WorldWideScience

Sample records for black hole entropy

  1. Entanglement Entropy of Black Holes

    Directory of Open Access Journals (Sweden)

    Sergey N. Solodukhin

    2011-10-01

    Full Text Available The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the black-hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  2. Black hole entropy, curved space and monsters

    International Nuclear Information System (INIS)

    Hsu, Stephen D.H.; Reeb, David

    2008-01-01

    We investigate the microscopic origin of black hole entropy, in particular the gap between the maximum entropy of ordinary matter and that of black holes. Using curved space, we construct configurations with entropy greater than the area A of a black hole of equal mass. These configurations have pathological properties and we refer to them as monsters. When monsters are excluded we recover the entropy bound on ordinary matter S 3/4 . This bound implies that essentially all of the microstates of a semiclassical black hole are associated with the growth of a slightly smaller black hole which absorbs some additional energy. Our results suggest that the area entropy of black holes is the logarithm of the number of distinct ways in which one can form the black hole from ordinary matter and smaller black holes, but only after the exclusion of monster states

  3. Entropy of black holes with multiple horizons

    Science.gov (United States)

    He, Yun; Ma, Meng-Sen; Zhao, Ren

    2018-05-01

    We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and "quintessence horizon" for the black holes surrounded by quintessence). Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.

  4. Entropy evaporated by a black hole

    International Nuclear Information System (INIS)

    Zurek, W.H.

    1982-01-01

    It is shown that the entropy of the radiation evaporated by an uncharged, nonrotating black hole into vacuum in the course of its lifetime is approximately (4/3) times the initial entropy of this black hole. Also considered is a thermodynamically reversible process in which an increase of black-hole entropy is equal to the decrease of the entropy of its surroundings. Implications of these results for the generalized second law of thermodynamics and for the interpretation of black-hole entropy are pointed out

  5. Black hole entropy and quantum information

    CERN Document Server

    Duff, M J

    2006-01-01

    We review some recently established connections between the mathematics of black hole entropy in string theory and that of multipartite entanglement in quantum information theory. In the case of N=2 black holes and the entanglement of three qubits, the quartic [SL(2)]^3 invariant, Cayley's hyperdeterminant, provides both the black hole entropy and the measure of tripartite entanglement. In the case of N=8 black holes and the entanglement of seven qubits, the quartic E_7 invariant of Cartan provides both the black hole entropy and the measure of a particular tripartite entanglement encoded in the Fano plane.

  6. Quantum aspects of black hole entropy

    Indian Academy of Sciences (India)

    Abstract. This survey intends to cover recent approaches to black hole entropy which attempt to go beyond the standard semiclassical perspective. Quantum corrections to the semiclassical Bekenstein–. Hawking area law for black hole entropy, obtained within the quantum geometry framework, are treated in some detail.

  7. Tachyon condensation and black hole entropy.

    Science.gov (United States)

    Dabholkar, Atish

    2002-03-04

    String propagation on a cone with deficit angle 2pi(1-1 / N) is considered for the purpose of computing the entropy of a large mass black hole. The entropy computed using the recent results on condensation of twisted-sector tachyons in this theory is found to be in precise agreement with the Bekenstein-Hawking entropy.

  8. Does black-hole entropy make sense

    International Nuclear Information System (INIS)

    Wilkins, D.

    1979-01-01

    Bekenstein and Hawking saved the second law of thermodynamics near a black hole by assigning to the hole an entropy Ssub(h) proportional to the area of its event horizon. It is tempting to assume that Ssub(h) possesses all the features commonly associated with the physical entropy. Kundt has shown, however, that Ssub(h) violates several reasonable physical expectations. This criticism is reviewed, augmenting it as follows: (a) Ssub(h) is a badly behaved state function requiring knowledge of the hole's future history; and (b) close analogs of event horizons in other space-times do not possess an 'entropy'. These questions are also discussed: (c) Is Ssub(h) suitable for all regions of a black-hole space-time. And (b) should Ssub(h) be attributed to the exterior of a white hole. One can retain Ssub(h) for the interior (respectively, exterior) of a black (respectively, white) hole, but is rejected as contrary to the information-theoretic derivation of horizon entropy given by Berkenstein. The total entropy defined by Kundt (all ordinary entropy on space-section cutting through the hole, no horizon term) and that of Bekenstein-Hawking (ordinary entropy outside horizon plus horizon term) appear to be complementary concepts with separate domains of validity. In the most natural choice, an observer inside a black hole will use Kundt's entropy, and one remaining outside that of Bekenstein-Hawking. (author)

  9. Quantum aspects of black hole entropy

    Indian Academy of Sciences (India)

    Quantum corrections to the semiclassical Bekenstein–Hawking area law for black hole entropy, obtained within the quantum geometry framework, are treated in some detail. Their ramification for the holographic entropy bound for bounded stationary spacetimes is discussed. Four dimensional supersymmetric extremal black ...

  10. Black hole entropy functions and attractor equations

    International Nuclear Information System (INIS)

    Lopes Cardoso, Gabriel; Wit, Bernard de; Mahapatra, Swapna

    2007-01-01

    The entropy and the attractor equations for static extremal black hole solutions follow from a variational principle based on an entropy function. In the general case such an entropy function can be derived from the reduced action evaluated in a near-horizon geometry. BPS black holes constitute special solutions of this variational principle, but they can also be derived directly from a different entropy function based on supersymmetry enhancement at the horizon. Both functions are consistent with electric/magnetic duality and for BPS black holes their corresponding OSV-type integrals give identical results at the semi-classical level. We clarify the relation between the two entropy functions and the corresponding attractor equations for N = 2 supergravity theories with higher-derivative couplings in four space-time dimensions. We discuss how non-holomorphic corrections will modify these entropy functions

  11. Entropy Inequality Violations from Ultraspinning Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Kubizňák, David

    2015-07-17

    We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold.

  12. Problems in black-hole entropy interpretation

    International Nuclear Information System (INIS)

    Liberati, S.

    1997-01-01

    In this work some proposals for black-hole entropy interpretation are exposed and investigated. In particular, the author will firstly consider the so-called 'entanglement entropy' interpretation, in the framework of the brick wall model and the divergence problem arising in the one-loop calculations of various thermodynamical quantities, like entropy, internal energy and heat capacity. It is shown that the assumption of equality of entanglement entropy and Bekenstein-Hawking one appears to give inconsistent results. These will be a starting point for a different interpretation of black.hole entropy based on peculiar topological structures of manifolds with 'intrinsic' thermodynamical features. It is possible to show an exact relation between black-hole gravitational entropy and topology of these Euclidean space-times. the expression for the Euler characteristic, through the Gauss-Bonnet integral, and the one for entropy for gravitational instantons are proposed in a form which makes the relation between these self-evident. Using this relation he propose a generalization of the Bekenstein-Hawking entropy in which the former and Euler characteristic are related in the equation S = χA / 8. Finally, he try to expose some conclusions and hypotheses about possible further development of this research

  13. Rotating embedded black holes: Entropy and Hawking's radiation

    OpenAIRE

    Ibohal, Ng

    2004-01-01

    In this paper we derive a class of rotating embedded black holes. Then we study Hawking's radiation effects on these embedded black holes. The surface gravity, entropy and angular velocity are given for each of these black holes.

  14. Entropy of charged dilaton-axion black hole

    International Nuclear Information System (INIS)

    Ghosh, Tanwi; SenGupta, Soumitra

    2008-01-01

    Using the brick wall method, the entropy of the charged dilaton-axion black hole is determined for both asymptotically flat and nonflat cases. The entropy turns out to be proportional to the horizon area of the black hole confirming the Bekenstein-Hawking area-entropy formula for black holes. The leading order logarithmic corrections to the entropy are also derived for such black holes.

  15. Black hole entropy and finite geometry

    Czech Academy of Sciences Publication Activity Database

    Levay, P.; Saniga, M.; Vrana, P.; Pracna, Petr

    2009-01-01

    Roč. 79, č. 8 (2009), 084036 ISSN 1550-7998 Institutional research plan: CEZ:AV0Z40400503 Keywords : Maxwell-Einstein supergravity * attractors * black hole entropy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.922, year: 2009

  16. Siegel Modular Forms and Black Hole Entropy

    NARCIS (Netherlands)

    Belin, Alexandre; Castro, Alejandra; Vieira Gomes, Joao; Keller, Christoph A.

    2017-01-01

    We discuss the application of Siegel Modular Forms to Black Hole entropy counting. The role of the Igusa cusp form $\\chi_{10}$ in the D1D5P system is well-known, and its transformation properties are what allows precision microstate counting in this case. We apply a similar method to extract the

  17. Logarithmic black hole entropy corrections and holographic Renyi entropy

    International Nuclear Information System (INIS)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Renyi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Renyi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order G D 0 . The entropic c-function and the inequalities of the Renyi entropy are also satisfied even with the correction terms. (orig.)

  18. Planck absolute entropy of a rotating BTZ black hole

    Science.gov (United States)

    Riaz, S. M. Jawwad

    2018-04-01

    In this paper, the Planck absolute entropy and the Bekenstein-Smarr formula of the rotating Banados-Teitelboim-Zanelli (BTZ) black hole are presented via a complex thermodynamical system contributed by its inner and outer horizons. The redefined entropy approaches zero as the temperature of the rotating BTZ black hole tends to absolute zero, satisfying the Nernst formulation of a black hole. Hence, it can be regarded as the Planck absolute entropy of the rotating BTZ black hole.

  19. Black-hole entropy from quantum geometry

    International Nuclear Information System (INIS)

    Domagala, Marcin; Lewandowski, Jerzy

    2004-01-01

    Quantum geometry (the modern loop quantum gravity involving graphs and spin-networks instead of the loops) provides microscopic degrees of freedom that account for black-hole entropy. However, the procedure for state counting used in the literature contains an error and the number of the relevant horizon states is underestimated. In our paper a correct method of counting is presented. Our results lead to a revision of the literature of the subject. It turns out that the contribution of spins greater than 1/2 to the entropy is not negligible. Hence, the value of the Barbero-Immirzi parameter involved in the spectra of all the geometric and physical operators in this theory is different than previously derived. Also, the conjectured relation between quantum geometry and the black-hole quasi-normal modes should be understood again

  20. Black hole entropy in massive Type IIA

    Science.gov (United States)

    Benini, Francesco; Khachatryan, Hrachya; Milan, Paolo

    2018-02-01

    We study the entropy of static dyonic BPS black holes in AdS4 in 4d N=2 gauged supergravities with vector and hyper multiplets, and how the entropy can be reproduced with a microscopic counting of states in the AdS/CFT dual field theory. We focus on the particular example of BPS black holes in AdS{\\hspace{0pt}}4 × S6 in massive Type IIA, whose dual three-dimensional boundary description is known and simple. To count the states in field theory we employ a supersymmetric topologically twisted index, which can be computed exactly with localization techniques. We find a perfect match at leading order.

  1. Effective Conformal Descriptions of Black Hole Entropy

    Directory of Open Access Journals (Sweden)

    Steven Carlip

    2011-07-01

    Full Text Available It is no longer considered surprising that black holes have temperatures and entropies. What remains surprising, though, is the universality of these thermodynamic properties: their exceptionally simple and general form, and the fact that they can be derived from many very different descriptions of the underlying microscopic degrees of freedom. I review the proposal that this universality arises from an approximate conformal symmetry, which permits an effective “conformal dual” description that is largely independent of the microscopic details.

  2. Entropy: from black holes to ordinary systems

    International Nuclear Information System (INIS)

    Badiali, J P

    2006-01-01

    Several results of black holes thermodynamics can be considered as firmly founded and formulated in a very general manner. From this starting point, we analyse in which way these results may improve our understanding in the thermodynamics of ordinary systems for which a pre-relativistic description is sufficient. First, we introduce a spacetime model and an entropy related to a local definition of the order in this spacetime. We show that such an approach leads to the traditional thermodynamics provided an equilibrium condition is assumed. From this condition a relation time/temperature is introduced. We show that such a relation extensively used in the black hole theory has a very general and physical meaning here. Our dynamical approach of thermodynamic equilibrium allows us to establish a relation between action and entropy identical to the one existing in the case of black holes. Since this relation exists for systems with very different underlying physics, we may expect that it corresponds to a general result in thermodynamics; it suggests that a definition of entropy in terms of order in spacetime might be more general than the Boltzmann definition related to a counting of microstates. All these results based on the fact that the paths introduced in the path-integral formalism have a physical meaning give a new approach of statistical mechanics. Finally, we compare our approach to other works based on a similar starting point

  3. Entropy Spectrum of Modified Schwarzschild Black Hole via an ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Abstract. The entropy spectrum of a modified Schwarzschild black hole in the gravity's rainbow are investigated. By utilizing an action invariance of the black hole with the help of Bohr–Sommerfield quantization rule, the entropy spectrum for the modified black hole are calculated. The result of the equally ...

  4. Landau degeneracy and black hole entropy

    International Nuclear Information System (INIS)

    Costa, M.S.; Perry, M.J.

    1998-01-01

    We consider the supergravity solution describing a configuration of intersecting D4-branes with non-vanishing world-volume gauge fields. The entropy of such a black hole is calculated in terms of the D-branes quantised charges. The non-extreme solution is also considered and the corresponding thermodynamical quantities are calculated in terms of a D-brane/anti-D-brane system. To perform the quantum mechanical D-brane analysis we study open strings with their ends on branes with a magnetic condensate. Applying the results to our D-brane system we manage to have a perfect agreement between the D-brane entropy counting and the corresponding semi-classical result. The Landau degeneracy of the open string states describing the excitations of the D-brane system enters in a crucial way. We also derive the near-extreme results which agree with the semi-classical calculations. (orig.)

  5. Soft hairy warped black hole entropy

    Science.gov (United States)

    Grumiller, Daniel; Hacker, Philip; Merbis, Wout

    2018-02-01

    We reconsider warped black hole solutions in topologically massive gravity and find novel boundary conditions that allow for soft hairy excitations on the horizon. To compute the associated symmetry algebra we develop a general framework to compute asymptotic symmetries in any Chern-Simons-like theory of gravity. We use this to show that the near horizon symmetry algebra consists of two u (1) current algebras and recover the surprisingly simple entropy formula S = 2 π( J 0 + + J 0 - ), where J 0 ± are zero mode charges of the current algebras. This provides the first example of a locally non-maximally symmetric configuration exhibiting this entropy law and thus non-trivial evidence for its universality.

  6. Additivity of the entropies of black holes and matter

    International Nuclear Information System (INIS)

    Martinez, E.A.; York, J.W. Jr.

    1989-01-01

    The principal object of this work is to address two related questions about thermodynamic equilibrium between black holes and matter: is there gravitational entropy other than that for black holes? In particular, is there gravitational entropy associated with matter in addition to its usual thermodynamic entropy? The authors treat here the case when the black hole and matter are minimally coupled and in equilibrium; nonequilibrium creation of entropy will not be considered and if black holes and matter are in thermal equilibrium, in what sense are their entropies additive? In order to answer these questions, the authors present a model in which a black hole is surrounded by a thin shell of matter and construct the thermodynamics of the system based on the current approach to black hole thermodynamics. The authors review the essential aspects of this approach and then apply it to the present example. Finally, some further thermodynamical properties of the system are presented

  7. Canonical entropy of three-dimensional BTZ black hole

    International Nuclear Information System (INIS)

    Zhao Ren; Zhang Shengli

    2006-01-01

    Recently, Hawking radiation of the black hole has been studied using the tunnel effect method. It is found that the radiation spectrum of the black hole is not a strictly pure thermal spectrum. How does the departure from pure thermal spectrum affect the entropy? This is a very interesting problem. In this Letter, we calculate the partition function by energy spectrum obtained from tunnel effect. Using the partition function, we compute the black hole entropy and derive the expression of the black hole entropy after considering the radiation. And we derive the entropy of charged black hole. In our calculation, we consider not only the correction to the black hole entropy due to fluctuation of energy but also the effect of the change of the black hole charges on entropy. There is no other hypothesis. Our result is more reasonable. According to the fact that the black hole entropy is not divergent, we obtain the lower limit of Banados-Teitelboim-Zanelli black hole energy. That is, the least energy of Banados-Teitelboim-Zanelli black hole, which satisfies the stationary condition in thermodynamics

  8. Quantum correction to the entropy of noncommutative BTZ black hole

    Science.gov (United States)

    Anacleto, M. A.; Brito, F. A.; Cavalcanti, A. G.; Passos, E.; Spinelly, J.

    2018-02-01

    In this paper we consider the generalized uncertainty principle (GUP) in the tunneling formalism via Hamilton-Jacobi method to determine the quantum-corrected Hawking temperature and entropy for noncommutative BTZ black hole. In our results we obtain several types of corrections including the expected logarithmic correction to the area entropy associated with the noncommutative BTZ black holes. We also show that the area entropy product of the noncommutative BTZ black holes is dependent on mass and by analyzing the nature of the specific heat capacity we have observed that the noncommutative BTZ black hole is stable at some range of parameters.

  9. Entropy of the Kerr–Sen black hole

    Indian Academy of Sciences (India)

    We study the entropy of Kerr–Sen black hole of heterotic string theory beyond semiclassical approximations. Applying the properties of exact differentials for three variables to the first law of thermodynamics, we derive the corrections to the entropy of the black hole. The leading (logarithmic) and non-leading corrections to ...

  10. Thermodynamic studies of different black holes with modifications of entropy

    Science.gov (United States)

    Haldar, Amritendu; Biswas, Ritabrata

    2018-02-01

    In recent years, the thermodynamic properties of black holes are topics of interests. We investigate the thermodynamic properties like surface gravity and Hawking temperature on event horizon of regular black holes viz. Hayward Class and asymptotically AdS (Anti-de Sitter) black holes. We also analyze the thermodynamic volume and naive geometric volume of asymptotically AdS black holes and show that the entropy of these black holes is simply the ratio of the naive geometric volume to thermodynamic volume. We plot the different graphs and interpret them physically. We derive the `cosmic-Censorship-Inequality' for both type of black holes. Moreover, we calculate the thermal heat capacity of aforesaid black holes and study their stabilities in different regimes. Finally, we compute the logarithmic correction to the entropy for both the black holes considering the quantum fluctuations around the thermal equilibrium and study the corresponding thermodynamics.

  11. Entropy of Iterated Function Systems and Their Relations with Black Holes and Bohr-Like Black Holes Entropies

    Directory of Open Access Journals (Sweden)

    Christian Corda

    2018-01-01

    Full Text Available In this paper we consider the metric entropies of the maps of an iterated function system deduced from a black hole which are known the Bekenstein–Hawking entropies and its subleading corrections. More precisely, we consider the recent model of a Bohr-like black hole that has been recently analysed in some papers in the literature, obtaining the intriguing result that the metric entropies of a black hole are created by the metric entropies of the functions, created by the black hole principal quantum numbers, i.e., by the black hole quantum levels. We present a new type of topological entropy for general iterated function systems based on a new kind of the inverse of covers. Then the notion of metric entropy for an Iterated Function System ( I F S is considered, and we prove that these definitions for topological entropy of IFS’s are equivalent. It is shown that this kind of topological entropy keeps some properties which are hold by the classic definition of topological entropy for a continuous map. We also consider average entropy as another type of topological entropy for an I F S which is based on the topological entropies of its elements and it is also an invariant object under topological conjugacy. The relation between Axiom A and the average entropy is investigated.

  12. N=4 Topological Amplitudes and Black Hole Entropy

    CERN Document Server

    Antoniadis, I

    2010-01-01

    We study the effects of N=4 topological string amplitudes on the entropy of black holes. We analyse the leading contribution associated to six-derivative terms and find one particular operator which can correct the entropy of N=4 black holes. This operator is BPS-like and appears in the effective action of type II string theory on K3 x T^2 or equivalently its heterotic dual on T^6. In both descriptions the leading contribution arises at one-loop, which we calculate explicitly on the heterotic side. We then consider whether this term has any consequences for the entropy of (large) N=4 black holes and find that it makes indeed a contribution at subleading order. Repeating the computation for small black holes with vanishing horizon area at the classical level, we prove that this coupling lifts certain flat directions in the entropy function thereby being responsible for the attractor equations of some moduli fields.

  13. Black-hole thermodynamics: Entropy, information and beyond

    Indian Academy of Sciences (India)

    We review some recent advances in black-hole thermodynamics including statistical mechanical origins of black-hole entropy and its leading order corrections from the view points of various quantum gravity theories. We then examine the problem of information loss and some possible approaches to its resolution. Finally ...

  14. Entanglement Entropy of AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Maurizio Melis

    2010-11-01

    Full Text Available We review recent progress in understanding the entanglement entropy of gravitational configurations for anti-de Sitter gravity in two and three spacetime dimensions using the AdS/CFT correspondence. We derive simple expressions for the entanglement entropy of two- and three-dimensional black holes. In both cases, the leading term of the entanglement entropy in the large black hole mass expansion reproduces exactly the Bekenstein-Hawking entropy, whereas the subleading term behaves logarithmically. In particular, for the BTZ black hole the leading term of the entanglement entropy can be obtained from the large temperature expansion of the partition function of a broad class of 2D CFTs on the torus.

  15. Black hole entropy in the O(N) model

    International Nuclear Information System (INIS)

    Kabat, D.; Shenker, S.H.; Strassler, M.J.

    1995-01-01

    We consider corrections to the entropy of a black hole from an O(N)-invariant linear σ model. We obtain the entropy from a 1/N expansion of the partition function on a cone. The entropy arises from diagrams which are analogous to those introduced by Susskind and Uglum to explain black hole entropy in string theory. The interpretation of the σ-model entropy depends on scale. At short distances, it has a state counting interpretation, as the entropy of entanglement of the N fields φ a . In the infrared, the effective theory has a single composite field σ∼φ a φ a , and the state counting interpretation of the entropy is lost. copyright 1995 The American Physical Society

  16. Renormalized thermodynamic entropy of black holes in higher dimensions

    International Nuclear Information System (INIS)

    Kim, S.P.; Kim, S.K.; Soh, K.; Yee, J.H.

    1997-01-01

    We study the ultraviolet divergent structures of the matter (scalar) field in a higher D-dimensional Reissner-Nordstroem black hole and compute the matter field contribution to the Bekenstein-Hawking entropy by using the Pauli-Villars regularization method. We find that the matter field contribution to the black hole entropy does not, in general, yield the correct renormalization of the gravitational coupling constants. In particular, we show that the matter field contribution in odd dimensions does not give the term proportional to the area of the black hole event horizon. copyright 1997 The American Physical Society

  17. Topology, entropy, and Witten index of dilaton black holes

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Kallosh, R.E.

    1995-01-01

    We have found that for extreme dilaton black holes an inner boundary must be introduced in addition to the outer boundary to give an integer value to the Euler number. The resulting manifolds have (if one identifies imaginary time) a topology S 1 xRxS 2 and Euler number χ=0 in contrast with the nonextreme case with χ=2. The entropy of extreme U(1) dilaton black holes is already known to be zero. We include a review of some recent ideas due to Hawking on the Reissner-Nordstroem case. By regarding all extreme black holes as having an inner boundary, we conclude that the entropy of all extreme black holes, including [U(1)] 2 black holes, vanishes. We discuss the relevance of this to the vanishing of quantum corrections and the idea that the functional integral for extreme holes gives a Witten index. We have studied also the topology of ''moduli space'' of multi-black-holes. The quantum mechanics on black hole moduli spaces is expected to be supersymmetric despite the fact that they are not hyper-Kaehler since the corresponding geometry has a torsion unlike the BPS monopole case. Finally, we describe the possibility of extreme black hole fission for states with an energy gap. The energy released, as a proportion of the initial rest mass, during the decay of an electromagnetic black hole is 300 times greater than that released by the fission of a 235 U nucleus

  18. Configurational entropy of anti-de Sitter black holes

    Science.gov (United States)

    Braga, Nelson R. F.; da Rocha, Roldão

    2017-04-01

    Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or) the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking-Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.

  19. Configurational entropy of anti-de Sitter black holes

    Directory of Open Access Journals (Sweden)

    Nelson R.F. Braga

    2017-04-01

    Full Text Available Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking–Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.

  20. Configurational entropy of anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Braga, Nelson R.F.; Rocha, Roldão da

    2017-01-01

    Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or) the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking–Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.

  1. Configurational entropy of anti-de Sitter black holes

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Nelson R.F., E-mail: braga@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC – UFABC, 09210-580, Santo André (Brazil)

    2017-04-10

    Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or) the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking–Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.

  2. Statistical Origin of Black Hole Entropy in Matrix Theory

    International Nuclear Information System (INIS)

    Lowe, D.A.

    1998-01-01

    The statistical entropy of black holes in matrix theory is considered. Assuming matrix theory is the discretized light-cone quantization of a theory with eleven-dimensional Lorentz invariance, we map the counting problem onto the original Gibbons-Hawking calculations of the thermodynamic entropy. copyright 1998 The American Physical Society

  3. Planck absolute entropy of a rotating BTZ black hole

    Indian Academy of Sciences (India)

    S. M. Jawwad Riaz

    2018-03-06

    Mar 6, 2018 ... Abstract. In this paper, the Planck absolute entropy and the Bekenstein–Smarr formula of the rotating. Banados–Teitelboim–Zanelli (BTZ) black hole are presented via a complex thermodynamical system con- tributed by its inner and outer horizons. The redefined entropy approaches zero as the ...

  4. Black Hole Entropy Calculation in a Modified Thin Film Model

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The thin film model is modified to calculate the black hole entropy. The difference from the original method is that the Parikh–Wilczek tunnelling framework is introduced and the self-gravitation of the emission particles is taken into account. In terms of our improvement, if the entropy is still proportional to the ...

  5. Entropy of Kerr-de Sitter black hole

    Science.gov (United States)

    Li, Huai-Fan; Ma, Meng-Sen; Zhang, Li-Chun; Zhao, Ren

    2017-07-01

    Based on the consideration that the black hole horizon and the cosmological horizon of Kerr-de Sitter black hole are not independent of each other, we conjecture the total entropy of the system should have an extra term contributed from the correlations between the two horizons, except for the sum of the two horizon entropies. By employing globally effective first law and effective thermodynamic quantities, we obtain the corrected total entropy and find that the region of stable state for Kerr-de Sitter is related to the angular velocity parameter a, i.e., the region of stable state becomes bigger as the rotating parameters a is increases.

  6. The entropy function for the black holes of Nariai class

    International Nuclear Information System (INIS)

    Cho, Jin-Ho; Nam, Soonkeon

    2008-01-01

    Based on the fact that the near horizon geometry of the extremal Schwarzschild-de Sitter black holes is Nariai geometry, we define the black holes of Nariai class as the configuration whose near-horizon geometry is factorized as two dimensional de Sitter space-time and some compact topology, that is Nariai geometry. We extend the entropy function formalism to the case of the black holes of Nariai class. The conventional entropy function (for the extremal black holes) is defined as Legendre transformation of Lagrangian density, thus the 'Routhian density', over two dimensional anti-de Sitter. As for the black holes of Nariai class, it is defined as minus 'Routhian density' over two dimensional de Sitter space-time. We found an exact agreement of the result with Bekenstein-Hawking entropy. The higher order corrections are nontrivial only when the space-time dimension is over four, that is, d>4. There is a subtlety as regards the temperature of the black holes of Nariai class. We show that in order to be consistent with the near horizon geometry, the temperature should be non-vanishing despite the extremality of the black holes

  7. Entropy calculation for a toy black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sahlmann, Hanno [Spinoza Institute and ITP, Utrecht University, Utrecht (Netherlands)

    2008-03-07

    In this paper, we carry out the counting of states for a black hole in loop quantum gravity, assuming however an equidistant area spectrum. We find that this toy-model is exactly solvable, and we show that its behavior is very similar to that of the correct model. Thus this toy-model can be used as a nice and simplifying 'laboratory' for questions about the full theory.

  8. Entropy calculation for a toy black hole

    OpenAIRE

    Sahlmann, Hanno

    2007-01-01

    In this note we carry out the counting of states for a black hole in loop quantum gravity, however assuming an equidistant area spectrum. We find that this toy-model is exactly solvable, and we show that its behavior is very similar to that of the correct model. Thus this toy-model can be used as a nice and simplifying `laboratory' for questions about the full theory.

  9. Loop quantum gravity and Planck-size black hole entropy

    OpenAIRE

    Corichi, Alejandro; Diaz-Polo, Jacobo; Fernandez-Borja, Enrique

    2007-01-01

    The Loop Quantum Gravity (LQG) program is briefly reviewed and one of its main applications, namely the counting of black hole entropy within the framework is considered. In particular, recent results for Planck size black holes are reviewed. These results are consistent with an asymptotic linear relation (that fixes uniquely a free parameter of the theory) and a logarithmic correction with a coefficient equal to -1/2. The account is tailored as an introduction to the subject for non-experts.

  10. Gravity’s Rainbow and Black Hole Entropy

    Science.gov (United States)

    Garattini, Remo

    2017-12-01

    We consider the effects of Gravity’s Rainbow on the computation of black hole entropy using a dynamical brick wall model. An explicit dependence of the radial coordinate approaching the horizon is proposed to analyze the behavior of the divergence. We find that, due to the modification of the density of states, the brick wall can be eliminated. The calculation is extended to include rotations and in particular to a Kerr black hole in a comoving frame.

  11. Logarithmic corrections to black hole entropy from Kerr/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Abhishek [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Porfyriadis, Achilleas P. [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Department of Physics, UCSB,Santa Barbara, CA 93106 (United States); Strominger, Andrew [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Varela, Oscar [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Am Mühlenberg 1, D-14476 Potsdam (Germany); Department of Physics, Utah State University,Logan, UT 84322 (United States)

    2017-04-14

    It has been shown by A. Sen that logarithmic corrections to the black hole area-entropy law are entirely determined macroscopically from the massless particle spectrum. They therefore serve as powerful consistency checks on any proposed enumeration of quantum black hole microstates. Sen’s results include a macroscopic computation of the logarithmic corrections for a five-dimensional near extremal Kerr-Newman black hole. Here we compute these corrections microscopically using a stringy embedding of the Kerr/CFT correspondence and find perfect agreement.

  12. Statistical Entropy of Four-Dimensional Extremal Black Holes

    International Nuclear Information System (INIS)

    Maldacena, J.M.; Strominger, A.

    1996-01-01

    String theory is used to count microstates of four-dimensional extremal black holes in compactifications with N=4 and N=8 supersymmetry. The result agrees for large charges with the Bekenstein-Hawking entropy. copyright 1996 The American Physical Society

  13. Entropy of a black hole in infinite-derivative gravity

    Science.gov (United States)

    Myung, Yun Soo

    2017-05-01

    We compute the Wald entropy of the Schwarzschild black hole in the ghost-free, infinite-derivative gravity that is quadratic in curvature. This is not given purely by the area law but includes an additional contribution depending on the power of the d'Alembertian operator, when requiring that the massless graviton be the only propagating mode in the Minkowski spacetime.

  14. Entropy of the Kerr–Sen black hole

    Indian Academy of Sciences (India)

    National Astronomical Observatory, National University of Colombia, Bogota, Colombia. E-mail: ealarranaga@unal.edu.co. MS received 8 July 2010; revised 13 October 2010; accepted 21 October 2010. Abstract. We study the entropy of Kerr–Sen black hole of heterotic string theory beyond semiclas- sical approximations.

  15. Simple regular black hole with logarithmic entropy correction

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Duran, Nicolas; Vargas, Andres F.; Hoyos-Restrepo, Paulina; Bargueno, Pedro [Universidad de los Andes, Departamento de Fisica, Bogota, Distrito Capital (Colombia)

    2016-10-15

    A simple regular black hole solution satisfying the weak energy condition is obtained within Einstein-non-linear electrodynamics theory. We have computed the thermodynamic properties of this black hole by a careful analysis of the horizons and we have found that the usual Bekenstein-Hawking entropy gets corrected by a logarithmic term. Therefore, in this sense our model realises some quantum gravity predictions which add this kind of correction to the black hole entropy. In particular, we have established some similitudes between our model and a quadratic generalised uncertainty principle. This similitude has been confirmed by the existence of a remnant, which prevents complete evaporation, in agreement with the quadratic generalised uncertainty principle case. (orig.)

  16. Black Hole Entropy from Conformal Field Theory in Any Dimension

    International Nuclear Information System (INIS)

    Carlip, S.

    1999-01-01

    Restricted to a black hole horizon, the open-quotes gaugeclose quotes algebra of surface deformations in general relativity contains a Virasoro subalgebra with a calculable central charge. The fields in any quantum theory of gravity must transform accordingly, i.e., they must admit a conformal field theory description. Applying Cardy close-quote s formula for the asymptotic density of states, I use this result to derive the Bekenstein-Hawking entropy. This method is universal it holds for any black hole, and requires no details of quantum gravity but it is also explicitly statistical mechanical, based on counting microscopic states. copyright 1999 The American Physical Society

  17. Nonlinear symmetries of black hole entropy in gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, Dietmar [Dipartimento di Fisica, Università di Milano,and INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Marrani, Alessio [Museo Storico della Fisica e Centro Studi e Ricerche ‘Enrico Fermi’,Via Panisperna 89A, I-00184 Roma (Italy); Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova,and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Petri, Nicolò; Rabbiosi, Marco [Dipartimento di Fisica, Università di Milano,and INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy)

    2017-04-04

    Freudenthal duality in N=2, D=4 ungauged supergravity is generated by an anti-involutive operator that acts on the electromagnetic fluxes, and results to be a symmetry of the Bekenstein-Hawking entropy. We show that, with a suitable extension, this duality can be generalized to the abelian gauged case as well, even in presence of hypermultiplets. By defining Freudenthal duality along the scalar flow, one can prove that two configurations of charges and gaugings linked by the Freudenthal operator share the same set of values of the scalar fields at the black hole horizon. Consequently, Freudenthal duality is promoted to a nonlinear symmetry of the black hole entropy. We explicitly show this invariance for the model with prepotential F=−iX{sup 0}X{sup 1} and Fayet-Iliopoulos gauging.

  18. Entropy corresponding to the interior of a Schwarzschild black hole

    Directory of Open Access Journals (Sweden)

    Bibhas Ranjan Majhi

    2017-07-01

    Full Text Available Interior volume within the horizon of a black hole is a non-trivial concept which turns out to be very important to explain several issues in the context of quantum nature of black hole. Here we show that the entropy, contained by the maximum interior volume for massless modes, is proportional to the Bekenstein–Hawking expression. The proportionality constant is less than unity implying the horizon bears maximum entropy than that by the interior. The derivation is very systematic and free of any ambiguity. To do so the precise value of the energy of the modes, living in the interior, is derived by constraint analysis. Finally, the implications of the result are discussed.

  19. Entropy corresponding to the interior of a Schwarzschild black hole

    Science.gov (United States)

    Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-07-01

    Interior volume within the horizon of a black hole is a non-trivial concept which turns out to be very important to explain several issues in the context of quantum nature of black hole. Here we show that the entropy, contained by the maximum interior volume for massless modes, is proportional to the Bekenstein-Hawking expression. The proportionality constant is less than unity implying the horizon bears maximum entropy than that by the interior. The derivation is very systematic and free of any ambiguity. To do so the precise value of the energy of the modes, living in the interior, is derived by constraint analysis. Finally, the implications of the result are discussed.

  20. d-dimensional black hole entropy spectrum from quasinormal modes.

    Science.gov (United States)

    Kunstatter, G

    2003-04-25

    Starting from recent observations about quasinormal modes, we use semiclassical arguments to derive the Bekenstein-Hawking entropy spectrum for d-dimensional spherically symmetric black holes. We find that, as first suggested by Bekenstein, the entropy spectrum is equally spaced: S(BH)=kln((m(0))n, where m(0) is a fixed integer that must be derived from the microscopic theory. As shown in O. Dreyer, gr-qc/0211076, 4D loop quantum gravity yields precisely such a spectrum with m(0)=3 providing the Immirzi parameter is chosen appropriately. For d-dimensional black holes of radius R(H)(M), our analysis predicts the existence of a unique quasinormal mode frequency in the large damping limit omega((d))(M)=alpha((d))c/R(H)(M) with coefficient [formula: see text], where m(0) is an integer.

  1. Entropy localization and extensivity in the semiclassical black hole evaporation

    International Nuclear Information System (INIS)

    Casini, H.

    2009-01-01

    I aim to quantify the distribution of information in the Hawking radiation and inside the black hole in the semiclassical evaporation process. The structure of relativistic quantum field theory does not allow one to define a localized entropy unambiguously, but rather forces one to consider the shared information (mutual information) between two different regions of space-time. Using this tool, I first show that the entropy of a thermal gas at the Unruh temperature underestimates the actual amount of (shared) information present in a region of the Rindler space. Then, I analyze the mutual information between the black hole and the late time radiation region. A well-known property of the entropy implies that this is monotonically increasing with time. This means that in the semiclassical picture it is not possible to recover the eventual purity of the initial state in the final Hawking radiation through subtle correlations established during the whole evaporation period, no matter the interactions present in the theory. I find extensivity of the entropy as a consequence of a reduction to a two dimensional conformal problem in a simple approximation. However, the extensivity of information in the radiation region in a full four dimensional calculation seems not to be guaranteed on general grounds. I also analyze the localization of shared information inside the black hole finding that a large amount of it is contained in a small, approximately flat region of space-time near the point where the horizon begins. This gives place to large violations of the entropy bounds. I show that this problem is not eased by backscattering effects and argue that a breaking of conformal invariance is necessary to delocalize the entropy. Finally, I indicate that the mutual information could lead to a way to understand the Bekenstein-Hawking black hole entropy which does not require a drastic reduction in degrees of freedom in order to regulate the entanglement entropy. On the contrary

  2. Black hole entropy and viscosity bound in Horndeski gravity

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xing-Hui [Center for Advanced Quantum Studies, Department of Physics,Beijing Normal University, Beijing 100875 (China); Liu, Hai-Shan [Institute for Advanced Physics & Mathematics,Zhejiang University of Technology, Hangzhou 310023 (China); George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States); Lü, H. [Center for Advanced Quantum Studies, Department of Physics,Beijing Normal University, Beijing 100875 (China); Pope, C.N. [George P. & Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University, College Station, TX 77843 (United States); DAMTP, Centre for Mathematical Sciences,Cambridge University, Wilberforce Road, Cambridge CB3 OWA (United Kingdom)

    2015-11-25

    Horndeski gravities are theories of gravity coupled to a scalar field, in which the action contains an additional non-minimal quadratic coupling of the scalar, through its first derivative, to the Einstein tensor or the analogous higher-derivative tensors coming from the variation of Gauss-Bonnet or Lovelock terms. In this paper we study the thermodynamics of the static black hole solutions in n dimensions, in the simplest case of a Horndeski coupling to the Einstein tensor. We apply the Wald formalism to calculate the entropy of the black holes, and show that there is an additional contribution over and above those that come from the standard Wald entropy formula. The extra contribution can be attributed to unusual features in the behaviour of the scalar field. We also show that a conventional regularisation to calculate the Euclidean action leads to an expression for the entropy that disagrees with the Wald results. This seems likely to be due to ambiguities in the subtraction procedure. We also calculate the viscosity in the dual CFT, and show that the viscosity/entropy ratio can violate the η/S≥1/(4π) bound for appropriate choices of the parameters.

  3. Black hole entropy and viscosity bound in Horndeski gravity

    Science.gov (United States)

    Feng, Xing-Hui; Liu, Hai-Shan; Lü, H.; Pope, C. N.

    2015-11-01

    Horndeski gravities are theories of gravity coupled to a scalar field, in which the action contains an additional non-minimal quadratic coupling of the scalar, through its first derivative, to the Einstein tensor or the analogous higher-derivative tensors coming from the variation of Gauss-Bonnet or Lovelock terms. In this paper we study the thermodynamics of the static black hole solutions in n dimensions, in the simplest case of a Horndeski coupling to the Einstein tensor. We apply the Wald formalism to calculate the entropy of the black holes, and show that there is an additional contribution over and above those that come from the standard Wald entropy formula. The extra contribution can be attributed to unusual features in the behaviour of the scalar field. We also show that a conventional regularisation to calculate the Euclidean action leads to an expression for the entropy that disagrees with the Wald results. This seems likely to be due to ambiguities in the subtraction procedure. We also calculate the viscosity in the dual CFT, and show that the viscosity/entropy ratio can violate the η/S ≥ 1 /(4 π) bound for appropriate choices of the parameters.

  4. Entropy of localized states and black hole evaporation

    International Nuclear Information System (INIS)

    Olum, K.D.

    1997-01-01

    We call a state 'vacuum bounded' if every measurement performed outside a specified interior region gives the same result as in the vacuum. We compute the maximum entropy of a vacuum-bounded state with a given energy for a one-dimensional model, with the aid of numerical calculations on a lattice. The maximum entropy is larger than it would be for rigid wall boundary conditions by an amount δS, which for large energies is approx-lt(1)/(6)ln(L in T), where L in is the length of the interior region. Assuming that the state resulting from the evaporation of a black hole is similar to a vacuum-bounded state, and that the similarity between vacuum-bounded and rigid-wall-bounded problems extends from 1 to 3 dimensions, we apply these results to the black hole information paradox. Under these assumptions we conclude that large amounts of information cannot be emitted in the final explosion of a black hole. copyright 1997 The American Physical Society

  5. Logarithmic black hole entropy corrections and holographic Rényi entropy

    Science.gov (United States)

    Mahapatra, Subhash

    2018-01-01

    The entanglement and Rényi entropies for spherical entangling surfaces in CFTs with gravity duals can be explicitly calculated by mapping these entropies first to the thermal entropy on hyperbolic space and then, using the AdS/CFT correspondence, to the Wald entropy of topological black holes. Here we extend this idea by taking into account corrections to the Wald entropy. Using the method based on horizon symmetries and the asymptotic Cardy formula, we calculate corrections to the Wald entropy and find that these corrections are proportional to the logarithm of the area of the horizon. With the corrected expression for the entropy of the black hole, we then find corrections to the Rényi entropies. We calculate these corrections for both Einstein and Gauss-Bonnet gravity duals. Corrections with logarithmic dependence on the area of the entangling surface naturally occur at the order GD^0. The entropic c-function and the inequalities of the Rényi entropy are also satisfied even with the correction terms.

  6. Generalized Mirror Symmetry and Quantum Black Hole Entropy

    CERN Document Server

    Ferrara, Sergio

    2012-01-01

    We find general relations between the on-shell gravitational trace anomaly A_N, and the logarithmic correction Delta S_N to the entropy of "large" BPS extremal black holes in N>1 supergravity theories in D=4 space-time dimensions (recently computed by Sen [arXiv:1108.3842]). For (generalized) self-mirror theories (all having A_N = 0), we obtain the result DeltaS_N = - Delta S_(8-N) = 2 - N/2, whereas for generic theories the trace anomaly tildeA_N of the fully dualized theory turns out to coincide with 2Delta S_N, up to a model-independent shift: tildeA_N = 2Delta S_N - 1. We also speculate on N=1 theories displaying "large" extremal black hole solutions.

  7. Generalized mirror symmetry and quantum black hole entropy

    International Nuclear Information System (INIS)

    Ferrara, Sergio; Marrani, Alessio

    2012-01-01

    We find general relations between the on-shell gravitational trace anomaly A N , and the logarithmic correction ΔS N to the entropy of “large” BPS extremal black holes in N⩾2 supergravity theories in D=4 space-time dimensions (recently computed by Sen, 2011 ). For (generalized) self-mirror theories (all having A N =0), we obtain the result ΔS N =-ΔS 8-N =2-N/2, whereas for generic theories the trace anomaly A-tilde N of the fully dualized theory turns out to coincide with 2ΔS N , up to a model-independent shift: A-tilde N =2ΔS N −1. We also speculate on N=1 theories displaying “large” extremal black hole solutions.

  8. Entropy bounds and the second law for black holes

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1983-01-01

    A counterexample to the entropy bound proposed by Unruh and Wald and by Page is described. The bound states that the entropy S of any system with energy E and volume V cannot exceed the entropy of an equal volume and energy of unconfined thermal radiation. The bound is found to be violated by thermal field systems whose various dimensions differ by an order of magnitude or more, the violation occurring at intermediate energies. Unruh and Wald used the bound in an argument establishing the validity of the generalized second law when a box containing some entropy is lowered to near a black hole, then opened, and withdrawn open. If the box is thin in one direction, the failure of the bound for its contents makes it appear that a violation of the second law is possible. We show that, in fact, for a thin box the buoyancy effects on which Unruh and Wald's argument relies cancel out. As a result, the second law is fulfilled despite the failure of the bound. It appears from the second law that the bound must nevertheless hold when applied to box plus contents, but a direct proof of this is still lacking. We also consider the alternative entropy bound S< or =2πER/hc (2R is the largest dimension of the system) proposed earlier. For field systems it is shown to fail at very low energies, but to be valid for complete systems (i.e., box plus confined fields). Further, we show S< or =22[ER/hc is a necessary condition for fulfillment of the second law when a thin system is dropped into a black hole (even in the face of buoyancy) in the sense that if the bound failed, the law would be violated

  9. Isolated Horizons and Black Hole Entropy in Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Jacobo Diaz-Polo

    2012-08-01

    Full Text Available We review the black hole entropy calculation in the framework of Loop Quantum Gravity based on the quasi-local definition of a black hole encoded in the isolated horizon formalism. We show, by means of the covariant phase space framework, the appearance in the conserved symplectic structure of a boundary term corresponding to a Chern-Simons theory on the horizon and present its quantization both in the U(1 gauge fixed version and in the fully SU(2 invariant one. We then describe the boundary degrees of freedom counting techniques developed for an infinite value of the Chern-Simons level case and, less rigorously, for the case of a finite value. This allows us to perform a comparison between the U(1 and SU(2 approaches and provide a state of the art analysis of their common features and different implications for the entropy calculations. In particular, we comment on different points of view regarding the nature of the horizon degrees of freedom and the role played by the Barbero-Immirzi parameter. We conclude by presenting some of the most recent results concerning possible observational tests for theory.

  10. Topological derivation of black hole entropy by analogy with a chain polymer

    International Nuclear Information System (INIS)

    Siino, Masaru

    2002-01-01

    The generic crease set of an event horizon possesses anisotropic structure although most black holes are dynamically stable. This fact suggests that a generic almost spherical black hole has a very crumpled crease set on a microscopic scale although the crease set is similar to a pointwise crease set on a macroscopic scale. In the present article, we count the number of such microstates of an almost spherical black hole by analogy with an elastic chain polymer. This estimation of black hole entropy reproduces the well-known Bekenstein-Hawking entropy of a Schwarzschild black hole

  11. Statistical Entropy of Nonextremal Four-Dimensional Black Holes and U-Duality

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Lowe, D.A.; Maldacena, J.M.

    1996-01-01

    We identify the states in string theory which are responsible for the entropy of near-extremal rotating four-dimensional black holes in N=8 supergravity. For black holes far from extremality (with no rotation), the Bekenstein-Hawking entropy is exactly matched by a mysterious duality invariant extension of the formulas derived for near-extremal black holes states. copyright 1996 The American Physical Society

  12. Black Hole Entropy from Indistinguishable Quantum Geometric Excitations

    Directory of Open Access Journals (Sweden)

    Abhishek Majhi

    2016-01-01

    Full Text Available In loop quantum gravity the quantum geometry of a black hole horizon consists of discrete nonperturbative quantum geometric excitations (or punctures labeled by spins, which are responsible for the quantum area of the horizon. If these punctures are compared to a gas of particles, then the spins associated with the punctures can be viewed as single puncture area levels analogous to single particle energy levels. Consequently, if we assume these punctures to be indistinguishable, the microstate count for the horizon resembles that of Bose-Einstein counting formula for gas of particles. For the Bekenstein-Hawking area law to follow from the entropy calculation in the large area limit, the Barbero-Immirzi parameter (γ approximately takes a constant value. As a by-product, we are able to speculate the state counting formula for the SU(2 quantum Chern-Simons theory coupled to indistinguishable sources in the weak coupling limit.

  13. Black hole entropy and SU(2) Chern-Simons theory.

    Science.gov (United States)

    Engle, Jonathan; Noui, Karim; Perez, Alejandro

    2010-07-16

    Black holes (BH's) in equilibrium can be defined locally in terms of the so-called isolated horizon boundary condition given on a null surface representing the event horizon. We show that this boundary condition can be treated in a manifestly SU(2) invariant manner. Upon quantization, state counting is expressed in terms of the dimension of Chern-Simons Hilbert spaces on a sphere with punctures. Remarkably, when considering an ensemble of fixed horizon area a(H), the counting can be mapped to simply counting the number of SU(2) intertwiners compatible with the spins labeling the punctures. The resulting BH entropy is proportional to a(H) with logarithmic corrections ΔS=-3/2 loga(H). Our treatment from first principles settles previous controversies concerning the counting of states.

  14. Black Hole Entropy for Two Higher Derivative Theories of Gravity

    Directory of Open Access Journals (Sweden)

    Lorenzo Sebastiani

    2010-10-01

    Full Text Available The dark energy issue is attracting the attention of an increasing number of physicists all over the world. Among the possible alternatives to explain what as been named the “Mystery of the Millennium” are the so-called Modified Theories of Gravity. A crucial test for such models is represented by the existence and (if this is the case the properties of their black hole solutions. Nowadays, to our knowledge, only two non-trivial, static, spherically symmetric, solutions with vanishing cosmological constant are known by Barrow & Clifton (2005 and Deser, Sarioglu & Tekin (2008. The aim of the paper is to discuss some features of such solutions, with emphasis on their thermodynamic properties such as entropy and temperature.

  15. Logarithmic corrections to entropy of magnetically charged AdS4 black holes

    Directory of Open Access Journals (Sweden)

    Imtak Jeon

    2017-11-01

    Full Text Available Logarithmic terms are quantum corrections to black hole entropy determined completely from classical data, thus providing a strong check for candidate theories of quantum gravity purely from physics in the infrared. We compute these terms in the entropy associated to the horizon of a magnetically charged extremal black hole in AdS×4S7 using the quantum entropy function and discuss the possibility of matching against recently derived microscopic expressions.

  16. Canonical entropy of higher-dimensional Reissner-Nordstroem Black hole

    International Nuclear Information System (INIS)

    Zhang, L.-C.; Li, H.-F.; Zhao, R.

    2007-01-01

    Recently, Hawking radiation of the black hole has been studied using the tunnel effect method. It is found the radiation spectrum of the black hole is not a strictly pure thermal spectrum. How the departure from pure thermal spectrum affects the entropy? This is a very interesting problem. In this paper, we calculate the partition function by energy spectrum obtained by tunnel effect. Using the relation between the partition function and entropy, we derive the expression of entropy the general charged black hole. In our calculation, we not only consider the connection to the black hole entropy due to fluctuation of energy but also consider the effect of the change of the black hole charges on entropy. We discuss higher-dimensional Reissner-Nordstroem black hole and obtain the relation among the lower limit of energy value, the charges and energy of the black hole. We derive that higher-dimensional Reissner-Nordstroem black hole cannot approach the extreme black hole by changing its charges. (authors)

  17. Entropy Spectrum of Modified Schwarzschild Black Hole via an ...

    Indian Academy of Sciences (India)

    dr = ∮ ∫ Hτ. 0. dHτ dτ. (4). Considering the period of the Euclidean time of a loop about the event horizon is equal to the inverse of the temperature of black holes (Gibbons & Hawking 1977;. Ropotenko 2009), we have. I = ∫ Hτ. 0. dHτ. Tτ . (5). For the modified black hole (3), using the first law of black hole thermodynamics.

  18. Entropy function and the attractor mechanism for spherically symmetric extremal black holes

    International Nuclear Information System (INIS)

    Cai Ronggen; Cao Liming

    2007-01-01

    In this paper we elaborate on the relation between the entropy formula of Wald and the 'entropy function' method proposed by Sen. For spherically symmetric extremal black holes, it is shown that the expression of extremal black hole entropy given by Sen can be derived from the general entropy definition of Wald, without the help of the treatment of rescaling the AdS 2 part of the near horizon geometry of extremal black holes. In our procedure, we only require that the surface gravity approaches to zero, and it is easy to understand the Legendre transformation of f, the integration of Lagrangian density on the horizon, with respect to the electric charges. Since the Noether charge form can be defined in an 'off-shell' form, we define a corresponding entropy function, with which one can discuss the attractor mechanism for extremal black holes with scalar fields

  19. Intersecting D-branes and black hole entropy

    NARCIS (Netherlands)

    Behrndt, Klaus; Bergshoeff, Eric

    1996-01-01

    In four dimensions there are 4 different types of extremal Maxwell/scalar black holes characterized by a scalar coupling parameter a with a = 0, 1/√3, 1, √3. These black holes can be described as intersections of ten-dimensional non-singular Ramond-Ramond objects, i.e, D-branes, waves and

  20. Subleading contributions to the black hole entropy in the brick wall approach

    International Nuclear Information System (INIS)

    Sarkar, Sudipta; Shankaranarayanan, S.; Sriramkumar, L.

    2008-01-01

    The brick wall model is a semiclassical approach to understand the microscopic origin of black hole entropy. In this approach, the black hole geometry is assumed to be a fixed classical background on which matter fields propagate, and the entropy of black holes supposedly arises due to the canonical entropy of matter fields outside the black hole event horizon, evaluated at the Hawking temperature. Apart from certain lower dimensional cases, the density of states of the matter fields around black holes cannot be evaluated exactly. As a result, often, in the brick wall model, the density of states and the resulting canonical entropy of the matter fields are evaluated at the leading order (in terms of (ℎ/2π)) in the WKB approximation. The success of the approach is reflected by the fact that the Bekenstein-Hawking area law - viz. that the entropy of black holes is equal to one-quarter the area of their event horizon, say, A H - has been recovered using this model in a variety of black hole spacetimes. In this work, we compute the canonical entropy of a quantum scalar field around static and spherically symmetric black holes through the brick wall approach at the higher orders (in fact, up to the sixth order in (ℎ/2π)) in the WKB approximation. We explicitly show that the brick wall model generally predicts corrections to the Bekenstein-Hawking entropy in all spacetime dimensions. In four dimensions, we find that the corrections to the Bekenstein-Hawking entropy are of the form [A H n logA H ], while, in six dimensions, the corrections behave as [A H m +A H n logA H ], where (m,n)<1. We compare our results with the corrections to the Bekenstein-Hawking entropy that have been obtained through the other approaches in the literature, and discuss the implications.

  1. Noether charge and black hole entropy in modified theories of gravity

    International Nuclear Information System (INIS)

    Vollick, Dan N.

    2007-01-01

    The entropy of black holes in modified theories of gravity is examined in the Palatini formalism using the Noether charge approach. It is shown that, if the gravitational coupling constant is properly identified, the entropy of a black hole is one-quarter of the horizon area in f(R) theories coupled to conformally invariant matter. If matter is present that is not conformally invariant, the entropy is still proportional to the area of the black hole, but the coefficient is generally not one-quarter. The entropy of black holes in generalized dilaton theories and in theories with Lagrangians that depend on an arbitrary function of the Ricci tensor are also examined

  2. Fermion Fields in BTZ Black Hole Space-Time and Entanglement Entropy

    Directory of Open Access Journals (Sweden)

    Dharm Veer Singh

    2015-01-01

    Full Text Available We study the entanglement entropy of fermion fields in BTZ black hole space-time and calculate prefactor of the leading and subleading terms and logarithmic divergence term of the entropy using the discretized model. The leading term is the standard Bekenstein-Hawking area law and subleading term corresponds to first quantum corrections in black hole entropy. We also investigate the corrections to entanglement entropy for massive fermion fields in BTZ space-time. The mass term does not affect the area law.

  3. Black Hole Entropy from Bondi-Metzner-Sachs Symmetry at the Horizon.

    Science.gov (United States)

    Carlip, S

    2018-03-09

    Near the horizon, the obvious symmetries of a black hole spacetime-the horizon-preserving diffeomorphisms-are enhanced to a larger symmetry group with a three-dimensional Bondi-Metzner-Sachs algebra. Using dimensional reduction and covariant phase space techniques, I investigate this augmented symmetry and show that it is strong enough to determine the black hole entropy in any dimension.

  4. Black Hole Entropy from Bondi-Metzner-Sachs Symmetry at the Horizon

    Science.gov (United States)

    Carlip, S.

    2018-03-01

    Near the horizon, the obvious symmetries of a black hole spacetime—the horizon-preserving diffeomorphisms—are enhanced to a larger symmetry group with a three-dimensional Bondi-Metzner-Sachs algebra. Using dimensional reduction and covariant phase space techniques, I investigate this augmented symmetry and show that it is strong enough to determine the black hole entropy in any dimension.

  5. Computing black hole entropy in loop quantum gravity from a conformal field theory perspective

    International Nuclear Information System (INIS)

    Agulló, Iván; Borja, Enrique F.; Díaz-Polo, Jacobo

    2009-01-01

    Motivated by the analogy proposed by Witten between Chern-Simons and conformal field theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in loop quantum gravity. The consistency of the result opens a window for the interplay between conformal field theory and the description of black holes in loop quantum gravity

  6. Higher order WKB corrections to black hole entropy in brick wall formalism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wontae [Sogang University, Center for Quantum Spacetime (CQUeST), Seoul (Korea, Republic of); Sogang University, Department of Physics, Seoul (Korea, Republic of); Kulkarni, Shailesh [Sogang University, Center for Quantum Spacetime (CQUeST), Seoul (Korea, Republic of)

    2013-04-15

    We calculate the statistical entropy of a quantum field with an arbitrary spin propagating on the spherical symmetric black hole background by using the brick wall formalism at higher orders in the WKB approximation. For general spins, we find that the correction to the standard Bekenstein-Hawking entropy depends logarithmically on the area of the horizon. Furthermore, we apply this analysis to the Schwarzschild and Schwarzschild-AdS(dS) black holes and discuss our results. (orig.)

  7. Microscopic entropy of the magnetised extremal Reissner-Nordstrom black hole

    Energy Technology Data Exchange (ETDEWEB)

    Astorino, Marco [Centro de Estudios Científicos (CECs),Valdivia (Chile)

    2015-10-05

    The extremal Reissner-Nordström black hole embedded in a Melvin-like magnetic universe is studied in the framework of the Kerr/CFT correspondence. The near horizon geometry can be written as a warped and twisted product of AdS{sub 2}×S{sup 2}, also in presence of an axial external magnetic field that deforms the black hole. The central charge of the Virasoro algebra can be extracted from the asymptotic symmetries. Using the Cardy formula for the microscopic statistical entropy of the dual two-dimensional CFT, the Bekenstein-Hawking entropy, for this charged and magnetised black hole, is reproduced.

  8. Entropy bound of horizons for accelerating, rotating and charged Plebanski–Demianski black hole

    International Nuclear Information System (INIS)

    Debnath, Ujjal

    2016-01-01

    We first review the accelerating, rotating and charged Plebanski–Demianski (PD) black hole, which includes the Kerr–Newman rotating black hole and the Taub-NUT spacetime. The main feature of this black hole is that it has 4 horizons like event horizon, Cauchy horizon and two accelerating horizons. In the non-extremal case, the surface area, entropy, surface gravity, temperature, angular velocity, Komar energy and irreducible mass on the event horizon and Cauchy horizon are presented for PD black hole. The entropy product, temperature product, Komar energy product and irreducible mass product have been found for event horizon and Cauchy horizon. Also their sums are found for both horizons. All these relations are dependent on the mass of the PD black hole and other parameters. So all the products are not universal for PD black hole. The entropy and area bounds for two horizons have been investigated. Also we found the Christodoulou–Ruffini mass for extremal PD black hole. Finally, using first law of thermodynamics, we also found the Smarr relation for PD black hole.

  9. Black Hole Entropy Calculation in a Modified Thin Film Model Jingyi ...

    Indian Academy of Sciences (India)

    Abstract. The thin film model is modified to calculate the black hole entropy. The difference from the original method is that the Parikh–. Wilczek tunnelling framework is introduced and the self-gravitation of the emission particles is taken into account. In terms of our improvement, if the entropy is still proportional to the area, ...

  10. Entanglement Entropy of Reissner—Nordström Black Hole and Quantum Isolated Horizon

    International Nuclear Information System (INIS)

    Ma Meng-Sen; Zhang Li-Chun; Zhao Ren

    2014-01-01

    Based on the work of Ghosh and Pereze, who view the black hole entropy as the logarithm of the number of quantum states on the Quantum Isolated Horizon (QIH) § the entropy of Reissner—Nordström black hole is studied. According to the Unruh temperature, the statistical entropy of quantum fields under the background of Reissner—Nordström spacetime is calculated by means of quantum statistics. In the calculations we take the integral from the position of QIH to infinity, so the obtained entropy is the entanglement entropy outside the QIH. In Reissner—Nordström spacetime it is shown that if only the position of QIH is properly chosen the leading term of logarithm of the number of quantum states on the QIH is equal to the leading term of the entanglement entropy outside the black hole horizon, and both are the Bekenstein—Hawking entropy. The results reveal the relation between the entanglement entropy of black hole and the logarithm of the number of quantum states. (general)

  11. Entropy of an extremal electrically charged thin shell and the extremal black hole

    Directory of Open Access Journals (Sweden)

    José P.S. Lemos

    2015-11-01

    Full Text Available There is a debate as to what is the value of the entropy S of extremal black holes. There are approaches that yield zero entropy S=0, while there are others that yield the Bekenstein–Hawking entropy S=A+/4, in Planck units. There are still other approaches that give that S is proportional to r+ or even that S is a generic well-behaved function of r+. Here r+ is the black hole horizon radius and A+=4πr+2 is its horizon area. Using a spherically symmetric thin matter shell with extremal electric charge, we find the entropy expression for the extremal thin shell spacetime. When the shell's radius approaches its own gravitational radius, and thus turns into an extremal black hole, we encounter that the entropy is S=S(r+, i.e., the entropy of an extremal black hole is a function of r+ alone. We speculate that the range of values for an extremal black hole is 0≤S(r+≤A+/4.

  12. Near horizon symmetry and entropy of black holes in the presence of a conformally coupled scalar

    International Nuclear Information System (INIS)

    Meng, Kun; Hu, Zhan-Ning; Zhao, Liu

    2014-01-01

    We analyze the near horizon conformal symmetry for black hole solutions in gravity with a conformally coupled scalar field using the method proposed by Majhi and Padmanabhan recently. It is shown that the entropy of the black holes of the form ds 2 = −f(r) dt 2 + dr 2 /f(r) + ⋅⋅⋅ agrees with the Wald entropy. This result is different from the previous result obtained by M Natsuume, T Okamura and M Sato using the canonical Hamiltonian formalism, which claims a discrepancy from the Wald entropy. (paper)

  13. The third order correction on Hawking radiation and entropy conservation during black hole evaporation process

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hao-Peng; Liu, Wen-Biao, E-mail: wbliu@bnu.edu.cn

    2016-08-10

    Using Parikh–Wilczek tunneling framework, we calculate the tunneling rate from a Schwarzschild black hole under the third order WKB approximation, and then obtain the expressions for emission spectrum and black hole entropy to the third order correction. The entropy contains four terms including the Bekenstein–Hawking entropy, the logarithmic term, the inverse area term, and the square of inverse area term. In addition, we analyse the correlation between sequential emissions under this approximation. It is shown that the entropy is conserved during the process of black hole evaporation, which consists with the request of quantum mechanics and implies the information is conserved during this process. We also compare the above result with that of pure thermal spectrum case, and find that the non-thermal correction played an important role.

  14. Generalized uncertainty principle and entropy of three-dimensional rotating acoustic black hole

    International Nuclear Information System (INIS)

    Zhao, HuiHua; Li, GuangLiang; Zhang, LiChun

    2012-01-01

    Using the new equation of state density from the generalized uncertainty principle, we investigate statistics entropy of a 3-dimensional rotating acoustic black hole. When λ introduced in the generalized uncertainty principle takes a specific value, we obtain an area entropy and a correction term associated with the acoustic black hole. In this method, there does not exist any divergence and one needs not the small mass approximation in the original brick-wall model. -- Highlights: ► Statistics entropy of a 3-dimensional rotating acoustic black hole is studied. ► We obtain an area entropy and a correction term associated with it. ► We make λ introduced in the generalized uncertainty principle take a specific value. ► There does not exist any divergence in this method.

  15. Entanglement entropy of black holes and anti-de Sitter space/conformal-field-theory correspondence.

    Science.gov (United States)

    Solodukhin, Sergey N

    2006-11-17

    A recent proposal by Ryu and Takayanagi for a holographic interpretation of entanglement entropy in conformal field theories dual to supergravity on anti-de Sitter space is generalized to include entanglement entropy of black holes living on the boundary of anti-de Sitter space. The generalized proposal is verified in boundary dimensions d=2 and d=4 for both the uv-divergent and uv-finite terms. In dimension d=4 an expansion of entanglement entropy in terms of size L of the subsystem outside the black hole is considered. A new term in the entropy of dual strongly coupled conformal-field theory, which universally grows as L(2)lnL and is proportional to the value of the obstruction tensor at the black hole horizon, is predicted.

  16. Entropy of quasiblack holes

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2010-01-01

    We trace the origin of the black hole entropy S, replacing a black hole by a quasiblack hole. Let the boundary of a static body approach its own gravitational radius, in such a way that a quasihorizon forms. We show that if the body is thermal with the temperature taking the Hawking value at the quasihorizon limit, it follows, in the nonextremal case, from the first law of thermodynamics that the entropy approaches the Bekenstein-Hawking value S=A/4. In this setup, the key role is played by the surface stresses on the quasihorizon and one finds that the entropy comes from the quasihorizon surface. Any distribution of matter inside the surface leads to the same universal value for the entropy in the quasihorizon limit. This can be of some help in the understanding of black hole entropy. Other similarities between black holes and quasiblack holes such as the mass formulas for both objects had been found previously. We also discuss the entropy for extremal quasiblack holes, a more subtle issue.

  17. A correction of (2+1) Dimensional BTZ Black Hole Entropy as a New Series with Dependence on Plank Constant

    Science.gov (United States)

    Khani, F.; Darvishi, M. T.

    2018-01-01

    We investigate the corrected entropy and Hawking temperature of the BTZ black hole which obtained from (2 + 1) dimensional black hole. Besides, we generalize our analysis of black holes to the case of Friedmann-Robertson-Walker (FRW) universe. The corrections to the Hawking temperature and entropy of apparent horizon for FRW universe are also obtained. Comparing the results with the high energy black hole demonstrates how the semi-classic approximation affects the thermodynamics of the BTZ black hole, corrected terms, classical action and the entropy.

  18. Observables and Microcospic Entropy of Higher Spin Black Holes

    NARCIS (Netherlands)

    Compère, G.; Jottar, J.I.; Song, W.

    2013-01-01

    In the context of recently proposed holographic dualities between higher spin theories in AdS3 and (1 + 1)-dimensional CFTs with W symmetry algebras, we revisit the definition of higher spin black hole thermodynamics and the dictionary between bulk fields and dual CFT operators. We build a canonical

  19. Entropy of the Kerr–Sen black hole

    Indian Academy of Sciences (India)

    (4) where βi 's are dimensionless constant parameters. If the black hole has other macroscopic parameters such as angular momentum and electric charge, one can express this expansion in terms of the area of the event horizon, i.e. using the horizon radius rH and the angular momentum a, as done in [1,4],. I (r, t) = I0 (r, t).

  20. The universal property of the entropy sum of black holes in all dimensions

    Directory of Open Access Journals (Sweden)

    Yi-Qiang Du

    2014-12-01

    Full Text Available It is proposed by Cvetic et al. [1] that the product of all horizon areas for general rotating multi-change black holes has universal expressions independent of the mass. When we consider the product of all horizon entropies, however, the mass will be present in some cases, while another new universal property [2] is preserved, which is more general and says that the sum of all horizon entropies depends only on the coupling constants of the theory and the topology of the black hole. The property has been studied in limited dimensions and the generalization in arbitrary dimensions is not straight-forward. In this Letter, we prove a useful formula, which makes it possible to investigate this conjectured universality in arbitrary dimensions for the maximally symmetric black holes in general Lovelock gravity and f(R gravity. We also propose an approach to compute the entropy sum of general Kerr–(anti-de-Sitter black holes in arbitrary dimensions. In all these cases, we prove that the entropy sum depends only on the coupling constants and the topology of the black hole.

  1. Generalized Uncertainty Principle and Black Hole Entropy of Higher-Dimensional de Sitter Spacetime

    International Nuclear Information System (INIS)

    Zhao Haixia; Hu Shuangqi; Zhao Ren; Li Huaifan

    2007-01-01

    Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.

  2. Combinatorics of the SU(2) black hole entropy in loop quantum gravity

    International Nuclear Information System (INIS)

    Agullo, Ivan; Barbero G, J. Fernando; Borja, Enrique F.; Diaz-Polo, Jacobo; Villasenor, Eduardo J. S.

    2009-01-01

    We use the combinatorial and number-theoretical methods developed in previous works by the authors to study black hole entropy in the new proposal put forth by Engle, Noui, and Perez. Specifically, we give the generating functions relevant for the computation of the entropy and use them to derive its asymptotic behavior, including the value of the Immirzi parameter and the coefficient of the logarithmic correction.

  3. An equal area law for holographic entanglement entropy of the AdS-RN black hole

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phuc H. [Department of Physics, University of Texas at Austin,2515 Speedway, Austin, TX 78712-1192 (United States)

    2015-12-21

    The Anti-de Sitter-Reissner-Nordström (AdS-RN) black hole in the canonical ensemble undergoes a phase transition similar to the liquid-gas phase transition, i.e. the isocharges on the entropy-temperature plane develop an unstable branch when the charge is smaller than a critical value. It was later discovered that the isocharges on the entanglement entropy-temperature plane also exhibit the same van der Waals-like structure, for spherical entangling regions. In this paper, we present numerical results which sharpen this similarity between entanglement entropy and black hole entropy, by showing that both of these entropies obey Maxwell’s equal area law to an accuracy of around 1%. Moreover, we checked this for a wide range of size of the spherical entangling region, and the equal area law holds independently of the size. We also checked the equal area law for AdS-RN in 4 and 5 dimensions, so the conclusion is not specific to a particular dimension. Finally, we repeated the same procedure for a similar, van der Waals-like transition of the dyonic black hole in AdS in a mixed ensemble (fixed electric potential and fixed magnetic charge), and showed that the equal area law is not valid in this case. Thus the equal area law for entanglement entropy seems to be specific to the AdS-RN background.

  4. Revisit emission spectrum and entropy quantum of the Reissner-Nordstroem black hole

    International Nuclear Information System (INIS)

    Jiang, Qing-Quan

    2012-01-01

    Banerjee and Majhi's recent work shows that black hole's emission spectrum could be fully reproduced in the tunneling picture, where, as an intriguing technique, the Kruskal extension was introduced to connect the left and right modes inside and outside the horizon. Some attempt, as an extension, was focused on producing the Hawking emission spectrum of the (charged) Reissner-Nordstroem black hole in the Banerjee-Majhi treatment. Unfortunately, the Kruskal extension in their observation was so badly defined that the ingoing mode was classically forbidden traveling towards the center of black hole, but could quantum tunnel across the horizon with the probability Γ=e -πω 0 /κ + . This tunneling picture is unphysical. With this point as a central motivation, in this paper we first introduce such a suitable Kruskal extension for the (charged) Reissner-Nordstroem black hole that a perfect tunneling picture can be provided during the charged particle's emission. Then, under the new Kruskal extension, we revisit the Hawking emission spectrum and entropy spectroscopy as tunneling from the charged black hole. The result shows that the tunneling method is so universally robust that the Hawking blackbody emission spectrum from a charged black hole can be well reproduced in the tunneling mechanism, and its induced entropy quantum is a much better approximation for the forthcoming quantum gravity theory. (orig.)

  5. Black Hole Entropy in Scalar-Tensor and ƒ(R Gravity: An Overview

    Directory of Open Access Journals (Sweden)

    Valerio Faraoni

    2010-05-01

    Full Text Available A short overview of black hole entropy in alternative gravitational theories is presented. Motivated by the recent attempts to explain the cosmic acceleration without dark energy, we focus on metric and Palatini ƒ(R gravity and on scalar-tensor theories.

  6. An improved thin film brick-wall model of black hole entropy

    CERN Document Server

    Liu Wen Biao

    2001-01-01

    The authors improve the brick-wall model to take only the contribution of a thin film near the event horizon into account. This improvement not only gives them a satisfactory result, but also avoids some drawbacks in the original brick-wall method such as the little mass approximation, neglecting logarithm term, and taking the term L/sup 3/ as the contribution of the vacuum surrounding a black hole. It is found that there is an intrinsic relation between the event horizon and the entropy. The event horizon is the characteristic of a black hole, so the entropy calculating of a black hole is also naturally related to its horizon. (12 refs).

  7. Rényi entropy and the thermodynamic stability of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Czinner, Viktor G., E-mail: czinner.viktor@wigner.mta.hu [Laboratory of Physics, College of Science and Technology, Nihon University, 274-8501 Narashinodai, Funabashi, Chiba (Japan); HAS Wigner Research Centre for Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Centro de Matemática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Iguchi, Hideo, E-mail: iguchi.h@phys.ge.cst.nihon-u.ac.jp [Laboratory of Physics, College of Science and Technology, Nihon University, 274-8501 Narashinodai, Funabashi, Chiba (Japan)

    2016-01-10

    Thermodynamic stability of black holes, described by the Rényi formula as equilibrium compatible entropy function, is investigated. It is shown that within this approach, asymptotically flat, Schwarzschild black holes can be in stable equilibrium with thermal radiation at a fixed temperature. This implies that the canonical ensemble exists just like in anti-de Sitter space, and nonextensive effects can stabilize the black holes in a very similar way as it is done by the gravitational potential of an anti-de Sitter space. Furthermore, it is also shown that a Hawking–Page-like black hole phase transition occurs at a critical temperature which depends on the q-parameter of the Rényi formula.

  8. Extremal Black Holes in Supergravity and the Bekenstein-Hawking Entropy

    Directory of Open Access Journals (Sweden)

    R. D'Auria

    2002-03-01

    Full Text Available Abstract: We review some results on the connection among supergravity central charges, BPS states and Bekenstein-Hawking entropy. In particular, N = 2 super-gravity in four dimensions is studied in detail. For higher N supergravities we just give an account of the general theory specializing the discussion to the N = 8 case when one half of supersymmetry is preserved. We stress the fact that for extremal supergravity black holes the entropy formula is topological, that is the entropy turns out to be a moduli independent quantity and can be written in terms of invariants of the duality group of the supergravity theory.

  9. Nonextremal stringy black hole

    International Nuclear Information System (INIS)

    Suzuki, K.

    1997-01-01

    We construct a four-dimensional BPS saturated heterotic string solution from the Taub-NUT solution. It is a nonextremal black hole solution since its Euler number is nonzero. We evaluate its black hole entropy semiclassically. We discuss the relation between the black hole entropy and the degeneracy of string states. The entropy of our string solution can be understood as the microscopic entropy which counts the elementary string states without any complications. copyright 1997 The American Physical Society

  10. Quantum black hole wave packet: Average area entropy and temperature dependent width

    Directory of Open Access Journals (Sweden)

    Aharon Davidson

    2014-09-01

    Full Text Available A quantum Schwarzschild black hole is described, at the mini super spacetime level, by a non-singular wave packet composed of plane wave eigenstates of the momentum Dirac-conjugate to the mass operator. The entropy of the mass spectrum acquires then independent contributions from the average mass and the width. Hence, Bekenstein's area entropy is formulated using the 〈mass2〉 average, leaving the 〈mass〉 average to set the Hawking temperature. The width function peaks at the Planck scale for an elementary (zero entropy, zero free energy micro black hole of finite rms size, and decreases Doppler-like towards the classical limit.

  11. Phase space and black-hole entropy of higher genus horizons in loop quantum gravity

    International Nuclear Information System (INIS)

    Kloster, S; Brannlund, J; DeBenedictis, A

    2008-01-01

    In the context of loop quantum gravity, we construct the phase space of isolated horizons with genus greater than 0. Within the loop quantum gravity framework, these horizons are described by genus g surfaces with N punctures and the dimension of the corresponding phase space is calculated including the genus cycles as degrees of freedom. From this, the black-hole entropy can be calculated by counting the microstates which correspond to a black hole of fixed area. We find that the leading term agrees with the A/4 law and that the sub-leading contribution is modified by the genus cycles

  12. Log corrections to entropy of three dimensional black holes with soft hair

    Science.gov (United States)

    Grumiller, Daniel; Perez, Alfredo; Tempo, David; Troncoso, Ricardo

    2017-08-01

    We calculate log corrections to the entropy of three-dimensional black holes with "soft hairy" boundary conditions. Their thermodynamics possesses some special features that preclude a naive direct evaluation of these corrections, so we follow two different approaches. The first one exploits that the BTZ black hole belongs to the spectrum of Brown-Henneaux as well as soft hairy boundary conditions, so that the respective log corrections are related through a suitable change of the thermodynamic ensemble. In the second approach the analogue of modular invariance is considered for dual theories with anisotropic scaling of Lifshitz type with dynamical exponent z at the boundary. On the gravity side such scalings arise for KdV-type boundary conditions, which provide a specific 1-parameter family of multi-trace deformations of the usual AdS3/CFT2 setup, with Brown-Henneaux corresponding to z = 1 and soft hairy boundary conditions to the limiting case z → 0+. Both approaches agree in the case of BTZ black holes for any non-negative z. Finally, for soft hairy boundary conditions we show that not only the leading term, but also the log corrections to the entropy of black flowers endowed with affine û (1) soft hair charges exclusively depend on the zero modes and hence coincide with the ones for BTZ black holes.

  13. CFT and Logarithmic Corrections to the Black Hole Entropy Product Formula

    Directory of Open Access Journals (Sweden)

    Parthapratim Pradhan

    2017-01-01

    Full Text Available We examine the logarithmic corrections to the black hole (BH entropy product formula of outer horizon and inner horizon by taking into account the effects of statistical quantum fluctuations around the thermal equilibrium and via conformal field theory (CFT. We argue that, in logarithmic corrections to the BH entropy product formula when calculated using CFT and taking into account the effects of quantum fluctuations around the thermal equilibrium, the formula should not be universal and it also should not be quantized. These results have been explicitly checked by giving several examples.

  14. Quantum states and the statistical entropy of the charged black hole

    Energy Technology Data Exchange (ETDEWEB)

    Vaz, Cenalo; Witten, Louis

    2001-01-15

    We quantize the Reissner-Nordstro''m black hole using an adaptation of Kuchar's canonical decomposition of the Kruskal extension of the Schwarzschild black hole. The Wheeler-DeWitt equation turns into a functional Schro''dinger equation in Gaussian time by coupling the gravitational field to a reference fluid or dust. The physical phase space of the theory is spanned by the mass M, the charge Q, the physical radius R, the dust proper time {tau}, and their canonical momenta. The exact solutions of the functional Schro''dinger equation imply that the difference in the areas of the outer and inner horizons is quantized in integer units. This agrees in spirit, but not precisely, with Bekenstein's proposal on the discrete horizon area spectrum of black holes. We also compute the entropy in the microcanonical ensemble and show that the entropy of the Reissner-Nordstro''m black hole is proportional to this quantized difference in horizon areas.

  15. Flat Symplectic Bundles of N-Extended Supergravities, Central Charges and Black-Hole Entropy

    CERN Document Server

    Andrianopoli, Laura; Ferrara, Sergio

    1998-01-01

    In these lectures we give a geometrical formulation of N-extended supergravities which generalizes N=2 special geometry of N=2 theories. In all these theories duality symmetries are related to the notion of "flat symplectic bundles" and central charges may be defined as "sections" over these bundles. Attractor points giving rise to "fixed scalars" of the horizon geometry and Bekenstein-Hawking entropy formula for extremal black-holes are discussed in some details.

  16. Entropy production, viscosity bounds and bumpy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hartnoll, Sean A.; Ramirez, David M. [Department of Physics, Stanford University, Stanford, CA 94305-4060 (United States); Santos, Jorge E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2016-03-24

    The ratio of shear viscosity to entropy density, η/s, is computed in various holographic geometries that break translation invariance (but are isotropic). The shear viscosity does not have a hydrodynamic interpretation in such backgrounds, but does quantify the rate of entropy production due to a strain. Fluctuations of the metric components δg{sub xy} are massive about these backgrounds, leading to η/s<1/(4π) at all finite temperatures (even in Einstein gravity). As the temperature is taken to zero, different behaviors are possible. If translation symmetry breaking is irrelevant in the far IR, then η/s tends to a constant at T=0. This constant can be parametrically small. If the translation symmetry is broken in the far IR (which nonetheless develops emergent scale invariance), then η/s∼T{sup 2ν} as T→0, with ν≤1 in all cases we have considered. While these results violate simple bounds on η/s, we note that they are consistent with a possible bound on the rate of entropy production due to strain.

  17. Black hole hair removal

    International Nuclear Information System (INIS)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair - degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  18. Entropy is conserved in Hawking radiation as tunneling: A revisit of the black hole information loss paradox

    International Nuclear Information System (INIS)

    Zhang Baocheng; Cai Qingyu; Zhan Mingsheng; You Li

    2011-01-01

    Research Highlights: → Information is found to be encoded and carried away by Hawking radiations. → Entropy is conserved in Hawking radiation. → We thus conclude no information is lost. → The dynamics of black hole may be unitary. - Abstract: We revisit in detail the paradox of black hole information loss due to Hawking radiation as tunneling. We compute the amount of information encoded in correlations among Hawking radiations for a variety of black holes, including the Schwarzchild black hole, the Reissner-Nordstroem black hole, the Kerr black hole, and the Kerr-Newman black hole. The special case of tunneling through a quantum horizon is also considered. Within a phenomenological treatment based on the accepted emission probability spectrum from a black hole, we find that information is leaked out hidden in the correlations of Hawking radiation. The recovery of this previously unaccounted for information helps to conserve the total entropy of a system composed of a black hole plus its radiations. We thus conclude, irrespective of the microscopic picture for black hole collapsing, the associated radiation process: Hawking radiation as tunneling, is consistent with unitarity as required by quantum mechanics.

  19. Hawking Radiation and Entropy of a Dynamic Dilaton-Maxwell Black Hole with a New Tortoise Coordinate Transformation

    Science.gov (United States)

    Lan, Xiao-Gang

    2013-05-01

    By introducing a new tortoise coordinate transformation, we apply Damour-Ruffini-Sannan method to study the Hawking radiation of massive scalar particles in a dynamic Dilaton-Maxwell black hole. We find that Hawking radiation spectrum shows still the blackbody one, while the Hawking temperature is significantly changed. Additionally, by adopting the thin film method, we calculate the entropy of a dynamic Dilaton-Maxwell black hole. The result indicates that the entropy for such a black hole is still in proportional to the area of its event horizon.

  20. The Thermodynamics of Black Holes

    Directory of Open Access Journals (Sweden)

    Wald Robert M.

    2001-01-01

    Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.

  1. Black holes

    International Nuclear Information System (INIS)

    Feast, M.W.

    1981-01-01

    This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied

  2. Nonthreshold D-brane bound states and black holes with nonzero entropy

    International Nuclear Information System (INIS)

    Costa, M.S.; Cvetic, M.

    1997-01-01

    We start with Bogomol close-quote nyi-Prasad-Sommerfield- (BPS) saturated configurations of two (orthogonally) intersecting M-branes and use the electromagnetic duality or dimensional reduction along a boost, in order to obtain new p-brane bound states. In the first case the resulting configurations are interpreted as BPS-saturated nonthreshold bound states of intersecting p-branes, and in the second case as p-branes intersecting at angles and their duals. As a by-product we deduce the enhancement of supersymmetry as the angle approaches zero. We also comment on the D-brane theory describing these new bound states, and a connection between the angle and the world-volume gauge fields of the D-brane system. We use these configurations to find new embeddings of the four- and five-dimensional black holes with nonzero entropy, whose entropy now also depends on the angle and world-volume gauge fields. The corresponding D-brane configuration sheds light on the microscopic entropy of such black holes. copyright 1997 The American Physical Society

  3. Black holes are hot

    International Nuclear Information System (INIS)

    Gibbons, G.

    1976-01-01

    Recent work, which has been investigating the use of the concept of entropy with respect to gravitating systems, black holes and the universe as a whole, is discussed. The resulting theory of black holes assigns a finite temperature to them -about 10 -7 K for ordinary black holes of stellar mass -which is in complete agreement with thermodynamical concepts. It is also shown that black holes must continuously emit particles just like ordinary bodies which have a certain temperature. (U.K.)

  4. Exact Holography and Black Hole Entropy in N=8 and N=4 String Theory

    Science.gov (United States)

    Gomes, João

    2017-07-01

    We compute the exact entropy of one-eighth and one-quarter BPS black holes in N=8 and N=4 string theory respectively. This includes all the N=4 CHL models in both K3 and T 4 compactifications. The main result is a measure for the finite dimensional integral that one obtains after localization of supergravity on AdS 2 × S 2. This measure is determined entirely by an anomaly in supersymmetric Chern-Simons theory on local AdS3 and takes into account the contribution from all the supergravity multiplets. In Chern-Simons theory on compact manifolds, this is the anomaly that computes a certain one-loop dependence on the volume of the manifold. For one-eighth BPS black holes, our results are a first principles derivation of a measure proposed in arXiv:1111.1161, while in the case of one-quarter BPS black holes our result computes exactly all the perturbative or area corrections. Moreover, we argue that instantonic contributions can be incorporated and give evidence by computing the measure, which matches precisely the microscopics. Along with this, we find a unitary condition that truncates the answer to a finite sum of instantons in perfect agreement with a microscopic formula. Our results therefore solve a number of puzzles related to localization in supergravity and constitute a larger number of examples where holography can be shown to hold exactly.

  5. Interacting black holes

    International Nuclear Information System (INIS)

    Costa, Miguel S.; Perry, Malcolm J.

    2000-01-01

    We revisit the geometry representing l collinear Schwarzschild black holes. It is seen that the black holes' horizons are deformed by their mutual gravitational attraction. The geometry has a string like conical singularity that connects the holes but has nevertheless a well defined action. Using standard gravitational thermodynamics techniques we determine the free energy for two black holes at fixed temperature and distance, their entropy and mutual force. When the black holes are far apart the results agree with Newtonian gravity expectations. This analyses is generalized to the case of charged black holes. Then we consider black holes embedded in string/M-theory as bound states of branes. Using the effective string description of these bound states and for large separation we reproduce exactly the semi-classical result for the entropy, including the correction associated with the interaction between the holes

  6. The long string at the stretched horizon and the entropy of large non-extremal black holes

    International Nuclear Information System (INIS)

    Mertens, Thomas G.; Verschelde, Henri; Zakharov, Valentin I.

    2016-01-01

    We discuss how long strings can arise at the stretched horizon and how they can account for the Bekenstein-Hawking entropy. We use the thermal scalar field theory to derive the asymptotic density of states and corresponding stress tensor of a microcanonical long string gas in Rindler space. We show that the equality of the Hagedorn and Hawking temperatures gives rise to the tree-level entropy of large black holes in accordance with the Bekenstein-Hawking-Wald formula.

  7. The long string at the stretched horizon and the entropy of large non-extremal black holes

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, Thomas G. [Joseph Henry Laboratories, Princeton University,Washington Road, Princeton, NJ 08544 (United States); Ghent University, Department of Physics and Astronomy,Krijgslaan, 281-S9, 9000 Gent (Belgium); Verschelde, Henri [Ghent University, Department of Physics and Astronomy,Krijgslaan, 281-S9, 9000 Gent (Belgium); Zakharov, Valentin I. [ITEP,B. Cheremushkinskaya 25, Moscow 117218 (Russian Federation); Moscow Institute Phys. & Technol.,Dolgoprudny, Moscow Region 141700 (Russian Federation); School of Biomedicine, Far Eastern Federal University,Sukhanova str 8, Vladivostok 690950 (Russian Federation)

    2016-02-04

    We discuss how long strings can arise at the stretched horizon and how they can account for the Bekenstein-Hawking entropy. We use the thermal scalar field theory to derive the asymptotic density of states and corresponding stress tensor of a microcanonical long string gas in Rindler space. We show that the equality of the Hagedorn and Hawking temperatures gives rise to the tree-level entropy of large black holes in accordance with the Bekenstein-Hawking-Wald formula.

  8. Quantum gravity of Kerr-Schild spacetimes and the logarithmic correction to Schwarzschild black hole entropy

    Science.gov (United States)

    El-Menoufi, Basem Kamal

    2016-05-01

    In the context of effective field theory, we consider quantum gravity with minimally coupled massless particles. Fixing the background geometry to be of the Kerr-Schild type, we fully determine the one-loop effective action of the theory whose finite non-local part is induced by the long-distance portion of quantum loops. This is accomplished using the non-local expansion of the heat kernel in addition to a non-linear completion technique through which the effective action is expanded in gravitational curvatures. Via Euclidean methods, we identify a logarithmic correction to the Bekenstein-Hawking entropy of Schwarzschild black hole. Using dimensional transmutation the result is shown to exhibit an interesting interplay between the UV and IR properties of quantum gravity.

  9. Quantum gravity of Kerr-Schild spacetimes and the logarithmic correction to Schwarzschild black hole entropy

    Energy Technology Data Exchange (ETDEWEB)

    El-Menoufi, Basem Kamal [Department of Physics, University of Massachusetts,Amherst, MA 01003 (United States)

    2016-05-05

    In the context of effective field theory, we consider quantum gravity with minimally coupled massless particles. Fixing the background geometry to be of the Kerr-Schild type, we fully determine the one-loop effective action of the theory whose finite non-local part is induced by the long-distance portion of quantum loops. This is accomplished using the non-local expansion of the heat kernel in addition to a non-linear completion technique through which the effective action is expanded in gravitational curvatures. Via Euclidean methods, we identify a logarithmic correction to the Bekenstein-Hawking entropy of Schwarzschild black hole. Using dimensional transmutation the result is shown to exhibit an interesting interplay between the UV and IR properties of quantum gravity.

  10. Conserved current for the Cotton tensor, black hole entropy and equivariant Pontryagin forms

    International Nuclear Information System (INIS)

    Ferreiro Perez, Roberto

    2010-01-01

    The Chern-Simons Lagrangian density in the space of metrics of a three-dimensional manifold M is not invariant under the action of diffeomorphisms on M. However, its Euler-Lagrange operator can be identified with the Cotton tensor, which is invariant under diffeomorphims. As the Lagrangian is not invariant, the Noether theorem cannot be applied to obtain conserved currents. We show that it is possible to obtain an equivariant conserved current for the Cotton tensor by using the first equivariant Pontryagin form on the bundle of metrics. Finally we define a Hamiltonian current which gives the contribution of the Chern-Simons term to the black hole entropy, energy and angular momentum.

  11. Conserved current for the Cotton tensor, black hole entropy and equivariant Pontryagin forms

    Energy Technology Data Exchange (ETDEWEB)

    Ferreiro Perez, Roberto, E-mail: roferreiro@ccee.ucm.e [Departamento de Economia Financiera y Contabilidad I Facultad de Ciencias Economicas y Empresariales, UCM Campus de Somosaguas, 28223-Pozuelo de Alarcon (Spain)

    2010-07-07

    The Chern-Simons Lagrangian density in the space of metrics of a three-dimensional manifold M is not invariant under the action of diffeomorphisms on M. However, its Euler-Lagrange operator can be identified with the Cotton tensor, which is invariant under diffeomorphims. As the Lagrangian is not invariant, the Noether theorem cannot be applied to obtain conserved currents. We show that it is possible to obtain an equivariant conserved current for the Cotton tensor by using the first equivariant Pontryagin form on the bundle of metrics. Finally we define a Hamiltonian current which gives the contribution of the Chern-Simons term to the black hole entropy, energy and angular momentum.

  12. Viscosity to entropy density ratio for non-extremal Gauss-Bonnet black holes coupled to Born-Infeld electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Das, Saurav [Indian Institute of Science Education and Research Kolkata, Nadia (India); Gangopadhyay, Sunandan [Indian Institute of Science Education and Research Kolkata, Nadia (India); Inter University Centre for Astronomy and Astrophysics, Pune (India); Ghorai, Debabrata [S.N. Bose National Centre for Basic Sciences, Kolkata (India)

    2017-09-15

    The ratio of the shear viscosity to the entropy density (η/s) is calculated for non-extremal black holes in D dimensions with arbitrary forms of the matter Lagrangian for which the space-time metric takes a particular form. The result reduces to the standard expressions in 5 dimensions. The η/s ratio is then computed for Gauss-Bonnet black holes coupled to Born-Infeld electrodynamics in 5 dimensions. As a result we found corrections as regards the BI parameter and th result is analytically exact up to all orders in this parameter. The computations are then extended to D dimensions. (orig.)

  13. Logarithmic entropy of Kehagias-Sfetsos black hole with self-gravitation in asymptotically flat IR modified Horava gravity

    International Nuclear Information System (INIS)

    Liu Molin; Lu Junwang

    2011-01-01

    Motivated by recent logarithmic entropy of Horava-Lifshitz gravity, we investigate Hawking radiation for Kehagias-Sfetsos black hole from tunneling perspective. After considering the effect of self-gravitation, we calculate the emission rate and entropy of quantum tunneling by using Kraus-Parikh-Wilczek method. Meanwhile, both massless and massive particles are considered in this Letter. Interestingly, two types tunneling particles have the same emission rate Γ and entropy S b whose analytical formulae are Γ=exp[π(r in 2 -r out 2 )/2+π/αlnr in /r out ] and S b =A/4+π/αln(A/4), respectively. Here, α is the Horava-Lifshitz field parameter. The results show that the logarithmic entropy of Horava-Lifshitz gravity could be explained well by the self-gravitation, which is totally different from other methods. The study of this semiclassical tunneling process may shed light on understanding the Horava-Lifshitz gravity.

  14. Magic three-qubit Veldkamp line: A finite geometric underpinning for form theories of gravity and black hole entropy

    Science.gov (United States)

    Lévay, Péter; Holweck, Frédéric; Saniga, Metod

    2017-07-01

    We investigate the structure of the three-qubit magic Veldkamp line (MVL). This mathematical notion has recently shown up as a tool for understanding the structures of the set of Mermin pentagrams, objects that are used to rule out certain classes of hidden variable theories. Here we show that this object also provides a unifying finite geometric underpinning for understanding the structure of functionals used in form theories of gravity and black hole entropy. We clarify the representation theoretic, finite geometric and physical meaning of the different parts of our MVL. The upshot of our considerations is that the basic finite geometric objects enabling such a diversity of physical applications of the MVL are the unique generalized quadrangles with lines of size three, their one-point extensions as well as their other extensions isomorphic to affine polar spaces of rank 3 and order 2. In a previous work we have already connected generalized quadrangles to the structure of cubic Jordan algebras related to entropy fomulas of black holes and strings in five dimensions. In some respect the present paper can be regarded as a generalization of that analysis for also providing a finite geometric understanding of four-dimensional black hole entropy formulas. However, we find many more structures whose physical meaning is yet to be explored. As a familiar special case our work provides a finite geometric representation of the algebraic extension from cubic Jordan algebras to Freudenthal systems based on such algebras.

  15. Black holes are warm

    International Nuclear Information System (INIS)

    Ravndal, F.

    1978-01-01

    Applying Einstein's theory of gravitation to black holes and their interactions with their surroundings leads to the conclusion that the sum of the surface areas of several black holes can never become less. This is shown to be analogous to entropy in thermodynamics, and the term entropy is also thus applied to black holes. Continuing, expressions are found for the temperature of a black hole and its luminosity. Thermal radiation is shown to lead to explosion of the black hole. Numerical examples are discussed involving the temperature, the mass, the luminosity and the lifetime of black mini-holes. It is pointed out that no explosions corresponding to the prediction have been observed. It is also shown that the principle of conservation of leptons and baryons is broken by hot black holes, but that this need not be a problem. The related concept of instantons is cited. It is thought that understanding of thermal radiation from black holes may be important for the development of a quantified gravitation theory. (JIW)

  16. Particle creation by black holes

    International Nuclear Information System (INIS)

    Hawking, S.W.

    1975-01-01

    In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 10 15 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law: S + 1/4 A never decreases where S is the entropy of matter outside black holes and A is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon. (orig.) [de

  17. Non-extensive statistical mechanics and black hole entropy from quantum geometry

    Directory of Open Access Journals (Sweden)

    Abhishek Majhi

    2017-12-01

    Full Text Available Using non-extensive statistical mechanics, the Bekenstein–Hawking area law is obtained from microstates of black holes in loop quantum gravity, for arbitrary real positive values of the Barbero–Immirzi parameter (γ. The arbitrariness of γ is encoded in the strength of the “bias” created in the horizon microstates through the coupling with the quantum geometric fields exterior to the horizon. An experimental determination of γ will fix this coupling, leaving out the macroscopic area of the black hole to be the only free quantity of the theory.

  18. Non-extensive statistical mechanics and black hole entropy from quantum geometry

    Science.gov (United States)

    Majhi, Abhishek

    2017-12-01

    Using non-extensive statistical mechanics, the Bekenstein-Hawking area law is obtained from microstates of black holes in loop quantum gravity, for arbitrary real positive values of the Barbero-Immirzi parameter (γ). The arbitrariness of γ is encoded in the strength of the "bias" created in the horizon microstates through the coupling with the quantum geometric fields exterior to the horizon. An experimental determination of γ will fix this coupling, leaving out the macroscopic area of the black hole to be the only free quantity of the theory.

  19. Black Hole Entropy Calculation in a Modified Thin Film Model Jingyi ...

    Indian Academy of Sciences (India)

    Black hole entropy—thin film model—tunnelling framework—self-gravitation. 1. Improvement to the thin film model. According to the Parikh–Wilczek tunnelling framework, Hawking radiation. (Hawking 1975) was described as a tunnelling process triggered by vacuum fluc- tuations near the horizon (Parikh & Wilczek 2000).

  20. Black hole astrophysics

    International Nuclear Information System (INIS)

    Blandford, R.D.; Thorne, K.S.

    1979-01-01

    Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)

  1. Entropy of N=2 black holes and their M-brane description

    International Nuclear Information System (INIS)

    Behrndt, K.; Mohaupt, T.

    1997-01-01

    In this paper we discuss the M-brane description for an N=2 black hole. This solution is a result of the compactification of M-5-brane configurations over a Calabi-Yau threefold with arbitrary intersection numbers C ABC . In analogy with the D-brane description where one counts open string states we count here open M-2-branes which end on the M-5-brane. copyright 1997 The American Physical Society

  2. Quantum black holes

    CERN Document Server

    Calmet, Xavier; Winstanley, Elizabeth

    2014-01-01

    Written by foremost experts, this short book gives a clear description of the physics of quantum black holes. The reader will learn about quantum black holes in four and higher dimensions, primordial black holes, the production of black holes in high energy particle collisions, Hawking radiation, black holes in models of low scale quantum gravity and quantum gravitational aspects of black holes.

  3. Internal structure of black holes

    International Nuclear Information System (INIS)

    Cvetic, Mirjam

    2013-01-01

    Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)

  4. Regular black hole in three dimensions

    OpenAIRE

    Myung, Yun Soo; Yoon, Myungseok

    2008-01-01

    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.

  5. Thermodynamics of Horava-Lifshitz black holes

    International Nuclear Information System (INIS)

    Myung, Yun Soo; Kim, Yong-Wan

    2010-01-01

    We study black holes in the Horava-Lifshitz gravity with a parameter λ. For 1/3≤λ 3, the black holes behave the Reissner-Nordstroem type black hole in asymptotically flat spacetimes. Hence, these all are quite different from the Schwarzschild-AdS black hole of Einstein gravity. The temperature, mass, entropy, and heat capacity are derived for investigating thermodynamic properties of these black holes. (orig.)

  6. Statistical Hair on Black Holes

    International Nuclear Information System (INIS)

    Strominger, A.

    1996-01-01

    The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society

  7. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  8. Nariai black holes with quintessence

    OpenAIRE

    Fernando, Sharmanthie

    2014-01-01

    In this paper we study the properties of Schwarzschild black hole surrounded by quintessence matter. The main objective of the paper is to show the existence of Nariai type black hole for special values of the parameters in the theory. The Nariai black hole with the quintessence has the topology $dS_2 \\times S_2$ with $dS_2$ with a different scalar curvature than what would be expected for the Schwarzschild-de Sitter degenerate black hole. Temperature and the entropy for the Schwarzschild-de ...

  9. Fermion tunnels of higher-dimensional anti-de Sitter Schwarzschild black hole and its corrected entropy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Kai, E-mail: lk314159@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China); Yang Shuzheng, E-mail: szyangcwnu@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China)

    2009-10-12

    Applying the method beyond semiclassical approximation, fermion tunneling from higher-dimensional anti-de Sitter Schwarzschild black hole is researched. In our work, the 'tortoise' coordinate transformation is introduced to simplify Dirac equation, so that the equation proves that only the (r-t) sector is important to our research. Because we only need to study the (r-t) sector, the Dirac equation is decomposed into several pairs of equations spontaneously, and we then prove the components of wave functions are proportional to each other in every pair of equations. Therefore, the suitable action forms of the wave functions are obtained, and finally the correctional Hawking temperature and entropy can be determined via the method beyond semiclassical approximation.

  10. Black holes

    International Nuclear Information System (INIS)

    Carter, B.

    1980-01-01

    In years 1920 as a result of quantum mechanics principles governing the structure of ordinary matter, a sudden importance for a problem raised a long time ago by Laplace: what happens when a massive body becomes so dense that even light cannot escape from its gravitational field. It is difficult to conceive how could be avoided in the actual universe the accumulation of important masses of cold matter having been submitted to gravitational breaking down followed by the formation of what is called to day a black hole [fr

  11. Statistical black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1975-01-01

    Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several problems in black-hole thermodynamics. Jaynes's maximum-uncertainty method for computing probabilities is used to show that the earlier-formulated generalized second law is respected in statistically averaged form in the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a system containing a black hole. As an application we derive the distribution for the radiation in equilibrium with a Kerr hole (it is found to agree with what would be expected from Hawking's results) and the form of the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the number of possible interior configurations that are compatible with the given exterior black-hole state. We also formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability distribution among Kerr solution states for an isolated radiating Kerr hole

  12. Can Black Hole Relax Unitarily?

    Science.gov (United States)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  13. Extremal black holes in N=2 supergravity

    NARCIS (Netherlands)

    Katmadas, S.

    2011-01-01

    An explanation for the entropy of black holes has been an outstanding problem in recent decades. A special case where this is possible is that of extremal black holes in N=2 supergravity in four and five dimensions. The best developed case is for black holes preserving some supersymmetry (BPS),

  14. The fuzzball proposal for black holes

    NARCIS (Netherlands)

    Skenderis, K.; Taylor, M.

    2008-01-01

    The fuzzball proposal states that associated with a black hole of entropy S, there are expS horizon-free non-singular solutions that asymptotically look like the black hole but generically differ from the black hole up to the horizon scale. These solutions, the fuzzballs, are considered to be the

  15. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    Black holes; numerical relativity; nonlinear sigma. Abstract. Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. ... Theoretical and Computational Studies Group, Southampton College, Long Island University, Southampton, NY 11968, USA ...

  16. Entanglement entropy and mutual information production rates in acoustic black holes.

    Science.gov (United States)

    Giovanazzi, Stefano

    2011-01-07

    A method to investigate acoustic Hawking radiation is proposed, where entanglement entropy and mutual information are measured from the fluctuations of the number of particles. The rate of entropy radiated per one-dimensional (1D) channel is given by S=κ/12, where κ is the sound acceleration on the sonic horizon. This entropy production is accompanied by a corresponding formation of mutual information to ensure the overall conservation of information. The predictions are confirmed using an ab initio analytical approach in transonic flows of 1D degenerate ideal Fermi fluids.

  17. Building blocks of a black hole

    OpenAIRE

    Bekenstein, Jacob D.; Gour, Gilad

    2002-01-01

    What is the nature of the energy spectrum of a black hole ? The algebraic approach to black hole quantization requires the horizon area eigenvalues to be equally spaced. As stressed long ago by by Mukhanov, such eigenvalues must be exponentially degenerate with respect to the area quantum number if one is to understand black hole entropy as reflecting degeneracy of the observable states. Here we construct the black hole states by means of a pair of "creation operators" subject to a particular...

  18. Black Holes as Dark Matter

    OpenAIRE

    Frampton, Paul H.

    2009-01-01

    While the energy of the universe has been established to be about 0.04 baryons, 0.24 dark matter and 0.72 dark energy, the cosmological entropy is almost entirely, about $(1 - 10^{-15})$, from black holes and only $10^{-15}$ from everything else. This identification of all dark matter as black holes is natural in statistical mechanics. Cosmological history of dark matter is discussed.

  19. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    instance, the UK's research councils have yet to put any real money behind these ideas. Black holes are best described by the general theory of relativity. However, general relativity is a classical theory of gravity, and although its predictions have been verified in many experiments, a quantum theory of gravity remains one of the holy grails of physics. One of the first physicists to make real progress in this quest to reconcile general relativity and quantum mechanics was Stephen Hawking. In 1974 Hawking calculated what would happen if a quantum fluctuation occurred near an event horizon. He concluded that the black hole would radiate, and that the amount of radiation would be inversely proportional to the mass of the black hole. However, black holes tend to be very heavy, so their output of Hawking radiation would be too low to detect experimentally. One intriguing exception could be much smaller primordial black holes created in the big bang: these should radiate observable amounts of gamma rays, but they have not been detected yet. This whole body of work - in which thermodynamic concepts such as temperature and entropy are also associated with the black hole - is Hawking's major achievement in physics. The detection of Hawking radiation is the ultimate goal of experiments on artificial black holes, although a lot of theoretical and experimental work has to be done first. The successful experiment is likely to involve a flowing Bose-Einstein condensate or a medium in which the speed of light can be reduced to zero. After years of groundwork, physicists have recently made rapid progress in both these fields. Meanwhile, the recent observation of neutrons in discrete quantum states in a gravitational potential shows that quantum gravity effects can be seen in the laboratory. All that is needed now is an act of faith. (U.K.)

  20. Black holes. Chapter 6

    International Nuclear Information System (INIS)

    Penrose, R.

    1980-01-01

    Conditions for the formation of a black hole are considered, and the properties of black holes. The possibility of Cygnus X-1 as a black hole is discussed. Einstein's theory of general relativity in relation to the formation of black holes is discussed. (U.K.)

  1. Search for black holes

    International Nuclear Information System (INIS)

    Cherepashchuk, Anatolii M

    2003-01-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed. (reviews of topical problems)

  2. Black holes and holography

    International Nuclear Information System (INIS)

    Mathur, Samir D

    2012-01-01

    The idea of holography in gravity arose from the fact that the entropy of black holes is given by their surface area. The holography encountered in gauge/gravity duality has no such relation however; the boundary surface can be placed at an arbitrary location in AdS space and its area does not give the entropy of the bulk. The essential issues are also different between the two cases: in black holes we get Hawking radiation from the 'holographic surface' which leads to the information issue, while in gauge/gravity duality there is no such radiation. To resolve the information paradox we need to show that there are real degrees of freedom at the horizon of the hole; this is achieved by the fuzzball construction. In gauge/gravity duality we have instead a field theory defined on an abstract dual space; there are no gravitational degrees of freedom at the holographic boundary. It is important to understand the relations and differences between these two notions of holography to get a full understanding of the lessons from the information paradox.

  3. Black hole thermodynamics from Euclidean horizon constraints.

    Science.gov (United States)

    Carlip, S

    2007-07-13

    To explain black hole thermodynamics in quantum gravity, one must introduce constraints to ensure that a black hole is actually present. I show that for a large class of black holes, such "horizon constraints" allow the use of conformal field theory techniques to compute the density of states, reproducing the Bekenstein-Hawking entropy in a nearly model-independent manner. One standard string theory approach to black hole entropy arises as a special case, lending support to the claim that the mechanism may be "universal." I argue that the relevant degrees of freedom are Goldstone-boson-like excitations arising from the weak breaking of symmetry by the constraints.

  4. Modified dispersion relations and black hole physics

    International Nuclear Information System (INIS)

    Ling Yi; Li Xiang; Hu Bo

    2006-01-01

    A modified formulation of the energy-momentum relation is proposed in the context of doubly special relativity. We investigate its impact on black hole physics. It turns out that such a modification will give corrections to both the temperature and the entropy of black holes. In particular, this modified dispersion relation also changes the picture of Hawking radiation greatly when the size of black holes approaches the Planck scale. It can prevent black holes from total evaporation, as a result providing a plausible mechanism to treat the remnant of black holes as a candidate for dark matter

  5. Black-hole creation in quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Chao, Wu [Rome, Univ. `La Sapienza` (Italy). International Center for Relativistic Astrophysics]|[Specola Vaticana, Vatican City State (Vatican City State, Holy See)

    1997-11-01

    It is proven that the probability of a black hole created from the de Sitter space-time background, at the Wkb level, is the exponential of one quarter of the sum of the black hole and cosmological horizon areas, or the total entropy of the universe. This is true not only for the spherically symmetric cases of the Schwarzschild or Reissner-Nordstroem black holes, but also for the rotating cases of the Kerr black hole and the rotating charged case of the Newman black hole. The de Sitter metric is the most probable evolution at the Planckian era of the universe.

  6. Dynamics of black holes

    OpenAIRE

    Hayward, Sean A.

    2008-01-01

    This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping h...

  7. Strings, black holes, and quantum information

    International Nuclear Information System (INIS)

    Kallosh, Renata; Linde, Andrei

    2006-01-01

    We find multiple relations between extremal black holes in string theory and 2- and 3-qubit systems in quantum information theory. We show that the entropy of the axion-dilaton extremal black hole is related to the concurrence of a 2-qubit state, whereas the entropy of the STU black holes, Bogomol'nyi-Prasad-Sommerfield (BPS) as well as non-BPS, is related to the 3-tangle of a 3-qubit state. We relate the 3-qubit states with the string theory states with some number of D-branes. We identify a set of large black holes with the maximally entangled Greenberger, Horne, Zeilinger (GHZ) class of states and small black holes with separable, bipartite, and W states. We sort out the relation between 3-qubit states, twistors, octonions, and black holes. We give a simple expression for the entropy and the area of stretched horizon of small black holes in terms of a norm and 2-tangles of a 3-qubit system. Finally, we show that the most general expression for the black hole and black ring entropy in N=8 supergravity/M theory, which is given by the famous quartic Cartan E 7(7) invariant, can be reduced to Cayley's hyperdeterminant describing the 3-tangle of a 3-qubit state

  8. Monopole black hole skyrmions

    OpenAIRE

    Moss, I.G.; Shiiki, N.; Winstanley, E.

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  9. What is black hole?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is black hole? Possible end phase of a star: A star is a massive, luminous ball of plasma having continuous nuclear burning. Star exhausts nuclear fuel →. White Dwarf, Neutron Star, Black Hole. Black hole's gravitational field is so powerful that even ...

  10. Thermal BEC Black Holes

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-10-01

    Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce

  11. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  12. Rholography, black holes and Scherk-Schwarz

    NARCIS (Netherlands)

    Gaddam, Nava; Gnecchi, Alessandra; Vandoren, Stefan; Varela, Oscar

    2015-01-01

    We present a construction of a class of near-extremal asymptotically flat black hole solutions in four (or five) dimensional gauged supergravity with R-symmetry gaugings obtained from Scherk-Schwarz reductions on a circle. The entropy of these black holes is counted holographically by the well known

  13. Partition functions for supersymmetric black holes

    NARCIS (Netherlands)

    Manschot, J.

    2008-01-01

    This thesis presents a number of results on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view. Such a microscopic explanation was desired after the association of a

  14. Nonthermal nature of extremal Kerr black holes

    OpenAIRE

    Rothman, Tony

    2000-01-01

    Liberati, Rothman and Sonego have recently showed that objects collapsing into extremal Reissner-Nordstrom black holes do not behave as thermal objects at any time in their history. In particular, a temperature, and hence thermodynamic entropy, are undefined for them. I demonstrate that the analysis goes through essentially unchanged for Kerr black holes.

  15. Black hole levitron

    International Nuclear Information System (INIS)

    Arsiwalla, Xerxes D.; Verlinde, Erik P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.'s multicenter supersymmetric black hole solutions provides a supergravity description of such backgrounds within which a black hole can be trapped within a confined volume. This construction is realized by solving for a levitating black hole over a magnetic dipole base. We comment on how such a construction is akin to a mechanical levitron.

  16. Atomic structure in black hole

    International Nuclear Information System (INIS)

    Nagatani, Yukinori

    2006-01-01

    We propose that any black hole has atomic structure in its inside and has no horizon as a model of black holes. Our proposal is founded on a mean field approximation of gravity. The structure of our model consists of a (charged) singularity at the center and quantum fluctuations of fields around the singularity, namely, it is quite similar to that of atoms. Any properties of black holes, e.g. entropy, can be explained by the model. The model naturally quantizes black holes. In particular, we find the minimum black hole, whose structure is similar to that of the hydrogen atom and whose Schwarzschild radius is approximately 1.1287 times the Planck length. Our approach is conceptually similar to Bohr's model of the atomic structure, and the concept of the minimum Schwarzschild radius is similar to that of the Bohr radius. The model predicts that black holes carry baryon number, and the baryon number is rapidly violated. This baryon number violation can be used as verification of the model. (author)

  17. Black-hole thermodynamics and Riemann surfaces

    International Nuclear Information System (INIS)

    Krasnov, Kirill

    2003-01-01

    We use the analytic continuation procedure proposed in our earlier works to study the thermodynamics of black holes in 2 + 1 dimensions. A general black hole in 2 + 1 dimensions has g handles hidden behind h horizons. The result of the analytic continuation of a black-hole spacetime is a hyperbolic 3-manifold having the topology of a handlebody. The boundary of this handlebody is a compact Riemann surface of genus G = 2g + h - 1. Conformal moduli of this surface encode in a simple way the physical characteristics of the black hole. The moduli space of black holes of a given type (g, h) is then the Schottky space at genus G. The (logarithm of the) thermodynamic partition function of the hole is the Kaehler potential for the Weil-Peterson metric on the Schottky space. The Bekenstein bound on the black-hole entropy leads us to conjecture a new strong bound on this Kaehler potential

  18. Black holes, qubits and octonions

    International Nuclear Information System (INIS)

    Borsten, L.; Dahanayake, D.; Duff, M.J.; Ebrahim, H.; Rubens, W.

    2009-01-01

    We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)] 3 invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T 6 provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E 7 contains [SL(2)] 7 invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E 7 has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of three qutrits (3-state systems

  19. White holes and eternal black holes

    International Nuclear Information System (INIS)

    Hsu, Stephen D H

    2012-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  20. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  1. Building blocks of a black hole

    International Nuclear Information System (INIS)

    Bekenstein, Jacob D.; Gour, Gilad

    2002-01-01

    What is the nature of the energy spectrum of a black hole? The algebraic approach to black hole quantization requires the horizon area eigenvalues to be equally spaced. As stressed long ago by Mukhanov, such eigenvalues must be exponentially degenerate with respect to the area quantum number if one is to understand black hole entropy as reflecting degeneracy of the observable states. Here we construct the black hole stationary states by means of a pair of ''creation operators'' subject to a particular simple algebra, a slight generalization of that for a pair of harmonic oscillators. This algebra reproduces the main features of the algebraic approach, in particular the equally spaced area spectrum. We then prove rigorously that the nth area eigenvalue is exactly 2 n -fold degenerate. Thus black hole entropy qua logarithm of the number of states for a fixed horizon area is indeed proportional to that area

  2. Naked black holes

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Ross, S.F.

    1997-01-01

    It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces outside the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. copyright 1997 The American Physical Society

  3. Introduction to General Relativity and Black Holes (2/5)

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.

  4. Introduction to General Relativity and Black Holes (4/5)

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.

  5. Introduction to General Relativity and Black Holes (3/5)

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.

  6. Introduction to General Relativity and Black Holes (5/5)

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.

  7. Introduction to General Relativity and Black Holes (1/5)

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.

  8. Information Retention by Stringy Black Holes

    CERN Document Server

    Ellis, John

    2015-01-01

    Building upon our previous work on two-dimensional stringy black holes and its extension to spherically-symmetric four-dimensional stringy black holes, we show how the latter retain information. A key r\\^ole is played by an infinite-dimensional $W_\\infty$ symmetry that preserves the area of an isolated black-hole horizon and hence its entropy. The exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole necessarily includes a contribution from $W_\\infty$ generators in its vertex function. This admixture manifests the transfer of information between the string black hole and external particles. We discuss different manifestations of $W_\\infty$ symmetry in black-hole physics and the connections between them.

  9. Black hole candidates

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Black hole candidates. In the case of X-ray sources such as Cyg X-1, the mass of the compact object inferred from combined optical and X-ray data, suggest M_compact object > 3.4 M_sun => Black Hole! A remarkable discovery!! Thus X-ray emitting binary systems ...

  10. Black hole Berry phase

    NARCIS (Netherlands)

    de Boer, J.; Papadodimas, K.; Verlinde, E.

    2009-01-01

    Supersymmetric black holes are characterized by a large number of degenerate ground states. We argue that these black holes, like other quantum mechanical systems with such a degeneracy, are subject to a phenomenon which is called the geometric or Berry’s phase: under adiabatic variations of the

  11. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  12. Black hole levitron

    NARCIS (Netherlands)

    Arsiwalla, X.D.; Verlinde, E.P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.’s multicenter

  13. Black Hole Dynamic Potentials

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of ...

  14. Lifshitz topological black holes

    International Nuclear Information System (INIS)

    Mann, R.B.

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  15. The Membrane Paradigm and black-hole thermodynamics

    International Nuclear Information System (INIS)

    Thorne, K.S.

    1986-01-01

    A brief overview is given of the theoretical underpinnings of the Membrane Paradigm for black-hole physics. Then those underpinnings are used to elucidate the Paradigm's view that the laws of black-hole thermodynamics (including the statistical origin of black-hole entropy) are just a special case of the laws of thermodynamics for an ordinary, rotating, thermal reservoir

  16. Stationary Configurations and Geodesic Description of Supersymmetric Black Holes

    NARCIS (Netherlands)

    Käppeli, Jürg

    2003-01-01

    This thesis contains a detailed study of various properties of supersymmetric black holes. In chapter I an overview over some of the fascinating aspects of black hole physics is provided. In particular, the string theory approach to black hole entropy is discussed. One of the consequences of the

  17. Better late than never: information retrieval from black holes.

    Science.gov (United States)

    Braunstein, Samuel L; Pirandola, Stefano; Życzkowski, Karol

    2013-03-08

    We show that, in order to preserve the equivalence principle until late times in unitarily evaporating black holes, the thermodynamic entropy of a black hole must be primarily entropy of entanglement across the event horizon. For such black holes, we show that the information entering a black hole becomes encoded in correlations within a tripartite quantum state, the quantum analogue of a one-time pad, and is only decoded into the outgoing radiation very late in the evaporation. This behavior generically describes the unitary evaporation of highly entangled black holes and requires no specially designed evolution. Our work suggests the existence of a matter-field sum rule for any fundamental theory.

  18. Cardy-Verlinde Formula of Noncommutative Schwarzschild Black Hole

    Directory of Open Access Journals (Sweden)

    G. Abbas

    2014-01-01

    Full Text Available Few years ago, Setare (2006 has investigated the Cardy-Verlinde formula of noncommutative black hole obtained by noncommutativity of coordinates. In this paper, we apply the same procedure to a noncommutative black hole obtained by the coordinate coherent approach. The Cardy-Verlinde formula is entropy formula of conformal field theory in an arbitrary dimension. It relates the entropy of conformal field theory to its total energy and Casimir energy. In this paper, we have calculated the total energy and Casimir energy of noncommutative Schwarzschild black hole and have shown that entropy of noncommutative Schwarzschild black hole horizon can be expressed in terms of Cardy-Verlinde formula.

  19. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    as a star or dispersing altogether. Were we engineers with advanced technology, we might attempt to find that critical amount of energy necessary to form a black hole. However, despite some fears to the contrary, such technology does not exist, so instead we investigate this critical regime numerically. The first step is to pick ...

  20. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    denotes the partial derivatives of . The construction of a numerical method with which ... which configurations form black holes and which disperse (the only two options in this model). The problem in picturing such a space is that it is infinite ..... 4.1 The future: Less symmetry. The work described above all assumes spherical ...

  1. Smarr formula for Lovelock black holes: A Lagrangian approach

    Science.gov (United States)

    Liberati, Stefano; Pacilio, Costantino

    2016-04-01

    The mass formula for black holes can be formally expressed in terms of a Noether charge surface integral plus a suitable volume integral, for any gravitational theory. The integrals can be constructed as an application of Wald's formalism. We apply this formalism to compute the mass and the Smarr formula for static Lovelock black holes. Finally, we propose a new prescription for Wald's entropy in the case of Lovelock black holes, which takes into account topological contributions to the entropy functional.

  2. ULTRAMASSIVE BLACK HOLE COALESCENCE

    International Nuclear Information System (INIS)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter

    2015-01-01

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production

  3. Hagedorn temperature and physics of black holes

    Directory of Open Access Journals (Sweden)

    Zakharov V.I.

    2016-01-01

    Full Text Available A mini-review devoted to some implications of the Hagedorn temperature for black hole physics. The existence of a limiting temperature is a generic feature of string models. The Hagedorn temperature was introduced first in the context of hadronic physics. Nowadays, the emphasis is shifted to fundamental strings which might be a necessary ingredient to obtain a consistent theory of black holes. The point is that, in field theory, the local temperature close to the horizon could be arbitrarily high, and this observation is difficult to reconcile with the finiteness of the entropy of black holes. After preliminary remarks, we review our recent attempt to evaluate the entropy of large black holes in terms of fundamental strings. We also speculate on implications for dynamics of large-Nc gauge theories arising within holographic models.

  4. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  5. Scalarized hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)

    2015-05-11

    In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.

  6. Surface effects in black hole physics

    International Nuclear Information System (INIS)

    Damour, T.

    1982-01-01

    This contribution reviews briefly the various analogies which have been drawn between black holes and ordinary physical objects. It is shown how, by concentrating on the properties of the surface of a black hole, it is possible to set up a sequence of tight analogies allowing one to conclude that a black hole is, qualitatively and quantitatively, similar to a fluid bubble possessing a negative surface tension and endowed with finite values of the electrical conductivity and of the shear and bulk viscosities. These analogies are valid simultaneously at the levels of electromagnetic, mechanical and thermodynamical laws. Explicit applications of this framework are worked out (eddy currents, tidal drag). The thermostatic equilibrium of a black hole electrically interacting with its surroundings is discussed, as well as the validity of a minimum entropy production principle in black hole physics. (Auth.)

  7. Introducing the Black Hole

    Science.gov (United States)

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  8. Colliding black hole solution

    International Nuclear Information System (INIS)

    Ahmed, Mainuddin

    2005-01-01

    A new solution of Einstein equation in general relativity is found. This solution solves an outstanding problem of thermodynamics and black hole physics. Also this work appears to conclude the interpretation of NUT spacetime. (author)

  9. Illuminating black holes

    Science.gov (United States)

    Barr, Ian A.; Bull, Anne; O'Brien, Eileen; Drillsma-Milgrom, Katy A.; Milgrom, Lionel R.

    2016-07-01

    Two-dimensional shadows formed by illuminating vortices are shown to be visually analogous to the gravitational action of black holes on light and surrounding matter. They could be useful teaching aids demonstrating some of the consequences of general relativity.

  10. Black holes with halos

    Science.gov (United States)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  11. Quantum black holes

    International Nuclear Information System (INIS)

    't Hooft, G.

    1987-01-01

    No particle theory can be complete without gravity. Einstein's theory of gravity is of the Euler-Lagrange form, but standard quantization procedure fails. In quantum gravity the higher order interactions have a dimensionality different form the fundamental ones, because Newton's constant G has dimensions and the renormalization procedure fails. Another problem with quantum gravity is even more mysterious. Suppose that we had regularized the gravitational forces at the small distance end in the way that the weak intermediate vector boson regularized the fundamental 4-fermion interaction vertex of the weak interactions. Then what we discover is that the gravitational forces are unstable. Given sufficiently large amount of matter, it can collapse under its own weight. Classical general relativity tells us what will happen: a black hole is formed. But how is this formulated in quantum theory. S. Hawking observed that when a field theory is quantized in the background metric of a black hole, the black hole actually emits particles in a completely random thermal way. Apparently black holes are just another form of matter unstable against Hawking decay. Unfortunately this picture cannot be complete. The problem is that the quantum version of black holes has infinite phase space, and other symptoms of a run-away solution. Black holes are the heaviest and most compact forms of matter that can be imagined. A complete particle theory can have nothing but a spectrum of black-hole like objects at it high-energy end. This is why it is believed that a resolution of the black hole problem will in time disclose the complete small-distance structure of our world. 6 references

  12. Partition functions for supersymmetric black holes

    CERN Document Server

    Manschot, Jan

    2008-01-01

    This dissertation presents recent discoveries on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view within string theory and M-theory. The results are applied to two central research topics in modern theoretical physics, namely (1) the correspondence between the physics (including gravity) within an Anti-de Sitter space and conformal field theory, and (2) the relation between black holes and topological strings.

  13. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  14. Charged Galileon black holes

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar

    2015-01-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory

  15. Extremal Black Holes and Attractors

    CERN Document Server

    Ferrara, S

    2010-01-01

    These lectures give an elementary introduction to the subject of four dimensional black holes (BHs) in supergravity and the Attractor Mechanism in the extremal case. Some thermodynamical properties are discussed and some relevant formula for the critical points of the BH effective potential are given. The case of Maxwell-Einstein-axion-dilaton (super)gravity is discussed in detail. Analogies among BH entropy and multipartite entanglement of qubits in quantum information theory, as well moduli spaces of extremal BH attractors, are also discussed.

  16. Black holes, qubits and octonions

    Energy Technology Data Exchange (ETDEWEB)

    Borsten, L. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: leron.borsten@imperial.ac.uk; Dahanayake, D. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: duminda.dahanayake@imperial.ac.uk; Duff, M.J. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: m.duff@imperial.ac.uk; Ebrahim, H. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom); Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Theory Group, Martin Fisher School of Physics, Brandeis University, MS057, 415 South Street, Waltham, MA 02454 (United States)], E-mail: hebrahim@brandeis.edu; Rubens, W. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ (United Kingdom)], E-mail: william.rubens06@imperial.ac.uk

    2009-02-15

    We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)]{sup 3} invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T{sup 6} provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E{sub 7} contains [SL(2)]{sup 7} invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E{sub 7} has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of

  17. Black hole quantum spectrum

    Science.gov (United States)

    Corda, Christian

    2013-12-01

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum "overtone" number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the "hydrogen atom" and the "quasi-thermal emission" in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox.

  18. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  19. Pulsation of black holes

    Science.gov (United States)

    Gao, Changjun; Lu, Youjun; Shen, You-Gen; Faraoni, Valerio

    2018-01-01

    The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordström situation. For a distant observer the horizon crossing occurs in an infinite time and the pulsations of the black hole quantum "beating heart" are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.

  20. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  1. Bringing Black Holes Home

    Science.gov (United States)

    Furmann, John M.

    2003-03-01

    Black holes are difficult to study because they emit no light. To overcome this obstacle, scientists are trying to recreate a black hole in the laboratory. The article gives an overview of the theories of Einstein and Hawking as they pertain to the construction of the Large Hadron Collider (LHC) near Geneva, Switzerland, scheduled for completion in 2006. The LHC will create two beams of protons traveling in opposing directions that will collide and create a plethora of scattered elementary particles. Protons traveling in opposite directions at very high velocities may create particles that come close enough to each other to feel their compacted higher dimensions and create a mega force of gravity that can create tiny laboratory-sized black holes for fractions of a second. The experiments carried out with LHC will be used to test modern string theory and relativity.

  2. Black hole gravitohydromagnetics

    CERN Document Server

    Punsly, Brian

    2008-01-01

    Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...

  3. Nonisolated dynamic black holes and white holes

    International Nuclear Information System (INIS)

    McClure, M. L.; Anderson, Kaem; Bardahl, Kirk

    2008-01-01

    Modifying the Kerr-Schild transformation used to generate black and white hole spacetimes, new dynamic black and white holes are obtained using a time-dependent Kerr-Schild scalar field. Physical solutions are found for black holes that shrink with time and for white holes that expand with time. The black hole spacetimes are physical only in the vicinity of the black hole, with the physical region increasing in radius with time. The white hole spacetimes are physical throughout. Unlike the standard Schwarzschild solution the singularities are nonisolated, since the time dependence introduces a mass-energy distribution. The surfaces in the metrics where g tt =g rr =0 are dynamic, moving inward with time for the black holes and outward for the white holes, which leads to a question of whether these spacetimes truly have event horizons--a problem shared with Vaidya's cosmological black hole spacetimes. By finding a surface that shrinks or expands at the same rate as the null geodesics move, and within which null geodesics move inward or outward faster than the surfaces shrink or expand, respectively, it is verified that these do in fact behave like black and white holes

  4. Slowly balding black holes

    International Nuclear Information System (INIS)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-01-01

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N B =eΦ ∞ /(πc(ℎ/2π)), where Φ ∞ ≅2π 2 B NS R NS 3 /(P NS c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  5. Infinite volume of noncommutative black hole wrapped by finite surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baocheng, E-mail: zhangbc.zhang@yahoo.com [School of Mathematics and Physics, China University of Geosciences, Wuhan 430074 (China); You, Li, E-mail: lyou@mail.tsinghua.edu.cn [State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China)

    2017-02-10

    The volume of a black hole under noncommutative spacetime background is found to be infinite, in contradiction with the surface area of a black hole, or its Bekenstein–Hawking (BH) entropy, which is well-known to be finite. Our result rules out the possibility of interpreting the entropy of a black hole by counting the number of modes wrapped inside its surface if the final evaporation stage can be properly treated. It implies the statistical interpretation for the BH entropy can be independent of the volume, provided spacetime is noncommutative. The effect of radiation back reaction is found to be small and doesn't influence the above conclusion.

  6. Characterizing Black Hole Mergers

    Science.gov (United States)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  7. Superfluid Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  8. Are black holes springlike?

    Science.gov (United States)

    Good, Michael R. R.; Ong, Yen Chin

    2015-02-01

    A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.

  9. Virtual Black Holes

    OpenAIRE

    Hawking, Stephen W.

    1995-01-01

    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of $S^2\\times S^2$ and $K3$ bubbles. Comparison with the instantons for pair creation of black holes shows that the $S^2\\times S^2$ bubbles can be interpreted as closed loops of virtual black holes. It is ...

  10. Partons and black holes

    International Nuclear Information System (INIS)

    Susskind, L.; Griffin, P.

    1994-01-01

    A light-front renormalization group analysis is applied to study matter which falls into massive black holes, and the related problem of matter with transplankian energies. One finds that the rate of matter spreading over the black hole's horizon unexpectedly saturates the causality bound. This is related to the transverse growth behavior of transplankian particles as their longitudinal momentum increases. This growth behavior suggests a natural mechanism to implement 't Hooft's scenario that the universe is an image of data stored on a 2 + 1 dimensional hologram-like projection

  11. Instability of black holes with a Gauss-Bonnet term

    International Nuclear Information System (INIS)

    Ahn, Wha-Keun; Gwak, Bogeun; Lee, Wonwoo; Lee, Bum-Hoon

    2015-01-01

    We investigate the fragmentation instability of hairy black holes in the theory with a Gauss-Bonnet (GB) term in asymptotically flat spacetime. Our approach is through the non-perturbative fragmentation instability. By this approach, we investigate whether the initial black hole can be broken into two black holes by comparing the entropy of the initial black hole with the sum of those of two fragmented black holes. The relation between the black hole instability and the GB coupling with dilaton hair are presented. We describe the phase diagrams with respect to the mass of the black hole solutions and coupling constants. We find that a perturbatively stable black hole can be unstable under fragmentation. (orig.)

  12. Thermodynamic phase transition in the rainbow Schwarzschild black hole

    International Nuclear Information System (INIS)

    Gim, Yongwan; Kim, Wontae

    2014-01-01

    We study the thermodynamic phase transition in the rainbow Schwarzschild black hole where the metric depends on the energy of the test particle. Identifying the black hole temperature with the energy from the modified dispersion relation, we obtain the modified entropy and thermodynamic energy along with the modified local temperature in the cavity to provide well defined black hole states. It is found that apart from the conventional critical temperature related to Hawking-Page phase transition there appears an additional critical temperature which is of relevance to the existence of a locally stable tiny black hole; however, the off-shell free energy tells us that this black hole should eventually tunnel into the stable large black hole. Finally, we discuss the reason why the temperature near the horizon is finite in the rainbow black hole by employing the running gravitational coupling constant, whereas it is divergent near the horizon in the ordinary Schwarzschild black hole

  13. Area spectrum of extremal Reissner-Nordstroem black holes from quasinormal modes

    International Nuclear Information System (INIS)

    Setare, M.R.

    2004-01-01

    Using the quasinormal mode frequency of extremal Reissner-Nordstroem black holes, we obtain the area spectrum for these types of black holes. We show that the area and entropy black hole horizon are equally spaced. Our results for the spacing of the area spectrum differ from that for Schwarzschild black holes

  14. On Black Hole Stability in Critical Gravities

    Science.gov (United States)

    Liu, Haishan; Lü, H.; Luo, Mingxing

    We consider extended cosmological gravities with Ricci tensor and scalar squared terms in diverse dimensions. These theories admit solutions of Einstein metrics, including the Schwarzschild-Tangherlini AdS black holes, whose mass and entropy vanish at the critical point. We perform linearized analysis around the black holes and show that in general the spectrum consists of the usual spin-2 massless and ghost massive modes. We demonstrate that there is no exponentially-growing tachyon mode in the black holes. At the critical point, the massless spin-2 modes have zero energy whilst the massive spin-2 modes are replaced by the log modes. There always exist certain linear combination of massless and log modes that has negative energy. Thus the stability of the black holes requires that the log modes to be truncated out by the boundary condition.

  15. Correspondence principle for black holes and strings

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Polchinski, J.

    1997-01-01

    For most black holes in string theory, the Schwarzschild radius in string units decreases as the string coupling is reduced. We formulate a correspondence principle, which states that (i) when the size of the horizon drops below the size of a string, the typical black hole state becomes a typical state of strings and D-branes with the same charges, and (ii) the mass does not change abruptly during the transition. This provides a statistical interpretation of black hole entropy. This approach does not yield the numerical coefficient, but gives the correct dependence on mass and charge in a wide range of cases, including neutral black holes. copyright 1997 The American Physical Society

  16. Nonquasinormal modes and black hole physics.

    Science.gov (United States)

    Birmingham, Danny; Carlip, S

    2004-03-19

    The near-horizon geometry of a large class of extremal and near-extremal black holes in string and M-theory contains three-dimensional asymptotically anti-de Sitter space. Motivated by this structure, we are led naturally to a discrete set of complex frequencies defined in terms of the monodromy at the inner and outer horizons of the black hole. We show that the correspondence principle, whereby the real part of these "nonquasinormal frequencies" is identified with certain fundamental quanta, leads directly to the correct quantum behavior of the near-horizon Virasoro algebra, and thus the black hole entropy. Remarkably, for the rotating black hole in five dimensions we also reproduce the fractionization of conformal weights predicted in string theory.

  17. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  18. Aspects of hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  19. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  20. Growth of Primordial Black Holes

    Science.gov (United States)

    Harada, Tomohiro

    Primordial black holes have important observational implications through Hawking evaporation and gravitational radiation as well as being a candidate for cold dark matter. Those black holes are assumed to have formed in the early universe typically with the mass scale contained within the Hubble horizon at the formation epoch and subsequently accreted mass surrounding them. Numerical relativity simulation shows that primordial black holes of different masses do not accrete much, which contrasts with a simplistic Newtonian argument. We see that primordial black holes larger than the 'super-horizon' primordial black holes have decreasing energy and worm-hole like struture, suggesting the formation through quamtum processes.

  1. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  2. Twistors and Black Holes

    NARCIS (Netherlands)

    Neitzke, A.; Pioline, B.; Vandoren, S.

    2007-01-01

    Motivated by black hole physics in N = 2,D = 4 supergravity, we study the geometry of quaternionic-K¨ahler manifolds Mobtained by the c-map construction from projective special Kähler manifolds Ms. Improving on earlier treatments, we compute the Käahler potentials on the twistor space Z and Swann

  3. Black Holes and Entanglement

    International Nuclear Information System (INIS)

    Borsten, L.

    2011-01-01

    An unexpected interplay between the seemingly disparate fields of M-theory and Quantum Information has recently come to light. We summarise these developments, culminating in a classification of 4-qubit entanglement from the physics of STU black holes. Based on work done in collaboration with D. Dahanayake, M. J. Duff, H. Ebrahim, A. Marrani and W. Rubens.

  4. Black Holes and Entanglement

    Science.gov (United States)

    Borsten, L.

    2011-07-01

    An unexpected interplay between the seemingly disparate fields of M-theory and Quantum Information has recently come to light. We summarise these developments, culminating in a classification of 4-qubit entanglement from the physics of STU black holes. Based on work done in collaboration with D. Dahanayake, M. J. Duff, H. Ebrahim, A. Marrani and W. Rubens.

  5. Black holes as quantum gravity condensates

    Science.gov (United States)

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2018-03-01

    We model spherically symmetric black holes within the group field theory formalism for quantum gravity via generalized condensate states, involving sums over arbitrarily refined graphs (dual to three-dimensional triangulations). The construction relies heavily on both the combinatorial tools of random tensor models and the quantum geometric data of loop quantum gravity, both part of the group field theory formalism. Armed with the detailed microscopic structure, we compute the entropy associated with the black hole horizon, which turns out to be equivalently the Boltzmann entropy of its microscopic degrees of freedom and the entanglement entropy between the inside and outside regions. We recover the area law under very general conditions, as well as the Bekenstein-Hawking formula. The result is also shown to be generically independent of any specific value of the Immirzi parameter.

  6. Warped products and black holes

    International Nuclear Information System (INIS)

    Hong, Soon-Tae

    2005-01-01

    We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes

  7. Connecting horizon pixels and interior voxels of a black hole

    Directory of Open Access Journals (Sweden)

    Piero Nicolini

    2014-11-01

    Full Text Available In this paper we discuss to what extent one can infer details of the interior structure of a black hole based on its horizon. Recalling that black hole thermal properties are connected to the non-classical nature of gravity, we circumvent the restrictions of the no-hair theorem by postulating that the black hole interior is singularity free due to violations of the usual energy conditions. Further these conditions allow one to establish a one-to-one, holographic projection between Planckian areal “bits” on the horizon and “voxels”, representing the gravitational degrees of freedom in the black hole interior. We illustrate the repercussions of this idea by discussing an example of the black hole interior consisting of a de Sitter core postulated to arise from the local graviton quantum vacuum energy. It is shown that the black hole entropy can emerge as the statistical entropy of a gas of voxels.

  8. Black Holes from Particle Physics Perspective (1/2)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    We review physics of black holes, both large and small, from a particle physicist's perspective, using particle physics tools for describing concepts such as entropy, temperature and quantum information processing. We also discuss microscopic picture of black hole formation in high energy particle scattering, potentially relevant for high energy accelerator experiments, and some differences and similarities with the signatures of other BSM physics.

  9. Black Holes from Particle Physics Perspective (2/2)

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    We review physics of black holes, both large and small, from a particle physicist's perspective, using particle physics tools for describing concepts such as entropy, temperature and quantum information processing. We also discuss microscopic picture of black hole formation in high energy particle scattering, potentially relevant for high energy accelerator experiments, and some differences and similarities with the signatures of other BSM physics.

  10. Magnonic Black Holes.

    Science.gov (United States)

    Roldán-Molina, A; Nunez, Alvaro S; Duine, R A

    2017-02-10

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  11. Statistical mechanics of black holes

    International Nuclear Information System (INIS)

    Harms, B.; Leblanc, Y.

    1992-01-01

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed

  12. f(R) Black holes

    OpenAIRE

    Moon, Taeyoon; Myung, Yun Soo; Son, Edwin J.

    2011-01-01

    We study the $f(R)$-Maxwell black hole imposed by constant curvature and its all thermodynamic quantities, which may lead to the Reissner-Nordstr\\"om-AdS black hole by redefining Newtonian constant and charge. Further, we obtain the $f(R)$-Yang-Mills black hole imposed by constant curvature, which is related to the Einstein-Yang-Mills black hole in AdS space. Since there is no analytic black hole solution in the presence of Yang-Mills field, we obtain asymptotic solutions. Then, we confirm th...

  13. Quantum decoherence in a four-dimensional black hole background

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Winstanley, E; Ellis, John

    1997-01-01

    We display a logarithmic divergence in the density matrix of a scalar field in the presence of an Einstein-Yang-Mills black hole in four dimensions. This divergence is related to a previously-found logarithmic divergence in the entropy of the scalar field, which cannot be absorbed into a renormalization of the Hawking-Bekenstein entropy of the black hole. As the latter decays, the logarithmic divergence induces a non-commutator term \

  14. Rotating black hole and quintessence

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.

    2016-01-01

    We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω) due to the quintessential matter, apart from the mass (M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α = -e 2 ≠ 0 and ω = 1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α = 0. Interestingly, for a given value of parameter ω, there exists a critical rotation parameter (a = a E ), which corresponds to an extremal black hole with degenerate horizons, while for a < a E , it describes a nonextremal black hole with Cauchy and event horizons, and no black hole for a > a E . We find that the extremal value a E is also influenced by the parameter ω and so is the ergoregion. (orig.)

  15. Black Holes and Firewalls

    Science.gov (United States)

    Polchinski, Joseph

    2015-04-01

    Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.

  16. Beyond the black hole

    International Nuclear Information System (INIS)

    Boslough, J.

    1985-01-01

    This book is about the life and work of Stephen Hawking. It traces the development of his theories about the universe and particularly black holes, in a biographical context. Hawking's lecture 'Is the end in sight for theoretical physics' is presented as an appendix. In this, he discusses the possibility of achieving a complete, consistent and unified theory of the physical interactions which would describe all possible observations. (U.K.)

  17. Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Reall Harvey S.

    2008-09-01

    Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.

  18. Black hole chemistry: thermodynamics with Lambda

    International Nuclear Information System (INIS)

    Kubizňák, David; Mann, Robert B; Teo, Mae

    2017-01-01

    We review recent developments on the thermodynamics of black holes in extended phase space, where the cosmological constant is interpreted as thermodynamic pressure and treated as a thermodynamic variable in its own right. In this approach, the mass of the black hole is no longer regarded as internal energy, rather it is identified with the chemical enthalpy. This leads to an extended dictionary for black hole thermodynamic quantities; in particular a notion of thermodynamic volume emerges for a given black hole spacetime. This volume is conjectured to satisfy the reverse isoperimetric inequality—an inequality imposing a bound on the amount of entropy black hole can carry for a fixed thermodynamic volume. New thermodynamic phase transitions naturally emerge from these identifications. Namely, we show that black holes can be understood from the viewpoint of chemistry, in terms of concepts such as Van der Waals fluids, reentrant phase transitions, and triple points. We also review the recent attempts at extending the AdS/CFT dictionary in this setting, discuss the connections with horizon thermodynamics, applications to Lifshitz spacetimes, and outline possible future directions in this field. (topical review)

  19. Black Holes in Our Universe

    Indian Academy of Sciences (India)

    most sensitive scientific instrument ever ... sion, expelling a lot of the mass, but leaving behind a black hole that is at least ... hole, and indeed such a phenomenon may explain the disappear- ance of a star in the galaxy N6946 [21]. The collapse of stars into black holes might account for some of the extraordinarily powerful ...

  20. Black hole conserved charges in Generalized Minimal Massive Gravity

    Directory of Open Access Journals (Sweden)

    M.R. Setare

    2015-05-01

    Full Text Available In this paper we construct mass, angular momentum and entropy of black hole solution of Generalized Minimal Massive Gravity (GMMG in asymptotically Anti-de Sitter (AdS spacetimes. The Generalized Minimal Massive Gravity theory is realized by adding the CS deformation term, the higher derivative deformation term, and an extra term to pure Einstein gravity with a negative cosmological constant. We apply our result for conserved charge Qμ(ξ¯ to the rotating BTZ black hole solution of GMMG, and find energy, angular momentum and entropy. Then we show that our results for these quantities are consistent with the first law of black hole thermodynamics.

  1. Comment on "Comments on `The Euclidean gravitational action as black hole entropy, singularities and space-time voids'" [J. Math. Phys. 50, 042502 (2009)]-Schwarzschild black hole lives to fight another day

    Science.gov (United States)

    Kundu, Prasun K.

    2017-11-01

    In a comment published several years ago in this journal, Mitra [J. Math. Phys. 50, 042502 (2009)] has claimed to prove that a neutral point particle in general relativity as described by the Schwarzschild metric must have zero gravitational mass, i.e., the mass parameter M0 of a Schwarzschild black hole necessarily vanishes. It is shown that the purported proof is incorrect. The error stems from a basic misunderstanding of the mathematical description of coordinate volume element in a differentiable manifold.

  2. The fragmentation instability of a black hole with f( R) global monopole under GUP

    Science.gov (United States)

    Chen, Lingshen; Cheng, Hongbo

    2018-03-01

    Having studied the fragmentation of the black holes containing f( R) global monopole under the generalized uncertainty principle (GUP), we show the influences from this kind of monopole, f( R) theory, and GUP on the evolution of black holes. We focus on the possibility that the black hole breaks into two parts by means of the second law of thermodynamics. We derive the entropies of the initial black hole and the broken parts while the generalization of Heisenberg's uncertainty principle is introduced. We find that the f( R) global monopole black hole keeps stable instead of splitting without the generalization because the entropy difference is negative. The fragmentation of the black hole will happen if the black hole entropies are limited by the GUP and the considerable deviation from the general relativity leads to the case that the mass of one fragmented black hole is smaller and the other one's mass is larger.

  3. Thermodynamics of black-holes in Brans-Dicke gravity

    International Nuclear Information System (INIS)

    Kim, H.; Kim, Y.

    1997-01-01

    It is recently been argued that non-trivial Brans-Dicke black-hole solutions different from the usual Schwarzschild solution could exist. The authors attempt here to 'censor' these non-trivial Brans-Dicke black-hole solutions by examining their thermodynamics properties. Quantities like Hawking temperature and entropy of the black holes are computed. The analysis of the behaviors of these thermodynamic quantities appears to show that even in Brans-Dicke gravity, the usual Schwarzschild space-time turns out to be the only physically relevant uncharged black-hole solution

  4. Thermodynamics of higher dimensional black holes

    Energy Technology Data Exchange (ETDEWEB)

    Accetta, F.S.; Gleiser, M.

    1986-05-01

    We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs.

  5. Thermodynamics of higher dimensional black holes

    International Nuclear Information System (INIS)

    Accetta, F.S.; Gleiser, M.

    1986-05-01

    We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs

  6. AdS Black Hole with Phantom Scalar Field

    Directory of Open Access Journals (Sweden)

    Limei Zhang

    2017-01-01

    Full Text Available We present an AdS black hole solution with Ricci flat horizon in Einstein-phantom scalar theory. The phantom scalar fields just depend on the transverse coordinates x and y, which are parameterized by the parameter α. We study the thermodynamics of the AdS phantom black hole. Although its horizon is a Ricci flat Euclidean space, we find that the thermodynamical properties of the black hole solution are qualitatively the same as those of AdS Schwarzschild black hole. Namely, there exists a minimal temperature and the large black hole is thermodynamically stable, while the smaller one is unstable, so there is a so-called Hawking-Page phase transition between the large black hole and the thermal gas solution in the AdS space-time in Poincare coordinates. We also calculate the entanglement entropy for a strip geometry dual to the AdS phantom black holes and find that the behavior of the entanglement entropy is qualitatively the same as that of the black hole thermodynamical entropy.

  7. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  8. Quantum effects in black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1979-01-01

    A strict definition of black holes is presented and some properties with regard to their mass are enumerated. The Hawking quantum effect - the effect of vacuum instability in the black hole gravitational field, as a result of shich the black hole radiates as a heated body is analyzed. It is shown that in order to obtain results on the black hole radiation it is sufficient to predetermine the in-vacuum state at a time moment in the past, when the collapsing body has a large size, and its gravitational field can be neglected. The causes and the place of particle production by the black hole, and also the space-time inside the black hole, are considered

  9. A Lifshitz black hole in four dimensional R2 gravity

    International Nuclear Information System (INIS)

    Cai Ronggen; Liu Yan; Sun Yawen

    2009-01-01

    We consider a higher derivative gravity theory in four dimensions with a negative cosmological constant and show that vacuum solutions of both Lifshitz type and Schroedinger type with arbitrary dynamical exponent z exist in this system. Then we find an analytic black hole solution which asymptotes to the vacuum Lifshitz solution with z = 3/2 at a specific value of the coupling constant. We analyze the thermodynamic behavior of this black hole and find that the black hole has zero entropy while non-zero temperature, which is very similar to the case of BTZ black holes in new massive gravity at a specific coupling. In addition, we find that the three dimensional Lifshitz black hole recently found by E. Ayon-Beato et al. has a negative entropy and mass when the Newton constant is taken to be positive.

  10. Primordial black hole evolution in two-fluid cosmology

    Science.gov (United States)

    Gutiérrez, E. M.; Vieyro, F. L.; Romero, G. E.

    2018-02-01

    Several processes in the early Universe might lead to the formation of primordial black holes with different masses. These black holes would interact with the cosmic plasma through accretion and emission processes. Such interactions might have affected the dynamics of the Universe and generated a considerable amount of entropy. In this paper, we investigate the effects of the presence of primordial black holes on the evolution of the early Universe. We adopt a two-fluid cosmological model with radiation and a primordial black hole gas. The latter is modelled with different initial mass functions taking into account the available constraints over the initial primordial black hole abundances. We find that certain populations with narrow initial mass functions are capable to produce significant changes in the scalefactor and the entropy.

  11. Quantum loop corrections of a charged de Sitter black hole

    Science.gov (United States)

    Naji, J.

    2018-03-01

    A charged black hole in de Sitter (dS) space is considered and logarithmic corrected entropy used to study its thermodynamics. Logarithmic corrections of entropy come from thermal fluctuations, which play a role of quantum loop correction. In that case we are able to study the effect of quantum loop on black hole thermodynamics and statistics. As a black hole is a gravitational object, it helps to obtain some information about the quantum gravity. The first and second laws of thermodynamics are investigated for the logarithmic corrected case and we find that it is only valid for the charged dS black hole. We show that the black hole phase transition disappears in the presence of logarithmic correction.

  12. Wave function of the quantum black hole

    CERN Document Server

    Brustein, Ram

    2012-01-01

    We show that the Wald Noether charge entropy is canonically conjugate to the opening angle at the horizon. Using this canonical relation we extend the Wheeler-DeWitt equation to a Schroedinger equation in the opening angle, following Carlip and Teitelboim. We solve the equation in the semiclassical approximation by using the correspondence principle and find that the solutions are minimal uncertainty wavefunctions with a continuous spectrum for the entropy and therefore also of the area of the black hole horizon. The fact that the opening angle fluctuates away from its classical value of 2 pi indicates that the quantum black hole is a superposition of horizonless states. The classical geometry with a horizon serves only to evaluate quantum expectation values in the strict classical limit.

  13. Origin of supermassive black holes

    OpenAIRE

    Dokuchaev, V. I.; Eroshenko, Yu. N.; Rubin, S. G.

    2007-01-01

    The origin of supermassive black holes in the galactic nuclei is quite uncertain in spite of extensive set of observational data. We review the known scenarios of galactic and cosmological formation of supermassive black holes. The common drawback of galactic scenarios is a lack of time and shortage of matter supply for building the supermassive black holes in all galaxies by means of accretion and merging. The cosmological scenarios are only fragmentarily developed but propose and pretend to...

  14. Destroying extremal magnetized black holes

    Science.gov (United States)

    Siahaan, Haryanto M.

    2017-07-01

    The gedanken experiment by Wald to destroy a black hole using a test particle in the equatorial plane is adapted to the case of extremal magnetized black holes. We find that the presence of external magnetic fields resulting from the "Ernst magnetization" permits a test particle to have strong enough energy to destroy the black hole. However, the corresponding effective potentials show that such particles would never reach the horizon.

  15. Artificial black holes

    CERN Document Server

    Visser, Matt; Volovik, Grigory E

    2009-01-01

    Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various "analog models". These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters - written by experts in general relativity, particle physics, and condensed matter physics - that explore various aspects of this two-way traffic.

  16. Asymmetric black dyonic holes

    Directory of Open Access Journals (Sweden)

    I. Cabrera-Munguia

    2015-04-01

    Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.

  17. Structural aspects of asymptotically safe black holes

    Science.gov (United States)

    Koch, Benjamin; Saueressig, Frank

    2014-01-01

    We study the quantum modifications of classical, spherically symmetric Schwarzschild (anti-) de Sitter black holes within quantum Einstein gravity. The quantum effects are incorporated through the running coupling constants Gk and Λk, computed within the exact renormalization group approach, and a common scale-setting procedure. We find that, in contrast to common intuition, it is actually the cosmological constant that determines the short-distance structure of the RG-improved black hole: in the asymptotic UV the structure of the quantum solutions is universal and given by the classical Schwarzschild-de Sitter solution, entailing a self-similarity between the classical and quantum regime. As a consequence asymptotically safe black holes evaporate completely and no Planck-size remnants are formed. Moreover, the thermodynamic entropy of the critical Nariai black hole is shown to agree with the microstate count based on the effective average action, suggesting that the entropy originates from quantum fluctuations around the mean-field geometry.

  18. On black hole horizon fluctuations

    International Nuclear Information System (INIS)

    Tuchin, K.L.

    1999-01-01

    A study of the high angular momentum particles 'atmosphere' near the Schwarzschild black hole horizon suggested that strong gravitational interactions occur at invariant distance of the order of 3 √M [2]. We present a generalization of this result to the Kerr-Newman black hole case. It is shown that the larger charge and angular momentum black hole bears, the larger invariant distance at which strong gravitational interactions occur becomes. This invariant distance is of order 3 √((r + 2 )/((r + - r - ))). This implies that the Planckian structure of the Hawking radiation of extreme black holes is completely broken

  19. Black holes and the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028 Spain (Spain); Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu [Institute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 (United States)

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  20. Braneworld Black Hole Gravitational Lensing

    International Nuclear Information System (INIS)

    Liang Jun

    2017-01-01

    A class of braneworld black holes, which I called as Bronnikov–Melnikov–Dehen (BMD) black holes, are studied as gravitational lenses. I obtain the deflection angle in the strong deflection limit, and further calculate the angular positions and magnifications of relativistic images as well as the time delay between different relativistic images. I also compare the results with those obtained for Schwarzschild and two braneworld black holes, i.e., the tidal Reissner-Nordström (R-N) and the Casadio–Fabbri–Mazzacurati (CFM) black holes. (paper)

  1. How black holes saved relativity

    Science.gov (United States)

    Prescod-Weinstein, Chanda

    2016-02-01

    While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.

  2. Caged black holes: Black holes in compactified spacetimes. I. Theory

    International Nuclear Information System (INIS)

    Kol, Barak; Sorkin, Evgeny; Piran, Tsvi

    2004-01-01

    In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes

  3. A note on thermodynamics of black holes in Lovelock gravity

    International Nuclear Information System (INIS)

    Cai, Rong-Gen

    2004-01-01

    The Lovelock gravity consists of the dimensionally extended Euler densities. The geometry and horizon structure of black hole solutions could be quite complicated in this gravity, however, we find that some thermodynamic quantities of the black holes like the mass, Hawking temperature and entropy, have simple forms expressed in terms of horizon radius. The case with black hole horizon being a Ricci flat hypersurface is particularly simple. In that case the black holes are always thermodynamically stable with a positive heat capacity and their entropy still obeys the area formula, which is no longer valid for black holes with positive or negative constant curvature horizon hypersurface. In addition, for black holes in the gravity theory of Ricci scalar plus a 2n-dimensional Euler density with a positive coefficient, thermodynamically stable small black holes always exist in D=2n+1 dimensions, which are absent in the case without the Euler density term, while the thermodynamic properties of the black hole solutions with the Euler density term are qualitatively similar to those of black holes without the Euler density term as D>2n+1

  4. Black holes as mirrors: quantum information in random subsystems

    International Nuclear Information System (INIS)

    Hayden, Patrick; Preskill, John

    2007-01-01

    We study information retrieval from evaporating black holes, assuming that the internal dynamics of a black hole is unitary and rapidly mixing, and assuming that the retriever has unlimited control over the emitted Hawking radiation. If the evaporation of the black hole has already proceeded past the ''half-way'' point, where half of the initial entropy has been radiated away, then additional quantum information deposited in the black hole is revealed in the Hawking radiation very rapidly. Information deposited prior to the half-way point remains concealed until the half-way point, and then emerges quickly. These conclusions hold because typical local quantum circuits are efficient encoders for quantum error-correcting codes that nearly achieve the capacity of the quantum erasure channel. Our estimate of a black hole's information retention time, based on speculative dynamical assumptions, is just barely compatible with the black hole complementarity hypothesis

  5. Black Holes in Our Universe

    Indian Academy of Sciences (India)

    was discovered in the constellation Cygnus; a bright X-ray emit- ter associated with a twin-star system, and christened Cygnus X-. 1. It has a massive star and a black hole orbiting each other. With an optical telescope it is the companion star of the black hole which is visible, which produces stellar winds blowing away from.

  6. Black holes and quantum mechanics

    NARCIS (Netherlands)

    t Hooft, G.|info:eu-repo/dai/nl/074127888

    2010-01-01

    After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these

  7. Black-Hole Mass Measurements

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2004-01-01

    The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....

  8. ATLAS simulated black hole event

    CERN Multimedia

    Pequenão, J

    2008-01-01

    The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).

  9. What, no black hole evaporation

    International Nuclear Information System (INIS)

    Hajicek, P.; Israel, W.

    1980-01-01

    Tipler has claimed that the inward flux of negative energy across the horizon which (according to the semi-classical approximation) accompanies the evaporation of a black hole would cause a solar mass black hole to evaporate in less than a second. It is shown that this claim is in error. (orig.)

  10. Area spectrum of slowly rotating black holes

    OpenAIRE

    Myung, Yun Soo

    2010-01-01

    We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.

  11. Lovelock black holes surrounded by quintessence

    Science.gov (United States)

    Ghosh, Sushant G.; Maharaj, Sunil D.; Baboolal, Dharmanand; Lee, Tae-Hun

    2018-02-01

    Lovelock gravity consisting of the dimensionally continued Euler densities is a natural generalization of general relativity to higher dimensions such that equations of motion are still second order, and the theory is free of ghosts. A scalar field with a positive potential that yields an accelerating universe has been termed quintessence. We present exact black hole solutions in D-dimensional Lovelock gravity surrounded by quintessence matter and also perform a detailed thermodynamical study. Further, we find that the mass, entropy and temperature of the black hole are corrected due to the quintessence background. In particular, we find that a phase transition occurs with a divergence of the heat capacity at the critical horizon radius, and that specific heat becomes positive for r_hblack hole to become thermodynamically stable.

  12. Three-charge black holes on a circle

    International Nuclear Information System (INIS)

    Harmark, Troels; Obers, Niels A.; Roenne, Peter B.; Kristjansson, Kristjan R.

    2007-01-01

    We study phases of five-dimensional three-charge black holes with a circle in their transverse space. In particular, when the black hole is localized on the circle we compute the corrections to the metric and corresponding thermodynamics in the limit of small mass. When taking the near-extremal limit, this gives the corrections to the finite entropy of the extremal three-charge black hole as a function of the energy above extremality. For the partial extremal limit with two charges sent to infinity and one finite we show that the first correction to the entropy is in agreement with the microscopic entropy by taking into account that the number of branes shift as a consequence of the interactions across the transverse circle. Beyond these analytical results, we also numerically obtain the entire phase of non- and near-extremal three- and two-charge black holes localized on a circle. More generally, we find in this paper a rich phase structure, including a new phase of three-charge black holes that are non-uniformly distributed on the circle. All these three-charge black hole phases are found via a map that relates them to the phases of five-dimensional neutral Kaluza-Klein black holes

  13. String-Corrected Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, V.

    2005-01-12

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.

  14. The search for black holes

    International Nuclear Information System (INIS)

    Torn, K.

    1976-01-01

    Conceivable experimental investigations to prove the existence of black holes are discussed. Double system with a black hole turning around a star-satellite are in the spotlight. X-radiation emmited by such systems and resulting from accretion of the stellar gas by a black hole, and the gas heating when falling on the black hole might prove the model suggested. A source of strong X-radiation observed in the Cygnus star cluster and referred to as Cygnus X-1 may be thus identified as a black hole. Direct registration of short X-ray pulses with msec intervals might prove the suggestion. The lack of appropriate astrophysic facilities is pointed out to be the major difficulty on the way of experimental verifications

  15. Compressibility of rotating black holes

    International Nuclear Information System (INIS)

    Dolan, Brian P.

    2011-01-01

    Interpreting the cosmological constant as a pressure, whose thermodynamically conjugate variable is a volume, modifies the first law of black hole thermodynamics. Properties of the resulting thermodynamic volume are investigated: the compressibility and the speed of sound of the black hole are derived in the case of nonpositive cosmological constant. The adiabatic compressibility vanishes for a nonrotating black hole and is maximal in the extremal case--comparable with, but still less than, that of a cold neutron star. A speed of sound v s is associated with the adiabatic compressibility, which is equal to c for a nonrotating black hole and decreases as the angular momentum is increased. An extremal black hole has v s 2 =0.9 c 2 when the cosmological constant vanishes, and more generally v s is bounded below by c/√(2).

  16. Extremal black hole/CFT correspondence in (gauged) supergravities

    International Nuclear Information System (INIS)

    Chow, David D. K.; Cvetic, M.; Lue, H.; Pope, C. N.

    2009-01-01

    We extend the investigation of the recently proposed Kerr/conformal field theory correspondence to large classes of rotating black hole solutions in gauged and ungauged supergravities. The correspondence, proposed originally for four-dimensional Kerr black holes, asserts that the quantum states in the near-horizon region of an extremal rotating black hole are holographically dual to a two-dimensional chiral theory whose Virasoro algebra arises as an asymptotic symmetry of the near-horizon geometry. In fact, in dimension D there are [(D-1)/2] commuting Virasoro algebras. We consider a general canonical class of near-horizon geometries in arbitrary dimension D, and show that in any such metric the [(D-1)/2] central charges each imply, via the Cardy formula, a microscopic entropy that agrees with the Bekenstein-Hawking entropy of the associated extremal black hole. In the remainder of the paper we show for most of the known rotating black hole solutions of gauged supergravity, and for the ungauged supergravity solutions with four charges in D=4 and three charges in D=5, that their extremal near-horizon geometries indeed lie within the canonical form. This establishes that, in all these examples, the microscopic entropies of the dual conformal field theories agree with the Bekenstein-Hawking entropies of the extremal rotating black holes.

  17. Regular phantom black holes.

    Science.gov (United States)

    Bronnikov, K A; Fabris, J C

    2006-06-30

    We study self-gravitating, static, spherically symmetric phantom scalar fields with arbitrary potentials (favored by cosmological observations) and single out 16 classes of possible regular configurations with flat, de Sitter, and anti-de Sitter asymptotics. Among them are traversable wormholes, bouncing Kantowski-Sachs (KS) cosmologies, and asymptotically flat black holes (BHs). A regular BH has a Schwarzschild-like causal structure, but the singularity is replaced by a de Sitter infinity, giving a hypothetic BH explorer a chance to survive. It also looks possible that our Universe has originated in a phantom-dominated collapse in another universe, with KS expansion and isotropization after crossing the horizon. Explicit examples of regular solutions are built and discussed. Possible generalizations include k-essence type scalar fields (with a potential) and scalar-tensor gravity.

  18. Black hole decay as geodesic motion

    International Nuclear Information System (INIS)

    Gupta, Kumar S.; Sen, Siddhartha

    2003-01-01

    We show that a formalism for analyzing the near-horizon conformal symmetry of Schwarzschild black holes using a scalar field probe is capable of describing black hole decay. The equation governing black hole decay can be identified as the geodesic equation in the space of black hole masses. This provides a novel geometric interpretation for the decay of black holes. Moreover, this approach predicts a precise correction term to the usual expression for the decay rate of black holes

  19. Black holes and quantum processes in them

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1976-01-01

    The latest achievements in the physics of black holes are reviewed. The problem of quantum production in a strong gravitational field of black holes is considered. Another parallel discovered during investigation of interactions between black holes and between black holes and surrounding media, is also drawn with thermodynamics. A gravitational field of rotating black holes is considered. Some cosmological aspects of evaporation of small black holes are discussed as well as possibilities to observe them

  20. Magnetic fields around black holes

    Science.gov (United States)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  1. Are LIGO's Black Holes Made From Smaller Black Holes?

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    The recent successes of the Laser Interferometer Gravitational-Wave Observatory (LIGO) has raised hopes that several long-standing questions in black-hole physics will soon be answerable. Besides revealing how the black-hole binary pairs are built, could detections with LIGO also reveal how the black holes themselves form?Isolation or HierarchyThe first detection of gravitational waves, GW150914, was surprising for a number of reasons. One unexpected result was the mass of the two black holes that LIGO saw merging: they were a whopping 29 and 36 solar masses.On the left of this schematic, two first-generation (direct-collapse) black holes form a merging binary. The right illustrates a second-generation hierarchical merger: each black hole in the final merging binary was formed by the merger of two smaller black holes. [Adapted fromGerosa et al., a simultaneously published paper that also explores the problem of hierarchical mergers and reaches similar conclusions]How do black holes of this size form? One possibility is that they form in isolation from the collapse of a single massive star. In an alternative model, they are created through the hierarchical merger of smaller black holes, gradually building up to the size we observed.A team of scientists led by Maya Fishbach (University of Chicago) suggests that we may soon be able to tell whether or not black holes observed by LIGO formed hierarchically. Fishbach and collaborators argue that hierarchical formation leaves a distinctive signature on the spins of the final black holes and that as soon as we have enough merger detections from LIGO, we can use spin measurements to statistically determine if LIGO black holes were formed hierarchically.Spins from Major MergersWhen two black holes merge, both their original spins and the angular momentum of the pair contribute to the spin of the final black hole that results. Fishbach and collaborators calculate the expected distribution of these final spins assuming that

  2. A Thermote, a Novel Thermal Element Simplifying the Finding of a Medium's Entropy Emerges as a Sensible Dark Matter Candidate from Primordial Black Holes with a Mass in Range of Axion's, a Leading Candidate

    Science.gov (United States)

    Feria, Erlan H.

    2017-06-01

    Black holes acting as dark matter have been predicted, e.g., via a duality theory in (Feria 2011, Proc. IEEE Int’l Conf. on SMC, Alaska, USA) and via observations in (Kashlinsky 2016, AJL). Here a thermote, a novel thermal element simplifying the finding of a medium’s entropy, emerges as a dark matter candidate from primordial black holes with a mass in range of axion's, a leading candidate. The thermote energy, eT, is defined as the average thermal energy contributed to a particle’s motion by the medium’s degrees of freedom (DoF) and is thus given by eT=NDoFkBT/2 where NDoF is the DoF number (e.g., NDoF=2 for a black-hole since only in its event-horizon particle motions can occur) and kBT/2 is the thermal energy contributed by each degree of freedom (kB is the Boltzmann constant and T is temperature). The entropy S of a spherical homogeneous medium is then simply stated as S=(kB/2)E/eT where E=Mc2 is the medium's rest-energy, with M its point-mass and c the speed of light, and eT=NDoFkBT/2 is the thermote's kinetic-energy. This simple equation naturally surfaced from a rest/kinetic or retention/motion mass-energy duality theory where, e.g., black-holes and vacuums form together such a duality with black holes offering the least resistance to mass-energy rest, or retention, and vacuums offering the least resistance to mass-energy kinetics, or motions. In turn, this duality theory has roots in the universal cybernetics duality principle (UCDP) stating “synergistic physical and mathematical dualities arise in efficient system designs” (Feria 2014, http://dx.doi.org/10.1117/2.1201407.005429, SPIE Newsroom). Our thermote based entropy finding method is applicable to spherical homogeneous mediums such as black-holes, photon-gases, and flexible-phase (Feria 2016, Proc. IEEE Int’l Conf. on Smart Cloud, Columbia University, NY, USA), where the thermote of a primordial black hole, with NDoF=2 and a CMB radiation temperature of T=2.725 kelvin, emerges as a

  3. A nonsingular rotating black hole

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.

    2015-01-01

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  4. A Lovelock black hole bestiary

    International Nuclear Information System (INIS)

    Camanho, Xián O; Edelstein, José D

    2013-01-01

    We revisit the study of (A)dS black holes in Lovelock theories. We present a new tool that allows to attack this problem in full generality. In analyzing maximally symmetric Lovelock black holes with non-planar horizon topologies, many distinctive and interesting features are observed. Among them, the existence of maximally symmetric vacua does not support black holes in vast regions of the space of gravitational couplings, multi-horizon black holes and branches of solutions that suggest the existence of a rich diagram of phase transitions. The appearance of naked singularities seems unavoidable in some cases, raising the question about the fate of the cosmic censorship conjecture in these theories. There is a preferred branch of solutions for planar black holes, as well as for non-planar black holes with high enough mass or temperature. Our study clarifies the role of all branches of solutions, including asymptotically dS black holes, and whether they should be considered when studying these theories in the context of AdS/CFT. (paper)

  5. Quantum Mechanics of Black Holes

    Science.gov (United States)

    Witten, Edward

    2012-08-01

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  6. Tunnelling from Goedel black holes

    International Nuclear Information System (INIS)

    Kerner, Ryan; Mann, R. B.

    2007-01-01

    We consider the spacetime structure of Kerr-Goedel black holes, analyzing their parameter space in detail. We apply the tunnelling method to compute their temperature and compare the results to previous calculations obtained via other methods. We claim that it is not possible to have the closed timelike curve (CTC) horizon in between the two black hole horizons and include a discussion of issues that occur when the radius of the CTC horizon is smaller than the radius of both black hole horizons

  7. Black Holes: A Traveler's Guide

    Science.gov (United States)

    Pickover, Clifford A.

    1998-03-01

    BLACK HOLES A TRAVELER'S GUIDE Clifford Pickover's inventive and entertaining excursion beyond the curves of space and time. "I've enjoyed Clifford Pickover's earlier books . . . now he has ventured into the exploration of black holes. All would-be tourists are strongly advised to read his traveler's guide." -Arthur C. Clarke. "Many books have been written about black holes, but none surpass this one in arousing emotions of awe and wonder towards the mysterious structure of the universe." -Martin Gardner. "Bucky Fuller thought big. Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." -Wired. "The book is fun, zany, in-your-face, and refreshingly addictive." -Times Higher Education Supplement.

  8. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  9. Quantum mechanics of black holes.

    Science.gov (United States)

    Witten, Edward

    2012-08-03

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  10. Vacuum metastability with black holes

    International Nuclear Information System (INIS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G. annd

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  11. Gravitational polarizability of black holes

    International Nuclear Information System (INIS)

    Damour, Thibault; Lecian, Orchidea Maria

    2009-01-01

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h l of a black hole are defined and computed. They are then compared to their electromagnetic analogs h l EM . The Love numbers h l give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  12. Black holes and Higgs stability

    CERN Document Server

    Tetradis, Nikolaos

    2016-09-20

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  13. Phase transition for black holes with scalar hair and topological black holes

    OpenAIRE

    Myung, Yun Soo

    2008-01-01

    We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by usi...

  14. Counting the microstates of a Kerr black hole in M theory.

    Science.gov (United States)

    Horowitz, Gary T; Roberts, Matthew M

    2007-11-30

    We show that an extremal Kerr black hole, appropriately lifted to M theory, can be transformed to a Kaluza-Klein black hole in M theory, or a D0-D6 charged black hole in string theory. Since all the microstates of the latter have recently been identified, one can exactly reproduce the entropy of an extremal Kerr black hole. We also show that the topology of the event horizon is not well defined in M theory.

  15. Phantom black holes and critical phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Aïnou, Mustapha [Engineering Faculty, Başkent University, Bağlıca Campus, Ankara (Turkey); Marques, Glauber T. [Universidade Federal Rural da Amazônia ICIBE-LASIC, Av. Presidente Tancredo Neves 2501, CEP 66077-901—Belém/PA (Brazil); Rodrigues, Manuel E., E-mail: azreg@baskent.edu.tr, E-mail: gtadaiesky@hotmail.com, E-mail: esialg@gmail.com [Faculdade de Ciências Exatas e Tecnologia, Universidade Federal do Pará, Campus Universitário de Abaetetuba, CEP 68440-000, Abaetetuba, Pará (Brazil)

    2014-07-01

    We consider the two classes cosh and sinh of normal and phantom black holes of Einstein-Maxwell-dilaton theory. The thermodynamics of these holes is characterized by heat capacities that may have both signs depending on the parameters of the theory. Leaving aside the normal Reissner-Nordström black hole, it is shown that only some phantom black holes of both classes exhibit critical phenomena. The two classes share a nonextremality, but special, critical point where the transition is continuous and the heat capacity, at constant charge, changes sign with an infinite discontinuity. This point yields a classification scheme for critical points. It is concluded that the two unstable and stable phases coexist on one side of the criticality state and disappear on the other side, that is, there is no configuration where only one phase exists. The sinh class has an extremality critical point where the entropy diverges. The transition from extremality to nonextremality with the charge held constant is accompanied by a loss of mass and an increase in the temperature. A special case of this transition is when the hole is isolated (microcanonical ensemble), it will evolve by emission of energy, which results in a decrease of its mass, to the final state of minimum mass and vanishing heat capacity. The Ehrenfest scheme of classification is inaccurate in this case but the generalized one due to Hilfer leads to conclude that the transition is of order less than unity. Fluctuations near criticality are also investigated.

  16. Supertranslations and Superrotations at the Black Hole Horizon.

    Science.gov (United States)

    Donnay, Laura; Giribet, Gaston; González, Hernán A; Pino, Miguel

    2016-03-04

    We show that the asymptotic symmetries close to nonextremal black hole horizons are generated by an extension of supertranslations. This group is generated by a semidirect sum of Virasoro and Abelian currents. The charges associated with the asymptotic Killing symmetries satisfy the same algebra. When considering the special case of a stationary black hole, the zero mode charges correspond to the angular momentum and the entropy at the horizon.

  17. Black hole state degeneracy in loop quantum gravity

    International Nuclear Information System (INIS)

    Agullo, Ivan; Diaz-Polo, Jacobo; Fernandez-Borja, Enrique

    2008-01-01

    The combinatorial problem of counting the black hole quantum states within the isolated horizon framework in loop quantum gravity is analyzed. A qualitative understanding of the origin of the band structure shown by the degeneracy spectrum, which is responsible for the black hole entropy quantization, is reached. Even when motivated by simple considerations, this picture allows to obtain analytical expressions for the most relevant quantities associated to this effect

  18. Dyonic black holes at arbitrary locations

    Science.gov (United States)

    Meessen, Patrick; Ortín, Tomás; Ramírez, Pedro F.

    2017-10-01

    We construct and study stationary, asymptotically flat multicenter solutions describing regular black holes with non-Abelian hair (colored magnetic-monopole and dyon fields) in two models of N=2 , d = 4 Super-Einstein-Yang-Mills theories: the quadratic model \\overline{CP}^3 and the cubic model ST[2, 6], which can be embedded in 10-dimensional Heterotic Supergravity. These solutions are based on the multicenter dyon recently discovered by one of us, which solves the SU(2) Bogomol'nyi and dyon equations on E^3 . In contrast to the well-known Abelian multicenter solutions, the relative positions of the non-Abelian black-hole centers are unconstrained. We study necessary conditions on the parameters of the solutions that ensure the regularity of the metric. In the case of the \\overline{CP}^3 model we show that it is enough to require the positivity of the "masses" of the individual black holes, the finiteness of each of their entropies and their superadditivity. In the case of the ST[2, 6] model we have not been able to show that analogous conditions are sufficient, but we give an explicit example of a regular solution describing thousands of non-Abelian dyonic black holes in equilibrium at arbitrary relative positions. We also construct non-Abelian solutions that interpolate smoothly between just two aDS2×S2 vacua with different radii ( dumbbell solutions).

  19. Topological transport from a black hole

    Science.gov (United States)

    Melnikov, Dmitry

    2018-03-01

    In this paper the low temperature zero-frequency transport in a 2 + 1-dimensional theory dual to a dyonic black hole is discussed. It is shown that transport exhibits topological features: the transverse electric and heat conductivities satisfy the Wiedemann-Franz law of free electrons; the direct heat conductivity is measured in units of the central charge of CFT2+1, while the direct electric conductivity vanishes; the thermoelectric conductivity is non-zero at vanishing temperature, while the O (T) behavior, controlled by the Mott relation, is subleading. Provided that the entropy of the black hole, and the dual system, is non-vanishing at T = 0, the observations indicate that the dyonic black hole describes a ħ → 0 limit of a highly degenerate topological state, in which the black hole charge measures the density of excited non-abelian quasiparticles. The holographic description gives further evidence that non-abelian nature of quasiparticles can be determined by the low temperature behavior of the thermoelectric transport.

  20. Topological transport from a black hole

    Directory of Open Access Journals (Sweden)

    Dmitry Melnikov

    2018-03-01

    Full Text Available In this paper the low temperature zero-frequency transport in a 2+1-dimensional theory dual to a dyonic black hole is discussed. It is shown that transport exhibits topological features: the transverse electric and heat conductivities satisfy the Wiedemann–Franz law of free electrons; the direct heat conductivity is measured in units of the central charge of CFT2+1, while the direct electric conductivity vanishes; the thermoelectric conductivity is non-zero at vanishing temperature, while the O(T behavior, controlled by the Mott relation, is subleading. Provided that the entropy of the black hole, and the dual system, is non-vanishing at T=0, the observations indicate that the dyonic black hole describes a ħ→0 limit of a highly degenerate topological state, in which the black hole charge measures the density of excited non-abelian quasiparticles. The holographic description gives further evidence that non-abelian nature of quasiparticles can be determined by the low temperature behavior of the thermoelectric transport.

  1. Semiclassical S-matrix for black holes

    CERN Document Server

    Bezrukov, Fedor; Sibiryakov, Sergey

    2015-01-01

    We propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(-B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states. The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordstrom black hole. Our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.

  2. Erratic Black Hole Regulates Itself

    Science.gov (United States)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  3. Thermodynamics of novel charged dilatonic BTZ black holes

    Directory of Open Access Journals (Sweden)

    M. Dehghani

    2017-10-01

    Full Text Available In this paper, the three-dimensional Einstein–Maxwell theory in the presence of a dilatonic scalar field has been studied. It has been shown that the dilatonic potential must be considered as the linear combination of two Liouville-type potentials. Two new classes of charged dilatonic BTZ black holes, as the exact solutions to the coupled scalar, vector and tensor field equations, have been obtained and their properties have been studied. The conserved charge and mass of the new black holes have been calculated, making use of the Gauss's law and Abbott–Deser proposal, respectively. Through comparison of the thermodynamical extensive quantities (i.e. temperature and entropy obtained from both, the geometrical and the thermodynamical methods, the validity of the first law of black hole thermodynamics has been confirmed for both of the new black holes we just obtained. A black hole thermal stability or phase transition analysis has been performed, making use of the canonical ensemble method. Regarding the black hole heat capacity, it has been found that for either of the new black hole solutions there are some specific ranges in such a way that the black holes with the horizon radius in these ranges are locally stable. The points of type one and type two phase transitions have been determined. The black holes, with the horizon radius equal to the transition points are unstable. They undergo type one or type two phase transitions to be stabilized.

  4. Thermodynamics of novel charged dilatonic BTZ black holes

    Science.gov (United States)

    Dehghani, M.

    2017-10-01

    In this paper, the three-dimensional Einstein-Maxwell theory in the presence of a dilatonic scalar field has been studied. It has been shown that the dilatonic potential must be considered as the linear combination of two Liouville-type potentials. Two new classes of charged dilatonic BTZ black holes, as the exact solutions to the coupled scalar, vector and tensor field equations, have been obtained and their properties have been studied. The conserved charge and mass of the new black holes have been calculated, making use of the Gauss's law and Abbott-Deser proposal, respectively. Through comparison of the thermodynamical extensive quantities (i.e. temperature and entropy) obtained from both, the geometrical and the thermodynamical methods, the validity of the first law of black hole thermodynamics has been confirmed for both of the new black holes we just obtained. A black hole thermal stability or phase transition analysis has been performed, making use of the canonical ensemble method. Regarding the black hole heat capacity, it has been found that for either of the new black hole solutions there are some specific ranges in such a way that the black holes with the horizon radius in these ranges are locally stable. The points of type one and type two phase transitions have been determined. The black holes, with the horizon radius equal to the transition points are unstable. They undergo type one or type two phase transitions to be stabilized.

  5. Black holes in astrophysics

    International Nuclear Information System (INIS)

    Narayan, Ramesh

    2005-01-01

    This paper reviews the current status of black hole (BH) astrophysics, focusing on topics of interest to a physics audience. Astronomers have discovered dozens of compact objects with masses greater than 3M o-dot , the likely maximum mass of a neutron star. These objects are identified as BH candidates. Some of the candidates have masses ∼5M o-dot -20M o-dot and are found in x-ray binaries, while the rest have masses ∼10 6 M o-dot -10 9.5 M o-dot and are found in galactic nuclei. A variety of methods are being tried to estimate the spin parameters of the candidate BHs. There is strong circumstantial evidence that many of the objects have event horizons, so there is good reason to believe that the candidates are true BHs. Recent MHD simulations of magnetized plasma accreting on rotating BHs seem to hint that relativistic jets may be produced by a magnetic analogue of the Penrose process

  6. Six-dimensional localized black holes: Numerical solutions

    International Nuclear Information System (INIS)

    Kudoh, Hideaki

    2004-01-01

    To test the strong-gravity regime in Randall-Sundrum braneworlds, we consider black holes bound to a brane. In a previous paper, we studied numerical solutions of localized black holes whose horizon radii are smaller than the AdS curvature radius. In this paper, we improve the numerical method and discuss properties of the six-dimensional (6D) localized black holes whose horizon radii are larger than the AdS curvature radius. At a horizon temperature T≅1/2πl, the thermodynamics of the localized black hole undergo a transition with its character changing from a 6D Schwarzschild black hole type to a 6D black string type. The specific heat of the localized black holes is negative, and the entropy is greater than or nearly equal to that of the 6D black strings with the same thermodynamic mass. The large localized black holes show flattened horizon geometries, and the intrinsic curvature of the horizon four-geometry becomes negative near the brane. Our results indicate that the recovery mechanism of lower-dimensional Einstein gravity on the brane works even in the presence of the black holes

  7. Black holes and structure in an oscillating universe

    International Nuclear Information System (INIS)

    Saslaw, W.C.

    1991-01-01

    If black holes exist in the contracting phase of a closed universe, they will give rise to a pressure and entropy catastrophe. First, the black holes absorb all the radiation; then their apparent horizons merge, and coalesce with the cosmological apparent horizon. All external observers become internal observers. It is possible that the internal metric of some of the merging black holes will be contracting, and others expanding. I suggest here that the resulting violent inhomogeneities can lead to a re-expansion in a significant portion of the universe. Global re-expansion, prompted by the merging of black holes, may thus begin in a semi-classical rather than fully quantum gravitational era, at densities greater than those at which nucleosynthesis occurs. Surviving black holes and inhomogeneities could initiate the formation of structures such as galaxies in the 'new' universe. The behaviour of such an oscillating universe would differ in detail from cycle to cycle. (author)

  8. On the many saddle points description of quantum black holes

    Energy Technology Data Exchange (ETDEWEB)

    Germani, Cristiano, E-mail: cristiano.germani@physik.uni-muenchen.de

    2014-06-02

    Considering two dimensional gravity coupled to a CFT, we show that a semiclassical black hole can be described in terms of two Liouville theories matched at the horizon. The black hole exterior corresponds to a space-like while the interior to a time-like Liouville theory. This matching automatically implies that a semiclassical black hole has an infinite entropy. The path integral description of the time-like Liouville theory (the Black Hole interior) is studied and it is found that the correlation functions of the coupled CFT-gravity system are dominated by two (complex) saddle points, even in the semiclassical limit. We argue that this system can be interpreted as two interacting Bose–Einstein condensates constructed out of two degenerate quantum states. In AdS/CFT context, the same system is mapped into two interacting strings intersecting inside a three-dimensional BTZ black hole.

  9. Black holes and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Hooft, G. ' t, E-mail: g.thooft@uu.n [Institute for Theoretical Physics, Utrecht University and Spinoza Institute, P.O. Box 80.195, 3508 TD Utrecht (Netherlands)

    2010-07-15

    After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these interactions generate a Hilbert space of states on the black hole horizon, which can be investigated, displaying interesting systematics by themselves. To make such approaches more powerful, a study is made of the black hole complementarity principle, from which one may deduce the existence of a hidden form of local conformal invariance. Finally, the question is raised whether the principles underlying Quantum Mechanics are to be sharpened in this domain of physics as well. There are intriguing possibilities.

  10. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Bojowald, Martin

    2005-01-01

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  11. Large Randall-Sundrum II black holes

    Science.gov (United States)

    Abdolrahimi, Shohreh; Cattoën, Céline; Page, Don N.; Yaghoobpour-Tari, Shima

    2013-03-01

    Using a novel numerical spectral method, we have constructed an AdS5-CFT4 solution to the Einstein equation with a negative cosmological constant Λ that is asymptotically conformal to the Schwarzschild metric. This method is independent of the Ricci-DeTurck-flow method used by Figueras, Lucietti, and Wiseman. We have perturbed the solution to get large static black hole solutions to the Randall-Sundrum II (RSII) braneworld model. Our solution agrees closely with that of Figueras et al. and also allows us to deduce the new results that to first order in 1 / (- ΛM2), the Hawking temperature and entropy of an RSII static black hole have the same values as the Schwarzschild metric with the same mass, but the horizon area is increased by about 4.7 / (- Λ).

  12. Large Randall–Sundrum II black holes

    Energy Technology Data Exchange (ETDEWEB)

    Abdolrahimi, Shohreh, E-mail: abdolrah@ualberta.ca [Department of Physics, 4-181 CCIS, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Cattoën, Céline, E-mail: celine.cattoen-gilbert@canterbury.ac.nz [Department of Physics, 4-181 CCIS, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); BlueFern Supercomputing Unit, University of Canterbury, Christchurch 8140 (New Zealand); Page, Don N., E-mail: dpage@ualberta.ca [Department of Physics, 4-181 CCIS, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada); Yaghoobpour-Tari, Shima, E-mail: yaghoobp@ualberta.ca [Department of Physics, 4-181 CCIS, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2013-03-26

    Using a novel numerical spectral method, we have constructed an AdS{sub 5}–CFT{sub 4} solution to the Einstein equation with a negative cosmological constant Λ that is asymptotically conformal to the Schwarzschild metric. This method is independent of the Ricci–DeTurck-flow method used by Figueras, Lucietti, and Wiseman. We have perturbed the solution to get large static black hole solutions to the Randall–Sundrum II (RSII) braneworld model. Our solution agrees closely with that of Figueras et al. and also allows us to deduce the new results that to first order in 1/(−ΛM{sup 2}), the Hawking temperature and entropy of an RSII static black hole have the same values as the Schwarzschild metric with the same mass, but the horizon area is increased by about 4.7/(−Λ)

  13. Geometric description of BTZ black hole thermodynamics

    International Nuclear Information System (INIS)

    Quevedo, Hernando; Sanchez, Alberto

    2009-01-01

    We study the properties of the space of thermodynamic equilibrium states of the Banados-Teitelboim-Zanelli (BTZ) black hole in (2+1) gravity. We use the formalism of geometrothermodynamics to introduce in the space of equilibrium states a two-dimensional thermodynamic metric whose curvature is nonvanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that thermodynamic curvature is a measure of thermodynamic interaction.

  14. Rholography, black holes and Scherk-Schwarz

    Energy Technology Data Exchange (ETDEWEB)

    Gaddam, Nava [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University,3508 TD Utrecht (Netherlands); Gnecchi, Alessandra [Institute for Theoretical Physics, KU Leuven,3001 Leuven (Belgium); Vandoren, Stefan [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University,3508 TD Utrecht (Netherlands); Varela, Oscar [Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA 02138 (United States)

    2015-06-10

    We present a construction of a class of near-extremal asymptotically flat black hole solutions in four (or five) dimensional gauged supergravity with R-symmetry gaugings obtained from Scherk-Schwarz reductions on a circle. The entropy of these black holes is counted holographically by the well known MSW (or D1/D5) system, with certain twisted boundary conditions labeled by a twist parameter ρ. We find that the corresponding (0,4) (or (4,4)) superconformal algebras are exactly those studied by Schwimmer and Seiberg, using a twist on the outer automorphism group. The interplay between R-symmetries, ρ-algebras and holography leads us to name our construction “Rholography'.

  15. Black Hole Complementary Principle and Noncommutative Membrane

    International Nuclear Information System (INIS)

    Wei Ren

    2006-01-01

    In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.

  16. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...

  17. Black holes from extended inflation

    International Nuclear Information System (INIS)

    Hsu, S.D.H.; Lawrence Berkeley Lab., CA

    1990-01-01

    It is argued that models of extended inflation, in which modified Einstein gravity allows a graceful exit from the false vacuum, lead to copious production of black holes. The critical temperature of the inflationary phase transition must be >10 8 GeV in order to avoid severe cosmological problems in a universe dominated by black holes. We speculate on the possibility that the interiors of false vacuum regions evolve into baby universes. (orig.)

  18. Black holes from fluid mechanics

    Science.gov (United States)

    Lahiri, Subhaneil

    2009-12-01

    We use the AdS/CFT correspondence in a regime where the field theory is well described by fluid mechanics to study large black holes in asymptotically locally anti de Sitter spaces. In particular, we use the fluid description to study the thermodynamics of the black holes and the existence of exotic horizon topologies in higher dimensions. First we test this method by comparing large rotating black holes in global AdSD spaces to stationary solutions of the relativistic Navier-Stokes equations on SD-2. Reading off the equation of state of this fluid from the thermodynamics of non-rotating black holes, we proceed to construct the nonlinear spinning solutions of fluid mechanics that are dual to rotating black holes. In all known examples, the thermodynamics and the local stress tensor of our solutions are in precise agreement with the thermodynamics and boundary stress tensor of the spinning black holes. Our results yield predictions for the thermodynamics of all large black holes in all theories of gravity on AdS spaces, for example, IIB string theory on AdS5 x S 5 and M theory on AdS4 x S7 and AdS7 x S 4. We then construct solutions to the relativistic Navier-Stokes equations that describe the long wavelength collective dynamics of the deconfined plasma phase of N = 4 Yang Mills theory compactified down to d = 3 on a Scherk-Schwarz circle. Our solutions are stationary, axially symmetric spinning balls and rings of plasma. These solutions, which are dual to (yet to be constructed) rotating black holes and black rings in Scherk-Schwarz compactified AdS 5, and have properties that are qualitatively similar to those of black holes and black rings in flat five dimensional gravity. We also study the stability of these solutions to small fluctuations, which provides an indirect method for studying Gregory-Laflamme instabilities. We also extend the construction to higher dimensions, allowing one to study the existence of new black hole topologies and their phase diagram.

  19. Black holes: the membrane paradigm

    International Nuclear Information System (INIS)

    Thorne, K.S.; Price, R.H.; Macdonald, D.A.

    1986-01-01

    The physics of black holes is explored in terms of a membrane paradigm which treats the event horizon as a two-dimensional membrane embedded in three-dimensional space. A 3+1 formalism is used to split Schwarzschild space-time and the laws of physics outside a nonrotating hole, which permits treatment of the atmosphere in terms of the physical properties of thin slices. The model is applied to perturbed slowly or rapidly rotating and nonrotating holes, and to quantify the electric and magnetic fields and eddy currents passing through a membrane surface which represents a stretched horizon. Features of tidal gravitational fields in the vicinity of the horizon, quasars and active galalctic nuclei, the alignment of jets perpendicular to accretion disks, and the effects of black holes at the center of ellipsoidal star clusters are investigated. Attention is also given to a black hole in a binary system and the interactions of black holes with matter that is either near or very far from the event horizon. Finally, a statistical mechanics treatment is used to derive a second law of thermodynamics for a perfectly thermal atmosphere of a black hole

  20. Black brane entropy and hydrodynamics

    NARCIS (Netherlands)

    Booth, I.; Heller, M.P.; Spaliński, M.

    2010-01-01

    A generalization of entropy to near-equilibrium phenomena is provided by the notion of a hydrodynamic entropy current. Recent advances in holography have lead to the formulation of fluid-gravity duality, a remarkable connection between the hydrodynamics of certain strongly coupled media and dynamics

  1. Black holes in the universe

    International Nuclear Information System (INIS)

    Camenzind, M.

    2005-01-01

    While physicists have been grappling with the theory of black holes (BH), as shown by the many contributions to the Einstein year, astronomers have been successfully searching for real black holes in the Universe. Black hole astrophysics began in the 1960s with the discovery of quasars and other active galactic nuclei (AGN) in distant galaxies. Already in the 1960s it became clear that the most natural explanation for the quasar activity is the release of gravitational energy through accretion of gas onto supermassive black holes. The remnants of this activity have now been found in the centers of about 50 nearby galaxies. BH astrophysics received a new twist in the 1970s with the discovery of the X-ray binary (XRB) Cygnus X-1. The X-ray emitting compact object was too massive to be explained by a neutron star. Today, about 20 excellent BH candidates are known in XRBs. On the extragalactic scale, more than 100.000 quasars have been found in large galaxy surveys. At the redshift of the most distant ones, the Universe was younger than one billion year. The most enigmatic black hole candidates identified in the last years are the compact objects behind the Gamma-Ray Bursters. The formation of all these types of black holes is accompanied by extensive emission of gravitational waves. The detection of these strong gravity events is one of the biggest challenges for physicists in the near future. (author)

  2. Black Hole Spin Measurement Uncertainty

    Science.gov (United States)

    Salvesen, Greg; Begelman, Mitchell C.

    2018-01-01

    Angular momentum, or spin, is one of only two fundamental properties of astrophysical black holes, and measuring its value has numerous applications. For instance, obtaining reliable spin measurements could constrain the growth history of supermassive black holes and reveal whether relativistic jets are powered by tapping into the black hole spin reservoir. The two well-established techniques for measuring black hole spin can both be applied to X-ray binaries, but are in disagreement for cases of non-maximal spin. This discrepancy must be resolved if either technique is to be deemed robust. We show that the technique based on disc continuum fitting is sensitive to uncertainties regarding the disc atmosphere, which are observationally unconstrained. By incorporating reasonable uncertainties into black hole spin probability density functions, we demonstrate that the spin measured by disc continuum fitting can become highly uncertain. Future work toward understanding how the observed disc continuum is altered by atmospheric physics, particularly magnetic fields, will further strengthen black hole spin measurement techniques.

  3. Black hole thermodynamics from calculations in strongly coupled gauge theory.

    Science.gov (United States)

    Kabat, D; Lifschytz, G; Lowe, D A

    2001-02-19

    We develop an approximation scheme for the quantum mechanics of N D0-branes at finite temperature in the 't Hooft large- N limit. The entropy of the quantum mechanics calculated using this approximation agrees well with the Bekenstein-Hawking entropy of a ten-dimensional nonextremal black hole with 0-brane charge. This result is in accordance with the duality conjectured by Itzhaki, Maldacena, Sonnenschein, and Yankielowicz [Phys. Rev. D 58, 046004 (1998)]. Our approximation scheme provides a model for the density matrix which describes a black hole in the strongly coupled quantum mechanics.

  4. Detecting Black Hole Binaries by Gaia

    OpenAIRE

    Yamaguchi, Masaki S.; Kawanaka, Norita; Bulik, Tomasz; Piran, Tsvi

    2017-01-01

    We study the prospect of the Gaia satellite to identify black hole binary systems by detecting the orbital motion of the companion stars. Taking into account the initial mass function, mass transfer, common envelope phase, interstellar absorption and identifiability of black holes, we estimate the number of black hole binaries detected by Gaia and their distributions with respect to the black hole mass for several models with different parameters. We find that $\\sim 300-6000$ black hole binar...

  5. A preferred mass range for primordial black hole formation and black holes as dark matter revisited

    Science.gov (United States)

    Georg, Julian; Watson, Scott

    2017-09-01

    Bird et al. [1] and Sasaki et al. [2] have recently proposed the intriguing possibility that the black holes detected by LIGO could be all or part of the cosmological dark matter. This offers an alternative to WIMPs and axions, where dark matter could be comprised solely of Standard Model particles. The mass range lies within an observationally viable window and the predicted merger rate can be tested by future LIGO observations. In this paper, we argue that non-thermal histories favor production of black holes near this mass range — with heavier ones unlikely to form in the early universe and lighter black holes being diluted through late-time entropy production. We discuss how this prediction depends on the primordial power spectrum, the likelihood of black hole formation, and the underlying model parameters. We find the prediction for the preferred mass range to be rather robust assuming a blue spectral index less than two. We consider the resulting relic density in black holes, and using recent observational constraints, establish whether they could account for all of the dark matter today.

  6. Violent flickering in Black Holes

    Science.gov (United States)

    2008-10-01

    Unique observations of the flickering light from the surroundings of two black holes provide new insights into the colossal energy that flows at their hearts. By mapping out how well the variations in visible light match those in X-rays on very short timescales, astronomers have shown that magnetic fields must play a crucial role in the way black holes swallow matter. Flickering black hole ESO PR Photo 36/08 Flickering black hole Like the flame from a candle, light coming from the surroundings of a black hole is not constant -- it flares, sputters and sparkles. "The rapid flickering of light from a black hole is most commonly observed at X-ray wavelengths," says Poshak Gandhi, who led the international team that reports these results. "This new study is one of only a handful to date that also explore the fast variations in visible light, and, most importantly how these fluctuations relate to those in X-rays." The observations tracked the shimmering of the black holes simultaneously using two different instruments, one on the ground and one in space. The X-ray data were taken using NASA's Rossi X-ray Timing Explorer satellite. The visible light was collected with the high speed camera ULTRACAM, a visiting instrument at ESO's Very Large Telescope (VLT), recording up to 20 images a second. ULTRACAM was developed by team members Vik Dhillon and Tom Marsh. "These are among the fastest observations of a black hole ever obtained with a large optical telescope," says Dhillon. To their surprise, astronomers discovered that the brightness fluctuations in the visible light were even more rapid than those seen in X-rays. In addition, the visible-light and X-ray variations were found not to be simultaneous, but to follow a repeated and remarkable pattern: just before an X-ray flare the visible light dims, and then surges to a bright flash for a tiny fraction of a second before rapidly decreasing again. None of this radiation emerges directly from the black hole, but from the

  7. Black holes: a slanted overview

    International Nuclear Information System (INIS)

    Vishveshwara, C.V.

    1988-01-01

    The black hole saga spanning some seventy years may be broadly divided into four phases, namely, (a) the dark ages when little was known about black holes even though they had come into existence quite early through the Schwarzschild solution, (b) the age of enlightenment bringing in deep and prolific discoveries, (c) the age of fantasy that cast black holes in all sorts of extraordinary roles, and (d) the golden age of relativistic astrophysics - to some extent similar to Dirac's characterisation of the development of quantum theory - in which black holes have been extensively used to elucidate a number of astrophysical phenomena. It is impossible to give here even the briefest outline of the major developments in this vast area. We shall only attempt to present a few aspects of black hole physics which have been actively pursued in the recent past. Some details are given in the case of those topics that have not found their way into text books or review articles. (author)

  8. Cosmology with primordial black holes

    International Nuclear Information System (INIS)

    Lindley, D.

    1981-09-01

    Cosmologies containing a substantial amount of matter in the form of evaporating primordial black holes are investigated. A review of constraints on the numbers of such black holes, including an analysis of a new limit found by looking at the destruction of deuterium by high energy photons, shows that there must be a negligible population of small black holes from the era of cosmological nucleosynthesis onwards, but that there are no strong constraints before this time. The major part of the work is based on the construction of detailed, self-consistent cosmological models in which black holes are continually forming and evaporating The interest in these models centres on the question of baryon generation, which occurs via the asymmetric decay of a new type of particle which appears as a consequence of the recently developed Grand Unified Theories of elementary particles. Unfortunately, there is so much uncertainty in the models that firm conclusions are difficult to reach; however, it seems feasible in principle that primordial black holes could be responsible for a significant part of the present matter density of the Universe. (author)

  9. The generalized second law and the black hole evaporation in an empty space as a nonequilibrium process

    International Nuclear Information System (INIS)

    Saida, Hiromi

    2006-01-01

    When a black hole is in an empty space in which there is no matter field except that of the Hawking radiation (Hawking field), then the black hole evaporates and the entropy of the black hole decreases. The generalized second law guarantees the increase of the total entropy of the whole system which consists of the black hole and the Hawking field. That is, the increase of the entropy of the Hawking field is faster than the decrease of the black hole entropy. In a naive sense, one may expect that the entropy increase of the Hawking field is due to the self-interaction among the composite particles of the Hawking field, and that the self-relaxation of the Hawking field results in the entropy increase. Then, when one considers a non-self-interacting matter field as the Hawking field, it is obvious that self-relaxation does not take place, and one may think that the total entropy does not increase. However, using nonequilibrium thermodynamics which has been developed recently, we find for the non-self-interacting Hawking field that the rate of entropy increase of the Hawking field (the entropy emission rate by the black hole) grows faster than the rate of entropy decrease of the black hole during the black hole evaporation in empty space. The origin of the entropy increase of the Hawking field is the increase of the black hole temperature. Hence an understanding of the generalized second law in the context of nonequilibrium thermodynamics is suggested; even if the self-relaxation of the Hawking field does not take place, the temperature increase of the black hole during the evaporation process causes the entropy increase of the Hawking field to result in the increase of the total entropy

  10. Higher spin black holes with soft hair

    Energy Technology Data Exchange (ETDEWEB)

    Grumiller, Daniel [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Pérez, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Prohazka, Stefan [Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, Vienna, A-1040 (Austria); Tempo, David; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)

    2016-10-21

    We construct a new set of boundary conditions for higher spin gravity, inspired by a recent “soft Heisenberg hair”-proposal for General Relativity on three-dimensional Anti-de Sitter space. The asymptotic symmetry algebra consists of a set of affine û(1) current algebras. Its associated canonical charges generate higher spin soft hair. We focus first on the spin-3 case and then extend some of our main results to spin-N, many of which resemble the spin-2 results: the generators of the asymptotic W{sub 3} algebra naturally emerge from composite operators of the û(1) charges through a twisted Sugawara construction; our boundary conditions ensure regularity of the Euclidean solutions space independently of the values of the charges; solutions, which we call “higher spin black flowers”, are stationary but not necessarily spherically symmetric. Finally, we derive the entropy of higher spin black flowers, and find that for the branch that is continuously connected to the BTZ black hole, it depends only on the affine purely gravitational zero modes. Using our map to W-algebra currents we recover well-known expressions for higher spin entropy. We also address higher spin black flowers in the metric formalism and achieve full consistency with previous results.

  11. The phase structure of higher-dimensional black rings and black holes

    International Nuclear Information System (INIS)

    Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A.; RodrIguez, Maria J.

    2007-01-01

    We construct an approximate solution for an asymptotically flat, neutral, thin rotating black ring in any dimension D ≥ 5 by matching the near-horizon solution for a bent boosted black string, to a linearized gravity solution away from the horizon. The rotating black ring solution has a regular horizon of topology S 1 x S D-3 and incorporates the balancing condition of the ring as a zero-tension condition. For D = 5 our method reproduces the thin ring limit of the exact black ring solution. For D ≥ 6 we show that the black ring has a higher entropy than the Myers-Perry black hole in the ultra-spinning regime. By exploiting the correspondence between ultra-spinning black holes and black membranes on a two-torus, we take steps towards qualitatively completing the phase diagram of rotating blackfolds with a single angular momentum. We are led to propose a connection between MP black holes and black rings, and between MP black holes and black Saturns, through merger transitions involving two kinds of 'pinched' black holes. More generally, the analogy suggests an infinite number of pinched black holes of spherical topology leading to a complicated pattern of connections and mergers between phases

  12. Black Hole Blows Big Bubble

    Science.gov (United States)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help

  13. Black holes and galaxy formation

    CERN Document Server

    Propst, Raphael J

    2010-01-01

    Galaxies are the basic unit of cosmology. The study of galaxy formation is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning. The physics of galaxy formation is complicated because it deals with the dynamics of stars, thermodynamics of gas and energy production of stars. A black hole is a massive object whose gravitational field is so intense that it prevents any form of matter or radiation to escape. It is hypothesized that the most massive galaxies in the universe- "elliptical galaxies"- grow simultaneously with the supermassive black holes at their centers, giving us much stronger evidence that black holes control galaxy formation. This book reviews new evidence in the field.

  14. Massive Black Holes and Galaxies

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Evidence has been accumulating for several decades that many galaxies harbor central mass concentrations that may be in the form of black holes with masses between a few million to a few billion time the mass of the Sun. I will discuss measurements over the last two decades, employing adaptive optics imaging and spectroscopy on large ground-based telescopes that prove the existence of such a massive black hole in the Center of our Milky Way, beyond any reasonable doubt. These data also provide key insights into its properties and environment. Most recently, a tidally disrupting cloud of gas has been discovered on an almost radial orbit that reached its peri-distance of ~2000 Schwarzschild radii in 2014, promising to be a valuable tool for exploring the innermost accretion zone. Future interferometric studies of the Galactic Center Black hole promise to be able to test gravity in its strong field limit.

  15. The black hole quantum atmosphere

    Science.gov (United States)

    Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele

    2017-11-01

    Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan-Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4 MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  16. The black hole quantum atmosphere

    Directory of Open Access Journals (Sweden)

    Ramit Dey

    2017-11-01

    Full Text Available Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan–Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  17. Gravitational properties of monopole spacetimes near the black hole threshold

    International Nuclear Information System (INIS)

    Lue, Arthur; Weinberg, Erick J.

    2000-01-01

    Although nonsingular spacetimes and those containing black holes are qualitatively quite different, there are continuous families of configurations that connect the two. In this paper we use self-gravitating monopole solutions as tools for investigating the transition between these two types of spacetimes. We show how causally distinct regions emerge as the black hole limit is achieved, even though the measurements made by an external observer vary continuously. We find that near-critical solutions have a naturally defined entropy, despite the absence of a true horizon, and that this has a clear connection with the Hawking-Bekenstein entropy. We find that certain classes of near-critical solutions display naked black hole behavior, although they are not truly black holes at all. Finally, we present a numerical simulation illustrating how an incident pulse of matter can induce the dynamical collapse of a monopole into an extremal black hole. We discuss the implications of this process for the third law of black hole thermodynamics. (c) 2000 The American Physical Society

  18. Absorption of scalars by extremal black holes in string theory

    Science.gov (United States)

    Moura, Filipe

    2017-09-01

    We show that the low frequency absorption cross section of minimally coupled test massless scalar fields by extremal spherically symmetric black holes in d dimensions is equal to the horizon area, even in the presence of string-theoretical α ' corrections. Classically one has the relation σ = 4 GS between that absorption cross section and the black hole entropy. By comparing in each case the values of the horizon area and Wald's entropy, we discuss the validity of such relation in the presence of higher derivative corrections for extremal black holes in many different contexts: in the presence of electric and magnetic charges; for nonsupersymmetric and supersymmetric black holes; in d=4 and d=5 dimensions. The examples we consider seem to indicate that this relation is not verified in the presence of α ' corrections in general, although being valid in some specific cases (electrically charged maximally supersymmetric black holes in d=5). We argue that the relation σ = 4 GS should in general be valid for the absorption cross section of scalar fields which, although being independent from the black hole solution, have their origin from string theory, and therefore are not minimally coupled.

  19. Black holes a very short introduction

    CERN Document Server

    Blundell, Katherine

    2015-01-01

    Black holes are a constant source of fascination to many due to their mysterious nature. Black Holes: A Very Short Introduction addresses a variety of questions, including what a black hole actually is, how they are characterized and discovered, and what would happen if you came too close to one. It explains how black holes form and grow—by stealing material that belongs to stars—as well as how many there may be in the Universe. It also explores the large black holes found in the centres of galaxies, and how black holes power quasars and lie behind other spectacular phenomena in the cosmos.

  20. Geometric inequalities for black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dain, Sergio [Universidad Nacional de Cordoba (Argentina)

    2013-07-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  1. Geometric inequalities for black holes

    International Nuclear Information System (INIS)

    Dain, Sergio

    2013-01-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  2. Moving Schwarzschild black hole and modified dispersion relations

    Energy Technology Data Exchange (ETDEWEB)

    Barrera Hinojosa, Cristian, E-mail: cbarrera.hinojosa@gmail.com [Departamento de Física, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile); López-Sarrión, Justo, E-mail: jujlopezsa@unal.edu.co [Departamento de Física, Universidad de Santiago de Chile, Casilla 307, Santiago (Chile); Departamento de Física, Universidad Nacional de Colombia, 111321, Bogotá (Colombia)

    2015-10-07

    We study the thermodynamics of a moving Schwarzschild black hole, identifying the temperature and entropy in a relativistic scenario. Furthermore, we set arguments in a framework relating invariant geometrical quantities under global spacetime transformations and the dispersion relation of the system. We then extended these arguments in order to consider more general dispersion relations, and identify criteria to rule them out.

  3. Analytic continuation of the rotating black hole state counting

    Energy Technology Data Exchange (ETDEWEB)

    Achour, Jibril Ben [Departement of Physics, Center for Field Theory and Particles Physics, Fudan University,20433 Shanghai (China); Noui, Karim [Fédération Denis Poisson, Laboratoire de Mathématiques et Physique Théorique (UMR 7350),Université François Rabelais,Parc de Grandmont, 37200 Tours (France); Laboratoire APC - Astroparticule et Cosmologie, Université Paris Diderot Paris 7,75013 Paris (France); Perez, Alejandro [Centre de Physique Théorique (UMR 7332), Aix Marseille Université and Université de Toulon,13288 Marseille (France)

    2016-08-24

    In loop quantum gravity, a spherical black hole can be described in terms of a Chern-Simons theory on a punctured 2-sphere. The sphere represents the horizon. The punctures are the edges of spin-networks in the bulk which cross the horizon and carry quanta of area. One can generalize this construction and model a rotating black hole by adding an extra puncture colored with the angular momentum J in the 2-sphere. We compute the entropy of rotating black holes in this model and study its semi-classical limit. After performing an analytic continuation which sends the Barbero-Immirzi parameter to γ=±i, we show that the leading order term in the semi-classical expansion of the entropy reproduces the Bekenstein-Hawking law independently of the value of J.

  4. High-redshift supermassive black holes: accretion through cold flows

    Science.gov (United States)

    Feng, Yu; Di Matteo, Tiziana; Croft, Rupert; Khandai, Nishikanta

    2014-05-01

    We use zoom-in techniques to re-simulate three high-redshift (z ≥ 5.5) haloes which host 109 M⊙ black holes from the ˜Gpc volume, MassiveBlack cosmological hydrodynamic simulation. We examine a number of factors potentially affecting supermassive black hole growth at high redshift in cosmological simulations. We find insignificant differences in the black hole accretion history by (i) varying the region over which feedback energy is deposited directly, (ii) changing mass resolution by factors of up to 64, (iii) changing the black hole seed mass by a factor of 100. Switching from the density-entropy formulation to the pressure-entropy formulation of smoothed particle hydrodynamics slightly increases the accretion rate. In general numerical details/model parameters appear to have small effects on the main fuelling mechanism for black holes at these high redshifts. The insensitivity to simulation technique seems to be a hallmark of the cold flow feeding picture of these high-z supermassive black holes. We show that the gas that participates in critical accretion phases in these massive objects at z > 6-7 is in all cases colder, denser and forms more coherent streams than the average gas in the halo. This is also mostly the case when the black hole accretion is feedback regulated (z < 6), however, the distinction is less prominent. For our resimulated haloes, cold flows appear to be a viable mechanism for forming the most massive black holes in the early universe, occurring naturally in Λ cold dark matter models of structure formation, without requiring fine-tuning of numerical parameters.

  5. Near horizon geometry of rotating black holes in five dimensions

    International Nuclear Information System (INIS)

    Cvetic, M.; Larsen, F.

    1998-01-01

    We interpret the general rotating black holes in five dimensions as rotating black strings in six dimensions. In the near-horizon limit the geometry is locally AdS 3 x S 3 , as in the non-rotating case. However, the global structure couples the AdS 3 and the S 3 , giving angular velocity to the S 3 . The asymptotic geometry is exploited to count the microstates and recover the precise value of the Bekenstein-Hawking entropy, with rotation taken properly into account. We discuss the perturbation spectrum of the rotating black hole, and its relation to the underlying conformal field theory. (orig.)

  6. Interior structure of rotating black holes. III. Charged black holes

    International Nuclear Information System (INIS)

    Hamilton, Andrew J. S.

    2011-01-01

    This paper extends to the case of charged rotating black holes the conformally stationary, axisymmetric, conformally separable solutions presented for uncharged rotating black holes in a companion paper. In the present paper, the collisionless fluid accreted by the black hole may be charged. The charge of the black hole is determined self-consistently by the charge accretion rate. As in the uncharged case, hyper-relativistic counterstreaming between ingoing and outgoing streams drives inflation at (just above) the inner horizon, followed by collapse. If both ingoing and outgoing streams are charged, then conformal separability holds during early inflation, but fails as inflation develops. If conformal separability is imposed throughout inflation and collapse, then only one of the ingoing and outgoing streams can be charged: the other must be neutral. Conformal separability prescribes a hierarchy of boundary conditions on the ingoing and outgoing streams incident on the inner horizon. The dominant radial boundary conditions require that the incident ingoing and outgoing number densities be uniform with latitude, but the charge per particle must vary with latitude such that the incident charge densities vary in proportion to the radial electric field. The subdominant angular boundary conditions require specific forms of the incident number- and charge-weighted angular motions. If the streams fall freely from outside the horizon, then the prescribed angular conditions can be achieved by the charged stream, but not by the neutral stream. Thus, as in the case of an uncharged black hole, the neutral stream must be considered to be delivered ad hoc to just above the inner horizon.

  7. Ultraspinning limits and super-entropic black holes

    Science.gov (United States)

    Hennigar, Robie A.; Kubizňák, David; Mann, Robert B.; Musoke, Nathan

    2015-06-01

    By employing the new ultraspinning limit we construct novel classes of black holes with non-compact event horizons and finite horizon area and study their thermo-dynamics. Our ultraspinning limit can be understood as a simple generating technique that consists of three steps: i) transforming the known rotating AdS black hole solution to a special coordinate system that rotates (in a given 2-plane) at infinity ii) boosting this rotation to the speed of light iii) compactifying the corresponding azimuthal direction. In so doing we qualitatively change the structure of the spacetime since it is no longer pos-sible to return to a frame that does not rotate at infinity. The obtained black holes have non-compact horizons with topology of a sphere with two punctures. The entropy of some of these exceeds the maximal bound implied by the reverse isoperimetric inequality, such black holes are super-entropic.

  8. Black holes as critical point of quantum phase transition.

    Science.gov (United States)

    Dvali, Gia; Gomez, Cesar

    We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.

  9. Conformally invariant thermodynamics of a Maxwell-Dilaton black hole

    Science.gov (United States)

    Lopez-Monsalvo, C. S.; Nettel, F.; Quevedo, H.

    2013-12-01

    The thermodynamics of Maxwell-Dilaton black holes has been extensively studied. It has served as a fertile ground to test ideas about temperature through various definitions of surface gravity. In this paper, we make an independent analysis of this black hole solution in both, Einstein and Jordan, frames. We explore a set of definitions for the surface gravity and observe the different predictions they make for the near extremal configuration of this black hole. Finally, motivated by the singularity structure in the interior of the event horizon, we use a holographic argument to remove the micro-states from the disconnected region of this solution. In this manner, we construct a frame independent entropy from which we obtain a temperature which agrees with the standard results in the non-extremal regime, and has a desirable behaviour around the extremal configurations according to the third law of black hole mechanics.

  10. Black Holes as Critical Point of Quantum Phase Transition

    CERN Document Server

    Dvali, Gia

    2014-01-01

    We reformulate the quantum black hole portrait in the language of modern condensed matter physics. We show that black holes can be understood as a graviton Bose-Einstein condensate at the critical point of a quantum phase transition, identical to what has been observed in systems of cold atoms. The Bogoliubov modes that become degenerate and nearly gapless at this point are the holographic quantum degrees of freedom responsible for the black hole entropy and the information storage. They have no (semi)classical counterparts and become inaccessible in this limit. These findings indicate a deep connection between the seemingly remote systems and suggest a new quantum foundation of holography. They also open an intriguing possibility of simulating black hole information processing in table-top labs.

  11. Model problems for gravitationally perturbed black holes

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.; Macdonald, D.A.; Crowley, R.J.; Redmount, I.H.

    1986-01-01

    The membrane formalism is applied to various types of gravitational perturbations of a black hole. Attention is given to the disturbance of the horizon of a black hole by compact masses lowered toward a nonrotating hole and the deformations experienced by a rotating hole. Nonaxisymmetric gravitational tidal fields in rigid motion about a rotating hole are considered, along with the behavior of massive particle moving along the equator of a rotating hole, and the spindown of a rotating hole in an external tidal field. The extraction of rotational energy from a black hole by orbiting bodies is examined, as are superradiant scattering of gravitational waves and the quasi-normal modes of a black hole. The perturbations imparted to a black hole by a compact body plunging into the membrane (a stretched horizon) at a velocity close to the local light speed and by a radially accelerated particle above the horizon of a nonrotating hole are also explored

  12. Tensor network models of unitary black hole evaporation

    Science.gov (United States)

    Leutheusser, Samuel; Van Raamsdonk, Mark

    2017-08-01

    We introduce a general class of toy models to study the quantum information-theoretic properties of black hole radiation. The models are governed by a set of isometries that specify how microstates of the black hole at a given energy evolve to entangled states of a tensor product black-hole/radiation Hilbert space. The final state of the black hole radiation is conveniently summarized by a tensor network built from these isometries. We introduce a set of quantities generalizing the Renyi entropies that provide a complete set of bipartite/multipartite entanglement measures, and give a general formula for the average of these over initial black hole states in terms of the isometries defining the model. For models where the dimension of the final tensor product radiation Hilbert space is the same as that of the space of initial black hole microstates, the entanglement structure is universal, independent of the choice of isometries. In the more general case, we find that models which best capture the "information-free" property of black hole horizons are those whose isometries are tensors corresponding to states of tripartite systems with maximally mixed subsystems.

  13. Black Holes in Our Universe

    Indian Academy of Sciences (India)

    Current technologies have enabled glimpses at the many facetsof black holes, which we know to be plentiful in our cosmos.A panoramic view of the evidence for them is presented hereacross the large range of masses that they span. Author Affiliations. Prajval Shastri. Resonance – Journal of Science Education.

  14. 'Black holes': escaping the void.

    Science.gov (United States)

    Waldron, Sharn

    2013-02-01

    The 'black hole' is a metaphor for a reality in the psyche of many individuals who have experienced complex trauma in infancy and early childhood. The 'black hole' has been created by an absence of the object, the (m)other, so there is no internalized object, no (m)other in the psyche. Rather, there is a 'black hole' where the object should be, but the infant is drawn to it, trapped by it because of an intrinsic, instinctive need for a 'real object', an internalized (m)other. Without this, the infant cannot develop. It is only the presence of a real object that can generate the essential gravity necessary to draw the core of the self that is still in an undeveloped state from deep within the abyss. It is the moving towards a real object, a (m)other, that relativizes the absolute power of the black hole and begins a reformation of its essence within the psyche. © 2013, The Society of Analytical Psychology.

  15. Stellar dynamics and black holes

    Indian Academy of Sciences (India)

    Stellar dynamics and black holes. DAVID MERRITT. Department of Physics, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester,. NY 14623, USA. E-mail: merritt@astro.rit.edu. Abstract. Chandrasekhar's most important contribution to stellar dynamics was the concept of dynamical friction. I briefly review ...

  16. From Pinholes to Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  17. Black Holes and Exotic Spinors

    Directory of Open Access Journals (Sweden)

    J. M. Hoff da Silva

    2016-05-01

    Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.

  18. Black Hole Macro-Quantumness

    CERN Document Server

    Dvali, Gia

    2014-01-01

    It is a common wisdom that properties of macroscopic bodies are well described by (semi)classical physics. As we have suggested this wisdom is not applicable to black holes. Despite being macroscopic, black holes are quantum objects. They represent Bose-Einstein condensates of N-soft gravitons at the quantum critical point, where N Bogoliubov modes become gapless. As a result, physics governing arbitrarily-large black holes (e.g., of galactic size) is a quantum physics of the collective Bogoiliubov modes. This fact introduces a new intrinsically-quantum corrections in form of 1/N, as opposed to exp(-N). These corrections are unaccounted by the usual semiclassical expansion in h and cannot be recast in form of a quantum back-reaction to classical metric. Instead the metric itself becomes an approximate entity. These 1/N corrections abolish the presumed properties of black holes, such as non existence of hair, and are the key to nullifying the so-called information paradox.

  19. Black Holes: A Selected Bibliography.

    Science.gov (United States)

    Fraknoi, Andrew

    1991-01-01

    Offers a selected bibliography pertaining to black holes with the following categories: introductory books; introductory articles; somewhat more advanced articles; readings about Einstein's general theory of relativity; books on the death of stars; articles on the death of stars; specific articles about Supernova 1987A; relevant science fiction…

  20. A Black Hole Spectral Signature

    Science.gov (United States)

    Titarchuk, Lev; Laurent, Philippe

    2000-03-01

    An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole'', an unique observational signature. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we present analytical calculations and Monte-Carlo simulations of the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) into the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Greens) function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index over a wide range of the plasma temperature 0 - 10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200-400 keV which are related to the average energy of electrons mec2 impinging upon the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore we demonstrate that the change of spectral shapes from the soft X-ray state to the hard X-ray state is clearly to be

  1. Bosonic instability of charged black holes

    International Nuclear Information System (INIS)

    Gaina, A.B.; Ternov, I.M.

    1986-01-01

    The processes of spontaneous and induced production and accumulation of charged bosons on quasibound superradiant levels in the field of Kerr-Newman black hole is analysed. It is shown that bosonic instability may be caused exclusively by the rotation of the black hole. Particulary, the Reissner-Nordstrom configuration is stable. In the case of rotating and charged black hole the bosonic instability may cause an increase of charge of the black hole

  2. Black hole holography and mean field evolution

    Science.gov (United States)

    Lowe, David A.; Thorlacius, Larus

    2018-01-01

    Holographic theories representing black holes are expected to exhibit quantum chaos. We argue if the laws of quantum mechanics are expected to hold for observers inside such black holes, then such holographic theories must have a mean field approximation valid for typical black hole states, and for timescales approaching the scrambling time. Using simple spin models as examples, we examine the predictions of such an approach for observers inside black holes, and more speculatively inside cosmological horizons.

  3. Black holes and traversible wormholes: a synthesis

    OpenAIRE

    Hayward, Sean A.

    2002-01-01

    A unified framework for black holes and traversible wormholes is described, where both are locally defined by outer trapping horizons, two-way traversible for wormholes and one-way traversible for black or white holes. In a two-dimensional dilaton gravity model, examples are given of: construction of wormholes from black holes; operation of wormholes for transport, including back-reaction; maintenance of an operating wormhole; and collapse of wormholes to black holes. In spherically symmetric...

  4. Will black holes eventually engulf the Universe?

    International Nuclear Information System (INIS)

    Martin-Moruno, Prado; Jimenez Madrid, Jose A.; Gonzalez-Diaz, Pedro F.

    2006-01-01

    The Babichev-Dokuchaev-Eroshenko model for the accretion of dark energy onto black holes has been extended to deal with black holes with non-static metrics. The possibility that for an asymptotic observer a black hole with large mass will rapidly increase and eventually engulf the Universe at a finite time in the future has been studied by using reasonable values for astronomical parameters. It is concluded that such a phenomenon is forbidden for all black holes in quintessential cosmological models

  5. Radiation from the LTB black hole

    OpenAIRE

    Firouzjaee, J. T.; Mansouri, Reza

    2011-01-01

    Does a dynamical black hole embedded in a cosmological FRW background emit Hawking radiation where a globally defined event horizon does not exist? What are the differences to the Schwarzschild black hole? What about the first law of black hole mechanics? We face these questions using the LTB cosmological black hole model recently published. Using the Hamilton-Jacobi and radial null geodesic-methods suitable for dynamical cases, we show that it is the apparent horizon which contributes to the...

  6. Black holes as parts of entangled systems

    Science.gov (United States)

    Basini, G.; Capozziello, S.; Longo, G.

    A possible link between EPR-type quantum phenomena and astrophysical objects like black holes, under a new general definition of entanglement, is established. A new approach, involving backward time evolution and topology changes, is presented bringing to a definition of the system black hole-worm hole-white hole as an entangled system.

  7. On black holes and gravitational waves

    CERN Document Server

    Loinger, Angelo

    2002-01-01

    Black holes and gravitational waves are theoretical entities of today astrophysics. Various observed phenomena have been associated with the concept of black hole ; until now, nobody has detected gravitational waves. The essays contained in this book aim at showing that the concept of black holes arises from a misinterpretation of general relativity and that gravitational waves cannot exist.

  8. Compensating Scientism through "The Black Hole."

    Science.gov (United States)

    Roth, Lane

    The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for…

  9. Area spectra of near extremal black holes

    International Nuclear Information System (INIS)

    Chen, Deyou; Yang, Haitang; Zu, Xiaotao

    2010-01-01

    Motivated by Maggiore's new interpretation of quasinormal modes, we investigate area spectra of a near extremal Schwarzschild-de Sitter black hole and a higher-dimensional near extremal Reissner-Nordstrom-de Sitter black hole. The result shows that the area spectra are equally spaced and irrelevant to the parameters of the black holes. (orig.)

  10. On Quantum Contributions to Black Hole Growth

    NARCIS (Netherlands)

    Spaans, M.

    2013-01-01

    The effects of Wheeler’s quantum foam on black hole growth are explored from an astrophysical per- spective. Quantum fluctuations in the form of mini (10−5 g) black holes can couple to macroscopic black holes and allow the latter to grow exponentially in mass on a time scale of 109 years.

  11. Black Hole Monodromy and Conformal Field Theory

    NARCIS (Netherlands)

    Castro, A.; Lapan, J.M.; Maloney, A.; Rodriguez, M.J.

    2013-01-01

    The analytic structure of solutions to the Klein-Gordon equation in a black hole background, as represented by monodromy data, is intimately related to black hole thermodynamics. It encodes the "hidden conformal symmetry" of a nonextremal black hole, and it explains why features of the inner event

  12. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    loops [8]. In 1974, Hawking discovered that the black holes emit thermal radiation due to quantum effects [9]. So the black holes get evaporated depending upon their masses. Smaller the masses of the PBHs, quicker they evaporate. But the density of a black hole varies inversely with its mass. So high density is needed for ...

  13. Black holes under external influence

    Indian Academy of Sciences (India)

    In particular we pay attention to the effect of the expulsion of the flux of external fields across charged and rotating black holes which are approaching extremal states. Recently this effect has been shown to occur for black hole solutions in string theory. We also discuss black holes surrounded by rings and disks and rotating ...

  14. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Abstract. Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the con- jecture that the primordial ...

  15. Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes

    OpenAIRE

    Takahashi, Rohta

    2004-01-01

    Can we determine a spin parameter of a black hole by observation of a black hole shadow in an accretion disk? In order to answer this question, we make a qualitative analysis and a quantitative analysis of a shape and a position of a black hole shadow casted by a rotating black hole on an optically thick accretion disk and its dependence on an angular momentum of a black hole. We have found black hole shadows with a quite similar size and a shape for largely different black hole spin paramete...

  16. Phase transition for black holes with scalar hair and topological black holes

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2008-01-01

    We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by using differences between two free energies. However, we do not identify what order of the phase transition between scalar and non-rotating BTZ black holes occurs in three dimensions, although there exists a possible decay of scalar black hole to non-rotating BTZ black hole

  17. Neutrino constraints that transform black holes into grey holes

    International Nuclear Information System (INIS)

    Ruderfer, M.

    1982-01-01

    Existing black hole theory is found to be defective in its neglect of the physical properties of matter and radiation at superhigh densities. Nongravitational neutrino effects are shown to be physically relevant to the evolution of astronomical black holes and their equations of state. Gravitational collapse to supernovae combined with the Davis and Ray vacuum solution for neutrinos limit attainment of a singularity and require black holes to evolve into ''grey holes''. These allow a better justification than do black holes for explaining the unique existence of galactic masses. (Auth.)

  18. The Bisognano-Wichmann theorem for charged states and the conformal boundary of a black hole

    Directory of Open Access Journals (Sweden)

    Roberto Longo

    2000-07-01

    Full Text Available This note concerns the study of the incremental entropy of a quantum black hole, based on Operator Algebra methods. Our results are based on the results presented in the references [6,11,12,13].

  19. Euler Characteristic and Topological Phase Transition of NUT-Kerr-Newman Black Hole

    International Nuclear Information System (INIS)

    Ye Jinghua; Yang Guohong; Tian Lijun; Zhu Shu

    2008-01-01

    From the Gauss-Bonnet-Chern theorem, the Euler characteristic of NUT-Kerr-Newman black hole is calculated to be some discrete numbers from 0 to 2. We find that the Bekenstein-Hawking entropy is the largest entropy in topology by taking into account of the relationship between the entropy and the Euler characteristic. The NUT-Kerr-Newman black hole evolves from the torus-like topological structure to the spherical structure with the changes of mass, angular momentum, electric and NUT charges. In this process, the Euler characteristic and the entropy are changed discontinuously, which give the topological aspect of the first-order phase transition of NUT-Kerr-Newman black hole. The corresponding latent heat of the topological phase transition is also obtained. The estimated latent heat of the black hole evolving from the star just lies in the range of the energy of gamma ray bursts

  20. Chandra Catches "Piranha" Black Holes

    Science.gov (United States)

    2007-07-01

    Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never

  1. Near-horizon states of black holes and Calogero models -2

    Indian Academy of Sciences (India)

    The dynamics of particles or fields in the near-horizon region of black holes [1,2] is often described in terms of the Calogero model [3]. In particular, it has been shown that the existence of the near-horizon conformal symmetry [4] as well as the logarithmic correction to the black hole entropy [5] can be described in terms of.

  2. On the Universality of Inner Black Hole Mechanics and Higher Curvature Gravity

    NARCIS (Netherlands)

    Castro, A.; Dehmami, N.; Giribet, G.; Kastor, D.

    2013-01-01

    Black holes are famous for their universal behavior. New thermodynamic relations have been found recently for the product of gravitational entropies over all the horizons of a given stationary black hole. This product has been found to be independent of the mass for all such solutions of

  3. Dyonic black hole in heterotic string theory

    International Nuclear Information System (INIS)

    Jatkar, D.P.; Mukherji, S.

    1997-01-01

    We study some features of the dyonic black hole solution in heterotic string theory on a six-torus. This solution has 58 parameters. Of these, 28 parameters denote the electric charge of the black hole, another 28 correspond to the magnetic charge, and the other two parameters are the mass and the angular momentum of the black hole. We discuss the extremal limit and show that in various limits it reduces to the known black hole solutions. The solutions saturating the Bogomolnyi bound are identified. An explicit solution is presented for the non-rotating dyonic black hole. (orig.)

  4. Black Holes Shed Light on Galaxy Formation

    Science.gov (United States)

    2000-01-01

    This videotape is comprised of several segments of animations on black holes and galaxy formation, and several segments of an interview with Dr. John Kormendy. The animation segments are: (1) a super massive black hole, (2) Centarus A active black hole found in a collision, (3) galaxy NGC-4261 (active black hole and jet model), (4) galaxy M-32 (orbits of stars are effected by the gravity of the black hole), (5) galaxy M-37 (motion of stars increases as mass of black hole increases), (6) Birth of active galactic nuclei, (7) the collision of two galaxy leads to merger of the black holes, (8) Centarus A and simulation of the collision of 2 galaxies. There are also several segments of an interview with John Kormendy. In these segments he discusses the two most important aspects of his recent black hole work: (1) the correlations between galaxies speed and the mass of the black holes, and (2) the existence of black holes and galactic formation. He also discusses the importance of the Hubble Space Telescope and the Space Telescope Imaging Spectrograph to the study of black holes. He also shows the methodology of processing images from the spectrograph in his office.

  5. The stable problem of the black-hole connected region in the Schwarzschild black hole

    OpenAIRE

    Tian, Guihua

    2005-01-01

    The stability of the Schwarzschild black hole is studied. Using the Painlev\\'{e} coordinate, our region can be defined as the black-hole-connected region(r>2m, see text) of the Schwarzschild black hole or the white-hole-connected region(r>2m, see text) of the Schwarzschild black hole. We study the stable problems of the black-hole-connected region. The conclusions are: (1) in the black-hole-connected region, the initially regular perturbation fields must have real frequency or complex frequen...

  6. Slow relaxation of rapidly rotating black holes

    International Nuclear Information System (INIS)

    Hod, Shahar

    2008-01-01

    We study analytically the relaxation phase of perturbed, rapidly rotating black holes. In particular, we derive a simple formula for the fundamental quasinormal resonances of near-extremal Kerr black holes. The formula is expressed in terms of the black hole physical parameters: ω=mΩ-i2πT BH (n+(1/2)), where T BH and Ω are the temperature and angular velocity of the black hole, and m is the azimuthal harmonic index of a corotating equatorial mode. This formula implies that the relaxation period τ∼1/ω of the black hole becomes extremely long as the extremal limit T BH →0 is approached. The analytically derived formula is shown to agree with direct numerical computations of the black hole resonances. We use our results to demonstrate analytically the fact that near-extremal Kerr black holes saturate the recently proposed universal relaxation bound.

  7. Quantum information erasure inside black holes

    International Nuclear Information System (INIS)

    Lowe, David A.; Thorlacius, Larus

    2015-01-01

    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.

  8. Quantum information erasure inside black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, David A. [Department of Physics, Brown University,Providence, RI, 02912 (United States); Thorlacius, Larus [University of Iceland, Science Institute,Dunhaga 3, IS-107 Reykjavik (Iceland); The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics,Stockholm University, AlbaNova University Centre, 10691 Stockholm (Sweden)

    2015-12-15

    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.

  9. Black hole with quantum potential

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Science, Benha University, Benha 13518 (Egypt); Khalil, Mohammed M., E-mail: moh.m.khalil@gmail.com [Department of Electrical Engineering, Alexandria University, Alexandria 12544 (Egypt)

    2016-08-15

    In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.

  10. Black hole with quantum potential

    Directory of Open Access Journals (Sweden)

    Ahmed Farag Ali

    2016-08-01

    Full Text Available In this work, we investigate black hole (BH physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian trajectories and hence form a quantum Raychaudhuri equation (QRE. From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.

  11. Lifetime of a black hole

    International Nuclear Information System (INIS)

    Carlitz, R.D.; Willey, R.S.

    1987-01-01

    We study the constraints placed by quantum mechanics upon the lifetime of a black hole. In the context of a moving-mirror analog model for the Hawking radiation process, we conclude that the period of Hawking radiation must be followed by a much longer period during which the remnant mass (of order m/sub P/) may be radiated away. We are able to place a lower bound on the time required for this radiation process, which translates into a lower bound for the lifetime of the black hole. Particles which are emitted during the decay of the remnant, like the particles which comprise the Hawking flux, may be uncorrelated with each other. But each particle emitted from the decaying remnant is correlated with one particle emitted as Hawking radiation. The state which results after the remnant has evaporated is one which locally appears to be thermal, but which on a much larger scale is marked by extensive correlations

  12. From Black Holes to Quivers

    CERN Document Server

    Manschot, Jan; Sen, Ashoke

    2012-01-01

    Middle cohomology states on the Higgs branch of supersymmetric quiver quantum mechanics - also known as pure Higgs states - have recently emerged as possible microscopic candidates for single-centered black hole micro-states, as they carry zero angular momentum and appear to be robust under wall-crossing. Using the connection between quiver quantum mechanics on the Coulomb branch and the quantum mechanics of multi-centered black holes, we propose a general algorithm for reconstructing the full moduli-dependent cohomology of the moduli space of an arbitrary quiver, in terms of the BPS invariants of the pure Higgs states. We analyze many examples of quivers with loops, including all cyclic Abelian quivers and several examples with two loops or non-Abelian gauge groups, and provide supporting evidence for this proposal. We also develop methods to count pure Higgs states directly.

  13. Black holes in magnetic monopoles

    Science.gov (United States)

    Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.

    1991-01-01

    We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs field vacuum expectation value v is less than or equal to a critical value v sub cr, which is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordstrom solution. For v less than v sub cr, we find additional solutions which are singular at f = 0, but which have this singularity hidden within a horizon. These have nontrivial matter fields outside the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The nature of these solutions as a function of v and of the total mass M and their relation to the Reissner-Nordstrom solutions is discussed.

  14. Accelerating and rotating black holes

    International Nuclear Information System (INIS)

    Griffiths, J B; Podolsky, J

    2005-01-01

    An exact solution of Einstein's equations which represents a pair of accelerating and rotating black holes (a generalized form of the spinning C-metric) is presented. The starting point is a form of the Plebanski-Demianski metric which, in addition to the usual parameters, explicitly includes parameters which describe the acceleration and angular velocity of the sources. This is transformed to a form which explicitly contains the known special cases for either rotating or accelerating black holes. Electromagnetic charges and a NUT parameter are included, the relation between the NUT parameter l and the Plebanski-Demianski parameter n is given, and the physical meaning of all parameters is clarified. The possibility of finding an accelerating NUT solution is also discussed

  15. Microstates of a neutral black hole in M theory.

    Science.gov (United States)

    Emparan, Roberto; Horowitz, Gary T

    2006-10-06

    We consider vacuum solutions in M theory of the form of a five-dimensional Kaluza-Klein black hole cross T6. In a certain limit, these include the five-dimensional neutral rotating black hole (cross T6). From a type-IIA standpoint, these solutions carry D0 and D6 charges. We show that there is a simple D-brane description which precisely reproduces the Hawking-Bekenstein entropy in the extremal limit, even though supersymmetry is completely broken.

  16. A black-hole cosmology

    International Nuclear Information System (INIS)

    Debney, G.; Farnsworth, D.

    1983-01-01

    Motivated by the fact that 2m/r is of the order of magnitude unity for the observable universe, we explore the possibility that a Schwarzschild or black hole cosmological model is appropriate. Luminosity distance and frequency shifts of freely-falling, standard, monochromatic objects are viewed by a freely-falling observer. The observer is inside r=2m. The observer in such a world does not see the same universe as do astronomers. (author)

  17. Gravitating discs around black holes

    Czech Academy of Sciences Publication Activity Database

    Karas, Vladimír; Huré, J.-M.; Semerák, O.

    2004-01-01

    Roč. 21, č. 7 (2004), R1-R5 ISSN 0264-9381 R&D Projects: GA ČR GA205/03/0902; GA AV ČR KSK1048102 Institutional research plan: CEZ:AV0Z1003909 Keywords : black holes * accretion discs * general relativity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.941, year: 2004

  18. Van der Waals black hole

    Directory of Open Access Journals (Sweden)

    Aruna Rajagopal

    2014-10-01

    Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.

  19. State-Space Geometry, Statistical Fluctuations, and Black Holes in String Theory

    Directory of Open Access Journals (Sweden)

    Stefano Bellucci

    2014-01-01

    Full Text Available We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a state-space perspective to the black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic geometric meaning of the statistical fluctuations, local and global stability conditions, and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, namely, the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From the perspective of statistical fluctuation theory, we offer general remarks, future directions, and open issues towards the intrinsic geometric understanding of the vacuum fluctuations and black holes in string theory.

  20. State-space Geometry, Statistical Fluctuations and Black Holes in String Theory

    CERN Document Server

    Bellucci, Stefano

    2011-01-01

    We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the intrinsic geometry, we offer a new perspective of black hole vacuum fluctuations. For a given black hole entropy, we explicate the intrinsic state-space geometric meaning of the statistical fluctuations, local and global stability conditions and long range statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, \\textit{viz.}, the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From the perspective of statistical fluctuation theory, we offer general remarks, future directions and open issues towards the intrinsic geometric understanding of the vacuum fluctuations and black holes in string theory. Keywords: Intrinsic Geometry; ...

  1. Soft Hair on Black Holes.

    Science.gov (United States)

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  2. Glory scattering by black holes

    International Nuclear Information System (INIS)

    Matzner, R.A.; DeWitte-Morette, C.; Nelson, B.; Zhang, T.

    1985-01-01

    We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/dΩ = 4π 2 lambda -1 B/sub g/ 2 (dB mWπ, where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 √3 + 3.48 exp(-theta), theta > owigπ. The numerical values of dsigma/dΩ for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes

  3. Black Holes, Worm Holes, and Future Space Propulsion

    Science.gov (United States)

    Barret, Chris

    2000-01-01

    NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.

  4. How the change in horizon area drives black hole evaporation

    International Nuclear Information System (INIS)

    Massar, S.; Parentani, R.

    2000-01-01

    We rephrase the derivation of black hole radiation so as to take into account, at the level of transition amplitudes, the change of the geometry induced by the emission process. This enlarged description reveals that the dynamical variables which govern the emission are the horizon area and its conjugate time variable. Their conjugation is established through the boundary term at the horizon which must be added to the canonical action of general relativity in order to obtain a well defined action principle when the area varies. These coordinates have already been used by Teitelboim and collaborators to compute the partition function of a black hole. We use them to show that the probability to emit a particle is given by e -ΔA/4 , where ΔA is the decrease in horizon area induced by the emission. This expression improves Hawking result which is governed by a temperature (given by the surface gravity) in that the specific heat of the black hole is no longer neglected. The present derivation of quantum black hole radiation is based on the same principles which are used to derive the first law of classical black hole thermodynamics. Moreover, it also applies to quantum processes associated with cosmological or acceleration horizons. These two results indicate that not only black holes but all event horizons possess an entropy which governs processes according to quantum statistical thermodynamics

  5. Eternal higher spin black holes: a thermofield Interpretation

    International Nuclear Information System (INIS)

    Castro, Alejandra; Iqbal, Nabil; Llabrés, Eva

    2016-01-01

    We study Lorentzian eternal black holes in the Chern-Simons sector of AdS 3 higher spin gravity. We probe such black holes using bulk Wilson lines and motivate new regularity conditions that must be obeyed by the bulk connections in order for the geometry to be consistent with an interpretation as a thermofield state in the dual CFT 2 . We demonstrate that any higher spin black hole may be placed in a gauge that satisfies these conditions: this is the Chern-Simons analogue of the construction of Kruskal coordinates that permit passage through the black hole horizon. We also argue that the Wilson line provides a higher-spin notion of causality in higher spin gravity that can be used to associate a Penrose diagram with the black hole. We present some applications of the formalism, including a study of the time-dependent entanglement entropy arising from the higher spin black hole interior and evidence for an emergent AdS 2 region in the extremal limit.

  6. Thermodynamics of charged dilatonic BTZ black holes in rainbow gravity

    Science.gov (United States)

    Dehghani, M.

    2018-02-01

    In this paper, the charged three-dimensional Einstein's theory coupled to a dilatonic field has been considered in the rainbow gravity. The dilatonic potential has been written as the linear combination of two Liouville-type potentials. Four new classes of charged dilatonic rainbow black hole solutions, as the exact solution to the coupled field equations of the energy dependent space time, have been obtained. Two of them are correspond to the Coulomb's electric field and the others are consequences of a modified Coulomb's law. Total charge and mass as well as the entropy, temperature and electric potential of the new charged black holes have been calculated in the presence of rainbow functions. Although the thermodynamic quantities are affected by the rainbow functions, it has been found that the first law of black hole thermodynamics is still valid for all of the new black hole solutions. At the final stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the thermal stability or phase transition of the new rainbow black hole solutions have been analyzed.

  7. Strange pathways for black hole formation

    International Nuclear Information System (INIS)

    Prakash, M.

    2000-01-01

    Immediately after they are born, neutron stars are characterized by an entropy per baryon of order unity and by the presence of trapped neutrinos. If the only hadrons in the star are nucleons, these effects slightly reduce the maximum mass relative to cold, catalyzed matter. However, if strangeness-bearing hyperons, a kaon condensate, or quarks are also present, these effects result in an increase in the maximum mass of up to ∼ 0.3M [odot] compared to that of a cold, neutrino-free star. This makes a sufficiently massive proto-neutron star metastable, so that after a delay of 10-100 seconds, the PNS collapses into a black hole. Such an event might be straightforward to observe as an abrupt cessation of neutrinos when the instability is triggered

  8. AMOBH: Adaptive Multiobjective Black Hole Algorithm.

    Science.gov (United States)

    Wu, Chong; Wu, Tao; Fu, Kaiyuan; Zhu, Yuan; Li, Yongbo; He, Wangyong; Tang, Shengwen

    2017-01-01

    This paper proposes a new multiobjective evolutionary algorithm based on the black hole algorithm with a new individual density assessment (cell density), called "adaptive multiobjective black hole algorithm" (AMOBH). Cell density has the characteristics of low computational complexity and maintains a good balance of convergence and diversity of the Pareto front. The framework of AMOBH can be divided into three steps. Firstly, the Pareto front is mapped to a new objective space called parallel cell coordinate system. Then, to adjust the evolutionary strategies adaptively, Shannon entropy is employed to estimate the evolution status. At last, the cell density is combined with a dominance strength assessment called cell dominance to evaluate the fitness of solutions. Compared with the state-of-the-art methods SPEA-II, PESA-II, NSGA-II, and MOEA/D, experimental results show that AMOBH has a good performance in terms of convergence rate, population diversity, population convergence, subpopulation obtention of different Pareto regions, and time complexity to the latter in most cases.

  9. Wiggling throat of extremal black holes

    International Nuclear Information System (INIS)

    Compère, G.; Hajian, K.; Seraj, A.; Sheikh-Jabbari, M.M.

    2015-01-01

    We construct the classical phase space of geometries in the near-horizon region of vacuum extremal black holes as announced in [arXiv:1503.07861]. Motivated by the uniqueness theorems for such solutions and for perturbations around them, we build a family of metrics depending upon a single periodic function defined on the torus spanned by the U(1) isometry directions. We show that this set of metrics is equipped with a consistent symplectic structure and hence defines a phase space. The phase space forms a representation of an infinite dimensional algebra of so-called symplectic symmetries. The symmetry algebra is an extension of the Virasoro algebra whose central extension is the black hole entropy. We motivate the choice of diffeomorphisms leading to the phase space and explicitly derive the symplectic structure, the algebra of symplectic symmetries and the corresponding conserved charges. We also discuss a formulation of these charges with a Liouville type stress-tensor on the torus defined by the U(1) isometries and outline possible future directions.

  10. Black-hole bomb and superradiant instabilities

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Dias, Oscar J.C.; Lemos, Jose P.S.; Yoshida, Shijun

    2004-01-01

    A wave impinging on a Kerr black hole can be amplified as it scatters off the hole if certain conditions are satisfied, giving rise to superradiant scattering. By placing a mirror around the black hole one can make the system unstable. This is the black-hole bomb of Press and Teukolsky. We investigate in detail this process and compute the growing time scales and oscillation frequencies as a function of the mirror's location. It is found that in order for the system black hole plus mirror to become unstable there is a minimum distance at which the mirror must be located. We also give an explicit example showing that such a bomb can be built. In addition, our arguments enable us to justify why large Kerr-AdS black holes are stable and small Kerr-AdS black holes should be unstable

  11. Hawking radiation and strong gravity black holes

    International Nuclear Information System (INIS)

    Qadir, A.; Sayed, W.A.

    1979-01-01

    It is shown that the strong gravity theory of Salam et al. places severe restrictions on black hole evaporation. Two major implications are that: mini blck holes (down to masses approximately 10 -16 kg) would be stable in the present epoch; and that some suggested mini black hole mechanisms to explain astrophysical phenomena would not work. The first result implies that f-gravity appears to make black holes much safer by removing the possibility of extremely violent black hole explosions suggested by Hawking. (Auth.)

  12. The entropy of a hole in spacetime

    NARCIS (Netherlands)

    Balasubramanian, V.; Chowdhury, B.D.; Czech, B.; de Boer, J.

    2013-01-01

    We compute the gravitational entropy of "spherical Rindler space", a timedependent, spherically symmetric generalization of ordinary Rindler space, defined with reference to a family of observers traveling along non-parallel, accelerated trajectories. All these observers are causally disconnected

  13. Black Hole Dynamic Potentials Koustubh Ajit Kabe

    Indian Academy of Sciences (India)

    In the following paper, certain black hole dynamic potentials have been ... the equations of the laws of black hole dynamics as given by Bekenstein and those ..... work. This makes K, the energy which is available for work in time-reversible pro- cesses (white holes) observing constancy of surface gravity. Since the area of the.

  14. Charged spinning black holes as particle accelerators

    International Nuclear Information System (INIS)

    Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune

    2010-01-01

    It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/√(3))≤(a/M)≤1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.

  15. A Black Hole in Our Galactic Center

    Science.gov (United States)

    Ruiz, Michael J.

    2008-01-01

    An introductory approach to black holes is presented along with astronomical observational data pertaining to the presence of a supermassive black hole at the center of our galaxy. Concepts of conservation of energy and Kepler's third law are employed so students can apply formulas from their physics class to determine the mass of the black hole…

  16. BSW process of the slowly evaporating charged black hole

    OpenAIRE

    Wang, Liancheng; He, Feng; Fu, Xiangyun

    2015-01-01

    In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.

  17. Hawking Tunneling Radiation of Black Holes in Deformed Horava-Lifshitz Gravity

    International Nuclear Information System (INIS)

    Zeng Xiaoxiong; Li Ling

    2011-01-01

    Tunneling of scalar particles and Dirac particles from a black hole in the deformed Horava-Lifshitz gravity is discussed in this paper. We consider the case that the dynamical coupling constant λ =1, when it reduces to Einstein's General Relativity at large scales and the black hole behaves like the Reissner-Nordstroem black hole. The result shows that though the black hole entropy bears logarithmic correction, the tunneling probability is still related to its differences for the scalar particles and Dirac particles. (geophysics, astronomy, and astrophysics)

  18. Quantum hair and the string-black hole correspondence

    CERN Document Server

    Veneziano, Gabriele

    2013-01-01

    We consider a thought experiment in which an energetic massless string probes a "stringhole" (a heavy string lying on the correspondence curve between strings and black holes) at large enough impact parameter for the regime to be under theoretical control. The corresponding, explicitly unitary, $S$-matrix turns out to be perturbatively sensitive to the microstate of the stringhole: in particular, at leading order in $l_s/b$, it depends on a projection of the stringhole's Lorentz-contracted quadrupole moment. The string-black hole correspondence is therefore violated if one assumes quantum hair to be exponentially suppressed as a function of black-hole entropy. Implications for the information paradox are briefly discussed.

  19. Geometrothermodynamics for black holes and de Sitter space

    Science.gov (United States)

    Kurihara, Yoshimasa

    2018-02-01

    A general method to extract thermodynamic quantities from solutions of the Einstein equation is developed. In 1994, Wald established that the entropy of a black hole could be identified as a Noether charge associated with a Killing vector of a global space-time (pseudo-Riemann) manifold. We reconstruct Wald's method using geometrical language, e.g., via differential forms defined on the local space-time (Minkowski) manifold. Concurrently, the abstract thermodynamics are also reconstructed using geometrical terminology, which is parallel to general relativity. The correspondence between the thermodynamics and general relativity can be seen clearly by comparing the two expressions. This comparison requires a modification of Wald's method. The new method is applied to Schwarzschild, Kerr, and Kerr-Newman black holes and de Sitter space. The results are consistent with previous results obtained using various independent methods. This strongly supports the validity of the area theorem for black holes.

  20. Plasma horizons of a charged black hole

    International Nuclear Information System (INIS)

    Hanni, R.S.

    1977-01-01

    The most promising way of detecting black holes seems to be through electromagnetic radiation emitted by nearby charged particles. The nature of this radiation depends strongly on the local electromagnetic field, which varies with the charge of the black hole. It has often been purported that a black hole with significant charge will not be observed, because, the dominance of the Coulomb interaction forces its neutralization through selective accretion. This paper shows that it is possible to balance the electric attraction of particles whose charge is opposite that of the black hole with magnetic forces and (assuming an axisymmetric, stationary solution) covariantly define the regions in which this is possible. A Kerr-Newman hole in an asymptotically uniform magnetic field and a current ring centered about a Reissner-Nordstroem hole are used as examples, because of their relevance to processes through which black holes may be observed. (Auth.)

  1. Boosting jet power in black hole spacetimes.

    Science.gov (United States)

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis

    2011-08-02

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  2. Escape of Black Holes from the Brane

    International Nuclear Information System (INIS)

    Flachi, Antonino; Tanaka, Takahiro

    2005-01-01

    TeV-scale gravity theories allow the possibility of producing small black holes at energies that soon will be explored at the CERN LHC or at the Auger observatory. One of the expected signatures is the detection of Hawking radiation that might eventually terminate if the black hole, once perturbed, leaves the brane. Here, we study how the 'black hole plus brane' system evolves once the black hole is given an initial velocity that mimics, for instance, the recoil due to the emission of a graviton. The results of our dynamical analysis show that the brane bends around the black hole, suggesting that the black hole eventually escapes into the extra dimensions once two portions of the brane come in contact and reconnect. This gives a dynamical mechanism for the creation of baby branes

  3. Hidden conformal symmetry of extremal black holes

    International Nuclear Information System (INIS)

    Chen Bin; Long Jiang; Zhang Jiaju

    2010-01-01

    We study the hidden conformal symmetry of extremal black holes. We introduce a new set of conformal coordinates to write the SL(2,R) generators. We find that the Laplacian of the scalar field in many extremal black holes, including Kerr(-Newman), Reissner-Nordstrom, warped AdS 3 , and null warped black holes, could be written in terms of the SL(2,R) quadratic Casimir. This suggests that there exist dual conformal field theory (CFT) descriptions of these black holes. From the conformal coordinates, the temperatures of the dual CFTs could be read directly. For the extremal black hole, the Hawking temperature is vanishing. Correspondingly, only the left (right) temperature of the dual CFT is nonvanishing, and the excitations of the other sector are suppressed. In the probe limit, we compute the scattering amplitudes of the scalar off the extremal black holes and find perfect agreement with the CFT prediction.

  4. Seeding black holes in cosmological simulations

    Science.gov (United States)

    Taylor, P.; Kobayashi, C.

    2014-08-01

    We present a new model for the formation of black holes in cosmological simulations, motivated by the first star formation. Black holes form from high density peaks of primordial gas, and grow via both gas accretion and mergers. Massive black holes heat the surrounding material, suppressing star formation at the centres of galaxies, and driving galactic winds. We perform an investigation into the physical effects of the model parameters, and obtain a `best' set of these parameters by comparing the outcome of simulations to observations. With this best set, we successfully reproduce the cosmic star formation rate history, black hole mass-velocity dispersion relation, and the size-velocity dispersion relation of galaxies. The black hole seed mass is ˜103 M⊙, which is orders of magnitude smaller than that which has been used in previous cosmological simulations with active galactic nuclei, but suggests that the origin of the seed black holes is the death of Population III stars.

  5. What does a black hole look like?

    CERN Document Server

    Bailyn, Charles D

    2014-01-01

    Emitting no radiation or any other kind of information, black holes mark the edge of the universe--both physically and in our scientific understanding. Yet astronomers have found clear evidence for the existence of black holes, employing the same tools and techniques used to explore other celestial objects. In this sophisticated introduction, leading astronomer Charles Bailyn goes behind the theory and physics of black holes to describe how astronomers are observing these enigmatic objects and developing a remarkably detailed picture of what they look like and how they interact with their surroundings. Accessible to undergraduates and others with some knowledge of introductory college-level physics, this book presents the techniques used to identify and measure the mass and spin of celestial black holes. These key measurements demonstrate the existence of two kinds of black holes, those with masses a few times that of a typical star, and those with masses comparable to whole galaxies--supermassive black holes...

  6. Charged topological black hole pair creation

    International Nuclear Information System (INIS)

    Mann, R.B.

    1998-01-01

    I examine the pair creation of black holes in space-times with a cosmological constant of either sign. I consider cosmological C-metrics and show that the conical singularities in this metric vanish only for three distinct classes of black hole metric, two of which have compact event horizons on each spatial slice. One class is a generalization of the Reissner-Nordstroem (anti-)de Sitter black holes in which the event horizons are the direct product of a null line with a 2-surface with topology of genus g. The other class consists of neutral black holes whose event horizons are the direct product of a null conoid with a circle. In the presence of a domain wall, black hole pairs of all possible types will be pair created for a wide range of mass and charge, including even negative mass black holes. I determine the relevant instantons and Euclidean actions for each case. (orig.)

  7. Reversible Carnot cycle outside a black hole

    International Nuclear Information System (INIS)

    Xi-Hao, Deng; Si-Jie, Gao

    2009-01-01

    A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T 1 and a black hole with Hawking temperature T H . By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1 – T H /T 1 . Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible. (general)

  8. Hawking temperature of constant curvature black holes

    International Nuclear Information System (INIS)

    Cai Ronggen; Myung, Yun Soo

    2011-01-01

    The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M D-1 xS 1 , where D is the spacetime dimension and M D-1 stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.

  9. Implication of Negative Temperature in the Inner Horizon of Reissner-Nordström Black Hole

    Directory of Open Access Journals (Sweden)

    Yuant Tiandho

    2017-12-01

    Full Text Available This paper reconsiders the properties of Hawking radiation in the inner horizon of a Reissner-Nordström black hole. Through the correlation between temperature and surface gravity, it is concluded that the temperature of the inner horizon is always negative and that of the outer horizon is always positive. Since negative temperature is hotter than any positive temperature, it is predicted that particle radiation from the inner horizon will move toward the outer horizon. However, unlike temperature, entropy in both horizons remains positive. Following the definition of negative temperature in the inner horizon, it is assured that the entropy of a black hole within a closed system can never decrease. By analyzing the conditions of an extremal black hole, the third law of black hole thermodynamics can be extended to multi-horizon black holes.

  10. Cosmography of KNdS black holes and isentropic phase transitions

    International Nuclear Information System (INIS)

    McInerney, James; Satishchandran, Gautam; Traschen, Jennie

    2016-01-01

    We present a new analysis of Kerr–Newman–deSitter black holes in terms of thermodynamic quantities that are defined in the observable portion of the Universe; between the black hole and cosmological horizons. In particular, we replace the mass m with a new ‘area product’ parameter X . The physical region of parameter space is found analytically and thermodynamic quantities are given by simple algebraic functions of these parameters. We find that different geometrical properties of the black holes are usefully distinguished by the sum of the black hole and cosmological entropies. The physical parameter space breaks into a region in which the total entropy, together with Λ, a and q uniquely specifies the black hole, and a region in which there is a two-fold degeneracy. In this latter region, there are isentropic pairs of black holes, having the same Λ, a , and q , but different X . The thermodynamic volumes and masses differ in such that there are high and low density branches. The partner spacetimes are related by a simple inversion of X , which has a fixed point at the state of maximal total entropy. We compute the compressibility at fixed total entropy and find that it diverges at the maximal entropy point. Hence a picture emerges of high and low density phases merging at this critical point. (paper)

  11. Information-carrying Hawking radiation and the number of microstate for a black hole

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qing-yu, E-mail: qycai@wipm.ac.cn [State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Sun, Chang-pu, E-mail: cpsun@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100084 (China); Collaborative Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); You, Li, E-mail: lyou@mail.tsinghua.edu.cn [State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2016-04-15

    We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein–Hawking entropies for Schwarzschild black holes and Reissner–Nordström black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner–Nordström black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein–Hawking entropy of extremal black holes in the semiclassical limit.

  12. Information-carrying Hawking radiation and the number of microstate for a black hole

    International Nuclear Information System (INIS)

    Cai, Qing-yu; Sun, Chang-pu; You, Li

    2016-01-01

    We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein–Hawking entropies for Schwarzschild black holes and Reissner–Nordström black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner–Nordström black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein–Hawking entropy of extremal black holes in the semiclassical limit.

  13. Information-carrying Hawking radiation and the number of microstate for a black hole

    Directory of Open Access Journals (Sweden)

    Qing-yu Cai

    2016-04-01

    Full Text Available We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein–Hawking entropies for Schwarzschild black holes and Reissner–Nordström black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner–Nordström black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein–Hawking entropy of extremal black holes in the semiclassical limit.

  14. Superradiance by mini black holes with mirror

    OpenAIRE

    Lee, Jong-Phil

    2011-01-01

    The superradiant scattering of massive scalar particles by a rotating mini black hole is investigated. Imposing the mirror boundary condition, the system becomes the so called black-hole bomb where the rotation energy of the black hole is transferred to the scattered particle exponentially with time. Bulk emissions as well as brane emissions are considered altogether. It is found that the largest effects are expected for the brane emission of lower angular modes with lighter mass and larger a...

  15. Geometrothermodynamics of higher dimensional black holes

    Science.gov (United States)

    Bravetti, Alessandro; Momeni, Davood; Myrzakulov, Ratbay; Quevedo, Hernando

    2013-08-01

    We study the thermodynamics and geometrothermodynamics of different black hole configurations in more than four spacetime dimensions. We use the response functions to find the conditions under which second order phase transitions occur in higher-dimensional static Reissner-Nordström and stationary Kerr black holes. Our results indicate that the equilibrium manifold of all these black hole configurations is in general curved and that curvature singularities appear exactly at those places where second order phase transitions occur.

  16. Effective Stringy Description of Schwarzschild Black Holes

    OpenAIRE

    Krasnov , Kirill; Solodukhin , Sergey N.

    2004-01-01

    We start by pointing out that certain Riemann surfaces appear rather naturally in the context of wave equations in the black hole background. For a given black hole there are two closely related surfaces. One is the Riemann surface of complexified ``tortoise'' coordinate. The other Riemann surface appears when the radial wave equation is interpreted as the Fuchsian differential equation. We study these surfaces in detail for the BTZ and Schwarzschild black holes in four and higher dimensions....

  17. Observability of Quantum State of Black Hole

    CERN Document Server

    David, J R; Mandal, G; Wadia, S R; David, Justin R.; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R.

    1997-01-01

    We analyze terms subleading to Rutherford in the $S$-matrix between black hole and probes of successively high energies. We show that by an appropriate choice of the probe one can read off the quantum state of the black hole from the S-matrix, staying asymptotically far from the BH all the time. We interpret the scattering experiment as scattering off classical stringy backgrounds which explicitly depend on the internal quantum numbers of the black hole.

  18. Black hole mergers in the universe

    OpenAIRE

    Zwart, Simon Portegies; McMillan, Stephen

    1999-01-01

    Mergers of black-hole binaries are expected to release large amounts of energy in the form of gravitational radiation. However, binary evolution models predict merger rates too low to be of observational interest. In this paper we explore the possibility that black holes become members of close binaries via dynamical interactions with other stars in dense stellar systems. In star clusters, black holes become the most massive objects within a few tens of millions of years; dynamical relaxation...

  19. A New Model of Black Hole Formation

    Directory of Open Access Journals (Sweden)

    Thayer G. D.

    2013-10-01

    Full Text Available The formation of a black hole and its event horizon are described. Conclusions, which are the result of a thought experiment, show that Schwarzschild [1] was correct: A singularity develops at the event horizon of a newly-formed black hole. The intense gravitational field that forms near the event horizon results in the mass-energy of the black hole accumulating in a layer just inside the event horizon, rather than collapsing into a central singularity.

  20. Gravitational lensing by a Horndeski black hole

    Energy Technology Data Exchange (ETDEWEB)

    Badia, Javier [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2017-11-15

    In this article we study gravitational lensing by non-rotating and asymptotically flat black holes in Horndeski theory. By adopting the strong deflection limit, we calculate the deflection angle, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to black holes in General Relativity. We analyze the astrophysical consequences in the case of the nearest supermassive black holes. (orig.)

  1. Unified geometric description of black hole thermodynamics

    International Nuclear Information System (INIS)

    Alvarez, Jose L.; Quevedo, Hernando; Sanchez, Alberto

    2008-01-01

    In the space of thermodynamic equilibrium states we introduce a Legendre invariant metric which contains all the information about the thermodynamics of black holes. The curvature of this thermodynamic metric becomes singular at those points where, according to the analysis of the heat capacities, phase transitions occur. This result is valid for the Kerr-Newman black hole and all its special cases and, therefore, provides a unified description of black hole phase transitions in terms of curvature singularities.

  2. Measuring the spins of accreting black holes

    International Nuclear Information System (INIS)

    McClintock, Jeffrey E; Narayan, Ramesh; Gou, Lijun; Kulkarni, Akshay; Penna, Robert F; Steiner, James F; Davis, Shane W; Orosz, Jerome A; Remillard, Ronald A

    2011-01-01

    A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accreting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the x-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit, whose radius depends only on the mass and spin of the black hole. In the Fe Kα method, which applies to both classes of black holes, one models the profile of the relativistically broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting (CF) method, which has so far only been applied to stellar-mass black holes, one models the thermal x-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the CF method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.

  3. Thermodynamic properties of static and rotating unparticle black holes

    Science.gov (United States)

    Alencar, G.; Muniz, C. R.

    2018-03-01

    In this paper we find analytical expressions for thermodynamic quantities of scalar (tensor) and vector unparticle static black holes. We also find rotating solutions to these systems and analyse their thermodynamics. First we consider the static case with a spherically symmetric source for both the vector and scalar (tensor) unparticles. We obtain thus analytical expressions to the principal thermodynamic quantities: Hawking temperature, entropy, heat capacity and free energy. For the scalar (tensor) case we find that the black hole presents a residual value for the entropy when its radius goes to zero but the other thermodynamic quantities give, for any horizon radius, a thermodynamically unstable behavior similar to the standard black hole. For the vector case we find a richer structure in the region in which the horizon radius is less than the characteristic length of the unparticle theory. We identify a phase transition and a region where the black hole can be thermodynamically stable. Following, we show that the mentioned modifications in the standard gravity are formally similar to those ones present in the black holes with quintessence. With this we also show, notwithstanding, that the unparticles cannot be a source of quintessence. By using this similarity we find two different rotating solutions to the unparticle black holes based on works by Ghosh and Toshmatov et al.. For both cases we compute the Hawking temperature and in the ungravity dominated regime we find, as in the static cases, a fractalization of the event horizon. For the Gosh-like solution the fractal dimension depends on the polar angle and on the rotation of the source. For the Toshmatov-like one it is equal to the static case and therefore the fractalization is not dependent on the rotation of the source.

  4. Falling through the black hole horizon

    International Nuclear Information System (INIS)

    Brustein, Ram; Medved, A.J.M.

    2015-01-01

    We consider the fate of a small classical object, a “stick”, as it falls through the horizon of a large black hole (BH). Classically, the equivalence principle dictates that the stick is affected by small tidal forces, and Hawking’s quantum-mechanical model of BH evaporation makes essentially the same prediction. If, on the other hand, the BH horizon is surrounded by a “firewall”, the stick will be consumed as it falls through. We have recently extended Hawking’s model by taking into account the quantum fluctuations of the geometry and the classical back-reaction of the emitted particles. Here, we calculate the strain exerted on the falling stick for our model. The strain depends on the near-horizon state of the Hawking pairs. We find that, after the Page time when the state of the pairs deviates significantly from maximal entanglement (as required by unitarity), the induced strain in our semiclassical model is still parametrically small. This is because the number of the disentangled pairs is parametrically smaller than the BH entropy. A firewall does, however, appear if the number of disentangled pairs near the horizon is of order of the BH entropy, as implicitly assumed in previous discussions in the literature.

  5. Shaping Globular Clusters with Black Holes

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    How many black holes lurk within the dense environments of globular clusters, and how do these powerful objects shape the properties of the cluster around them? One such cluster, NGC 3201, is now helping us to answer these questions.Hunting Stellar-Mass Black HolesSince the detection of merging black-hole binaries by the Laser Interferometer Gravitational-Wave Observatory (LIGO), the dense environments of globular clusters have received increasing attention as potential birthplaces of these compact binary systems.The central region of the globular star cluster NGC 3201, as viewed by Hubble. The black hole is in orbit with the star marked by the blue circle. [NASA/ESA]In addition, more and more stellar-mass black-hole candidates have been observed within globular clusters, lurking in binary pairs with luminous, non-compact companions. The most recent of these detections, found in the globular cluster NGC 3201, stands alone as the first stellar-mass black hole candidate discovered via radial velocity observations: the black holes main-sequence companion gave away its presence via a telltale wobble.Now a team of scientists led by Kyle Kremer (CIERA and Northwestern University) is using models of this system to better understand the impact that black holes might have on their host clusters.A Model ClusterThe relationship between black holes and their host clusters is complicated. Though the cluster environment can determine the dynamical evolution of the black holes, the retention rate of black holes in a globular cluster (i.e., how many remain in the cluster when they are born as supernovae, rather than being kicked out during the explosion) influences how the host cluster evolves.Kremer and collaborators track this complex relationship by modeling the evolution of a cluster similar to NGC 3201 with a Monte Carlo code. The code incorporates physics relevant to the evolution of black holes and black-hole binaries in globular clusters, such as two-body relaxation

  6. Semiclassical Loop Quantum Gravity and Black Hole Thermodynamics

    Directory of Open Access Journals (Sweden)

    Arundhati Dasgupta

    2013-02-01

    Full Text Available In this article we explore the origin of black hole thermodynamics using semiclassical states in loop quantum gravity. We re-examine the case of entropy using a density matrix for a coherent state and describe correlations across the horizon due to SU(2 intertwiners. We further show that Hawking radiation is a consequence of a non-Hermitian term in the evolution operator, which is necessary for entropy production or depletion at the horizon. This non-unitary evolution is also rooted in formulations of irreversible physics.

  7. Surface tension, hydrophobicity, and black holes: The entropic connection

    International Nuclear Information System (INIS)

    Callaway, D.J.

    1996-01-01

    The geometric entropy arising from partitioning space in a fluid open-quote open-quote field theory close-quote close-quote is shown to be linearly proportional to the area of an excluded region. The coefficient of proportionality is related to surface tension by a thermodynamic argument. Good agreement with experimental data is obtained for a number of fluids. The calculation employs a density-matrix formalism developed previously for studying the origin of black hole entropy. This approach may lead to a practical technique for the evaluation of thermodynamic quantities with important entropic components. copyright 1996 The American Physical Society

  8. Low-mass black holes as the remnants of primordial black hole formation.

    Science.gov (United States)

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  9. Quantum capacity of quantum black holes

    Science.gov (United States)

    Adami, Chris; Bradler, Kamil

    2014-03-01

    The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.

  10. Black Hole Horizons and Thermodynamics: A Quantum Approach

    Directory of Open Access Journals (Sweden)

    Nicola Pinamonti

    2010-07-01

    Full Text Available We focus on quantization of the metric of a black hole restricted to the Killing horizon with universal radius r0. After imposing spherical symmetry and after restriction to the Killing horizon, the metric is quantized employing the chiral currents formalism. Two "components of the metric" are indeed quantized: The former behaves as an affine scalar field under changes of coordinates, the latter is instead a proper scalar field. The action of the symplectic group on both fields is realized in terms of certain horizon diffeomorphisms. Depending on the choice of the vacuum state, such a representation is unitary. If the reference state of the scalar field is a coherent state rather than a vacuum, spontaneous breaking of conformal symmetry arises and the state contains a Bose-Einstein condensate. In this case the order parameter fixes the actual size of the black hole with respect to r0. Both the constructed state together with the one associated with the affine scalar are thermal states (KMS with respect to Schwarzschild Killing time when restricted to half horizon. The value of the order parameter fixes the temperature at the Hawking value as well. As a result, it is found that the quantum energy and entropy densities coincide with the black hole mass and entropy, provided the universal parameter r0 is suitably chosen, not depending on the size of the actual black hole in particular.

  11. Quantum tunneling, adiabatic invariance and black hole spectroscopy

    Science.gov (United States)

    Li, Guo-Ping; Pu, Jin; Jiang, Qing-Quan; Zu, Xiao-Tao

    2017-05-01

    In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painlevé) of coordinates as well as in different gravity frames, the adiabatic invariant I_adia = \\oint p_i dq_i introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area.

  12. Quantum tunneling, adiabatic invariance and black hole spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ping; Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Pu, Jin [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); China West Normal University, College of Physics and Space Science, Nanchong (China); Jiang, Qing-Quan [China West Normal University, College of Physics and Space Science, Nanchong (China)

    2017-05-15

    In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painleve) of coordinates as well as in different gravity frames, the adiabatic invariant I{sub adia} = circular integral p{sub i}dq{sub i} introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area. (orig.)

  13. On the thermodynamics of hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Choque, David, E-mail: brst1010123@gmail.com [Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso (Chile)

    2015-04-09

    We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild–AdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the Hawking–Page phase transition.

  14. Black hole evaporation in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo; Rachwał, Lesław [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Modesto, Leonardo [Department of Physics, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055 (China); Porey, Shiladitya, E-mail: bambi@fudan.edu.cn, E-mail: lmodesto@sustc.edu.cn, E-mail: shilp@iitk.ac.in, E-mail: rachwal@fudan.edu.cn [Department of Physics, Indian Institute of Technology, 208016 Kanpur (India)

    2017-09-01

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  15. Micro black holes and the democratic transition

    International Nuclear Information System (INIS)

    Dvali, Gia; Pujolas, Oriol

    2009-01-01

    Unitarity implies that the evaporation of microscopic quasiclassical black holes cannot be universal in different particle species. This creates a puzzle, since it conflicts with the thermal nature of quasiclassical black holes, according to which all of the species should see the same horizon and be produced with the same Hawking temperatures. We resolve this puzzle by showing that for the microscopic black holes, on top of the usual quantum evaporation time, there is a new time scale which characterizes a purely classical process during which the black hole loses the ability to differentiate among the species and becomes democratic. We demonstrate this phenomenon in a well-understood framework of large extra dimensions, with a number of parallel branes. An initially nondemocratic black hole is the one localized on one of the branes, with its high-dimensional Schwarzschild radius being much shorter than the interbrane distance. Such a black hole seemingly cannot evaporate into the species localized on the other branes that are beyond its reach. We demonstrate that in reality the system evolves classically in time, in such a way that the black hole accretes the neighboring branes. The end result is a completely democratic static configuration, in which all of the branes share the same black hole and all of the species are produced with the same Hawking temperature. Thus, just like their macroscopic counterparts, the microscopic black holes are universal bridges to the hidden sector physics.

  16. Black Hole Universe Model and Dark Energy

    Science.gov (United States)

    Zhang, Tianxi

    2011-01-01

    Considering black hole as spacetime and slightly modifying the big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach principle and Einsteinian general relativity and self consistently explains various observations of the universe without difficulties. According to this model, the universe originated from a hot star-like black hole and gradually grew through a supermassive black hole to the present universe by accreting ambient material and merging with other black holes. The entire space is infinitely and hierarchically layered and evolves iteratively. The innermost three layers are the universe that we lives, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and zero limits for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general relativity with the Robertson-Walker metric of spacetime, and tend to expand outward physically. When one universe expands out, a new similar universe grows up from its inside black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published in peer-review journals. This study will show how this new model explains the acceleration of the universe and why dark energy is not required. We will also compare the black hole universe model with the big bang cosmology.

  17. Charged black holes in phantom cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Mubasher; Qadir, Asghar; Rashid, Muneer Ahmad [National University of Sciences and Technology, Center for Advanced Mathematics and Physics, Rawalpindi (Pakistan)

    2008-11-15

    In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole. (orig.)

  18. Destroying black holes with test bodies

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Ted [Center for Fundamental Physics, University of Maryland, College Park, MD 20742-4111 (United States); Sotiriou, Thomas P, E-mail: jacobson@umd.ed, E-mail: T.Sotiriou@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-04-01

    If a black hole can accrete a body whose spin or charge would send the black hole parameters over the extremal limit, then a naked singularity would presumably form, in violation of the cosmic censorship conjecture. We review some previous results on testing cosmic censorship in this way using the test body approximation, focusing mostly on the case of neutral black holes. Under certain conditions a black hole can indeed be over-spun or over-charged in this approximation, hence radiative and self-force effects must be taken into account to further test cosmic censorship.

  19. Light geodesics near an evaporating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, Thiago, E-mail: thiago.barbosa@unige.ch; Monteiro, Fernando, E-mail: fernando.monteiro@unige.ch

    2015-10-16

    Quantum effects imply that an infalling observer cannot cross the event horizon of an evaporating black hole, even in her proper time. The Penrose diagram of an evaporating black hole is different from the one usually reported in the literature. We show that before the observer can cross the horizon the black hole disappears. Possible observational consequences are discussed. - Highlights: • We calculate the in-falling light geodesics in an evaporating black hole. • For our calculation we use a non-static metric called Vaydia metric. • We show that in-falling light cannot cross the event horizon. • In this case there is no information paradox.

  20. Noncommutative Black Holes at the LHC

    Science.gov (United States)

    Villhauer, Elena Michelle

    2017-12-01

    Based on the latest public results, 13 TeV data from the Large Hadron Collider at CERN has not indicated any evidence of hitherto tested models of quantum black holes, semiclassical black holes, or string balls. Such models have predicted signatures of particles with high transverse momenta. Noncommutative black holes remain an untested model of TeV-scale gravity that offers the starkly different signature of particles with relatively low transverse momenta. Considerations for a search for charged noncommutative black holes using the ATLAS detector will be discussed.

  1. Tidal interactions with Kerr black holes

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1977-01-01

    The tidal deformation of an extended test body falling with zero angular momentum into a Kerr black hole is calculated. Numerical results for infall along the symmetry axis and in the equatorial plane of the black hole are presented for a range of values of a, the specific angular momentum of the black hole. Estimates of the tidal contribution to the gravitational radiation are also given. The tidal contribution in equatorial infall into a maximally rotating Kerr black hole may be of the same order as the center-of-mass contribution to the gravitational radiation

  2. Particle accelerators inside spinning black holes.

    Science.gov (United States)

    Lake, Kayll

    2010-05-28

    On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.

  3. Schwarzschild black holes can wear scalar wigs.

    Science.gov (United States)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  4. Rotating black holes and Coriolis effect

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Jui, E-mail: agoodmanjerry.ep02g@nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Wu, Xiaoning, E-mail: wuxn@amss.ac.cn [Institute of Mathematics, Academy of Mathematics and System Science, CAS, Beijing, 100190 (China); Yang, Yi, E-mail: yiyang@mail.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Yuan, Pei-Hung, E-mail: phyuan.py00g@nctu.edu.tw [Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China)

    2016-10-10

    In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  5. Rotating black holes and Coriolis effect

    Directory of Open Access Journals (Sweden)

    Chia-Jui Chou

    2016-10-01

    Full Text Available In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  6. Planar domain walls in black hole spacetimes

    Science.gov (United States)

    Ficek, Filip; Mach, Patryk

    2018-02-01

    We investigate the behavior of low-mass, planar domain walls in the so-called ϕ4 model of the scalar field on the Schwarzschild and Kerr backgrounds. We focus on a transit of a domain wall through a black hole and solve numerically the equations of motion for a range of parameters of the domain wall and the black hole. We observe a behavior resembling an occurrence of ringing modes. Perturbations of domain walls vanish during latter evolution, suggesting their stability against a passage through the black hole. The results obtained for Kerr and Reissner-Nordström black holes are also compared.

  7. Traversable Wormholes and Black Hole Complementarity

    OpenAIRE

    Gottesman, Daniel

    1994-01-01

    Black hole complementarity is incompatible with the existence of traversable wormholes. In fact, traversable wormholes cause problems for any theory where information comes out in the Hawking radiation.

  8. Quantum black hole: What is that?

    International Nuclear Information System (INIS)

    Berezin, Victor

    2000-01-01

    In this paper we are trying to explain our point of view on what a quantum black hole is. The ideas are based on the previous works by the author and his collaborators where the concrete models of quantum black holes were constructed. It is argued that the main feature of quantum black holes that would allow us to distinguish them from other quantum object is some specific quantum radiation. Such a radiation in the quasiclassical limit is just the Hawking evaporation if the change in the black hole mass due to radiation can be neglected

  9. Do black holes really evaporate thermally

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1980-01-01

    The Raychaudhuri equation is used to analyze the effect of the Hawking radiation back reaction upon a black-hole event horizon. It is found that if the effective stress-energy tensor of the Hawking radiation has negative energy density as expected, then an evaporating black hole initially a solar mass in size must disappear in less than a second. This implies that either the evaporation process, if it occurs at all, must be quite different from what is commonly supposed, or else black-hole event horizons: and hence black holes: do not exist

  10. On algebraically special perturbations of black holes

    International Nuclear Information System (INIS)

    Chandrasekhar, S.

    1984-01-01

    Algebraically special perturbations of black holes excite gravitational waves that are either purely ingoing or purely outgoing. Solutions, appropriate to such perturbations of the Kerr, the Schwarzschild, and the Reissner-Nordstroem black-holes, are obtained in explicit forms by different methods. The different methods illustrate the remarkable inner relations among different facets of the mathematical theory. In the context of the Kerr black-hole they derive from the different ways in which the explicit value of the Starobinsky constant emerges, and in the context of the Schwarzschild and the Reissner-Nordstroem black-holes they derive from the potential barriers surrounding them belonging to a special class. (author)

  11. The tunneling radiation of a black hole with a f( R) global monopole under generalized uncertainty principle

    Science.gov (United States)

    Chen, Lingshen; Cheng, Hongbo

    2018-03-01

    The Parikh-Kraus-Wilczeck tunneling radiation of black hole involving a f( R) global monopole is considered based on the generalized uncertainty principle. The influences from global monopole, f( R) gravity and the corrections to the uncertainty appear in the expression of black hole entropy difference. It is found that the global monopole and the revision of general relativity both hinder the black hole from emitting the photons. The two parts as corrections to the uncertainty make the entropy difference of this kind of black hole larger or smaller respectively.

  12. NASA Observatory Confirms Black Hole Limits

    Science.gov (United States)

    2005-02-01

    The very largest black holes reach a certain point and then grow no more, according to the best survey to date of black holes made with NASA's Chandra X-ray Observatory. Scientists have also discovered many previously hidden black holes that are well below their weight limit. These new results corroborate recent theoretical work about how black holes and galaxies grow. The biggest black holes, those with at least 100 million times the mass of the Sun, ate voraciously during the early Universe. Nearly all of them ran out of 'food' billions of years ago and went onto a forced starvation diet. Focus on Black Holes in the Chandra Deep Field North Focus on Black Holes in the Chandra Deep Field North On the other hand, black holes between about 10 and 100 million solar masses followed a more controlled eating plan. Because they took smaller portions of their meals of gas and dust, they continue growing today. "Our data show that some supermassive black holes seem to binge, while others prefer to graze", said Amy Barger of the University of Wisconsin in Madison and the University of Hawaii, lead author of the paper describing the results in the latest issue of The Astronomical Journal (Feb 2005). "We now understand better than ever before how supermassive black holes grow." One revelation is that there is a strong connection between the growth of black holes and the birth of stars. Previously, astronomers had done careful studies of the birthrate of stars in galaxies, but didn't know as much about the black holes at their centers. DSS Optical Image of Lockman Hole DSS Optical Image of Lockman Hole "These galaxies lose material into their central black holes at the same time that they make their stars," said Barger. "So whatever mechanism governs star formation in galaxies also governs black hole growth." Astronomers have made an accurate census of both the biggest, active black holes in the distance, and the relatively smaller, calmer ones closer by. Now, for the first

  13. Surface geometry of 5D black holes and black rings

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Goswami, Rituparno

    2007-01-01

    We discuss geometrical properties of the horizon surface of five-dimensional rotating black holes and black rings. Geometrical invariants characterizing these 3D geometries are calculated. We obtain a global embedding of the 5D rotating black horizon surface into a flat space. We also describe the Kaluza-Klein reduction of the black ring solution (along the direction of its rotation) which, though it is nakedly singular, relates this solution to the 4D metric of a static black hole distorted by the presence of external scalar (dilaton) and vector ('electromagnetic') fields. The properties of the reduced black hole horizon and its embedding in E 3 are briefly discussed

  14. A Zeroth Law Compatible Model to Kerr Black Hole Thermodynamics

    Directory of Open Access Journals (Sweden)

    Viktor G. Czinner

    2017-02-01

    Full Text Available We consider the thermodynamic and stability problem of Kerr black holes arising from the nonextensive/nonadditive nature of the Bekenstein–Hawking entropy formula. Nonadditive thermodynamics is often criticized by asserting that the zeroth law cannot be compatible with nonadditive composition rules, so in this work we follow the so-called formal logarithm method to derive an additive entropy function for Kerr black holes also satisfying the zeroth law’s requirement. Starting from the most general, equilibrium compatible, nonadditive entropy composition rule of Abe, we consider the simplest non-parametric approach that is generated by the explicit nonadditive form of the Bekenstein–Hawking formula. This analysis extends our previous results on the Schwarzschild case, and shows that the zeroth law-compatible temperature function in the model is independent of the mass–energy parameter of the black hole. By applying the Poincaré turning point method, we also study the thermodynamic stability problem in the system.

  15. Gravitating discs around black holes

    International Nuclear Information System (INIS)

    Karas, V; Hure, J-M; Semerak, O

    2004-01-01

    Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole-disc system using analytical solutions of stationary, axially symmetric Einstein equations. Then, more detailed considerations are focused to the middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring. However, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging are completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the surrounding environment. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star-disc interactions, which can be recognized in observational properties, such as the relation between the central mass and stellar velocity dispersion. (topical review)

  16. Superluminality, black holes and EFT

    Energy Technology Data Exchange (ETDEWEB)

    Goon, Garrett [Department of Applied Mathematics and Theoretical Physics,Cambridge University, Cambridge, CB3 0WA (United Kingdom); Hinterbichler, Kurt [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106 (United States)

    2017-02-27

    Under the assumption that a UV theory does not display superluminal behavior, we ask what constraints on superluminality are satisfied in the effective field theory (EFT). We study two examples of effective theories: quantum electrodynamics (QED) coupled to gravity after the electron is integrated out, and the flat-space galileon. The first is realized in nature, the second is more speculative, but they both exhibit apparent superluminality around non-trivial backgrounds. In the QED case, we attempt, and fail, to find backgrounds for which the superluminal signal advance can be made larger than the putative resolving power of the EFT. In contrast, in the galileon case it is easy to find such backgrounds, indicating that if the UV completion of the galileon is (sub)luminal, quantum corrections must become important at distance scales of order the Vainshtein radius of the background configuration, much larger than the naive EFT strong coupling distance scale. Such corrections would be reminiscent of the non-perturbative Schwarzschild scale quantum effects that are expected to resolve the black hole information problem. Finally, a byproduct of our analysis is a calculation of how perturbative quantum effects alter charged Reissner-Nordstrom black holes.

  17. Quantum criticality and black holes.

    Science.gov (United States)

    Sachdev, Subir; Müller, Markus

    2009-04-22

    Many condensed matter experiments explore the finite temperature dynamics of systems near quantum critical points. Often, there are no well-defined quasiparticle excitations, and so quantum kinetic equations do not describe the transport properties completely. The theory shows that the transport coefficients are not proportional to a mean free scattering time (as is the case in the Boltzmann theory of quasiparticles), but are completely determined by the absolute temperature and by equilibrium thermodynamic observables. Recently, explicit solutions of this quantum critical dynamics have become possible via the anti-de Sitter/conformal field theory duality discovered in string theory. This shows that the quantum critical theory provides a holographic description of the quantum theory of black holes in a negatively curved anti-de Sitter space, and relates its transport coefficients to properties of the Hawking radiation from the black hole. We review how insights from this connection have led to new results for experimental systems: (i) the vicinity of the superfluid-insulator transition in the presence of an applied magnetic field, and its possible application to measurements of the Nernst effect in the cuprates, (ii) the magnetohydrodynamics of the plasma of Dirac electrons in graphene and the prediction of a hydrodynamic cyclotron resonance.

  18. Black holes are almost optimal quantum cloners

    Science.gov (United States)

    Adami, Christoph; Ver Steeg, Greg

    2015-06-01

    If black holes were able to clone quantum states, a number of paradoxes in black hole physics would disappear. However, the linearity of quantum mechanics forbids exact cloning of quantum states. Here we show that black holes indeed clone incoming quantum states with a fidelity that depends on the black hole’s absorption coefficient, without violating the no-cloning theorem because the clones are only approximate. Perfectly reflecting black holes are optimal universal ‘quantum cloning machines’ and operate on the principle of stimulated emission, exactly as their quantum optical counterparts. In the limit of perfect absorption, the fidelity of clones is only equal to what can be obtained via quantum state estimation methods. But for any absorption probability less than one, the cloning fidelity is nearly optimal as long as ω /T≥slant 10, a common parameter for modest-sized black holes.

  19. Charged black holes with scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhong-Ying; Lü, H. [Center for Advanced Quantum Studies, Department of Physics,Beijing Normal University, Beijing 100875 (China)

    2015-09-10

    We consider a class of Einstein-Maxwell-Dilaton theories, in which the dilaton coupling to the Maxwell field is not the usual single exponential function, but one with a stationary point. The theories admit two charged black holes: one is the Reissner-Nordstrøm (RN) black hole and the other has a varying dilaton. For a given charge, the new black hole in the extremal limit has the same AdS{sub 2}×Sphere near-horizon geometry as the RN black hole, but it carries larger mass. We then introduce some scalar potentials and obtain exact charged AdS black holes. We also generalize the results to black p-branes with scalar hair.

  20. Thermodynamics of Acoustic Black Holes in Two Dimensions

    Directory of Open Access Journals (Sweden)

    Baocheng Zhang

    2016-01-01

    Full Text Available It is well-known that the thermal Hawking-like radiation can be emitted from the acoustic horizon, but the thermodynamic-like understanding for acoustic black holes was rarely made. In this paper, we will show that the kinematic connection can lead to the dynamic connection at the horizon between the fluid and gravitational models in two dimensions, which implies that there exists the thermodynamic-like description for acoustic black holes. Then, we discuss the first law of thermodynamics for the acoustic black hole via an intriguing connection between the gravitational-like dynamics of the acoustic horizon and thermodynamics. We obtain a universal form for the entropy of acoustic black holes, which has an interpretation similar to the entropic gravity. We also discuss the specific heat and find that the derivative of the velocity of background fluid can be regarded as a novel acoustic analogue of the two-dimensional dilaton potential, which interprets why the two-dimensional fluid dynamics can be connected to the gravitational dynamics but it is difficult for four-dimensional case. In particular, when a constraint is added for the fluid, the analogue of a Schwarzschild black hole can be realized.