutative geometry.In this construction,the black hole exhibits two horizon which turn into a single horizon in the extreme case.We investigate the impacts of the electromagnetic field on the location of the event horizon,mass and thermodynamic properties such as Hawking temperature,entropy and heat capacity of the black hole.The geodesics of the charged black hole are also analyzed.
Pragmatic mode-sum regularization method for semiclassical black-hole spacetimes
Levi, Adam
2015-01-01
Computation of the renormalized stress-energy tensor is the most serious obstacle in studying the dynamical, self-consistent, semiclassical evaporation of a black hole in 4D. The difficulty arises from the delicate regularization procedure for the stress-energy tensor, combined with the fact that in practice the modes of the field need be computed numerically. We have developed a new method for numerical implementation of the point-splitting regularization in 4D, applicable to the renormalized stress-energy tensor as well as to $\\left\\langle \\phi^{2}\\right\\rangle _{ren}$, namely the renormalized $\\left\\langle \\phi^{2}\\right\\rangle$. So far we have formulated two variants of this method: t-splitting (aimed for stationary backgrounds) and angular splitting (for spherically-symmetric backgrounds). In this paper we introduce our basic approach, and then focus on the t-splitting variant, which is the simplest of the two (deferring the angular-splitting variant to a forthcoming paper). We then use this variant, as ...
Philosophical Issues of Black Holes
Romero, Gustavo E
2014-01-01
Black holes are extremely relativistic objects. Physical processes around them occur in a regime where the gravitational field is extremely intense. Under such conditions, our representations of space, time, gravity, and thermodynamics are pushed to their limits. In such a situation philosophical issues naturally arise. In this chapter I review some philosophical questions related to black holes. In particular, the relevance of black holes for the metaphysical dispute between presentists and eternalists, the origin of the second law of thermodynamics and its relation to black holes, the problem of information, black holes and hypercomputing, the nature of determinisim, and the breakdown of predictability in black hole space-times. I maintain that black hole physics can be used to illuminate some important problems in the border between science and philosophy, either epistemology and ontology.
A nonsingular rotating black hole
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Durban (South Africa)
2015-11-15
The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)
A nonsingular rotating black hole
International Nuclear Information System (INIS)
The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)
Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar
2015-05-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.
T.M. Nieuwenhuizen; V. Špička
2008-01-01
This paper investigates the question whether a realistic black hole can be in principal similar to a star, having a large but finite redshift at its horizon. If matter spreads throughout the interior of a supermassive black hole with mass M similar to 10⁹M_{⊙}, it has an average density comparable t
Thermodynamics of Horava-Lifshitz black holes
Energy Technology Data Exchange (ETDEWEB)
Myung, Yun Soo; Kim, Yong-Wan [Inje University, Institute of Basic Science and School of Computer Aided Science, Gimhae (Korea)
2010-07-15
We study black holes in the Horava-Lifshitz gravity with a parameter {lambda}. For 1/3{<=}{lambda}<3, the black holes behave the Lifshitz black holes with dynamical exponent 0
Noncommutative black hole thermodynamics
International Nuclear Information System (INIS)
We give a general derivation, for any static spherically symmetric metric, of the relation Th=(K/2π) connecting the black hole temperature (Th) with the surface gravity (K), following the tunneling interpretation of Hawking radiation. This derivation is valid even beyond the semi-classical regime, i.e. when quantum effects are not negligible. The formalism is then applied to a spherically symmetric, stationary noncommutative Schwarzschild space-time. The effects of backreaction are also included. For such a black hole the Hawking temperature is computed in a closed form. A graphical analysis reveals interesting features regarding the variation of the Hawking temperature (including corrections due to noncommutativity and backreaction) with the small radius of the black hole. The entropy and tunneling rate valid for the leading order in the noncommutative parameter are calculated. We also show that the noncommutative Bekenstein-Hawking area law has the same functional form as the usual one
International Nuclear Information System (INIS)
We present a new “universal property” of entropy, that is the “entropy sum” relation of black holes in four dimensional (anti-)de-Sitter asymptotical background. They depend only on the cosmological constant with the necessary effect of the un-physical “virtual” horizon included in the spacetime where only the cosmological constant, mass of black hole, rotation parameter and Maxwell field exist. When there is more extra matter field in the spacetime, one will find the “entropy sum” is also dependent of the strength of these extra matter field. For both cases, we conclude that the “entropy sum” does not depend on the conserved charges M, Q and J, while it does depend on the property of background spacetime. We will mainly test the “entropy sum” relation in static, stationary black hole and some black hole with extra matter source (scalar hair and higher curvature) in the asymptotical (anti-)de-sitter spacetime background. Besides, we point out a newly found counter example of the mass independence of the ”entropy product” relation in the spacetime with extra scalar hair case, while the “entropy sum” relation still holds. These result are indeed suggestive to some underlying microscopic mechanism. Moreover, the cosmological constant and extra matter field dependence of the “entropy sum” of all horizon seems to reveal that “entropy sum” is more general as it is only related to the background field. For the case of asymptotical flat spacetime without any matter source, we give a note for the Kerr black hole case in appendix. One will find only mass dependence of “entropy sum” appears. It makes us believe that, considering the dependence of “entropy sum”, the mass background field may be regarded as the next order of cosmological constant background field and extra matter field. However, fully explaining the relationship between the “entropy sum” relation and background properties still requires further exploration
Noncommutative Solitonic Black Hole
Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone
2011-01-01
We investigate solitonic black hole solutions in three dimensional noncommutative spacetime. We do this in gravity with negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find t...
Energy Technology Data Exchange (ETDEWEB)
Bambi, Cosimo, E-mail: bambi@fudan.edu.cn; Modesto, Leonardo, E-mail: lmodesto@fudan.edu.cn
2013-04-25
The formation of spacetime singularities is a quite common phenomenon in General Relativity and it is regulated by specific theorems. It is widely believed that spacetime singularities do not exist in Nature, but that they represent a limitation of the classical theory. While we do not yet have any solid theory of quantum gravity, toy models of black hole solutions without singularities have been proposed. So far, there are only non-rotating regular black holes in the literature. These metrics can be hardly tested by astrophysical observations, as the black hole spin plays a fundamental role in any astrophysical process. In this Letter, we apply the Newman–Janis algorithm to the Hayward and to the Bardeen black hole metrics. In both cases, we obtain a family of rotating solutions. Every solution corresponds to a different matter configuration. Each family has one solution with special properties, which can be written in Kerr-like form in Boyer–Lindquist coordinates. These special solutions are of Petrov type D, they are singularity free, but they violate the weak energy condition for a non-vanishing spin and their curvature invariants have different values at r=0 depending on the way one approaches the origin. We propose a natural prescription to have rotating solutions with a minimal violation of the weak energy condition and without the questionable property of the curvature invariants at the origin.
The red-shift effect and radiation decay on black hole spacetimes
Dafermos, M; Dafermos, Mihalis; Rodnianski, Igor
2005-01-01
We consider solutions to the linear wave equation on a (maximally extended) Schwarzschild spacetime, assuming only that the solution decays suitably at spatial infinity on a complete Cauchy hypersurface. (In particular, we allow the support of the solution to contain the bifurcate event horizon.) We prove uniform decay bounds for the solution in the exterior regions, including the uniform bound Cv_+^{-1}, where v_+ denotes max{v,1} and v denotes Eddington-Finkelstein advanced time. We also prove uniform decay bounds for the flux of energy through the event horizon and null infinity. The estimates near the event horizon exploit an integral energy identity normalized to local observers. This estimate can be thought to quantify the celebrated red-shift effect. The results in particular give an independent proof of the classical uniform boundedness theorem of Kay and Wald, without recourse to the discrete isometries of spacetime.
Comment on 'Moving mirrors and black hole evaporation in noncommutative space-times'
International Nuclear Information System (INIS)
We reconsider the question of the excitation rate of a particle detector in the quantum flux due to an accelerated mirror in a noncommutative space-time [R. Casadio et al., Phys. Rev. D 73, 044019 (2006)] and show that, contrary to the result in the paper indicating an increased value compared to that in the usual space, the excitation rate is smaller and vanishes at infinite times.
Babichev, Eugeny; Hassaine, Mokhtar
2015-01-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematic...
Indian Academy of Sciences (India)
M S Modgil; S Panda; S Sengupta
2004-03-01
A Kerr metric describing a rotating black hole is obtained on the three brane in a five-dimensional Randall-Sundrum brane world by considering a rotating five-dimensional black string in the bulk. We examine the causal structure of this space-time through the geodesic equations.
Hendi, S H
2016-01-01
Regarding the wide applications of dilaton gravity in the presence of electrodynamics, we introduce a suitable Lagrangian for the coupling of dilaton with gauge field. There are various Lagrangians which show the coupling between scalar fields and electrodynamics with correct special situations. In this paper, taking into account conformal transformation of Brans-Dick theory with an electrodynamics Lagrangian, we show that how the scalar field should couple with electrodynamics in dilaton gravity. In other words, in order to introduce a correct Lagrangian of dilaton gravity, one should check at least two requirements: compatibility with Brans-Dick theory and appropriate special situations. Finally, we apply the mentioned method to obtain analytical solutions of dilaton-Born-Infeld and Brans-Dicke-Born-Infeld theories with energy dependent spacetime.
Quantum Radiation of a Non-stationary Kerr-Newman Black Hole in de Sitter Space-Time
Institute of Scientific and Technical Information of China (English)
JIANG Qing-Quan; YANG Shu-Zheng
2006-01-01
Hawking radiation of Klein-Gordon and Dirac particles in a non-stationary Kerr-Newman-de-Sitter black hole is studied by introducing a new tortoise coordinate transformation. The result shows that the Fermi-Dirac radiant spectrum displays a new term that represents the interaction between the spin of spinor particles and the rotation of black holes, which is absent in the Bose-Einstein distribution of Klein-Gordon particles.
Energy Technology Data Exchange (ETDEWEB)
Darling, D.
1980-10-01
A discussion of Einstein's General Relativity and how it can explain black holes is included. The key idea of general relativity being that gravitational forces are a direct outcome of local curvature of space-time. The more mass something has the deeper the depression or well it causes in space-time. Black holes are supermassive objects, hence their gravity well is so steep even light can't escape. The three properties associated with a black hole are mass angular momentum, and electric charge. Non-rotating, Schwarzchild, and rotating, Kerr, black holes are studied. A Kruskal-Szekeres diagram for each type is given and explained. (SC)
Black hole evaporation: a paradigm
International Nuclear Information System (INIS)
A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved
The area-angular momentum inequality for black holes in cosmological spacetimes
Gabach Clément, María Eugenia; Reiris, Martín; Simon, Walter
2015-07-01
For a stable, marginally outer trapped surface (MOTS) in an axially symmetric spacetime with cosmological constant Λ \\gt 0 and with matter satisfying the dominant energy condition, we prove that the area A and the angular momentum J satisfy the inequality 8π | J| ≤slant A\\sqrt{(1-Λ A/4π )(1-Λ A/12π )}, which is saturated precisely for the extreme Kerr-de Sitter family of metrics. This result entails a universal upper bound | J| ≤slant {J}{max}≈ 0.17/Λ for such MOTS, which is saturated for one particular extreme configuration. Our result sharpens the inequality 8π | J| ≤slant A (Dain and Reiris 2011 Phys. Rev. Lett. 107 051101, Jaramillo, Reiris and Dain 2011 Phys. Rev. Lett. D 84 121503), and we follow the overall strategy of its proof in the sense that we first estimate the area from below in terms of the energy corresponding to a ‘mass functional’, which is basically a suitably regularized harmonic map {{{S}}}2\\to {{{H}}}2. However, in the cosmological case this mass functional acquires an additional potential term which itself depends on the area. To estimate the corresponding energy in terms of the angular momentum and the cosmological constant we use a subtle scaling argument, a generalized ‘Carter-identity’, and various techniques from variational calculus, including the mountain pass theorem.
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.
Black holes and the multiverse
Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun
2016-02-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.
Upper bound on the radii of black-hole photonspheres
International Nuclear Information System (INIS)
One of the most remarkable predictions of the general theory of relativity is the existence of black-hole “photonspheres”, compact null hypersurfaces on which massless particles can orbit the central black hole. We prove that every spherically-symmetric asymptotically flat black-hole spacetime is characterized by a photonsphere whose radius is bounded from above by rγ⩽3M, where M is the total ADM mass of the black-hole spacetime. It is shown that hairy black-hole configurations conform to this upper bound. In particular, the null circular geodesic of the (bald) Schwarzschild black-hole spacetime saturates the bound
Upper bound on the radii of black-hole photonspheres
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Institute, Jerusalem 91010 (Israel)
2013-11-25
One of the most remarkable predictions of the general theory of relativity is the existence of black-hole “photonspheres”, compact null hypersurfaces on which massless particles can orbit the central black hole. We prove that every spherically-symmetric asymptotically flat black-hole spacetime is characterized by a photonsphere whose radius is bounded from above by r{sub γ}⩽3M, where M is the total ADM mass of the black-hole spacetime. It is shown that hairy black-hole configurations conform to this upper bound. In particular, the null circular geodesic of the (bald) Schwarzschild black-hole spacetime saturates the bound.
Zhang, Jia-Lin; Yu, Hongwei
2014-01-01
We study thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in $AdS_5\\times{S^5}$ spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole thermodynamics and it has a chance to be positive, but appears in the unstable branch. We calculate scalar curvatures of the thermodynamical Weinhold metric, Ruppeiner metric and Quevedo metric, respectively and we find that the divergence of scalar curvature is related to the divergence of specific heat with fixed chemical potential in the Weinhold metric and Ruppeiner metric, while in the Quevedo metric the divergence of scalar curvature is related to the divergence of specific heat with fixed number of colors and the vanishing of the specific heat with fixed chemical potential.
Clement, María E Gabach
2015-01-01
It is well known that celestial bodies tend to be spherical due to gravity and that rotation produces deviations from this sphericity. We discuss what is known and expected about the shape of black holes' horizons from their formation to their final, stationary state. We present some recent results showing that black hole rotation indeed manifests in the widening of their central regions, limits their global shapes and enforces their whole geometry to be close to the extreme Kerr horizon geometry at almost maximal rotation speed. The results depend only on the horizon area and angular momentum. In particular they are entirely independent of the surrounding geometry of the spacetime and of the presence of matter satisfying the strong energy condition. We also discuss the the relation of this result with the Hoop conjecture.
Polchinski, Joseph
2015-04-01
Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.
International Nuclear Information System (INIS)
Astrophysical black hole candidates are thought to be the Kerr black hole predicted by General Relativity. However, in order to confirm the Kerr-nature of these objects, we need to probe the geometry of the space-time around them and check that observations are consistent with the predictions of the Kerr metric. That can be achieved, for instance, by studying the properties of the electromagnetic radiation emitted by the gas in the accretion disk. The high-frequency quasi-periodic oscillations observed in the X-ray flux of some stellar-mass black hole candidates might do the job. As the frequencies of these oscillations depend only very weakly on the observed X-ray flux, it is thought they are mainly determined by the metric of the space-time. In this paper, I consider the resonance models proposed by Abramowicz and Kluzniak and I extend previous results to the case of non-Kerr space-times. The emerging picture is more complicated than the one around a Kerr black hole and there is a larger number of possible combinations between different modes. I then compare the bounds inferred from the twin peak high-frequency quasi-periodic oscillations observed in three micro-quasars (GRO J1655-40, XTE J1550-564, and GRS 1915+105) with the measurements from the continuum-fitting method of the same objects. For Kerr black holes, the two approaches do not provide consistent results. In a non-Kerr geometry, this conflict may be solved if the observed quasi-periodic oscillations are produced by the resonance νθ:νr = 3:1, where νθ and νr are the two epicyclic frequencies. It is at least worth mentioning that the deformation from the Kerr solution required by observations would be consistent with the one suggested in another recent work discussing the possibility that steady jets are powered by the spin of these compact objects
Directory of Open Access Journals (Sweden)
Armen Yeranyan
2008-10-01
Full Text Available The general solutions of the radial attractor flow equations for extremal black holes, both for non-BPS with non-vanishing central charge Z and for Z = 0, are obtained for the so-called stu model, the minimal rank-3 N = 2 symmetric supergravity in d = 4 space-time dimensions. Comparisons with previous partial results, as well as the fake supergravity (first order formalism and an analysis of the marginal stability of corresponding D-brane configurations, are given.
An Introduction to Black Hole Evaporation
Traschen, Jennie
2000-01-01
Classical black holes are defined by the property that things can go in, but don't come out. However, Stephen Hawking calculated that black holes actually radiate quantum mechanical particles. The two important ingredients that result in back hole evaporation are (1) the spacetime geometry, in particular the black hole horizon, and (2) the fact that the notion of a "particle" is not an invariant concept in quantum field theory. These notes contain a step-by-step presentation of Hawking's calc...
Mitra, Abhas
2009-04-01
We point out that the space-time void inferred by Castro [J. Math. Phys. 49, 042501 (2008)] results from his choice of a discontinuous radial gauge. Further since the integration constant α0=2M0 (G =c=1) occurring in the vacuum Hilbert/Schwarzschild solution of a neutral "point mass" is zero [Arnowitt et al., in Gravitation: An Introduction to Current Research, edited by L. Witten (Wiley, New York, 1962), Chap. 7, p. 227; also Phys. Rev. Lett. 4, 375 (1960). A. Mitra, Adv. Space Res. 38, 2917 (2006); Proceedings of the XIth Marcel-Grossmann Conference on General Relativity (World Scientific, Singapore, 2008), Vol. 3, p. 1968], Castro's gauge reduces to the well behaved and physical Hilbert gauge. Physically this means that true Hilbert/Schwarzschild black holes have unique gravitational mass M =0. Accordingly, the unphysical space-time void inferred by Castro is actually nonexistent.
International Nuclear Information System (INIS)
We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole
Black Hole Complementary Principle and Noncomm utative Membrane
Institute of Scientific and Technical Information of China (English)
WEI Ren
2006-01-01
In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.
Black Hole Complementary Principle and The Noncommutative Membrane
Wei, Zen
2005-01-01
In the spirit of Black Hole Complementary Principle, we have found the noncommutative membrane of Scharzchild Black Holes. In this paper we extend our results to Kerr Black Hole and see the same story. Also we make a conjecture that spacetimes is noncommutative on the stretched membrane of the more general Kerr-Newman Black Hole.
Tanaka, Sho
2014-01-01
In confrontation with serious and fundamental problems towards ultimate theory of quantum gravity and physics of Planck scale, we emphasize the importance of underlying noncommutative space-time such as Snyder's or Yang's Lorentz-covariant quantized space-time. The background of Bekenstein-Hawking's Area-entropy law and Holographic principle is now substantially understood in terms of {\\it Kinematical} Holographic Relation [KHR], which holds in Yang's quantized space-time as the result of the kinematical reduction of spatial degrees of freedom caused by its own nature of noncommutative geometry. [KHR] implies a definite proportional relation, $ n^L_{\\rm dof} (V_d^L)= {\\cal A} (V_d^L) / G_d$, between the number of spatial degrees of freedom $n^L_{\\rm dof} (V_d^L)$ inside of any $d-$dimensional spherical volume $V_d^L$ with radius $L $ and its boundary area ${\\cal A} (V_d^L).$ It provides a substantial basis for our new area-entropy law of black hole and further enables us to connect "The First Law of Black Hol...
Stationary Scalar Clouds Around Rotating Black Holes
Hod, Shahar
2012-01-01
Motivated by novel results in the theory of wave dynamics in black-hole spacetimes, we analyze the dynamics of a massive scalar field surrounding a rapidly rotating Kerr black hole. In particular, we report on the existence of stationary (infinitely long-lived) regular field configurations in the background of maximally rotating black holes. The effective height of these scalar "clouds" above the central black hole is determined analytically. Our results support the possible existence of stationary scalar field dark matter distributions surrounding rapidly rotating black holes.
An Optical Analog of a Black Holes
Royston, A; Royston, Andrew; Gass, Richard
2002-01-01
Using media with extremely low group velocities one can create an optical analog of a curved space-time. Leonhardt and Piwnicki have proposed that a vortex flow will act as an optical black hole. We show that although the Leonhardt - Piwnicki flow has an orbit of no return and an infinite red-shift surface, it is not a true black hole since it lacks a null hypersurface. However a radial flow will produce a true optical black hole that has a Hawking temperature and obeys the first law of black hole mechanics. By combining the Leonhardt - Piwnicki flow with a radial flow we obtain the analog of the Kerr black hole.
Non-Abelian black holes The inside story
Breitenlohner, P; Maison, D
1997-01-01
Recent progress in understanding of the internal structure of non-Abelian black holes is discussed. Talk given at the international Workshop on The Internal Structure of Black Holes and Spacetime Singularities, Haifa, Israel, June 29 -- July 3, 1997.
Renormalized vacuum polarization of rotating black holes
Ferreira, Hugo R C
2015-01-01
Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2+1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization (and, more importantly, the renormalized stress-energy tensor), for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.
Renormalized vacuum polarization of rotating black holes
Ferreira, Hugo R. C.
2015-04-01
Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.
Cosmological production of noncommutative black holes
Mann, Robert B
2011-01-01
We investigate the pair creation of noncommutative black holes in a background with positive cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild deSitter solution. By varying the mass and the cosmological constant parameters, we find several spacetimes compatible with the new solution: positive mass spacetimes admit one cosmological horizon and two, one or no black hole horizons, while negative mass spacetimes have just a cosmological horizon. All these manifolds are everywhere regular, since the noncommutative fluctuations at the origin improve the curvature singularity. On the thermodynamic side, the black hole temperature, instead of a divergent behavior for small length scales, admits a maximum value. Then the black hole evaporation proceeds until an equilibrium configuration with the deSitter background temperature. On the other hand, the cosmological horizon is thermalized by the presence of the black hole and has a temperature higher than that of the conv...
Covariant path integrals and black holes
Vendrell, F
1997-01-01
The thermal nature of the propagator in a collapsed black-hole spacetime is shown to follow from the non-trivial topology of the configuration space in tortoise coordinates by using the path integral formalism.
Exact formation of hairy planar black holes
Fan, Zhong-Ying; Chen, Bin
2016-04-01
We consider Einstein gravity minimally coupled to a scalar field with a given potential in general dimensions. We obtain large classes of static hairy planar black holes which are asymptotic to anti-de Sitter (AdS) space-times. In particular, for a special case μ =(n -2 )/2 , we obtain new classes of exact dynamical solutions describing black hole formation. We find there are two classes of collapse solutions. The first class of solutions describes the evolution start from AdS space-time with a naked singularity at the origin. The space-time is linearly unstable and evolves into stationary black hole states even under small perturbation. The second class of solutions describes the space-time spontaneously evolving from AdS vacua into stationary black hole states undergoing nonlinear instability. We also discuss the global properties of all these dynamical solutions.
Black holes and the positive cosmological constant
Bhattacharya, Sourav
2013-01-01
We address some aspects of black hole spacetimes endowed with a positive cosmological constant, i.e. black holes located inside a cosmological event horizon. First we establish a general criterion for existence of cosmological event horizons. Using the geometrical set up built for this, we study classical black hole no hair theorems for both static and stationary axisymmetric spacetimes. We discuss cosmic Nielsen-Olesen strings as hair in Schwarzschild-de Sitter spacetime. We also give a general calculation for particle creation by a Killing horizon using complex path analysis and using this we study particle creation in Schwarzschild-de Sitter spacetime by both black hole and the cosmological event horizons.
Thermodynamics of BTZ black hole and entanglement entropy
International Nuclear Information System (INIS)
The BTZ black Hole is (2+1) dimensional black hole solution asymptotic to anti-de-Sitter space-time. We study the discretized quantum scalar fields in background of non-rotating BTZ black hole space-time and construct the entanglement thermodynamics for massless scalar field. The behavior of the entanglement energy is understood by red shift factor caused by the curved background. The entanglement thermodynamics is compared with the black hole thermodynamics
Institute of Scientific and Technical Information of China (English)
CHEN Qiang; REN Ji-Rong
2013-01-01
In this paper,we use the modified Hod's treatment and the Kunstatter's method to study the horizon area spectrum and entropy spectrum in Gauss-Bonnet de-Sitter space-time,which is regarded as the natural generalization of Einstein gravity by including higher derivative correction terms to the original Einstein-Hilbert action.The horizon areas have some properties that are very different from the vacuum solutions obtained from the frame of Einstein gravity.With the new physical interpretation of quasinormal modes,the area/entropy spectrum for the event horizon for nearextremal Gauss-Bonnet de Sitter black holes are obtained.Meanwhile,we also extend the discussion of area/entropy quantization to the non-extremal black holes solutions.
Vasudevan, Muraari; Stevens, Kory A.
2005-12-01
We study the Hamilton-Jacobi and massive Klein-Gordon equations in the general Kerr-(Anti) de Sitter black hole background in all dimensions. Complete separation of both equations is carried out in cases when there are two sets of equal black hole rotation parameters. We analyze explicitly the symmetry properties of these backgrounds that allow for this Liouville integrability and construct a nontrivial irreducible Killing tensor associated with the enlarged symmetry group which permits separation. We also derive first-order equations of motion for particles in these backgrounds and examine some of their properties. This work greatly generalizes previously known results for both the Myers-Perry metrics, and the Kerr-(Anti) de Sitter metrics in higher dimensions.
Soroushfar, Saheb; Kazempour, Sobhan; Grunau, Saskia; Kunz, Jutta
2016-01-01
We study the geodesic equations in the space time of a rotating charged black hole in $f(R)$ gravity. We derive the equations of motion for test particles and light rays and present their solutions in terms of the Weierstrass $\\wp$, $\\zeta$ and $\\sigma$ functions as well as the Kleinian $\\sigma$ function. With the help of parametric diagrams and effective potentials we analyze the geodesic motion and classify the possible orbit types.
Acceleration of Black Hole Universe
Zhang, Tianxi
2012-05-01
An alternative cosmological model called black hole universe has been recently proposed by the author. According to this model, the universe originated from a hot star-like black hole, and gradually grew up through a supermassive black hole to the present state by accreting ambient materials and merging with other black holes. The entire space is structured with an infinite number of layers hierarchically. The innermost three layers are the universe that we live, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and limits to zero for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general theory of relativity with the Robertson-Walker metric of space-time, and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. In this study. we will analyze the acceleration of black hole universe that accretes its ambient matter in an increasing rate. We will also compare the result obtained from the black hole universe model with the measurement of type Ia supernova and the result from the big bang cosmology.
Black hole evaporation along macroscopic strings
International Nuclear Information System (INIS)
We develop the quantization of a macroscopic string which extends radially from a Schwarzschild black hole. The Hawking process excites a thermal bath of string modes that causes the black hole to lose mass. The resulting typical string configuration is a random walk in the angular coordinates. We show that the energy flux in string excitations is approximately that of spacetime field modes
Black Hole Interior in Quantum Gravity.
Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J
2015-05-22
We discuss the interior of a black hole in quantum gravity, in which black holes form and evaporate unitarily. The interior spacetime appears in the sense of complementarity because of special features revealed by the microscopic degrees of freedom when viewed from a semiclassical standpoint. The relation between quantum mechanics and the equivalence principle is subtle, but they are still consistent. PMID:26047218
Effective Potential in Noncommutative BTZ Black Hole
Sadeghi, Jafar; Shajiee, Vahid Reza
2016-02-01
In this paper, we investigated the noncommutative rotating BTZ black hole and showed that such a space-time is not maximally symmetric. We calculated effective potential for the massive and the massless test particle by geodesic equations, also we showed effect of non-commutativity on the minimum mass of BTZ black hole.
Black Hole Interior in Quantum Gravity.
Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J
2015-05-22
We discuss the interior of a black hole in quantum gravity, in which black holes form and evaporate unitarily. The interior spacetime appears in the sense of complementarity because of special features revealed by the microscopic degrees of freedom when viewed from a semiclassical standpoint. The relation between quantum mechanics and the equivalence principle is subtle, but they are still consistent.
Quantum Evaporation of Liouville Black Holes
Mann, R. B.
1993-01-01
The classical field equations of a Liouville field coupled to gravity in two spacetime dimensions are shown to have black hole solutions. Exact solutions are also obtained when quantum corrections due to back reaction effects are included, modifying both the ADM mass and the black hole entropy. The thermodynamic limit breaks down before evaporation of the black hole is complete, indicating that higher-loop effects must be included for a full description of the process. A scenario for the fina...
Quantum aspects of black hole entropy
Indian Academy of Sciences (India)
Parthasarathi Majumdar
2000-10-01
This survey intends to cover recent approaches to black hole entropy which attempt to go beyond the standard semiclassical perspective. Quantum corrections to the semiclassical Bekenstein–Hawking area law for black hole entropy, obtained within the quantum geometry framework, are treated in some detail. Their ramiﬁcation for the holographic entropy bound for bounded stationary spacetimes is discussed. Four dimensional supersymmetric extremal black holes in string-based = 2 supergravity are also discussed, albeit more brieﬂy.
Macroscopic black holes, microscopic black holes and noncommutative membrane
Energy Technology Data Exchange (ETDEWEB)
Li Miao [Institute of Theoretical Physics, Academia Sinica, PO Box 2735, Beijing 100080 (China)
2004-07-21
We study the stretched membrane of a black hole as consisting of a perfect fluid. We find that the pressure of this fluid is negative and the specific heat is also negative. A surprising result is that if we are to assume the fluid to be composed of some quanta, then the dispersion relation of the fundamental quantum is E = m{sup 2}/k, with m at the scale of the Planck mass. There are two possible interpretations of this dispersion relation. One is the noncommutative spacetime on the stretched membrane and the other is that the fundamental quanta are microscopic black holes.
Macroscopic black holes, microscopic black holes and noncommutative membrane
International Nuclear Information System (INIS)
We study the stretched membrane of a black hole as consisting of a perfect fluid. We find that the pressure of this fluid is negative and the specific heat is also negative. A surprising result is that if we are to assume the fluid to be composed of some quanta, then the dispersion relation of the fundamental quantum is E = m2/k, with m at the scale of the Planck mass. There are two possible interpretations of this dispersion relation. One is the noncommutative spacetime on the stretched membrane and the other is that the fundamental quanta are microscopic black holes
On the Stability of Squashed Kaluza-Klein Black Holes
Kimura, Masashi; Murata, Keiju; Ishihara, Hideki; Soda, Jiro
2007-01-01
The stability of squashed Kaluza-Klein black holes is studied. The squashed Kaluza-Klein black hole looks like five dimensional black hole in the vicinity of horizon and four dimensional Minkowski spacetime with a circle at infinity. In this sense, squashed Kaluza-Klein black holes can be regarded as black holes in the Kaluza-Klein spacetimes. Using the symmetry of squashed Kaluza-Klein black holes, $SU(2)\\times U(1)\\simeq U(2)$, we obtain master equations for a part of the metric perturbatio...
Hayward, Sean A.
2008-01-01
This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...
Energy Technology Data Exchange (ETDEWEB)
Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)
2007-11-15
We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.
Larjo, Klaus; Lowe, David A.; Thorlacius, Larus
2013-05-01
The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and reemits information, determines whether infalling observers experience anything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of the order of the black hole scrambling time.
Thermoelectric DC conductivities from black hole horizons
Donos, Aristomenis
2014-01-01
An analytic expression for the DC electrical conductivity in terms of black hole horizon data was recently obtained for a class of holographic black holes exhibiting momentum dissipation. We generalise this result to obtain analogous expressions for the DC thermoelectric and thermal conductivities. We illustrate our results using some holographic Q-lattice black holes as well as for some black holes with linear massless axions, in both $D=4$ and $D=5$ bulk spacetime dimensions, which include both spatially isotropic and anisotropic examples. We show that some recently constructed ground states of holographic Q-lattices, which can be either electrically insulating or metallic, are all thermal insulators.
Modeling Flows Around Merging Black Hole Binaries
van Meter, James R; Miller, M Coleman; Reynolds, Christopher S; Centrella, Joan M; Baker, John G; Boggs, William D; Kelly, Bernard J; McWilliams, Sean T
2009-01-01
Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a step towards solving this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We find qualitative differences in collision and outflow speeds, including a signature of the merger when the net angular momentum of the matter is low, between the results from single and binary black holes, and between nonrotating and rotating holes in binaries. If future magnetohydrodynamic results confirm ...
"Twisted" black holes are unphysical
Gray, Finnian; Schuster, Sebastian; Visser, Matt
2016-01-01
So-called "twisted" black holes have recently been proposed by Zhang (1609.09721 [gr-qc]), and further considered by Chen and Jing (1610.00886 [gr-qc]), and more recently by Ong (1610.05757 [gr-qc]). While these spacetimes are certainly Ricci-flat, and so mathematically satisfy the vacuum Einstein equations, they are also merely minor variants on Taub--NUT spacetimes. Consequently they exhibit several unphysical features that make them quite unreasonable as realistic astrophysical objects. Specifically, these "twisted" black holes are not (globally) asymptotically flat. Furthermore, they contain closed timelike curves that are not hidden behind any event horizon --- the most obvious of these closed timelike curves are small azimuthal circles around the rotation axis, but the effect is more general. The entire region outside the horizon is infested with closed timelike curves.
Quantum statistical entropy for Kerr-de Sitter black hole
Institute of Scientific and Technical Information of China (English)
Zhang Li-Chun; Wu Yue-Qin; Zhao Ren
2004-01-01
Improving the membrane model by which the entropy of the black hole is studied, we study the entropy of the black hole in the non-thermal equilibrium state. To give the problem stated here widespread meaning, we discuss the (n+2)-dimensional de Sitter spacetime. Through discussion, we obtain that the black hole's entropy which contains two horizons (a black hole's horizon and a cosmological horizon) in the non-thermal equilibrium state comprises the entropy corresponding to the black hole's horizon and the entropy corresponding to the cosmological horizon. Furthermore, the entropy of the black hole is a natural property of the black hole. The entropy is irrelevant to the radiation field out of the horizon. This deepens the understanding of the relationship between black hole's entropy and horizon's area. A way to study the bosonic and fermionic entropy of the black hole in high non-thermal equilibrium spacetime is given.
Geometric obstruction of black holes
Punzi, R; Wohlfarth, M N R; Punzi, Raffaele; Schuller, Frederic P.; Wohlfarth, Mattias N. R.
2006-01-01
We study the global structure of Lorentzian manifolds with partial sectional curvature bounds. In particular, we prove completeness theorems for homogeneous and isotropic cosmologies as well as static spherically symmetric spacetimes. The latter result is used to rigorously prove the absence of static spherically symmetric black holes in more than three dimensions. The proofs of these new results are preceded by a detailed exposition of the local aspects of sectional curvature bounds for Lorentzian manifolds, which extends and strengthens previous constructions.
Lin, Kai
2016-01-01
In this work, we study the quasinormal modes of Schwarzschild and Schwarzschild (Anti-) de Sitter black holes by a matrix method. The proposed method involves discretizing the master field equation and expressing it in form of a homogeneous system of linear algebraic equations. The resulting homogeneous matrix equation furnishes a non-standard eigenvalue problem, which can then be solved numerically to obtain the quasinormal frequencies. A key feature of the present approach is that the discretization of the wave function and its derivatives is made to be independent of any specific metric through coordinate transformation. In most cases, it can be carried out beforehand which in turn improves the efficiency and facilitates the numerical implementation. We also analyze the precision and efficiency of the present method as well as compare the results to those obtained by different approaches.
Black Hole Universe Model and Dark Energy
Zhang, Tianxi
2011-01-01
Considering black hole as spacetime and slightly modifying the big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach principle and Einsteinian general relativity and self consistently explains various observations of the universe without difficulties. According to this model, the universe originated from a hot star-like black hole and gradually grew through a supermassive black hole to the present universe by accreting ambient material and merging with other black holes. The entire space is infinitely and hierarchically layered and evolves iteratively. The innermost three layers are the universe that we lives, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and zero limits for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general relativity with the Robertson-Walker metric of spacetime, and tend to expand outward physically. When one universe expands out, a new similar universe grows up from its inside black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published in peer-review journals. This study will show how this new model explains the acceleration of the universe and why dark energy is not required. We will also compare the black hole universe model with the big bang cosmology.
Curing singularities: From the big bang to black holes
Levin, Janna
1998-01-01
Singular spacetimes are a natural prediction of Einstein's theory. Most memorable are the singular centers of black holes and the big bang. However, dilatonic extensions of Einstein's theory can support nonsingular spacetimes. The cosmological singularities can be avoided by dilaton driven inflation. Furthermore, a nonsingular black hole can be constructed in two dimensions.
Curing singularities From the big bang to black holes
Levin, J
1998-01-01
Singular spacetimes are a natural prediction of Einstein's theory. Most memorable are the singular centers of black holes and the big bang. However, dilatonic extensions of Einstein's theory can support nonsingular spacetimes. The cosmological singularities can be avoided by dilaton driven inflation. Furthermore, a nonsingular black hole can be constructed in two dimensions.
Construction of Regular Black Holes in General Relativity
Fan, Zhong-Ying
2016-01-01
We present a general procedure for constructing exact black hole solutions with electric/magnetic charges in General Relativity coupled to a nonlinear electrodynamics. We obtain a variety of two-parameter family spherically symmetric black hole solutions. In particular, the singularity at the central of the space-time can be cancelled in the parameters space and the black hole solutions become regular everywhere in the space-time. We study the global properties of the solutions and derive the first law of thermodynamics. We also generalize the procedure to include a cosmological constant and construct regular black hole solutions that are asymptotic to anti-de Sitter space-time.
New Horizons for Black Holes and Branes
Emparan, Roberto; Niarchos, Vasilis; Obers, Niels A
2009-01-01
We initiate a systematic scan of the landscape of black holes in any spacetime dimension using the recently proposed blackfold effective worldvolume theory. We focus primarily on asymptotically flat stationary vacuum solutions, where we uncover large classes of new black holes. These include helical black strings and black rings, black odd-spheres, for which the horizon is a product of a large and a small sphere, and non-uniform black cylinders. More exotic possibilities are also outlined. The blackfold description recovers correctly the ultraspinning Myers-Perry black holes as ellipsoidal even-ball configurations where the velocity field approaches the speed of light at the boundary of the ball. Helical black ring solutions provide the first instance of asymptotically flat black holes in more than four dimensions with a single spatial U(1) isometry. They also imply infinite rational non-uniqueness in ultraspinning regimes, where they maximize the entropy among all stationary single-horizon solutions. Moreove...
Black holes with surrounding matter in scalar-tensor theories.
Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P
2013-09-13
We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories.
The thermal radiation from dynamic black holes
Institute of Scientific and Technical Information of China (English)
2008-01-01
Using the related formula of dynamic black holes, the instantaneous radiation energy density of the general spherically symmetric charged dynamic black hole and the arbitrarily accelerating charged dynamic black hole is calculated. It is found that the instantaneous radiation energy density of black hole is always proportional to the quartic of the temperature of event horizon in the same direction. The proportional coefficient of generalized Stefan-Boltzmann is no longer a constant, and it becomes a dynamic coefficient that is related to the event horizon changing rate, space-time structure near event horizon and the radiation absorption coefficient of the black hole. It is shown that there should be an internal relation between the gravitational field around black hole and its thermal radiation.
Black hole chemistry: thermodynamics with Lambda
Kubiznak, David; Teo, Mae
2016-01-01
We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities, in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality - an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at exten...
Stimulated Black Hole Evaporation
Spaans, Marco
2016-01-01
Black holes are extreme expressions of gravity. Their existence is predicted by Einstein's theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_f\\sim 3\\times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $\\sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f \\sim 3\\times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P \\sim 2\\times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $\\lambda \\sim 3\\times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.
Gonzalez, P A; Saavedra, Joel; Vasquez, Yerko
2014-01-01
We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole solutions with the scalar field regular everywhere. We go to the zero temperature limit and we study the effect of the scalar field on the near horizon geometry of an extremal black hole. We find that except a critical value of the charge of the black hole there is also a critical value of the charge of the scalar field beyond of which the extremal black hole is destabilized. We study the thermodynamics of these solutions and we find that if the space is flat then at low temperature the Reissner-Nordstr\\"om black hole is thermodynamically preferred, while if the space is AdS the hairy charged black hole is thermodynamically preferred at low temperature.
Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica
2016-01-01
Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.
Perturbations around black holes
Wang, B
2005-01-01
Perturbations around black holes have been an intriguing topic in the last few decades. They are particularly important today, since they relate to the gravitational wave observations which may provide the unique fingerprint of black holes' existence. Besides the astrophysical interest, theoretically perturbations around black holes can be used as testing grounds to examine the proposed AdS/CFT and dS/CFT correspondence.
Nichols, David A; Chen, Yanbei; Lovelace, Geoffrey; Matthews, Keith D; Owen, Robert; Zhang, Fan; Thorne, Kip S
2012-01-01
In recent papers, we and colleagues have introduced a way to visualize the full vacuum Riemann curvature tensor using frame-drag vortex lines and their vorticities, and tidal tendex lines and their tendicities. We have also introduced the concepts of horizon vortexes and tendexes and 3-D vortexes and tendexes (regions where vorticities or tendicities are large). Using these concepts, we discover a number of previously unknown features of quasinormal modes of Schwarzschild and Kerr black holes. These modes can be classified by mode indexes (n,l,m), and parity, which can be electric [(-1)^l] or magnetic [(-1)^(l+1)]. Among our discoveries are these: (i) There is a near duality between modes of the same (n,l,m): a duality in which the tendex and vortex structures of electric-parity modes are interchanged with the vortex and tendex structures (respectively) of magnetic-parity modes. (ii) This near duality is perfect for the modes' complex eigenfrequencies (which are well known to be identical) and perfect on the ...
Ho, Pei-Ming
2016-01-01
Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.
Arsiwalla, Xerxes D
2009-01-01
We study the problem of spatially stabilising four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes kept in external fields we find that taking a continuum limit of Denef et al's multi-center solutions provides a supergravity description of such backgrounds within which a black hole can be trapped in a given volume. This is realised by levitating a black hole over a magnetic dipole base. We comment on how such a construction resembles a mechanical Levitron.
Neves, J C S
2015-01-01
In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass terms. Using linear constraints in the energy-momentum tensor, the solutions are either regular or singular. That is, with this approach, it is possible to generate singular black holes from regular black holes and vice versa. Moreover, contrary to the Bardeen and Hayward regular solutions, the regular deformed metrics may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.
Quantum tunneling radiation from self-dual black holes
Energy Technology Data Exchange (ETDEWEB)
Silva, C.A.S., E-mail: calex@fisica.ufc.br [Instituto Federal de Educação Ciência e Tecnologia da Paraíba (IFPB), Campus Campina Grande, Rua Tranquilino Coelho Lemos, 671, Jardim Dinamérica I (Brazil); Brito, F.A., E-mail: fabrito@df.ufcg.edu.br [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil)
2013-10-01
Black holes are considered as objects that can reveal quantum aspects of spacetime. Loop Quantum Gravity (LQG) is a theory that propose a way to model the quantum spacetime behavior revealed by a black hole. One recent prediction of this theory is the existence of sub-Planckian black holes, which have the interesting property of self-duality. This property removes the black hole singularity and replaces it with another asymptotically flat region. In this work, we obtain the thermodynamical properties of this kind of black holes, called self-dual black holes, using the Hamilton–Jacobi version of the tunneling formalism. Moreover, using the tools of the tunneling approach, we investigate the emission spectrum of self-dual black holes, and investigate if some information about the black hole initial state can be recovered during the evaporation process. Back-reaction effects are included.
Quantum tunneling radiation from self-dual black holes
Silva, C. A. S.; Brito, F. A.
2013-10-01
Black holes are considered as objects that can reveal quantum aspects of spacetime. Loop Quantum Gravity (LQG) is a theory that propose a way to model the quantum spacetime behavior revealed by a black hole. One recent prediction of this theory is the existence of sub-Planckian black holes, which have the interesting property of self-duality. This property removes the black hole singularity and replaces it with another asymptotically flat region. In this work, we obtain the thermodynamical properties of this kind of black holes, called self-dual black holes, using the Hamilton-Jacobi version of the tunneling formalism. Moreover, using the tools of the tunneling approach, we investigate the emission spectrum of self-dual black holes, and investigate if some information about the black hole initial state can be recovered during the evaporation process. Back-reaction effects are included.
International Nuclear Information System (INIS)
Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for instance, the UK
Observing Black Holes: Quasi-Periodic Oscillations
Aliev, Alikram N; Talazan, Pamir
2012-01-01
The twin peaks high-frequency quasiperiodic oscillations (QPOs), which are observed in a number of black hole binaries, can be related to the epicyclic frequencies of the geodesic motion, thereby providing a testing ground for the spacetime geometry near the black holes. In this paper, we explore some observable effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: the orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, for which the radial epicyclic frequency attains its highest value. We find that the values of the radial and vertical epicyclic frequencies at particular orbits are in good qualitative agreement with the observed frequencies of the twin peaks QPOs...
Entropy Correction for Kerr Black Hole
Institute of Scientific and Technical Information of China (English)
ZHAO Ren; ZHANG Sheng-Li
2005-01-01
In this paper, we discuss leading-order corrections to the entropy of Kerr black hole due to thermal fluctuations in the finite cavity. Then temperature is constant, the solution of the black hole is obtained within a cavity, that is, the solution of the spacetime after considering the radiation of the black hole. Therefore, we derive that the location of the black hole horizon and specific heat are the functions of temperature and the radius of the cavity.Corrections to entropy also are related to the radius of the cavity. Through calculation, we obtain conditions of taking the value of the cavity's radius. We provide a new way for studying the corrections of complicated spacetimes.
Asymptotically hyperbolic black holes in Horava gravity
Janiszewski, Stefan
2014-01-01
Solutions of Hořava gravity that are asymptotically Lifshitz are explored. General near boundary expansions allow the calculation of the mass of these spacetimes via a Hamiltonian method. Both analytic and numeric solutions are studied which exhibit a causal boundary called the universal horizon, and are therefore black holes of the theory. The thermodynamics of an asymptotically Anti-de Sitter Hořava black hole are verified.
Holographic actions from black hole entropy
Caravelli, Francesco; Modesto, Leonardo
2010-01-01
Using the Wald's relation between the Noether charge of diffeomorphisms and the entropy for a generic spacetime possessing a bifurcation surface, we introduce a method to obtain a family of higher order derivatives effective actions from the entropy of black holes. Our point of view is to consider fundamental the black hole entropy and the action an emerged object. We then specialize to a particular class of effective theories: the f(R) theories. We apply the idea, using a simple mind ansatz,...
DEFF Research Database (Denmark)
Kragh, Helge Stjernholm
2016-01-01
Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....
Noncommutative Singular Black Holes
International Nuclear Information System (INIS)
In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t - r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.
Noncommutative Singular Black Holes
Hamid Mehdipour, S.
2010-11-01
In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t — r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.
Indian Academy of Sciences (India)
Koustubh Ajit Kabe
2012-09-01
In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics. Nine fundamental black hole dynamical relations have been developed akin to the four fundamental thermodynamic relations of Maxwell. The specific heats , and , have been defined. For a black hole, these quantities are negative. The d equation has been obtained as an application of these fundamental relations. Time reversible processes observing constancy of surface gravity are considered and an equation connecting the internal energy of the black hole , the additional available energy defined as the first free energy function , and the surface gravity , has been obtained. Finally as a further application of the fundamental relations, it has been proved for a homogeneous gravitational field in black hole space times or a de Sitter black hole that $C_{\\Omega,\\Phi}-C_{J,Q}=\\kappa \\left[\\left(\\dfrac{\\partial J}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial \\Omega}{\\partial \\kappa}\\right)_{J,Q}+\\left(\\dfrac{\\partial Q}{\\partial \\kappa}\\right)_{\\Omega,\\Phi}\\left(\\dfrac{\\partial\\Phi}{\\partial \\kappa}\\right)_{J,Q}\\right]$. This is dubbed as the homogeneous fluid approximation in context of the black holes.
Cosmological production of noncommutative black holes
International Nuclear Information System (INIS)
We investigate the pair creation of noncommutative black holes in a background with a positive cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild-de Sitter solution. By varying the mass and the cosmological constant parameters, we find several spacetimes compatible with the new solution: positive-mass spacetimes admit one cosmological horizon and two, one, or no black hole horizons, while negative-mass spacetimes have just a cosmological horizon. These new black holes share the properties of the corresponding asymptotically flat solutions, including the nonsingular core and thermodynamic stability in the final phase of the evaporation. As a second step we determine the action which generates the matter sector of gravitational field equations and we construct instantons describing the pair production of black holes and the other admissible topologies. As a result we find that for current values of the cosmological constant the de Sitter background is quantum mechanically stable according to experience. However, positive-mass noncommutative black holes and solitons would have plentifully been produced during inflationary times for Planckian values of the cosmological constant. As a special result we find that, in these early epochs of the Universe, Planck size black holes production would have been largely disfavored. We also find a potential instability for production of negative-mass solitons.
Cosmological production of noncommutative black holes
Mann, Robert B.; Nicolini, Piero
2011-09-01
We investigate the pair creation of noncommutative black holes in a background with a positive cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild-de Sitter solution. By varying the mass and the cosmological constant parameters, we find several spacetimes compatible with the new solution: positive-mass spacetimes admit one cosmological horizon and two, one, or no black hole horizons, while negative-mass spacetimes have just a cosmological horizon. These new black holes share the properties of the corresponding asymptotically flat solutions, including the nonsingular core and thermodynamic stability in the final phase of the evaporation. As a second step we determine the action which generates the matter sector of gravitational field equations and we construct instantons describing the pair production of black holes and the other admissible topologies. As a result we find that for current values of the cosmological constant the de Sitter background is quantum mechanically stable according to experience. However, positive-mass noncommutative black holes and solitons would have plentifully been produced during inflationary times for Planckian values of the cosmological constant. As a special result we find that, in these early epochs of the Universe, Planck size black holes production would have been largely disfavored. We also find a potential instability for production of negative-mass solitons.
Lifshitz Topological Black Holes
Mann, R B
2009-01-01
I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.
Evolution of massive black holes
Volonteri, Marta
2007-01-01
Supermassive black holes are nowadays believed to reside in most local galaxies. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I'll discuss black hole formation processes that are likely to place at early cosmic epochs, and how massive black hole evolve in a hierarchical Universe...
Fan, Zhong-Ying
2016-09-01
In this paper, we consider Einstein gravity coupled to a vector field, either minimally or non-minimally, together with a vector potential of the type V = 2{Λ}_0+1/2{m}^2{A}^2 + {γ}_4{A}^4 . For a simpler non-minimally coupled theory with Λ0 = m = γ4 = 0, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first law of the extremal black holes is modified by a one form associated with the vector field. In particular, due to the existence of the non-minimal coupling, the vector forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first law. For a minimally coupled theory with Λ0 ≠ 0, we also obtain one class of asymptotically flat extremal black hole solutions in general dimensions. This is possible because the parameters ( m 2 , γ4) take certain values such that V = 0. In particular, we find that the vector also forms thermodynamic conjugates with the graviton mode and contributes to the corresponding first law, although the non-minimal coupling has been turned off. Thus all the extremal black hole solutions that we obtain provide highly non-trivial examples how the first law of thermodynamics can be modified by a either minimally or non-minimally coupled vector field. We also study Gauss-Bonnet gravity non-minimally coupled to a vector and obtain asymptotically flat black holes and Lifshitz black holes.
Entropic gravity from noncommutative black holes
Nunes, Rafael C; Barboza, Edésio M; Abreu, Everton M C; Neto, Jorge Ananias
2016-01-01
In this paper we will investigate the effects of a noncommutative (NC) space-time on the dynamics of the universe. We will generalize the black hole entropy formula for a NC black hole. Then, using the entropic gravity formalism, we will show that the noncommutativity changes the strength of the gravitational field. By applying this result to a homogeneous and isotropic universe containing nonrelativistic matter and a cosmological constant, we will show that the model modified by the noncommutativity of the space-time is a better fit to the obtained data than the standard one.
Dynamics in the Charged Time Conformal Schwarzschild Black Hole
Jawad, Abdul; Shahzad, M Umair; Abbas, G
2016-01-01
In this work, we present the new technique for discussing the dynamical motion of neutral as well as charged particles in the absence/presence of magnetic field around the time conformal Schwarzschild black hole. Initially, we find the numerical solutions of geodesics of Schwarzschild black hole and the time conformal Schwarzschild black hole. We observe that the Schwarzschild spacetime admits the time conformal factor $e^{\\epsilon f(t)}$, where $f(t)$ is an arbitrary function and $\\epsilon$ is very small which causes the perturbation in the spacetimes. This technique also re-scale the energy content of spacetime. We also investigate the thermal stability, horizons and energy conditions corresponding time conformal Schwarzschild spacetime. Also, we examine the dynamics of neutral and charged particle around time conformal Schwarzschild black hole. We investigate the circumstances under which the particle can escape from vicinity of black hole after collision with another particle. We analyze the effective pot...
Thermodynamics of charged Lovelock: AdS black holes
Energy Technology Data Exchange (ETDEWEB)
Prasobh, C.B.; Suresh, Jishnu; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Cochin (India)
2016-04-15
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)
Thermodynamics of charged Lovelock: AdS black holes
Prasobh, C. B.; Suresh, Jishnu; Kuriakose, V. C.
2016-04-01
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.
Thermodynamics of charged Lovelock: AdS black holes
International Nuclear Information System (INIS)
We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second-order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime. (orig.)
Electrogeodesics in the di-hole Majumdar-Papapetrou spacetime
Ryzner, Jiří; Žofka, Martin
2015-10-01
We investigate the (electro-)geodesic structure of the Majumdar-Papapetrou solution representing static charged black holes in equilibrium. We assume only two point sources, thus imparting spacetime axial symmetry. We study electrogeodesics both on and off the equatorial plane and explore the stability of circular trajectories via the geodesic deviation equation. In contrast to the classical Newtonian situation, we find regions of spacetime admitting two different angular frequencies for a given radius of the circular electrogeodesic. We look both at the weak- and near-field limits of the solution. We use analytic as well as numerical methods in our approach.
Ahn, Eun-Joo; Cavaglia, Marco
2003-01-01
Production of high-energy gravitational objects is a common feature of gravitational theories. The primordial universe is a natural setting for the creation of black holes and other nonperturbative gravitational entities. Cosmic black holes can be used to probe physical properties of the very early universe which would usually require the knowledge of the theory of quantum gravity. They may be the only tool to explore thermalisation of the early universe. Whereas the creation of cosmic black ...
On the thermodynamics of Lifshitz black holes
Devecioglu, Deniz Olgu
2011-01-01
We apply the recently extended conserved Killing charge definition of Abbott-Deser-Tekin formalism to compute, for the first time, the energies of analytic Lifshitz black holes in higher dimensions. We then calculate the temperature and the entropy of this large family of solutions and find that imposing the first law of black hole thermodynamics puts, sometimes severe, extra constraints on the allowed values of the dynamical exponent, which is a characteristic of these spacetimes. Separately, we also apply the generalized Killing charge definition to compute the energy and the angular momentum of the warped AdS_3 black hole solution of the three-dimensional New Massive Gravity theory.
Stationary Black Holes: Uniqueness and Beyond
Directory of Open Access Journals (Sweden)
Piotr T. Chruściel
2012-05-01
Full Text Available The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.
Stationary Black Holes: Uniqueness and Beyond
Directory of Open Access Journals (Sweden)
Heusler Markus
1998-01-01
Full Text Available The spectrum of known black hole solutions to the stationary Einstein equations has increased in an unexpected way during the last decade. In particular, it has turned out that not all black hole equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black hole space-times ceases to exist in self-gravitating non-linear field theories. This text aims to review some of the recent developments and to discuss them in the light of the uniqueness theorem for the Einstein-Maxwell system.
BTZ black holes inspired by noncommutative geometry
Rahaman, Farook; Kuhfittig, P. K. F.; Bhui, B. C.; Rahaman, Mosiur; Ray, Saibal; Mondal, U. F.
2013-04-01
In this paper, a Bañados-Teitelboim-Zanelli (BTZ) black hole [Phys. Rev. Lett. 69, 1849 (1992)] is constructed from an exact solution of the Einstein field equations in a (2+1)—dimensional anti—de Sitter spacetime in the context of noncommutative geometry. The BTZ black hole turns out to have either two horizons, no horizon, or a single horizon corresponding to a minimal mass. Certain thermodynamical properties are investigated, including Hawking temperature, entropy, and heat capacity. Also discussed is the geodesic structure of BTZ black holes for both massless and massive particles. In particular, it is shown that bound orbits for test particles are possible.
BTZ black holes inspired by noncommutative geometry
Rahaman, Farook; Bhui, B C; Rahaman, Masiur; Ray, Saibal; Mondal, U F
2013-01-01
In this paper a Banados, Teitelboim and Zanelli (BTZ) black hole is constructed from an exact solution of the Einstein field equations in a (2+1)-dimensional anti-de Sitter spacetime in the context of noncommutative geometry. The BTZ black hole turns out to have two horizons, no horizon or a single horizon corresponding to a minimal mass. Certain thermodynamical properties are investigated, including Hawking temperature, entropy and heat capacity. Also discussed is the geodesic structure of BTZ black holes for both massless and massive particles. In particular, it is shown that bound orbits for test particles are possible.
Black holes and stars in Horndeski theory
Babichev, Eugeny; Charmousis, Christos; Lehébel, Antoine
2016-08-01
We review black hole and star solutions for Horndeski theory. For non-shift symmetric theories, black holes involve a Kaluza-Klein reduction of higher dimensional Lovelock solutions. On the other hand, for shift symmetric theories of Horndeski and beyond Horndeski, black holes involve two classes of solutions: those that include, at the level of the action, a linear coupling to the Gauss-Bonnet term and those that involve time dependence in the galileon field. We analyze the latter class in detail for a specific subclass of Horndeski theory, discussing the general solution of a static and spherically symmetric spacetime. We then discuss stability issues, slowly rotating solutions as well as black holes coupled to matter. The latter case involves a conformally coupled scalar field as well as an electromagnetic field and the (primary) hair black holes thus obtained. We review and discuss the recent results on neutron stars in Horndeski theories.
An electromagnetic black hole made of metamaterials
Cheng, Qiang
2009-01-01
Traditionally, a black hole is a region of space with huge gravitational field in the means of general relativity, which absorbs everything hitting it including the light. In general relativity, the presence of matter-energy densities results in the motion of matter propagating in a curved spacetime1, which is similar to the electromagnetic-wave propagation in a curved space and in an inhomogeneous metamaterial2. Hence one can simulate the black hole using electromagnetic fields and metamaterials. In a recent theoretical work, an optical black hole has been proposed based on metamaterials, in which the numerical simulations showed a highly efficient light absorption3. Here we report the first experimental demonstration of electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can absorb electromagnetic waves efficiently coming from all directions due to the local control of electromagnetic fields. Hence the elect...
Black holes and stars in Horndeski theory
Babichev, Eugeny; Lehébel, Antoine
2016-01-01
We review black hole and star solutions for Horndeski theory. For non-shift symmetric theories, black holes involve a Kaluza-Klein reduction of higher dimensional Lovelock solutions. On the other hand, for shift symmetric theories of Horndeski and beyond Horndeski, black holes involve two classes of solutions: those that include, at the level of the action, a linear coupling to the Gauss-Bonnet term and those that involve time dependence in the galileon field. We analyze the latter class in detail for a specific subclass of Horndeski theory, discussing the general solution of a static and spherically symmetric spacetime. We then discuss stability issues, slowly rotating solutions as well as black holes coupled to matter. The latter case involves a conformally coupled scalar field as well as an electromagnetic field and the (primary) hair black holes thus obtained. We review and discuss the recent results on neutron stars in Horndeski theories.
Black holes in Asymptotically Safe Gravity
Saueressig, Frank; D'Odorico, Giulio; Vidotto, Francesca
2015-01-01
Black holes are among the most fascinating objects populating our universe. Their characteristic features, encompassing spacetime singularities, event horizons, and black hole thermodynamics, provide a rich testing ground for quantum gravity ideas. In this note we observe that the renormalization group improved Schwarzschild black holes constructed by Bonanno and Reuter within Weinberg's asymptotic safety program constitute a prototypical example of a Hayward geometry used to model non-singular black holes within quantum gravity phenomenology. Moreover, they share many features of a Planck star: their effective geometry naturally incorporates the one-loop corrections found in the effective field theory framework, their Kretschmann scalar is bounded, and the black hole singularity is replaced by a regular de Sitter patch. The role of the cosmological constant in the renormalization group improvement process is briefly discussed.
Black Holes and Exotic Spinors
Directory of Open Access Journals (Sweden)
J. M. Hoff da Silva
2016-05-01
Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.
Black Hole Critical Phenomena Without Black Holes
Liebling, S L
2000-01-01
Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.
Superrotations and Black Hole Pair Creation
Strominger, Andrew
2016-01-01
Recent work has shown that the symmetries of classical gravitational scattering in asymptotically flat spacetimes include, at the linearized level, infinitesimal superrotations. These act like Virasoro generators on the celestial sphere at null infinity. However, due to the singularities in these generators, the physical status of finite superrotations has remained unclear. Here we address this issue in the context of the breaking of a cosmic string via quantum black hole pair nucleation. This process is described by a gravitational instanton known as the $C$-metric. After pair production, the black holes are pulled by the string to null infinity with a constant acceleration. At late times the string decays and the spacetime settles into a vacuum state. We show that the early and late spacetimes before and after string decay differ by a finite superrotation. This provides a physical interpretation of superrotations. They act on spacetimes which are asymptotically flat everywhere except at isolated singulariti...
Quantum-gravity fluctuations and the black-hole temperature
International Nuclear Information System (INIS)
Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum. (orig.)
Quantum-gravity fluctuations and the black-hole temperature
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)
2015-05-15
Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum. (orig.)
Fan, Zhong-Ying
2016-01-01
In this paper, we consider Einstein gravity coupled to a Proca field, either minimally or non-minimally, together with a vector potential of the type $V=2\\Lambda_0+ m^2 A^2/2 + \\gamma_4 A^4$. For a simpler non-minimally coupled theory with $\\Lambda_0=m=\\gamma_4=0$, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find that the thermodynamical first laws of the extremal black holes are modified by a one form associated with the Proca. In particular, due to the existence of the non-minimal coupling, the Proca forms thermodynamic conjugates with the graviton mode and partly contributes to the one form modifying the first laws. For a minimally coupled theory with $\\Lambda_0\
On the Moller Energy Associated with Black Holes
Salti, M; Salti, Mustafa; Aydogdu, Oktay
2006-01-01
In this paper, we consider both Einstein's theory of general relativity and the teleparallel gravity (the tetrad theory of gravitation) analogs of the energy-momentum definition of M{\\o}ller in order to explicitly evaluate the energy distribution (due to matter and fields including gravity) associated with a general black hole model which includes several well-known black holes. To calculate the special cases of energy distribution, here we consider eight different types of black hole models such as anti-de Sitter C-metric with spherical topology, charged regular black hole, conformal scalar dyon black hole, dyadosphere of a charged black hole, regular black hole, charged topological black hole, charged massless black hole with a scalar field, and the Schwarzschild-de Sitter space-time. Our teleparallel gravitational result is also independent of the teleparallel dimensionless coupling constant, which means that it is valid not only in teleparallel equivalent of general relativity but also in any teleparallel...
Covariant Perturbations of Schwarzschild Black Holes
Clarkson, Chris A.; Barrett, Richard K.
2002-01-01
We present a new covariant and gauge-invariant perturbation formalism for dealing with spacetimes having spherical symmetry (or some preferred spatial direction) in the background, and apply it to the case of gravitational wave propagation in a Schwarzschild black hole spacetime. The 1+3 covariant approach is extended to a `1+1+2 covariant sheet' formalism by introducing a radial unit vector in addition to the timelike congruence, and decomposing all covariant quantities with respect to this....
Probing strong-field general relativity near black holes
CERN. Geneva; Alvarez-Gaumé, Luís
2005-01-01
Nature has sprinkled black holes of various sizes throughout the universe, from stellar mass black holes in X-ray sources to supermassive black holes of billions of solar masses in quasars. Astronomers today are probing the spacetime near black holes using X-rays, and gravitational waves will open a different view in the near future. These tools give us an unprecedented opportunity to test ultra-strong-field general relativity, including the fundamental theorem of the uniqueness of the Kerr metric and Roger Penrose's cosmic censorship conjecture. Already, fascinating studies of spectral lines are showing the extreme gravitational lensing effects near black holes and allowing crude measurements of black hole spin. When the ESA-NASA gravitational wave detector LISA begins its observations in about 10 years, it will make measurements of dynamical spacetimes near black holes with an accuracy greater even than that which theoreticians can reach with their computations today. Most importantly, when gravitational wa...
Kleihaus, Burkhard; Yazadjiev, Stoytcho
2015-01-01
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Energy Technology Data Exchange (ETDEWEB)
Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)
2015-05-11
In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Directory of Open Access Journals (Sweden)
Burkhard Kleihaus
2015-05-01
Full Text Available In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
International Nuclear Information System (INIS)
In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn
Fan, Zhong-Ying
2016-01-01
In this paper, we consider Einstein gravity coupled to a vector field, either minimally or non-minimally, together with a vector potential of the type $V=2\\Lambda_0+\\ft 12 m^2 A^2+\\gamma_4 A^4$. For a simpler non-minimally coupled theory with $\\Lambda_0=m=\\gamma_4=0$, we obtain both extremal and non-extremal black hole solutions that are asymptotic to Minkowski space-times. We study the global properties of the solutions and derive the first law of thermodynamics using Wald formalism. We find...
Tunnelling, temperature, and Taub-NUT black holes
Kerner, Ryan; Mann, R. B.
2006-05-01
We investigate quantum tunnelling methods for calculating black hole temperature, specifically the null-geodesic method of Parikh and Wilczek and the Hamilton-Jacobi Ansatz method of Angheben et al. We consider application of these methods to a broad class of spacetimes with event horizons, inlcuding Rindler and nonstatic spacetimes such as Kerr-Newman and Taub-NUT. We obtain a general form for the temperature of Taub-NUT-AdS black holes that is commensurate with other methods. We examine the limitations of these methods for extremal black holes, taking the extremal Reissner-Nordstrom spacetime as a case in point.
Tunnelling, Temperature and Taub-NUT Black Holes
Kerner, R; Kerner, Ryan
2006-01-01
We investigate quantum tunnelling methods for calculating black hole temperature, specifically the null geodesic method of Parikh and Wilczek and the Hamilton-Jacobi Ansatz method of Angheben et al. We consider application of these methods to a broad class of spacetimes with event horizons, inlcuding Rindler and non-static spacetimes such as Kerr-Newman and Taub-NUT. We obtain a general form for the temperature of Taub-NUT-Ads black holes that is commensurate with other methods. We examine the limitations of these methods for extremal black holes, taking the extremal Reissner-Nordstrom spacetime as a case in point.
On Noncommutative Black Holes Thermodynamics
Faizal, Mir; Ulhoa, S C
2015-01-01
In this paper, we will analyze noncommutative deformation of the Schwarzschild black holes and Kerr black holes. We will perform our analysis by relating the commutative and the noncommutative metrics using an Moyal product. We will also analyze the thermodynamics of these noncommutative black hole solutions. We will explicitly derive expression for the corrected entropy and temperature of these black hole solutions.
The Thermodynamics of Black Holes
Directory of Open Access Journals (Sweden)
Wald Robert M.
2001-01-01
Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.
Ruffini, Remo; Wheeler, John A.
1971-01-01
discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)
Topics in black hole evaporation
International Nuclear Information System (INIS)
Two major aspects of particle creation by gravitational fields of black holes are studied: the neutrino emission from rotating black holes; and interactions between scalar particles emitted by a black hole. Neutrino emission is investigated under three topics: The asymmetry of the angular dependence of neutrino emission from rotating black holes; the production of a local matter excess by rotating black holes in a baryon symmetric universe; and cosmological magnetic field generation by neutrinos from evaporating black holes. Finally the author studies the effects of interactions on the black hole evaporation process
Observational Evidences of Black Hole Universe
Zhang, Tianxi
2010-01-01
Recently, the author has proposed an alternative cosmological model called black hole universe. According to this model, the universe originated from a hot star-like black hole with several solar masses, and gradually grew up through a supermassive black hole with billion solar masses to the present state with hundred billion-trillion solar masses by accreting ambient materials and merging with other black holes. The entire space is structured with an infinite number of layers hierarchically. The innermost three layers are the universe that we are living, the outside called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and a zero limit for both the mass density and absolute temperature. The relationships among all layers or universes can be connected by a universe family tree. The entire space can be represented as a set of all universes. All layers or universes are governed by the same physics, the Einstein general theory of relativity with the Robertson-Walker metric of spacetime, and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. This presentation will demonstrate the observational evidences of the black hole universe in terms of the universe expansion, star-like and supermassive black holes, galactic evolutions, quasars, background radiation, and large scale structure. We will also compare the black hole universe with the big bang cosmology.
Stornaiolo, Cosimo
2001-01-01
In this paper we propose a model for the formation of the cosmological voids. We show that cosmological voids can form directly after the collapse of extremely large wavelength perturbations into low-density black holes or cosmological black holes (CBH). Consequently the voids are formed by the comoving expansion of the matter that surrounds the collapsed perturbation. It follows that the universe evolves, in first approximation, according to the Einstein-Straus cosmological model. We discuss...
International Nuclear Information System (INIS)
No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references
Govindarajan, T R
2016-01-01
Novel bound states are obtained for manifolds with singular potentials. These singular potentials require proper boundary conditions across boundaries. The number of bound states match nicely with what we would expect for black holes. Also they serve to model membrane mechanism for the black hole horizons in simpler contexts. The singular potentials can also mimic expanding boundaries elegantly, there by obtaining appropriately tuned radiation rates.
Black hole critical phenomena without black holes
Indian Academy of Sciences (India)
Steven L Liebling
2000-10-01
Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I brieﬂy review critical phenomena, discuss some recent results, and describe a model which demonstrates similar phenomena without gravity.
Hawking Temperature of Acoustic Black Hole
Indian Academy of Sciences (India)
Zhi Kun Xie
2014-09-01
Using a new tortoise coordinate transformation, the Hawking radiation of the acoustic black hole was discussed by studying the Klein–Gordon equation of scalar particles in the curve space-time. It was found that the Hawking temperature is connected with time and position on the event horizon.
Ultramassive Black Hole Coalescence
Khan, Fazeel; Berczik, Peter
2015-01-01
Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gr...
Science Teacher, 2005
2005-01-01
Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…
Cosmic censorship inside black holes
Thorlacius, L
2006-01-01
A simple argument is given that a traversable Cauchy horizon inside a black hole is incompatible with unitary black hole evolution. The argument assumes the validity of black hole complementarity and applies to a generic black hole carrying angular momentum and/or charge. In the second part of the paper we review recent work on the semiclassical geometry of two-dimensional charged black holes.
Instability of black holes with a Gauss-Bonnet term
Energy Technology Data Exchange (ETDEWEB)
Ahn, Wha-Keun; Gwak, Bogeun; Lee, Wonwoo [Sogang University, Center for Quantum Spacetime, Seoul (Korea, Republic of); Lee, Bum-Hoon [Sogang University, Center for Quantum Spacetime, Seoul (Korea, Republic of); Sogang University, Department of Physics, Seoul (Korea, Republic of); Asia Pacific Center for Theoretical Physics, Pohang (Korea, Republic of)
2015-08-15
We investigate the fragmentation instability of hairy black holes in the theory with a Gauss-Bonnet (GB) term in asymptotically flat spacetime. Our approach is through the non-perturbative fragmentation instability. By this approach, we investigate whether the initial black hole can be broken into two black holes by comparing the entropy of the initial black hole with the sum of those of two fragmented black holes. The relation between the black hole instability and the GB coupling with dilaton hair are presented. We describe the phase diagrams with respect to the mass of the black hole solutions and coupling constants. We find that a perturbatively stable black hole can be unstable under fragmentation. (orig.)
Instability of black holes with a Gauss-Bonnet term
International Nuclear Information System (INIS)
We investigate the fragmentation instability of hairy black holes in the theory with a Gauss-Bonnet (GB) term in asymptotically flat spacetime. Our approach is through the non-perturbative fragmentation instability. By this approach, we investigate whether the initial black hole can be broken into two black holes by comparing the entropy of the initial black hole with the sum of those of two fragmented black holes. The relation between the black hole instability and the GB coupling with dilaton hair are presented. We describe the phase diagrams with respect to the mass of the black hole solutions and coupling constants. We find that a perturbatively stable black hole can be unstable under fragmentation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
NONE
2002-02-01
Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for
Rotating black hole solutions with quintessential energy
Toshmatov, Bobir; Ahmedov, Bobomurat
2015-01-01
Quintessential dark energy with density $\\rho$ and pressure $p$ is governed by an equation of state of the form $p=-\\omega_{q}\\rho$ with the quintessential parameter $\\omega_q\\in(-1;-1/3)$. We derive the geometry of quintessential rotating black holes, generalizing thus the Kerr spacetimes. Then we study the quintessential rotating black hole spacetimes with the special value of $\\omega_q = -2/3$ when the resulting formulae are simple and easily tractable. We show that such special spacetimes can exist for dimensionless quintessential parameter $c<1/6$ and determine the critical rotational parameter $a_0$ separating the black hole and naked singularity spacetime in dependence on the quintessential parameter $c$. For the spacetimes with $\\omega_q = 2/3$ we present the integrated geodesic equations in separated form and study in details the circular geodetical orbits. We give radii and parameters of the photon circular orbits, marginally bound and marginally stable orbits. We stress that the outer boundary o...
Black hole as a wormhole factory
Kim, Sung-Won; Park, Mu-In
2015-12-01
There have been lots of debates about the final fate of an evaporating black hole and the singularity hidden by an event horizon in quantum gravity. However, on general grounds, one may argue that a black hole stops radiation at the Planck mass (ħc / G) 1 / 2 ∼10-5 g, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a wormhole-like structure, known as "spacetime foam", due to large fluctuations below the Planck length (ħG /c3) 1 / 2 ∼10-33 cm. In this paper, as an explicit example, we consider an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called "Black Wormhole", consists of two different states, depending on its mass parameter M and an IR parameter ω: For the black hole state (with ωM2 > 1 / 2), a non-traversable wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state (with ωM2 Censorship" by the existence of a wormhole-like structure which protects the naked singularity even after the black hole evaporation. One could understand the would-be wormhole inside the black hole horizon as the result of microscopic wormholes created by "negative" energy quanta which have entered the black hole horizon in Hawking radiation process; the quantum black hole could be a wormhole factory! It is found that this speculative picture may be consistent with the recent " ER = EPR " proposal for resolving the black hole entanglement debates.
Bak, Dongsu; Gutperle, Michael; Janik, Romuald A.
2011-10-01
In this paper Janus black holes in A dS 3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ blackhole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.
Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew
2016-06-10
It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.
Quantum Tunneling in Black Holes
Majhi, Bibhas Ranjan
2011-01-01
This thesis is focussed towards the applications of the quantum tunneling mechanism to study black holes. Here we give a general frame work of the existing tunneling mechanism, both the radial null geodesic and Hamilton Jacobi methods. On the radial null geodesic method side, we study the modifications to the tunneling rate, Hawking temperature and the Bekenstein- Hawking area law by including the back reaction as well as non-commutative effects in the space-time. A reformulation of the Hamilton-Jacobi (HJ) method is first introduced. Based on this, a close connection between the quantum tunneling and the gravitational anomaly mechanisms to discuss Hawking effect, is put forwarded. An interesting advantage of this reformulated HJ method is that one can get directly the emission spectrum from the event horizon of the black hole, which was missing in the earlier literature. Also, the quantization of the entropy and area of a black hole is discussed in this method. Another part of the thesis is the introduction ...
Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew
2016-06-10
It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units. PMID:27341223
Hawking, Stephen W; Strominger, Andrew
2016-01-01
It has recently been shown that BMS supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft ($i.e.$ zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This paper gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the ho...
Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew
2016-06-01
It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.
Twisted Black Hole Is Taub-NUT
Ong, Yen Chin
2016-01-01
Recently a purportedly novel solution of the vacuum Einstein field equations was discovered: it supposedly describes an asymptotically flat twisted black hole in 4-dimensions whose exterior spacetime rotates in a peculiar manner -- the frame dragging in the northern hemisphere is opposite from that of the southern hemisphere, which results in a globally vanishing angular momentum. Furthermore it was shown that the spacetime has no curvature singularity. We show that the geometry of this black hole spacetime is nevertheless not free of pathological features. In particular, it harbors a rather drastic conical singularity along the axis of rotation. In addition, there exist closed timelike curves due to the fact that the constant r and constant t surfaces are not globally Riemannian. In fact, none of these are that surprising since the solution is just the Taub-NUT geometry.
Eternal black holes and quasilocal energy
Frolov, V; Valeri Frolov; Erik A Martinez
1994-01-01
We present the gravitational action and Hamiltonian for a spatially bounded region of an eternal black hole. The Hamiltonian is of the general form H=H_{+} - H_{-}, where H_{+} and H_{-} are respectively the Hamiltonians for the regions M_+ and M_- located in the left and right wedges of the spacetime. We construct explicitly the quasilocal energy for the system and discuss its dependence on the time direction induced at the boundaries of the manifold. This paper extends the analysis of Ref.~[1] to spacetimes possesing a bifurcation surface and two timelike boundaries. The construction suggests that an interpretation of black hole thermodynamics based on thermofield dynamics ideas can be generalized beyond perturbations to the gravitational field itself of a bounded spacetime region (based on the talk presented by E.A. Martinez at the Lake Louise Winter School on Particle Physics and Cosmology, February 20-26, 1994.)
Regular phantom black holes as gravitational lenses
Eiroa, Ernesto F
2015-01-01
The distortion of the spacetime structure in the surroundings of black holes affects the trajectories of light rays. As a consequence, black holes can act as gravitational lenses. Observations of type Ia supernovas, show that our Universe is in accelerated expansion. The usual explanation is that the Universe is filled with a negative pressure fluid called dark energy, which accounts for 70 % of its total density, which can be modeled by a self-interacting scalar field with a potential. We consider a class of spherically symmetric regular phantom black holes as gravitational lenses. We study large deflection angles, using the strong deflection limit, corresponding to an asymptotic logarithmic approximation. In this case, photons passing close to the photon sphere of the black hole experiment several loops around it before they emerge towards the observer, giving place to two infinite sets of relativistic images. Within this limit, we find analytical expressions for the positions and the magnifications of thes...
Miao, Yan-Gang
2016-01-01
We investigate the $P-V$ criticality and the Maxwell equal area law for a five-dimensional spherically symmetric AdS black hole with a scalar hair in the absence of and in the presence of a Maxwell field, respectively. Especially in the charged case, we give the exact $P-V$ critical values. More importantly, we calculate the condition of validity of the Maxwell equal area law for the AdS hairy black hole in the scenarios without and with charges, respectively. Within the scope of validity of the Maxwell equal area law, we point out that there exists a representative van der Waals-type oscillation in the $P-V$ diagram. This oscillating part that indicates the phase transition from a small black hole to a large one can be replaced by an isobar. The small and large black holes share the same Gibbs free energy. Meanwhile, the latent heat is also calculated, which gives the energy released or absorbed between the small and large black hole phases in the isothermal-isobaric procedure.
Holographic probes of collapsing black holes
International Nuclear Information System (INIS)
We continue the programme of exploring the means of holographically decoding the geometry of spacetime inside a black hole using the gauge/gravity correspondence. To this end, we study the behaviour of certain extremal surfaces (focusing on those relevant for equal-time correlators and entanglement entropy in the dual CFT) in a dynamically evolving asymptotically AdS spacetime, specifically examining how deep such probes reach. To highlight the novel effects of putting the system far out of equilibrium and at finite volume, we consider spherically symmetric Vaidya-AdS, describing black hole formation by gravitational collapse of a null shell, which provides a convenient toy model of a quantum quench in the field theory. Extremal surfaces anchored on the boundary exhibit rather rich behaviour, whose features depend on dimension of both the spacetime and the surface, as well as on the anchoring region. The main common feature is that they reach inside the horizon even in the post-collapse part of the geometry. In 3-dimensional spacetime, we find that for sub-AdS-sized black holes, the entire spacetime is accessible by the restricted class of geodesics whereas in larger black holes a small region near the imploding shell cannot be reached by any boundary-anchored geodesic. In higher dimensions, the deepest reach is attained by geodesics which (despite being asymmetric) connect equal time and antipodal boundary points soon after the collapse; these can attain spacetime regions of arbitrarily high curvature and simultaneously have smallest length. Higher-dimensional surfaces can penetrate the horizon while anchored on the boundary at arbitrarily late times, but are bounded away from the singularity. We also study the details of length or area growth during thermalization. While the area of extremal surfaces increases monotonically, geodesic length is neither monotonic nor continuous
Black Hole Remnants in Hayward Solutions and Noncommutative Effects
Mehdipour, S. H.; Ahmadi, M. H.
2016-01-01
In this paper, we explore the final stages of the black hole evaporation for Hayward solutions. Our results show that the behavior of Hawking's radiation changes considerably at the small radii regime such that the black hole does not evaporate completely and a stable remnant is left. We analyse the effect that an inspired model of the noncommutativity of spacetime can have on the thermodynamics of Hayward spacetimes. This has been done by applying the noncommutative effects to the non-rotati...
Kay, Bernard S.; Lupo, Umberto
2016-11-01
We conjecture that (when the notion of Hadamard state is suitably adapted to spacetimes with timelike boundaries) there is no isometry-invariant Hadamard state for the massive or massless covariant Klein–Gordon equation defined on the region of the Kruskal spacetime to the left of a surface of constant Schwarzschild radius in the right Schwarzschild wedge when Dirichlet boundary conditions are put on that surface. We also prove that, with a suitable definition for ‘boost-invariant Hadamard state’ (which we call ‘strongly boost-invariant globally Hadamard’) which takes into account both the existence of the timelike boundary and the special infra-red pathology of massless fields in 1+1 dimensions, there is no such state for the massless wave equation on the region of 1+1 Minkowski space to the left of an eternally uniformly accelerating mirror—with Dirichlet boundary conditions at the mirror. We argue that this result is significant because, as we point out, such a state does exist if there is also a symmetrically placed decelerating mirror in the left wedge (and the region to the left of this mirror is excluded from the spacetime). We expect a similar existence result to hold for Kruskal when there are symmetrically placed spherical boxes in both right and left Schwarzschild wedges. Our Kruskal no-go conjecture raises basic questions about the nature of the black holes in boxes considered in black hole thermodynamics. If true, it would lend further support to the conclusion of Kay (2015 Gen. Relativ. Gravit. 47 1–27) that the nearest thing to a description of a black hole in equilibrium in a box in terms of a classical spacetime with quantum fields propagating on it has, for the classical spacetime, the exterior Schwarzschild solution, with the classical spacetime picture breaking down near the horizon. Appendix B to the paper points out the existence of, and partially fills, a gap in the proofs of the theorems in Kay and Wald (1991 Phys. Rep. 207 49
Path integrals, black holes and configuration space topology
Ortiz, M E
1999-01-01
A path integral derivation is given of a thermal propagator in a collapsing black-hole spacetime. The thermal nature of the propagator as seen by an inertial observer far from the black hole is understood in terms of homotopically non-trivial paths in the configuration space appropriate to tortoise coordinates.
Perturbative Approach to the Quasinormal Modes of Dirty Black Holes
Leung, P T; Suen, W M; Tam, C Y; Young, K
1999-01-01
Using a recently developed perturbation theory for uasinormal modes (QNM's), we evaluate the shifts in the real and imaginary parts of the QNM frequencies due to a quasi-static perturbation of the black hole spacetime. We show the perturbed QNM spectrum of a black hole can have interesting features using a simple model based on the scalar wave equation.
Coordinate independent approach to 5d black holes
Didenko, V E
2011-01-01
Five-dimensional generalization of (A)dS(5)-Kerr black hole is shown to be generated in a coordinate free way by a single AdS(5) global symmetry parameter. Its mass and angular momenta are associated to Casimir invariants of the background space-time symmetry parameter leading to the black hole classification scheme similar to that of relativistic fields resulting apart from ordinary black hole to "tachyonic" and "light-like" ones.
A Thousand Problems in Cosmology. Chapter 4: Black holes
Bolotin, Yu L; Zaslavskii, O B
2013-01-01
The fourth chapter of the collection of problems in cosmology, devoted to black holes. Consists of basic introduction, sections on Schwarzschild and Kerr black holes, a section on particles' motion and collisions in general black hole space-times, and the astrophysical part. This version contains only formulations of 137 problems. The full collection, with solutions included, is available in the form of a wiki-based resource at www.universeinproblems.com. The cosmological community is welcome to contribute to its development.
The fate of radiating black holes in noncommutative geometry
Piero NicoliniStefan I., Ljubljana & Turin Poly. & INFN, Trieste; Anais SmailagicINFN, Trieste; Euro SpallucciTrieste U. & INFN, Trieste
2014-01-01
We investigate the behavior of a radiating Schwarzschild black hole toy-model in a 2D noncommutative spacetime. It is shown that coordinate noncommutativity leads to: i) the existence of a minimal non-zero mass to which black hole can shrink; ii) a finite maximum temperature that the black hole can reach before cooling down to absolute zero; iii) the absence of any curvature singularity. The proposed scenario offers a possible solution to conventional difficulties when describing terminal pha...
A model of radiating black hole in noncommutative geometry
Nicolini, Piero
2005-01-01
The phenomenology of a radiating Schwarzschild black hole is analyzed in a noncommutative spacetime. It is shown that noncommutativity does not depend on the intensity of the curvature. Thus we legitimately introduce noncommutativity in the weak field limit by a coordinate coherent state approach. The new interesting results are the following: i) the existence of a minimal non-zero mass to which black hole can shrink; ii) a finite maximum temperature that the black hole can reach before cooli...
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
Black hole entropy quantization
Corichi, A; Fernandez-Borja, E; Corichi, Alejandro; Diaz-Polo, Jacobo; Fernandez-Borja, Enrique
2006-01-01
Ever since the pioneer works of Bekenstein and Hawking, black hole entropy has been known to have a quantum origin. Furthermore, it has long been argued by Bekenstein that entropy should be quantized in discrete (equidistant) steps given its identification with horizon area in (semi-)classical general relativity and the properties of area as an adiabatic invariant. This lead to the suggestion that black hole area should also be quantized in equidistant steps to account for the discrete black hole entropy. Here we shall show that loop quantum gravity, in which area is not quantized in equidistant steps can nevertheless be consistent with Bekenstein's equidistant entropy proposal in a subtle way. For that we perform a detailed analysis of the number of microstates compatible with a given area and show that an observed oscillatory behavior in the entropy-area relation, when properly interpreted yields an entropy that has discrete, equidistant values that are consistent with the Bekenstein framework.
Vaz, Cenalo; Wijewardhana, L. C. R.
2013-12-01
General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a "cold", stable remnant.
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids. PMID:25768746
International Nuclear Information System (INIS)
The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πc(ℎ/2π)), where Φ∞≅2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.
Institute of Scientific and Technical Information of China (English)
YANG Shu-Zheng; JIANG Qing-Quan; LI Hui-Ling
2006-01-01
Applying Parikh-Wilzcek's semi-classical quantum tunneling model, we study the Hawking radiation of charged particles as tunneling from the event horizon of a cylindrically symmetric black hole in anti-de Sitter space-time.The derived result shows that the tunneling rate of charged particles is related to the change of Bekenstein-Hawking entropy and that the radiation spectrum is not strictly pure thermal after taking the black hole background dynamical and self-gravitation interaction into account, but is consistent with the underlying unitary theory.
Good, Michael R R
2014-01-01
A $(3+1)$-dimensional asymptotically flat Kerr black hole angular speed $\\Omega_+$ can be used to define an effective spring constant, $k=m\\Omega_+^2$. Its maximum value is the Schwarzschild surface gravity, $k = \\kappa $, which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: $2\\pi T = \\kappa - k$. Hooke's law, in the extremal limit, provides the force $F = 1/4$, which is consistent with the conjecture of maximum force in general relativity.
Horndeski black hole geodesics
Tretyakova, D A
2016-01-01
We examine geodesics for the scalar-tensor black holes in the Horndeski-Galileon framework. Our analysis shows that first kind relativistic orbits may not be present within some model parameters range. This is a highly pathological behavior contradicting to the black hole accretion and Solar System observations. We also present a new (although very similar to those previously known) solution, which contains the orbits we expect from a compact object, admits regular scalar field at the horizon and and can fit into the known stability criteria.
Aarseth, Sverre J
2007-01-01
We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.
Modeling black hole evaporation
Fabbri, Alessandro
2005-01-01
The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.
Hennigar, Robie A; Tjoa, Erickson
2016-01-01
We present what we believe is the first example of a "$\\lambda$-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid $^4$He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
Implicit-explicit (IMEX) evolution of single black holes
Lau, Stephen R; Pfeiffer, Harald P
2011-01-01
Numerical simulations of binary black holes---an important predictive tool for the detection of gravitational waves---are computationally expensive, especially for binaries with high mass ratios or with rapidly spinning constituent holes. Existing codes for evolving binary black holes rely on explicit timestepping methods for which the timestep size is limited by the Courant-Friedrichs-Lewy condition. In explicit evolutions of binary black holes, the timestep size is typically orders of magnitude smaller than the relevant physical timescales. Implicit timestepping methods allow for larger timesteps and often reduce the total computational cost. However, fully implicit methods can be difficult to implement for nonlinear evolution systems like the Einstein equations. Therefore, in this paper we explore implicit-explicit (IMEX) methods and use them for the first time to evolve black-hole spacetimes. Specifically, as a first step toward IMEX evolution of a full binary-black-hole spacetime, we develop an IMEX algo...
Black hole as a wormhole factory
Directory of Open Access Journals (Sweden)
Sung-Won Kim
2015-12-01
Full Text Available There have been lots of debates about the final fate of an evaporating black hole and the singularity hidden by an event horizon in quantum gravity. However, on general grounds, one may argue that a black hole stops radiation at the Planck mass (ħc/G1/2∼10−5 g, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a wormhole-like structure, known as “spacetime foam”, due to large fluctuations below the Planck length (ħG/c31/2∼10−33 cm. In this paper, as an explicit example, we consider an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called “Black Wormhole”, consists of two different states, depending on its mass parameter M and an IR parameter ω: For the black hole state (with ωM2>1/2, a non-traversable wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state (with ωM2<1/2, the interior wormhole is exposed to an outside observer as the black hole horizon is disappearing from evaporation. The black hole state becomes thermodynamically stable as it approaches the merging point where the interior wormhole throat and the black hole horizon merges, and the Hawking temperature vanishes at the exact merge point (with ωM2=1/2. This solution suggests the “Generalized Cosmic Censorship” by the existence of a wormhole-like structure which protects the naked singularity even after the black hole evaporation. One could understand the would-be wormhole inside the black hole horizon as the result of microscopic wormholes created by “negative” energy quanta which have entered the black hole horizon in Hawking radiation process; the quantum black hole could be a wormhole factory! It is found that this speculative picture may be consistent with the
Black Hole as a Wormhole Factory
Kim, Sung-Won
2015-01-01
On general grounds, one may argue that a black hole stops radiation at the Planck mass, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a "wormhole-like" structure, known as "space-time foam", due to large fluctuations below the Planck length. In this paper, we show that there is actually an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called "Black Wormhole", consists of two different states, depending on its mass M and an IR parameter omega: For the black hole state, a wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state, the interior wormhole is exposed to an outside observer as the black hole horizon is disappeared from evaporation. The black hole state becomes thermodynamically stable as it approaches to the merg...
Lyutikov, Maxim; McKinney, Jonathan C.
2011-10-01
The “no-hair” theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively “frozen in” the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πcℏ), where Φ∞≈2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole’s magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.
Horowitz, Gary T.; Maldacena, Juan
2003-01-01
We propose that in quantum gravity one needs to impose a final state boundary condition at black hole singularities. This resolves the apparent contradiction between string theory and semiclassical arguments over whether black hole evaporation is unitary.
Quantum aspects of black holes
2015-01-01
Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.
Energy Technology Data Exchange (ETDEWEB)
Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)
2011-09-22
A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.
Growth of Primordial Black Holes
Harada, Tomohiro
Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.
Brick Walls for Nonstationary Black Holes
Institute of Scientific and Technical Information of China (English)
黎忠恒; 米丽琴; 赵峥
2002-01-01
The validity condition of the brick-wall model is analysed in nonstationary space time. It is shown that the model holds only in thin regions, only by using tortoise coordinates, near the event horizon of a slowly varying (quasi-stationary) black hole. The reason for the use of tortoise coordinates is that the stationary state solutions of quantum field equations in other coordinates do not exist for any region in nonstationary space-time. Meanwhile,the quantum corrections to the entropy of the Vaidya-Bonner black hole due to the spin fields are calculated in terms of the brick-wall model.
Einstein-Yang-Mills-Lorentz Black Holes
Cembranos, Jose A R
2015-01-01
Different black hole solutions of the coupled Einstein-Yang-Mills equations are well known from long time. They have attracted much attention from mathematicians and physicists from their discovery. In this work, we analyze black holes associated with the gauge Lorentz group. In particular, we study solutions which identify the gauge connection with the spin connection. This ansatz allows to find exact solutions to the complete system of equations. By using this procedure, we show the equivalence between the Yang-Mills-Lorentz model in curved space-time and a particular set of extended gravitational theories.
Chaotic Information Processing by Extremal Black Holes
Axenides, Minos; Nicolis, Stam
2015-01-01
We review an explicit regularization of the AdS$_2$/CFT$_1$ correspondence, that preserves all isometries of bulk and boundary degrees of freedom. This scheme is useful to characterize the space of the unitary evolution operators that describe the dynamics of the microstates of extremal black holes in four spacetime dimensions. Using techniques from algebraic number theory to evaluate the transition amplitudes, we remark that the regularization scheme expresses the fast quantum computation capability of black holes as well as its chaotic nature.
Black Hole Solutions in Rastall Theory
Heydarzade, Y; Darabi, F
2016-01-01
The Reissner-Nordstr\\"om black hole solution in a generic cosmological constant background in the the context of Rastall gravity is obtained. It is shown that the cosmological constant arises naturally from the consistency of the non-vacuum field equations of the Rastall theory for a spherical symmetric spacetime, rather than its {\\it ad-hoc} introduction in the usual Einstein and Einstein-Maxwell field equations. The usual Reissner-Nordstr\\"om, Schwarzschild and Schwarzschild-(anti)de Sitter black hole solutions in the framework of this theory are also addressed as the special independent subclasses of the obtained general solution.
Holographic actions from black hole entropy
Caravelli, Francesco
2010-01-01
Using the Wald's relation between the Noether charge of diffeomorphisms and the entropy for a generic spacetime possessing a bifurcation surface, we introduce a method to obtain a family of higher order derivatives effective actions from the entropy of black holes. Our point of view is to consider fundamental the black hole entropy and the action an emerged object. We then specialize to a particular class of effective theories: the f(R) theories. We apply the idea, using a simple mind ansatz, to loop quantum gravity and to a general class of log-corrected entropy formulas.
Horizon Supertranslation and Degenerate Black Hole Solution
Cai, Rong-Gen; Zhang, Yun-Long
2016-01-01
In this note we first review the degenerate vacua arising from the BMS symmetries. According to the discussion in [1] one can define BMS-analogous supertranslation and superrotation for spacetime with black hole in Gaussian null coordinates. In the leading and subleading orders of near horizon approximation, the infinitely degenerate black hole solutions are derived by considering Einstein equations with or without cosmological constant, and they are related to each other by the diffeomorphism generated by horizon supertranslation. Higher order results and degenerate Rindler horizon solutions also are given in appendices.
Black hole evaporation in an expanding universe
International Nuclear Information System (INIS)
We calculate the quantum radiation power of black holes which are asymptotic to the Einstein-de Sitter universe at spatial and null infinities. We consider two limiting mass accretion scenarios, no accretion and significant accretion. We find that the radiation power strongly depends on not only the asymptotic condition but also the mass accretion scenario. For the no accretion case, we consider the Einstein-Straus solution, where a black hole of constant mass resides in the dust Friedmann universe. We find negative cosmological correction besides the expected redshift factor. This is given in terms of the cubic root of ratio in size of the black hole to the cosmological horizon, so that it is currently of order 10-5(M/106Mo-dot)1/3(t/14Gyr)-1/3 but could have been significant at the formation epoch of primordial black holes. Due to the cosmological effects, this black hole has not settled down to an equilibrium state. This cosmological correction may be interpreted in an analogy with the radiation from a moving mirror in a flat spacetime. For the significant accretion case, we consider the Sultana-Dyer solution, where a black hole tends to increase its mass in proportion to the cosmological scale factor. In this model, we find that the radiation power is apparently the same as the Hawking radiation from the Schwarzschild black hole of which mass is that of the growing mass at each moment. Hence, the energy loss rate decreases and tends to vanish as time proceeds. Consequently, the energy loss due to evaporation is insignificant compared to huge mass accretion onto the black hole. Based on this model, we propose a definition of quasi-equilibrium temperature for general conformal stationary black holes
Black Hole Evaporation. A Survey
Benachenhou, Farid
1994-01-01
This thesis is a review of black hole evaporation with emphasis on recent results obtained for two dimensional black holes. First, the geometry of the most general stationary black hole in four dimensions is described and some classical quantities are defined. Then, a derivation of the spectrum of the radiation emitted during the evaporation is presented. In section four, a two dimensional model which has black hole solutions is introduced, the so-called CGHS model. These two dimensional blac...
Towards noncommutative quantum black holes
International Nuclear Information System (INIS)
In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole
Towards Noncommutative Quantum Black Holes
Lopez-Dominguez, J. C.; Obregon, O.; Ramirez, C.; Sabido, M.
2006-01-01
In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole.
Greybody factors for d-dimensional black holes
DEFF Research Database (Denmark)
Harmark, Troels; Natário, José; Schiappa, Ricardo
2010-01-01
Gravitational greybody factors are analytically computed for static, spherically symmetric black holes in d-dimensions, including black holes with charge and in the presence of a cosmological constant (where a proper definition of greybody factors for both asymptotically de Sitter and anti...... of the details of the black hole. For asymptotically de Sitter black holes the greybody factor is different for even or odd spacetime dimension, and proportional to the ratio of the areas of the event and cosmological horizons. For asymptotically Ads black holes the greybody factor has a rich structure in which...... universality is hidden in the transmission and reflection coefficients. For either charged or asymptotically de Sitter black holes the greybody factors are given by non-trivial functions, while for asymptotically Ads black holes the greybody factor precisely equals one (corresponding to pure blackbody emission...
Primordial Universe Inside the Black Hole and Inflation
Firouzjahi, Hassan
2016-01-01
We speculate that the early Universe was inside a primordial black hole. The interior of the the black hole is a dS background and the two spacetimes are separated on the surface of black hole's event horizon. We argue that this picture provides a natural realization of inflation without invoking the inflaton field. The black hole evaporation by Hawking radiation provides a natural mechanism for terminating inflation so reheating and the hot big bang cosmology starts from the evaporation of black hole to relativistic particles. The quantum gravitational fluctuations at the boundary of black hole generate the nearly scale invariant scalar and tensor perturbations with the ratio of tensor to scalar power spectra at the order of $10^{-3}$. As the black hole evaporates, the radius of its event horizon shrinks and the Hubble expansion rate during inflation increases slowly so the quantum Hawking radiation provides a novel mechanism for the violation of null energy condition in cosmology.
Radiation spectrum of a high-dimensional rotating black hole
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
This study extends the classical Damour-Ruffini method and discusses Hawking radiation in a (n + 4)-dimensional rotating black hole. Under the condition that the total energy and angular momentum of spacetime are conservative, but angular momentum a = J/M of unit mass of the black hole is variable, taking into consideration the reaction of the radiation of the particle to the spacetime, a new Tortoise coordinate transformation and discuss the black hole radiation spectrum is discussed. The radiation spectrum that satisfies the unitary principle in the general case is derived.
Black Hole Ringing, Quasinormal Modes, and Light Rings
Khanna, Gaurav
2016-01-01
Modelling of gravitational waves from binary black hole inspiral has played an important role in the recent observations of such signals. The late-stage ringdown phase of the gravitational waveform is often associated with the null particle orbit (\\light ring") of the black hole spacetime. With simple models we show that this link between the light ring and spacetime ringing is based more on the history of applications than on an actual constraining relationship. We also show, in particular, that a better understanding of the disassociation between the two, may be relevant to the astrophysically interesting case of rotating (Kerr) black holes.
Duff, M J
2012-01-01
Quantum entanglement lies at the heart of quantum information theory, with applications to quantum computing, teleportation, cryptography and communication. In the apparently separate world of quantum gravity, the Hawking effect of radiating black holes has also occupied centre stage. Despite their apparent differences, it turns out that there is a correspondence between the two.
Bena, Iosif; Chowdhury, Borun D.; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki
2012-03-01
We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no black holes were thought to exist.
Baker, John
2010-01-01
Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.
Energy Technology Data Exchange (ETDEWEB)
Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others
1995-07-01
Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.
Hernández, X; Mendoza, S; Sussman, R A
2005-01-01
We study the relationship between the energy and entropy of a black body photon gas, within an idealised spherical adiabatic enclosure of radius R, as this is compressed into a self-gravitating regime. We show that this regime approximately coincides with the black hole regime for the system, i.e., R ~ R_{s}, where R_{s} denotes the Schwarzschild radius of the system. The entropy of this system is always below the suggested Holographic bound, even as R \\to R_{s}. A plausible quantum configuration for the photon gas at R \\to R_{s} is suggested, which satisfies all energy, entropy and temperature black hole conditions. Finally we examine our results from the point of view of recent Loop Quantum Gravity ideas.
New Directions in Black Hole Astrophysics
Reynolds, C. S.
2002-12-01
The astrophysics of accreting black holes has been a scientific focus of most major future X-ray missions. In this presentation, I will describe how our science goals and expectations have been effected by new data from Chandra and XMM-Newton as well as new theoretical work. I will argue on the basis of XMM-Newton data that black hole spin does not manifest itself through subtle effects but may have dramatic astrophysical consequences. If this is correct, the exotic astrophysics of black hole spin, including astrophysical realizations of the Penrose and Blandford-Znajek processes, will be a principal focus of Constellation-X, XEUS and MAXIM. On the other hand, data from the late stages of the RXTE/ASCA missions as well as XMM-Newton suggest that the simple technique of relativistic X-ray iron line reverberation mapping, which was originally touted as a good method for studying the inner accretion disk, may be hard to realize. Finally, I will discuss recent theoretical/simulation work on the appearance of a MHD turbulent accretion disk around a black hole. Such simulations may be a good framework to understand future timing observations of Galactic Black Hole Candidates and their quasi-periodic oscillations. They also suggest a quantitative way of measuring the space-time geometry around supermassive black holes in AGN.
Nonlocal and generalized uncertainty principle black holes
Nicolini, Piero
2012-01-01
In this paper we study the issue of the role of nonlocality as a possible ingredient to solve long standing problems in the physics of black holes. To achieve this goal we analytically derive new black hole metrics improved by corrections from nonlocal gravity actions with an entire function of the order 1/2 and lower than 1/2, the latter corresponding to generalized uncertainty principle corrections. This lets us extend our previous findings about noncommutative geometry inspired black holes recently recognized as nonlocal black holes due to an entire function of order higher than 1/2. As a result we show that irrespective of the order of the function, nonlocality leads to the following properties for black hole spacetimes: i) horizon extremization also in the neutral, non rotating case; ii) black hole phase transition from a Schwarzschild phase to a positive heat capacity cooling down phase; iii) zero temperature remnant formation at the end of the evaporation process; iv) negligible quantum back reaction d...
Black-Hole Polarization and Cosmic Censorship
Hod, S
1999-01-01
The destruction of the black-hole event horizon is ruled out by both cosmic censorship and the generalized second law of thermodynamics. We test the consistency of this prediction in a (more) `dangerous' version of the gedanken experiment suggested by Bekenstein and Rosenzweig. A $U(1)$-charged particle is lowered {\\it slowly} into a near extremal black hole which is not endowed with a $U(1)$ gauge field. The energy delivered to the black hole can be {\\it red-shifted} by letting the assimilation point approach the black-hole horizon. At first sight, therefore, the particle is not hindered from entering the black hole and removing its horizon. However, we show that this dangerous situation is excluded by a combination of {\\it two} factors not considered in former gedanken experiments: the effect of the spacetime curvature on the electrostatic {\\it self-interaction} of the charged system (the black-hole polarization), and the {\\it finite} size of the charged body.
Observational Evidence for Black Holes
Narayan, Ramesh; McClintock, Jeffrey E.
2013-01-01
Astronomers have discovered two populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range 10^6 to 10^{10} solar masses, one each in the nucleus of every galaxy. There is strong circumstantial evidence that all these objects are true black holes with event horizons. The measured masses of supermassive black hole are strongly corr...
The dynamics of primordial black-hole formation
International Nuclear Information System (INIS)
We examine numerically the formation of small black holes from primordial density fluctuations in a radiation-dominated spatially flat Friedmann-Robertson-Walker spacetime. Large amplitude fluctuations might be expected to form black holes, while smaller fluctuations will be washed out by the expansion of the universe. We have studied the interface between these two types of behaviour. Unlike earlier studies which suggested that there was no lower limit to the mass of a black hole, this work suggests that there is a minimum mass for a primordial black hole of the order of one ten thousandth of the mass contained within the horizon. We discuss the implications for critical collapse studies
Thermodynamics of Third Order Lovelock-Born-Infeld Black Holes
Institute of Scientific and Technical Information of China (English)
李鹏; 岳瑞宏; 邹德成
2011-01-01
We here explore black holes in the third order Lovelock gravity coupling with nonlinear Born-Infeld electro- magnetic field. Considering special second and third order coefficients （＆g = 363 = a2）, we analyze the thermodynamics of third order Lovelock-Born-Infeld black holes and, in 7-dimensional AdS space-time, discuss the stability of black holes in different event horizon structures. We find that the cosmological constant A plays an important role in the distribution of black hole stable regions.
Charged scalar perturbations around Garfinkle–Horowitz–Strominger black holes
Directory of Open Access Journals (Sweden)
Cheng-Yong Zhang
2015-10-01
Full Text Available We examine the stability of the Garfinkle–Horowitz–Strominger (GHS black hole under charged scalar perturbations. Employing the appropriate numerical methods, we show that the GHS black hole is always stable against charged scalar perturbations. This is different from the results obtained in the de Sitter and anti-de Sitter black holes. Furthermore, we argue that in the GHS black hole background there is no amplification of the incident charged scalar wave to cause the superradiance, so that the superradiant instability cannot exist in this spacetime.
A model of radiating black hole in noncommutative geometry
Energy Technology Data Exchange (ETDEWEB)
Nicolini, Piero [Dipartimento di Matematica e Informatica, Universita di Trieste, Trieste (Italy); Institut Jozef Stefan, Ljubljana (Slovenia); Dipartimento di Matematica, Politecnico di Torino, Turin (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste (Italy)
2005-09-30
The phenomenology of a radiating Schwarzschild black hole is analysed in a noncommutative spacetime. It is shown that noncommutativity does not depend on the intensity of the curvature. Thus, we legitimately introduce noncommutativity in the weak field limit by a coordinate coherent state approach. The new interesting results are the following: (i) the existence of a minimal nonzero mass to which black hole can shrink; (ii) a finite maximum temperature that the black hole can reach before cooling down to absolute zero; (iii) the absence of any curvature singularity. The proposed scenario offers a possible solution to conventional difficulties when describing the terminal phase of black hole evaporation. (letter to the editor)
A model of radiating black hole in noncommutative geometry
International Nuclear Information System (INIS)
The phenomenology of a radiating Schwarzschild black hole is analysed in a noncommutative spacetime. It is shown that noncommutativity does not depend on the intensity of the curvature. Thus, we legitimately introduce noncommutativity in the weak field limit by a coordinate coherent state approach. The new interesting results are the following: (i) the existence of a minimal nonzero mass to which black hole can shrink; (ii) a finite maximum temperature that the black hole can reach before cooling down to absolute zero; (iii) the absence of any curvature singularity. The proposed scenario offers a possible solution to conventional difficulties when describing the terminal phase of black hole evaporation. (letter to the editor)
Do black holes create polyamory?
Grudka, Andrzej; Horodecki, Michal; Horodecki, Ryszard; Oppenheim, Jonathan; Smolin, John A
2015-01-01
Of course not, but if one believes that information cannot be destroyed in a theory of quantum gravity, then we run into apparent contradictions with quantum theory when we consider evaporating black holes. Namely that the no-cloning theorem or the principle of entanglement monogamy is violated. Here, we show that neither violation need hold, since, in arguing that black holes lead to cloning or non-monogamy, one needs to assume a tensor product structure between two points in space-time that could instead be viewed as causally connected. In the latter case, one is violating the semi-classical causal structure of space, which is a strictly weaker implication than cloning or non-monogamy. We show that the lack of monogamy that can emerge in evaporating space times is one that is allowed in quantum mechanics, and is very naturally related to a lack of monogamy of correlations of outputs of measurements performed at subsequent instances of time of a single system. A particular example of this is the Horowitz-Mal...
Curiel, Erik
2014-01-01
In the early 1970s it is was realized that there is a striking formal analogy between the Laws of black-hole mechanics and the Laws of classical thermodynamics. Before the discovery of Hawking radiation, however, it was generally thought that the analogy was only formal, and did not reflect a deep connection between gravitational and thermodynamical phenomena. It is still commonly held that the surface gravity of a stationary black hole can be construed as a true physical temperature and its area as a true entropy only when quantum effects are taken into account; in the context of classical general relativity alone, one cannot cogently construe them so. Does the use of quantum field theory in curved spacetime offer the only hope for taking the analogy seriously? I think the answer is `no'. To attempt to justify that answer, I shall begin by arguing that the standard argument to the contrary is not physically well founded, and in any event begs the question. Looking at the various ways that the ideas of "tempe...
Hawking Radiation as Quantum Tunneling from Noncommutative Schwarzschild Black Hole
Nozari, Kourosh; Mehdipour, S. Hamid
2008-01-01
We study tunneling process through quantum horizon of a Schwarzschild black hole in noncommutative spacetime. This is done by considering the effect of smearing of the particle mass as a Gaussian profile in flat spacetime. We show that even in this noncommutative setup there will be no correlation between the different modes of radiation which reflects the fact that information doesn't come out continuously during the evaporation process at least at late-time. However, due to spacetime noncom...
Formation and evaporation of nonsingular black holes.
Hayward, Sean A
2006-01-27
Regular (nonsingular) space-times are given that describe the formation of a (locally defined) black hole from an initial vacuum region, its quiescence as a static region, and its subsequent evaporation to a vacuum region. The static region is Bardeen-like, supported by finite density and pressures, vanishing rapidly at large radius and behaving as a cosmological constant at small radius. The dynamic regions are Vaidya-like, with ingoing radiation of positive-energy flux during collapse and negative-energy flux during evaporation, the latter balanced by outgoing radiation of positive-energy flux and a surface pressure at a pair creation surface. The black hole consists of a compact space-time region of trapped surfaces, with inner and outer boundaries that join circularly as a single smooth trapping horizon. PMID:16486679
Electromagnetic Jets from Stars and Black Holes
Gralla, Samuel E; Rodriguez, Maria J
2015-01-01
We present analytic force-free solutions modeling rotating stars and black holes immersed in the magnetic field of a thin disk that terminates at an inner radius. The solutions are exact in flat spacetime and approximate in Kerr spacetime. The compact object produces a conical jet whose properties carry information about its nature. For example, the jet from a star is surrounded by a current sheet, while that of a black hole is smooth. We compute an effective resistance in each case and compare to the canonical values used in circuit models of energy extraction. These solutions illustrate all of the basic features of the Blandford-Znajek process for energy extraction and jet formation in a clean setting.
Mirror Reflections of a Black Hole
Good, Michael R R; Evans, Charles R
2016-01-01
An exact correspondence between a black hole and an accelerating mirror is demonstrated. It is shown that for a massless minimally coupled scalar field the same Bogolubov coefficients connecting the "in" and "out" states occur for a (1+1)D flat spacetime with a particular perfectly reflecting accelerating boundary trajectory and a (1+1)D curved spacetime in which a null shell collapses to form a black hole. Generalization of the latter to the (3+1)D case is discussed. The spectral dynamics and energy flux are computed. The approach to equilibrium is monotonic, asymmetric in rate, and there is a specific time in the early formation phase which characterizes the system when it is the most out-of-equilibrium.
Prisons of light : black holes
Ferguson, Kitty
What is a black hole? Could we survive a visit to one -- perhaps even venture inside? Have we yet discovered any real black holes? And what do black holes teach us about the mysteries of our Universe? These are just a few of the tantalizing questions examined in this tour-de-force, jargon-free review of one of the most fascinating topics in modern science. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light - Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.
Point mass Cosmological Black Holes
Firouzjaee, Javad T
2016-01-01
Real black holes in the universe are located in the expanding accelerating background which are called the cosmological black holes. Hence, it is necessary to model these black holes in the cosmological background where the dark energy is the dominant energy. In this paper, we argue that most of the dynamical cosmological black holes can be modeled by point mass cosmological black holes. Considering the de Sitter background for the accelerating universe, we present the point mass cosmological background in the cosmological de Sitter space time. Our work also includes the point mass black holes which have charge and angular momentum. We study the mass, horizons, redshift structure and geodesics properties for these black holes.
Les Houches lectures on black holes
Strominger, A
1995-01-01
Contents: 1. Introduction 2. Causal Structure and Penrose Diagrams Minkowski Space; 1+1 Dimensional Minkowski Space; Schwarzchild Black Holes; Gravitational Collapse and the Vaidya Spacetimes; Event Horizons, Apparent Horizons, and Trapped Surfaces 3. Black Holes in Two Dimensions General Relativity in the S-Wave Sector; Classical Dilaton Gravity; Eternal Black Holes; Coupling to Conformal Matter; Hawking Radiation and the Trace Anomaly; The Quantum State; Including the Back-Reaction; The Large N Approximation; Conformal Invariance and Generalizations of Dilaton Gravity; The Soluble RST Model 4. The Information Puzzle in Four Dimensions Can the Information Come Out Before the Endpoint?; Low-Energy Effective Descriptions of the Planckian Endpoint; Remnants?; Information Destruction?; The Superposition Principle; Energy Conservation The New Rules; Superselection Sectors, \\alpha-parameters, and the Restoration of Unitarity 5. Conclusions and Outlook
Black hole evaporation and compact extra dimensions
International Nuclear Information System (INIS)
We study the evaporation of black holes in space-times with extra dimensions of size L by employing the microcanonical picture of Hawking's radiation. We show that the luminosity is greatly damped when the horizon becomes smaller than L and black holes born with an initial size smaller than L are almost stable. This effect is due to the strong dependence of both the occupation number density of Hawking quanta and the greybody factor of a black hole on the dimensionality of space. Although the picture of what happens when the horizon shrinks to a size L is still incomplete, we argue that there might occur an outburst of energy which leaves a quasistable remnant
New Concepts for Old Black Holes
Susskind, Leonard
2013-01-01
It has been argued that the AMPS paradox implies catastrophic breakdown of the equivalence principle in the neighborhood of a black hole horizon, or even the non-existence of any spacetime at all behind the horizon. Maldacena and the author suggested a different resolution of the paradox based on the close relationship between Einstein-Rosen bridges and Einstein-Podolsky-Rosen entanglement. In this paper the new mechanisms required by the proposal are reviewed: the ER=EPR connection: precursors: timefolds: and the black hole interior as a fault-tolerant, negative information message. Along the way a model of an ADS black hole as a single long-string is explained, and used to clarify the relation between Wilson loops and precursors.
Suppressed black hole production from minimal length
International Nuclear Information System (INIS)
Large extra dimensions lower the Planck scale to values soon accessible. Motivated by string theory, the models of large extra dimensions predict a vast number of new effects in the energy range of the lowered Planck scale, among them the production of TeV-mass black holes. But not only is the Planck scale the energy scale at which effects of modified gravity become important. String theory as well as non-commutative quantum mechanics suggest that the Planck length acts a minimal length in nature, providing a natural ultraviolet cutoff and a limit to the possible resolution of spacetime. The minimal length effects thus become important in the same energy range in which the black holes are expected to form. In this Letter we examine the influence of the minimal length on the expected production rate of the black holes
On the volume inside old black holes
Christodoulou, Marios
2016-01-01
Black holes that have nearly evaporated are often thought of as small objects, due to their tiny exterior area. However, the horizon bounds large spacelike hypersurfaces. A compelling geometric perspective on the evolution of the interior geometry was recently shown to be provided by a generally covariant definition of the volume inside a black hole using maximal surfaces. In this article, we expand on previous results and show that finding the maximal surfaces in an arbitrary spherically symmetric spacetime is equivalent to a 1+1 geodesic problem. We then study the effect of Hawking radiation on the volume by computing the volume of maximal surfaces inside the apparent horizon of an evaporating black hole as a function of time at infinity: while the area is shrinking, the volume of these surfaces grows monotonically with advanced time, up to when the horizon has reached Planckian dimensions. The physical relevance of these results for the information paradox and the remnant scenarios are discussed.
Brief review on black hole loop quantization
Olmedo, Javier
2016-01-01
Here we present a review about the quantization of spherically symmetric spacetimes adopting loop quantum gravity techniques. Several models that have been studied so far share similar properties: the resolution of the classical singularity, and some of them an intrinsic discretization of the geometry. We also explain the extension to Reissner-Nordstr\\"om black holes. Besides, we review how quantum test fields on these quantum geometries allow us to study phenomena like the Casimir effect or ...
Black Hole with Non-Commutative Hair
Klimcik, C; Kolnik, P.; Pompos, A.
1993-01-01
The specific nonlinear vector $\\sigma$-model coupled to Einstein gravity is investigated. The model arises in the studies of the gravitating matter in non-commutative geometry. The static spherically symmetric spacetimes are identified by direct solving of the field equations. The asymptotically flat black hole with the ``non-commutative'' vector hair appears for the special choice of the integration constants, giving thus another counterexample to the famous ``no-hair'' theorem.
Supersonic velocities in noncommutative acoustic black holes
Anacleto, M. A.; Brito, F. A.; Passos, E.
2012-01-01
In this paper we derive Schwarzschild and Kerr-like noncommutative acoustic black hole metrics in the (3+1)-dimensional noncommutative Abelian Higgs model. We have found that the changing ΔTH in the Hawking temperature TH due to spacetime noncommutativity accounts for supersonic velocities vg, whose deviation with respect to the sound speed cs is given in the form (vg-cs)/cs=ΔTH/8TH.
Bena, Iosif; Vercnocke, Bert
2012-01-01
We establish the relation between the structure governing supersymmetric and non-supersymmetric four- and five-dimensional black holes and multicenter solutions and Calabi-Yau flux compactifications of M-theory and type IIB string theory. We find that the known BPS and almost-BPS multicenter black hole solutions can be interpreted as GKP compactifications with (2,1) and (0,3) imaginary self-dual flux. We also show that the most general GKP compactification leads to new classes of BPS and non-BPS multicenter solutions. We explore how these solutions fit into N=2 truncations, and elucidate how supersymmetry becomes camouflaged. As a necessary tool in our exploration we show how the fields in the largest N=2 truncation fit inside the six-torus compactification of eleven-dimensional supergravity.
Romero, Gustavo E
2014-01-01
Presentism is, roughly, the metaphysical doctrine that maintains that whatever exists, exists in the present. The compatibility of presentism with the theories of special and general relativity was much debated in recent years. It has been argued that at least some versions of presentism are consistent with time-orientable models of general relativity. In this paper we confront the thesis of presentism with relativistic physics, in the strong gravitational limit where black holes are formed. We conclude that the presentist position is at odds with the existence of black holes and other compact objects in the universe. A revision of the thesis is necessary, if it is intended to be consistent with the current scientific view of the universe.
Black Holes in Higher Dimensions
Directory of Open Access Journals (Sweden)
Reall Harvey S.
2008-09-01
Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.
Bastos, C; Dias, N C; Prata, J N
2010-01-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity regime and it is shown that the wave function vanishes in this limit.
Vacuum polarization in asymptotically Lifshitz black holes
Quinta, Gonçalo M.; Flachi, Antonino; Lemos, José P. S.
2016-06-01
There has been considerable interest in applying the gauge-gravity duality to condensed matter theories with particular attention being devoted to gravity duals (Lifshitz spacetimes) of theories that exhibit anisotropic scaling. In this context, black hole solutions with Lifshitz asymptotics have also been constructed, focused on incorporating finite temperature effects. The goal here is to look at quantum polarization effects in these spacetimes and, to this aim, we develop a way to compute the coincidence limit of the Green's function for massive, nonminimally coupled scalar fields, adapting to the present situation the analysis developed for the case of asymptotically anti-de Sitter black holes. The basics are similar to previous calculations; however, in the Lifshitz case, one needs to extend the previous results to include a more general form for the metric and dependence on the dynamical exponent. All formulas are shown to reduce to the anti-de Sitter (AdS) case studied before once the value of the dynamical exponent is set to unity and the metric functions are accordingly chosen. The analytical results we present are general and can be applied to a variety of cases, in fact, to all spherically symmetric Lifshitz black hole solutions. We also implement the numerical analysis choosing some known Lifshitz black hole solutions as illustration.
Lyutikov, Maxim
2011-01-01
The "no hair" theorem, a key result in General Relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the "no hair" theorem is not formally applicable for black holes formed from collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively "frozen-in" the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes $N_B = e \\Phi_\\infty /(\\pi c \\hbar)$, where $\\Phi_\\infty \\approx 2 \\pi^2 B_{NS} R_{NS}^3 /(P_{\\rm NS} c)$ is the initial magnetic flux through the hemisphere...
Thermal corpuscular black holes
Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio
2015-06-01
We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number N of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy m (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy ω >m ). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding N -particle state can be collectively described by a single-particle wave function given by a superposition of a total ground state with energy M =N m and a Planckian distribution for E >M at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction precisely related with the Hawking component. By means of the horizon wave function for the system, we finally show the backreaction of modes with ω >m reduces the Hawking flux. Both corrections, to the entropy and to the Hawking flux, suggest the evaporation properly stops for vanishing mass, if the black hole is in this particular quantum state.
Bena, Iosif; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki
2011-01-01
We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no b...
Fermion tunneling from higher-dimensional black holes
Lin, Kai; Yang, Shu-Zheng
2009-03-01
Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.
Black Holes Have Simple Feeding Habits
2008-06-01
The biggest black holes may feed just like the smallest ones, according to data from NASA’s Chandra X-ray Observatory and ground-based telescopes. This discovery supports the implication of Einstein's relativity theory that black holes of all sizes have similar properties, and will be useful for predicting the properties of a conjectured new class of black holes. The conclusion comes from a large observing campaign of the spiral galaxy M81, which is about 12 million light years from Earth. In the center of M81 is a black hole that is about 70 million times more massive than the Sun, and generates energy and radiation as it pulls gas in the central region of the galaxy inwards at high speed. In contrast, so-called stellar mass black holes, which have about 10 times more mass than the Sun, have a different source of food. These smaller black holes acquire new material by pulling gas from an orbiting companion star. Because the bigger and smaller black holes are found in different environments with different sources of material to feed from, a question has remained about whether they feed in the same way. Using these new observations and a detailed theoretical model, a research team compared the properties of M81's black hole with those of stellar mass black holes. The results show that either big or little, black holes indeed appear to eat similarly to each other, and produce a similar distribution of X-rays, optical and radio light. AnimationMulti-wavelength Images of M81 One of the implications of Einstein's theory of General Relativity is that black holes are simple objects and only their masses and spins determine their effect on space-time. The latest research indicates that this simplicity manifests itself in spite of complicated environmental effects. "This confirms that the feeding patterns for black holes of different sizes can be very similar," said Sera Markoff of the Astronomical Institute, University of Amsterdam in the Netherlands, who led the study
Black hole spin: theory and observation
Middleton, Matthew
2015-01-01
In the standard paradigm, astrophysical black holes can be described solely by their mass and angular momentum - commonly referred to as `spin' - resulting from the process of their birth and subsequent growth via accretion. Whilst the mass has a standard Newtonian interpretation, the spin does not, with the effect of non-zero spin leaving an indelible imprint on the space-time closest to the black hole. As a consequence of relativistic frame-dragging, particle orbits are affected both in terms of stability and precession, which impacts on the emission characteristics of accreting black holes both stellar mass in black hole binaries (BHBs) and supermassive in active galactic nuclei (AGN). Over the last 30 years, techniques have been developed that take into account these changes to estimate the spin which can then be used to understand the birth and growth of black holes and potentially the powering of powerful jets. In this chapter we provide a broad overview of both the theoretical effects of spin, the mean...
A linear approximation to black hole evaporation
International Nuclear Information System (INIS)
An evaporating Schwarzschild black hole is analysed including back reaction in a linear approximation. The analysis assumes a massless scalar field propagating in a spacetime consisting of two Vaidya metrics corresponding respectively to outgoing radiation and an infalling negative energy flux. For times late relative to the collapse but early relative to the lifetime of the hole, the standard rate is reproduced and has the correct time dependence. The event horizon shrinks at the expected rate. These results are independent of the exact location of the boundary between the regions. The magnitude of the quantum fluxes at various radii suggests that most of the pair production occurs far from the horizon
Hidden Structures of Black Holes
Vercnocke, Bert
2010-01-01
This thesis investigates two main topics concerning black holes in extensions of general relativity inspired by string theory. First, the structure of the equations of motion underlying black hole solutions is considered, in theories of D-dimensional gravity coupled to scalars and vectors. For solutions preserving supersymmetry, the equations of motion have a dramatic simplification: they become first-order instead of the second-order equations one would expect. Recently, it was found that this is a feature some non-supersymmetric black hole solutions exhibit as well. We investigate if this holds more generally, by examining what the conditions are to have first-order equations for the scalar fields of non-supersymmetric black holes, that mimic the form of their supersymmetric counterparts. This is illustrated in examples. Second, the structure of black holes themselves is investigated. String theory has been successful in explaining the Bekenstein-Hawking entropy for (mainly supersymmetric) black holes from ...
Small black holes on cylinders
International Nuclear Information System (INIS)
We find the metric of small black holes on cylinders, i.e. neutral and static black holes with a small mass in d-dimensional Minkowski space times a circle. The metric is found using an ansatz for black holes on cylinders proposed in J. High Energy Phys. 05, 032 (2002). We use the new metric to compute corrections to the thermodynamics which is seen to deviate from that of the (d+1)-dimensional Schwarzschild black hole. Moreover, we compute the leading correction to the relative binding energy which is found to be non-zero. We discuss the consequences of these results for the general understanding of black holes and we connect the results to the phase structure of black holes and strings on cylinders
Dvali, Gia
2013-01-01
According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.
Information Storage in Black Holes
Maia, M. D.
2005-01-01
The information loss paradox for Schwarzschild black holes is examined, using the ADS/CFT correspondence extended to the $M_6 (4,2)$ bulk. It is found that the only option compatible with the preservation of the quantum unitarity is when a regular remnant region of the black hole survives to the black hole evaporation process, where information can be stored and eventually retrieved.
Origin of supermassive black holes
Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S. G.
2007-01-01
The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...
Interior of a Schwarzschild black hole revisited
Doran, R; Lobo, F S N; Crawford, Paulo; Doran, Rosa; Lobo, Francisco S. N.
2006-01-01
The Schwarzschild solution has played a fundamental conceptual role in general relativity, and beyond, for instance, regarding event horizons, spacetime singularities and aspects of quantum field theory in curved spacetimes. However, one still encounters the existence of misconceptions and a certain ambiguity inherent in the Schwarzschild solution in the literature. By taking into account the point of view of an observer in the interior of the event horizon, one verifies that new conceptual difficulties arise. In this work, besides providing a very brief pedagogical review, we further analyze the interior Schwarzschild black hole solution. Firstly, by deducing the interior metric by considering time-dependent metric coefficients, the interior region is analyzed without the prejudices inherited from the exterior geometry. We also pay close attention to several respective cosmological interpretations, and briefly address some of the difficulties associated to spacetime singularities. Secondly, we deduce the con...
How black holes saved relativity
Prescod-Weinstein, Chanda
2016-02-01
While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.
Thermodynamics of Accelerating Black Holes
Appels, Michael; Kubiznak, David
2016-01-01
We address a long-standing problem of describing the thermodynamics of a charged accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon -- even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability and phase structure of these black holes.
Acceleration of black hole universe
Zhang, T. X.; Frederick, C.
2014-01-01
Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.
Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N.
2010-04-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.
Energy Technology Data Exchange (ETDEWEB)
Bastos, C; Bertolami, O [Departamento de Fisica, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)
2010-04-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, {eta}. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.
International Nuclear Information System (INIS)
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.
Directory of Open Access Journals (Sweden)
Roberto Casadio
2015-10-01
Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce
Directory of Open Access Journals (Sweden)
I. Cabrera-Munguia
2015-04-01
Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.
Black-hole bombs and photon-mass bounds.
Pani, Paolo; Cardoso, Vitor; Gualtieri, Leonardo; Berti, Emanuele; Ishibashi, Akihiro
2012-09-28
Generic extensions of the standard model predict the existence of ultralight bosonic degrees of freedom. Several ongoing experiments are aimed at detecting these particles or constraining their mass range. Here we show that massive vector fields around rotating black holes can give rise to a strong superradiant instability, which extracts angular momentum from the hole. The observation of supermassive spinning black holes imposes limits on this mechanism. We show that current supermassive black-hole spin estimates provide the tightest upper limits on the mass of the photon (m(v) is black holes could further lower this bound to m(v) black holes in the slow-rotation regime, that we developed up to second order in rotation, and that can be extended to other spacetime metrics and other theories.
(Anti-)de Sitter Black Hole Entropy and Generalized Uncertainty Principle
Institute of Scientific and Technical Information of China (English)
ZHAO Ren; ZHANG Li-Chun; HU Shuang-Qi
2006-01-01
We generalize the method that is used to study corrections to Cardy-Verlinde formula due to generalized uncertainty principle and discuss corrections to Cardy-Verlinde formula due to generalized uncertainty principle in (anti)-de Sitter space. Because in de Sitter black hole spacetime the radiation temperature of the black hole horizon is different from the one of the cosmological horizon, this spacetime is a thermodynamical non-equilibrium spacetime.
Understanding the "antikick" in the merger of binary black holes.
Rezzolla, Luciano; Macedo, Rodrigo P; Jaramillo, José Luis
2010-06-01
The generation of a large recoil velocity from the inspiral and merger of binary black holes represents one of the most exciting results of numerical-relativity calculations. While many aspects of this process have been investigated and explained, the "antikick," namely, the sudden deceleration after the merger, has not yet found a simple explanation. We show that the antikick can be understood in terms of the radiation from a deformed black hole where the anisotropic curvature distribution on the horizon correlates with the direction and intensity of the recoil. Our analysis is focused on Robinson-Trautman spacetimes and allows us to measure both the energies and momenta radiated in a gauge-invariant manner. At the same time, this simpler setup provides the qualitative and quantitative features of merging black holes, opening the way to a deeper understanding of the nonlinear dynamics of black-hole spacetimes. PMID:20867159
Radiation of Charged Black Holes and Modified Dispersion Relation
Kamali, A D
2016-01-01
We investigate the effects of a modified dispersion relation proposed by Majhi and Vagenas on the Reissner-Nordstr\\"{o}m black hole thermodynamics in a universe with large extra dimensions. It is shown that entropy, temperature and heat capacity receive new corrections and charged black holes in this framework have less degrees of freedom and decay faster compared to black holes in the Hawking picture. We also study the emission rate of black hole and compare our results with other quantum gravity approaches. In this regard, the existence of the logarithmic prefactor and the relation between dimensions and charge are discussed. This procedure is not only valid for a single horizon spacetime but it is also valid for the spacetimes with inner and outer horizons.
Global Structure of Exact Scalar Hairy Dynamical Black Holes
Fan, Zhong-Ying; Lu, Hong
2016-01-01
We study the global structure of some exact scalar hairy dynamical black holes which were constructed in Einstein gravity either minimally or non-minimally coupled to a scalar field. We find that both the apparent horizon and the local event horizon (measured in luminosity coordinate) monotonically increase with the advanced time as well as the Vaidya mass. At late advanced times, the apparent horizon approaches the event horizon and gradually becomes future outer. Correspondingly, the space-time arrives at stationary black hole states with the relaxation time inversely proportional to the $1/(n-1)$ power of the final black hole mass. These results strongly support the solutions describing the formation of black holes with scalar hair. We also obtain new charged dynamical solutions in the non-minimal theory by introducing an Maxwell field which is non-minimally coupled to the scalar. The presence of the electric charge strongly modifies the dynamical evolution of the space-time.
Neitzke, A; Vandoren, S; Neitzke, Andrew; Pioline, Boris; Vandoren, Stefan
2007-01-01
Motivated by black hole physics in N=2, D=4 supergravity, we study the geometry of quaternionic-Kahler manifolds M obtained by the c-map construction from projective special Kahler manifolds M_s. Improving on earlier treatments, we compute the Kahler potentials on the twistor space Z and Swann space S in the complex coordinates adapted to the Heisenberg symmetries. The results bear a simple relation to the Hesse potential \\Sigma of the special Kahler manifold M_s, and hence to the Bekenstein-Hawking entropy for BPS black holes. We explicitly construct the ``covariant c-map'' and the ``twistor map'', which relate real coordinates on M x CP^1 (resp. M x R^4/Z_2) to complex coordinates on Z (resp. S). As applications, we solve for the general BPS geodesic motion on M, and provide explicit integral formulae for the quaternionic Penrose transform relating elements of H^1(Z,O(-k)) to massless fields on M annihilated by first or second order differential operators. Finally, we compute the exact radial wave function ...
Belloni, T M
2016-01-01
The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...
Quantum black hole evaporation
Schoutens, K; Verlinde, Erik; Schoutens, Kareljan; Verlinde, Erik; Verlinde, Herman
1993-01-01
We investigate a recently proposed model for a full quantum description of two-dimensional black hole evaporation, in which a reflecting boundary condition is imposed in the strong coupling region. It is shown that in this model each initial state is mapped to a well-defined asymptotic out-state, provided one performs a certain projection in the gravitational zero mode sector. We find that for an incoming localized energy pulse, the corresponding out-going state contains approximately thermal radiation, in accordance with semi-classical predictions. In addition, our model allows for certain acausal strong coupling effects near the singularity, that give rise to corrections to the Hawking spectrum and restore the coherence of the out-state. To an asymptotic observer these corrections appear to originate from behind the receding apparent horizon and start to influence the out-going state long before the black hole has emitted most of its mass. Finally, by putting the system in a finite box, we are able to deriv...
Casadio, Roberto; Micu, Octavian; Orlandi, Alessio
2015-01-01
We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a...
Thermal corpuscular black holes
Casadio, Roberto; Orlandi, Alessio
2015-01-01
We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number $N$ of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy $m$ (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy $\\omega>m$). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M=N\\,m$ and a Planckian distribution for $E>M$ at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction preci...
Supersymmetric Yang Mills Fields and Black Holes ; In Ten Dimensional Unified Field Theory
Patwardhan, Ajay
2007-01-01
The Ten dimensional Unified field theory has a 4 dimensional Riemannian spacetime and six dimensional Calabi Yau space structure. The supersymmetric Yang Mills fields and black holes are solutions in these theories. The formation of primordial black holes in early universe, the collapse to singularity of stellar black holes, the Hawking evaporation of microscopic black holes in LHC are topics of observational and theoretical interest. The observation of gamma ray bursts and creation of spectr...
NON-THERMAL RADIATION FROM A NON-KERR-NEWMAN BLACK HOLE
Institute of Scientific and Technical Information of China (English)
谢实崇; 杨雪特; 杨树政; 林理彬
2001-01-01
In the spacetime of a charged spinning black hole, the distribution of particle energy levels has been studied. Near the event horizon of such a black hole a crossing of the particle energy levels exists, which leads to the occurrence of non-thermal radiation of the black hole. This quantum effect is non-thermal and also different from those of the Kerr and Kerr-Newman black holes.
Hawking Radiation of Vector Particles via Tunneling From 4-Dimensional And 5-Dimensional Black Holes
Feng, Zhongwen; Zu, Xiaotao
2016-01-01
Using Proca equation and WKB approximation, we investigate Hawking radiation of vector particles via tunneling from 4-dimensional Kerr-de Sitter black hole and 5-dimensional Schwarzschild-Tangherlini black hole. The results show that the tunneling rates and Hawking temperatures are depended on the properties of spacetime (event horizon, mass and angular momentum). Besides, our results are the same as scalars and fermions tunneling from 4-dimensional Kerr-de Sitter black hole and 5-dimensional Schwarzschild-Tangherlini black hole.
Hidden Symmetries of Higher-Dimensional Rotating Black Holes
Kubiznak, David
2008-01-01
In this thesis we study higher-dimensional rotating black holes. Such black holes are widely discussed in string theory and brane-world models at present. We demonstrate that even the most general known Kerr-NUT-(A)dS spacetime, describing the general rotating higher-dimensional asymptotically (anti) de Sitter black hole with NUT parameters, is in many aspects similar to its four-dimensional counterpart. Namely, we show that it admits a fundamental hidden symmetry associated with the principal conformal Killing-Yano tensor. Such a tensor generates towers of hidden and explicit symmetries. The tower of Killing tensors is responsible for the existence of irreducible, quadratic in momenta, conserved integrals of geodesic motion. These integrals, together with the integrals corresponding to the tower of explicit symmetries, make geodesic equations in the Kerr-NUT-(A)dS spacetime completely integrable. We further demonstrate that in this spacetime the Hamilton-Jacobi, Klein-Gordon, and stationary string equations ...
Liang, Jun; Liu, Yan-Chun; Zhu, Qiao
2014-02-01
In order to further explore the effects of non-Gaussian smeared mass distribution on the thermodynamical properties of noncommutative black holes, we consider noncommutative black holes based on Maxwell-Boltzmann smeared mass distribution in (2+1)-dimensional spacetime. The thermodynamical properties of the black holes are investigated, including Hawking temperature, heat capacity, entropy and free energy. We find that multiple black holes with the same temperature do not exist, while there exists a possible decay of the noncommutative black hole based on Maxwell-Boltzmann smeared mass distribution into the rotating (commutative) BTZ black hole.
International Nuclear Information System (INIS)
In order to further explore the effects of non-Gaussian smeared mass distribution on the thermodynamical properties of noncommutative black holes, we consider noncommutative black holes based on Maxwell-Boltzmann smeared mass distribution in (2+1)-dimensional spacetime. The thermodynamical properties of the black holes are investigated, including Hawking temperature, heat capacity, entropy and free energy. We find that multiple black holes with the same temperature do not exist, while there exists a possible decay of the noncommutative black hole based on Maxwell-Boltzmann smeared mass distribution into the rotating (commutative) BTZ black hole. (authors)
Hairy black holes in the XX-th and XXI-st centuries
Volkov, Mikhail S
2016-01-01
This is a brief summary of the most important hairy black hole solutions in 3+1 spacetime dimensions discovered over the last 25 years. These were first of all the Einstein-Yang-Mills black holes and their various generalizations including the Higgs field, the dilaton and the curvature corrections, and also the Skyrme black holes. More recently, these were black holes supporting a scalar field violating the energy conditions or non-minimally coupled to gravity, and also spinning black holes with massive complex scalar hair. Finally, these were black holes with massive graviton hair.
Unthermal Hawking Radiation from a General Stationary Black Hole
Institute of Scientific and Technical Information of China (English)
ZHANG Gui-Qing; ZHANG Yong-Ping; YANG Qiu-Ying; DAI Qian; CHEN Tian-Lun; LIU Wen-Biao
2008-01-01
Using Damour-Ruffini's method, Hawking radiation from a general stationary black hole is investigated again deeply. Considering the back reaction of the particle to the space-time and energy conservation, we find that the radiation is not exactly thermal and can take out information from the black hole. This can be used to explain the information loss paradox, and the result is consistent with the works finished before.
An introduction to spherically symmetric loop quantum gravity black holes
International Nuclear Information System (INIS)
We review recent developments in the treatment of spherically symmetric black holes in loop quantum gravity. In particular, we discuss an exact solution to the quantum constraints that represents a black hole and is free of singularities. We show that new observables that are not present in the classical theory arise in the quantum theory. We also discuss Hawking radiation by considering the quantization of a scalar field on the quantum spacetime
Massive Particle Tunnels from the Taub-NUT Black Hole
Chen, D.; Zu, X.; Yang, S.
2008-06-01
In this paper, we investigate the Hawking radiation of the Taub-NUT black hole by Hamilton-Jacobi method. When the unfixed background space-time and self-gravitational interaction are considered, the tunnelling rate is related to the change of Bekenstein-Hawking entropy and the radiation spectrum deviates from the purely thermal one. This result is in accordance with Parikh and Wilczek's opinion and gives a correction to the Hawking radiation of the black hole.
Wormholes as a cure for black hole singularities
Olmo, Gonzalo J; Sanchez-Puente, Antonio
2016-01-01
Using exactly solvable models, it is shown that black hole singularities in different electrically charged configurations can be cured. Our solutions describe black hole space-times with a wormhole giving structure to the otherwise point-like singularity. We show that geodesic completeness is satisfied despite the existence of curvature divergences at the wormhole throat. In some cases, physical observers can go through the wormhole and in other cases the throat lies at an infinite affine distance.
Area spectrum of Schwarzschild black hole inspired by noncommutative geometry
Wei, Shao-Wen; Liu, Yu-xiao; Zhao, Zhen-Hua; Fu, Chun-E
2010-01-01
It is known that, in the noncommutative Schwarzschild black hole spacetime, the point-like object is replaced by the smeared object, whose mass density is described by a Gaussian distribution of minimal width $\\sqrt{\\theta}$ with $\\theta$ the noncommutative parameter. The elimination of the point-like structures makes it quite different from the conventional Schwarzschild black hole. In this paper, we mainly investigate the area spectrum and entropy spectrum for the noncommutative Schwarzschi...
Dirty black holes: Quasinormal modes for "squeezed" horizons
Medved, A. J. M.; Martin, Damien; Visser, Matt(School of Mathematics, Statistics, and Operations Research, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand)
2003-01-01
We consider the quasinormal modes for a class of black hole spacetimes that, informally speaking, contain a closely ``squeezed'' pair of horizons. (This scenario, where the relevant observer is presumed to be ``trapped'' between the horizons, is operationally distinct from near-extremal black holes with an external observer.) It is shown, by analytical means, that the spacing of the quasinormal frequencies equals the surface gravity at the squeezed horizons. Moreover, we can calculate the rea...
An introduction to spherically symmetric loop quantum gravity black holes
Gambini, Rodolfo; Pullin, Jorge
2015-03-01
We review recent developments in the treatment of spherically symmetric black holes in loop quantum gravity. In particular, we discuss an exact solution to the quantum constraints that represents a black hole and is free of singularities. We show that new observables that are not present in the classical theory arise in the quantum theory. We also discuss Hawking radiation by considering the quantization of a scalar field on the quantum spacetime.
Lovelock black hole thermodynamics in a string cloud model
Lee, Tae-Hun; Ghosh, Sushant G.; Maharaj, Sunil D.(Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag 54001, 4000, Durban, South Africa); Baboolal, Dharmanand
2015-01-01
The Lovelock theory is an extension of general relativity to higher dimensions. We study the Lovelock black hole for a string cloud model in arbitrary dimensional spacetime, and in turn also analyze its thermodynamical properties. Indeed, we compute the mass, temperature and entropy of the black hole and also perform a thermodynamical stability analysis. The phase structure suggests that the Hawking-Page phase transition is achievable. It turns out that the presence of the Lovelock terms and/...
An introduction to spherically symmetric loop quantum gravity black holes
Energy Technology Data Exchange (ETDEWEB)
Gambini, Rodolfo [Instituto de Física, Facultad de Ciencias, Iguá 4-225, esq. Mataojo, 11400 Montevideo (Uruguay); Pullin, Jorge [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States)
2015-03-26
We review recent developments in the treatment of spherically symmetric black holes in loop quantum gravity. In particular, we discuss an exact solution to the quantum constraints that represents a black hole and is free of singularities. We show that new observables that are not present in the classical theory arise in the quantum theory. We also discuss Hawking radiation by considering the quantization of a scalar field on the quantum spacetime.
Geometry of deformed black holes. I. Majumdar-Papapetrou binary
Semerák, O.; Basovník, M.
2016-08-01
Although black holes are eminent manifestations of very strong gravity, the geometry of space-time around and even inside them can be significantly affected by additional bodies present in their surroundings. We study such an influence within static and axially symmetric (electro)vacuum space-times described by exact solutions of Einstein's equations, considering astrophysically motivated configurations (such as black holes surrounded by rings) as well as those of pure academic interest (such as specifically "tuned" systems of multiple black holes). The geometry is represented by the simplest invariants determined by the metric (the lapse function) and its gradient (gravitational acceleration), with special emphasis given to curvature (the Kretschmann and Ricci-square scalars). These quantities are analyzed and their level surfaces plotted both above and below the black-hole horizons, in particular near the central singularities. Estimating that the black hole could be most strongly affected by the other black hole, we focus, in this first paper, on the Majumdar-Papapetrou solution for a binary black hole and compare the deformation caused by "the other" hole (and the electrostatic field) with that induced by rotational dragging in the well-known Kerr and Kerr-Newman solutions.
Area spectrum of slowly rotating black holes
Myung, Yun Soo
2010-01-01
We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.
A note on entropy of de Sitter black holes
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Sourav [University of Crete, ITCP and Department of Physics, Heraklion (Greece); Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune (India)
2016-03-15
A de Sitter black hole or a black hole spacetime endowed with a positive cosmological constant has two Killing horizons - a black hole and a cosmological event horizon surrounding it. It is natural to expect that the total Bekenstein-Hawking entropy of such spacetimes should be the sum of the two horizons' areas. In this work we apply the recently developed formalism using the Gibbons-Hawking-York boundary term and the near horizon symmetries to derive the total entropy of such two horizon spacetimes. We construct a suitable general geometric set up for general stationary axisymmetric spacetimes with two or more than two commuting Killing vector fields in an arbitrary spacetime dimensions. This framework helps us to deal with both horizons on an equal footing. We show that in order to obtain the total entropy of such spacetimes, the near horizon mode functions for the diffeomorphism generating vector fields have to be restricted in a certain manner, compared to the single horizon spacetimes. We next discuss specific known exact solutions belonging to the Kerr-Newman or the Plebanski-Demianski-de Sitter families to show that they fall into the category of our general framework. We end with a sketch of further possible extensions of this work. (orig.)
What, no black hole evaporation
International Nuclear Information System (INIS)
Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)
Nonlinear Electrodynamics and black holes
Breton, N; Breton, Nora; Garcia-Salcedo, Ricardo
2007-01-01
It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.
DEFF Research Database (Denmark)
Vestergaard, Marianne
2004-01-01
The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....
ATLAS simulated black hole event
Pequenão, J
2008-01-01
. The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).
Black Hole Unitarity and Antipodal Entanglement
't Hooft, Gerard
2016-05-01
Hawking particles emitted by a black hole are usually found to have thermal spectra, if not exactly, then by a very good approximation. Here, we argue differently. It was discovered that spherical partial waves of in-going and out-going matter can be described by unitary evolution operators independently, which allows for studies of space-time properties that were not possible before. Unitarity dictates space-time, as seen by a distant observer, to be topologically non-trivial. Consequently, Hawking particles are only locally thermal, but globally not: we explain why Hawking particles emerging from one hemisphere of a black hole must be 100 % entangled with the Hawking particles emerging from the other hemisphere. This produces exclusively pure quantum states evolving in a unitary manner, and removes the interior region for the outside observer, while it still completely agrees locally with the laws of general relativity. Unitarity is a starting point; no other assumptions are made. Region I and the diametrically opposite region II of the Penrose diagram represent antipodal points in a PT or CPT relation, as was suggested before. On the horizon itself, antipodal points are identified. A candidate instanton is proposed to describe the formation and evaporation of virtual black holes of the type described here.
Black Hole Unitarity and Antipodal Entanglement
't Hooft, Gerard
2016-09-01
Hawking particles emitted by a black hole are usually found to have thermal spectra, if not exactly, then by a very good approximation. Here, we argue differently. It was discovered that spherical partial waves of in-going and out-going matter can be described by unitary evolution operators independently, which allows for studies of space-time properties that were not possible before. Unitarity dictates space-time, as seen by a distant observer, to be topologically non-trivial. Consequently, Hawking particles are only locally thermal, but globally not: we explain why Hawking particles emerging from one hemisphere of a black hole must be 100 % entangled with the Hawking particles emerging from the other hemisphere. This produces exclusively pure quantum states evolving in a unitary manner, and removes the interior region for the outside observer, while it still completely agrees locally with the laws of general relativity. Unitarity is a starting point; no other assumptions are made. Region I and the diametrically opposite region II of the Penrose diagram represent antipodal points in a PT or CPT relation, as was suggested before. On the horizon itself, antipodal points are identified. A candidate instanton is proposed to describe the formation and evaporation of virtual black holes of the type described here.
Journey Beyond the Schwarzschild Black Hole Singularity
Araya, Ignacio J; James, Albin
2015-01-01
We present the geodesical completion of the Schwarzschild black hole in four dimensions which covers the entire space in (u,v) Kruskal-Szekeres coordinates, including the spacetime behind the black and white hole singularities. The gravitational constant switches sign abruptly at the singularity, thus we interpret the other side of the singularity as a region of antigravity. The presence of such sign flips is a prediction of local (Weyl) scale invariant geodesically complete spacetimes which improve classical general relativity and string theory. We compute the geodesics for our new black hole and show that all geodesics of a test particle are complete. Hence, an ideal observer, that starts its journey in the usual space of gravity, can reach the other side of the singularity in a finite amount of proper time. As usual, an observer outside of the horizon cannot verify that such phenomena exist. However, the fact that there exist proper observers that can see this, is of fundamental significance for the constr...
Quantum black hole without singularity
Kiefer, Claus
2015-01-01
We discuss the quantization of a spherical dust shell in a rigorous manner. Classically, the shell can collapse to form a black hole with a singularity. In the quantum theory, we construct a well-defined self-adjoint extension for the Hamilton operator. As a result, the evolution is unitary and the singularity is avoided. If we represent the shell initially by a narrow wave packet, it will first contract until it reaches the region where classically a black hole would form, but then re-expands to infinity. In a way, the state can be interpreted as a superposition of a black hole with a white hole.
Can Black Hole Relax Unitarily?
Solodukhin, S N
2004-01-01
We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.
Can Black Hole Relax Unitarily?
Solodukhin, S. N.
2005-03-01
We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.
A New Cosmological Model: Black Hole Universe
Directory of Open Access Journals (Sweden)
Zhang T. X.
2009-07-01
Full Text Available A new cosmological model called black hole universe is proposed. According to this model, the universe originated from a hot star-like black hole with several solar masses, and gradually grew up through a supermassive black hole with billion solar masses to the present state with hundred billion-trillion solar masses by accreting ambient mate- rials and merging with other black holes. The entire space is structured with infinite layers hierarchically. The innermost three layers are the universe that we are living, the outside called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer is infinite in radius and limits to zero for both the mass density and absolute temperature. The relationships among all layers or universes can be connected by the universe family tree. Mathematically, the entire space can be represented as a set of all universes. A black hole universe is a subset of the en- tire space or a subspace. The child universes are null sets or empty spaces. All layers or universes are governed by the same physics - the Einstein general theory of relativity with the Robertson-walker metric of spacetime - and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. The entire life of a universe begins from the birth as a hot star-like or supermassive black hole, passes through the growth and cools down, and expands to the death with infinite large and zero mass density and absolute temperature. The black hole universe model is consistent with the Mach principle, the observations of the universe, and the Einstein general theory of relativity. Its various aspects can be understood with the well-developed physics without any difficulty. The dark energy is not required for the universe to accelerate its expansion. The inflation is not necessary because the black hole universe
Prisons of Light - Black Holes
Ferguson, Kitty
1998-05-01
In this jargon-free review of one of the most fascinating topics in modern science, acclaimed science writer Kitty Ferguson examines the discovery of black holes, their nature, and what they can teach us about the mysteries of the universe. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light--Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.
Black Hole Final State Conspiracies
McInnes, Brett
2008-01-01
The principle that unitarity must be preserved in all processes, no matter how exotic, has led to deep insights into boundary conditions in cosmology and black hole theory. In the case of black hole evaporation, Horowitz and Maldacena were led to propose that unitarity preservation can be understood in terms of a restriction imposed on the wave function at the singularity. Gottesman and Preskill showed that this natural idea only works if one postulates the presence of "conspiracies" between systems just inside the event horizon and states at much later times, near the singularity. We argue that some AdS black holes have unusual internal thermodynamics, and that this may permit the required "conspiracies" if real black holes are described by some kind of sum over all AdS black holes having the same entropy.
Black holes and the multiverse
Garriga, Jaume; Zhang, Jun
2015-01-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive blac...
When Charged Black Holes Merge
Kohler, Susanna
2016-08-01
Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge
Supersymmetric black holes in string theory
Mohaupt, T.
2007-01-01
We review recent developments concerning supersymmetric black holes in string theory. After a general introduction to the laws of black hole mechanics and to black hole entropy in string theory, we discuss black hole solutions in N=2 supergravity, special geometry, the black hole attractor equations and the underlying variational principle. Special attention is payed to the crucial role of higher derivative corrections. Finally we discuss black hole partition functions and their relation to t...
Black holes with gravitational hair in higher dimensions
Anabalon, A.; Canfora, F.; A. Giacomini; Oliva, J
2011-01-01
A new class of vacuum black holes for the most general gravity theory leading to second order field equations in the metric in even dimensions is presented. These space-times are locally AdS in the asymptotic region, and are characterized by a continuous parameter that does not enter in the conserve charges, nor it can be reabsorbed by a coordinate transformation: it is therefore a purely gravitational hair. The black holes are constructed as a warped product of a two-dimensional space-time, ...
Greybody factors for Myers–Perry black holes
Energy Technology Data Exchange (ETDEWEB)
Boonserm, Petarpa, E-mail: petarpa.boonserm@gmail.com [Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); Chatrabhuti, Auttakit, E-mail: dma3ac2@gmail.com; Ngampitipan, Tritos, E-mail: tritos.ngampitipan@gmail.com [Particle Physics Research Laboratory, Department of Physics, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330 (Thailand); Visser, Matt, E-mail: matt.visser@msor.vuw.ac.nz [School of Mathematics, Statistics, and Operations Research, Victoria University of Wellington, PO Box 600, Wellington 6140 (New Zealand)
2014-11-15
The Myers–Perry black holes are higher-dimensional generalizations of the usual (3+1)-dimensional rotating Kerr black hole. They are of considerable interest in Kaluza–Klein models, specifically within the context of brane-world versions thereof. In the present article, we shall consider the greybody factors associated with scalar field excitations of the Myers–Perry spacetimes, and develop some rigorous bounds on these greybody factors. These bounds are of relevance for characterizing both the higher-dimensional Hawking radiation, and the super-radiance, that is expected for these spacetimes.
On charged black holes in anti-de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Brecher, Dominic [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada); He, Jianyang [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada); Rozali, Moshe [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada)
2005-04-01
We study the region inside the event horizon of charged black holes in five dimensional asymptotically anti-de Sitter space, using as a probe two-sided correlators which are dominated by spacelike geodesics penetrating the horizon. The spacetimes we investigate include the Reissner-Nordstroem black hole and perturbations thereof. The perturbed spacetimes can be found exactly, enabling us to perform a local scan of the region between the inner and outer horizons. Surprisingly, the two-sided correlators we calculate seem to be geometrically protected from the instability of the inner horizon.
Foliation and the First Law of Black Hole Thermodynamics
Institute of Scientific and Technical Information of China (English)
Azad A.Siddiqui; Syed Muhammad Jawwad Riaz; M.Akbar
2011-01-01
@@ There has been lots of interest in exploring the thermodynamic properties at the horizon of a black hole spacetime.It has been shown earlier that for different spacetimes,the Einstein field equations at the horizon can be expressed as the first law of black hole thermodynamics.Using the idea of foliation,we develop a simpler procedure toobtain such results.We consider γ = constant slices,for the Schwarzschild and Reissner-Nordstrom black hole spacetimes.The Einstein field equations for the induced 3-dimensional metrics of the hypersurfaces are expressed in thermodynamic quantities under the virtual displacements of the hypersurfaces.As expected,it is found that the field equations of the induced metric corresponding to the horizon can be written as afirst law of black hole thermodynamics.It is to be mentioned here that our procedure is much easier,to obtain such results,as here one has to essentially deal with(n - 1)-dimensional induced metric for an n-dimensional spacetime.%There has been lots of interest in exploring the thermodynamic properties at the horizon ofa black hole spacetime.It has been shown earlier that for different spacetimes, the Einstein field equations at the horizon can be expressed as the first law of black hole thermodynamics. Using the idea of foliation, we develop a simpler procedure to obtain such results. We consider Υ = constant slices, for the Schwarzschild and Reissner-Nordstrom black hole spacetimes. The Einstein field equations for the induced 3-dimensionai metrics of the hypersurfaces are expressed in thermodynamic quantities under the virtual displacements of the hypersurfaces. As expected, it is found that the field equations of the induced metric corresponding to the horizon can be written as a first law of black hole thermodynamics. It is to be mentioned here that our procedure is much easier, to obtain such results, as here one has to essentially deal with (n - 1)-dimensional induced metric for an n-dimensional spacetime.
Gravitational axial perturbations and quasinormal modes of loop quantum black holes
Cruz, M B; Brito, F A
2015-01-01
Gravitational waves can be used as a way to investigate the structure of spacetime. Loop Quantum Gravity is a theory that propose a way to model the behavior of spacetime in situations where its atomic characteristic arises. Among these situations, the spacetime behavior near the Big Bang or black hole's singularity. A recent prediction of loop quantum gravity is the existence of sub-Planckian black holes called loop quantum black holes (LQBH) or self-dual black holes which correspond to a quantized version of Schwarzschild black hole. In this work, we study the gravitational waves spectrum emitted by a LQBH through the analysis of its the quasinormal modes. From the results obtained, loop quantum black holes have been shown stable under axial gravitational perturbations.
Black hole evaporation within a momentum-dependent metric
International Nuclear Information System (INIS)
We investigate the black hole thermodynamics in a 'deformed' relativity framework where the energy-momentum dispersion law is Lorentz-violating and the Schwarzchild-like metric is momentum-dependent with a Planckian cutoff. We obtain net deviations of the basic thermodynamical quantities from the Hawking-Bekenstein predictions: actually, the black hole evaporation is expected to quit at a nonzero critical mass value (of the order of the Planck mass), leaving a zero temperature remnant, and avoiding a spacetime singularity. Quite surprisingly, the present semiclassical corrections to black hole temperature, entropy, and heat capacity turn out to be identical to the ones obtained within some quantum approaches.
Evolving Black Hole Horizons in General Relativity and Alternative Gravity
Directory of Open Access Journals (Sweden)
Valerio Faraoni
2013-09-01
Full Text Available From the microscopic point of view, realistic black holes are time-dependent and the teleological concept of the event horizon fails. At present, the apparent or trapping horizon seem to be its best replacements in various areas of black hole physics. We discuss the known phenomenology of apparent and trapping horizons for analytical solutions of General Relativity and alternative theories of gravity. These specific examples (we focus on spherically symmetric inhomogeneities in a background cosmological spacetime are useful as toy models for research on various aspects of black hole physics.
Internal Structure of Charged AdS Black Holes
Bhattacharjee, Srijit; Virmani, Amitabh
2016-01-01
When an electrically charged black hole is perturbed its inner horizon becomes a singularity, often referred to as the Poisson-Israel mass inflation singularity. Ori constructed a model of this phenomenon for asymptotically flat black holes, in which the metric can be determined explicitly in the mass inflation region. In this paper we implement the Ori model for charged AdS black holes. We find that the mass function inflates faster than the flat space case as the inner horizon is approached. Nevertheless, the mass inflation singularity is still a weak singularity: although spacetime curvature becomes infinite, tidal distortions remain finite on physical objects attempting to cross it.
Black hole evaporation within a momentum-dependent metric
Salesi, G
2009-01-01
We investigate the black hole thermodynamics in a "deformed" relativity framework where the energy-momentum dispersion law is Lorentz-violating and the Schwarzchild-like metric is momentum-dependent with a Planckian cut-off. We obtain net deviations of the basic thermodynamical quantities from the Hawking-Bekenstein predictions: actually, the black hole evaporation is expected to quit at a nonzero critical mass value (of the order of the Planck mass), leaving a zero temperature remnant, and avoiding a spacetime singularity. Quite surprisingly, the present semiclassical corrections to black hole temperature, entropy, and heat capacity turn out to be identical to the ones obtained within some quantum approaches.
Evolving black hole horizons in General Relativity and alternative gravity
Faraoni, Valerio
2013-01-01
From the microscopic point of view, realistic black holes are time-dependent and the teleological concept of event horizon fails. At present, the apparent or the trapping horizon seem its best replacements in various areas of black hole physics. We discuss the known phenomenology of apparent and trapping horizons for analytical solutions of General Relativity and alternative theories of gravity. These specific examples (we focus on spherically symmetric inhomogeneities in a background cosmological spacetime) may be useful as toy models for research on various aspects of black hole physics.
Black hole conserved charges in Generalized Minimal Massive Gravity
Directory of Open Access Journals (Sweden)
M.R. Setare
2015-05-01
Full Text Available In this paper we construct mass, angular momentum and entropy of black hole solution of Generalized Minimal Massive Gravity (GMMG in asymptotically Anti-de Sitter (AdS spacetimes. The Generalized Minimal Massive Gravity theory is realized by adding the CS deformation term, the higher derivative deformation term, and an extra term to pure Einstein gravity with a negative cosmological constant. We apply our result for conserved charge Qμ(ξ¯ to the rotating BTZ black hole solution of GMMG, and find energy, angular momentum and entropy. Then we show that our results for these quantities are consistent with the first law of black hole thermodynamics.
Interior properties of five-dimensional Schwarzschild black hole
Hong, Soon-Tae
2014-01-01
We investigate inner structure of Schwarzschild black hole on a five-dimensional spacetime S^3xR^2. To do this, we exploit a f\\"unfbein scheme. In particular, we construct an equation of state of hydrostatic equilibrium for the five-dimensional Schwarzschild black hole, which is a five-dimensional version of the Tolman-Oppenheimer-Volkoff equation on four-dimensional manifold. We also investigate uniform density interior configuration of the five-dimensional black hole which consists of incompressible fluid of density, to find a general relativistic expression for pressure.
Adiabatic transport of qubits around a black hole
Viennot, David
2016-01-01
We consider localized qubits evolving around a black hole following a quantum adiabatic dynamics. We develop a geometric structure (based on fibre bundles) permitting to describe the quantum states of a qubit and the spacetime geometry in a single framework. The quantum decoherence induced by the black hole on the qubit is analysed in this framework (the role of the dynamical and geometric phases in this decoherence is treated), especially for the quantum teleportation protocol when one qubit falls to the event horizon. A simple formula to compute the fidelity of the teleportation is derived. The case of a Schwarzschild black hole is analysed.
Quantum Statistical Entropy of Five-Dimensional Black Hole
Institute of Scientific and Technical Information of China (English)
ZHAO Ren; WU Yue-Qin; ZHANG Sheng-Li
2006-01-01
The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole.By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.
Lux in obscuro: Photon Orbits of Extremal Black Holes Revisited
Khoo, Fech Scen
2016-01-01
It has been shown in the literature that the event horizon of an asymptotically flat extremal Reissner-Nordstr\\"om black hole is also a stable photon sphere. We further clarify this statement and give a general proof that this holds for a large class of static spherically symmetric black hole spacetimes with an extremal horizon. In contrast, an asymptotically flat extremal Kerr black hole has an unstable photon orbit on the equatorial plane of its horizon. In addition, we show that an asymptotically flat extremal Kerr-Newman black hole exhibits two equatorial photon orbits if $a M/2$, there is only one equatorial photon orbit, located on the extremal horizon, and it is unstable. There can be no photon orbit on the horizon of a non-extremal Kerr-Newman black hole.
Notes on black-hole evaporation
International Nuclear Information System (INIS)
This paper examines various aspects of black-hole evaporation. A two-dimensional model is investigated where it is shown that using fermion-boson cancellation on the stress-energy tensor reduces the energy outflow to zero, while other noncovariant techniques give the Hawking result. A technique for replacing the collapse by boundary conditions on the past horizon is developed which retains the essential features of the collapse while eliminating some of the difficulties. This set of boundary conditions is also suggested as the most natural set for a preexistent black hole. The behavior of particle detectors under acceleration is investigated where it is shown that an accelerated detector even in flat spacetime will detect particles in the vacuum. The similarity of this case with the behavior of a detector near the black hole is brought out, and it is shown that a geodesic detector near the horizon will not see the Hawking flux of particles. Finally, the work of Berger, Chitre, Nutku, and Moncrief on scalar geons is corrected, and the spherically symmetric coupled scalar-gravitation Hamiltonian is presented in the hope that someone can apply it to the problem of black-hole evaporation
Semiclassical S-matrix for black holes
Bezrukov, Fedor; Levkov, Dmitry; Sibiryakov, Sergey
2015-12-01
We propose a semiclassical method to calculate S -matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(- B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp( B) as the number of black hole states. The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordström black hole. Our semiclassical method opens a new systematic approach to the gravitational S -matrix in the non-perturbative regime.
Semiclassical S-matrix for black holes
Bezrukov, Fedor; Sibiryakov, Sergey
2015-01-01
We propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(-B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states. The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordstrom black hole. Our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.
Rediscussion of the Stability Problem of the Schwarzschild Black Hole
Institute of Scientific and Technical Information of China (English)
Tian Gui-Hua
2006-01-01
@@ We use the Kruskal time coordinate T to define the initial time. By this way, the stability study naturally becomes the one connected with the two regions, i.e. the white-hole-connected region and the black-hole-connected region.The union of the two regions covers the Schwarzschild space-time (r ≥ 2m). We also obtain the very reasonable conclusion: the white-hole-connected region is unstable and the black-hole-connected region is stable.