WorldWideScience

Sample records for black hole effects

  1. Quantum effects in black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1979-01-01

    A strict definition of black holes is presented and some properties with regard to their mass are enumerated. The Hawking quantum effect - the effect of vacuum instability in the black hole gravitational field, as a result of shich the black hole radiates as a heated body is analyzed. It is shown that in order to obtain results on the black hole radiation it is sufficient to predetermine the in-vacuum state at a time moment in the past, when the collapsing body has a large size, and its gravitational field can be neglected. The causes and the place of particle production by the black hole, and also the space-time inside the black hole, are considered

  2. Rotating black holes and Coriolis effect

    Directory of Open Access Journals (Sweden)

    Chia-Jui Chou

    2016-10-01

    Full Text Available In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  3. Rotating black holes and Coriolis effect

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chia-Jui, E-mail: agoodmanjerry.ep02g@nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Wu, Xiaoning, E-mail: wuxn@amss.ac.cn [Institute of Mathematics, Academy of Mathematics and System Science, CAS, Beijing, 100190 (China); Yang, Yi, E-mail: yiyang@mail.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Yuan, Pei-Hung, E-mail: phyuan.py00g@nctu.edu.tw [Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China)

    2016-10-10

    In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  4. Black holes

    International Nuclear Information System (INIS)

    Feast, M.W.

    1981-01-01

    This article deals with two questions, namely whether it is possible for black holes to exist, and if the answer is yes, whether we have found any yet. In deciding whether black holes can exist or not the central role in the shaping of our universe played by the forse of gravity is discussed, and in deciding whether we are likely to find black holes in the universe the author looks at the way stars evolve, as well as white dwarfs and neutron stars. He also discusses the problem how to detect a black hole, possible black holes, a southern black hole, massive black holes, as well as why black holes are studied

  5. Black holes

    OpenAIRE

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries.

  6. Effective Stringy Description of Schwarzschild Black Holes

    OpenAIRE

    Krasnov , Kirill; Solodukhin , Sergey N.

    2004-01-01

    We start by pointing out that certain Riemann surfaces appear rather naturally in the context of wave equations in the black hole background. For a given black hole there are two closely related surfaces. One is the Riemann surface of complexified ``tortoise'' coordinate. The other Riemann surface appears when the radial wave equation is interpreted as the Fuchsian differential equation. We study these surfaces in detail for the BTZ and Schwarzschild black holes in four and higher dimensions....

  7. Black Holes

    OpenAIRE

    Townsend, P. K.

    1997-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usu...

  8. Relativistic three-body effects in black hole coalescence

    International Nuclear Information System (INIS)

    Campanelli, Manuela; Dettwyler, Miranda; Lousto, Carlos O.; Hannam, Mark

    2006-01-01

    Three-body interactions are expected to be common in globular clusters and in galactic cores hosting supermassive black holes. We consider an equal-mass binary black hole system in the presence of a third black hole. Using numerically generated binary black hole initial data sets, and first and second-order post-Newtonian (1PN and 2PN) techniques, we find that the presence of the third black hole has non-negligible relativistic effects on the location of the binary's innermost stable circular orbit (ISCO), and that these effects arise at 2PN order. For a stellar-mass black hole binary in orbit about a supermassive black hole, the massive black hole has stabilizing effects on the orbiting binary, leading to an increase in merger time and a decrease of the terminal orbital frequency, and an amplification of the gravitational radiation emitted from the binary system by up to 6%

  9. Black Holes

    OpenAIRE

    Horowitz, Gary T.; Teukolsky, Saul A.

    1998-01-01

    Black holes are among the most intriguing objects in modern physics. Their influence ranges from powering quasars and other active galactic nuclei, to providing key insights into quantum gravity. We review the observational evidence for black holes, and briefly discuss some of their properties. We also describe some recent developments involving cosmic censorship and the statistical origin of black hole entropy.

  10. Effective Conformal Descriptions of Black Hole Entropy

    Directory of Open Access Journals (Sweden)

    Steven Carlip

    2011-07-01

    Full Text Available It is no longer considered surprising that black holes have temperatures and entropies. What remains surprising, though, is the universality of these thermodynamic properties: their exceptionally simple and general form, and the fact that they can be derived from many very different descriptions of the underlying microscopic degrees of freedom. I review the proposal that this universality arises from an approximate conformal symmetry, which permits an effective “conformal dual” description that is largely independent of the microscopic details.

  11. Surface effects in black hole physics

    International Nuclear Information System (INIS)

    Damour, T.

    1982-01-01

    This contribution reviews briefly the various analogies which have been drawn between black holes and ordinary physical objects. It is shown how, by concentrating on the properties of the surface of a black hole, it is possible to set up a sequence of tight analogies allowing one to conclude that a black hole is, qualitatively and quantitatively, similar to a fluid bubble possessing a negative surface tension and endowed with finite values of the electrical conductivity and of the shear and bulk viscosities. These analogies are valid simultaneously at the levels of electromagnetic, mechanical and thermodynamical laws. Explicit applications of this framework are worked out (eddy currents, tidal drag). The thermostatic equilibrium of a black hole electrically interacting with its surroundings is discussed, as well as the validity of a minimum entropy production principle in black hole physics. (Auth.)

  12. Physical effects in gravitational field of black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1986-01-01

    A large number of problems related to peculiarities of physical processes in a strong gravitational field of black holes has been considered. Energy shift and the complete structure of physical fields for charged sources near a black hole have been investigated. Density matrix and generating functional for quantum effects in stationary black holes have been calculated. Contributions of massless and massive fields to vacuum polarization in black holes have been investigated and influence of quantum effects on the global structure of a black hole has been discussed

  13. Casimir Effect and Black Hole Radiation

    Science.gov (United States)

    Rahbardehghan, S.

    2018-03-01

    The gravitational field of a black hole intrinsically creates a potential barrier consisted of two reflecting boundaries; the first one far from the hole and the second one in the vicinity of its horizon. With respect to this fact and assuming the boundaries as good conductors (in view of an observer near the horizon just outside the second boundary), in a series of papers, R.M. Nugayev by considering a conformally coupled massless scalar field and based on the calculations of Candelas and Deutsch (the accelerated-mirror results) has claimed that " ...the existence of the potential barrier is as crucial for Hawking evaporation as the existence of the horizon". In this paper, by taking the same assumptions, through straightforward reasonings, we explicitly show that contrary to this claim, the effects of the first boundary on the black hole radiation are quite negligible. Moreover, the inclusion of the second boundary makes the situation more complicated, because the induced Casimir energy-momentum tensor by this boundary in its vicinity is divergent of order δ ^{-4} ( δ is the distance to the boundary).

  14. Black holes and the butterfly effect

    International Nuclear Information System (INIS)

    Shenker, Stephen H.; Stanford, Douglas

    2014-01-01

    We use holography to study sensitive dependence on initial conditions in strongly coupled field theories. Specifically, we mildly perturb a thermofield double state by adding a small number of quanta on one side. If these quanta are released a scrambling time in the past, they destroy the local two-sided correlations present in the unperturbed state. The corresponding bulk geometry is a two-sided AdS black hole, and the key effect is the blueshift of the early infalling quanta relative to the t=0 slice, creating a shock wave. We comment on string- and Planck-scale corrections to this setup, and discuss points that may be relevant to the firewall controversy

  15. Black holes and the butterfly effect

    Energy Technology Data Exchange (ETDEWEB)

    Shenker, Stephen H.; Stanford, Douglas [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,Stanford, CA 94305 (United States); Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106-4030 (United States)

    2014-03-13

    We use holography to study sensitive dependence on initial conditions in strongly coupled field theories. Specifically, we mildly perturb a thermofield double state by adding a small number of quanta on one side. If these quanta are released a scrambling time in the past, they destroy the local two-sided correlations present in the unperturbed state. The corresponding bulk geometry is a two-sided AdS black hole, and the key effect is the blueshift of the early infalling quanta relative to the t=0 slice, creating a shock wave. We comment on string- and Planck-scale corrections to this setup, and discuss points that may be relevant to the firewall controversy.

  16. Quantum gravity effects in black holes at the LHC

    International Nuclear Information System (INIS)

    Alberghi, G L; Casadio, R; Tronconi, A

    2007-01-01

    We study possible back-reaction and quantum gravity effects in the evaporation of black holes which could be produced at the LHC through a modification of the Hawking emission. The corrections are phenomenologically taken into account by employing a modified relation between the black hole mass and temperature. The usual assumption that black holes explode around 1 TeV is also released, and the evaporation process is extended to (possibly much) smaller final masses. We show that these effects could be observable for black holes produced with a relatively large mass and should therefore be taken into account when simulating micro-black hole events for the experiments planned at the LHC

  17. Minimal Length Effects on Tunnelling from Spherically Symmetric Black Holes

    Directory of Open Access Journals (Sweden)

    Benrong Mu

    2015-01-01

    Full Text Available We investigate effects of the minimal length on quantum tunnelling from spherically symmetric black holes using the Hamilton-Jacobi method incorporating the minimal length. We first derive the deformed Hamilton-Jacobi equations for scalars and fermions, both of which have the same expressions. The minimal length correction to the Hawking temperature is found to depend on the black hole’s mass and the mass and angular momentum of emitted particles. Finally, we calculate a Schwarzschild black hole's luminosity and find the black hole evaporates to zero mass in infinite time.

  18. Black hole astrophysics

    International Nuclear Information System (INIS)

    Blandford, R.D.; Thorne, K.S.

    1979-01-01

    Following an introductory section, the subject is discussed under the headings: on the character of research in black hole astrophysics; isolated holes produced by collapse of normal stars; black holes in binary systems; black holes in globular clusters; black holes in quasars and active galactic nuclei; primordial black holes; concluding remarks on the present state of research in black hole astrophysics. (U.K.)

  19. Effective theory of black holes in the 1/D expansion

    International Nuclear Information System (INIS)

    Emparan, Roberto; Shiromizu, Tetsuya; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro

    2015-01-01

    The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this ‘black hole surface’ (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for ‘black droplets’, i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.

  20. Strong Gravity Effects of Rotating Black Holes: Quasiperiodic Oscillations

    OpenAIRE

    Aliev, Alikram N.; Esmer, Göksel Daylan; Talazan, Pamir

    2012-01-01

    We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: The orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which ...

  1. Strong gravity effects in accreting black-hole systems

    International Nuclear Information System (INIS)

    Niedzwiecki, A.

    2006-01-01

    I briefly review current status of studying effects of strong gravity in X-ray astronomy. Matter accreting onto a black hole probes the relativistic region of space-time and the high-energy radiation it produces should contain signatures of strong gravity effects. Current X-ray observations provide the evidence that the observed emission originates, in some cases, at a distance of a few gravitational radii from a black hole. Moreover, certain observations invoke interpretations favouring rapid rotation of the black hole. Some observational properties of black hole systems are supposed to result from the lack of a material surface in these objects. I consider further effects, specific for the black hole environment, which can be studied in X-ray data. Bulk motion Comptonization, which would directly reveal converging flow of matter plunging into a black hole, is unlikely to be important in formation of X-ray spectra. Similarly, Penrose processes are unlikely to give observational effects, although this issue has not been thoroughly studied so far for all plausible radiative mechanisms. (author)

  2. Effects of black hole evaporation on the quantum entangled state

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Doyeol [University of Seoul, Seoul (Korea, Republic of)

    2010-10-15

    We investigate the effect of black hole evaporation on the entangled state in which one party of a pair, Alice, falls into the black hole at formation while the other party, Bob, remains outside the black hole. The final state of a black hole is studied by taking into account a general unitary evolution of a black-hole matter state. The mixedness is found to decrease under a general unitary transformation when the initial matter state is in a mixed state and the mean fidelity at the evaporation is smaller than the fidelity of the quantum teleportation by a factor of the inverse square of the number of states of a black hole. The change in the entanglement of the Alice-Bob pair at evaporation is studied by calculating the entanglement fidelity and eigenvalues of the partial transposed block density matrix. The entanglement fidelity is found to be inversely proportional to the square of the Hilbert space dimension N, and the entanglement could survive the evaporation process.

  3. Effective photon mass from black-hole formation

    Directory of Open Access Journals (Sweden)

    Slava Emelyanov

    2017-06-01

    Full Text Available We compute the value of effective photon mass mγ at one-loop level in QED in the background of small (1010 g≲M≪1016 g spherically symmetric black hole in asymptotically flat spacetime. This effect is associated with the modification of electron/positron propagator in presence of event horizon. Physical manifestations of black-hole environment are compared with those of hot neutral plasma. We estimate the distance to the nearest black hole from the upper bound on mγ obtained in the Coulomb-law test. We also find that corrections to electron mass me and fine structure constant α at one-loop level in QED are negligible in the weak gravity regime.

  4. Effective theories and black hole production in warped compactifications

    International Nuclear Information System (INIS)

    Giddings, Steven B.; Katz, Emanuel

    2001-01-01

    We investigate aspects of the four-dimensional (4D) effective description of brane world scenarios based on warped compactification on anti-de Sitter space. The low-energy dynamics is described by visible matter gravitationally coupled to a ''dark'' conformal field theory. We give the linearized description of the 4D stress tensor corresponding to an arbitrary 5D matter distribution. In particular a 5D falling particle corresponds to a 4D expanding shell, giving a 4D interpretation of a trajectory that misses a black hole only by moving in the fifth dimension. Breakdown of the effective description occurs when either five-dimensional physics or strong gravity becomes important. In scenarios with a TeV brane, the latter can happen through the production of black holes near the TeV scale. This could provide an interesting experimental window on quantum black hole dynamics

  5. Meissner effect for axially symmetric charged black holes

    Science.gov (United States)

    Gürlebeck, Norman; Scholtz, Martin

    2018-04-01

    In our previous work [N. Gürlebeck and M. Scholtz, Phys. Rev. D 95, 064010 (2017), 10.1103/PhysRevD.95.064010], we have shown that electric and magnetic fields are expelled from the horizons of extremal, stationary and axially symmetric uncharged black holes; this is called the Meissner effect for black holes. Here, we generalize this result in several directions. First, we allow that the black hole carries charge, which requires a generalization of the definition of the Meissner effect. Next, we introduce the notion of almost isolated horizons, which is weaker than the usual notion of isolated horizons, since the geometry of the former is not necessarily completely time independent. Moreover, we allow the horizon to be pierced by strings, thereby violating the usual assumption on the spherical topology made in the definition of the weakly isolated horizon. Finally, we spell out in detail all assumptions entering the proof and show that the Meissner effect is an inherent property of black holes even in full nonlinear theory.

  6. ULTRAMASSIVE BLACK HOLE COALESCENCE

    International Nuclear Information System (INIS)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter

    2015-01-01

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production

  7. Stimulated-emission effects in particle creation near black holes

    International Nuclear Information System (INIS)

    Wald, R.M.

    1976-01-01

    It has recently been shown that if a black hole is formed by gravitational collapse, spontaneous particle creation will occur and a thermal spectrum of all species of particles will be emitted to infinity if the quantum matter was initially in the vacuum state. In this paper we investigate the stimulated-emission effects which occur if particles are present initially. We show in general that for a Hermitian scalar field in an external potential or in curved, asymptotically flat spacetime, stimulated-emission effects can occur precisely in those modes for which there is spontaneous particle creation from the vacuum. For the case of a Schwarzschild black hole, this result appears paradoxical, since spontaneous emission occurs at late times but there is no classical analog of stimulated emission at late times. The resolution of this paradox is that in order to induce emission of particles which emerge at late times one must send in particles at early times, so that they reach the black hole very near the instant of its formation. However, enormous energy is required of these incoming particles in order to stimulate emission of particles which emerge at late times. Thus, for a Schwarzschild black hole, even if particles are initially present (with limited energy) they will induce emission only at early times; at late times one will see only the spontaneously emitted blackbody thermal radiation. For the case of a Kerr black hole stimulated emission can be induced by particles sent in at late times with the appropriate frequencies and angular dependence. If the number of incoming particles is large, this quantum stimulated emission just gives the classical superradiant scattering

  8. Quantum aspects of black holes

    CERN Document Server

    2015-01-01

    Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.

  9. Black holes. Chapter 6

    International Nuclear Information System (INIS)

    Penrose, R.

    1980-01-01

    Conditions for the formation of a black hole are considered, and the properties of black holes. The possibility of Cygnus X-1 as a black hole is discussed. Einstein's theory of general relativity in relation to the formation of black holes is discussed. (U.K.)

  10. Search for black holes

    International Nuclear Information System (INIS)

    Cherepashchuk, Anatolii M

    2003-01-01

    Methods and results of searching for stellar mass black holes in binary systems and for supermassive black holes in galactic nuclei of different types are described. As of now (June 2002), a total of 100 black hole candidates are known. All the necessary conditions Einstein's General Relativity imposes on the observational properties of black holes are satisfied for candidate objects available, thus further assuring the existence of black holes in the Universe. Prospects for obtaining sufficient criteria for reliably distinguishing candidate black holes from real black holes are discussed. (reviews of topical problems)

  11. Supersymmetric black holes

    OpenAIRE

    de Wit, Bernard

    2005-01-01

    The effective action of $N=2$, $d=4$ supergravity is shown to acquire no quantum corrections in background metrics admitting super-covariantly constant spinors. In particular, these metrics include the Robinson-Bertotti metric (product of two 2-dimensional spaces of constant curvature) with all 8 supersymmetries unbroken. Another example is a set of arbitrary number of extreme Reissner-Nordstr\\"om black holes. These black holes break 4 of 8 supersymmetries, leaving the other 4 unbroken. We ha...

  12. Testing effective string models of black holes with fixed scalars

    International Nuclear Information System (INIS)

    Krasnitz, M.; Klebanov, I.R.

    1997-01-01

    We solve the problem of mixing between the fixed scalar and metric fluctuations. First, we derive the decoupled fixed scalar equation for the four-dimensional black hole with two different charges. We proceed to the five-dimensional black hole with different electric (one-brane) and magnetic (five-brane) charges, and derive two decoupled equations satisfied by appropriate mixtures of the original fixed scalar fields. The resulting greybody factors are proportional to those that follow from coupling to dimension (2,2) operators on the effective string. In general, however, the string action also contains couplings to chiral operators of dimension (1,3) and (3,1), which cause disagreements with the semiclassical absorption cross sections. Implications of this for the effective string models are discussed. copyright 1997 The American Physical Society

  13. A Presentation of the Black Hole Stretching Effect

    Science.gov (United States)

    Kontomaris, Stylianos Vasileios; Malamou, Anna

    2018-01-01

    Black holes and the physics behind them is a fascinating topic for students of all levels. The exotic conditions which prevail near a black hole should be discussed and presented to undergraduate students in order to increase their interest in studying physics and to provide useful insights into basic physics concepts, such as non-uniform…

  14. A Dancing Black Hole

    Science.gov (United States)

    Shoemaker, Deirdre; Smith, Kenneth; Schnetter, Erik; Fiske, David; Laguna, Pablo; Pullin, Jorge

    2002-04-01

    Recently, stationary black holes have been successfully simulated for up to times of approximately 600-1000M, where M is the mass of the black hole. Considering that the expected burst of gravitational radiation from a binary black hole merger would last approximately 200-500M, black hole codes are approaching the point where simulations of mergers may be feasible. We will present two types of simulations of single black holes obtained with a code based on the Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein evolution equations. One type of simulations addresses the stability properties of stationary black hole evolutions. The second type of simulations demonstrates the ability of our code to move a black hole through the computational domain. This is accomplished by shifting the stationary black hole solution to a coordinate system in which the location of the black hole is time dependent.

  15. Black holes and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    instance, the UK's research councils have yet to put any real money behind these ideas. Black holes are best described by the general theory of relativity. However, general relativity is a classical theory of gravity, and although its predictions have been verified in many experiments, a quantum theory of gravity remains one of the holy grails of physics. One of the first physicists to make real progress in this quest to reconcile general relativity and quantum mechanics was Stephen Hawking. In 1974 Hawking calculated what would happen if a quantum fluctuation occurred near an event horizon. He concluded that the black hole would radiate, and that the amount of radiation would be inversely proportional to the mass of the black hole. However, black holes tend to be very heavy, so their output of Hawking radiation would be too low to detect experimentally. One intriguing exception could be much smaller primordial black holes created in the big bang: these should radiate observable amounts of gamma rays, but they have not been detected yet. This whole body of work - in which thermodynamic concepts such as temperature and entropy are also associated with the black hole - is Hawking's major achievement in physics. The detection of Hawking radiation is the ultimate goal of experiments on artificial black holes, although a lot of theoretical and experimental work has to be done first. The successful experiment is likely to involve a flowing Bose-Einstein condensate or a medium in which the speed of light can be reduced to zero. After years of groundwork, physicists have recently made rapid progress in both these fields. Meanwhile, the recent observation of neutrons in discrete quantum states in a gravitational potential shows that quantum gravity effects can be seen in the laboratory. All that is needed now is an act of faith. (U.K.)

  16. Black hole critical phenomena without black holes

    Indian Academy of Sciences (India)

    large values of Ф, black holes do form and for small values the scalar field ... on the near side of the ridge ultimately evolve to form black holes while those configu- ... The inset shows a bird's eye view looking down on the saddle point.

  17. Black hole hair removal

    International Nuclear Information System (INIS)

    Banerjee, Nabamita; Mandal, Ipsita; Sen, Ashoke

    2009-01-01

    Macroscopic entropy of an extremal black hole is expected to be determined completely by its near horizon geometry. Thus two black holes with identical near horizon geometries should have identical macroscopic entropy, and the expected equality between macroscopic and microscopic entropies will then imply that they have identical degeneracies of microstates. An apparent counterexample is provided by the 4D-5D lift relating BMPV black hole to a four dimensional black hole. The two black holes have identical near horizon geometries but different microscopic spectrum. We suggest that this discrepancy can be accounted for by black hole hair - degrees of freedom living outside the horizon and contributing to the degeneracies. We identify these degrees of freedom for both the four and the five dimensional black holes and show that after their contributions are removed from the microscopic degeneracies of the respective systems, the result for the four and five dimensional black holes match exactly.

  18. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  19. Black holes without firewalls

    Science.gov (United States)

    Larjo, Klaus; Lowe, David A.; Thorlacius, Larus

    2013-05-01

    The postulates of black hole complementarity do not imply a firewall for infalling observers at a black hole horizon. The dynamics of the stretched horizon, that scrambles and reemits information, determines whether infalling observers experience anything out of the ordinary when entering a large black hole. In particular, there is no firewall if the stretched horizon degrees of freedom retain information for a time of the order of the black hole scrambling time.

  20. Black holes are hot

    International Nuclear Information System (INIS)

    Gibbons, G.

    1976-01-01

    Recent work, which has been investigating the use of the concept of entropy with respect to gravitating systems, black holes and the universe as a whole, is discussed. The resulting theory of black holes assigns a finite temperature to them -about 10 -7 K for ordinary black holes of stellar mass -which is in complete agreement with thermodynamical concepts. It is also shown that black holes must continuously emit particles just like ordinary bodies which have a certain temperature. (U.K.)

  1. Modeling black hole evaporation

    CERN Document Server

    Fabbri, Alessandro

    2005-01-01

    The scope of this book is two-fold: the first part gives a fully detailed and pedagogical presentation of the Hawking effect and its physical implications, and the second discusses the backreaction problem, especially in connection with exactly solvable semiclassical models that describe analytically the black hole evaporation process. The book aims to establish a link between the general relativistic viewpoint on black hole evaporation and the new CFT-type approaches to the subject. The detailed discussion on backreaction effects is also extremely valuable.

  2. Monopole Black Hole Skyrmions

    OpenAIRE

    Moss, Ian G; Shiiki, N; Winstanley, E

    2000-01-01

    Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.

  3. What is black hole?

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. What is black hole? Possible end phase of a star: A star is a massive, luminous ball of plasma having continuous nuclear burning. Star exhausts nuclear fuel →. White Dwarf, Neutron Star, Black Hole. Black hole's gravitational field is so powerful that even ...

  4. Black hole gravitohydromagnetics

    CERN Document Server

    Punsly, Brian

    2008-01-01

    Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...

  5. Are black holes springlike?

    Science.gov (United States)

    Good, Michael R. R.; Ong, Yen Chin

    2015-02-01

    A (3 +1 )-dimensional asymptotically flat Kerr black hole angular speed Ω+ can be used to define an effective spring constant, k =m Ω+2. Its maximum value is the Schwarzschild surface gravity, k =κ , which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: 2 π T =κ -k . Hooke's law, in the extremal limit, provides the force F =1 /4 , which is consistent with the conjecture of maximum force in general relativity.

  6. Black holes in binary stars

    NARCIS (Netherlands)

    Wijers, R.A.M.J.

    1996-01-01

    Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes

  7. Black hole levitron

    International Nuclear Information System (INIS)

    Arsiwalla, Xerxes D.; Verlinde, Erik P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.'s multicenter supersymmetric black hole solutions provides a supergravity description of such backgrounds within which a black hole can be trapped within a confined volume. This construction is realized by solving for a levitating black hole over a magnetic dipole base. We comment on how such a construction is akin to a mechanical levitron.

  8. Slowly balding black holes

    International Nuclear Information System (INIS)

    Lyutikov, Maxim; McKinney, Jonathan C.

    2011-01-01

    The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N B =eΦ ∞ /(πc(ℎ/2π)), where Φ ∞ ≅2π 2 B NS R NS 3 /(P NS c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.

  9. Particle creation by black holes

    International Nuclear Information System (INIS)

    Hawking, S.W.

    1975-01-01

    In the classical theory black holes can only absorb and not emit particles. However it is shown that quantum mechanical effects cause black holes to create and emit particles. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual disappearance: any primordial black hole of mass less than about 10 15 g would have evaporated by now. Although these quantum effects violate the classical law that the area of the event horizon of a black hole cannot decrease, there remains a Generalized Second Law: S + 1/4 A never decreases where S is the entropy of matter outside black holes and A is the sum of the surface areas of the event horizons. This shows that gravitational collapse converts the baryons and leptons in the collapsing body into entropy. It is tempting to speculate that this might be the reason why the Universe contains so much entropy per baryon. (orig.) [de

  10. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  11. Primary black holes

    International Nuclear Information System (INIS)

    Novikov, I.; Polnarev, A.

    1981-01-01

    Proves are searched for of the formation of the so-called primary black holes at the very origin of the universe. The black holes would weigh less than 10 13 kg. The formation of a primary black hole is conditional on strong fluctuations of the gravitational field corresponding roughly to a half of the fluctuation maximally permissible by the general relativity theory. Only big fluctuations of the gravitational field can overcome the forces of the hot gas pressure and compress the originally expanding matter into a black hole. Low-mass black holes have a temperature exceeding that of the black holes formed from stars. A quantum process of particle formation, the so-called evaporation takes place in the strong gravitational field of a black hole. The lower the mass of the black hole, the shorter the evaporation time. The analyses of processes taking place during the evaporation of low-mass primary black holes show that only a very small proportion of the total mass of the matter in the universe could turn into primary black holes. (M.D.)

  12. Black-hole astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others

    1995-07-01

    Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.

  13. Effect of accretion on primordial black holes in Brans-Dicke theory

    International Nuclear Information System (INIS)

    Nayak, B.; Singh, L. P.; Majumdar, A. S.

    2009-01-01

    We consider the effect of accretion of radiation in the early Universe on primordial black holes in Brans-Dicke theory. The rate of growth of a primordial black hole due to accretion of radiation in Brans-Dicke theory is considerably smaller than the rate of growth of the cosmological horizon, thus making available sufficient radiation density for the black hole to accrete causally. We show that accretion of radiation by Brans-Dicke black holes overrides the effect of Hawking evaporation during the radiation dominated era. The subsequent evaporation of the black holes in later eras is further modified due to the variable gravitational 'constant', and they could survive up to longer times compared to the case of standard cosmology. We estimate the impact of accretion on modification of the constraint on their initial mass fraction obtained from the γ-ray background limit from presently evaporating primordial black holes.

  14. Black holes and the multiverse

    International Nuclear Information System (INIS)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2016-01-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse

  15. Black holes and the multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028 Spain (Spain); Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu [Institute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 (United States)

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  16. Astrophysical black holes

    CERN Document Server

    Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica

    2016-01-01

    Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.

  17. QED blue-sheet effects inside black holes

    International Nuclear Information System (INIS)

    Burko, L.M.

    1997-01-01

    The interaction of the unboundedly blueshifted photons of the cosmic microwave background radiation with a physical object falling towards the inner horizon of a Reissner-Nordstroem black hole is analyzed. To evaluate this interaction we consider the QED effects up to the second order in the perturbation expansion. We then extrapolate the QED effects up to a cutoff, which we introduce at the Planckian level. (Our results are not sensitive to the cutoff energy.) We find that the energy absorbed by an infalling observer is finite, and for typical parameters would not lead to a catastrophic heating. However, this interaction would almost certainly be fatal for a human being, or other living organisms of similar size. On the other hand, we find that smaller objects may survive the interaction. Our results do not provide support for the idea that the Cauchy horizon is to be regarded as the boundary of spacetime. copyright 1997 The American Physical Society

  18. White holes and eternal black holes

    International Nuclear Information System (INIS)

    Hsu, Stephen D H

    2012-01-01

    We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)

  19. Accreting Black Holes

    OpenAIRE

    Begelman, Mitchell C.

    2014-01-01

    I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these ...

  20. Nonextremal stringy black hole

    International Nuclear Information System (INIS)

    Suzuki, K.

    1997-01-01

    We construct a four-dimensional BPS saturated heterotic string solution from the Taub-NUT solution. It is a nonextremal black hole solution since its Euler number is nonzero. We evaluate its black hole entropy semiclassically. We discuss the relation between the black hole entropy and the degeneracy of string states. The entropy of our string solution can be understood as the microscopic entropy which counts the elementary string states without any complications. copyright 1997 The American Physical Society

  1. Naked black holes

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Ross, S.F.

    1997-01-01

    It is shown that there are large static black holes for which all curvature invariants are small near the event horizon, yet any object which falls in experiences enormous tidal forces outside the horizon. These black holes are charged and near extremality, and exist in a wide class of theories including string theory. The implications for cosmic censorship and the black hole information puzzle are discussed. copyright 1997 The American Physical Society

  2. String-Corrected Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Hubeny, V.

    2005-01-12

    We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.

  3. Black hole Berry phase

    NARCIS (Netherlands)

    de Boer, J.; Papadodimas, K.; Verlinde, E.

    2009-01-01

    Supersymmetric black holes are characterized by a large number of degenerate ground states. We argue that these black holes, like other quantum mechanical systems with such a degeneracy, are subject to a phenomenon which is called the geometric or Berry’s phase: under adiabatic variations of the

  4. Black holes are warm

    International Nuclear Information System (INIS)

    Ravndal, F.

    1978-01-01

    Applying Einstein's theory of gravitation to black holes and their interactions with their surroundings leads to the conclusion that the sum of the surface areas of several black holes can never become less. This is shown to be analogous to entropy in thermodynamics, and the term entropy is also thus applied to black holes. Continuing, expressions are found for the temperature of a black hole and its luminosity. Thermal radiation is shown to lead to explosion of the black hole. Numerical examples are discussed involving the temperature, the mass, the luminosity and the lifetime of black mini-holes. It is pointed out that no explosions corresponding to the prediction have been observed. It is also shown that the principle of conservation of leptons and baryons is broken by hot black holes, but that this need not be a problem. The related concept of instantons is cited. It is thought that understanding of thermal radiation from black holes may be important for the development of a quantified gravitation theory. (JIW)

  5. Black holes matter

    DEFF Research Database (Denmark)

    Kragh, Helge Stjernholm

    2016-01-01

    Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....

  6. Quantum black holes

    OpenAIRE

    Hooft, G. 't

    1987-01-01

    This article is divided into three parts. First, a systematic derivation of the Hawking radiation is given in three different ways. The information loss problem is then discussed in great detail. The last part contains a concise discussion of black hole thermodynamics. This article was published as chapter $6$ of the IOP book "Lectures on General Relativity, Cosmology and Quantum Black Holes" (July $2017$).

  7. Black hole levitron

    NARCIS (Netherlands)

    Arsiwalla, X.D.; Verlinde, E.P.

    2010-01-01

    We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.’s multicenter

  8. Lifshitz topological black holes

    International Nuclear Information System (INIS)

    Mann, R.B.

    2009-01-01

    I find a class of black hole solutions to a (3+1) dimensional theory gravity coupled to abelian gauge fields with negative cosmological constant that has been proposed as the dual theory to a Lifshitz theory describing critical phenomena in (2+1) dimensions. These black holes are all asymptotic to a Lifshitz fixed point geometry and depend on a single parameter that determines both their area (or size) and their charge. Most of the solutions are obtained numerically, but an exact solution is also obtained for a particular value of this parameter. The thermodynamic behaviour of large black holes is almost the same regardless of genus, but differs considerably for small black holes. Screening behaviour is exhibited in the dual theory for any genus, but the critical length at which it sets in is genus-dependent for small black holes.

  9. Schwarzschild black hole in the background of the Einstein universe: some physical effects

    International Nuclear Information System (INIS)

    Ramachandra, B S; Vishveshwara, C V

    2002-01-01

    A prototype of an asymptotically non-flat black hole spacetime is that of a Schwarzschild black hole in the background of the Einstein universe, which is a special case of the representation of a black hole in a cosmological background given by Vaidya. Recently, this spacetime has been studied in detail by Nayak et al. They constructed a composite spacetime called the Vaidya-Einstein-Schwarzschild (VES) spacetime. We investigate some of the physical effects inherent to this spacetime. We carry out a background-black hole decomposition of the spacetime in order to separate out the effects due to the background spacetime and the black hole. The physical effects we study include the classical tests - the gravitational redshift, perihelion precession and light bending - and circular geodesics. A detailed classification of geodesics, in general, is also given

  10. World-volume effective theory for higher-dimensional black holes.

    Science.gov (United States)

    Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A

    2009-05-15

    We argue that the main feature behind novel properties of higher-dimensional black holes, compared to four-dimensional ones, is that their horizons can have two characteristic lengths of very different size. We develop a long-distance world-volume effective theory that captures the black hole dynamics at scales much larger than the short scale. In this limit the black hole is regarded as a blackfold: a black brane (possibly boosted locally) whose world volume spans a curved submanifold of the spacetime. This approach reveals black objects with novel horizon geometries and topologies more complex than the black ring, but more generally it provides a new organizing framework for the dynamics of higher-dimensional black holes.

  11. The effect of nuclear gas distribution on the mass determination of supermassive black holes

    Science.gov (United States)

    Mejía-Restrepo, J. E.; Lira, P.; Netzer, H.; Trakhtenbrot, B.; Capellupo, D. M.

    2018-01-01

    Supermassive black holes reside in the nuclei of most galaxies. During their active episodes, black holes are powered by accretion discs where gravitational energy is converted into radiation1. Accurately determining black hole masses is key to understand how the population evolves over time and how the black holes relate to their host galaxies2-4. Beyond the local universe, z ≳ 0.2, the mass is commonly estimated assuming a virialized motion of gas in the close vicinity of the active black holes, traced through broad emission lines5,6. However, this procedure has uncertainties associated with the unknown distribution of the gas clouds. Here, we show that the black hole masses derived from the properties of the accretion disk and virial mass estimates differ by a factor that is inversely proportional to the width of the broad emission lines. This leads to virial mass misestimations up to a factor of six. Our results suggest that a planar gas distribution that is inclined with respect to the line of sight may account for this effect. However, radiation pressure effects on the distribution of gas can also reproduce our results. Regardless of the physical origin, our findings contribute to mitigating the uncertainties in current black hole mass estimations and, in turn, will help us to better understand the evolution of distant supermassive black holes and their host galaxies.

  12. MicroBlack Holes Thermodynamics in the Presence of Quantum Gravity Effects

    Directory of Open Access Journals (Sweden)

    H. Soltani

    2014-01-01

    Full Text Available Black hole thermodynamics is corrected in the presence of quantum gravity effects. Some phenomenological aspects of quantum gravity proposal can be addressed through generalized uncertainty principle (GUP which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of both a minimal measurable length and a maximal momentum on the thermodynamics of TeV-scale black holes. We then extend our study to the case that there are all natural cutoffs as minimal length, minimal momentum, and maximal momentum simultaneously. We also generalize our study to the model universes with large extra dimensions (LED. In this framework existence of black holes remnants as a possible candidate for dark matter is discussed. We study probability of black hole production in the Large Hadronic Collider (LHC and we show this rate decreasing for sufficiently large values of the GUP parameter.

  13. Black and white holes

    International Nuclear Information System (INIS)

    Zeldovich, Ya.; Novikov, I.; Starobinskij, A.

    1978-01-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius Rsub(r). At t>>Rsub(r)/c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius. (J.B.)

  14. Black and white holes

    Energy Technology Data Exchange (ETDEWEB)

    Zeldovich, Ya; Novikov, I; Starobinskii, A

    1978-07-01

    The theory is explained of the origination of white holes as a dual phenomenon with regard to the formation of black holes. Theoretically it is possible to derive the white hole by changing the sign of time in solving the general theory of relativity equation implying the black hole. The white hole represents the amount of particles formed in the vicinity of a singularity. For a distant observer, matter composed of these particles expands and the outer boundaries of this matter approach from the inside the gravitational radius R/sub r/. At t>>R/sub r//c all radiation or expulsion of matter terminates. For the outside observer the white hole exists for an unlimited length of time. In fact, however, it acquires the properties of a black hole and all processes in it cease. The qualitative difference between a white hole and a black hole is in that a white hole is formed as the result of an inner quantum explosion from the singularity to the gravitational radius and not as the result of a gravitational collapse, i.e., the shrinkage of diluted matter towards the gravitational radius.

  15. Black holes new horizons

    CERN Document Server

    Hayward, Sean Alan

    2013-01-01

    Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h

  16. Black holes and Higgs stability

    CERN Document Server

    Tetradis, Nikolaos

    2016-09-20

    We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.

  17. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  18. Obstruction of black hole singularity by quantum field theory effects

    Energy Technology Data Exchange (ETDEWEB)

    Abedi, Jahed; Arfaei, Hessamaddin [Department of Physics, Sharif University of Technology,P.O. Box 11155-9161, Tehran, Irany (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-03-21

    We consider the back reaction of the energy due to quantum fluctuation of the background fields considering the trace anomaly for Schwarzschild black hole. It is shown that it will result in modification of the horizon and also formation of an inner horizon. We show that the process of collapse of a thin shell stops before formation of the singularity at a radius slightly smaller than the inner horizon at the order of (c{sub A}(M/(M{sub p}))){sup 1/3}l{sub p}. After the collapse stops the reverse process takes place. Thus we demonstrate that without turning on quantum gravity and just through the effects the coupling of field to gravity as trace anomaly of quantum fluctuations the formation of the singularity through collapse is obstructed. An important consequence of our work is existence of an extremal solution with zero temperature and a mass which is lower bound for the Schwazschild solution. This solution is also the asymptotic final stable state after Hawking radiation.

  19. Black hole radiation in the brane world and the recoil effect

    International Nuclear Information System (INIS)

    Frolov, Valeri; Stojkovic, Dejan

    2002-01-01

    A black hole attached to a brane in a higher-dimensional space emitting quanta into the bulk may leave the brane as a result of a recoil. We study this effect. We consider black holes which have a size much smaller than the characteristic size of extra dimensions. Such a black hole can be effectively described as a massive particle with internal degrees of freedom. We consider an interaction of such particles with a scalar massless field and prove that for a special choice of the coupling constant describing the transition of the particle to a state with smaller mass the probability of massless quanta emission takes the form identical to the probability of the black hole emission. Using this model we calculate the probability for a black hole to leave the brane and study its properties. The discussed recoil effect implies that, for black holes which might be created in the interaction of high energy particles in colliders, the thermal emission of the formed black hole could be terminated and the energy nonconservation can be observed in brane experiments

  20. Black holes with halos

    Science.gov (United States)

    Monten, Ruben; Toldo, Chiara

    2018-02-01

    We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.

  1. Introducing the Black Hole

    Science.gov (United States)

    Ruffini, Remo; Wheeler, John A.

    1971-01-01

    discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)

  2. Colliding black hole solution

    International Nuclear Information System (INIS)

    Ahmed, Mainuddin

    2005-01-01

    A new solution of Einstein equation in general relativity is found. This solution solves an outstanding problem of thermodynamics and black hole physics. Also this work appears to conclude the interpretation of NUT spacetime. (author)

  3. Black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1980-01-01

    Including black holes in the scheme of thermodynamics has disclosed a deep-seated connection between gravitation, heat and the quantum that may lead us to a synthesis of the corresponding branches of physics

  4. Entropy of black holes with multiple horizons

    Directory of Open Access Journals (Sweden)

    Yun He

    2018-05-01

    Full Text Available We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and “quintessence horizon” for the black holes surrounded by quintessence. Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.

  5. Entropy of black holes with multiple horizons

    Science.gov (United States)

    He, Yun; Ma, Meng-Sen; Zhao, Ren

    2018-05-01

    We examine the entropy of black holes in de Sitter space and black holes surrounded by quintessence. These black holes have multiple horizons, including at least the black hole event horizon and a horizon outside it (cosmological horizon for de Sitter black holes and "quintessence horizon" for the black holes surrounded by quintessence). Based on the consideration that the two horizons are not independent each other, we conjecture that the total entropy of these black holes should not be simply the sum of entropies of the two horizons, but should have an extra term coming from the correlations between the two horizons. Different from our previous works, in this paper we consider the cosmological constant as the variable and employ an effective method to derive the explicit form of the entropy. We also try to discuss the thermodynamic stabilities of these black holes according to the entropy and the effective temperature.

  6. Effects of thermal fluctuations on the thermodynamics of modified Hayward black hole

    Energy Technology Data Exchange (ETDEWEB)

    Pourhassan, Behnam [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of); Faizal, Mir [University of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB (Canada); Debnath, Ujjal [Indian Institute of Engineering Science and Technology, Shibpur, Department of Mathematics, Howrah (India)

    2016-03-15

    In this work, we analyze the effects of thermal fluctuations on the thermodynamics of a modified Hayward black hole. These thermal fluctuations will produce correction terms for various thermodynamical quantities like entropy, pressure, internal energy, and specific heats. We also investigate the effect of these correction terms on the first law of thermodynamics. Finally, we study the phase transition for the modified Hayward black hole. It is demonstrated that the modified Hayward black hole is stable even after the thermal fluctuations are taken into account, as long as the event horizon is larger than a certain critical value. (orig.)

  7. White dwarfs - black holes

    International Nuclear Information System (INIS)

    Sexl, R.; Sexl, H.

    1975-01-01

    The physical arguments and problems of relativistic astrophysics are presented in a correct way, but without any higher mathematics. The book is addressed to teachers, experimental physicists, and others with a basic knowledge covering an introductory lecture in physics. The issues dealt with are: fundamentals of general relativity, classical tests of general relativity, curved space-time, stars and planets, pulsars, gravitational collapse and black holes, the search for black holes, gravitational waves, cosmology, cosmogony, and the early universe. (BJ/AK) [de

  8. Black Holes and Thermodynamics

    OpenAIRE

    Wald, Robert M.

    1997-01-01

    We review the remarkable relationship between the laws of black hole mechanics and the ordinary laws of thermodynamics. It is emphasized that - in analogy with the laws of thermodynamics - the validity the laws of black hole mechanics does not appear to depend upon the details of the underlying dynamical theory (i.e., upon the particular field equations of general relativity). It also is emphasized that a number of unresolved issues arise in ``ordinary thermodynamics'' in the context of gener...

  9. Newborn Black Holes

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…

  10. Event horizon image within black hole shadow

    OpenAIRE

    Dokuchaev, V. I.; Nazarova, N. O.

    2018-01-01

    The external border of the black hole shadow is washed out by radiation from matter plunging into black hole and approaching the event horizon. This effect will crucially influence the results of future observations by the Event Horizon Telescope. We show that gravitational lensing of the luminous matter plunging into black hole provides the event horizon visualization within black hole shadow. The lensed image of the event horizon is formed by the last highly red-shifted photons emitted by t...

  11. Electromagnetic ``black holes'' in hyperbolic metamaterials

    Science.gov (United States)

    Smolyaninov, Igor

    2013-03-01

    We demonstrate that spatial variations of the dielectric tensor components in a hyperbolic metamaterial may lead to formation of electromagnetic ``black holes'' inside this metamaterial. Similar to real black holes, horizon area of the electromagnetic ``black holes'' is quantized in units of the effective ``Planck scale'' squared. Potential experimental realizations of such electromagnetic ``black holes'' will be considered. For example, this situation may be realized in a hyperbolic metamaterial in which the dielectric component exhibits critical opalescence.

  12. On Quantum Contributions to Black Hole Growth

    NARCIS (Netherlands)

    Spaans, M.

    2013-01-01

    The effects of Wheeler’s quantum foam on black hole growth are explored from an astrophysical per- spective. Quantum fluctuations in the form of mini (10−5 g) black holes can couple to macroscopic black holes and allow the latter to grow exponentially in mass on a time scale of 109 years.

  13. QED loop effects in the spacetime background of a Schwarzschild black hole

    Science.gov (United States)

    Emelyanov, Viacheslav A.

    2017-12-01

    The black-hole evaporation implies that the quantum-field propagators in a local Minkowski frame acquire a correction, which gives rise to this process. The modification of the propagators causes, in turn, non-trivial local effects due to the radiative/loop diagrams in non-linear QFTs. In particular, there should be imprints of the evaporation in QED, if one goes beyond the tree-level approximation. Of special interest in this respect is the region near the black-hole horizon, which, already at tree level, appears to show highly non-classical features, e.g., negative energy density and energy flux into the black hole.

  14. Black hole evaporation: a paradigm

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Bojowald, Martin

    2005-01-01

    A paradigm describing black hole evaporation in non-perturbative quantum gravity is developed by combining two sets of detailed results: (i) resolution of the Schwarzschild singularity using quantum geometry methods and (ii) time evolution of black holes in the trapping and dynamical horizon frameworks. Quantum geometry effects introduce a major modification in the traditional spacetime diagram of black hole evaporation, providing a possible mechanism for recovery of information that is classically lost in the process of black hole formation. The paradigm is developed directly in the Lorentzian regime and necessary conditions for its viability are discussed. If these conditions are met, much of the tension between expectations based on spacetime geometry and structure of quantum theory would be resolved

  15. Thermal BEC Black Holes

    Directory of Open Access Journals (Sweden)

    Roberto Casadio

    2015-10-01

    Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce

  16. Black holes: the membrane paradigm

    International Nuclear Information System (INIS)

    Thorne, K.S.; Price, R.H.; Macdonald, D.A.

    1986-01-01

    The physics of black holes is explored in terms of a membrane paradigm which treats the event horizon as a two-dimensional membrane embedded in three-dimensional space. A 3+1 formalism is used to split Schwarzschild space-time and the laws of physics outside a nonrotating hole, which permits treatment of the atmosphere in terms of the physical properties of thin slices. The model is applied to perturbed slowly or rapidly rotating and nonrotating holes, and to quantify the electric and magnetic fields and eddy currents passing through a membrane surface which represents a stretched horizon. Features of tidal gravitational fields in the vicinity of the horizon, quasars and active galalctic nuclei, the alignment of jets perpendicular to accretion disks, and the effects of black holes at the center of ellipsoidal star clusters are investigated. Attention is also given to a black hole in a binary system and the interactions of black holes with matter that is either near or very far from the event horizon. Finally, a statistical mechanics treatment is used to derive a second law of thermodynamics for a perfectly thermal atmosphere of a black hole

  17. Quantum gravity effects on scalar particle tunneling from rotating BTZ black hole

    Science.gov (United States)

    Meitei, I. Ablu; Singh, T. Ibungochouba; Devi, S. Gayatri; Devi, N. Premeshwari; Singh, K. Yugindro

    2018-04-01

    Tunneling of scalar particles across the event horizon of rotating BTZ black hole is investigated using the Generalized Uncertainty Principle to study the corrected Hawking temperature and entropy in the presence of quantum gravity effects. We have determined explicitly the various correction terms in the entropy of rotating BTZ black hole including the logarithmic term of the Bekenstein-Hawking entropy (SBH), the inverse term of SBH and terms with inverse powers of SBH, in terms of properties of the black hole and the emitted particles — mass, energy and angular momentum. In the presence of quantum gravity effects, for the emission of scalar particles, the Hawking radiation and thermodynamics of rotating BTZ black hole are observed to be related to the metric element, hence to the curvature of space-time.

  18. Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk

    2017-01-10

    We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.

  19. Collision of two rotating Hayward black holes

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Bogeun [Sejong University, Department of Physics and Astronomy, Seoul (Korea, Republic of)

    2017-07-15

    We investigate the spin interaction and the gravitational radiation thermally allowed in a head-on collision of two rotating Hayward black holes. The Hayward black hole is a regular black hole in a modified Einstein equation, and hence it can be an appropriate model to describe the extent to which the regularity effect in the near-horizon region affects the interaction and the radiation. If one black hole is assumed to be considerably smaller than the other, the potential of the spin interaction can be analytically obtained and is dependent on the alignment of angular momenta of the black holes. For the collision of massive black holes, the gravitational radiation is numerically obtained as the upper bound by using the laws of thermodynamics. The effect of the Hayward black hole tends to increase the radiation energy, but we can limit the effect by comparing the radiation energy with the gravitational waves GW150914 and GW151226. (orig.)

  20. Spin One Hawking Radiation from Dirty Black Holes

    OpenAIRE

    Petarpa Boonserm; Tritos Ngampitipan; Matt Visser

    2013-01-01

    A “clean” black hole is a black hole in vacuum such as the Schwarzschild black hole. However in real physical systems, there are matter fields around a black hole. Such a black hole is called a “dirty black hole”. In this paper, the effect of matter fields on the black hole and the greybody factor is investigated. The results show that matter fields make a black hole smaller. They can increase the potential energy to a black hole to obstruct Hawking radiation to propagate. This causes the gre...

  1. Quintessence Reissner Nordström Anti de Sitter Black Holes and Joule Thomson Effect

    Science.gov (United States)

    Ghaffarnejad, H.; Yaraie, E.; Farsam, M.

    2018-06-01

    In this work we investigate corrections of the quintessence regime of the dark energy on the Joule-Thomson (JT) effect of the Reissner Nordström anti de Sitter (RNAdS) black hole. The quintessence dark energy has equation of state as p q = ω ρ q in which -1black hole mass, we calculate inversion temperature T i of the quintessence RNAdS black hole where its cooling phase is changed to heating phase at a particular (inverse) pressure P i . Position of the inverse point { T i , P i } is determined by crossing the inverse curves with the corresponding Gibbons-Hawking temperature on the T-P plan. We determine position of the inverse point versus different numerical values of the mass M and the charge Q of the quintessence AdS RN black hole. The cooling-heating phase transition (JT effect) is happened for M > Q in which the causal singularity is still covered by the horizon. Our calculations show sensitivity of the inverse point { T i , P i } position on the T-P plan to existence of the quintessence dark energy just for large numerical values of the AdS RN black holes charge Q. In other words the quintessence dark energy dose not affect on position of the inverse point when the AdS RN black hole takes on small charges.

  2. STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS

    International Nuclear Information System (INIS)

    Wang Yan; Li Xiangdong

    2012-01-01

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  3. Merging Black Holes

    Science.gov (United States)

    Centrella, Joan

    2012-01-01

    The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics

  4. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  5. Anyon black holes

    Science.gov (United States)

    Aghaei Abchouyeh, Maryam; Mirza, Behrouz; Karimi Takrami, Moein; Younesizadeh, Younes

    2018-05-01

    We propose a correspondence between an Anyon Van der Waals fluid and a (2 + 1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter α (0 quasi Fermi-Dirac statistics for α >αc, but a quasi Bose-Einstein statistics for α quasi Bose-Einstein statistics. For α >αc and a range of values of the cosmological constant, there is, however, no event horizon so there is no black hole solution. Thus, for these values of cosmological constants, the AdS Anyon Van der Waals black holes have only quasi Bose-Einstein statistics.

  6. Black holes go supersonic

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, Ulf [School of Physics and Astronomy, University of St. Andrews (United Kingdom)

    2001-02-01

    In modern physics, the unification of gravity and quantum mechanics remains a mystery. Gravity rules the macroscopic world of planets, stars and galaxies, while quantum mechanics governs the micro-cosmos of atoms, light quanta and elementary particles. However, cosmologists believe that these two disparate worlds may meet at the edges of black holes. Now Luis Garay, James Anglin, Ignacio Cirac and Peter Zoller at the University of Innsbruck in Austria have proposed a realistic way to make an artificial 'sonic' black hole in a tabletop experiment (L J Garay et al. 2000 Phys. Rev. Lett. 85 4643). In the February issue of Physics World, Ulf Leonhardt of the School of Physics and Astronomy, University of St. Andrews, UK, explains how the simulated black holes work. (U.K.)

  7. Black Hole Paradoxes

    International Nuclear Information System (INIS)

    Joshi, Pankaj S.; Narayan, Ramesh

    2016-01-01

    We propose here that the well-known black hole paradoxes such as the information loss and teleological nature of the event horizon are restricted to a particular idealized case, which is the homogeneous dust collapse model. In this case, the event horizon, which defines the boundary of the black hole, forms initially, and the singularity in the interior of the black hole at a later time. We show that, in contrast, gravitational collapse from physically more realistic initial conditions typically leads to the scenario in which the event horizon and space-time singularity form simultaneously. We point out that this apparently simple modification can mitigate the causality and teleological paradoxes, and also lends support to two recently suggested solutions to the information paradox, namely, the ‘firewall’ and ‘classical chaos’ proposals. (paper)

  8. Bringing Black Holes Home

    Science.gov (United States)

    Furmann, John M.

    2003-03-01

    Black holes are difficult to study because they emit no light. To overcome this obstacle, scientists are trying to recreate a black hole in the laboratory. The article gives an overview of the theories of Einstein and Hawking as they pertain to the construction of the Large Hadron Collider (LHC) near Geneva, Switzerland, scheduled for completion in 2006. The LHC will create two beams of protons traveling in opposing directions that will collide and create a plethora of scattered elementary particles. Protons traveling in opposite directions at very high velocities may create particles that come close enough to each other to feel their compacted higher dimensions and create a mega force of gravity that can create tiny laboratory-sized black holes for fractions of a second. The experiments carried out with LHC will be used to test modern string theory and relativity.

  9. Neutrino constraints that transform black holes into grey holes

    International Nuclear Information System (INIS)

    Ruderfer, M.

    1982-01-01

    Existing black hole theory is found to be defective in its neglect of the physical properties of matter and radiation at superhigh densities. Nongravitational neutrino effects are shown to be physically relevant to the evolution of astronomical black holes and their equations of state. Gravitational collapse to supernovae combined with the Davis and Ray vacuum solution for neutrinos limit attainment of a singularity and require black holes to evolve into ''grey holes''. These allow a better justification than do black holes for explaining the unique existence of galactic masses. (Auth.)

  10. Magnonic black holes

    OpenAIRE

    Roldán-Molina, A.; Nunez, A.S.; Duine, R. A.

    2017-01-01

    We show that the interaction between spin-polarized current and magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons - the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the imp...

  11. Characterizing Black Hole Mergers

    Science.gov (United States)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  12. Moulting Black Holes

    OpenAIRE

    Bena, Iosif; Chowdhury, Borun D.; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki

    2011-01-01

    We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that ...

  13. Dancing with Black Holes

    Science.gov (United States)

    Aarseth, S. J.

    2008-05-01

    We describe efforts over the last six years to implement regularization methods suitable for studying one or more interacting black holes by direct N-body simulations. Three different methods have been adapted to large-N systems: (i) Time-Transformed Leapfrog, (ii) Wheel-Spoke, and (iii) Algorithmic Regularization. These methods have been tried out with some success on GRAPE-type computers. Special emphasis has also been devoted to including post-Newtonian terms, with application to moderately massive black holes in stellar clusters. Some examples of simulations leading to coalescence by gravitational radiation will be presented to illustrate the practical usefulness of such methods.

  14. Scattering from black holes

    International Nuclear Information System (INIS)

    Futterman, J.A.H.; Handler, F.A.; Matzner, R.A.

    1987-01-01

    This book provides a comprehensive treatment of the propagation of waves in the presence of black holes. While emphasizing intuitive physical thinking in their treatment of the techniques of analysis of scattering, the authors also include chapters on the rigorous mathematical development of the subject. Introducing the concepts of scattering by considering the simplest, scalar wave case of scattering by a spherical (Schwarzschild) black hole, the book then develops the formalism of spin weighted spheroidal harmonics and of plane wave representations for neutrino, electromagnetic, and gravitational scattering. Details and results of numerical computations are given. The techniques involved have important applications (references are given) in acoustical and radar imaging

  15. Virtual Black Holes

    OpenAIRE

    Hawking, Stephen W.

    1995-01-01

    One would expect spacetime to have a foam-like structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the non-trivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of $S^2\\times S^2$ and $K3$ bubbles. Comparison with the instantons for pair creation of black holes shows that the $S^2\\times S^2$ bubbles can be interpreted as closed loops of virtual black holes. It is ...

  16. Superfluid Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson

    2017-01-13

    We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.

  17. Partons and black holes

    International Nuclear Information System (INIS)

    Susskind, L.; Griffin, P.

    1994-01-01

    A light-front renormalization group analysis is applied to study matter which falls into massive black holes, and the related problem of matter with transplankian energies. One finds that the rate of matter spreading over the black hole's horizon unexpectedly saturates the causality bound. This is related to the transverse growth behavior of transplankian particles as their longitudinal momentum increases. This growth behavior suggests a natural mechanism to implement 't Hooft's scenario that the universe is an image of data stored on a 2 + 1 dimensional hologram-like projection

  18. Quantum Gravity Effect on the Tunneling Particles from 2 + 1-Dimensional New-Type Black Hole

    Directory of Open Access Journals (Sweden)

    Ganim Gecim

    2018-01-01

    Full Text Available We investigate the generalized uncertainty principle (GUP effect on the Hawking temperature for the 2 + 1-dimensional new-type black hole by using the quantum tunneling method for both the spin-1/2 Dirac and the spin-0 scalar particles. In computation of the GUP correction for the Hawking temperature of the black hole, we modified Dirac and Klein-Gordon equations. We observed that the modified Hawking temperature of the black hole depends not only on the black hole properties, but also on the graviton mass and the intrinsic properties of the tunneling particle, such as total angular momentum, energy, and mass. Also, we see that the Hawking temperature was found to be probed by these particles in different manners. The modified Hawking temperature for the scalar particle seems low compared with its standard Hawking temperature. Also, we find that the modified Hawking temperature of the black hole caused by Dirac particle’s tunneling is raised by the total angular momentum of the particle. It is diminishable by the energy and mass of the particle and graviton mass as well. These intrinsic properties of the particle, except total angular momentum for the Dirac particle, and graviton mass may cause screening for the black hole radiation.

  19. Strong gravity effects of rotating black holes: quasi-periodic oscillations

    International Nuclear Information System (INIS)

    Aliev, Alikram N; Esmer, Göksel Daylan; Talazan, Pamir

    2013-01-01

    We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: the orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which the radial epicyclic frequency attains its highest value. We find that the values of the epicyclic frequencies for a class of stable orbits exhibit good qualitative agreement with the observed frequencies of the twin peaks quasi-periodic oscillations (QPOs) in some black hole binaries. We also find that at the characteristic stable circular orbits, where the radial (or the vertical) epicyclic frequency has maxima, the vertical and radial epicyclic frequencies exhibit an approximate 2:1 ratio even in the case of near-extreme rotation of the black hole. Next, we perform a similar analysis of the fundamental frequencies for a rotating braneworld black hole and argue that the existence of such a black hole with a negative tidal charge, whose angular momentum exceeds the Kerr bound in general relativity, does not confront with the observations of high-frequency QPOs. (paper)

  20. Bumpy black holes

    OpenAIRE

    Emparan, Roberto; Figueras, Pau; Martinez, Marina

    2014-01-01

    We study six-dimensional rotating black holes with bumpy horizons: these are topologically spherical, but the sizes of symmetric cycles on the horizon vary non-monotonically with the polar angle. We construct them numerically for the first three bumpy families, and follow them in solution space until they approach critical solutions with localized singularities on the horizon. We find strong evidence of the conical structures that have been conjectured to mediate the transitions to black ring...

  1. Quantum information erasure inside black holes

    International Nuclear Information System (INIS)

    Lowe, David A.; Thorlacius, Larus

    2015-01-01

    An effective field theory for infalling observers in the vicinity of a quasi-static black hole is given in terms of a freely falling lattice discretization. The lattice model successfully reproduces the thermal spectrum of outgoing Hawking radiation, as was shown by Corley and Jacobson, but can also be used to model observations made by a typical low-energy observer who enters the black hole in free fall at a prescribed time. The explicit short distance cutoff ensures that, from the viewpoint of the infalling observer, any quantum information that entered the black hole more than a scrambling time earlier has been erased by the black hole singularity. This property, combined with the requirement that outside observers need at least of order the scrambling time to extract quantum information from the black hole, ensures that a typical infalling observer does not encounter drama upon crossing the black hole horizon in a theory where black hole information is preserved for asymptotic observers.

  2. Black holes and quantum mechanics

    CERN Document Server

    Wilczek, Frank

    1995-01-01

    1. Qualitative introduction to black holes : classical, quantum2. Model black holes and model collapse process: The Schwarzschild and Reissner-Nordstrom metrics, The Oppenheimer-Volkov collapse scenario3. Mode mixing4. From mode mixing to radiance.

  3. Quantum Mechanics of Black Holes

    OpenAIRE

    Giddings, Steven B.

    1994-01-01

    These lectures give a pedagogical review of dilaton gravity, Hawking radiation, the black hole information problem, and black hole pair creation. (Lectures presented at the 1994 Trieste Summer School in High Energy Physics and Cosmology)

  4. Aspects of hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  5. Nonsingular black hole

    Energy Technology Data Exchange (ETDEWEB)

    Chamseddine, Ali H. [American University of Beirut, Physics Department, Beirut (Lebanon); I.H.E.S., Bures-sur-Yvette (France); Mukhanov, Viatcheslav [Niels Bohr Institute, Niels Bohr International Academy, Copenhagen (Denmark); Ludwig-Maximilians University, Theoretical Physics, Munich (Germany); MPI for Physics, Munich (Germany)

    2017-03-15

    We consider the Schwarzschild black hole and show how, in a theory with limiting curvature, the physical singularity ''inside it'' is removed. The resulting spacetime is geodesically complete. The internal structure of this nonsingular black hole is analogous to Russian nesting dolls. Namely, after falling into the black hole of radius r{sub g}, an observer, instead of being destroyed at the singularity, gets for a short time into the region with limiting curvature. After that he re-emerges in the near horizon region of a spacetime described by the Schwarzschild metric of a gravitational radius proportional to r{sub g}{sup 1/3}. In the next cycle, after passing the limiting curvature, the observer finds himself within a black hole of even smaller radius proportional to r{sub g}{sup 1/9}, and so on. Finally after a few cycles he will end up in the spacetime where he remains forever at limiting curvature. (orig.)

  6. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  7. Over spinning a black hole?

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam; Cardoso, Vitor; Nerozzi, Andrea; Rocha, Jorge V, E-mail: mariam.bouhmadi@ist.utl.pt, E-mail: vitor.cardoso@ist.utl.pt, E-mail: andrea.nerozzi@ist.utl.pt, E-mail: jorge.v.rocha@ist.utl.pt [CENTRA, Department de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049 Lisboa (Portugal)

    2011-09-22

    A possible process to destroy a black hole consists on throwing point particles with sufficiently large angular momentum into the black hole. In the case of Kerr black holes, it was shown by Wald that particles with dangerously large angular momentum are simply not captured by the hole, and thus the event horizon is not destroyed. Here we reconsider this gedanken experiment for black holes in higher dimensions. We show that this particular way of destroying a black hole does not succeed and that Cosmic Censorship is preserved.

  8. Warped products and black holes

    International Nuclear Information System (INIS)

    Hong, Soon-Tae

    2005-01-01

    We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes

  9. Magnetohydrodynamics near a black hole

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1975-01-01

    A numerical computer study of hydromagnetic flow near a black hole is presented. First, the equations of motion are developed to a form suitable for numerical computations. Second, the results of calculations describing the magnetic torques exerted by a rotating black hole on a surrounding magnetic plasma and the electric charge that is induced on the surface of the black hole are presented. (auth)

  10. Comptonization effects in spherical accretion onto black holes

    International Nuclear Information System (INIS)

    Ipser, J.R.; Price, R.H.

    1983-01-01

    For spherical accretion of gas onto a black hole, dissipative heating (from magnetic reconnection), dissipation of turbulence, etc.) leads at high accretion rates to densities and temperatures at which Comptonization unavoidably plays an important role, both in determining gas temperature and in forming the emergent spectrum. A careful and reliable treatment of the interaction of the gas with the radiation field is greatly complicated by the necessity of dealing with the essentially nonlocal nature of Comptonization. We limit ourselves here to finding approximate descriptions of some observational features of such astrophysical objects with a simple, yet justifiable, Ansatz that evades the complexities of nonlocality. The results for accretion spectra are of interest, e.g., in connection with galactic halo objects (1--10 5 M/sub sun/). High mass (10 7 --10 10 M/sub sun/) cases are of interest as models for active galactic nuclei. In particular, a very natural connection between the ratio of luminosity to Eddington luminosity and the hardness of X-ray spectra emerges, suggesting that the observed X-ray hardness ratios of luminous sources are a consequence of those sources being more or less Eddington limited

  11. 5D Black Holes and Matrix Strings

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    We derive the world-volume theory, the (non)-extremal entropy and background geometry of black holes and black strings constructed out of the NS IIA fivebrane within the framework of matrix theory. The CFT description of strings propagating in the black hole geometry arises as an effective field theory.

  12. The black hole quantum atmosphere

    Science.gov (United States)

    Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele

    2017-11-01

    Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan-Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4 MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  13. The black hole quantum atmosphere

    Directory of Open Access Journals (Sweden)

    Ramit Dey

    2017-11-01

    Full Text Available Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan–Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.

  14. From binary black hole simulation to triple black hole simulation

    International Nuclear Information System (INIS)

    Bai Shan; Cao Zhoujian; Han, Wen-Biao; Lin, Chun-Yu; Yo, Hwei-Jang; Yu, Jui-Ping

    2011-01-01

    Black hole systems are among the most promising sources for a gravitational wave detection project. Now, China is planning to construct a space-based laser interferometric detector as a follow-on mission of LISA in the near future. Aiming to provide some theoretical support to this detection project on the numerical relativity side, we focus on black hole systems simulation in this work. Considering the globular galaxy, multiple black hole systems also likely to exist in our universe and play a role as a source for the gravitational wave detector we are considering. We will give a progress report in this paper on our black hole system simulation. More specifically, we will present triple black hole simulation together with binary black hole simulation. On triple black hole simulations, one novel perturbational method is proposed.

  15. Stationary black holes: large D analysis

    International Nuclear Information System (INIS)

    Suzuki, Ryotaku; Tanabe, Kentaro

    2015-01-01

    We consider the effective theory of large D stationary black holes. By solving the Einstein equations with a cosmological constant using the 1/D expansion in near zone of the black hole we obtain the effective equation for the stationary black hole. The effective equation describes the Myers-Perry black hole, bumpy black holes and, possibly, the black ring solution as its solutions. In this effective theory the black hole is represented as an embedded membrane in the background, e.g., Minkowski or Anti-de Sitter spacetime and its mean curvature is given by the surface gravity redshifted by the background gravitational field and the local Lorentz boost. The local Lorentz boost property of the effective equation is observed also in the metric itself. In fact we show that the leading order metric of the Einstein equation in the 1/D expansion is generically regarded as a Lorentz boosted Schwarzschild black hole. We apply this Lorentz boost property of the stationary black hole solution to solve perturbation equations. As a result we obtain an analytic formula for quasinormal modes of the singly rotating Myers-Perry black hole in the 1/D expansion.

  16. Control of black hole evaporation?

    International Nuclear Information System (INIS)

    Ahn, Doyeol

    2007-01-01

    Contradiction between Hawking's semi-classical arguments and the string theory on the evaporation of a black hole has been one of the most intriguing problems in fundamental physics. A final-state boundary condition inside the black hole was proposed by Horowitz and Maldacena to resolve this contradiction. We point out that the original Hawking effect can also be regarded as a separate boundary condition at the event horizon for this scenario. Here, we found that the change of the Hawking boundary condition may affect the information transfer from the initial collapsing matter to the outgoing Hawking radiation during the evaporation process and as a result the evaporation process itself, significantly

  17. Effective first law of thermodynamics of black holes with two horizons

    International Nuclear Information System (INIS)

    Yi-Huan, Wei

    2009-01-01

    For a black hole with two horizons, the effective entropy is assumed to be a linear combination of the two entropies of the outer and inner horizons. In terms of the effective thermodynamic quantities the effective Bekenstein–Smarr formula and the effective first law of thermodynamics are derived. (geophysics, astronomy and astrophysics)

  18. Magnonic Black Holes.

    Science.gov (United States)

    Roldán-Molina, A; Nunez, Alvaro S; Duine, R A

    2017-02-10

    We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.

  19. Statistical mechanics of black holes

    International Nuclear Information System (INIS)

    Harms, B.; Leblanc, Y.

    1992-01-01

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed

  20. Finite temperature effective action, AdS5 black holes, and 1/N expansion

    International Nuclear Information System (INIS)

    Alvarez-Gaume, Luis; Gomez, Cesar; Liu Hong; Wadia, Spenta R.

    2005-01-01

    We propose a phenomenological matrix model to study string theory in AdS 5 xS 5 in the canonical ensemble. The model reproduces all the known qualitative features of the theory. In particular, it gives a simple effective potential description of Euclidean black hole nucleation and the tunneling between thermal anti-de Sitter (AdS) and the big black hole. It also has some interesting predictions. We find that there exists a critical temperature at which the Euclidean small black hole undergoes a Gross-Witten phase transition. We identify the phase transition with the Horowitz-Polchinski point where the black hole horizon size becomes comparable to the string scale. The appearance of the Hagedorn divergence of thermal AdS is due to the merger of saddle points corresponding to the Euclidean small black hole and thermal AdS. The merger can be described in terms of a cusp (A 3 ) catastrophe and divergences at the perturbative string level are smoothed out at finite string coupling using standard techniques of catastrophe theory

  1. Production of spinning black holes at colliders

    International Nuclear Information System (INIS)

    Park, S. C.; Song, H. S.

    2003-01-01

    When the Planck scale is as low as TeV, there will be chances to produce Black holes at future colliders. Generally, black holes produced via particle collisions can have non-zero angular momenta. We estimate the production cross-section of rotating Black holes in the context of low energy gravitation theories by taking the effects of rotation into account. The production cross section is shown to be enhanced by a factor of 2 - 3 over the naive estimate σ = π ∼ R S 2 , where R S denotes the Schwarzschild radius of black hole for a given energy. We also point out that the decay spectrum may have a distinguishable angular dependence through the grey-body factor of a rotating black hole. The angular dependence of decaying particles may give a clear signature for the effect of rotating black holes.

  2. Internal structure of black holes

    International Nuclear Information System (INIS)

    Cvetic, Mirjam

    2013-01-01

    Full text: We review recent progress that sheds light on the internal structure of general black holes. We first summarize properties of general multi-charged rotating black holes both in four and five dimensions. We show that the asymptotic boundary conditions of these general asymptotically flat black holes can be modified such that a conformal symmetry emerges. These subtracted geometries preserve the thermodynamic properties of the original black holes and are of the Lifshitz type, thus describing 'a black hole in the asymptotically conical box'. Recent efforts employ solution generating techniques to construct interpolating geometries between the original black hole and their subtracted geometries. Upon lift to one dimension higher, these geometries lift to AdS 3 times a sphere, and thus provide a microscopic interpretation of the black hole entropy in terms of dual two-dimensional conformal field theory. (author)

  3. Black Holes and Firewalls

    Science.gov (United States)

    Polchinski, Joseph

    2015-04-01

    Our modern understanding of space, time, matter, and even reality itself arose from the three great revolutions of the early twentieth century: special relativity, general relativity, and quantum mechanics. But a century later, this work is unfinished. Many deep connections have been discovered, but the full form of a unified theory incorporating all three principles is not known. Thought experiments and paradoxes have often played a key role in figuring out how to fit theories together. For the unification of general relativity and quantum mechanics, black holes have been an important arena. I will talk about the quantum mechanics of black holes, the information paradox, and the latest version of this paradox, the firewall. The firewall points to a conflict between our current theories of spacetime and of quantum mechanics. It may lead to a new understanding of how these are connected, perhaps based on quantum entanglement.

  4. Beyond the black hole

    International Nuclear Information System (INIS)

    Boslough, J.

    1985-01-01

    This book is about the life and work of Stephen Hawking. It traces the development of his theories about the universe and particularly black holes, in a biographical context. Hawking's lecture 'Is the end in sight for theoretical physics' is presented as an appendix. In this, he discusses the possibility of achieving a complete, consistent and unified theory of the physical interactions which would describe all possible observations. (U.K.)

  5. Black Holes in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Reall Harvey S.

    2008-09-01

    Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.

  6. Instability of ultra-spinning black holes

    International Nuclear Information System (INIS)

    Emparan, Roberto; Myers, Robert C.

    2003-01-01

    It has long been known that, in higher-dimensional general relativity, there are black hole solutions with an arbitrarily large angular momentum for a fixed mass. We examine the geometry of the event horizon of such ultra-spinning black holes and argue that these solutions become unstable at large enough rotation. Hence we find that higher-dimensional general relativity imposes an effective 'Kerr-bound' on spinning black holes through a dynamical decay mechanism. Our results also give indications of the existence of new stationary black holes with 'rippled' horizons of spherical topology. We consider various scenarios for the possible decay of ultra-spinning black holes, and finally discuss the implications of our results for black holes in braneworld scenarios. (author)

  7. Seeding black holes in cosmological simulations

    Science.gov (United States)

    Taylor, P.; Kobayashi, C.

    2014-08-01

    We present a new model for the formation of black holes in cosmological simulations, motivated by the first star formation. Black holes form from high density peaks of primordial gas, and grow via both gas accretion and mergers. Massive black holes heat the surrounding material, suppressing star formation at the centres of galaxies, and driving galactic winds. We perform an investigation into the physical effects of the model parameters, and obtain a `best' set of these parameters by comparing the outcome of simulations to observations. With this best set, we successfully reproduce the cosmic star formation rate history, black hole mass-velocity dispersion relation, and the size-velocity dispersion relation of galaxies. The black hole seed mass is ˜103 M⊙, which is orders of magnitude smaller than that which has been used in previous cosmological simulations with active galactic nuclei, but suggests that the origin of the seed black holes is the death of Population III stars.

  8. Destroying black holes with test bodies

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Ted [Center for Fundamental Physics, University of Maryland, College Park, MD 20742-4111 (United States); Sotiriou, Thomas P, E-mail: jacobson@umd.ed, E-mail: T.Sotiriou@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-04-01

    If a black hole can accrete a body whose spin or charge would send the black hole parameters over the extremal limit, then a naked singularity would presumably form, in violation of the cosmic censorship conjecture. We review some previous results on testing cosmic censorship in this way using the test body approximation, focusing mostly on the case of neutral black holes. Under certain conditions a black hole can indeed be over-spun or over-charged in this approximation, hence radiative and self-force effects must be taken into account to further test cosmic censorship.

  9. Destroying black holes with test bodies

    International Nuclear Information System (INIS)

    Jacobson, Ted; Sotiriou, Thomas P

    2010-01-01

    If a black hole can accrete a body whose spin or charge would send the black hole parameters over the extremal limit, then a naked singularity would presumably form, in violation of the cosmic censorship conjecture. We review some previous results on testing cosmic censorship in this way using the test body approximation, focusing mostly on the case of neutral black holes. Under certain conditions a black hole can indeed be over-spun or over-charged in this approximation, hence radiative and self-force effects must be taken into account to further test cosmic censorship.

  10. The statistical clustering of primordial black holes

    International Nuclear Information System (INIS)

    Carr, B.J.

    1977-01-01

    It is shown that Meszaros theory of galaxy formation, in which galaxies form from the density perturbations associated with the statistical fluctuation in the number density of primordial black holes, must be modified if the black holes are initially surrounded by regions of lower radiation density than average (as is most likely). However, even in this situation, the sort of effect Meszaros envisages does occur and could in principle cause galactic mass-scales to bind at the conventional time. In fact, the requirement that galaxies should not form prematurely implies that black holes could not have a critical density in the mass range above 10 5 M(sun). If the mass spectrum of primordial black holes falls off more slowly than m -3 (as expected), then the biggest black holes have the largest clustering effect. In this case the black hole clustering theory of galaxy formation reduces to the black hole seed theory of galaxy formation, in which each galaxy becomes bound under the gravitational influence of a single black hole nucleus. The seed theory could be viable only if the early Universe had a soft equation of state until a time exceeding 10 -4 s or if something prevented black hole formation before 1 s. (orig.) [de

  11. Statistical clustering of primordial black holes

    Energy Technology Data Exchange (ETDEWEB)

    Carr, B J [Cambridge Univ. (UK). Inst. of Astronomy

    1977-04-01

    It is shown that Meszaros theory of galaxy formation, in which galaxies form from the density perturbations associated with the statistical fluctuation in the number density of primordial black holes, must be modified if the black holes are initially surrounded by regions of lower radiation density than average (as is most likely). However, even in this situation, the sort of effect Meszaros envisages does occur and could in principle cause galactic mass-scales to bind at the conventional time. In fact, the requirement that galaxies should not form prematurely implies that black holes could not have a critical density in the mass range above 10/sup 5/ M(sun). If the mass spectrum of primordial black holes falls off more slowly than m/sup -3/ (as expected), then the biggest black holes have the largest clustering effect. In this case the black hole clustering theory of galaxy formation reduces to the black hole seed theory of galaxy formation, in which each galaxy becomes bound under the gravitational influence of a single black hole nucleus. The seed theory could be viable only if the early Universe had a soft equation of state until a time exceeding 10/sup -4/ s or if something prevented black hole formation before 1 s.

  12. Radio-loudness in black hole transients: evidence for an inclination effect

    Science.gov (United States)

    Motta, S. E.; Casella, P.; Fender, R.

    2018-06-01

    Accreting stellar-mass black holes appear to populate two branches in a radio:X-ray luminosity plane. We have investigated the X-ray variability properties of a large number of black hole low-mass X-ray binaries, with the aim of unveiling the physical reasons underlying the radio-loud/radio-quiet nature of these sources, in the context of the known accretion-ejection connection. A reconsideration of the available radio and X-ray data from a sample of black hole X-ray binaries confirms that being radio-quiet is the more normal mode of behaviour for black hole binaries. In the light of this we chose to test, once more, the hypothesis that radio loudness could be a consequence of the inclination of the X-ray binary. We compared the slope of the `hard-line' (an approximately linear correlation between X-ray count rate and rms variability, visible in the hard states of active black holes), the orbital inclination, and the radio-nature of the sources of our sample. We found that high-inclination objects show steeper hard-lines than low-inclination objects, and tend to display a radio-quiet nature (with the only exception of V404 Cyg), as opposed to low-inclination objects, which appear to be radio-loud(er). While in need of further confirmation, our results suggest that - contrary to what has been believed for years - the radio-loud/quiet nature of black-hole low mass X-ray binaries might be an inclination effect, rather than an intrinsic source property. This would solve an important issue in the context of the inflow-outflow connection, thus providing significant constraints to the models for the launch of hard-state compact jets.

  13. Black Hole Area Quantization rule from Black Hole Mass Fluctuations

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    We calculate the black hole mass distribution function that follows from the random emission of quanta by Hawking radiation and with this function we calculate the black hole mass fluctuation. From a complete different perspective we regard the black hole as quantum mechanical system with a quantized event horizon area and transition probabilities among the various energy levels and then calculate the mass dispersion. It turns out that there is a perfect agreement between the statistical and ...

  14. Hawking radiation from acoustic black holes, short distance and back reaction effects

    International Nuclear Information System (INIS)

    Balbinot, R.; Fabbri, A.; Parentani, R.

    2004-01-01

    Using the action principle we first review how linear density perturbations (sound waves) in an Eulerian fluid obey a relativistic equation: the d'Alembert equation. This analogy between propagation of sound and that of a massless scalar field in a Lorentzian metric also applies to non-homogeneous flows. In these cases, sound waves effectively propagate in a curved four-dimensional acoustic metric whose properties are determined by the flow. Using this analogy, we consider regular flows which become supersonic, and show that the acoustic metric behaves like that of a black hole. The analogy is so good that, when considering quantum mechanics, acoustic black holes should produce a thermal flux of Hawking phonons. We then focus on two interesting questions related to Hawking radiation which are not fully understood in the context of gravitational black holes due to the lack of a theory of quantum gravity. The first concerns the calculation of the modifications of Hawking radiation which are induced by dispersive effects at short distances, approaching the atomic scale when considering sound. We generalize existing treatments and calculate the modifications caused by the propagation near the black-hole horizon. The second question concerns back reaction effects. We return to the Eulerian action, compute second-order effects, and show that the back reaction of sound waves on the fluid's flow can be expressed in terms of their stress-energy tensor. Using this result in the context of Hawking radiation, we compute the secular effect on the background flow

  15. A Black Hole Spectral Signature

    Science.gov (United States)

    Titarchuk, Lev; Laurent, Philippe

    2000-03-01

    An accreting black hole is, by definition, characterized by the drain. Namely, the matter falls into a black hole much the same way as water disappears down a drain matter goes in and nothing comes out. As this can only happen in a black hole, it provides a way to see ``a black hole'', an unique observational signature. The accretion proceeds almost in a free-fall manner close to the black hole horizon, where the strong gravitational field dominates the pressure forces. In this paper we present analytical calculations and Monte-Carlo simulations of the specific features of X-ray spectra formed as a result of upscattering of the soft (disk) photons in the converging inflow (CI) into the black hole. The full relativistic treatment has been implemented to reproduce these spectra. We show that spectra in the soft state of black hole systems (BHS) can be described as the sum of a thermal (disk) component and the convolution of some fraction of this component with the CI upscattering spread (Greens) function. The latter boosted photon component is seen as an extended power-law at energies much higher than the characteristic energy of the soft photons. We demonstrate the stability of the power spectral index over a wide range of the plasma temperature 0 - 10 keV and mass accretion rates (higher than 2 in Eddington units). We also demonstrate that the sharp high energy cutoff occurs at energies of 200-400 keV which are related to the average energy of electrons mec2 impinging upon the event horizon. The spectrum is practically identical to the standard thermal Comptonization spectrum when the CI plasma temperature is getting of order of 50 keV (the typical ones for the hard state of BHS). In this case one can see the effect of the bulk motion only at high energies where there is an excess in the CI spectrum with respect to the pure thermal one. Furthermore we demonstrate that the change of spectral shapes from the soft X-ray state to the hard X-ray state is clearly to be

  16. Quantum capacity of quantum black holes

    Science.gov (United States)

    Adami, Chris; Bradler, Kamil

    2014-03-01

    The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.

  17. Simulations of nearly extremal binary black holes

    Science.gov (United States)

    Giesler, Matthew; Scheel, Mark; Hemberger, Daniel; Lovelace, Geoffrey; Kuper, Kevin; Boyle, Michael; Szilagyi, Bela; Kidder, Lawrence; SXS Collaboration

    2015-04-01

    Astrophysical black holes could have nearly extremal spins; therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass m and spin S exceeding the Bowen-York limit of S /m2 = 0 . 93 . Using improved methods we simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has S /m2 = 0 . 99 . We also use these methods to simulate a nearly extremal non-precessing binary black hole coalescence, where both black holes have S /m2 = 0 . 994 , nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; and we compare the evolution of the black-hole masses and spins with analytic predictions.

  18. Black holes and holography

    International Nuclear Information System (INIS)

    Mathur, Samir D

    2012-01-01

    The idea of holography in gravity arose from the fact that the entropy of black holes is given by their surface area. The holography encountered in gauge/gravity duality has no such relation however; the boundary surface can be placed at an arbitrary location in AdS space and its area does not give the entropy of the bulk. The essential issues are also different between the two cases: in black holes we get Hawking radiation from the 'holographic surface' which leads to the information issue, while in gauge/gravity duality there is no such radiation. To resolve the information paradox we need to show that there are real degrees of freedom at the horizon of the hole; this is achieved by the fuzzball construction. In gauge/gravity duality we have instead a field theory defined on an abstract dual space; there are no gravitational degrees of freedom at the holographic boundary. It is important to understand the relations and differences between these two notions of holography to get a full understanding of the lessons from the information paradox.

  19. Quantum production of particles (the Hawking effect) in nonstationary black holes

    International Nuclear Information System (INIS)

    Volovich, I.V.; Zagrebnov, V.A.; Frolov, V.P.; AN SSSR, Moscow. Fizicheskij Inst.)

    1976-01-01

    Particle production in a gravitational field of a black hole with changing mass is considered. It is shown that in the case when parameters are changed adiabatically taking into account the nonstationarity is reduced effectively to the taking into account the dependence of the Hawking radiation temperature on the retarded time

  20. Quantum production of particles (the Hawking effect) in nonstationary black holes

    Energy Technology Data Exchange (ETDEWEB)

    Volovich, I V; Zagrebnov, V A; Frolov, V P [Joint Inst. for Nuclear Research, Dubna (USSR); AN SSSR, Moscow. Fizicheskij Inst.)

    1976-11-01

    Particle production in a gravitational field of a black hole with changing mass is considered. It is shown that in the case when parameters are changed adiabatically taking into account the nonstationarity is reduced effectively to the taking into account the dependence of the Hawking radiation temperature on the retarded time.

  1. String-theoretic breakdown of effective field theory near black hole horizons

    Science.gov (United States)

    Dodelson, Matthew; Silverstein, Eva

    2017-09-01

    We investigate the validity of the equivalence principle near horizons in string theory, analyzing the breakdown of effective field theory caused by longitudinal string spreading effects. An experiment is set up where a detector is thrown into a black hole a long time after an early infalling string. Light cone gauge calculations, taken at face value, indicate a detectable level of root-mean-square longitudinal spreading of the initial string as measured by the late infaller. This results from the large relative boost between the string and detector in the near-horizon region, which develops automatically despite their modest initial energies outside the black hole and the weak curvature in the geometry. We subject this scenario to basic consistency checks, using these to obtain a relatively conservative criterion for its detectability. In a companion paper, we exhibit longitudinal nonlocality in well-defined gauge-invariant S-matrix calculations, obtaining results consistent with the predicted spreading albeit not in a direct analog of the black hole process. We discuss applications of this effect to the firewall paradox, and estimate the time and distance scales it predicts for new physics near black hole and cosmological horizons.

  2. (Anti-)Evaporation of Schwarzschild-de Sitter Black Holes

    OpenAIRE

    Bousso, Raphael; Hawking, Stephen

    1997-01-01

    We study the quantum evolution of black holes immersed in a de Sitter background space. For black holes whose size is comparable to that of the cosmological horizon, this process differs significantly from the evaporation of asymptotically flat black holes. Our model includes the one-loop effective action in the s-wave and large N approximation. Black holes of the maximal mass are in equilibrium. Unexpectedly, we find that nearly maximal quantum Schwarzschild-de Sitter black holes anti-evapor...

  3. Artificial black holes

    CERN Document Server

    Visser, Matt; Volovik, Grigory E

    2009-01-01

    Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various "analog models". These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters - written by experts in general relativity, particle physics, and condensed matter physics - that explore various aspects of this two-way traffic.

  4. EFFECTS OF SPIN ON HIGH-ENERGY RADIATION FROM ACCRETING BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    O’ Riordan, Michael; Pe’er, Asaf [Physics Department, University College Cork, Cork (Ireland); McKinney, Jonathan C., E-mail: michael_oriordan@umail.ucc.ie [Department of Physics and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States)

    2016-11-01

    Observations of jets in X-ray binaries show a correlation between radio power and black hole spin. This correlation, if confirmed, points toward the idea that relativistic jets may be powered by the rotational energy of black holes. In order to examine this further, we perform general relativistic radiative transport calculations on magnetically arrested accretion flows, which are known to produce powerful jets via the Blandford–Znajek (BZ) mechanism. We find that the X-ray and γ -ray emission strongly depend on spin and inclination angle. Surprisingly, the high-energy power does not show the same dependence on spin as the BZ jet power, but instead can be understood as a redshift effect. In particular, photons observed perpendicular to the spin axis suffer little net redshift until originating from close to the horizon. Such observers see deeper into the hot, dense, highly magnetized inner disk region. This effect is largest for rapidly rotating black holes due to a combination of frame dragging and decreasing horizon radius. While the X-ray emission is dominated by the near horizon region, the near-infrared (NIR) radiation originates at larger radii. Therefore, the ratio of X-ray to NIR power is an observational signature of black hole spin.

  5. The effects of massive graviton on the equilibrium between the black hole and radiation gas in an isolated box

    Directory of Open Access Journals (Sweden)

    Ya-Peng Hu

    2017-09-01

    Full Text Available It is well known that the black hole can have temperature and radiate the particles with black body spectrum, i.e. Hawking radiation. Therefore, if the black hole is surrounded by an isolated box, there is a thermal equilibrium between the black hole and radiation gas. A simple case considering the thermal equilibrium between the Schwarzschild black hole and radiation gas in an isolated box has been well investigated previously in detail, i.e. taking the conservation of energy and principle of maximal entropy for the isolated system into account. In this paper, following the above spirit, the effects of massive graviton on the thermal equilibrium will be investigated. For the gravity with massive graviton, we will use the de Rham–Gabadadze–Tolley (dRGT massive gravity which has been proven to be ghost free. Because the graviton mass depends on two parameters in the dRGT massive gravity, here we just investigate two simple cases related to the two parameters, respectively. Our results show that in the first case the massive graviton can suppress or increase the condensation of black hole in the radiation gas although the T–E diagram is similar as the Schwarzschild black hole case. For the second case, a new T–E diagram has been obtained. Moreover, an interesting and important prediction is that the condensation of black hole just increases from the zero radius of horizon in this case, which is very different from the Schwarzschild black hole case.

  6. Statistical black-hole thermodynamics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1975-01-01

    Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several problems in black-hole thermodynamics. Jaynes's maximum-uncertainty method for computing probabilities is used to show that the earlier-formulated generalized second law is respected in statistically averaged form in the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a system containing a black hole. As an application we derive the distribution for the radiation in equilibrium with a Kerr hole (it is found to agree with what would be expected from Hawking's results) and the form of the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the number of possible interior configurations that are compatible with the given exterior black-hole state. We also formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability distribution among Kerr solution states for an isolated radiating Kerr hole

  7. Acceleration of black hole universe

    Science.gov (United States)

    Zhang, T. X.; Frederick, C.

    2014-01-01

    Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.

  8. On black hole horizon fluctuations

    International Nuclear Information System (INIS)

    Tuchin, K.L.

    1999-01-01

    A study of the high angular momentum particles 'atmosphere' near the Schwarzschild black hole horizon suggested that strong gravitational interactions occur at invariant distance of the order of 3 √M [2]. We present a generalization of this result to the Kerr-Newman black hole case. It is shown that the larger charge and angular momentum black hole bears, the larger invariant distance at which strong gravitational interactions occur becomes. This invariant distance is of order 3 √((r + 2 )/((r + - r - ))). This implies that the Planckian structure of the Hawking radiation of extreme black holes is completely broken

  9. Statistical Hair on Black Holes

    International Nuclear Information System (INIS)

    Strominger, A.

    1996-01-01

    The Bekenstein-Hawking entropy for certain BPS-saturated black holes in string theory has recently been derived by counting internal black hole microstates at weak coupling. We argue that the black hole microstate can be measured by interference experiments even in the strong coupling region where there is clearly an event horizon. Extracting information which is naively behind the event horizon is possible due to the existence of statistical quantum hair carried by the black hole. This quantum hair arises from the arbitrarily large number of discrete gauge symmetries present in string theory. copyright 1996 The American Physical Society

  10. Thermodynamics of Accelerating Black Holes.

    Science.gov (United States)

    Appels, Michael; Gregory, Ruth; Kubizňák, David

    2016-09-23

    We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

  11. Caged black holes: Black holes in compactified spacetimes. I. Theory

    International Nuclear Information System (INIS)

    Kol, Barak; Sorkin, Evgeny; Piran, Tsvi

    2004-01-01

    In backgrounds with compact dimensions there may exist several phases of black objects including a black hole and a black string. The phase transition between them raises questions and touches on fundamental issues such as topology change, uniqueness, and cosmic censorship. No analytic solution is known for the black hole, and moreover one can expect approximate solutions only for very small black holes, while phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a subsequent paper. The goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. The predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the 'overall numerical error'. Field asymptotics and expressions for physical quantities in terms of the numerical values are supplied. The techniques include the 'method of equivalent charges', free energy, dimensional reduction, and analytic perturbation for small black holes

  12. The quantum structure of black holes

    International Nuclear Information System (INIS)

    Mathur, Samir D

    2006-01-01

    We give an elementary review of black holes in string theory. We discuss black hole entropy from string microstates and Hawking radiation from these states. We then review the structure of two-charge microstates and explore how 'fractionation' can lead to quantum effects over macroscopic length scales of the order of the horizon radius. (topical review)

  13. Black hole complementarity: The inside view

    Directory of Open Access Journals (Sweden)

    David A. Lowe

    2014-10-01

    Full Text Available Within the framework of black hole complementarity, a proposal is made for an approximate interior effective field theory description. For generic correlators of local operators on generic black hole states, it agrees with the exact exterior description in a region of overlapping validity, up to corrections that are too small to be measured by typical infalling observers.

  14. Black holes and fundamental fields: Hair, kicks, and a gravitational Magnus effect

    Science.gov (United States)

    Okawa, Hirotada; Cardoso, Vitor

    2014-11-01

    Scalar fields pervade theoretical physics and are a fundamental ingredient to solve the dark matter problem, to realize the Peccei-Quinn mechanism in QCD or the string-axiverse scenario. They are also a useful proxy for more complex matter interactions, such as accretion disks or matter in extreme conditions. Here, we study the collision between scalar "clouds" and rotating black holes. For the first time we are able to compare analytic estimates and strong field, nonlinear numerical calculations for this problem. As the black hole pierces through the cloud it accretes according to the Bondi-Hoyle prediction, but is deflected through a purely kinematic gravitational "anti-Magnus" effect, which we predict to be present also during the interaction of black holes with accretion disks. After the interaction is over, we find large recoil velocities in the transverse direction. The end-state of the process belongs to the vacuum Kerr family if the scalar is massless, but can be a hairy black hole when the scalar is massive.

  15. Black hole quantum spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Corda, Christian [Institute for Theoretical Physics and Advanced Mathematics (IFM) Einstein-Galilei, Prato (Italy); Istituto Universitario di Ricerca ' ' Santa Rita' ' , Prato (Italy); International Institute for Applicable Mathematics and Information Sciences (IIAMIS), Hyderabad (India)

    2013-12-15

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum ''overtone'' number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the ''hydrogen atom'' and the ''quasi-thermal emission'' in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox. (orig.)

  16. Black hole quantum spectrum

    Science.gov (United States)

    Corda, Christian

    2013-12-01

    Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re-analysed BH quasi-normal modes (QNMs) and interpreted them naturally in terms of quantum levels. In this work we improve such an analysis removing some approximations that have been implicitly used in our previous works and obtaining the corrected expressions for the formulas of the horizon's area quantization and the number of quanta of area and hence also for Bekenstein-Hawking entropy, its subleading corrections and the number of micro-states, i.e. quantities which are fundamental to realize the underlying quantum gravity theory, like functions of the QNMs quantum "overtone" number n and, in turn, of the BH quantum excited level. An approximation concerning the maximum value of n is also corrected. On the other hand, our previous results were strictly corrected only for scalar and gravitational perturbations. Here we show that the discussion holds also for vector perturbations. The analysis is totally consistent with the general conviction that BHs result in highly excited states representing both the "hydrogen atom" and the "quasi-thermal emission" in quantum gravity. Our BH model is somewhat similar to the semi-classical Bohr's model of the structure of a hydrogen atom. The thermal approximation of previous results in the literature is consistent with the results in this paper. In principle, such results could also have important implications for the BH information paradox.

  17. Black hole thermodynamical entropy

    International Nuclear Information System (INIS)

    Tsallis, Constantino; Cirto, Leonardo J.L.

    2013-01-01

    As early as 1902, Gibbs pointed out that systems whose partition function diverges, e.g. gravitation, lie outside the validity of the Boltzmann-Gibbs (BG) theory. Consistently, since the pioneering Bekenstein-Hawking results, physically meaningful evidence (e.g., the holographic principle) has accumulated that the BG entropy S BG of a (3+1) black hole is proportional to its area L 2 (L being a characteristic linear length), and not to its volume L 3 . Similarly it exists the area law, so named because, for a wide class of strongly quantum-entangled d-dimensional systems, S BG is proportional to lnL if d=1, and to L d-1 if d>1, instead of being proportional to L d (d ≥ 1). These results violate the extensivity of the thermodynamical entropy of a d-dimensional system. This thermodynamical inconsistency disappears if we realize that the thermodynamical entropy of such nonstandard systems is not to be identified with the BG additive entropy but with appropriately generalized nonadditive entropies. Indeed, the celebrated usefulness of the BG entropy is founded on hypothesis such as relatively weak probabilistic correlations (and their connections to ergodicity, which by no means can be assumed as a general rule of nature). Here we introduce a generalized entropy which, for the Schwarzschild black hole and the area law, can solve the thermodynamic puzzle. (orig.)

  18. Black hole thermodynamics based on unitary evolutions

    International Nuclear Information System (INIS)

    Feng, Yu-Lei; Chen, Yi-Xin

    2015-01-01

    In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein–Hawking entropy S BH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics. (paper)

  19. Chandra Catches "Piranha" Black Holes

    Science.gov (United States)

    2007-07-01

    had good evidence until now," said co-author Paul Martini, also of OSU. "This can help solve a couple of mysteries about galaxy clusters." One mystery is why there are so many blue, star-forming galaxies in young, distant clusters and fewer in nearby, older clusters. AGN are believed to expel or destroy cool gas in their host galaxy through powerful eruptions from the black hole. This may stifle star formation and the blue, massive stars will then gradually die off, leaving behind only the old, redder stars. This process takes about a billion years or more to take place, so a dearth of star-forming galaxies is only noticeable for older clusters. The process that sets the temperature of the hot gas in clusters when they form is also an open question. These new results suggest that even more AGN may have been present when most clusters were forming about ten billion years ago. Early heating of a cluster by large numbers of AGN can have a significant, long-lasting effect on the structure of a cluster by "puffing up" the gas. "In a few nearby clusters we've seen evidence for huge eruptions generated by supermassive black holes. But this is sedate compared to what might be going on in younger clusters," said Eastman. These results appeared in the July 20th issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  20. Effect of vacuum energy on evolution of primordial black holes in Einstein gravity

    International Nuclear Information System (INIS)

    Nayak, Bibekananda; Jamil, Mubasher

    2012-01-01

    We study the evolution of primordial black holes by considering present universe is no more matter dominated rather vacuum energy dominated. We also consider the accretion of radiation, matter and vacuum energy during respective dominance period. In this scenario, we found that radiation accretion efficiency should be less than 0.366 and accretion rate is much larger than previous analysis by Nayak et al. (2009) . Thus here primordial black holes live longer than previous works Nayak and Singh (2011). Again matter accretion slightly increases the mass and lifetime of primordial black holes. However, the vacuum energy accretion is slightly complicated one, where accretion is possible only up to a critical time. If a primordial black hole lives beyond critical time, then its' lifespan increases due to vacuum energy accretion. But for presently evaporating primordial black holes, critical time comes much later than their evaporating time and thus vacuum energy could not affect those primordial black holes.

  1. Relativistic hydrodynamic evolutions with black hole excision

    International Nuclear Information System (INIS)

    Duez, Matthew D.; Shapiro, Stuart L.; Yo, H.-J.

    2004-01-01

    We present a numerical code designed to study astrophysical phenomena involving dynamical spacetimes containing black holes in the presence of relativistic hydrodynamic matter. We present evolutions of the collapse of a fluid star from the onset of collapse to the settling of the resulting black hole to a final stationary state. In order to evolve stably after the black hole forms, we excise a region inside the hole before a singularity is encountered. This excision region is introduced after the appearance of an apparent horizon, but while a significant amount of matter remains outside the hole. We test our code by evolving accurately a vacuum Schwarzschild black hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder dust collapse, and the collapse of nonrotating and rotating stars. These systems are tracked reliably for hundreds of M following excision, where M is the mass of the black hole. We perform these tests both in axisymmetry and in full 3+1 dimensions. We then apply our code to study the effect of the stellar spin parameter J/M 2 on the final outcome of gravitational collapse of rapidly rotating n=1 polytropes. We find that a black hole forms only if J/M 2 2 >1, the collapsing star forms a torus which fragments into nonaxisymmetric clumps, capable of generating appreciable 'splash' gravitational radiation

  2. Mass inflation in the loop black hole

    International Nuclear Information System (INIS)

    Brown, Eric G.; Mann, Robert; Modesto, Leonardo

    2011-01-01

    In classical general relativity the Cauchy horizon within a two-horizon black hole is unstable via a phenomenon known as mass inflation, in which the mass parameter (and the spacetime curvature) of the black hole diverges at the Cauchy horizon. Here we study this effect for loop black holes - quantum gravitationally corrected black holes from loop quantum gravity - whose construction alleviates the r=0 singularity present in their classical counterparts. We use a simplified model of mass inflation, which makes use of the generalized Dray-'t Hooft relation, to conclude that the Cauchy horizon of loop black holes indeed results in a curvature singularity similar to that found in classical black holes. The Dray-'t Hooft relation is of particular utility in the loop black hole because it does not directly rely upon Einstein's field equations. We elucidate some of the interesting and counterintuitive properties of the loop black hole, and corroborate our results using an alternate model of mass inflation due to Ori.

  3. Bumpy black holes from spontaneous Lorentz violation

    International Nuclear Information System (INIS)

    Dubovsky, Sergei; Tinyakov, Peter; Zaldarriaga, Matias

    2007-01-01

    We consider black holes in Lorentz violating theories of massive gravity. We argue that in these theories black hole solutions are no longer universal and exhibit a large number of hairs. If they exist, these hairs probe the singularity inside the black hole providing a window into quantum gravity. The existence of these hairs can be tested by future gravitational wave observatories. We generically expect that the effects we discuss will be larger for the more massive black holes. In the simplest models the strength of the hairs is controlled by the same parameter that sets the mass of the graviton (tensor modes). Then the upper limit on this mass coming from the inferred gravitational radiation emitted by binary pulsars implies that hairs are likely to be suppressed for almost the entire mass range of the super-massive black holes in the centers of galaxies

  4. Black hole accretion: the quasar powerhouse

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A program is described which calculates the effects of material falling into the curved space-time surrounding a rotation black hole. The authors have developed a two-dimensional, general-relativistic hydrodynamics code to simulate fluid flow in the gravitational field of a rotating black hole. Such calculations represent models that have been proposed for the energy sources of both quasars and jets from radiogalaxies. In each case, the black hole that powers the quasar or jet would have a mass of about 100 million times the mass of the sun. The black hole would be located in the center of a galaxy whose total mass is 1000 time greater than the black hole mass. (SC)

  5. Kerr black holes are not fragile

    Energy Technology Data Exchange (ETDEWEB)

    McInnes, Brett, E-mail: matmcinn@nus.edu.sg [Centro de Estudios Cientificos (CECs), Valdivia (Chile); National University of Singapore (Singapore)

    2012-04-21

    Certain AdS black holes are 'fragile', in the sense that, if they are deformed excessively, they become unstable to a fundamental non-perturbative stringy effect analogous to Schwinger pair-production [of branes]. Near-extremal topologically spherical AdS-Kerr black holes, which are natural candidates for string-theoretic models of the very rapidly rotating black holes that have actually been observed to exist, do represent a very drastic deformation of the AdS-Schwarzschild geometry. One therefore has strong reason to fear that these objects might be 'fragile', which in turn could mean that asymptotically flat rapidly rotating black holes might be fragile in string theory. Here we show that this does not happen: despite the severe deformation implied by near-extremal angular momenta, brane pair-production around topologically spherical AdS-Kerr-Newman black holes is always suppressed.

  6. Black-hole driven winds

    International Nuclear Information System (INIS)

    Punsly, B.M.

    1988-01-01

    This dissertation is a study of the physical mechanism that allows a large scale magnetic field to torque a rapidly rotating, supermassive black hole. This is an interesting problem as it has been conjectured that rapidly rotating black holes are the central engines that power the observed extragalactic double radio sources. Axisymmetric solutions of the curved space-time version of Maxwell's equations in the vacuum do not torque black holes. Plasma must be introduced for the hole to mechanically couple to the field. The dynamical aspect of rotating black holes that couples the magnetic field to the hole is the following. A rotating black hole forces the external geometry of space-time to rotate (the dragging of inertial frames). Inside of the stationary limit surface, the ergosphere, all physical particle trajectories must appear to rotate in the same direction as the black hole as viewed by the stationary observers at asymptotic infinity. In the text, it is demonstrated how plasma that is created on field lines that thread both the ergosphere and the equatorial plane will be pulled by gravity toward the equator. By the aforementioned properties of the ergosphere, the disk must rotate. Consequently, the disk acts like a unipolar generator. It drives a global current system that supports the toroidal magnetic field in an outgoing, magnetically dominated wind. This wind carries energy (mainly in the form of Poynting flux) and angular momentum towards infinity. The spin down of the black hole is the ultimate source of this energy and angular momentum flux

  7. Black-Hole Mass Measurements

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2004-01-01

    The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....

  8. ATLAS simulated black hole event

    CERN Multimedia

    Pequenão, J

    2008-01-01

    The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).

  9. Black holes and everyday physics

    International Nuclear Information System (INIS)

    Bekenstein, J.D.

    1982-01-01

    Black holes have piqued much curiosity. But thus far they have been important only in ''remote'' subjects like astrophysics and quantum gravity. It is shown that the situation can be improved. By a judicious application of black hole physics, one can obtain new results in ''everyday physics''. For example, black holes yield a quantum universal upper bound on the entropy-to-energy ratio for ordinary thermodynamical systems which was unknown earlier. It can be checked, albeit with much labor, by ordinary statistical methods. Black holes set a limitation on the number of species of elementary particles-quarks, leptons, neutrinos - which may exist. And black holes lead to a fundamental limitation on the rate at which information can be transferred for given message energy by any communication system. (author)

  10. The search for black holes

    International Nuclear Information System (INIS)

    Torn, K.

    1976-01-01

    Conceivable experimental investigations to prove the existence of black holes are discussed. Double system with a black hole turning around a star-satellite are in the spotlight. X-radiation emmited by such systems and resulting from accretion of the stellar gas by a black hole, and the gas heating when falling on the black hole might prove the model suggested. A source of strong X-radiation observed in the Cygnus star cluster and referred to as Cygnus X-1 may be thus identified as a black hole. Direct registration of short X-ray pulses with msec intervals might prove the suggestion. The lack of appropriate astrophysic facilities is pointed out to be the major difficulty on the way of experimental verifications

  11. Black hole final state conspiracies

    International Nuclear Information System (INIS)

    McInnes, Brett

    2009-01-01

    The principle that unitarity must be preserved in all processes, no matter how exotic, has led to deep insights into boundary conditions in cosmology and black hole theory. In the case of black hole evaporation, Horowitz and Maldacena were led to propose that unitarity preservation can be understood in terms of a restriction imposed on the wave function at the singularity. Gottesman and Preskill showed that this natural idea only works if one postulates the presence of 'conspiracies' between systems just inside the event horizon and states at much later times, near the singularity. We argue that some AdS black holes have unusual internal thermodynamics, and that this may permit the required 'conspiracies' if real black holes are described by some kind of sum over all AdS black holes having the same entropy

  12. Compressibility of rotating black holes

    International Nuclear Information System (INIS)

    Dolan, Brian P.

    2011-01-01

    Interpreting the cosmological constant as a pressure, whose thermodynamically conjugate variable is a volume, modifies the first law of black hole thermodynamics. Properties of the resulting thermodynamic volume are investigated: the compressibility and the speed of sound of the black hole are derived in the case of nonpositive cosmological constant. The adiabatic compressibility vanishes for a nonrotating black hole and is maximal in the extremal case--comparable with, but still less than, that of a cold neutron star. A speed of sound v s is associated with the adiabatic compressibility, which is equal to c for a nonrotating black hole and decreases as the angular momentum is increased. An extremal black hole has v s 2 =0.9 c 2 when the cosmological constant vanishes, and more generally v s is bounded below by c/√(2).

  13. What is a black hole

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1979-01-01

    A definition of a black hole is proposed that should work in any stably causal space-time. This is that a black hole is the closure of the smaller future set that contains all noncosmological trapped surfaces and which has its boundary generated by null geodesic segments that are boundary generators of TIPs. This allows precise definitions of cosmic censorship and white holes. (UK)

  14. Black holes and quantum processes in them

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1976-01-01

    The latest achievements in the physics of black holes are reviewed. The problem of quantum production in a strong gravitational field of black holes is considered. Another parallel discovered during investigation of interactions between black holes and between black holes and surrounding media, is also drawn with thermodynamics. A gravitational field of rotating black holes is considered. Some cosmological aspects of evaporation of small black holes are discussed as well as possibilities to observe them

  15. Black hole decay as geodesic motion

    International Nuclear Information System (INIS)

    Gupta, Kumar S.; Sen, Siddhartha

    2003-01-01

    We show that a formalism for analyzing the near-horizon conformal symmetry of Schwarzschild black holes using a scalar field probe is capable of describing black hole decay. The equation governing black hole decay can be identified as the geodesic equation in the space of black hole masses. This provides a novel geometric interpretation for the decay of black holes. Moreover, this approach predicts a precise correction term to the usual expression for the decay rate of black holes

  16. Soft Hair on Black Holes

    Science.gov (United States)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-06-01

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  17. Soft Hair on Black Holes.

    Science.gov (United States)

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  18. When Supermassive Black Holes Wander

    Science.gov (United States)

    Kohler, Susanna

    2018-05-01

    Are supermassive black holes found only at the centers of galaxies? Definitely not, according to a new study in fact, galaxies like the Milky Way may harbor several such monsters wandering through their midst.Collecting Black Holes Through MergersIts generally believed that galaxies are built up hierarchically, growing in size through repeated mergers over time. Each galaxy in a major merger likely hosts a supermassive black hole a black hole of millions to billions of times the mass of the Sun at its center. When a pair of galaxies merges, their supermassive black holes will often sink to the center of the merger via a process known as dynamical friction. There the supermassive black holes themselves will eventually merge in a burst of gravitational waves.Spatial distribution and velocities of wandering supermassive black holes in three of the authors simulated galaxies, shown in edge-on (left) and face-on (right) views of the galaxy disks. Click for a closer look. [Tremmel et al. 2018]But if a galaxy the size of the Milky Way was built through a history of many major galactic mergers, are we sure that all its accumulated supermassive black holes eventually merged at the galactic center? A new study suggests that some of these giants might have escaped such a fate and they now wander unseen on wide orbits through their galaxies.Black Holes in an Evolving UniverseLed by Michael Tremmel (Yale Center for Astronomy Astrophysics), a team of scientists has used data from a large-scale cosmological simulation, Romulus25, to explore the possibility of wandering supermassive black holes. The Romulus simulations are uniquely suited to track the formation and subsequent orbital motion of supermassive black holes as galactic halos are built up through mergers over the history of the universe.From these simulations, Tremmel and collaborators find an end total of 316 supermassive black holes residing within the bounds of 26 Milky-Way-mass halos. Of these, roughly a third are

  19. Strong deflection lensing by a Lee–Wick black hole

    Directory of Open Access Journals (Sweden)

    Shan-Shan Zhao

    2017-11-01

    Full Text Available We study strong deflection gravitational lensing by a Lee–Wick black hole, which is a non-singular black hole generated by a high derivative modification of Einstein–Hilbert action. The strong deflection lensing is expected to produce a set of relativistic images very closed to the event horizon of the black hole. We estimate its observables for the supermassive black hole in our Galactic center. It is found that the Lee–Wick black hole can be distinguished from the Schwarzschild black hole via such lensing effects when the UV scale is not very large, but the requiring resolution is much higher than current capability.

  20. Exploring the Effects of Disk Thickness on the Black Hole Reflection Spectrum

    Science.gov (United States)

    Taylor, Corbin; Reynolds, Christopher S.

    2018-03-01

    The relativistically broadened reflection spectrum, observed in both AGN and X-ray binaries, has proven to be a powerful probe of the properties of black holes and the environments in which they reside. Emitted from the innermost regions of the accretion disk, this X-ray spectral component carries with it information not only about the plasma that resides in these extreme conditions, but also the black hole spin, a marker of the formation and accretion history of these objects. The models currently used to interpret the reflection spectrum are often simplistic, however, approximating the disk as an infinitely thin, optically thick plane of material orbiting in circular Keplerian orbits around the central object. Using a new relativistic ray-tracing suite (Fenrir) that allows for more complex disk approximations, we examine the effects that disk thickness may have on the reflection spectrum. Assuming a lamppost corona, we find that finite disk thickness can have a variety of effects on the reflection spectrum, including a truncation of the blue wing (from self-shadowing of the accretion disk) and an enhancement of the red wing (from the irradiation of the central “eye wall” of the inner disk). We deduce the systematic errors on black hole spin and height that may result from neglecting these effects.

  1. Effects of Black Hole Spin on the Limit-Cycle Behaviour of Accretion ...

    Indian Academy of Sciences (India)

    We present a spatially 1.5-dimensional, time-dependent numerical study of accretion disks around Kerr black holes. Our study focuses on the limit-cycle behavior of thermally unstable accretion disks. We find that maximal luminosity may be a more appropriate probe of black hole spin than the cycle duration and influence ...

  2. A nonsingular rotating black hole

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.

    2015-01-01

    The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a welldefined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m(r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r >> k, k > 0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k = 0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics. (orig.)

  3. Black Hole Grabs Starry Snack

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end. The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light. The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.

  4. Black holes at neutrino telescopes

    International Nuclear Information System (INIS)

    Kowalski, M.; Ringwald, A.; Tu, H.

    2002-01-01

    In scenarios with extra dimensions and TeV-scale quantum gravity, black holes are expected to be produced in the collision of light particles at center-of-mass energies above the fundamental Planck scale with small impact parameters. Black hole production and evaporation may thus be studied in detail at the large hadron collider (LHC). But even before the LHC starts operating, neutrino telescopes such as AMANDA/IceCube, ANTARES, Baikal, and RICE have an opportunity to search for black hole signatures. Black hole production in the scattering of ultrahigh energy cosmic neutrinos on nucleons in the ice or water may initiate cascades and through-going muons with distinct characteristics above the Standard Model rate. In this Letter, we investigate the sensitivity of neutrino telescopes to black hole production and compare it to the one expected at the Pierre Auger Observatory, an air shower array currently under construction, and at the LHC. We find that, already with the currently available data, AMANDA and RICE should be able to place sensible constraints in black hole production parameter space, which are competitive with the present ones from the air shower facilities Fly's Eye and AGASA. In the optimistic case that a ultrahigh energy cosmic neutrino flux significantly higher than the one expected from cosmic ray interactions with the cosmic microwave background radiation is realized in nature, one even has discovery potential for black holes at neutrino telescopes beyond the reach of LHC. (orig.)

  5. Thermodynamic theory of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W. [King' s Coll., London (UK). Dept. of Mathematics

    1977-04-21

    The thermodynamic theory underlying black hole processes is developed in detail and applied to model systems. It is found that Kerr-Newman black holes undergo a phase transition at a = 0.68M or Q = 0.86M, where the heat capacity has an infinite discontinuity. Above the transition values the specific heat is positive, permitting isothermal equilibrium with a surrounding heat bath. Simple processes and stability criteria for various black hole situations are investigated. The limits for entropically favoured black hole formation are found. The Nernst conditions for the third law of thermodynamics are not satisfied fully for black holes. There is no obvious thermodynamic reason why a black hole may not be cooled down below absolute zero and converted into a naked singularity. Quantum energy-momentum tensor calculations for uncharged black holes are extended to the Reissner-Nordstrom case, and found to be fully consistent with the thermodynamic picture for Q < M. For Q < M the model predicts that 'naked' collapse also produces radiation, with such intensity that the collapsing matter is entirely evaporated away before a naked singularity can form.

  6. Gravitational amplitudes in black hole evaporation: the effect of non-commutative geometry

    International Nuclear Information System (INIS)

    Grezia, Elisabetta Di; Esposito, Giampiero; Miele, Gennaro

    2006-01-01

    Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat spacetime and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in non-commutative geometry have shown that, in general relativity, the effects of non-commutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. The present paper, relying on the recently obtained non-commutativity effect on a static, spherically symmetric metric, considers from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes is shown to be modified by a multiplicative factor F depending on a constant non-commutativity parameter and on the upper limit R of the radial coordinate. Limiting forms of F are derived which are compatible with the adiabatic approximation here exploited. Approximate formulae for the particle emission rate are also obtained within this framework

  7. Effective stability against superradiance of Kerr black holes with synchronised hair

    Science.gov (United States)

    Degollado, Juan Carlos; Herdeiro, Carlos A. R.; Radu, Eugen

    2018-06-01

    Kerr black holes with synchronised hair [1,2] are a counter example to the no hair conjecture, in General Relativity minimally coupled to simple matter fields (with mass μ) obeying all energy conditions. Since these solutions have, like Kerr, an ergoregion it has been a lingering possibility that they are afflicted by the superradiant instability, the same process that leads to their dynamical formation from Kerr. A recent breakthrough [3] confirmed this instability and computed the corresponding timescales for a sample of solutions. We discuss how these results and other observations support two conclusions: 1) starting from the Kerr limit, the increase of hair for fixed coupling μM (where M is the BH mass) increases the timescale of the instability; 2) there are hairy solutions for which this timescale, for astrophysical black hole masses, is larger than the age of the Universe. The latter conclusion introduces the limited, but physically relevant concept of effective stability. The former conclusion, allows us to identify an astrophysically viable domain of such effectively stable hairy black holes, occurring, conservatively, for Mμ ≲ 0.25. These are hairy BHs that form dynamically, from the superradiant instability of Kerr, within an astrophysical timescale, but whose own superradiant instability occurs only in a cosmological timescale.

  8. Vacuum metastability with black holes

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Philipp [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute, 31 Caroline Street North,Waterloo, ON, N2L 2Y5 (Canada); Moss, Ian G. annd [School of Mathematics and Statistics, Newcastle University,Newcastle Upon Tyne, NE1 7RU (United Kingdom)

    2015-08-24

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  9. Vacuum metastability with black holes

    International Nuclear Information System (INIS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G. annd

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  10. Tunnelling from Goedel black holes

    International Nuclear Information System (INIS)

    Kerner, Ryan; Mann, R. B.

    2007-01-01

    We consider the spacetime structure of Kerr-Goedel black holes, analyzing their parameter space in detail. We apply the tunnelling method to compute their temperature and compare the results to previous calculations obtained via other methods. We claim that it is not possible to have the closed timelike curve (CTC) horizon in between the two black hole horizons and include a discussion of issues that occur when the radius of the CTC horizon is smaller than the radius of both black hole horizons

  11. Quantum mechanics of black holes.

    Science.gov (United States)

    Witten, Edward

    2012-08-03

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  12. Gravitational polarizability of black holes

    International Nuclear Information System (INIS)

    Damour, Thibault; Lecian, Orchidea Maria

    2009-01-01

    The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h l of a black hole are defined and computed. They are then compared to their electromagnetic analogs h l EM . The Love numbers h l give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.

  13. Generalized uncertainty principles, effective Newton constant and regular black holes

    OpenAIRE

    Li, Xiang; Ling, Yi; Shen, You-Gen; Liu, Cheng-Zhou; He, Hong-Sheng; Xu, Lan-Fang

    2016-01-01

    In this paper, we explore the quantum spacetimes that are potentially connected with the generalized uncertainty principles. By analyzing the gravity-induced quantum interference pattern and the Gedanken for weighting photon, we find that the generalized uncertainty principles inspire the effective Newton constant as same as our previous proposal. A characteristic momentum associated with the tidal effect is suggested, which incorporates the quantum effect with the geometric nature of gravity...

  14. Problem of mathematical deduction of the existence of black holes

    Directory of Open Access Journals (Sweden)

    Yuan-Shun Chin

    1990-01-01

    Full Text Available The mathematical proof of existence of Black Hole is based on the assumption of mass being independent of speed. Considering the effect of special relativity of the dependence of mass with speed there is no Black hole.

  15. Quantum chaos and the black hole horizon

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Thanks to AdS/CFT, the analogy between black holes and thermal systems has become a practical tool, shedding light on thermalization, transport, and entanglement dynamics. Continuing in this vein, recent work has shown how chaos in the boundary CFT can be analyzed in terms of high energy scattering right on the horizon of the dual black hole. The analysis revolves around certain out-of-time-order correlation functions, which are simple diagnostics of the butterfly effect. We will review this work, along with a general bound on these functions that implies black holes are the most chaotic systems in quantum mechanics. (NB Room Change to Main Auditorium)

  16. Quantum and thermodynamic aspects of Black Holes

    International Nuclear Information System (INIS)

    Sande e Lemos, J.P. de; Videira, A.L.L.

    1983-01-01

    The main results originating from the attempts of trying to incorporate quantum and thermodynamic properties and concepts to the gravitational system black hole, essentially the Hawking effect and the four laws of thermodynamics are reviewed. (Author) [pt

  17. Erratic Black Hole Regulates Itself

    Science.gov (United States)

    2009-03-01

    New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don

  18. Black Holes Have Simple Feeding Habits

    Science.gov (United States)

    2008-06-01

    The biggest black holes may feed just like the smallest ones, according to data from NASA’s Chandra X-ray Observatory and ground-based telescopes. This discovery supports the implication of Einstein's relativity theory that black holes of all sizes have similar properties, and will be useful for predicting the properties of a conjectured new class of black holes. The conclusion comes from a large observing campaign of the spiral galaxy M81, which is about 12 million light years from Earth. In the center of M81 is a black hole that is about 70 million times more massive than the Sun, and generates energy and radiation as it pulls gas in the central region of the galaxy inwards at high speed. In contrast, so-called stellar mass black holes, which have about 10 times more mass than the Sun, have a different source of food. These smaller black holes acquire new material by pulling gas from an orbiting companion star. Because the bigger and smaller black holes are found in different environments with different sources of material to feed from, a question has remained about whether they feed in the same way. Using these new observations and a detailed theoretical model, a research team compared the properties of M81's black hole with those of stellar mass black holes. The results show that either big or little, black holes indeed appear to eat similarly to each other, and produce a similar distribution of X-rays, optical and radio light. AnimationMulti-wavelength Images of M81 One of the implications of Einstein's theory of General Relativity is that black holes are simple objects and only their masses and spins determine their effect on space-time. The latest research indicates that this simplicity manifests itself in spite of complicated environmental effects. "This confirms that the feeding patterns for black holes of different sizes can be very similar," said Sera Markoff of the Astronomical Institute, University of Amsterdam in the Netherlands, who led the study

  19. Black hole meiosis

    Science.gov (United States)

    van Herck, Walter; Wyder, Thomas

    2010-04-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.

  20. Axion-dilation black holes

    International Nuclear Information System (INIS)

    Kallosh, R.

    1993-01-01

    In this talk some essential features of stringy black holes are described. The author considers charged U(1) and U(1) x U(1) four-dimensional axion-dilaton black holes. The Hawking temperature and the entropy of all solutions are shown to be simple functions of the squares of supercharges, defining the positivity bounds. Spherically symmetric and multi black hole solutions are presented. The extreme solutions with zero entropy (holons) represent a ground state of the theory and are characterized by elementary dilaton, axion, electric, and magnetic charges. The attractive gravitational and axion-dilaton force is balanced by the repulsive electromagnetic force. The author discusses the possibility of splitting of nearly extreme black holes. 11 refs

  1. Black holes by analytic continuation

    CERN Document Server

    Amati, Daniele

    1997-01-01

    In the context of a two-dimensional exactly solvable model, the dynamics of quantum black holes is obtained by analytically continuing the description of the regime where no black hole is formed. The resulting spectrum of outgoing radiation departs from the one predicted by the Hawking model in the region where the outgoing modes arise from the horizon with Planck-order frequencies. This occurs early in the evaporation process, and the resulting physical picture is unconventional. The theory predicts that black holes will only radiate out an energy of Planck mass order, stabilizing after a transitory period. The continuation from a regime without black hole formation --accessible in the 1+1 gravity theory considered-- is implicit in an S matrix approach and provides in this way a possible solution to the problem of information loss.

  2. New regular black hole solutions

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zanchin, Vilson T.

    2011-01-01

    In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordstroem and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.

  3. Black holes from extended inflation

    International Nuclear Information System (INIS)

    Hsu, S.D.H.; Lawrence Berkeley Lab., CA

    1990-01-01

    It is argued that models of extended inflation, in which modified Einstein gravity allows a graceful exit from the false vacuum, lead to copious production of black holes. The critical temperature of the inflationary phase transition must be >10 8 GeV in order to avoid severe cosmological problems in a universe dominated by black holes. We speculate on the possibility that the interiors of false vacuum regions evolve into baby universes. (orig.)

  4. Black holes and cosmic censorship

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1979-01-01

    It is widely accepted that the complete gravitational collapse of a body always yields a black hole, and that naked singularities are never produced (the cosmic censorship hypothesis). The local (or strong) cosmic censorship hypothesis states that singularities which are even locally naked (e.g., to an observer inside a black hole) are never produced. This dissertation studies the validity of these two conjectures. The Kerr-Newman metrics describes the black holes only when M 2 greater than or equal to Q 2 + P 2 , where M is the mass of the black hole, a = J/M its specific angular momentum, Q its electric charge, and P its magnetic charge. In the first part of this dissertation, the possibility of converting an extreme Kerr-Newman black hole (M 2 = a 2 + Q 2 + P 2 ) into a naked singularity by the accretion of test particles is considered. The motion of test particles is studied with a large angular momentum to energy ratio, and also test particles with a large charge to energy ratio. The final state is always found to be a black hole if the angular momentum, electric charge, and magnetic charge of the black hole are all much greater than the corresponding angular momentum, electric charge, and magnetic charge of the test particle. In Part II of this dissertation possible black hole interior solutions are studied. The Cauchy horizons and locally naked timelike singularities of the charged (and/or rotating) solutions are contrasted with the spacelike all-encompassing singularity of the Schwarzschild solution. It is determined which portions of the analytic extension of the Reissner-Nordstroem solution are relevant to realistic gravitational collapse

  5. Are Black Holes Elementary Particles?

    OpenAIRE

    Ha, Yuan K.

    2009-01-01

    Quantum black holes are the smallest and heaviest conceivable elementary particles. They have a microscopic size but a macroscopic mass. Several fundamental types have been constructed with some remarkable properties. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox of ultra-high energy cosmic rays detected in Earth's atmosphere. They may also play a role as dark matter in cosmology.

  6. Black Hole Complementary Principle and Noncommutative Membrane

    International Nuclear Information System (INIS)

    Wei Ren

    2006-01-01

    In the spirit of black hole complementary principle, we have found the noncommutative membrane of Scharzchild black holes. In this paper we extend our results to Kerr black hole and see the same story. Also we make a conjecture that spacetimes are noncommutative on the stretched membrane of the more general Kerr-Newman black hole.

  7. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...

  8. Black holes in a cubic Galileon universe

    Energy Technology Data Exchange (ETDEWEB)

    Babichev, E.; Charmousis, C.; Lehébel, A.; Moskalets, T., E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: antoine.lehebel@th.u-psud.fr, E-mail: tetiana.moskalets@th.u-psud.fr [Laboratoire de Physique Théorique, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-09-01

    We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two of these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.

  9. Black holes in the universe

    International Nuclear Information System (INIS)

    Camenzind, M.

    2005-01-01

    While physicists have been grappling with the theory of black holes (BH), as shown by the many contributions to the Einstein year, astronomers have been successfully searching for real black holes in the Universe. Black hole astrophysics began in the 1960s with the discovery of quasars and other active galactic nuclei (AGN) in distant galaxies. Already in the 1960s it became clear that the most natural explanation for the quasar activity is the release of gravitational energy through accretion of gas onto supermassive black holes. The remnants of this activity have now been found in the centers of about 50 nearby galaxies. BH astrophysics received a new twist in the 1970s with the discovery of the X-ray binary (XRB) Cygnus X-1. The X-ray emitting compact object was too massive to be explained by a neutron star. Today, about 20 excellent BH candidates are known in XRBs. On the extragalactic scale, more than 100.000 quasars have been found in large galaxy surveys. At the redshift of the most distant ones, the Universe was younger than one billion year. The most enigmatic black hole candidates identified in the last years are the compact objects behind the Gamma-Ray Bursters. The formation of all these types of black holes is accompanied by extensive emission of gravitational waves. The detection of these strong gravity events is one of the biggest challenges for physicists in the near future. (author)

  10. Stationary black holes as holographs

    Energy Technology Data Exchange (ETDEWEB)

    Racz, Istvan [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01 (Japan); MTA KFKI, Reszecske- es Magfizikai Kutatointezet, H-1121 Budapest, Konkoly Thege Miklos ut 29-33 (Hungary)

    2007-11-21

    Smooth spacetimes possessing a (global) one-parameter group of isometries and an associated Killing horizon in Einstein's theory of gravity are investigated. No assumption concerning the asymptotic structure is made; thereby, the selected spacetimes may be considered as generic distorted stationary black holes. First, spacetimes of arbitrary dimension, n {>=} 3, with matter satisfying the dominant energy condition and allowing a non-zero cosmological constant are investigated. In this part, complete characterization of the topology of the event horizon of 'distorted' black holes is given. It is shown that the topology of the event horizon of 'distorted' black holes is allowed to possess a much larger variety than that of the isolated black hole configurations. In the second part, four-dimensional (non-degenerate) electrovac distorted black hole spacetimes are considered. It is shown that the spacetime geometry and the electromagnetic field are uniquely determined in the black hole region once the geometry of the bifurcation surface and one of the electromagnetic potentials are specified there. Conditions guaranteeing the same type of determinacy, in a neighbourhood of the event horizon, on the domain of outer communication side are also investigated. In particular, they are shown to be satisfied in the analytic case.

  11. Atomic structure in black hole

    International Nuclear Information System (INIS)

    Nagatani, Yukinori

    2006-01-01

    We propose that any black hole has atomic structure in its inside and has no horizon as a model of black holes. Our proposal is founded on a mean field approximation of gravity. The structure of our model consists of a (charged) singularity at the center and quantum fluctuations of fields around the singularity, namely, it is quite similar to that of atoms. Any properties of black holes, e.g. entropy, can be explained by the model. The model naturally quantizes black holes. In particular, we find the minimum black hole, whose structure is similar to that of the hydrogen atom and whose Schwarzschild radius is approximately 1.1287 times the Planck length. Our approach is conceptually similar to Bohr's model of the atomic structure, and the concept of the minimum Schwarzschild radius is similar to that of the Bohr radius. The model predicts that black holes carry baryon number, and the baryon number is rapidly violated. This baryon number violation can be used as verification of the model. (author)

  12. Intermediate-Mass Black Holes

    Science.gov (United States)

    Miller, M. Coleman; Colbert, E. J. M.

    2004-01-01

    The mathematical simplicity of black holes, combined with their links to some of the most energetic events in the universe, means that black holes are key objects for fundamental physics and astrophysics. Until recently, it was generally believed that black holes in nature appear in two broad mass ranges: stellar-mass (M~3 20 M⊙), which are produced by the core collapse of massive stars, and supermassive (M~106 1010 M⊙), which are found in the centers of galaxies and are produced by a still uncertain combination of processes. In the last few years, however, evidence has accumulated for an intermediate-mass class of black holes, with M~102 104 M⊙. If such objects exist they have important implications for the dynamics of stellar clusters, the formation of supermassive black holes, and the production and detection of gravitational waves. We review the evidence for intermediate-mass black holes and discuss future observational and theoretical work that will help clarify numerous outstanding questions about these objects.

  13. String model of black hole microstates

    International Nuclear Information System (INIS)

    Larsen, F.

    1997-01-01

    The statistical mechanics of black holes arbitrarily far from extremality is modeled by a gas of weakly interacting strings. As an effective low-energy description of black holes the string model provides several highly nontrivial consistency checks and predictions. Speculations on a fundamental origin of the model suggest surprising simplifications in nonperturbative string theory, even in the absence of supersymmetry. copyright 1997 The American Physical Society

  14. Quantum tunneling radiation from self-dual black holes

    International Nuclear Information System (INIS)

    Silva, C.A.S.; Brito, F.A.

    2013-01-01

    Black holes are considered as objects that can reveal quantum aspects of spacetime. Loop Quantum Gravity (LQG) is a theory that propose a way to model the quantum spacetime behavior revealed by a black hole. One recent prediction of this theory is the existence of sub-Planckian black holes, which have the interesting property of self-duality. This property removes the black hole singularity and replaces it with another asymptotically flat region. In this work, we obtain the thermodynamical properties of this kind of black holes, called self-dual black holes, using the Hamilton–Jacobi version of the tunneling formalism. Moreover, using the tools of the tunneling approach, we investigate the emission spectrum of self-dual black holes, and investigate if some information about the black hole initial state can be recovered during the evaporation process. Back-reaction effects are included

  15. Canonical Entropy and Phase Transition of Rotating Black Hole

    International Nuclear Information System (INIS)

    Ren, Zhao; Yue-Qin, Wu; Li-Chun, Zhang

    2008-01-01

    Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein–Hawking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole. (general)

  16. Soft hair of dynamical black hole and Hawking radiation

    Science.gov (United States)

    Chu, Chong-Sun; Koyama, Yoji

    2018-04-01

    Soft hair of black hole has been proposed recently to play an important role in the resolution of the black hole information paradox. Recent work has emphasized that the soft modes cannot affect the black hole S-matrix due to Weinberg soft theorems. However as soft hair is generated by supertranslation of geometry which involves an angular dependent shift of time, it must have non-trivial quantum effects. We consider supertranslation of the Vaidya black hole and construct a non-spherical symmetric dynamical spacetime with soft hair. We show that this spacetime admits a trapping horizon and is a dynamical black hole. We find that Hawking radiation is emitted from the trapping horizon of the dynamical black hole. The Hawking radiation has a spectrum which depends on the soft hair of the black hole and this is consistent with the factorization property of the black hole S-matrix.

  17. Black holes with surrounding matter in scalar-tensor theories.

    Science.gov (United States)

    Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P

    2013-09-13

    We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories.

  18. Destruction and recreation of black holes

    Science.gov (United States)

    Bell, Peter M.

    Even though the existence of the gravitationally collapsed concentrations of matter in space known as ‘black holes’ is accepted at all educational levels in our society, the basis for the black hole concept is really only the result of approximate calculations done over 40 years ago. The concept of the black hole is an esoteric subject, and recently the mathematical and physical frailties of the concept have come to light in an interesting round of theoretical shuffling. The recent activity in theorizing about black holes began about 10 years ago, when Cambridge University mathematican Stephen Hawking calculated that black holes could become unstable by losing mass and thus ‘evaporate.’ Hawking's results were surprisingly well received, considering the lack of theoretical understanding of the relations between quantum mechanics and relativity. (There is no quantized theory of gravitation, even today.) Nonetheless, his semiclassical calculations implied that the rate of ‘evaporation’ of a black hole would be slower than the rate of degradation of the universe. In fact, based on these and other calculations, the British regard Hawking as ‘the nearest thing we have to a new Einstein’ [New Scientist, Oct. 9, 1980]. Within the last few months, Frank Tipler, provocative mathematical physicist at the University of Texas, has reexamined Hawking's calculations [Physical Review Letters, 45, 941, 1980], concluding, in simple terms, (1) that because of possible vital difficulties in the assumptions, the very concept of black holes could be wrong; (2) that Hawkings' evaporation hypothesis is so efficient that a black hole once created must disappear in less than a second; or (3) that he, Tipler, may be wrong. The latter possibility has been the conclusion of physicist James Bardeen of the University of Washington, who calculated that black hole masses do evaporate but they do so according to Hawking's predicted rate and that Tipler's findings cause only a second

  19. Superluminality, black holes and EFT

    Energy Technology Data Exchange (ETDEWEB)

    Goon, Garrett [Department of Applied Mathematics and Theoretical Physics,Cambridge University, Cambridge, CB3 0WA (United Kingdom); Hinterbichler, Kurt [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106 (United States)

    2017-02-27

    Under the assumption that a UV theory does not display superluminal behavior, we ask what constraints on superluminality are satisfied in the effective field theory (EFT). We study two examples of effective theories: quantum electrodynamics (QED) coupled to gravity after the electron is integrated out, and the flat-space galileon. The first is realized in nature, the second is more speculative, but they both exhibit apparent superluminality around non-trivial backgrounds. In the QED case, we attempt, and fail, to find backgrounds for which the superluminal signal advance can be made larger than the putative resolving power of the EFT. In contrast, in the galileon case it is easy to find such backgrounds, indicating that if the UV completion of the galileon is (sub)luminal, quantum corrections must become important at distance scales of order the Vainshtein radius of the background configuration, much larger than the naive EFT strong coupling distance scale. Such corrections would be reminiscent of the non-perturbative Schwarzschild scale quantum effects that are expected to resolve the black hole information problem. Finally, a byproduct of our analysis is a calculation of how perturbative quantum effects alter charged Reissner-Nordstrom black holes.

  20. Black holes in the ghost condensate

    International Nuclear Information System (INIS)

    Mukohyama, Shinji

    2005-01-01

    We investigate how the ghost condensate reacts to black holes immersed in it. A ghost condensate defines a hypersurface-orthogonal congruence of timelike curves, each of which has the tangent vector u μ =-g μν ∂ ν φ. It is argued that the ghost condensate in this picture approximately corresponds to a congruence of geodesics. In other words, the ghost condensate accretes into a black hole just like a pressureless dust. Correspondingly, if the energy density of the ghost condensate at large distance is set to an extremely small value by cosmic expansion then the late-time accretion rate of the ghost condensate should be negligible. The accretion rate remains very small even if effects of higher derivative terms are taken into account, provided that the black hole is sufficiently large. It is also discussed how to reconcile the black-hole accretion with the possibility that the ghost condensate might behave like dark matter

  1. Regular black hole in three dimensions

    OpenAIRE

    Myung, Yun Soo; Yoon, Myungseok

    2008-01-01

    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.

  2. Black holes in brane worlds

    Indian Academy of Sciences (India)

    Abstract. A Kerr metric describing a rotating black hole is obtained on the three brane in a five-dimensional Randall-Sundrum brane world by considering a rotating five-dimensional black string in the bulk. We examine the causal structure of this space-time through the geodesic equations.

  3. Do evaporating black holes form photospheres?

    International Nuclear Information System (INIS)

    MacGibbon, Jane H.; Carr, B. J.; Page, Don N.

    2008-01-01

    Several authors, most notably Heckler, have claimed that the observable Hawking emission from a microscopic black hole is significantly modified by the formation of a photosphere around the black hole due to QED or QCD interactions between the emitted particles. In this paper we analyze these claims and identify a number of physical and geometrical effects which invalidate these scenarios. We point out two key problems. First, the interacting particles must be causally connected to interact, and this condition is satisfied by only a small fraction of the emitted particles close to the black hole. Second, a scattered particle requires a distance ∼E/m e 2 for completing each bremsstrahlung interaction, with the consequence that it is improbable for there to be more than one complete bremsstrahlung interaction per particle near the black hole. These two effects have not been included in previous analyses. We conclude that the emitted particles do not interact sufficiently to form a QED photosphere. Similar arguments apply in the QCD case and prevent a QCD photosphere (chromosphere) from developing when the black hole temperature is much greater than Λ QCD , the threshold for QCD particle emission. Additional QCD phenomenological arguments rule out the development of a chromosphere around black hole temperatures of order Λ QCD . In all cases, the observational signatures of a cosmic or Galactic halo background of primordial black holes or an individual black hole remain essentially those of the standard Hawking model, with little change to the detection probability. We also consider the possibility, as proposed by Belyanin et al. and D. Cline et al., that plasma interactions between the emitted particles form a photosphere, and we conclude that this scenario too is not supported.

  4. Effect of an external magnetic field on particle acceleration by a rotating black hole surrounded with quintessential energy

    Science.gov (United States)

    Shaymatov, Sanjar; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Abdujabbarov, Ahmadjon

    We investigate particle motion and collisions in the vicinity of rotating black holes immersed in combined cosmological quintessential scalar field and external magnetic field. The quintessential dark-energy field governing the spacetime structure is characterized by the quintessential state parameter ωq ∈ (‑1; ‑1/3) characterizing its equation of state, and the quintessential field-intensity parameter c determining the static radius where the black hole attraction is just balanced by the quintessential repulsion. The magnetic field is assumed to be test field that is uniform close to the static radius, where the spacetime is nearly flat, being characterized by strength B there. Deformations of the test magnetic field in vicinity of the black hole, caused by the Ricci non-flat spacetime structure are determined. General expression of the center-of-mass energy of the colliding charged or uncharged particles near the black hole is given and discussed in several special cases. In the case of nonrotating black holes, we discuss collisions of two particles freely falling from vicinity of the static radius, or one such a particle colliding with charged particle revolving at the innermost stable circular orbit. In the case of rotating black holes, we discuss briefly particles falling in the equatorial plane and colliding in close vicinity of the black hole horizon, concentrating attention to the interplay of the effects of the quintessential field and the external magnetic field. We demonstrate that the ultra-high center-of-mass energy can be obtained for black holes placed in an external magnetic field for an infinitesimally small quintessential field-intensity parameter c; the center-of-mass energy decreases if the quintessential field-intensity parameter c increases.

  5. Ineffective higher derivative black hole hair

    Science.gov (United States)

    Goldstein, Kevin; Mashiyane, James Junior

    2018-01-01

    Inspired by the possibility that the Schwarzschild black hole may not be the unique spherically symmetric vacuum solution to generalizations of general relativity, we consider black holes in pure fourth order higher derivative gravity treated as an effective theory. Such solutions may be of interest in addressing the issue of higher derivative hair or during the later stages of black hole evaporation. Non-Schwarzschild solutions have been studied but we have put earlier results on a firmer footing by finding a systematic asymptotic expansion for the black holes and matching them with known numerical solutions obtained by integrating out from the near-horizon region. These asymptotic expansions can be cast in the form of trans-series expansions which we conjecture will be a generic feature of non-Schwarzschild higher derivative black holes. Excitingly we find a new branch of solutions with lower free energy than the Schwarzschild solution, but as found in earlier work, solutions only seem to exist for black holes with large curvatures, meaning that one should not generically neglect even higher derivative corrections. This suggests that one effectively recovers the nonhair theorems in this context.

  6. What Can We Learn About Black-Hole Formation from Black-Hole X-ray Binaries?

    NARCIS (Netherlands)

    Nelemans, G.A.

    2007-01-01

    I discuss the effect of the formation of a black hole on a (close) binary and show some of the current constraints that the observed properties of black hole X-ray binaries put on the formation of black holes. In particular, I discuss the evidence for and against asymmetric kicks imparted on the

  7. Gravitating discs around black holes

    International Nuclear Information System (INIS)

    Karas, V; Hure, J-M; Semerak, O

    2004-01-01

    Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole-disc system using analytical solutions of stationary, axially symmetric Einstein equations. Then, more detailed considerations are focused to the middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring. However, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging are completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the surrounding environment. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star-disc interactions, which can be recognized in observational properties, such as the relation between the central mass and stellar velocity dispersion. (topical review)

  8. Chandra Data Reveal Rapidly Whirling Black Holes

    Science.gov (United States)

    2008-01-01

    A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large

  9. Black holes, qubits and octonions

    International Nuclear Information System (INIS)

    Borsten, L.; Dahanayake, D.; Duff, M.J.; Ebrahim, H.; Rubens, W.

    2009-01-01

    We review the recently established relationships between black hole entropy in string theory and the quantum entanglement of qubits and qutrits in quantum information theory. The first example is provided by the measure of the tripartite entanglement of three qubits (Alice, Bob and Charlie), known as the 3-tangle, and the entropy of the 8-charge STU black hole of N=2 supergravity, both of which are given by the [SL(2)] 3 invariant hyperdeterminant, a quantity first introduced by Cayley in 1845. Moreover the classification of three-qubit entanglements is related to the classification of N=2 supersymmetric STU black holes. There are further relationships between the attractor mechanism and local distillation protocols and between supersymmetry and the suppression of bit flip errors. At the microscopic level, the black holes are described by intersecting D3-branes whose wrapping around the six compact dimensions T 6 provides the string-theoretic interpretation of the charges and we associate the three-qubit basis vectors, |ABC>(A,B,C=0 or 1), with the corresponding 8 wrapping cycles. The black hole/qubit correspondence extends to the 56 charge N=8 black holes and the tripartite entanglement of seven qubits where the measure is provided by Cartan's E 7 contains [SL(2)] 7 invariant. The qubits are naturally described by the seven vertices ABCDEFG of the Fano plane, which provides the multiplication table of the seven imaginary octonions, reflecting the fact that E 7 has a natural structure of an O-graded algebra. This in turn provides a novel imaginary octonionic interpretation of the 56=7x8 charges of N=8: the 24=3x8 NS-NS charges correspond to the three imaginary quaternions and the 32=4x8 R-R to the four complementary imaginary octonions. We contrast this approach with that based on Jordan algebras and the Freudenthal triple system. N=8 black holes (or black strings) in five dimensions are also related to the bipartite entanglement of three qutrits (3-state systems

  10. On Thermodynamical Relation Between Rotating Charged BTZ Black Holes and Effective String Theory

    Institute of Scientific and Technical Information of China (English)

    Alexis Larra(~n)aga

    2008-01-01

    In this paper we study the first law of thermodynamics for the (2+1)-dimensional rotating charged BTZ black hole considering a pair of thermodynamical systems constructed with the two horizons of this solution. We show that these two systems are similar to the right and left movers of string theory and that the temperature associated with the black hole is the harmonic mean of the temperatures associated with these two systems.

  11. High energy effects on D-brane and black hole emission rates

    International Nuclear Information System (INIS)

    Das, S.; Dasgupta, A.; Sarkar, T.

    1997-01-01

    We study the emission of scalar particles from a class of near-extremal five-dimensional black holes and the corresponding D-brane configuration at high energies. We show that the distribution functions and the black hole greybody factors are modified in the high energy tail of the Hawking spectrum in such a way that the emission rates exactly match. We extend the results to charged scalar emission and to four dimensions. copyright 1997 The American Physical Society

  12. Rotating hairy black holes in arbitrary dimensions

    Science.gov (United States)

    Erices, Cristián; Martínez, Cristián

    2018-01-01

    A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.

  13. Quantum criticality and black holes

    International Nuclear Information System (INIS)

    Sachdev, Subir; Mueller, Markus

    2009-01-01

    Many condensed matter experiments explore the finite temperature dynamics of systems near quantum critical points. Often, there are no well-defined quasiparticle excitations, and so quantum kinetic equations do not describe the transport properties completely. The theory shows that the transport coefficients are not proportional to a mean free scattering time (as is the case in the Boltzmann theory of quasiparticles), but are completely determined by the absolute temperature and by equilibrium thermodynamic observables. Recently, explicit solutions of this quantum critical dynamics have become possible via the anti-de Sitter/conformal field theory duality discovered in string theory. This shows that the quantum critical theory provides a holographic description of the quantum theory of black holes in a negatively curved anti-de Sitter space, and relates its transport coefficients to properties of the Hawking radiation from the black hole. We review how insights from this connection have led to new results for experimental systems: (i) the vicinity of the superfluid-insulator transition in the presence of an applied magnetic field, and its possible application to measurements of the Nernst effect in the cuprates, (ii) the magnetohydrodynamics of the plasma of Dirac electrons in graphene and the prediction of a hydrodynamic cyclotron resonance.

  14. Cosmology with primordial black holes

    International Nuclear Information System (INIS)

    Lindley, D.

    1981-09-01

    Cosmologies containing a substantial amount of matter in the form of evaporating primordial black holes are investigated. A review of constraints on the numbers of such black holes, including an analysis of a new limit found by looking at the destruction of deuterium by high energy photons, shows that there must be a negligible population of small black holes from the era of cosmological nucleosynthesis onwards, but that there are no strong constraints before this time. The major part of the work is based on the construction of detailed, self-consistent cosmological models in which black holes are continually forming and evaporating The interest in these models centres on the question of baryon generation, which occurs via the asymmetric decay of a new type of particle which appears as a consequence of the recently developed Grand Unified Theories of elementary particles. Unfortunately, there is so much uncertainty in the models that firm conclusions are difficult to reach; however, it seems feasible in principle that primordial black holes could be responsible for a significant part of the present matter density of the Universe. (author)

  15. Black holes: a slanted overview

    International Nuclear Information System (INIS)

    Vishveshwara, C.V.

    1988-01-01

    The black hole saga spanning some seventy years may be broadly divided into four phases, namely, (a) the dark ages when little was known about black holes even though they had come into existence quite early through the Schwarzschild solution, (b) the age of enlightenment bringing in deep and prolific discoveries, (c) the age of fantasy that cast black holes in all sorts of extraordinary roles, and (d) the golden age of relativistic astrophysics - to some extent similar to Dirac's characterisation of the development of quantum theory - in which black holes have been extensively used to elucidate a number of astrophysical phenomena. It is impossible to give here even the briefest outline of the major developments in this vast area. We shall only attempt to present a few aspects of black hole physics which have been actively pursued in the recent past. Some details are given in the case of those topics that have not found their way into text books or review articles. (author)

  16. New geometries for black hole horizons

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Blau, Matthias [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)

    2015-07-10

    We construct several classes of worldvolume effective actions for black holes by integrating out spatial sections of the worldvolume geometry of asymptotically flat black branes. This provides a generalisation of the blackfold approach for higher-dimensional black holes and yields a map between different effective theories, which we exploit by obtaining new hydrodynamic and elastic transport coefficients via simple integrations. Using Euclidean minimal surfaces in order to decouple the fluid dynamics on different sections of the worldvolume, we obtain local effective theories for ultraspinning Myers-Perry branes and helicoidal black branes, described in terms of a stress-energy tensor, particle currents and non-trivial boost vectors. We then study in detail and present novel compact and non-compact geometries for black hole horizons in higher-dimensional asymptotically flat space-time. These include doubly-spinning black rings, black helicoids and helicoidal p-branes as well as helicoidal black rings and helicoidal black tori in D≥6.

  17. Chandra Sees Remarkable Eclipse of Black Hole

    Science.gov (United States)

    2007-04-01

    A remarkable eclipse of a supermassive black hole and the hot gas disk around it has been observed with NASA's Chandra X-ray Observatory. This eclipse has allowed two key predictions about the effects of supermassive black holes to be tested. Just as eclipses of the Sun and moon give astronomers rare opportunities to learn about those objects, an alignment in a nearby galaxy has provided a rare opportunity to investigate a supermassive black hole. Illustrations of Black Hole Eclipse Illustrations of Black Hole Eclipse The supermassive black hole is located in NGC 1365, a galaxy 60 million light years from Earth. It contains a so called active galactic nucleus, or AGN. Scientists believe that the black hole at the center of the AGN is fed by a steady stream of material, presumably in the form of a disk. Material just about to fall into a black hole should be heated to millions of degrees before passing over the event horizon, or point of no return. The disk of gas around the central black hole in NGC 1365 produces copious X-rays but is much too small to resolve directly with a telescope. However, the disk was eclipsed by an intervening cloud, so observation of the time taken for the disk to go in and out of eclipse allowed scientists to estimate the size of the disk. Black Hole Animation Black Hole Animation "For years we've been struggling to confirm the size of this X-ray structure," said Guido Risaliti of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass, and the Italian Institute of Astronomy (INAF). "This serendipitous eclipse enabled us to make this breakthrough." The Chandra team directly measured the size of the X-ray source as about seven times the distance between the Sun and the Earth. That means the source of X-rays is about 2 billion times smaller than the host galaxy and only about 10 times larger than the estimated size of the black hole's event horizon, consistent with theoretical predictions. Chandra X-ray Image of NGC 1365

  18. Lee–Wick black holes

    Directory of Open Access Journals (Sweden)

    Cosimo Bambi

    2017-01-01

    Full Text Available We derive and study an approximate static vacuum solution generated by a point-like source in a higher derivative gravitational theory with a pair of complex conjugate ghosts. The gravitational theory is local and characterized by a high derivative operator compatible with Lee–Wick unitarity. In particular, the tree-level two-point function only shows a pair of complex conjugate poles besides the massless spin two graviton. We show that singularity-free black holes exist when the mass of the source M exceeds a critical value Mcrit. For M>Mcrit the spacetime structure is characterized by an outer event horizon and an inner Cauchy horizon, while for M=Mcrit we have an extremal black hole with vanishing Hawking temperature. The evaporation process leads to a remnant that approaches the zero-temperature extremal black hole state in an infinite amount of time.

  19. Massive Black Holes and Galaxies

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Evidence has been accumulating for several decades that many galaxies harbor central mass concentrations that may be in the form of black holes with masses between a few million to a few billion time the mass of the Sun. I will discuss measurements over the last two decades, employing adaptive optics imaging and spectroscopy on large ground-based telescopes that prove the existence of such a massive black hole in the Center of our Milky Way, beyond any reasonable doubt. These data also provide key insights into its properties and environment. Most recently, a tidally disrupting cloud of gas has been discovered on an almost radial orbit that reached its peri-distance of ~2000 Schwarzschild radii in 2014, promising to be a valuable tool for exploring the innermost accretion zone. Future interferometric studies of the Galactic Center Black hole promise to be able to test gravity in its strong field limit.

  20. Time dependent black holes and scalar hair

    International Nuclear Information System (INIS)

    Chadburn, Sarah; Gregory, Ruth

    2014-01-01

    We show how to correctly account for scalar accretion onto black holes in scalar field models of dark energy by a consistent expansion in terms of a slow roll parameter. At leading order, we find an analytic solution for the scalar field within our Hubble volume, which is regular on both black hole and cosmological event horizons, and compute the back reaction of the scalar on the black hole, calculating the resulting expansion of the black hole. Our results are independent of the relative size of black hole and cosmological event horizons. We comment on the implications for more general black hole accretion, and the no hair theorems. (paper)

  1. Black holes a very short introduction

    CERN Document Server

    Blundell, Katherine

    2015-01-01

    Black holes are a constant source of fascination to many due to their mysterious nature. Black Holes: A Very Short Introduction addresses a variety of questions, including what a black hole actually is, how they are characterized and discovered, and what would happen if you came too close to one. It explains how black holes form and grow—by stealing material that belongs to stars—as well as how many there may be in the Universe. It also explores the large black holes found in the centres of galaxies, and how black holes power quasars and lie behind other spectacular phenomena in the cosmos.

  2. Effective temperatures and radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole

    Science.gov (United States)

    Kanti, P.; Pappas, T.

    2017-07-01

    The absence of a true thermodynamical equilibrium for an observer located in the causal area of a Schwarzschild-de Sitter spacetime has repeatedly raised the question of the correct definition of its temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild-de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities but also significant differences in their behavior as the number of extra dimensions and the value of the cosmological constant are varied. We then investigate their effect on the energy emission spectra of Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the other temperatures either support a significant emission rate only in a specific Λ regime or have their emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.

  3. An axion-like scalar field environment effect on binary black hole merger

    Science.gov (United States)

    Yang, Qing; Ji, Li-Wei; Hu, Bin; Cao, Zhou-Jian; Cai, Rong-Gen

    2018-06-01

    The environment, such as an accretion disk, could modify the signal of the gravitational wave from astrophysical black hole binaries. In this article, we model the matter field around intermediate-mass binary black holes by means of an axion-like scalar field and investigate their joint evolution. In detail, we consider equal mass binary black holes surrounded by a shell of axion-like scalar field both in spherically symmetric and non-spherically symmetric cases, and with different strengths of the scalar field. Our result shows that the environmental scalar field could essentially modify the dynamics. Firstly, in the spherically symmetric case, with increase of the scalar field strength, the number of circular orbits for the binary black hole is reduced. This means that the scalar field could significantly accelerate the merger process. Secondly, once the scalar field strength exceeds a certain critical value, the scalar field could collapse into a third black hole with its mass being larger than that of the binary. Consequently, the new black hole that collapses from the environmental scalar field could accrete the binary promptly and the binary collides head-on with each other. In this process, there is almost no quadrupole signal produced, and, consequently, the gravitational wave is greatly suppressed. Thirdly, when the scalar field strength is relatively smaller than the critical value, the black hole orbit could develop eccentricity through accretion of the scalar field. Fourthly, during the initial stage of the inspiral, the gravitational attractive force from the axion-like scalar field could induce a sudden turn in the binary orbits, hence resulting in a transient wiggle in the gravitational waveform. Finally, in the non-spherical case, the scalar field could gravitationally attract the binary moving toward the center of mass for the scalar field and slow down the merger process.

  4. "Iron-Clad" Evidence For Spinning Black Hole

    Science.gov (United States)

    2003-09-01

    Telltale X-rays from iron may reveal if black holes are spinning or not, according to astronomers using NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton Observatory. The gas flows and bizarre gravitational effects observed near stellar black holes are similar to those seen around supermassive black holes. Stellar black holes, in effect, are convenient `scale models' of their much larger cousins. Black holes come in at least two different sizes. Stellar black holes are between five and 20 times the mass of the Sun. At the other end of the size scale, supermassive black holes contain millions or billions times the mass of our Sun. The Milky Way contains both a supermassive black hole at its center, as well as a number of stellar black holes sprinkled throughout the Galaxy. At a press conference at the "Four Years of Chandra" symposium in Huntsville, Ala., Jon Miller of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. discussed recent results on the X-ray spectra, or distribution of X-rays with energy, from the iron atoms in gas around three stellar black holes in the Milky Way. "Discovering the high degree of correspondence between stellar and supermassive black holes is a real breakthrough," said Miller. "Because stellar black holes are smaller, everything happens about a million times faster, so they can be used as a test-bed for theories of how spinning black holes affect the space and matter around them." X-rays from a stellar black hole are produced when gas from a nearby companion star is heated to tens of millions of degrees as it swirls toward the black hole. Iron atoms in this gas produce distinctive X-ray signals that can be used to study the orbits of particles around the black hole. For example, the gravity of a black hole can shift the X-rays to lower energies. "The latest work provides the most precise measurements yet of the X-ray spectra for stellar black holes," said Miller. "These data help rule out

  5. Geometric inequalities for black holes

    International Nuclear Information System (INIS)

    Dain, Sergio

    2013-01-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  6. Geometric inequalities for black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dain, Sergio [Universidad Nacional de Cordoba (Argentina)

    2013-07-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  7. Black holes as lumps of fluid

    International Nuclear Information System (INIS)

    Caldarelli, Marco M.; Dias, Oscar J.C.; Emparan, Roberto; Klemm, Dietmar

    2009-01-01

    The old suggestive observation that black holes often resemble lumps of fluid has recently been taken beyond the level of an analogy to a precise duality. We investigate aspects of this duality, and in particular clarify the relation between area minimization of the fluid vs. area maximization of the black hole horizon, and the connection between surface tension and curvature of the fluid, and surface gravity of the black hole. We also argue that the Rayleigh-Plateau instability in a fluid tube is the holographic dual of the Gregory-Laflamme instability of a black string. Associated with this fluid instability there is a rich variety of phases of fluid solutions that we study in detail, including in particular the effects of rotation. We compare them against the known results for asymptotically flat black holes finding remarkable agreement. Furthermore, we use our fluid results to discuss the unknown features of the gravitational system. Finally, we make some observations that suggest that asymptotically flat black holes may admit a fluid description in the limit of large number of dimensions.

  8. Aharonov-Bohm effect for a fermion field in a planar black hole ''spacetime''

    Energy Technology Data Exchange (ETDEWEB)

    Anacleto, M.A.; Mohammadi, A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil); Brito, F.A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil); Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, Paraiba (Brazil); Passos, E. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil); Universidade Federal do Rio de Janeiro, Instituto de Fisica, Caixa Postal 21945, Rio de Janeiro (Brazil)

    2017-04-15

    In this paper we consider the dynamics of a massive spinor field in the background of the acoustic black hole spacetime. Although this effective metric is acoustic and describes the propagation of sound waves, it can be considered as a toy model for the gravitational black hole. In this manner, we study the properties of the dynamics of the fermion field in this ''gravitational'' rotating black hole as well as the vortex background. We compute the differential cross section through the use of the partial wave approach and show that an effect similar to the gravitational Aharonov-Bohm effect occurs for the massive fermion field moving in this effective metric. We discuss the limiting cases and compare the results with the massless scalar field case. (orig.)

  9. Probing strong-field general relativity near black holes

    CERN Multimedia

    CERN. Geneva; Alvarez-Gaumé, Luís

    2005-01-01

    Nature has sprinkled black holes of various sizes throughout the universe, from stellar mass black holes in X-ray sources to supermassive black holes of billions of solar masses in quasars. Astronomers today are probing the spacetime near black holes using X-rays, and gravitational waves will open a different view in the near future. These tools give us an unprecedented opportunity to test ultra-strong-field general relativity, including the fundamental theorem of the uniqueness of the Kerr metric and Roger Penrose's cosmic censorship conjecture. Already, fascinating studies of spectral lines are showing the extreme gravitational lensing effects near black holes and allowing crude measurements of black hole spin. When the ESA-NASA gravitational wave detector LISA begins its observations in about 10 years, it will make measurements of dynamical spacetimes near black holes with an accuracy greater even than that which theoreticians can reach with their computations today. Most importantly, when gravitational wa...

  10. EFFECTS OF CIRCUMNUCLEAR DISK GAS EVOLUTION ON THE SPIN OF CENTRAL BLACK HOLES

    International Nuclear Information System (INIS)

    Maio, Umberto; Dotti, Massimo; Petkova, Margarita; Perego, Albino; Volonteri, Marta

    2013-01-01

    Mass and spin are the only two parameters needed to completely characterize black holes (BHs) in general relativity. However, the interaction between BHs and their environment is where complexity lies, as the relevant physical processes occur over a large range of scales. That is particularly relevant in the case of supermassive black holes (SMBHs), hosted in galaxy centers, and surrounded by swirling gas and various generations of stars. These compete with the SMBH for gas consumption and affect both dynamics and thermodynamics of the gas itself. How the behavior of such a fiery environment influences the angular momentum of the gas accreted onto SMBHs, and, hence, BH spins, is uncertain. We explore the interaction between SMBHs and their environment via first three-dimensional sub-parsec resolution simulations (ranging from ∼0.1 pc to ∼1 kpc scales) that study the evolution of the SMBH spin by including the effects of star formation, stellar feedback, radiative transfer, and metal pollution according to the proper stellar yields and lifetimes. This approach is crucial in investigating the impact of star formation processes and feedback effects on the angular momentum of the material that could accrete on the central hole. We find that star formation and feedback mechanisms can locally inject significant amounts of entropy in the surrounding medium, and impact the inflow inclination angles and Eddington fractions. As a consequence, the resulting trends show upper-intermediate equilibrium values for the spin parameter of a ≅ 0.6-0.9, corresponding to radiative efficiencies ε ≅ 9%-15%. These results suggest that star formation feedback taking place in the circumnuclear disk during the infall alone cannot induce very strong chaotic trends in the gas flow, quite independently from the different numerical parameters.

  11. The Geometry of Black Hole Singularities

    Directory of Open Access Journals (Sweden)

    Ovidiu Cristinel Stoica

    2014-01-01

    Full Text Available Recent results show that important singularities in General Relativity can be naturally described in terms of finite and invariant canonical geometric objects. Consequently, one can write field equations which are equivalent to Einstein's at nonsingular points but, in addition remain well-defined and smooth at singularities. The black hole singularities appear to be less undesirable than it was thought, especially after we remove the part of the singularity due to the coordinate system. Black hole singularities are then compatible with global hyperbolicity and do not make the evolution equations break down, when these are expressed in terms of the appropriate variables. The charged black holes turn out to have smooth potential and electromagnetic fields in the new atlas. Classical charged particles can be modeled, in General Relativity, as charged black hole solutions. Since black hole singularities are accompanied by dimensional reduction, this should affect Feynman's path integrals. Therefore, it is expected that singularities induce dimensional reduction effects in Quantum Gravity. These dimensional reduction effects are very similar to those postulated in some approaches to make Quantum Gravity perturbatively renormalizable. This may provide a way to test indirectly the effects of singularities, otherwise inaccessible.

  12. Interior structure of rotating black holes. III. Charged black holes

    International Nuclear Information System (INIS)

    Hamilton, Andrew J. S.

    2011-01-01

    This paper extends to the case of charged rotating black holes the conformally stationary, axisymmetric, conformally separable solutions presented for uncharged rotating black holes in a companion paper. In the present paper, the collisionless fluid accreted by the black hole may be charged. The charge of the black hole is determined self-consistently by the charge accretion rate. As in the uncharged case, hyper-relativistic counterstreaming between ingoing and outgoing streams drives inflation at (just above) the inner horizon, followed by collapse. If both ingoing and outgoing streams are charged, then conformal separability holds during early inflation, but fails as inflation develops. If conformal separability is imposed throughout inflation and collapse, then only one of the ingoing and outgoing streams can be charged: the other must be neutral. Conformal separability prescribes a hierarchy of boundary conditions on the ingoing and outgoing streams incident on the inner horizon. The dominant radial boundary conditions require that the incident ingoing and outgoing number densities be uniform with latitude, but the charge per particle must vary with latitude such that the incident charge densities vary in proportion to the radial electric field. The subdominant angular boundary conditions require specific forms of the incident number- and charge-weighted angular motions. If the streams fall freely from outside the horizon, then the prescribed angular conditions can be achieved by the charged stream, but not by the neutral stream. Thus, as in the case of an uncharged black hole, the neutral stream must be considered to be delivered ad hoc to just above the inner horizon.

  13. Probing Black Hole Magnetic Fields with QED

    Directory of Open Access Journals (Sweden)

    Ilaria Caiazzo

    2018-05-01

    Full Text Available The effect of vacuum birefringence is one of the first predictions of quantum electrodynamics (QED: the presence of a charged Dirac field makes the vacuum birefringent when threaded by magnetic fields. This effect, extremely weak for terrestrial magnetic fields, becomes important for highly magnetized astrophysical objects, such as accreting black holes. In the X-ray regime, the polarization of photons traveling in the magnetosphere of a black hole is not frozen at emission but is changed by the local magnetic field. We show that, for photons traveling along the plane of the disk, where the field is expected to be partially organized, this results in a depolarization of the X-ray radiation. Because the amount of depolarization depends on the strength of the magnetic field, this effect can provide a way to probe the magnetic field in black-hole accretion disks and to study the role of magnetic fields in astrophysical accretion in general.

  14. Quantum corrections to Schwarzschild black hole

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Xavier; El-Menoufi, Basem Kamal [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-04-15

    Using effective field theory techniques, we compute quantum corrections to spherically symmetric solutions of Einstein's gravity and focus in particular on the Schwarzschild black hole. Quantum modifications are covariantly encoded in a non-local effective action. We work to quadratic order in curvatures simultaneously taking local and non-local corrections into account. Looking for solutions perturbatively close to that of classical general relativity, we find that an eternal Schwarzschild black hole remains a solution and receives no quantum corrections up to this order in the curvature expansion. In contrast, the field of a massive star receives corrections which are fully determined by the effective field theory. (orig.)

  15. Erratum: Quantum corrections and black hole spectroscopy

    Science.gov (United States)

    Jiang, Qing-Quan; Han, Yan; Cai, Xu

    2012-06-01

    In my paper [Qing-Quan Jiang, Yan Han, Xu Cai, Quantum corrections and black hole spectroscopy, JHEP 08 (2010) 049], there was an error in deriving the black hole spectroscopy. In this erratum, we attempt to rectify them.

  16. Black hole entropy, curved space and monsters

    International Nuclear Information System (INIS)

    Hsu, Stephen D.H.; Reeb, David

    2008-01-01

    We investigate the microscopic origin of black hole entropy, in particular the gap between the maximum entropy of ordinary matter and that of black holes. Using curved space, we construct configurations with entropy greater than the area A of a black hole of equal mass. These configurations have pathological properties and we refer to them as monsters. When monsters are excluded we recover the entropy bound on ordinary matter S 3/4 . This bound implies that essentially all of the microstates of a semiclassical black hole are associated with the growth of a slightly smaller black hole which absorbs some additional energy. Our results suggest that the area entropy of black holes is the logarithm of the number of distinct ways in which one can form the black hole from ordinary matter and smaller black holes, but only after the exclusion of monster states

  17. Black Holes: A Selected Bibliography.

    Science.gov (United States)

    Fraknoi, Andrew

    1991-01-01

    Offers a selected bibliography pertaining to black holes with the following categories: introductory books; introductory articles; somewhat more advanced articles; readings about Einstein's general theory of relativity; books on the death of stars; articles on the death of stars; specific articles about Supernova 1987A; relevant science fiction…

  18. Black Holes in Our Universe

    Indian Academy of Sciences (India)

    are humanity's high-technology windows onto the universe. For reasons that will ... instrument ever built; and it was the first direct ... gravity will drive it to collapse into a black hole. Indeed, in 2007, ... Given their large X-ray power, it has been ...

  19. From Pinholes to Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  20. Paths toward understanding black holes

    NARCIS (Netherlands)

    Mayerson, D.R.

    2015-01-01

    This work can be summarized as trying to understand aspects of black holes, gravity, and geometry, in the context of supergravity and string theory in high-energy theoretical physics. The two parts of this thesis have been written with entirely different audiences in mind. The first part consists of

  1. Black holes and trapped points

    International Nuclear Information System (INIS)

    Krolak, A.

    1981-01-01

    Black holes are defined and their properties investigated without use of any global causality restriction. Also the boundary at infinity of space-time is not needed. When the causal conditions are brought in, the equivalence with the usual approach is established. (author)

  2. Black Holes and Exotic Spinors

    Directory of Open Access Journals (Sweden)

    J. M. Hoff da Silva

    2016-05-01

    Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.

  3. Charge Fluctuations of an Uncharged Black Hole

    OpenAIRE

    Schiffer, Marcelo

    2016-01-01

    In this paper we calculate charge fluctuations of a Schwarzschild black-hole of mass $M$ confined within a perfectly reflecting cavity of radius R in thermal equilibrium with various species of radiation and fermions . Charge conservation is constrained by a Lagrange multiplier (the chemical potential). Black hole charge fluctuations are expected owing to continuous absorption and emission of particles by the black hole. For black holes much more massive than $10^{16} g$ , these fluctuations ...

  4. Bosonic instability of charged black holes

    International Nuclear Information System (INIS)

    Gaina, A.B.; Ternov, I.M.

    1986-01-01

    The processes of spontaneous and induced production and accumulation of charged bosons on quasibound superradiant levels in the field of Kerr-Newman black hole is analysed. It is shown that bosonic instability may be caused exclusively by the rotation of the black hole. Particulary, the Reissner-Nordstrom configuration is stable. In the case of rotating and charged black hole the bosonic instability may cause an increase of charge of the black hole

  5. Will black holes eventually engulf the Universe?

    International Nuclear Information System (INIS)

    Martin-Moruno, Prado; Jimenez Madrid, Jose A.; Gonzalez-Diaz, Pedro F.

    2006-01-01

    The Babichev-Dokuchaev-Eroshenko model for the accretion of dark energy onto black holes has been extended to deal with black holes with non-static metrics. The possibility that for an asymptotic observer a black hole with large mass will rapidly increase and eventually engulf the Universe at a finite time in the future has been studied by using reasonable values for astronomical parameters. It is concluded that such a phenomenon is forbidden for all black holes in quintessential cosmological models

  6. Quantum Black Holes As Elementary Particles

    OpenAIRE

    Ha, Yuan K.

    2008-01-01

    Are black holes elementary particles? Are they fermions or bosons? We investigate the remarkable possibility that quantum black holes are the smallest and heaviest elementary particles. We are able to construct various fundamental quantum black holes: the spin-0, spin 1/2, spin-1, and the Planck-charge cases, using the results in general relativity. Quantum black holes in the neighborhood of the Galaxy could resolve the paradox posed by the Greisen-Zatsepin-Kuzmin limit on the energy of cosmi...

  7. Catastrophic Instability of Small Lovelock Black Holes

    OpenAIRE

    Takahashi, Tomohiro; Soda, Jiro

    2010-01-01

    We study the stability of static black holes in Lovelock theory which is a natural higher dimensional generalization of Einstein theory. We show that Lovelock black holes are stable under vector perturbations in all dimensions. However, we prove that small Lovelock black holes are unstable under tensor perturbations in even-dimensions and under scalar perturbations in odd-dimensions. Therefore, we can conclude that small Lovelock black holes are unstable in any dimensions. The instability is ...

  8. Black-hole production from ultrarelativistic collisions

    International Nuclear Information System (INIS)

    Rezzolla, Luciano; Takami, Kentaro

    2013-01-01

    Determining the conditions under which a black hole can be produced is a long-standing and fundamental problem in general relativity. We use numerical simulations of colliding self-gravitating fluid objects to study the conditions of black-hole formation when the objects are boosted to ultrarelativistic speeds. Expanding on the previous work, we show that the collision is characterized by a type-I critical behaviour, with a black hole being produced for masses above a critical value, M c , and a partially bound object for masses below the critical one. More importantly, we show for the first time that the critical mass varies with the initial effective Lorentz factor 〈γ〉 following a simple scaling of the type M c ∼ K〈γ〉 −1.0 , thus indicating that a black hole of infinitesimal mass is produced in the limit of a diverging Lorentz factor. Furthermore, because a scaling is present also in terms of the initial stellar compactness, we provide a condition for black-hole formation in the spirit of the hoop conjecture. (fast track communication)

  9. Fermionic greybody factors in dilaton black holes

    International Nuclear Information System (INIS)

    Abedi, Jahed; Arfaei, Hessamaddin

    2014-01-01

    In this paper the question of the emission of fermions in the process of dilaton black hole evolution and its characteristics for different dilaton coupling constants α are studied. The main quantity of interest, the greybody factors, are calculated both numerically and in analytical approximation. The dependence of the rates of evaporation and behaviour on the dilaton coupling constant is analysed. Having calculated the greybody factors, we are able to address the question of the final fate of the dilaton black hole. For that we also need to perform dynamical treatment of the solution by considering the backreaction, which will show a crucial effect on the final result. We find a transition line in the (Q/M,α) plane that separates the two regimes for the fate of the black hole, decay regime and extremal regime. In the decay regime the black hole completely evaporates, while in the extremal regime the black hole approaches the extremal limit by radiation and becomes stable. (paper)

  10. Understanding possible electromagnetic counterparts to loud gravitational wave events: Binary black hole effects on electromagnetic fields

    International Nuclear Information System (INIS)

    Palenzuela, Carlos; Lehner, Luis; Yoshida, Shin

    2010-01-01

    In addition to producing loud gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as an enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  11. Compensating Scientism through "The Black Hole."

    Science.gov (United States)

    Roth, Lane

    The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for…

  12. Area spectra of near extremal black holes

    International Nuclear Information System (INIS)

    Chen, Deyou; Yang, Haitang; Zu, Xiaotao

    2010-01-01

    Motivated by Maggiore's new interpretation of quasinormal modes, we investigate area spectra of a near extremal Schwarzschild-de Sitter black hole and a higher-dimensional near extremal Reissner-Nordstrom-de Sitter black hole. The result shows that the area spectra are equally spaced and irrelevant to the parameters of the black holes. (orig.)

  13. Extremal black holes in N=2 supergravity

    NARCIS (Netherlands)

    Katmadas, S.

    2011-01-01

    An explanation for the entropy of black holes has been an outstanding problem in recent decades. A special case where this is possible is that of extremal black holes in N=2 supergravity in four and five dimensions. The best developed case is for black holes preserving some supersymmetry (BPS),

  14. New entropy formula for Kerr black holes

    Directory of Open Access Journals (Sweden)

    González Hernán A.

    2018-01-01

    Full Text Available We introduce a new entropy formula for Kerr black holes inspired by recent results for 3-dimensional black holes and cosmologies with soft Heisenberg hair. We show that also Kerr–Taub–NUT black holes obey the same formula.

  15. On black holes and gravitational waves

    CERN Document Server

    Loinger, Angelo

    2002-01-01

    Black holes and gravitational waves are theoretical entities of today astrophysics. Various observed phenomena have been associated with the concept of black hole ; until now, nobody has detected gravitational waves. The essays contained in this book aim at showing that the concept of black holes arises from a misinterpretation of general relativity and that gravitational waves cannot exist.

  16. Black Hole Monodromy and Conformal Field Theory

    NARCIS (Netherlands)

    Castro, A.; Lapan, J.M.; Maloney, A.; Rodriguez, M.J.

    2013-01-01

    The analytic structure of solutions to the Klein-Gordon equation in a black hole background, as represented by monodromy data, is intimately related to black hole thermodynamics. It encodes the "hidden conformal symmetry" of a nonextremal black hole, and it explains why features of the inner event

  17. Anomalies, effective action and Hawking temperatures of a Schwarzschild black hole in the isotropic coordinates

    International Nuclear Information System (INIS)

    Wu Shuangqing; Peng Junjin; Zhao Zhanyue

    2008-01-01

    Motivated by the universality of Hawking radiation and that of the anomaly cancellation technique as well as the effective action method, we investigate the Hawking radiation of a Schwarzschild black hole in the isotropic coordinates via the cancellation of gravitational anomaly. After performing a dimensional reduction from the four-dimensional isotropic Schwarzschild metric, we show that this reduction procedure will, in general, result in two classes of two-dimensional effective metrics: the conformal equivalent and the inequivalent ones. For the physically equivalent class, the two-dimensional effective metric displays such a distinct feature that the determinant is not equal to the unity √(-g)≠1, but also vanishes at the horizon, the latter of which possibly invalidates the anomaly analysis there. Nevertheless, in this paper we adopt the effective action method to prove that the consistent energy-momentum tensor T r t is divergent on the horizon but √(-g)T t r remains finite there. Meanwhile, through an explicit calculation we show that the covariant energy-momentum tensor T-tilde t r equals zero at the horizon. Therefore the validity of the covariant regularity condition that demands that T-tilde t r = 0 at the horizon has been justified, indicating that the gravitational anomaly analysis can be safely extrapolated to the case where the metric determinant vanishes at the horizon. It is then demonstrated that for the physically equivalent reduced metric, both methods can give the correct Hawking temperature of the isotropic Schwarzschild black hole, while for the inequivalent one with the determinant √(-g) = 1 it can only give half of the correct temperature. We further exclude the latter undesired result by taking into account the general covariance of the energy-momentum tensor under the isotropic coordinate transformation

  18. Dancing around the Black Hole

    Science.gov (United States)

    2001-08-01

    extremely intense gravitational field and as light can not escape from them, they are dark and invisible. Indeed, with presently available observational tools, they cannot be detected directly, only by effects resulting from interaction with their immediate surroundings. A small fraction of the black holes in galaxies are thus revealed by the spectacular activity they trigger in the central part of their hosts. Attracted by that heavy object, enormous quantities of gas (mostly hydrogen) spiral inwards towards the black hole. A disk-shaped structure forms in which the gas moves ever faster around the black hole while enormous amounts of energy are radiated at all wavelengths [3]. Getting the food to the Black Hole A great debate is now going on among scientists about how exactly the black holes are "fed". How is the gas first transported into the disk to fuel the seemingly insatiable supermassive black hole? It is still not well understood how the gas is moved from the outside to within a distance of 1000 light-years of the centre. Various violent processes have been mentioned in this context, like the merger of galaxies. A fine example of such an event was recently observed at the distant quasar HE 1013-2136 with the ESO Very Large Telescope, cf. ESO PR 13/01. The role of "nuclear bars" ESO PR Photo 25d/01 ESO PR Photo 25d/01 [Preview - JPEG: 364 x 400 pix - 89k] [Normal - JPEG: 727 x 800 pix - 264k] Caption : PR Photo 25d/01 is a schematic drawing of the various components of a double-barred galaxy, as mentioned in the text. Another possibility to move the gas inwards is the presence of bar-like structures at the centres of some galaxies, so-called "nuclear bars" . They look like small versions of the well-known, beautiful large-scale bar-like structures seen in galaxies like NGC 1365 (cf. ESO PR Photos 08a-e/99 ), but the responsible dynamical processes may possibly be somewhat different. Photo 25d/01 shows the various components that are discussed here in a schematic way

  19. Phase transition for black holes with scalar hair and topological black holes

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2008-01-01

    We study phase transitions between black holes with scalar hair and topological black holes in asymptotically anti-de Sitter spacetimes. As the ground state solutions, we introduce the non-rotating BTZ black hole in three dimensions and topological black hole with hyperbolic horizon in four dimensions. For the temperature matching only, we show that the phase transition between black hole with scalar hair (Martinez-Troncoso-Zanelli black hole) and topological black hole is second-order by using differences between two free energies. However, we do not identify what order of the phase transition between scalar and non-rotating BTZ black holes occurs in three dimensions, although there exists a possible decay of scalar black hole to non-rotating BTZ black hole

  20. Hangup effect in unequal mass binary black hole mergers and further studies of their gravitational radiation and remnant properties

    Science.gov (United States)

    Healy, James; Lousto, Carlos O.

    2018-04-01

    We present the results of 74 new simulations of nonprecessing spinning black hole binaries with mass ratios q =m1/m2 in the range 1 /7 ≤q ≤1 and individual spins covering the parameter space -0.95 ≤α1 ,2≤0.95 . We supplement those runs with 107 previous simulations to study the hangup effect in black hole mergers, i.e. the delay or prompt merger of spinning holes with respect to nonspinning binaries. We perform the numerical evolution for typically the last ten orbits before the merger and down to the formation of the final remnant black hole. This allows us to study the hangup effect for unequal mass binaries leading us to identify the spin variable that controls the number of orbits before merger as S→ hu.L ^ , where S→ hu=(1 +1/2 m/2 m1 )S→ 1+(1 +1/2 m/1 m2 )S→ 2 . We also combine the total results of those 181 simulations to obtain improved fitting formulas for the remnant final black hole mass, spin and recoil velocity as well as for the peak luminosity and peak frequency of the gravitational strain, and find new correlations among them. This accurate new set of simulations enhances the number of available numerical relativity waveforms available for parameter estimation of gravitational wave observations.

  1. Black hole thermodynamics under the microscope

    Science.gov (United States)

    Falls, Kevin; Litim, Daniel F.

    2014-04-01

    A coarse-grained version of the effective action is used to study the thermodynamics of black holes, interpolating from largest to smallest masses. The physical parameters of the black hole are linked to the running couplings by thermodynamics, and the corresponding equation of state includes quantum corrections for temperature, specific heat, and entropy. If quantum gravity becomes asymptotically safe, the state function predicts conformal scaling in the limit of small horizon area and bounds on black hole mass and temperature. A metric-based derivation for the equation of state and quantum corrections to the thermodynamical, statistical, and phenomenological definition of entropy are also given. Further implications and limitations of our study are discussed.

  2. Dirac Particles Emission from An Elliptical Black Hole

    Directory of Open Access Journals (Sweden)

    Yuant Tiandho

    2017-03-01

    Full Text Available According to the general theory of relativiy, a black hole is defined as a region of spacetime with super-strong gravitational effects and there is nothing can escape from it. So in the classical theory of relativity, it is safe to say that black hole is a "dead" thermodynamical object. However, by using quantum mechanics theory, Hawking has shown that a black hole may emit particles. In this paper, calculation of temperature of an elliptical black hole when emitting the Dirac particles was presented. By using the complexpath method, radiation can be described as emission process in the tunneling pictures. According to relationship between probability of outgoing particle with the spectrum of black body radiation for fermion particles, temperature of the elliptical black hole can be obtained and it depend on the azimuthal angle. This result also showed that condition on the surface of elliptical black hole is not in thermal equilibrium.

  3. Reversed sense of the ''outward'' direction for dynamical effects of rotation close to a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Abramowicz, M.A.; Prasanna, A.R.

    1988-10-01

    Anderson and Lemos (1988) noticed that the direction in which viscous torque transports angular momentum changes, close to a black hole, from outwards to inwards. We find here that close to a black hole the centrifugal force attracts particles towards the hole. We argue that these are particular examples of a general reversal in sense of the inward and outward directions for all dynamical effects of rotation close to the hole. Using results from the recent paper by Abramowicz, Carter and Lasota (1988) we explain that the reversal is not connected with dragging of inertial frames or with the difference between the angular velocities of the hole and of the surrounding matter but rather, it is an effect of curvature. For a Schwarzschild black hole the reversal takes place at the circular photon orbit (r=3M-tilde) because the geodesic curvature, R-tilde=r(1-3M-tilde/r), of the circles r = const. changes its sign there. (author). 13 refs, 7 figs, 1 tab

  4. Effects of thermal fluctuations on non-minimal regular magnetic black hole

    International Nuclear Information System (INIS)

    Jawad, Abdul; Shahzad, M.U.

    2017-01-01

    We analyze the effects of thermal fluctuations on a regular black hole (RBH) of the non-minimal Einstein-Yang-Mill theory with gauge field of magnetic Wu-Yang type and a cosmological constant. We consider the logarithmic corrected entropy in order to analyze the thermal fluctuations corresponding to non-minimal RBH thermodynamics. In this scenario, we develop various important thermodynamical quantities, such as entropy, pressure, specific heats, Gibb's free energy and Helmholtz free energy. We investigate the first law of thermodynamics in the presence of logarithmic corrected entropy and non-minimal RBH. We also discuss the stability of this RBH using various frameworks such as the γ factor (the ratio of heat capacities), phase transition, grand canonical ensemble and canonical ensemble. It is observed that the non-minimal RBH becomes globally and locally more stable if we increase the value of the cosmological constant. (orig.)

  5. Effects of thermal fluctuations on non-minimal regular magnetic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan)

    2017-05-15

    We analyze the effects of thermal fluctuations on a regular black hole (RBH) of the non-minimal Einstein-Yang-Mill theory with gauge field of magnetic Wu-Yang type and a cosmological constant. We consider the logarithmic corrected entropy in order to analyze the thermal fluctuations corresponding to non-minimal RBH thermodynamics. In this scenario, we develop various important thermodynamical quantities, such as entropy, pressure, specific heats, Gibb's free energy and Helmholtz free energy. We investigate the first law of thermodynamics in the presence of logarithmic corrected entropy and non-minimal RBH. We also discuss the stability of this RBH using various frameworks such as the γ factor (the ratio of heat capacities), phase transition, grand canonical ensemble and canonical ensemble. It is observed that the non-minimal RBH becomes globally and locally more stable if we increase the value of the cosmological constant. (orig.)

  6. Local Operators in the Eternal Black Hole.

    Science.gov (United States)

    Papadodimas, Kyriakos; Raju, Suvrat

    2015-11-20

    In the AdS/CFT correspondence, states obtained by Hamiltonian evolution of the thermofield doubled state are also dual to an eternal black-hole geometry, which is glued to the boundary with a time shift generated by a large diffeomorphism. We describe gauge-invariant relational observables that probe the black hole interior in these states and constrain their properties using effective field theory. By adapting recent versions of the information paradox we show that these observables are necessarily described by state-dependent bulk-boundary maps, which we construct explicitly.

  7. Black holes in higher derivative gravity.

    Science.gov (United States)

    Lü, H; Perkins, A; Pope, C N; Stelle, K S

    2015-05-01

    Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this Letter we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics.

  8. The Black Hole Radiation in Massive Gravity

    Directory of Open Access Journals (Sweden)

    Ivan Arraut

    2018-02-01

    Full Text Available We apply the Bogoliubov transformations in order to connect two different vacuums, one located at past infinity and another located at future infinity around a black hole inside the scenario of the nonlinear theory of massive gravity. The presence of the extra degrees of freedom changes the behavior of the logarithmic singularity and, as a consequence, the relation between the two Bogoliubov coefficients. This has an effect on the number of particles, or equivalently, on the black hole temperature perceived by observers defining the time arbitrarily.

  9. Gamma ray bursts of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  10. Falling into a black hole

    OpenAIRE

    Mathur, Samir D.

    2007-01-01

    String theory tells us that quantum gravity has a dual description as a field theory (without gravity). We use the field theory dual to ask what happens to an object as it falls into the simplest black hole: the 2-charge extremal hole. In the field theory description the wavefunction of a particle is spread over a large number of `loops', and the particle has a well-defined position in space only if it has the same `position' on each loop. For the infalling particle we find one definition of ...

  11. Quantum-gravity fluctuations and the black-hole temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)

    2015-05-15

    Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum. (orig.)

  12. Quantum-gravity fluctuations and the black-hole temperature

    International Nuclear Information System (INIS)

    Hod, Shahar

    2015-01-01

    Bekenstein has put forward the idea that, in a quantum theory of gravity, a black hole should have a discrete energy spectrum with concomitant discrete line emission. The quantized black-hole radiation spectrum is expected to be very different from Hawking's semi-classical prediction of a thermal black-hole radiation spectrum. One naturally wonders: Is it possible to reconcile the discrete quantum spectrum suggested by Bekenstein with the continuous semi-classical spectrum suggested by Hawking? In order to address this fundamental question, in this essay we shall consider the zero-point quantum-gravity fluctuations of the black-hole spacetime. In a quantum theory of gravity, these spacetime fluctuations are closely related to the characteristic gravitational resonances of the corresponding black-hole spacetime. Assuming that the energy of the black-hole radiation stems from these zero-point quantum-gravity fluctuations of the black-hole spacetime, we derive the effective temperature of the quantized black-hole radiation spectrum. Remarkably, it is shown that this characteristic temperature of the discrete (quantized) black-hole radiation agrees with the well-known Hawking temperature of the continuous (semi-classical) black-hole spectrum. (orig.)

  13. Dyonic black hole in heterotic string theory

    International Nuclear Information System (INIS)

    Jatkar, D.P.; Mukherji, S.

    1997-01-01

    We study some features of the dyonic black hole solution in heterotic string theory on a six-torus. This solution has 58 parameters. Of these, 28 parameters denote the electric charge of the black hole, another 28 correspond to the magnetic charge, and the other two parameters are the mass and the angular momentum of the black hole. We discuss the extremal limit and show that in various limits it reduces to the known black hole solutions. The solutions saturating the Bogomolnyi bound are identified. An explicit solution is presented for the non-rotating dyonic black hole. (orig.)

  14. Modified dispersion relations and black hole physics

    International Nuclear Information System (INIS)

    Ling Yi; Li Xiang; Hu Bo

    2006-01-01

    A modified formulation of the energy-momentum relation is proposed in the context of doubly special relativity. We investigate its impact on black hole physics. It turns out that such a modification will give corrections to both the temperature and the entropy of black holes. In particular, this modified dispersion relation also changes the picture of Hawking radiation greatly when the size of black holes approaches the Planck scale. It can prevent black holes from total evaporation, as a result providing a plausible mechanism to treat the remnant of black holes as a candidate for dark matter

  15. Black-hole creation in quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Chao, Wu [Rome, Univ. `La Sapienza` (Italy). International Center for Relativistic Astrophysics]|[Specola Vaticana, Vatican City State (Vatican City State, Holy See)

    1997-11-01

    It is proven that the probability of a black hole created from the de Sitter space-time background, at the Wkb level, is the exponential of one quarter of the sum of the black hole and cosmological horizon areas, or the total entropy of the universe. This is true not only for the spherically symmetric cases of the Schwarzschild or Reissner-Nordstroem black holes, but also for the rotating cases of the Kerr black hole and the rotating charged case of the Newman black hole. The de Sitter metric is the most probable evolution at the Planckian era of the universe.

  16. Black holes escaping from domain walls

    International Nuclear Information System (INIS)

    Flachi, Antonino; Sasaki, Misao; Pujolas, Oriol; Tanaka, Takahiro

    2006-01-01

    Previous studies concerning the interaction of branes and black holes suggested that a small black hole intersecting a brane may escape via a mechanism of reconnection. Here we consider this problem by studying the interaction of a small black hole and a domain wall composed of a scalar field and simulate the evolution of this system when the black hole acquires an initial recoil velocity. We test and confirm previous results, however, unlike the cases previously studied, in the more general set-up considered here, we are able to follow the evolution of the system also during the separation, and completely illustrate how the escape of the black hole takes place

  17. Effects of turbulence and rotation on protostar formation as a precursor of massive black holes

    NARCIS (Netherlands)

    Van Borm, C.; Bovino, S.; Latif, M. A.; Schleicher, D. R. G.; Spaans, M.; Grassi, T.

    2014-01-01

    Context. The seeds of the first supermassive black holes may have resulted from the direct collapse of hot primordial gas in ≳104 K haloes, forming a supermassive or quasi-star as an intermediate stage. Aims: We explore the formation of a protostar resulting from the collapse of primordial gas in

  18. Effects of turbulence and rotation on protostar formation as a precursor of massive black holes

    DEFF Research Database (Denmark)

    Van Borm, C.; Bovino, S.; Latif, M. A.

    2014-01-01

    Context. The seeds of the first supermassive black holes may have resulted from the direct collapse of hot primordial gas in ≳104 K haloes, forming a supermassive or quasi-star as an intermediate stage. Aims. We explore the formation of a protostar resulting from the collapse of primordial gas...

  19. The effects of x-rays on star formation and black hole growth in young galaxies

    NARCIS (Netherlands)

    Spaans, Marco; Aykutalp, Aycin; Wise, John H.; Meijerink, Rowin; Umemura, M; Omukai, K

    We investigate the growth of seed black holes in young galaxies and the impact of their X-ray feedback. We have performed two simulations using the adaptive mesh refinement hydrodynamical code Enzo, for the singular collapse scenario in the presence of a UV background radiation field of 105 and 103

  20. The stable problem of the black-hole connected region in the Schwarzschild black hole

    OpenAIRE

    Tian, Guihua

    2005-01-01

    The stability of the Schwarzschild black hole is studied. Using the Painlev\\'{e} coordinate, our region can be defined as the black-hole-connected region(r>2m, see text) of the Schwarzschild black hole or the white-hole-connected region(r>2m, see text) of the Schwarzschild black hole. We study the stable problems of the black-hole-connected region. The conclusions are: (1) in the black-hole-connected region, the initially regular perturbation fields must have real frequency or complex frequen...

  1. From Black Holes to Quivers

    CERN Document Server

    Manschot, Jan; Sen, Ashoke

    2012-01-01

    Middle cohomology states on the Higgs branch of supersymmetric quiver quantum mechanics - also known as pure Higgs states - have recently emerged as possible microscopic candidates for single-centered black hole micro-states, as they carry zero angular momentum and appear to be robust under wall-crossing. Using the connection between quiver quantum mechanics on the Coulomb branch and the quantum mechanics of multi-centered black holes, we propose a general algorithm for reconstructing the full moduli-dependent cohomology of the moduli space of an arbitrary quiver, in terms of the BPS invariants of the pure Higgs states. We analyze many examples of quivers with loops, including all cyclic Abelian quivers and several examples with two loops or non-Abelian gauge groups, and provide supporting evidence for this proposal. We also develop methods to count pure Higgs states directly.

  2. Cosmic strings and black holes

    International Nuclear Information System (INIS)

    Aryal, M.; Ford, L.H.; Vilenkin, A.

    1986-01-01

    The metric for a Schwarzschild black hole with a cosmic string passing through it is discussed. The thermodynamics of such an object is considered, and it is shown that S = (1/4)A, where S is the entropy and A is the horizon area. It is noted that the Schwarzschild mass parameter M, which is the gravitational mass of the system, is no longer identical to its energy. A solution representing a pair of black holes held apart by strings is discussed. It is nearly identical to a static, axially symmetric solution given long ago by Bach and Weyl. It is shown how these solutions, which were formerly a mathematical curiosity, may be given a more physical interpretation in terms of cosmic strings

  3. Symmetries of supergravity black holes

    International Nuclear Information System (INIS)

    Chow, David D K

    2010-01-01

    We investigate Killing tensors for various black hole solutions of supergravity theories. Rotating black holes of an ungauged theory, toroidally compactified heterotic supergravity, with NUT parameters and two U(1) gauge fields are constructed. If both charges are set equal, then the solutions simplify, and then there are concise expressions for rank-2 conformal Killing-Staeckel tensors. These are induced by rank-2 Killing-Staeckel tensors of a conformally related metric that possesses a separability structure. We directly verify the separation of the Hamilton-Jacobi equation on this conformally related metric and of the null Hamilton-Jacobi and massless Klein-Gordon equations on the 'physical' metric. Similar results are found for more general solutions; we mainly focus on those with certain charge combinations equal in gauged supergravity but also consider some other solutions.

  4. Dynamics of test black holes

    International Nuclear Information System (INIS)

    Epikhin, E.N.

    1981-01-01

    A concept of a test object is introduced. This definition includes also small black holes. Reduced approximation of testing permits to unambiguously introduce a concept of background space-time. Dynamic values for test objects are introduced by means of the Noether theorem which gave the possibility to covariantly generalize pseudotensor of the Papapetru energy-momentum for the case of curved background space-time. Additional use of radiation approximation and the accountancy of the zero and first momenta of dynamic values lead to the conclusion that motion of the test object (including small black holes) is subordinated to the Matthiessen-Papapetru equations. The above results are testified to the accountancy of a proper gravitational field of the test object in integrated dynamic values [ru

  5. Some Simple Black Hole Thermodynamics

    Science.gov (United States)

    Lopresto, Michael C.

    2003-05-01

    In his recent popular book The Universe in a Nutshell, Steven Hawking gives expressions for the entropy1 and temperature (often referred to as the ``Hawking temperature''2 ) of a black hole:3 S = kc34ℏG A T = ℏc38πkGM, where A is the area of the event horizon, M is the mass, k is Boltzmann's constant, ℏ = h2π (h being Planck's constant), c is the speed of light, and G is the universal gravitational constant. These expressions can be used as starting points for some interesting approximations on the thermodynamics of a Schwarzschild black hole, of mass M, which by definition is nonrotating and spherical with an event horizon of radius R = 2GMc2.4,5

  6. Lifetime of a black hole

    International Nuclear Information System (INIS)

    Carlitz, R.D.; Willey, R.S.

    1987-01-01

    We study the constraints placed by quantum mechanics upon the lifetime of a black hole. In the context of a moving-mirror analog model for the Hawking radiation process, we conclude that the period of Hawking radiation must be followed by a much longer period during which the remnant mass (of order m/sub P/) may be radiated away. We are able to place a lower bound on the time required for this radiation process, which translates into a lower bound for the lifetime of the black hole. Particles which are emitted during the decay of the remnant, like the particles which comprise the Hawking flux, may be uncorrelated with each other. But each particle emitted from the decaying remnant is correlated with one particle emitted as Hawking radiation. The state which results after the remnant has evaporated is one which locally appears to be thermal, but which on a much larger scale is marked by extensive correlations

  7. Black hole with quantum potential

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Science, Benha University, Benha 13518 (Egypt); Khalil, Mohammed M., E-mail: moh.m.khalil@gmail.com [Department of Electrical Engineering, Alexandria University, Alexandria 12544 (Egypt)

    2016-08-15

    In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.

  8. Black hole with quantum potential

    Directory of Open Access Journals (Sweden)

    Ahmed Farag Ali

    2016-08-01

    Full Text Available In this work, we investigate black hole (BH physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian trajectories and hence form a quantum Raychaudhuri equation (QRE. From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.

  9. The irreversible thermodynamics of black holes

    International Nuclear Information System (INIS)

    Candelas, P.; Sciama, D.W.

    1978-01-01

    The action of quantum fluctuations of the gravitational field may be regarded as the origin of the dissipative processes associated with Hawking radiation. In this picture the black hole possesses internal coherence by virtue of the localization of its mass. The cumulative effect of the quantum fluctuations in the geometry is that this coherence is corrupted and the mass is sapped away. (author)

  10. Van der Waals black hole

    Directory of Open Access Journals (Sweden)

    Aruna Rajagopal

    2014-10-01

    Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.

  11. Black holes, singularities and predictability

    International Nuclear Information System (INIS)

    Wald, R.M.

    1984-01-01

    The paper favours the view that singularities may play a central role in quantum gravity. The author reviews the arguments leading to the conclusion, that in the process of black hole formation and evaporation, an initial pure state evolves to a final density matrix, thus signaling a breakdown in ordinary quantum dynamical evolution. Some related issues dealing with predictability in the dynamical evolution, are also discussed. (U.K.)

  12. A black-hole cosmology

    International Nuclear Information System (INIS)

    Debney, G.; Farnsworth, D.

    1983-01-01

    Motivated by the fact that 2m/r is of the order of magnitude unity for the observable universe, we explore the possibility that a Schwarzschild or black hole cosmological model is appropriate. Luminosity distance and frequency shifts of freely-falling, standard, monochromatic objects are viewed by a freely-falling observer. The observer is inside r=2m. The observer in such a world does not see the same universe as do astronomers. (author)

  13. Brown dwarfs and black holes

    International Nuclear Information System (INIS)

    Tarter, J.C.

    1978-01-01

    The astronomical missing-mass problem (the discrepancy between the dynamical mass estimate and the sum of individual masses in large groupings) is considered, and possible explanations are advanced. The existence of brown dwarfs (stars not massive enough to shine by nuclear burning) and black holes (extremely high density matter contraction such that gravitation allows no light emission) thus far provides the most plausible solutions

  14. Black holes, pregalactic stars, and the dark matter problem

    International Nuclear Information System (INIS)

    Carr, B.J.

    1985-06-01

    We review the different ways in which black holes might form and discuss their various astrophysical and cosmological consequences. We then consider the various constraints on the form of the dark matter and conclude that black holes could have a significant cosmological density only if they are of primordial origin or remnants of a population of pregalactic stars. This leads us to discuss the other cosmological effects of primordial black holes and pregalactic stars. 239 refs., 7 figs., 5 tabs

  15. Glory scattering by black holes

    International Nuclear Information System (INIS)

    Matzner, R.A.; DeWitte-Morette, C.; Nelson, B.; Zhang, T.

    1985-01-01

    We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/dΩ = 4π 2 lambda -1 B/sub g/ 2 (dB mWπ, where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 √3 + 3.48 exp(-theta), theta > owigπ. The numerical values of dsigma/dΩ for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes

  16. Black holes and random matrices

    Energy Technology Data Exchange (ETDEWEB)

    Cotler, Jordan S.; Gur-Ari, Guy [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Hanada, Masanori [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); The Hakubi Center for Advanced Research, Kyoto University,Kyoto 606-8502 (Japan); Polchinski, Joseph [Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106 (United States); Saad, Phil; Shenker, Stephen H. [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Stanford, Douglas [Institute for Advanced Study,Princeton, NJ 08540 (United States); Streicher, Alexandre [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States); Department of Physics, University of California,Santa Barbara, CA 93106 (United States); Tezuka, Masaki [Department of Physics, Kyoto University,Kyoto 606-8501 (Japan)

    2017-05-22

    We argue that the late time behavior of horizon fluctuations in large anti-de Sitter (AdS) black holes is governed by the random matrix dynamics characteristic of quantum chaotic systems. Our main tool is the Sachdev-Ye-Kitaev (SYK) model, which we use as a simple model of a black hole. We use an analytically continued partition function |Z(β+it)|{sup 2} as well as correlation functions as diagnostics. Using numerical techniques we establish random matrix behavior at late times. We determine the early time behavior exactly in a double scaling limit, giving us a plausible estimate for the crossover time to random matrix behavior. We use these ideas to formulate a conjecture about general large AdS black holes, like those dual to 4D super-Yang-Mills theory, giving a provisional estimate of the crossover time. We make some preliminary comments about challenges to understanding the late time dynamics from a bulk point of view.

  17. Black hole vacua and rotation

    International Nuclear Information System (INIS)

    Krishnan, Chethan

    2011-01-01

    Recent developments suggest that the near-region of rotating black holes behaves like a CFT. To understand this better, I propose to study quantum fields in this region. An instructive approach for this might be to put a large black hole in AdS and to think of the entire geometry as a toy model for the 'near-region'. Quantum field theory on rotating black holes in AdS can be well-defined (unlike in flat space), if fields are quantized in the co-rotating-with-the-horizon frame. First, some generalities of constructing Hartle-Hawking Green functions in this approach are discussed. Then as a specific example where the details are easy to handle, I turn to 2+1 dimensions (BTZ), write down the Green functions explicitly starting with the co-rotating frame, and observe some structural similarities they have with the Kerr-CFT scattering amplitudes. Finally, in BTZ, there is also an alternate construction for the Green functions: we can start from the covering AdS 3 space and use the method of images. Using a 19th century integral formula, I show the equality between the boundary correlators arising via the two constructions.

  18. Andreev reflections and the quantum physics of black holes

    Science.gov (United States)

    Manikandan, Sreenath K.; Jordan, Andrew N.

    2017-12-01

    We establish an analogy between superconductor-metal interfaces and the quantum physics of a black hole, using the proximity effect. We show that the metal-superconductor interface can be thought of as an event horizon and Andreev reflection from the interface is analogous to the Hawking radiation in black holes. We describe quantum information transfer in Andreev reflection with a final state projection model similar to the Horowitz-Maldacena model for black hole evaporation. We also propose the Andreev reflection analogue of Hayden and Preskill's description of a black hole final state, where the black hole is described as an information mirror. The analogy between crossed Andreev reflections and Einstein-Rosen bridges is discussed: our proposal gives a precise mechanism for the apparent loss of quantum information in a black hole by the process of nonlocal Andreev reflection, transferring the quantum information through a wormhole and into another universe. Given these established connections, we conjecture that the final quantum state of a black hole is exactly the same as the ground state wave function of the superconductor/superfluid in the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity; in particular, the infalling matter and the infalling Hawking quanta, described in the Horowitz-Maldacena model, forms a Cooper pairlike singlet state inside the black hole. A black hole evaporating and shrinking in size can be thought of as the analogue of Andreev reflection by a hole where the superconductor loses a Cooper pair. Our model does not suffer from the black hole information problem since Andreev reflection is unitary. We also relate the thermodynamic properties of a black hole to that of a superconductor, and propose an experiment which can demonstrate the negative specific heat feature of black holes in a growing/evaporating condensate.

  19. Global geometry of two-dimensional charged black holes

    International Nuclear Information System (INIS)

    Frolov, Andrei V.; Kristjansson, Kristjan R.; Thorlacius, Larus

    2006-01-01

    The semiclassical geometry of charged black holes is studied in the context of a two-dimensional dilaton gravity model where effects due to pair-creation of charged particles can be included in a systematic way. The classical mass-inflation instability of the Cauchy horizon is amplified and we find that gravitational collapse of charged matter results in a spacelike singularity that precludes any extension of the spacetime geometry. At the classical level, a static solution describing an eternal black hole has timelike singularities and multiple asymptotic regions. The corresponding semiclassical solution, on the other hand, has a spacelike singularity and a Penrose diagram like that of an electrically neutral black hole. Extremal black holes are destabilized by pair-creation of charged particles. There is a maximally charged solution for a given black hole mass but the corresponding geometry is not extremal. Our numerical data exhibits critical behavior at the threshold for black hole formation

  20. Dilatonic BTZ black holes with power-law field

    International Nuclear Information System (INIS)

    Hendi, S.H.; Eslam Panah, B.; Panahiyan, S.; Sheykhi, A.

    2017-01-01

    Motivated by low energy effective action of string theory and numerous applications of BTZ black holes, we will consider minimal coupling between dilaton and nonlinear electromagnetic fields in three dimensions. The main goal is studying thermodynamical structure of black holes in this set up. Temperature and heat capacity of these black holes are investigated and a picture regarding their phase transitions is given. In addition, the role and importance of studying the mass of black holes is highlighted. We will see how different parameters modify thermodynamical quantities, hence thermodynamical structure of these black holes. In addition, geometrical thermodynamics is used to investigate thermodynamical properties of these black holes. In this regard, the successful method is presented and the nature of interaction around bound and phase transition points is studied.

  1. Dilatonic BTZ black holes with power-law field

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H., E-mail: hendi@shirazu.ac.ir [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha P.O. Box 55134-441 (Iran, Islamic Republic of); Eslam Panah, B., E-mail: behzad.eslampanah@gmail.com [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha P.O. Box 55134-441 (Iran, Islamic Republic of); Panahiyan, S., E-mail: sh.panahiyan@gmail.com [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran 19839 (Iran, Islamic Republic of); Sheykhi, A., E-mail: asheykhi@shirazu.ac.ir [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha P.O. Box 55134-441 (Iran, Islamic Republic of)

    2017-04-10

    Motivated by low energy effective action of string theory and numerous applications of BTZ black holes, we will consider minimal coupling between dilaton and nonlinear electromagnetic fields in three dimensions. The main goal is studying thermodynamical structure of black holes in this set up. Temperature and heat capacity of these black holes are investigated and a picture regarding their phase transitions is given. In addition, the role and importance of studying the mass of black holes is highlighted. We will see how different parameters modify thermodynamical quantities, hence thermodynamical structure of these black holes. In addition, geometrical thermodynamics is used to investigate thermodynamical properties of these black holes. In this regard, the successful method is presented and the nature of interaction around bound and phase transition points is studied.

  2. Dilatonic BTZ black holes with power-law field

    Science.gov (United States)

    Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Sheykhi, A.

    2017-04-01

    Motivated by low energy effective action of string theory and numerous applications of BTZ black holes, we will consider minimal coupling between dilaton and nonlinear electromagnetic fields in three dimensions. The main goal is studying thermodynamical structure of black holes in this set up. Temperature and heat capacity of these black holes are investigated and a picture regarding their phase transitions is given. In addition, the role and importance of studying the mass of black holes is highlighted. We will see how different parameters modify thermodynamical quantities, hence thermodynamical structure of these black holes. In addition, geometrical thermodynamics is used to investigate thermodynamical properties of these black holes. In this regard, the successful method is presented and the nature of interaction around bound and phase transition points is studied.

  3. Observational test for the existence of a rotating black hole in Cyg X-1. [Gravitatinal effects, polarization properties

    Energy Technology Data Exchange (ETDEWEB)

    Stark, R F; Connors, P A [Oxford Univ. (UK). Dept. of Astrophysics

    1977-03-31

    It is stated that the degree and plane of linear polarisation of the radiation from Cyg X-1 are being investigated by X-ray satellite experiments. This radiation can be explained as coming from an accretion disk around a black hole, the polarisation of the X-rays being due to electron scattering in the hotter inner regions of the disk. Existing predictions of the polarisation properties, as a function of energy, have been based on a Newtonian approximation, thus neglecting gravitational effects on the rays as they propagate from the surface of the disk to an observer at infinity. Preliminary results are here given of a full general relativistic calculation that shows that gravitational effects completely alter the polarisation properties, and provide a sensitive test of the existence of a black hole. It is found that for a rapidly rotating black hole the general relativistic effects on the polarisation properties are an order of magnitude greater than for a slowly rotating black hole, or for a neutron star. The degree of linear polarisation of the rays as they leave the disk will also differ from the Newtonian value, and gravitational bending of the light will alter the angle at which a ray leaves the surface of the disk. The large general relativistic variation of the polarisation plane with energy is illustrated graphically. The very large general relativistic rotations in the plane of polarisation provide an opportunity for testing the black hole hypothesis for Cyg X-1. In order to observe these effects X-ray satellite experiments will be required with more sensitive polarimetry across a wider energy range than is available at present.

  4. Post-Newtonian templates for binary black-hole inspirals: the effect of the horizon fluxes and the secular change in the black-hole masses and spins

    Science.gov (United States)

    Isoyama, Soichiro; Nakano, Hiroyuki

    2018-01-01

    Black holes (BHs) in an inspiraling compact binary system absorb the gravitational-wave (GW) energy and angular-momentum fluxes across their event horizons and this leads to the secular change in their masses and spins during the inspiral phase. The goal of this paper is to present ready-to-use, 3.5 post-Newtonian (PN) template families for spinning, non-precessing, binary BH inspirals in quasicircular orbits, including the 2.5 PN and 3.5 PN horizon-flux contributions as well as the correction due to the secular change in the BH masses and spins through 3.5 PN order, respectively, in phase. We show that, for binary BHs observable by Advanced LIGO with high mass ratios (larger than  ∼10) and large aligned-spins (larger than  ∼ 0.7 ), the mismatch between the frequency-domain template with and without the horizon-flux contribution is typically above the 3% mark. For (supermassive) binary BHs observed by LISA, even a moderate mass-ratios and spins can produce a similar level of the mismatch. Meanwhile, the mismatch due to the secular time variations of the BH masses and spins is well below the 1% mark in both cases, hence this is truly negligible. We also point out that neglecting the cubic-in-spin, point-particle phase term at 3.5 PN order would deteriorate the effect of BH absorption in the template.

  5. Black-hole bomb and superradiant instabilities

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Dias, Oscar J.C.; Lemos, Jose P.S.; Yoshida, Shijun

    2004-01-01

    A wave impinging on a Kerr black hole can be amplified as it scatters off the hole if certain conditions are satisfied, giving rise to superradiant scattering. By placing a mirror around the black hole one can make the system unstable. This is the black-hole bomb of Press and Teukolsky. We investigate in detail this process and compute the growing time scales and oscillation frequencies as a function of the mirror's location. It is found that in order for the system black hole plus mirror to become unstable there is a minimum distance at which the mirror must be located. We also give an explicit example showing that such a bomb can be built. In addition, our arguments enable us to justify why large Kerr-AdS black holes are stable and small Kerr-AdS black holes should be unstable

  6. Is there life inside black holes?

    International Nuclear Information System (INIS)

    Dokuchaev, V I

    2011-01-01

    Bound inside rotating or charged black holes, there are stable periodic planetary orbits, which neither come out nor terminate at the central singularity. Stable periodic orbits inside black holes exist even for photons. These bound orbits may be defined as orbits of the third kind, following the Chandrasekhar classification of particle orbits in the black hole gravitational field. The existence domain for the third-kind orbits is rather spacious, and thus there is place for life inside supermassive black holes in the galactic nuclei. Interiors of the supermassive black holes may be inhabited by civilizations, being invisible from the outside. In principle, one can get information from the interiors of black holes by observing their white hole counterparts. (paper)

  7. Hawking radiation and strong gravity black holes

    International Nuclear Information System (INIS)

    Qadir, A.; Sayed, W.A.

    1979-01-01

    It is shown that the strong gravity theory of Salam et al. places severe restrictions on black hole evaporation. Two major implications are that: mini blck holes (down to masses approximately 10 -16 kg) would be stable in the present epoch; and that some suggested mini black hole mechanisms to explain astrophysical phenomena would not work. The first result implies that f-gravity appears to make black holes much safer by removing the possibility of extremely violent black hole explosions suggested by Hawking. (Auth.)

  8. Gravitomagnetism and angular momenta of black-holes

    OpenAIRE

    Marcelo Samuel Berman

    2007-01-01

    We review the energy contents formulae of Kerr-Newman black-holes, where gravitomagnetic energy term comes into play (Berman 2004, 2006a,b). Then, we obtain the angular momenta formulae, which include the gravitomagnetic effect. Three theorems can be enunciated: (1) No black-hole has its energy confined to its interior; (2) Rotating black-holes do not have confined angular momenta; (3) The energy density of a black-hole is not confined to its interior. The difference between our calculation a...

  9. QCD-suppression by black hole production at the LHC

    International Nuclear Information System (INIS)

    Loennblad, Leif; Sjoedahl, Malin; Akesson, Torsten

    2005-01-01

    Possible consequences of the production of small black holes at the LHC for different scenarios with large extra dimensions are investigated. The effects from black hole production on some standard jet observables are examined, concentrating on the reduction of the QCD cross section. It is found that black hole production of partons interacting on a short enough distance indeed seem to generate a drastic drop in the QCD cross section. However from an experimental point of view this will in most cases be camouflaged by energetic radiation from the black holes

  10. Excluding black hole firewalls with extreme cosmic censorship

    Energy Technology Data Exchange (ETDEWEB)

    Page, Don N., E-mail: profdonpage@gmail.com [Department of Physics, 4-183 CCIS, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2014-06-01

    The AMPS argument for black hole firewalls seems to arise not only from the assumption of local effective field theory outside the stretched horizon but also from an overcounting of internal black hole states that include states that are singular in the past. Here I propose to exclude such singular states by Extreme Cosmic Censorship (the conjectured principle that the universe is entirely nonsingular, except for transient singularities inside black and/or white holes). I argue that the remaining set of nonsingular realistic states do not have firewalls but yet preserve information in Hawking radiation from black holes that form from nonsingular initial states.

  11. Excluding black hole firewalls with extreme cosmic censorship

    International Nuclear Information System (INIS)

    Page, Don N.

    2014-01-01

    The AMPS argument for black hole firewalls seems to arise not only from the assumption of local effective field theory outside the stretched horizon but also from an overcounting of internal black hole states that include states that are singular in the past. Here I propose to exclude such singular states by Extreme Cosmic Censorship (the conjectured principle that the universe is entirely nonsingular, except for transient singularities inside black and/or white holes). I argue that the remaining set of nonsingular realistic states do not have firewalls but yet preserve information in Hawking radiation from black holes that form from nonsingular initial states

  12. Black hole equations of motion in the quasistationary approximation

    International Nuclear Information System (INIS)

    Zhdanov, V.I.; Shtelen', V.M.

    1980-01-01

    Black hole motion is considered under the effect of external actions from the point of view of a remoted observer. The shift of the black hole and the metrix structure are found at the presence of other gravitational bodies using the Zerilli equation. It is shown that in the region, where the space curvature is small, the contribution of the field of the black hole, moving with acceleration, coincides in configuration with the field of usual body, black hole motion in quasistationary approximation occuring according to laws of Newtonian dynamics

  13. Black Hole Scrambling from Hydrodynamics.

    Science.gov (United States)

    Grozdanov, Sašo; Schalm, Koenraad; Scopelliti, Vincenzo

    2018-06-08

    We argue that the gravitational shock wave computation used to extract the scrambling rate in strongly coupled quantum theories with a holographic dual is directly related to probing the system's hydrodynamic sound modes. The information recovered from the shock wave can be reconstructed in terms of purely diffusionlike, linearized gravitational waves at the horizon of a single-sided black hole with specific regularity-enforced imaginary values of frequency and momentum. In two-derivative bulk theories, this horizon "diffusion" can be related to late-time momentum diffusion via a simple relation, which ceases to hold in higher-derivative theories. We then show that the same values of imaginary frequency and momentum follow from a dispersion relation of a hydrodynamic sound mode. The frequency, momentum, and group velocity give the holographic Lyapunov exponent and the butterfly velocity. Moreover, at this special point along the sound dispersion relation curve, the residue of the retarded longitudinal stress-energy tensor two-point function vanishes. This establishes a direct link between a hydrodynamic sound mode at an analytically continued, imaginary momentum and the holographic butterfly effect. Furthermore, our results imply that infinitely strongly coupled, large-N_{c} holographic theories exhibit properties similar to classical dilute gases; there, late-time equilibration and early-time scrambling are also controlled by the same dynamics.

  14. Charged spinning black holes as particle accelerators

    International Nuclear Information System (INIS)

    Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune

    2010-01-01

    It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/√(3))≤(a/M)≤1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.

  15. Black Hole Paradox Solved By NASA's Chandra

    Science.gov (United States)

    2006-06-01

    Black holes are lighting up the Universe, and now astronomers may finally know how. New data from NASA's Chandra X-ray Observatory show for the first time that powerful magnetic fields are the key to these brilliant and startling light shows. It is estimated that up to a quarter of the total radiation in the Universe emitted since the Big Bang comes from material falling towards supermassive black holes, including those powering quasars, the brightest known objects. For decades, scientists have struggled to understand how black holes, the darkest objects in the Universe, can be responsible for such prodigious amounts of radiation. Animation of a Black Hole Pulling Matter from Companion Star Animation of a Black Hole Pulling Matter from Companion Star New X-ray data from Chandra give the first clear explanation for what drives this process: magnetic fields. Chandra observed a black hole system in our galaxy, known as GRO J1655-40 (J1655, for short), where a black hole was pulling material from a companion star into a disk. "By intergalactic standards J1655 is in our backyard, so we can use it as a scale model to understand how all black holes work, including the monsters found in quasars," said Jon M. Miller of the University of Michigan, Ann Arbor, whose paper on these results appears in this week's issue of Nature. Gravity alone is not enough to cause gas in a disk around a black hole to lose energy and fall onto the black hole at the rates required by observations. The gas must lose some of its orbital angular momentum, either through friction or a wind, before it can spiral inward. Without such effects, matter could remain in orbit around a black hole for a very long time. Illustration of Magnetic Fields in GRO J1655-40 Illustration of Magnetic Fields in GRO J1655-40 Scientists have long thought that magnetic turbulence could generate friction in a gaseous disk and drive a wind from the disk that carries angular momentum outward allowing the gas to fall inward

  16. Thermodynamics and luminosities of rainbow black holes

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Benrong [Physics Teaching and Research section, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu (China); Wang, Peng; Yang, Haitang, E-mail: mubenrong@uestc.edu.cn, E-mail: pengw@scu.edu.cn, E-mail: hyanga@scu.edu.cn [Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, No. 24 South Section 1 Yihuan Road, Chengdu (China)

    2015-11-01

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ''Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ''Amelino-Camelia dispersion relation'' which is E{sup 2} = m{sup 2}+p{sup 2}[1−η(E/m{sub p}){sup n}] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n ≥ 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.

  17. Dance of Two Monster Black Holes

    Science.gov (United States)

    Kohler, Susanna

    2016-03-01

    This past December, researchers all over the world watched an outburst from the enormous black hole in OJ 287 an outburst that had been predicted years ago using the general theory of relativity.Outbursts from Black-Hole OrbitsOJ 287 is one of the largest supermassive black holes known, weighing in at 18 billion solar masses. Located about 3.5 billion light-years away, this monster quasar is bright enough that it was first observed as early as the 1890s. What makes OJ 287 especially interesting, however, is that its light curve exhibits prominent outbursts roughly every 12 years.Diagram illustrating the orbit of the secondary black hole (shown in blue) in OJ 287 from 2000 to 2023. We see outbursts (the yellow bubbles) every time the secondary black hole crosses the accretion disk (shown in red, ina side view) surrounding the primary (the black circle). [Valtonen et al. 2016]What causes the outbursts? Astronomers think that there is a second supermassive black hole, ~100 times smaller, inspiraling as it orbits the central monster and set to merge within the next 10,000 years. In this model, the primary black hole of OJ 287 is surrounded by a hot accretion disk. As the secondary black hole orbits the primary, it regularly punches through this accretion disk, heating the material and causing the release of expanding bubbles of hot gas pulled from the disk. This gas then radiates thermally, causing the outbursts we see.Attempts to model this scenario using Newtonian orbits all fail; the timing of the secondary black holes crossings through the accretion disk (as measured by when we see the outbursts) can only be explained by a model incorporating general-relativistic effects on the orbit. Careful observations and precise timing of these outbursts therefore provide an excellent test of general relativity.Watching a Predicted CrossingThe model of OJ 287 predicted another disk crossing in December 2015, so professional and amateur astronomers around the world readied more

  18. Self-gravitating black hole scalar wigs

    Science.gov (United States)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Núñez, Darío; Sarbach, Olivier

    2017-07-01

    It has long been known that no static, spherically symmetric, asymptotically flat Klein-Gordon scalar field configuration surrounding a nonrotating black hole can exist in general relativity. In a series of previous papers, we proved that, at the effective level, this no-hair theorem can be circumvented by relaxing the staticity assumption: for appropriate model parameters, there are quasibound scalar field configurations living on a fixed Schwarzschild background which, although not being strictly static, have a larger lifetime than the age of the universe. This situation arises when the mass of the scalar field distribution is much smaller than the black hole mass, and following the analogies with the hair in the literature we dubbed these long-lived field configurations wigs. Here we extend our previous work to include the gravitational backreaction produced by the scalar wigs. We derive new approximate solutions of the spherically symmetric Einstein-Klein-Gordon system which represent self-gravitating scalar wigs surrounding black holes. These configurations interpolate between boson star configurations and Schwarzschild black holes dressed with the long-lived scalar test field distributions discussed in previous papers. Nonlinear numerical evolutions of initial data sets extracted from our approximate solutions support the validity of our approach. Arbitrarily large lifetimes are still possible, although for the parameter space that we analyze in this paper they seem to decay faster than the quasibound states. Finally, we speculate about the possibility that these configurations could describe the innermost regions of dark matter halos.

  19. Radiation transport around Kerr black holes

    Science.gov (United States)

    Schnittman, Jeremy David

    This Thesis describes the basic framework of a relativistic ray-tracing code for analyzing accretion processes around Kerr black holes. We begin in Chapter 1 with a brief historical summary of the major advances in black hole astrophysics over the past few decades. In Chapter 2 we present a detailed description of the ray-tracing code, which can be used to calculate the transfer function between the plane of the accretion disk and the detector plane, an important tool for modeling relativistically broadened emission lines. Observations from the Rossi X-Ray Timing Explorer have shown the existence of high frequency quasi-periodic oscillations (HFQPOs) in a number of black hole binary systems. In Chapter 3, we employ a simple "hot spot" model to explain the position and amplitude of these HFQPO peaks. The power spectrum of the periodic X-ray light curve consists of multiple peaks located at integral combinations of the black hole coordinate frequencies, with the relative amplitude of each peak determined by the orbital inclination, eccentricity, and hot spot arc length. In Chapter 4, we introduce additional features to the model to explain the broadening of the QPO peaks as well as the damping of higher frequency harmonics in the power spectrum. The complete model is used to fit the power spectra observed in XTE J1550-564, giving confidence limits on each of the model parameters. In Chapter 5 we present a description of the structure of a relativistic alpha- disk around a Kerr black hole. Given the surface temperature of the disk, the observed spectrum is calculated using the transfer function mentioned above. The features of this modified thermal spectrum may be used to infer the physical properties of the accretion disk and the central black hole. In Chapter 6 we develop a Monte Carlo code to calculate the detailed propagation of photons from a hot spot emitter scattering through a corona surrounding the black hole. The coronal scattering has two major observable

  20. A Black Hole in Our Galactic Center

    Science.gov (United States)

    Ruiz, Michael J.

    2008-01-01

    An introductory approach to black holes is presented along with astronomical observational data pertaining to the presence of a supermassive black hole at the center of our galaxy. Concepts of conservation of energy and Kepler's third law are employed so students can apply formulas from their physics class to determine the mass of the black hole…

  1. Black holes in the presence of dark energy

    International Nuclear Information System (INIS)

    Babichev, E O; Dokuchaev, V I; Eroshenko, Yu N

    2013-01-01

    The new, rapidly developing field of theoretical research—studies of dark energy interacting with black holes (and, in particular, accreting onto black holes)–—is reviewed. The term 'dark energy' is meant to cover a wide range of field theory models, as well as perfect fluids with various equations of state, including cosmological dark energy. Various accretion models are analyzed in terms of the simplest test field approximation or by allowing back reaction on the black-hole metric. The behavior of various types of dark energy in the vicinity of Schwarzschild and electrically charged black holes is examined. Nontrivial effects due to the presence of dark energy in the black hole vicinity are discussed. In particular, a physical explanation is given of why the black hole mass decreases when phantom energy is being accreted, a process in which the basic energy conditions of the famous theorem of nondecreasing horizon area in classical black holes are violated. The theoretical possibility of a signal escaping from beneath the black hole event horizon is discussed for a number of dark energy models. Finally, the violation of the laws of thermodynamics by black holes in the presence of noncanonical fields is considered. (reviews of topical problems)

  2. BSW process of the slowly evaporating charged black hole

    OpenAIRE

    Wang, Liancheng; He, Feng; Fu, Xiangyun

    2015-01-01

    In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.

  3. Effects of dark energy on the efficiency of charged AdS black holes as heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hang [Nankai University, School of Physics, Tianjin (China); Meng, Xin-He [Nankai University, School of Physics, Tianjin (China); Chinese Academy of Science, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2017-08-15

    In this paper, we study the heat engine where a charged AdS black hole surrounded by dark energy is the working substance and the mechanical work is done via the PdV term in the first law of black hole thermodynamics in the extended phase space. We first investigate the effects of a kind of dark energy (quintessence field in this paper) on the efficiency of the RN-AdS black holes as the heat engine defined as a rectangular closed path in the P-V plane. We get the exact efficiency formula and find that the quintessence field can improve the heat engine efficiency, which will increase as the field density ρ{sub q} grows. At some fixed parameters, we find that a larger volume difference between the smaller black holes(V{sub 1}) and the bigger black holes(V{sub 2}) will lead to a lower efficiency, while the bigger pressure difference P{sub 1} - P{sub 4} will make the efficiency higher, but it is always smaller than 1 and will never be beyond the Carnot efficiency, which is the maximum value of the efficiency constrained by thermodynamics laws; this is consistent to the heat engine in traditional thermodynamics. After making some special choices for the thermodynamical quantities, we find that the increase of the electric charge Q and the normalization factor a can also promote the heat engine efficiency, which would infinitely approach the Carnot limit when Q or a goes to infinity. (orig.)

  4. D-brane black holes: Large-N limit and the effective string description

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S F [International Centre for Theoretical Physics, Trieste (Italy); Wadia, S R [Theoretical Physics Div., CERN, Geneva (Switzerland)

    1997-03-01

    We address the derivation of the effective conformal field theory description of the 5-dimensional black hole, modelled by a collection of D1-and D5-branes, from the corresponding low energy U(Q{sub 1}) x U(Q{sub 5}) gauge theory. Finite horizon size at weak coupling requires both Q{sub 1} and Q{sub 5} to be large. We derive the results in the moduli space approximation (say for Q{sub 1} > Q{sub 5}) and appeal to supersymmetry to argue its validity beyond weak coupling. As a result of a combination of quenched Z{sub Q1} Wilson lines and a residual Weyl symmetry, the low-lying excitations of the U(Q{sub 1}) x U(Q{sub 5}) gauge theory are described by an effective N = 4 superconformal field theory with c = 6 in 1 + 1 dimensions, where the space is a circle of radius RQ{sub 1}Q{sub 5}. We also discuss the appearance of a marginal perturbation of the effective conformal field theory for large but finite values of Q{sub 5}. (author). 42 refs.

  5. Can superconducting cosmic strings piercing seed black holes generate supermassive black holes in the early universe?

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Matthew J. [The Institute for Fundamental Study, ' ' The Tah Poe Academia Institute' ' , Naresuan University, Phitsanulok (Thailand); Thailand Center of Excellence in Physics, Ministry of Education, Bangkok (Thailand); Harko, Tiberiu [Department of Physics, Babes-Bolyai University, Cluj-Napoca (Romania); Department of Mathematics, University College London (United Kingdom)

    2017-10-15

    The discovery of a large number of supermassive black holes (SMBH) at redshifts z > 6, when the Universe was only 900 million years old, raises the question of how such massive compact objects could form in a cosmologically short time interval. Each of the standard scenarios proposed, involving rapid accretion of seed black holes or black hole mergers, faces severe theoretical difficulties in explaining the short-time formation of supermassive objects. In this work we propose an alternative scenario for the formation of SMBH in the early Universe, in which energy transfer from superconducting cosmic strings piercing small seed black holes is the main physical process leading to rapid mass increase. As a toy model, the accretion rate of a seed black hole pierced by two antipodal strings carrying constant current is considered. Using an effective action approach, which phenomenologically incorporates a large class of superconducting string models, we estimate the minimum current required to form SMBH with masses of order M = 2 x 10{sup 9} M {sub CircleDot} by z = 7.085. This corresponds to the mass of the central black hole powering the quasar ULAS J112001.48+064124.3 and is taken as a test case scenario for early-epoch SMBH formation. For GUT scale strings, the required fractional increase in the string energy density, due to the presence of the current, is of order 10{sup -7}, so that their existence remains consistent with current observational bounds on the string tension. In addition, we consider an ''exotic'' scenario, in which an SMBH is generated when a small seed black hole is pierced by a higher-dimensional F-string, predicted by string theory. We find that both topological defect strings and fundamental strings are able to carry currents large enough to generate early-epoch SMBH via our proposed mechanism. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Plasma horizons of a charged black hole

    International Nuclear Information System (INIS)

    Hanni, R.S.

    1977-01-01

    The most promising way of detecting black holes seems to be through electromagnetic radiation emitted by nearby charged particles. The nature of this radiation depends strongly on the local electromagnetic field, which varies with the charge of the black hole. It has often been purported that a black hole with significant charge will not be observed, because, the dominance of the Coulomb interaction forces its neutralization through selective accretion. This paper shows that it is possible to balance the electric attraction of particles whose charge is opposite that of the black hole with magnetic forces and (assuming an axisymmetric, stationary solution) covariantly define the regions in which this is possible. A Kerr-Newman hole in an asymptotically uniform magnetic field and a current ring centered about a Reissner-Nordstroem hole are used as examples, because of their relevance to processes through which black holes may be observed. (Auth.)

  7. NASA's Chandra Finds Black Holes Are "Green"

    Science.gov (United States)

    2006-04-01

    Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce

  8. Boosting jet power in black hole spacetimes.

    Science.gov (United States)

    Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis

    2011-08-02

    The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.

  9. The membrane paradigm for black holes

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1988-01-01

    It is now widely accepted that black holes exist and have an astrophysical role, in particular as the likely power source of quasars. To understand this role with ease, the authors and their colleagues have developed a new paradigm for black holes - a new way to picture, think about and describe them. As far as possible it treats black holes as ordinary astrophysical objects, made of real material. A black hole in this description is a spherical or oblate surface made of a thin, electrically conducting membrane. It was the author's quest to understand the Blandford-Znajek process intuitively that led them to create the membrane paradigm. Their strategy was to translate the general-relativistic mathematics of black holes into the same language of three-dimensional space that is used for magnetized plasmas and to create a new set of black-hole diagrams and pictures to go along with the language. 9 figs

  10. Hawking temperature of constant curvature black holes

    International Nuclear Information System (INIS)

    Cai Ronggen; Myung, Yun Soo

    2011-01-01

    The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M D-1 xS 1 , where D is the spacetime dimension and M D-1 stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.

  11. Braneworld black holes and entropy bounds

    Directory of Open Access Journals (Sweden)

    Y. Heydarzade

    2018-01-01

    Full Text Available The Bousso's D-bound entropy for the various possible black hole solutions on a 4-dimensional brane is checked. It is found that the D-bound entropy here is apparently different from that of obtained for the 4-dimensional black hole solutions. This difference is interpreted as the extra loss of information, associated to the extra dimension, when an extra-dimensional black hole is moved outward the observer's cosmological horizon. Also, it is discussed that N-bound entropy is hold for the possible solutions here. Finally, by adopting the recent Bohr-like approach to black hole quantum physics for the excited black holes, the obtained results are written also in terms of the black hole excited states.

  12. Charged topological black hole pair creation

    International Nuclear Information System (INIS)

    Mann, R.B.

    1998-01-01

    I examine the pair creation of black holes in space-times with a cosmological constant of either sign. I consider cosmological C-metrics and show that the conical singularities in this metric vanish only for three distinct classes of black hole metric, two of which have compact event horizons on each spatial slice. One class is a generalization of the Reissner-Nordstroem (anti-)de Sitter black holes in which the event horizons are the direct product of a null line with a 2-surface with topology of genus g. The other class consists of neutral black holes whose event horizons are the direct product of a null conoid with a circle. In the presence of a domain wall, black hole pairs of all possible types will be pair created for a wide range of mass and charge, including even negative mass black holes. I determine the relevant instantons and Euclidean actions for each case. (orig.)

  13. Reversible Carnot cycle outside a black hole

    International Nuclear Information System (INIS)

    Xi-Hao, Deng; Si-Jie, Gao

    2009-01-01

    A Carnot cycle outside a Schwarzschild black hole is investigated in detail. We propose a reversible Carnot cycle with a black hole being the cold reservoir. In our model, a Carnot engine operates between a hot reservoir with temperature T 1 and a black hole with Hawking temperature T H . By naturally extending the ordinary Carnot cycle to the black hole system, we show that the thermal efficiency for a reversible process can reach the maximal efficiency 1 – T H /T 1 . Consequently, black holes can be used to determine the thermodynamic temperature by means of the Carnot cycle. The role of the atmosphere around the black hole is discussed. We show that the thermal atmosphere provides a necessary mechanism to make the process reversible. (general)

  14. Information Retention by Stringy Black Holes

    CERN Document Server

    Ellis, John

    2015-01-01

    Building upon our previous work on two-dimensional stringy black holes and its extension to spherically-symmetric four-dimensional stringy black holes, we show how the latter retain information. A key r\\^ole is played by an infinite-dimensional $W_\\infty$ symmetry that preserves the area of an isolated black-hole horizon and hence its entropy. The exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole necessarily includes a contribution from $W_\\infty$ generators in its vertex function. This admixture manifests the transfer of information between the string black hole and external particles. We discuss different manifestations of $W_\\infty$ symmetry in black-hole physics and the connections between them.

  15. What does a black hole look like?

    CERN Document Server

    Bailyn, Charles D

    2014-01-01

    Emitting no radiation or any other kind of information, black holes mark the edge of the universe--both physically and in our scientific understanding. Yet astronomers have found clear evidence for the existence of black holes, employing the same tools and techniques used to explore other celestial objects. In this sophisticated introduction, leading astronomer Charles Bailyn goes behind the theory and physics of black holes to describe how astronomers are observing these enigmatic objects and developing a remarkably detailed picture of what they look like and how they interact with their surroundings. Accessible to undergraduates and others with some knowledge of introductory college-level physics, this book presents the techniques used to identify and measure the mass and spin of celestial black holes. These key measurements demonstrate the existence of two kinds of black holes, those with masses a few times that of a typical star, and those with masses comparable to whole galaxies--supermassive black holes...

  16. Hidden conformal symmetry of extremal black holes

    International Nuclear Information System (INIS)

    Chen Bin; Long Jiang; Zhang Jiaju

    2010-01-01

    We study the hidden conformal symmetry of extremal black holes. We introduce a new set of conformal coordinates to write the SL(2,R) generators. We find that the Laplacian of the scalar field in many extremal black holes, including Kerr(-Newman), Reissner-Nordstrom, warped AdS 3 , and null warped black holes, could be written in terms of the SL(2,R) quadratic Casimir. This suggests that there exist dual conformal field theory (CFT) descriptions of these black holes. From the conformal coordinates, the temperatures of the dual CFTs could be read directly. For the extremal black hole, the Hawking temperature is vanishing. Correspondingly, only the left (right) temperature of the dual CFT is nonvanishing, and the excitations of the other sector are suppressed. In the probe limit, we compute the scattering amplitudes of the scalar off the extremal black holes and find perfect agreement with the CFT prediction.

  17. Effects of different eLISA-like configurations on massive black hole parameter estimation

    Science.gov (United States)

    Porter, Edward K.

    2015-09-01

    As the theme for the future L3 Cosmic Vision mission, ESA has recently chosen the "Gravitational Wave Universe." Within this program, a mission concept called eLISA has been proposed. This observatory has a current initial configuration consisting of four laser links between the three satellites, which are separated by a distance of one million kilometers, constructing a single-channel Michelson interferometer. However, the final configuration for the observatory will not be fixed until the end of this decade. With this in mind, we investigate the effect of different eLISA-like configurations on massive black hole detections. This work compares the results of a Bayesian inference study of 120 massive black hole binaries out to a redshift of z ˜13 for a 106 km arm length eLISA with four and six links, as well as a 2 ×106 km arm length observatory with four links. We demonstrate that the original eLISA configuration should allow us to recover the luminosity distance of the source with an error of less than 10% out to a redshift of z ˜4 , and a sky error box of Δ Ω ≤102 deg2 out to z ˜0.1 . In contrast, both alternative configurations suggest that we should be able to conduct the same parameter recovery with errors of less than 10% in luminosity distance out to z ˜12 and Δ Ω ≤102 deg2 out to z ˜0.4 . Using the information from these studies, we also infer that if we were able to construct a 2 Gm, six-link detector, the above values would shift to z ˜20 for luminosity distance and z ˜0.9 for sky error. While the final configuration will also be dependent on both technological and financial considerations, our study suggests that increasing the size of a two-arm detector is a viable alternative to the inclusion of a third arm in a smaller detector. More importantly, this work further suggests no clear scientific loss between either choice.

  18. Measuring the spins of accreting black holes

    International Nuclear Information System (INIS)

    McClintock, Jeffrey E; Narayan, Ramesh; Gou, Lijun; Kulkarni, Akshay; Penna, Robert F; Steiner, James F; Davis, Shane W; Orosz, Jerome A; Remillard, Ronald A

    2011-01-01

    A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accreting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the x-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit, whose radius depends only on the mass and spin of the black hole. In the Fe Kα method, which applies to both classes of black holes, one models the profile of the relativistically broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting (CF) method, which has so far only been applied to stellar-mass black holes, one models the thermal x-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the CF method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.

  19. Gravitational lensing by a Horndeski black hole

    Energy Technology Data Exchange (ETDEWEB)

    Badia, Javier [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2017-11-15

    In this article we study gravitational lensing by non-rotating and asymptotically flat black holes in Horndeski theory. By adopting the strong deflection limit, we calculate the deflection angle, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to black holes in General Relativity. We analyze the astrophysical consequences in the case of the nearest supermassive black holes. (orig.)

  20. Unified geometric description of black hole thermodynamics

    International Nuclear Information System (INIS)

    Alvarez, Jose L.; Quevedo, Hernando; Sanchez, Alberto

    2008-01-01

    In the space of thermodynamic equilibrium states we introduce a Legendre invariant metric which contains all the information about the thermodynamics of black holes. The curvature of this thermodynamic metric becomes singular at those points where, according to the analysis of the heat capacities, phase transitions occur. This result is valid for the Kerr-Newman black hole and all its special cases and, therefore, provides a unified description of black hole phase transitions in terms of curvature singularities.

  1. Gravitational lensing by a Horndeski black hole

    International Nuclear Information System (INIS)

    Badia, Javier; Eiroa, Ernesto F.

    2017-01-01

    In this article we study gravitational lensing by non-rotating and asymptotically flat black holes in Horndeski theory. By adopting the strong deflection limit, we calculate the deflection angle, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to black holes in General Relativity. We analyze the astrophysical consequences in the case of the nearest supermassive black holes. (orig.)

  2. Statistical Mechanics and Black Hole Thermodynamics

    OpenAIRE

    Carlip, Steven

    1997-01-01

    Black holes are thermodynamic objects, but despite recent progress, the ultimate statistical mechanical origin of black hole temperature and entropy remains mysterious. Here I summarize an approach in which the entropy is viewed as arising from ``would-be pure gauge'' degrees of freedom that become dynamical at the horizon. For the (2+1)-dimensional black hole, these degrees of freedom can be counted, and yield the correct Bekenstein-Hawking entropy; the corresponding problem in 3+1 dimension...

  3. A New Model of Black Hole Formation

    Directory of Open Access Journals (Sweden)

    Thayer G. D.

    2013-10-01

    Full Text Available The formation of a black hole and its event horizon are described. Conclusions, which are the result of a thought experiment, show that Schwarzschild [1] was correct: A singularity develops at the event horizon of a newly-formed black hole. The intense gravitational field that forms near the event horizon results in the mass-energy of the black hole accumulating in a layer just inside the event horizon, rather than collapsing into a central singularity.

  4. Semiclassical Approach to Black Hole Evaporation

    OpenAIRE

    Lowe, David A.

    1992-01-01

    Black hole evaporation may lead to massive or massless remnants, or naked singularities. This paper investigates this process in the context of two quite different two dimensional black hole models. The first is the original CGHS model, the second is another two dimensional dilaton-gravity model, but with properties much closer to physics in the real, four dimensional, world. Numerical simulations are performed of the formation and subsequent evaporation of black holes and the results are fou...

  5. Observability of Quantum State of Black Hole

    CERN Document Server

    David, J R; Mandal, G; Wadia, S R; David, Justin R.; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R.

    1997-01-01

    We analyze terms subleading to Rutherford in the $S$-matrix between black hole and probes of successively high energies. We show that by an appropriate choice of the probe one can read off the quantum state of the black hole from the S-matrix, staying asymptotically far from the BH all the time. We interpret the scattering experiment as scattering off classical stringy backgrounds which explicitly depend on the internal quantum numbers of the black hole.

  6. Test fields cannot destroy extremal black holes

    International Nuclear Information System (INIS)

    Natário, José; Queimada, Leonel; Vicente, Rodrigo

    2016-01-01

    We prove that (possibly charged) test fields satisfying the null energy condition at the event horizon cannot overspin/overcharge extremal Kerr–Newman or Kerr–Newman–anti de Sitter black holes, that is, the weak cosmic censorship conjecture cannot be violated in the test field approximation. The argument relies on black hole thermodynamics (without assuming cosmic censorship), and does not depend on the precise nature of the fields. We also discuss generalizations of this result to other extremal black holes. (paper)

  7. Thermodynamic light on black holes

    International Nuclear Information System (INIS)

    Davies, P.

    1977-01-01

    The existence of black holes and their relevance to our understanding of the nature of space and time are considered, with especial reference to the application of thermodynamic arguments which can reveal their energy-transfer processes in a new light. The application of thermodynamics to strongly gravitating systems promises some fascinating new insights into the nature of gravity. Situations can occur during gravitational collapse in which existing physics breaks down. Under these circumstances, the application of universal thermodynamical principles might be our only guide. (U.K.)

  8. Shaping Globular Clusters with Black Holes

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    How many black holes lurk within the dense environments of globular clusters, and how do these powerful objects shape the properties of the cluster around them? One such cluster, NGC 3201, is now helping us to answer these questions.Hunting Stellar-Mass Black HolesSince the detection of merging black-hole binaries by the Laser Interferometer Gravitational-Wave Observatory (LIGO), the dense environments of globular clusters have received increasing attention as potential birthplaces of these compact binary systems.The central region of the globular star cluster NGC 3201, as viewed by Hubble. The black hole is in orbit with the star marked by the blue circle. [NASA/ESA]In addition, more and more stellar-mass black-hole candidates have been observed within globular clusters, lurking in binary pairs with luminous, non-compact companions. The most recent of these detections, found in the globular cluster NGC 3201, stands alone as the first stellar-mass black hole candidate discovered via radial velocity observations: the black holes main-sequence companion gave away its presence via a telltale wobble.Now a team of scientists led by Kyle Kremer (CIERA and Northwestern University) is using models of this system to better understand the impact that black holes might have on their host clusters.A Model ClusterThe relationship between black holes and their host clusters is complicated. Though the cluster environment can determine the dynamical evolution of the black holes, the retention rate of black holes in a globular cluster (i.e., how many remain in the cluster when they are born as supernovae, rather than being kicked out during the explosion) influences how the host cluster evolves.Kremer and collaborators track this complex relationship by modeling the evolution of a cluster similar to NGC 3201 with a Monte Carlo code. The code incorporates physics relevant to the evolution of black holes and black-hole binaries in globular clusters, such as two-body relaxation

  9. Boosted black holes on Kaluza-Klein bubbles

    International Nuclear Information System (INIS)

    Iguchi, Hideo; Mishima, Takashi; Tomizawa, Shinya

    2007-01-01

    We construct an exact stationary solution of black-hole-bubble sequence in the five-dimensional Kaluza-Klein theory by using solitonic solution-generating techniques. The solution describes two stationary black holes with topology S 3 on a Kaluza-Klein bubble and has a linear momentum component in the compactified direction. We call the solution boosted black holes on Kaluza-Klein bubble because it has the linear momentum. The Arnowitt-Deser-Misner mass and the linear momentum depend on the two boosted velocity parameters of black holes. In the effective four-dimensional theory, the solution has an electric charge which is proportional to the linear momentum. The solution includes the static solution found by Elvang and Horowitz. The small and the big black holes limits are investigated. The relation between the solution and the single boosted black string are considered

  10. Low-mass black holes as the remnants of primordial black hole formation.

    Science.gov (United States)

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  11. Tidal interactions with Kerr black holes

    International Nuclear Information System (INIS)

    Hiscock, W.A.

    1977-01-01

    The tidal deformation of an extended test body falling with zero angular momentum into a Kerr black hole is calculated. Numerical results for infall along the symmetry axis and in the equatorial plane of the black hole are presented for a range of values of a, the specific angular momentum of the black hole. Estimates of the tidal contribution to the gravitational radiation are also given. The tidal contribution in equatorial infall into a maximally rotating Kerr black hole may be of the same order as the center-of-mass contribution to the gravitational radiation

  12. Noncommutative Black Holes at the LHC

    Science.gov (United States)

    Villhauer, Elena Michelle

    2017-12-01

    Based on the latest public results, 13 TeV data from the Large Hadron Collider at CERN has not indicated any evidence of hitherto tested models of quantum black holes, semiclassical black holes, or string balls. Such models have predicted signatures of particles with high transverse momenta. Noncommutative black holes remain an untested model of TeV-scale gravity that offers the starkly different signature of particles with relatively low transverse momenta. Considerations for a search for charged noncommutative black holes using the ATLAS detector will be discussed.

  13. Entropy evaporated by a black hole

    International Nuclear Information System (INIS)

    Zurek, W.H.

    1982-01-01

    It is shown that the entropy of the radiation evaporated by an uncharged, nonrotating black hole into vacuum in the course of its lifetime is approximately (4/3) times the initial entropy of this black hole. Also considered is a thermodynamically reversible process in which an increase of black-hole entropy is equal to the decrease of the entropy of its surroundings. Implications of these results for the generalized second law of thermodynamics and for the interpretation of black-hole entropy are pointed out

  14. Black hole evaporation in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo; Rachwał, Lesław [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Modesto, Leonardo [Department of Physics, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055 (China); Porey, Shiladitya, E-mail: bambi@fudan.edu.cn, E-mail: lmodesto@sustc.edu.cn, E-mail: shilp@iitk.ac.in, E-mail: rachwal@fudan.edu.cn [Department of Physics, Indian Institute of Technology, 208016 Kanpur (India)

    2017-09-01

    We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.

  15. On algebraically special perturbations of black holes

    International Nuclear Information System (INIS)

    Chandrasekhar, S.

    1984-01-01

    Algebraically special perturbations of black holes excite gravitational waves that are either purely ingoing or purely outgoing. Solutions, appropriate to such perturbations of the Kerr, the Schwarzschild, and the Reissner-Nordstroem black-holes, are obtained in explicit forms by different methods. The different methods illustrate the remarkable inner relations among different facets of the mathematical theory. In the context of the Kerr black-hole they derive from the different ways in which the explicit value of the Starobinsky constant emerges, and in the context of the Schwarzschild and the Reissner-Nordstroem black-holes they derive from the potential barriers surrounding them belonging to a special class. (author)

  16. The horizon of the lightest black hole

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Xavier [University of Sussex, Physics and Astronomy, Falmer, Brighton (United Kingdom); Casadio, Roberto [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, Bologna (Italy)

    2015-09-15

    We study the properties of the poles of the resummed graviton propagator obtained by resumming bubble matter diagrams which correct the classical graviton propagator. These poles have been previously interpreted as black holes precursors. Here, we show using the horizon wave-function formalism that these poles indeed have properties which make them compatible with being black hole precursors. In particular, when modeled with a Breit-Wigner distribution, they have a well-defined gravitational radius. The probability that the resonance is inside its own gravitational radius, and thus that it is a black hole, is about one half. Our results confirm the interpretation of these poles as black hole precursors. (orig.)

  17. Black holes with Yang-Mills hair

    International Nuclear Information System (INIS)

    Kleihaus, B.; Kunz, J.; Sood, A.; Wirschins, M.

    1998-01-01

    In Einstein-Maxwell theory black holes are uniquely determined by their mass, their charge and their angular momentum. This is no longer true in Einstein-Yang-Mills theory. We discuss sequences of neutral and charged SU(N) Einstein-Yang-Mills black holes, which are static spherically symmetric and asymptotically flat, and which carry Yang-Mills hair. Furthermore, in Einstein-Maxwell theory static black holes are spherically symmetric. We demonstrate that, in contrast, SU(2) Einstein-Yang-Mills theory possesses a sequence of black holes, which are static and only axially symmetric

  18. Micro black holes and the democratic transition

    International Nuclear Information System (INIS)

    Dvali, Gia; Pujolas, Oriol

    2009-01-01

    Unitarity implies that the evaporation of microscopic quasiclassical black holes cannot be universal in different particle species. This creates a puzzle, since it conflicts with the thermal nature of quasiclassical black holes, according to which all of the species should see the same horizon and be produced with the same Hawking temperatures. We resolve this puzzle by showing that for the microscopic black holes, on top of the usual quantum evaporation time, there is a new time scale which characterizes a purely classical process during which the black hole loses the ability to differentiate among the species and becomes democratic. We demonstrate this phenomenon in a well-understood framework of large extra dimensions, with a number of parallel branes. An initially nondemocratic black hole is the one localized on one of the branes, with its high-dimensional Schwarzschild radius being much shorter than the interbrane distance. Such a black hole seemingly cannot evaporate into the species localized on the other branes that are beyond its reach. We demonstrate that in reality the system evolves classically in time, in such a way that the black hole accretes the neighboring branes. The end result is a completely democratic static configuration, in which all of the branes share the same black hole and all of the species are produced with the same Hawking temperature. Thus, just like their macroscopic counterparts, the microscopic black holes are universal bridges to the hidden sector physics.

  19. Black Hole Universe Model and Dark Energy

    Science.gov (United States)

    Zhang, Tianxi

    2011-01-01

    Considering black hole as spacetime and slightly modifying the big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach principle and Einsteinian general relativity and self consistently explains various observations of the universe without difficulties. According to this model, the universe originated from a hot star-like black hole and gradually grew through a supermassive black hole to the present universe by accreting ambient material and merging with other black holes. The entire space is infinitely and hierarchically layered and evolves iteratively. The innermost three layers are the universe that we lives, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and zero limits for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general relativity with the Robertson-Walker metric of spacetime, and tend to expand outward physically. When one universe expands out, a new similar universe grows up from its inside black holes. The origin, structure, evolution, expansion, and cosmic microwave background radiation of black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published in peer-review journals. This study will show how this new model explains the acceleration of the universe and why dark energy is not required. We will also compare the black hole universe model with the big bang cosmology.

  20. On the thermodynamics of hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Choque, David, E-mail: brst1010123@gmail.com [Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso (Chile)

    2015-04-09

    We investigate the thermodynamics of a general class of exact 4-dimensional asymptotically Anti-de Sitter hairy black hole solutions and show that, for a fixed temperature, there are small and large hairy black holes similar to the Schwarzschild–AdS black hole. The large black holes have positive specific heat and so they can be in equilibrium with a thermal bath of radiation at the Hawking temperature. The relevant thermodynamic quantities are computed by using the Hamiltonian formalism and counterterm method. We explicitly show that there are first order phase transitions similar to the Hawking–Page phase transition.

  1. Charged black holes in phantom cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, Mubasher; Qadir, Asghar; Rashid, Muneer Ahmad [National University of Sciences and Technology, Center for Advanced Mathematics and Physics, Rawalpindi (Pakistan)

    2008-11-15

    In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole. (orig.)

  2. Schwarzschild black holes can wear scalar wigs.

    Science.gov (United States)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  3. Particle accelerators inside spinning black holes.

    Science.gov (United States)

    Lake, Kayll

    2010-05-28

    On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.

  4. Surface geometry of 5D black holes and black rings

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Goswami, Rituparno

    2007-01-01

    We discuss geometrical properties of the horizon surface of five-dimensional rotating black holes and black rings. Geometrical invariants characterizing these 3D geometries are calculated. We obtain a global embedding of the 5D rotating black horizon surface into a flat space. We also describe the Kaluza-Klein reduction of the black ring solution (along the direction of its rotation) which, though it is nakedly singular, relates this solution to the 4D metric of a static black hole distorted by the presence of external scalar (dilaton) and vector ('electromagnetic') fields. The properties of the reduced black hole horizon and its embedding in E 3 are briefly discussed

  5. Two-dimensional black holes and non-commutative spaces

    International Nuclear Information System (INIS)

    Sadeghi, J.

    2008-01-01

    We study the effects of non-commutative spaces on two-dimensional black hole. The event horizon of two-dimensional black hole is obtained in non-commutative space up to second order of perturbative calculations. A lower limit for the non-commutativity parameter is also obtained. The observer in that limit in contrast to commutative case see two horizon

  6. Gauge theories, black hole evaporation and cosmic censorship

    International Nuclear Information System (INIS)

    Davies, P.C.W.

    1981-01-01

    Recent work of Linde, which suggests that gauge theories modify the effective gravitational constant, are applied to the theory of black hole evaporation. Considerable modification of the late stages of evaporation are predicted. Contrary to expectations, the black hole never attains a sufficient temperature to enter the antigravity regime, which would represent a failure of cosmic censorship. (orig.)

  7. Faithful effective-one-body waveforms of small-mass-ratio coalescing black hole binaries

    International Nuclear Information System (INIS)

    Damour, Thibault; Nagar, Alessandro

    2007-01-01

    We address the problem of constructing high-accuracy, faithful analytic waveforms describing the gravitational wave signal emitted by inspiralling and coalescing binary black holes. We work within the effective-one-body (EOB) framework and propose a methodology for improving the current (waveform) implementations of this framework based on understanding, element by element, the physics behind each feature of the waveform and on systematically comparing various EOB-based waveforms with exact waveforms obtained by numerical relativity approaches. The present paper focuses on small-mass-ratio nonspinning binary systems, which can be conveniently studied by Regge-Wheeler-Zerilli-type methods. Our results include (i) a resummed, 3 PN-accurate description of the inspiral waveform, (ii) a better description of radiation reaction during the plunge, (iii) a refined analytic expression for the plunge waveform, (iv) an improved treatment of the matching between the plunge and ring-down waveforms. This improved implementation of the EOB approach allows us to construct complete analytic waveforms which exhibit a remarkable agreement with the exact ones in modulus, frequency, and phase. In particular, the analytic and numerical waveforms stay in phase, during the whole process, within ±1.1% of a cycle. We expect that the extension of our methodology to the comparable-mass case will be able to generate comparably accurate analytic waveforms of direct use for the ground-based network of interferometric detectors of gravitational waves

  8. NASA Observatory Confirms Black Hole Limits

    Science.gov (United States)

    2005-02-01

    The very largest black holes reach a certain point and then grow no more, according to the best survey to date of black holes made with NASA's Chandra X-ray Observatory. Scientists have also discovered many previously hidden black holes that are well below their weight limit. These new results corroborate recent theoretical work about how black holes and galaxies grow. The biggest black holes, those with at least 100 million times the mass of the Sun, ate voraciously during the early Universe. Nearly all of them ran out of 'food' billions of years ago and went onto a forced starvation diet. Focus on Black Holes in the Chandra Deep Field North Focus on Black Holes in the Chandra Deep Field North On the other hand, black holes between about 10 and 100 million solar masses followed a more controlled eating plan. Because they took smaller portions of their meals of gas and dust, they continue growing today. "Our data show that some supermassive black holes seem to binge, while others prefer to graze", said Amy Barger of the University of Wisconsin in Madison and the University of Hawaii, lead author of the paper describing the results in the latest issue of The Astronomical Journal (Feb 2005). "We now understand better than ever before how supermassive black holes grow." One revelation is that there is a strong connection between the growth of black holes and the birth of stars. Previously, astronomers had done careful studies of the birthrate of stars in galaxies, but didn't know as much about the black holes at their centers. DSS Optical Image of Lockman Hole DSS Optical Image of Lockman Hole "These galaxies lose material into their central black holes at the same time that they make their stars," said Barger. "So whatever mechanism governs star formation in galaxies also governs black hole growth." Astronomers have made an accurate census of both the biggest, active black holes in the distance, and the relatively smaller, calmer ones closer by. Now, for the first

  9. THE BLACK HOLE FORMATION PROBABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D., E-mail: dclausen@tapir.caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, Mailcode 350-17, Pasadena, CA 91125 (United States)

    2015-02-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P {sub BH}(M {sub ZAMS}). Although we find that it is difficult to derive a unique P {sub BH}(M {sub ZAMS}) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P {sub BH}(M {sub ZAMS}) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P {sub BH}(M {sub ZAMS}) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  10. THE BLACK HOLE FORMATION PROBABILITY

    International Nuclear Information System (INIS)

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D.

    2015-01-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P BH (M ZAMS ). Although we find that it is difficult to derive a unique P BH (M ZAMS ) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P BH (M ZAMS ) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P BH (M ZAMS ) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment

  11. The Black Hole Formation Probability

    Science.gov (United States)

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D.

    2015-02-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P BH(M ZAMS). Although we find that it is difficult to derive a unique P BH(M ZAMS) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P BH(M ZAMS) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P BH(M ZAMS) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  12. Flip-flopping binary black holes.

    Science.gov (United States)

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  13. Super-horizon primordial black holes

    International Nuclear Information System (INIS)

    Harada, Tomohiro; Carr, B.J.

    2005-01-01

    We discuss a new class of solutions to the Einstein equations which describe a primordial black hole (PBH) in a flat Friedmann background. Such solutions arise if a Schwarzschild black hole is patched onto a Friedmann background via a transition region. They are possible providing the black hole event horizon is larger than the cosmological apparent horizon. Such solutions have a number of strange features. In particular, one has to define the black hole and cosmological horizons carefully and one then finds that the mass contained within the black hole event horizon decreases when the black hole is larger than the Friedmann cosmological apparent horizon, although its area always increases. These solutions involve two distinct future null infinities and are interpreted as the conversion of a white hole into a black hole. Although such solutions may not form from gravitational collapse in the same way as standard PBHs, there is nothing unphysical about them, since all energy and causality conditions are satisfied. Their conformal diagram is a natural amalgamation of the Kruskal diagram for the extended Schwarzschild solution and the conformal diagram for a black hole in a flat Friedmann background. In this paper, such solutions are obtained numerically for a spherically symmetric universe containing a massless scalar field, but it is likely that they exist for more general matter fields and less symmetric systems

  14. Charged black holes with scalar hair

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhong-Ying; Lü, H. [Center for Advanced Quantum Studies, Department of Physics,Beijing Normal University, Beijing 100875 (China)

    2015-09-10

    We consider a class of Einstein-Maxwell-Dilaton theories, in which the dilaton coupling to the Maxwell field is not the usual single exponential function, but one with a stationary point. The theories admit two charged black holes: one is the Reissner-Nordstrøm (RN) black hole and the other has a varying dilaton. For a given charge, the new black hole in the extremal limit has the same AdS{sub 2}×Sphere near-horizon geometry as the RN black hole, but it carries larger mass. We then introduce some scalar potentials and obtain exact charged AdS black holes. We also generalize the results to black p-branes with scalar hair.

  15. Gauge theory description of D-brane black holes: emergence of the effective SCFT and Hawking radiation

    International Nuclear Information System (INIS)

    Hassan, S.F.; Wadia, S.R.

    1998-02-01

    We study the hypermultiplet moduli space of an N=4, U(Q 1 ) x U(Q 5 ) gauge theory in 1 + 1 dimensions to extract the effective SCFT description of near extremal 5-dimensional black holes modelled by a collection D1- and D5-branes. On the moduli space, excitations with fractional momenta arise due to a residual discrete gauge invariance. It is argued that, in the infra-red, the lowest energy excitations are described by an effective c = 6, N = 4 SCFT on T 4 , also valid in the large black hole regime. The ''effective string tension'' is obtained using T-duality covariance. While at the microscopic level, minimal scalars do not couple to (1,5) strings, in the effective theory a coupling is induced by (1,1) and (5,5) strings, leading to Hawking radiation. These considerations imply that, at least for such black holes, the calculation of the Hawking decay rate for minimal scalars has a sound foundation in string theory and statistical mechanics and, hence, there is no information loss. (author)

  16. Timelike geodesics around a charged spherically symmetric dilaton black hole

    Directory of Open Access Journals (Sweden)

    Blaga C.

    2015-01-01

    Full Text Available In this paper we study the timelike geodesics around a spherically symmetric charged dilaton black hole. The trajectories around the black hole are classified using the effective potential of a free test particle. This qualitative approach enables us to determine the type of orbit described by test particle without solving the equations of motion, if the parameters of the black hole and the particle are known. The connections between these parameters and the type of orbit described by the particle are obtained. To visualize the orbits we solve numerically the equation of motion for different values of parameters envolved in our analysis. The effective potential of a free test particle looks different for a non-extremal and an extremal black hole, therefore we have examined separately these two types of black holes.

  17. Spacetime and orbits of bumpy black holes

    International Nuclear Information System (INIS)

    Vigeland, Sarah J.; Hughes, Scott A.

    2010-01-01

    Our Universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure that general relativity demands. As a means of formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced ''bumpy black holes'': objects that are almost, but not quite, general relativity's black holes. The spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing to black holes when the deviation is zero. In this paper, we extend this work in two ways. First, we show how to introduce bumps which are smoother and lead to better behaved orbits than those in the original presentation. Second, we show how to make bumpy Kerr black holes--objects which reduce to the Kerr solution when the deviation goes to zero. This greatly extends the astrophysical applicability of bumpy black holes. Using Hamilton-Jacobi techniques, we show how a spacetime's bumps are imprinted on orbital frequencies, and thus can be determined by measurements which coherently track the orbital phase of a small orbiting body. We find that in the weak field, orbits of bumpy black holes are modified exactly as expected from a Newtonian analysis of a body with a prescribed multipolar structure, reproducing well-known results from the celestial mechanics literature. The impact of bumps on strong-field orbits is many times greater than would be predicted from a Newtonian analysis, suggesting that this framework will allow observations to set robust limits on the extent to which a spacetime's multipoles deviate from the black hole expectation.

  18. Black Hole Information Problem and Wave Bursts

    Science.gov (United States)

    Gogberashvili, Merab; Pantskhava, Lasha

    2018-06-01

    By reexamination of the boundary conditions of wave equation on a black hole horizon it is found not harmonic, but real-valued exponentially time-dependent solutions. This means that quantum particles probably do not cross the Schwarzschild horizon, but are absorbed and some are reflected by it, what potentially can solve the famous black hole information paradox. To study this strong gravitational lensing we are introducing an effective negative cosmological constant between the Schwarzschild and photon spheres. It is shown that the reflected particles can obtain their additional energy in this effective AdS space and could explain properties of some unusually strong signals, like LIGO events, gamma ray and fast radio bursts.

  19. Astrophysical black holes in screened modified gravity

    International Nuclear Information System (INIS)

    Davis, Anne-Christine; Jha, Rahul; Muir, Jessica; Gregory, Ruth

    2014-01-01

    Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. An order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect

  20. Astrophysical black holes in screened modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Anne-Christine; Jha, Rahul; Muir, Jessica [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Gregory, Ruth, E-mail: acd@damtp.cam.ac.uk, E-mail: r.a.w.gregory@durham.ac.uk, E-mail: r.jha@damtp.cam.ac.uk, E-mail: jlmuir@umich.edu [Centre for Particle Theory, South Road, Durham, DH1 3LE (United Kingdom)

    2014-08-01

    Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. An order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect.

  1. Black-hole universe: time evolution.

    Science.gov (United States)

    Yoo, Chul-Moon; Okawa, Hirotada; Nakao, Ken-ichi

    2013-10-18

    Time evolution of a black hole lattice toy model universe is simulated. The vacuum Einstein equations in a cubic box with a black hole at the origin are numerically solved with periodic boundary conditions on all pairs of faces opposite to each other. Defining effective scale factors by using the area of a surface and the length of an edge of the cubic box, we compare them with that in the Einstein-de Sitter universe. It is found that the behavior of the effective scale factors is well approximated by that in the Einstein-de Sitter universe. In our model, if the box size is sufficiently larger than the horizon radius, local inhomogeneities do not significantly affect the global expansion law of the Universe even though the inhomogeneity is extremely nonlinear.

  2. Exploring Jets from a Supermassive Black Hole

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    What are the feeding and burping habits of the supermassive black holes peppering the universe? In a new study, observations of one such monster reveal more about the behavior of its powerful jets.Beams from BehemothsAcross the universe, supermassive black holes of millions to billions of solar masses lie at the centers of galaxies, gobbling up surrounding material. But not all of the gas and dust that spirals in toward a black hole is ultimately swallowed! A large fraction of it can instead be flung out into space again, in the form of enormous, powerful jets that extend for thousands or even millions of light-years in opposite directions.M87, shown in this Hubble image, is a classic example of a nearby (55 million light-years distant) supermassive black hole with a visible, collimated jet. Its counter-jet isnt seen because relativistic effects make the receding jet appear less bright. [The Hubble Heritage Team (STScI/AURA) and NASA/ESA]What causes these outflows to be tightly beamed collimated in the form of jets, rather than sprayed out in all directions? Does the pressure of the ambient medium the surrounding gas and dust that the jet is injected into play an important role? In what regions do these jets accelerate and decelerate? There are many open questions that scientists hope to understand by studying some of the active black holes with jets that live closest to us.Eyes on a Nearby GiantIn a new study led by Satomi Nakahara (The Graduate University for Advanced Studies in Japan), a team of scientists has used multifrequency Very Long Baseline Array (VLBA) and Very Long Array (VLA) images to explore jets emitted from a galaxy just 100 million light-years away: NGC 4261.This galaxys (relatively) close distance as well as the fact that were viewing it largely from the side, so we can clearly see both of its polar jets allows us to observe in detail the structure and intensity of its jets as a function of their distance from the black hole. Nakahara and

  3. Hawking effect and quantum nonthermal radiation of an arbitrarily accelerating charged black hole using a new tortoise coordinate transformation

    International Nuclear Information System (INIS)

    Pan Wei-Zhen; Yang Xue-Jun; Xie Zhi-Kun

    2011-01-01

    Using a new tortoise coordinate transformation, this paper investigates the Hawking effect from an arbitrarily accelerating charged black hole by the improved Damour—Ruffini method. After the tortoise coordinate transformation, the Klein—Gordon equation can be written as the standard form at the event horizon. Then extending the outgoing wave from outside to inside of the horizon analytically, the surface gravity and Hawking temperature can be obtained automatically. It is found that the Hawking temperatures of different points on the surface are different. The quantum nonthermal radiation characteristics of a black hole near the event horizon is also discussed by studying the Hamilton—Jacobi equation in curved spacetime and the maximum overlap of the positive and negative energy levels near the event horizon is given. There is a dimensional problem in the standard tortoise coordinate and the present results may be more reasonable. (geophysics, astronomy, and astrophysics)

  4. Horizons of description: Black holes and complementarity

    Science.gov (United States)

    Bokulich, Peter Joshua Martin

    Niels Bohr famously argued that a consistent understanding of quantum mechanics requires a new epistemic framework, which he named complementarity . This position asserts that even in the context of quantum theory, classical concepts must be used to understand and communicate measurement results. The apparent conflict between certain classical descriptions is avoided by recognizing that their application now crucially depends on the measurement context. Recently it has been argued that a new form of complementarity can provide a solution to the so-called information loss paradox. Stephen Hawking argues that the evolution of black holes cannot be described by standard unitary quantum evolution, because such evolution always preserves information, while the evaporation of a black hole will imply that any information that fell into it is irrevocably lost---hence a "paradox." Some researchers in quantum gravity have argued that this paradox can be resolved if one interprets certain seemingly incompatible descriptions of events around black holes as instead being complementary. In this dissertation I assess the extent to which this black hole complementarity can be undergirded by Bohr's account of the limitations of classical concepts. I begin by offering an interpretation of Bohr's complementarity and the role that it plays in his philosophy of quantum theory. After clarifying the nature of classical concepts, I offer an account of the limitations these concepts face, and argue that Bohr's appeal to disturbance is best understood as referring to these conceptual limits. Following preparatory chapters on issues in quantum field theory and black hole mechanics, I offer an analysis of the information loss paradox and various responses to it. I consider the three most prominent accounts of black hole complementarity and argue that they fail to offer sufficient justification for the proposed incompatibility between descriptions. The lesson that emerges from this

  5. Black hole state evolution, final state and Hawking radiation

    International Nuclear Information System (INIS)

    Ahn, D

    2012-01-01

    The effect of a black hole state evolution on the Hawking radiation is studied using the final state boundary condition. It is found that the thermodynamic or statistical mechanical properties of a black hole depend strongly on the unitary evolution operator S, which determines the black hole state evolution. When the operator S is random unitary or pseudo-random unitary, a black hole emits thermal radiation as predicted by Hawking three decades ago. In particular, when the black hole mass of the final state vanishes, Hawking’s original result is retrieved. On the other hand, it is found that the emission of the Hawking radiation could be suppressed when the evolution of a black hole state is determined by the generator of the coherent state. Such a case can occur for some primordial black holes with Planck scale mass formed by primordial density fluctuations through the process of squeezing the zero-point quantum fluctuation of a scalar field. Those primordial black holes can survive until the present time and can contribute to cold dark matter. (paper)

  6. Cosmic censorship conjecture in Kerr-Sen black hole

    Science.gov (United States)

    Gwak, Bogeun

    2017-06-01

    The validity of the cosmic censorship conjecture for the Kerr-Sen black hole, which is a solution to the low-energy effective field theory for four-dimensional heterotic string theory, is investigated using charged particle absorption. When the black hole absorbs the particle, the charge on it changes owing to the conserved quantities of the particle. Changes in the black hole are constrained to the equation for the motion of the particle and are consistent with the laws of thermodynamics. Particle absorption increases the mass of the Kerr-Sen black hole to more than that of the absorbed charges such as angular momentum and electric charge; hence, the black hole cannot be overcharged. In the near-extremal black hole, we observe a violation of the cosmic censorship conjecture for the angular momentum in the first order of expansion and the electric charge in the second order. However, considering an adiabatic process carrying the conserved quantities as those of the black hole, we prove the stability of the black hole horizon. Thus, we resolve the violation. This is consistent with the third law of thermodynamics.

  7. Quantum Statistical Entropy of Five-Dimensional Black Hole

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ren; WU Yue-Qin; ZHANG Sheng-Li

    2006-01-01

    The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole.By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.

  8. Black Hole Kicks as New Gravitational Wave Observables.

    Science.gov (United States)

    Gerosa, Davide; Moore, Christopher J

    2016-07-01

    Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as ∼500  km s^{-1}, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy.

  9. Quantum Statistical Entropy of Five-Dimensional Black Hole

    International Nuclear Information System (INIS)

    Zhao Ren; Zhang Shengli; Wu Yueqin

    2006-01-01

    The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.

  10. Black holes are neither particle accelerators nor dark matter probes.

    Science.gov (United States)

    McWilliams, Sean T

    2013-01-04

    It has been suggested that maximally spinning black holes can serve as particle accelerators, reaching arbitrarily high center-of-mass energies. Despite several objections regarding the practical achievability of such high energies, and demonstrations past and present that such large energies could never reach a distant observer, interest in this problem has remained substantial. We show that, unfortunately, a maximally spinning black hole can never serve as a probe of high energy collisions, even in principle and despite the correctness of the original diverging energy calculation. Black holes can indeed facilitate dark matter annihilation, but the most energetic photons can carry little more than the rest energy of the dark matter particles to a distant observer, and those photons are actually generated relatively far from the black hole where relativistic effects are negligible. Therefore, any strong gravitational potential could probe dark matter equally well, and an appeal to black holes for facilitating such collisions is unnecessary.

  11. Quantum loop corrections of a charged de Sitter black hole

    Science.gov (United States)

    Naji, J.

    2018-03-01

    A charged black hole in de Sitter (dS) space is considered and logarithmic corrected entropy used to study its thermodynamics. Logarithmic corrections of entropy come from thermal fluctuations, which play a role of quantum loop correction. In that case we are able to study the effect of quantum loop on black hole thermodynamics and statistics. As a black hole is a gravitational object, it helps to obtain some information about the quantum gravity. The first and second laws of thermodynamics are investigated for the logarithmic corrected case and we find that it is only valid for the charged dS black hole. We show that the black hole phase transition disappears in the presence of logarithmic correction.

  12. BHDD: Primordial black hole binaries code

    Science.gov (United States)

    Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco

    2018-06-01

    BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.

  13. Black Hole Interior in Quantum Gravity.

    Science.gov (United States)

    Nomura, Yasunori; Sanches, Fabio; Weinberg, Sean J

    2015-05-22

    We discuss the interior of a black hole in quantum gravity, in which black holes form and evaporate unitarily. The interior spacetime appears in the sense of complementarity because of special features revealed by the microscopic degrees of freedom when viewed from a semiclassical standpoint. The relation between quantum mechanics and the equivalence principle is subtle, but they are still consistent.

  14. ATLAS: Black hole production and decay

    CERN Multimedia

    2004-01-01

    This track is an example of simulated data modelled for the ATLAS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. These tracks would be produced if a miniature black hole was produced in the proton-proton collision. Such a small black hole would decay instantly to various particles via a process known as Hawking radiation.

  15. Do stringy corrections stabilize colored black holes?

    International Nuclear Information System (INIS)

    Kanti, P.; Winstanley, E.

    2000-01-01

    We consider hairy black hole solutions of Einstein-Yang-Mills-dilaton theory, coupled to a Gauss-Bonnet curvature term, and we study their stability under small, spacetime-dependent perturbations. We demonstrate that stringy corrections do not remove the sphaleronic instabilities of colored black holes with the number of unstable modes being equal to the number of nodes of the background gauge function. In the gravitational sector and in the limit of an infinitely large horizon, colored black holes are also found to be unstable. Similar behavior is exhibited by magnetically charged black holes while the bulk of neutral black holes are proved to be stable under small, gauge-dependent perturbations. Finally, electrically charged black holes are found to be characterized only by the existence of a gravitational sector of perturbations. As in the case of neutral black holes, we demonstrate that for the bulk of electrically charged black holes no unstable modes arise in this sector. (c) 2000 The American Physical Society

  16. Gravitational lensing by a regular black hole

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F; Sendra, Carlos M

    2011-01-01

    In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.

  17. Gravitational lensing by a regular black hole

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F; Sendra, Carlos M, E-mail: eiroa@iafe.uba.ar, E-mail: cmsendra@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, CC 67, Suc. 28, 1428, Buenos Aires (Argentina)

    2011-04-21

    In this paper, we study a regular Bardeen black hole as a gravitational lens. We find the strong deflection limit for the deflection angle, from which we obtain the positions and magnifications of the relativistic images. As an example, we apply the results to the particular case of the supermassive black hole at the center of our galaxy.

  18. Partition functions for supersymmetric black holes

    NARCIS (Netherlands)

    Manschot, J.

    2008-01-01

    This thesis presents a number of results on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view. Such a microscopic explanation was desired after the association of a

  19. Quantum aspects of black hole entropy

    Indian Academy of Sciences (India)

    Four dimensional supersymmetric extremal black holes in string-based ... elements in the construction of black holes are our concepts of space and time. They are, thus, almost by definition, the most perfect macroscopic objects there are in ... Appealing to the Cardy formula for the asymptotic degeneracy of these states, one.

  20. Primordial braneworld black holes: significant enhancement of ...

    Indian Academy of Sciences (India)

    Abstract. The Randall-Sundrum (RS-II) braneworld cosmological model with a frac- tion of the total energy density in primordial black holes is considered. Due to their 5d geometry, these black holes undergo modified Hawking evaporation. It is shown that dur- ing the high-energy regime, accretion from the surrounding ...

  1. Black Hole Dynamic Potentials Koustubh Ajit Kabe

    Indian Academy of Sciences (India)

    Abstract. In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynam- ics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics.

  2. Black holes and the weak cosmic censorship

    International Nuclear Information System (INIS)

    Krolak, A.

    1984-01-01

    A theory of black holes is developed under the assumption of the weak cosmic censorship. It includes Hawking's theory of black holes in the future asymptotically predictable space-times as a special case but it also applies to the cosmological situations including models with nonzero cosmological constant of both signs. (author)

  3. Black holes and the strong cosmic censorship

    International Nuclear Information System (INIS)

    Krolak, A.

    1984-01-01

    The theory of black holes developed by Hawking in asymptotically flat space-times is generalized so that black holes in the cosmological situations are included. It is assumed that the strong version of the Penrose cosmic censorship hypothesis holds. (author)

  4. Black Hole Entanglement and Quantum Error Correction

    NARCIS (Netherlands)

    Verlinde, E.; Verlinde, H.

    2013-01-01

    It was recently argued in [1] that black hole complementarity strains the basic rules of quantum information theory, such as monogamy of entanglement. Motivated by this argument, we develop a practical framework for describing black hole evaporation via unitary time evolution, based on a holographic

  5. Holographic Lovelock gravities and black holes

    NARCIS (Netherlands)

    de Boer, J.; Kulaxizi, M.; Parnachev, A.

    2010-01-01

    We study holographic implications of Lovelock gravities in AdS spacetimes. For a generic Lovelock gravity in arbitrary spacetime dimensions we formulate the existence condition of asymptotically AdS black holes. We consider small fluctuations around these black holes and determine the constraint on

  6. FEASTING BLACK HOLE BLOWS BUBBLES

    Science.gov (United States)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  7. D0-branes in black hole attractors

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Simons, Aaron; Strominger, Andrew; Yin Xi

    2006-01-01

    Configurations of N probe D0-branes in a Calabi-Yau black hole are studied. A large degeneracy of near-horizon bound states are found which can be described as lowest Landau levels tiling the horizon of the black hole. These states preserve some of the enhanced supersymmetry of the near-horizon AdS 2 x S 2 x CY 3 attractor geometry, but not of the full asymptotically flat solution. Supersymmetric non-abelian configurations are constructed which, via the Myers effect, develop charges associated with higher-dimensional branes wrapping CY 3 cycles. An SU(1,1/2) superconformal quantum mechanics describing D0-branes in the attractor geometry is explicitly constructed

  8. STU black holes and string triality

    International Nuclear Information System (INIS)

    Behrndt, K.; Kallosh, R.; Rahmfeld, J.; Shmakova, M.; Wong, W.K.

    1996-01-01

    We find double-extreme black holes associated with the special geometry of the Calabi-Yau moduli space with the prepotential F=STU. The area formula is STU-moduli independent and has [SL(2,Z)] 3 symmetry in space of charges. The dual version of this theory without a prepotential treats the dilaton S asymmetric vs T,U moduli. We display the dual relation between new (STU) black holes and stringy (S|TU) black holes using a particular Sp(8,Z) transformation. The area formula of one theory equals that of the dual theory when expressed in terms of dual charges. We analyze the relation between (STU) black holes to string triality of black holes: (S|TU), (T|US), (U|ST) solutions. In the democratic STU-symmetric version we find that all three S, T, and U duality symmetries are nonperturbative and mix electric and magnetic charges. copyright 1996 The American Physical Society

  9. Magnetized black holes and nonlinear electrodynamics

    Science.gov (United States)

    Kruglov, S. I.

    2017-08-01

    A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.

  10. Mass formula for quasi-black holes

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2008-01-01

    A quasi-black hole, either nonextremal or extremal, can be broadly defined as the limiting configuration of a body when its boundary approaches the body's quasihorizon. We consider the mass contributions and the mass formula for a static quasi-black hole. The analysis involves careful scrutiny of the surface stresses when the limiting configuration is reached. It is shown that there exists a strict correspondence between the mass formulas for quasi-black holes and pure black holes. This perfect parallelism exists in spite of the difference in derivation and meaning of the formulas in both cases. For extremal quasi-black holes the finite surface stresses give zero contribution to the total mass. This leads to a very special version of Abraham-Lorentz electron in general relativity in which the total mass has pure electromagnetic origin in spite of the presence of bare stresses.

  11. STU Black Holes and String Triality

    Energy Technology Data Exchange (ETDEWEB)

    Shmakova, Marina

    2003-05-23

    We found double-extreme black holes associated with the special geometry of the Calabi-Yau moduli space with the prepotential F = STU. The area formula is STU-moduli independent and has [SL(2, Z)]{sup 3} symmetry in space of charges. The dual version of this theory without prepotential treats the dilaton S asymmetric versus T,U-moduli. We display the dual relation between new (STU) black holes and stringy (S|TU) black holes using particular Sp(8,Z) transformation. The area formula of one theory equals the area formula of the dual theory when expressed in terms of dual charges. We analyze the relation between (STU) black holes to string triality of black holes: (S|TU), (T|US), (U|ST) solutions. In democratic STU-symmetric version we find that all three S and T and U duality symmetries are non-perturbative and mix electric and magnetic charges.

  12. Black hole thermodynamics with conical defects

    Energy Technology Data Exchange (ETDEWEB)

    Appels, Michael [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute,31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada); Kubiznák, David [Perimeter Institute,31 Caroline Street North, Waterloo, ON, N2L 2Y5 (Canada)

    2017-05-22

    Recently we have shown https://www.doi.org/10.1103/PhysRevLett.117.131303 how to formulate a thermodynamic first law for a single (charged) accelerated black hole in AdS space by fixing the conical deficit angles present in the spacetime. Here we show how to generalise this result, formulating thermodynamics for black holes with varying conical deficits. We derive a new potential for the varying tension defects: the thermodynamic length, both for accelerating and static black holes. We discuss possible physical processes in which the tension of a string ending on a black hole might vary, and also map out the thermodynamic phase space of accelerating black holes and explore their critical phenomena.

  13. Magnetic charge, black holes, and cosmic censorship

    International Nuclear Information System (INIS)

    Hiscock, W.H.

    1981-01-01

    The possibility of converting a Reissner-Nordstroem black hole into a naked singularity by means of test particle accretion is considered. The dually charged Reissner-Nordstroem metric describes a black hole only when M 2 >Q 2 +P 2 . The test particle equations of motion are shown to allow test particles with arbitrarily large magnetic charge/mass ratios to fall radially into electrically charged black holes. To determine the nature of the final state (black hole or naked singularity) an exact solution of Einstein's equations representing a spherical shell of magnetically charged dust falling into an electrically charged black hole is studied. Naked singularities are never formed so long as the weak energy condition is obeyed by the infalling matter. The differences between the spherical shell model and an infalling point test particle are examined and discussed

  14. Thin accretion disk around regular black hole

    Directory of Open Access Journals (Sweden)

    QIU Tianqi

    2014-08-01

    Full Text Available The Penrose′s cosmic censorship conjecture says that naked singularities do not exist in nature.So,it seems reasonable to further conjecture that not even a singularity exists in nature.In this paper,a regular black hole without singularity is studied in detail,especially on its thin accretion disk,energy flux,radiation temperature and accretion efficiency.It is found that the interaction of regular black hole is stronger than that of the Schwarzschild black hole. Furthermore,the thin accretion will be more efficiency to lost energy while the mass of black hole decreased. These particular properties may be used to distinguish between black holes.

  15. Dual jets from binary black holes.

    Science.gov (United States)

    Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L

    2010-08-20

    The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.

  16. Magnetohydrodynamic Simulations of Black Hole Accretion

    Science.gov (United States)

    Avara, Mark J.

    Black holes embody one of the few, simple, solutions to the Einstein field equations that describe our modern understanding of gravitation. In isolation they are small, dark, and elusive. However, when a gas cloud or star wanders too close, they light up our universe in a way no other cosmic object can. The processes of magnetohydrodynamics which describe the accretion inflow and outflows of plasma around black holes are highly coupled and nonlinear and so require numerical experiments for elucidation. These processes are at the heart of astrophysics since black holes, once they somehow reach super-massive status, influence the evolution of the largest structures in the universe. It has been my goal, with the body of work comprising this thesis, to explore the ways in which the influence of black holes on their surroundings differs from the predictions of standard accretion models. I have especially focused on how magnetization of the greater black hole environment can impact accretion systems.

  17. Black Holes and Gravitational Properties of Antimatter

    CERN Document Server

    Hajdukovic, D

    2006-01-01

    We speculate about impact of antigravity (i.e. gravitational repulsion between matter and antimatter) on the creation and emission of particles by a black hole. If antigravity is present a black hole made of matter may radiate particles as a black body, but this shouldn't be true for antiparticles. It may lead to radical change of radiation process predicted by Hawking and should be taken into account in preparation of the attempt to create and study mini black holes at CERN. Gravity, including antigravity is more than ever similar to electrodynamics and such similarity with a successfully quantized interaction may help in quantization of gravity.

  18. Revealing Black Holes with Gaia

    Science.gov (United States)

    Breivik, Katelyn; Chatterjee, Sourav; Larson, Shane L.

    2017-11-01

    We estimate the population of black holes with luminous stellar companions (BH-LCs) in the Milky Way (MW) observable by Gaia. We evolve a realistic distribution of BH-LC progenitors from zero-age to the current epoch taking into account relevant physics, including binary stellar evolution, BH-formation physics, and star formation rate, in order to estimate the BH-LC population in the MW today. We predict that Gaia will discover between 3800 and 12,000 BH-LCs by the end of its 5 {years} mission, depending on BH natal kick strength and observability constraints. We find that the overall yield, and distributions of eccentricities and masses of observed BH-LCs, can provide important constraints on the strength of BH natal kicks. Gaia-detected BH-LCs are expected to have very different orbital properties compared to those detectable via radio, X-ray, or gravitational-wave observations.

  19. On the outside of cold black holes

    International Nuclear Information System (INIS)

    Bicak, J.

    1978-01-01

    Some general features of the behaviour of fields and particles around extreme (or nearly extreme) black holes are outlined, with emphasis on their simplicity. Simple solutions representing interacting electromagnetic and gravitational perturbations of an extreme Reissner-Nordstroem black hole are presented. The motion of the hole in an asymptotically uniform weak electric field is examined as an application and ''Newton's second law'' is thus explicitly verified for a geometrodynamical object. (author)

  20. Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect

    Science.gov (United States)

    Hoang, Bao-Minh; Naoz, Smadar; Kocsis, Bence; Rasio, Frederic A.; Dosopoulou, Fani

    2018-04-01

    Nuclear star clusters around a central massive black hole (MBH) are expected to be abundant in stellar black hole (BH) remnants and BH–BH binaries. These binaries form a hierarchical triple system with the central MBH, and gravitational perturbations from the MBH can cause high-eccentricity excitation in the BH–BH binary orbit. During this process, the eccentricity may approach unity, and the pericenter distance may become sufficiently small so that gravitational-wave emission drives the BH–BH binary to merge. In this work, we construct a simple proof-of-concept model for this process, and specifically, we study the eccentric Kozai–Lidov mechanism in unequal-mass, soft BH–BH binaries. Our model is based on a set of Monte Carlo simulations for BH–BH binaries in galactic nuclei, taking into account quadrupole- and octupole-level secular perturbations, general relativistic precession, and gravitational-wave emission. For a typical steady-state number of BH–BH binaries, our model predicts a total merger rate of ∼1–3 {Gpc} ‑3 {yr} ‑1, depending on the assumed density profile in the nucleus. Thus, our mechanism could potentially compete with other dynamical formation processes for merging BH–BH binaries, such as the interactions of stellar BHs in globular clusters or in nuclear star clusters without an MBH.

  1. Black Holes at the LHC: Progress since 2002

    International Nuclear Information System (INIS)

    Park, Seong Chan

    2008-01-01

    We review the recent noticeable progresses in black hole physics focusing on the up-coming super-collider, the LHC. We discuss the classical formation of black holes by particle collision, the greybody factors for higher dimensional rotating black holes, the deep implications of black hole physics to the 'energy-distance' relation, the security issues of the LHC associated with black hole formation and the newly developed Monte-Carlo generators for black hole events.

  2. Black hole as a wormhole factory

    Directory of Open Access Journals (Sweden)

    Sung-Won Kim

    2015-12-01

    Full Text Available There have been lots of debates about the final fate of an evaporating black hole and the singularity hidden by an event horizon in quantum gravity. However, on general grounds, one may argue that a black hole stops radiation at the Planck mass (ħc/G1/2∼10−5 g, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a wormhole-like structure, known as “spacetime foam”, due to large fluctuations below the Planck length (ħG/c31/2∼10−33 cm. In this paper, as an explicit example, we consider an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called “Black Wormhole”, consists of two different states, depending on its mass parameter M and an IR parameter ω: For the black hole state (with ωM2>1/2, a non-traversable wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state (with ωM2<1/2, the interior wormhole is exposed to an outside observer as the black hole horizon is disappearing from evaporation. The black hole state becomes thermodynamically stable as it approaches the merging point where the interior wormhole throat and the black hole horizon merges, and the Hawking temperature vanishes at the exact merge point (with ωM2=1/2. This solution suggests the “Generalized Cosmic Censorship” by the existence of a wormhole-like structure which protects the naked singularity even after the black hole evaporation. One could understand the would-be wormhole inside the black hole horizon as the result of microscopic wormholes created by “negative” energy quanta which have entered the black hole horizon in Hawking radiation process; the quantum black hole could be a wormhole factory! It is found that this speculative picture may be consistent with the

  3. Holographic probes of collapsing black holes

    International Nuclear Information System (INIS)

    Hubeny, Veronika E.; Maxfield, Henry

    2014-01-01

    We continue the programme of exploring the means of holographically decoding the geometry of spacetime inside a black hole using the gauge/gravity correspondence. To this end, we study the behaviour of certain extremal surfaces (focusing on those relevant for equal-time correlators and entanglement entropy in the dual CFT) in a dynamically evolving asymptotically AdS spacetime, specifically examining how deep such probes reach. To highlight the novel effects of putting the system far out of equilibrium and at finite volume, we consider spherically symmetric Vaidya-AdS, describing black hole formation by gravitational collapse of a null shell, which provides a convenient toy model of a quantum quench in the field theory. Extremal surfaces anchored on the boundary exhibit rather rich behaviour, whose features depend on dimension of both the spacetime and the surface, as well as on the anchoring region. The main common feature is that they reach inside the horizon even in the post-collapse part of the geometry. In 3-dimensional spacetime, we find that for sub-AdS-sized black holes, the entire spacetime is accessible by the restricted class of geodesics whereas in larger black holes a small region near the imploding shell cannot be reached by any boundary-anchored geodesic. In higher dimensions, the deepest reach is attained by geodesics which (despite being asymmetric) connect equal time and antipodal boundary points soon after the collapse; these can attain spacetime regions of arbitrarily high curvature and simultaneously have smallest length. Higher-dimensional surfaces can penetrate the horizon while anchored on the boundary at arbitrarily late times, but are bounded away from the singularity. We also study the details of length or area growth during thermalization. While the area of extremal surfaces increases monotonically, geodesic length is neither monotonic nor continuous

  4. Reinvestigation of moving punctured black holes with a new code

    International Nuclear Information System (INIS)

    Cao Zhoujian; Yo Hweijang; Yu Juiping

    2008-01-01

    We report on our code, in which the moving puncture method is applied and an adaptive/fixed mesh refinement is implemented, and on its preliminary performance on black hole simulations. Based on the Baumgarte-Sharpiro-Shibata-Nakamura (BSSN) formulation, up-to-date gauge conditions and the modifications of the formulation are also implemented and tested. In this work, we present our primary results about the simulation of a single static black hole, of a moving single black hole, and of the head-on collision of a binary black hole system. For the static punctured black hole simulations, different modifications of the BSSN formulation are applied. It is demonstrated that both the currently used sets of modifications lead to a stable evolution. For cases of a moving punctured black hole with or without spin, we search for viable gauge conditions and study the effect of spin on the black hole evolution. Our results confirm previous results obtained by other research groups. In addition, we find a new gauge condition, which has not yet been adopted by any other researchers, which can also give stable and accurate black hole evolution calculations. We examine the performance of the code for the head-on collision of a binary black hole system, and the agreement of the gravitational waveform it produces with that obtained in other works. In order to understand qualitatively the influence of matter on the binary black hole collisions, we also investigate the same head-on collision scenarios but perturbed by a scalar field. The numerical simulations performed with this code not only give stable and accurate results that are consistent with the works by other numerical relativity groups, but also lead to the discovery of a new viable gauge condition, as well as clarify some ambiguities in the modification of the BSSN formulation. These results demonstrate that this code is reliable and ready to be used in the study of more realistic astrophysical scenarios and of numerical

  5. Minidisks in Binary Black Hole Accretion

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Geoffrey; MacFadyen, Andrew, E-mail: gsr257@nyu.edu [Center for Cosmology and Particle Physics, Physics Department, New York University, New York, NY 10003 (United States)

    2017-02-01

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole (“minidisks”), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using 2D hydrodynamical simulations performed with a new general relativistic version of the moving-mesh code Disco. We introduce a comoving energy variable that enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the innermost stable circular orbit, providing a Reynolds stress that causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov–Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling. We find that the spiral shock structure is in agreement with the relativistic dispersion relation for tightly wound linear waves. We measure the shock-induced dissipation and find outward angular momentum transport corresponding to an effective alpha parameter of order 0.01. We perform ray-tracing image calculations from the simulations to produce theoretical minidisk spectra and viewing-angle-dependent images for comparison with observations.

  6. Energy and information near black hole horizons

    International Nuclear Information System (INIS)

    Freivogel, Ben

    2014-01-01

    The central challenge in trying to resolve the firewall paradox is to identify excitations in the near-horizon zone of a black hole that can carry information without injuring a freely falling observer. By analyzing the problem from the point of view of a freely falling observer, I arrive at a simple proposal for the degrees of freedom that carry information out of the black hole. An infalling observer experiences the information-carrying modes as ingoing, negative energy excitations of the quantum fields. In these states, freely falling observers who fall in from infinity do not encounter a firewall, but freely falling observers who begin their free fall from a location close to the horizon are ''frozen'' by a flux of negative energy. When the black hole is ''mined,'' the number of information-carrying modes increases, increasing the negative energy flux in the infalling frame without violating the equivalence principle. Finally, I point out a loophole in recent arguments that an infalling observer must detect a violation of unitarity, effective field theory, or free infall

  7. ENVIRONMENTAL EFFECTS ON THE GROWTH OF SUPERMASSIVE BLACK HOLES AND ACTIVE GALACTIC NUCLEUS FEEDBACK

    International Nuclear Information System (INIS)

    Shin, Min-Su; Ostriker, Jeremiah P.; Ciotti, Luca

    2012-01-01

    We investigate how environmental effects by gas stripping alter the growth of a supermassive black hole (SMBH) and its host galaxy evolution, by means of one-dimensional hydrodynamical simulations that include both mechanical and radiative active galactic nucleus (AGN) feedback effects. By changing the truncation radius of the gas distribution (R t ), beyond which gas stripping is assumed to be effective, we simulate possible environments for satellite and central galaxies in galaxy clusters and groups. The continuous escape of gas outside the truncation radius strongly suppresses star formation, while the growth of the SMBH is less affected by gas stripping because the SMBH accretion is primarily ruled by the density of the central region. As we allow for increasing environmental effects—the truncation radius decreasing from about 410 to 50 kpc—we find that the final SMBH mass declines from about 10 9 to 8 × 10 8 M ☉ , but the outflowing mass is roughly constant at about 2 × 10 10 M ☉ . There are larger changes in the mass of stars formed, which declines from about 2 × 10 10 to 2 × 10 9 M ☉ , and the final thermal X-ray gas, which declines from about 10 9 to 5 × 10 8 M ☉ , with increasing environmental stripping. Most dramatic is the decline in the total time that the objects would be seen as quasars, which declines from 52 Myr (for R t = 377 kpc) to 7.9 Myr (for R t = 51 kpc). The typical case might be interpreted as a red and dead galaxy having episodic cooling flows followed by AGN feedback effects resulting in temporary transitions of the overall galaxy color from red to green or to blue, with (cluster) central galaxies spending a much larger fraction of their time in the elevated state than do satellite galaxies. Our results imply that various scaling relations for elliptical galaxies, in particular, the mass ratio between the SMBH and its host galaxy, can have dispersions due to environmental effects such as gas stripping. In addition, the

  8. Notes on Phase Transition of Nonsingular Black Hole

    International Nuclear Information System (INIS)

    Ma Meng-Sen; Zhao Ren

    2015-01-01

    On the belief that a black hole is a thermodynamic system, we study the phase transition of nonsingular black holes. If the black hole entropy takes the form of the Bekenstein—Hawking area law, the black hole mass M is no longer the internal energy of the black hole thermodynamic system. Using the thermodynamic quantities, we calculate the heat capacity, thermodynamic curvature and free energy. It is shown that there will be a larger black hole/smaller black hole phase transition for the nonsingular black hole. At the critical point, the second-order phase transition appears. (paper)

  9. Instability of charged anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Gwak, Bogeun; Lee, Bum-Hoon; Ro, Daeho

    2016-01-01

    We have studied the instability of charged anti-de Sitter black holes in four- or higher-dimensions under fragmentation. The unstable black holes under fragmentation can be broken into two black holes. Instability depends not only on the mass and charge of the black hole but also on the ratio between the fragmented black hole and its predecessor. We have found that the near extremal black holes are unstable, and Schwarzschild-AdS black holes are stable. These are qualitatively similar to black holes in four dimensions and higher. The detailed instabilities are numerically investigated.

  10. Unveiling the edge of time black holes, white holes, wormholes

    CERN Document Server

    Gribbin, John

    1992-01-01

    Acclaimed science writer John Gribbin recounts dramatic stories that have led scientists to believe black holes and their more mysterious kin are not only real, but might actually provide a passage to other universes and travel through time.

  11. Extremal vacuum black holes in higher dimensions

    International Nuclear Information System (INIS)

    Figueras, Pau; Lucietti, James; Rangamani, Mukund; Kunduri, Hari K.

    2008-01-01

    We consider extremal black hole solutions to the vacuum Einstein equations in dimensions greater than five. We prove that the near-horizon geometry of any such black hole must possess an SO(2,1) symmetry in a special case where one has an enhanced rotational symmetry group. We construct examples of vacuum near-horizon geometries using the extremal Myers-Perry black holes and boosted Myers-Perry strings. The latter lead to near-horizon geometries of black ring topology, which in odd spacetime dimensions have the correct number of rotational symmetries to describe an asymptotically flat black object. We argue that a subset of these correspond to the near-horizon limit of asymptotically flat extremal black rings. Using this identification we provide a conjecture for the exact 'phase diagram' of extremal vacuum black rings with a connected horizon in odd spacetime dimensions greater than five.

  12. Rotating black holes at future colliders. III. Determination of black hole evolution

    International Nuclear Information System (INIS)

    Ida, Daisuke; Oda, Kin-ya; Park, Seong Chan

    2006-01-01

    TeV scale gravity scenario predicts that the black hole production dominates over all other interactions above the scale and that the Large Hadron Collider will be a black hole factory. Such higher-dimensional black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be computed from the greybody factor. Here we complete the series of our work by showing the greybody factors and the resultant spectra for the brane-localized spinor and vector field emissions for arbitrary frequencies. Combining these results with the previous works, we determine the complete radiation spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim that it is important to take into account the angular momentum of black holes

  13. LIGO Finds Lightest Black-Hole Binary

    Science.gov (United States)

    Kohler, Susanna

    2017-11-01

    Wednesdayevening the Laser Interferometer Gravitational-wave Observatory (LIGO) collaboration quietly mentioned that theyd found gravitational waves from yet another black-hole binary back in June. This casual announcement reveals what is so far the lightest pair of black holes weve watched merge opening the door for comparisons to the black holes weve detected by electromagnetic means.A Routine DetectionThe chirp signal of GW170608 detected by LIGO Hanford and LIGO Livingston. [LIGO collaboration 2017]After the fanfare of the previous four black-hole-binary merger announcements over the past year and a half as well as the announcement of the one neutron-star binary merger in August GW170608 marks our entry into the era in which gravitational-wave detections are officially routine.GW170608, a gravitational-wave signal from the merger of two black holes roughly a billion light-years away, was detected in June of this year. This detection occurred after wed already found gravitational waves from several black-hole binaries with the two LIGO detectors in the U.S., but before the Virgo interferometer came online in Europe and increased the joint ability of the detectors to localize sources.Mass estimates for the two components of GW170608 using different models. [LIGO collaboration 2017]Overall, GW170608 is fairly unremarkable: it was detected by both LIGO Hanford and LIGO Livingston some 7 ms apart, and the signal looks not unlike those of the previous LIGO detections. But because were still in the early days of gravitational-wave astronomy, every discovery is still remarkable in some way! GW170608 stands out as being the lightest pair of black holes weve yet to see merge, with component masses before the merger estimated at 12 and 7 times the mass of the Sun.Why Size MattersWith the exception of GW151226, the gravitational-wave signal discovered on Boxing Day last year, all of the black holes that have been discovered by LIGO/Virgo have been quite large: the masses

  14. Sizes of Black Holes Throughout the Universe

    Science.gov (United States)

    Kohler, Susanna

    2018-05-01

    What is the distribution of sizes of black holes in our universe? Can black holes of any mass exist, or are there gaps in their possible sizes? The shape of this black-hole mass function has been debated for decades and the dawn of gravitational-wave astronomy has only spurred further questions.Mind the GapsThe starting point for the black-hole mass function lies in the initial mass function (IMF) for stellar black holes the beginning size distribution of black holes after they are born from stars. Instead of allowing for the formation of stellar black holes of any mass, theoretical models propose two gaps in the black-hole IMF:An upper mass gap at 50130 solar masses, due to the fact that stellar progenitors of black holes in this mass range are destroyed by pair-instability supernovae.A lower mass gap below 5 solar masses, which is argued to arise naturally from the mechanics of supernova explosions.Missing black-hole (BH) formation channels due to the existence of the lower gap (LG) and the upper gap (UG) in the initial mass function. a) The number of BHs at all scales are lowered because no BH can merge with BHs in the LG to form a larger BH. b) The missing channel responsible for the break at 10 solar masses, resulting from the LG. c) The missing channel responsible for the break at 60 solar masses, due to the interaction between the LG and the UG. [Christian et al. 2018]We can estimate the IMF for black holes by scaling a typical IMF for stars and then adding in these theorized gaps. But is this initial distribution of black-hole masses the same as the distribution that we observe in the universe today?The Influence of MergersBased on recent events, the answer appears to be no! Since the first detections of gravitational waves in September 2015, we now know that black holes can merge to form bigger black holes. An initial distribution of black-hole masses must therefore evolve over time, as mergers cause the depletion of low-mass black holes and an increase in

  15. Black hole formation in a contracting universe

    International Nuclear Information System (INIS)

    Quintin, Jerome; Brandenberger, Robert H.

    2016-01-01

    We study the evolution of cosmological perturbations in a contracting universe. We aim to determine under which conditions density perturbations grow to form large inhomogeneities and collapse into black holes. Our method consists in solving the cosmological perturbation equations in complete generality for a hydrodynamical fluid. We then describe the evolution of the fluctuations over the different length scales of interest and as a function of the equation of state for the fluid, and we explore two different types of initial conditions: quantum vacuum and thermal fluctuations. We also derive a general requirement for black hole collapse on sub-Hubble scales, and we use the Press-Schechter formalism to describe the black hole formation probability. For a fluid with a small sound speed (e.g., dust), we find that both quantum and thermal initial fluctuations grow in a contracting universe, and the largest inhomogeneities that first collapse into black holes are of Hubble size and the collapse occurs well before reaching the Planck scale. For a radiation-dominated fluid, we find that no black hole can form before reaching the Planck scale. In the context of matter bounce cosmology, it thus appears that only models in which a radiation-dominated era begins early in the cosmological evolution are robust against the formation of black holes. Yet, the formation of black holes might be an interesting feature for other models. We comment on a number of possible alternative early universe scenarios that could take advantage of this feature.

  16. Discrete quantum spectrum of black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lochan, Kinjalk, E-mail: kinjalk@iucaa.in; Chakraborty, Sumanta, E-mail: sumanta@iucaa.in

    2016-04-10

    The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos–Lovelock to f(R) gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.

  17. Particle creation rate for dynamical black holes

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjaee, Javad T. [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); University of Oxford, Department of Physics (Astrophysics), Oxford (United Kingdom); Ellis, George F.R. [University of Cape Town, Mathematics and Applied Mathematics Department, Rondebosch (South Africa)

    2016-11-15

    We present the particle creation probability rate around a general black hole as an outcome of quantum fluctuations. Using the uncertainty principle for these fluctuation, we derive a new ultraviolet frequency cutoff for the radiation spectrum of a dynamical black hole. Using this frequency cutoff, we define the probability creation rate function for such black holes. We consider a dynamical Vaidya model and calculate the probability creation rate for this case when its horizon is in a slowly evolving phase. Our results show that one can expect the usual Hawking radiation emission process in the case of a dynamical black hole when it has a slowly evolving horizon. Moreover, calculating the probability rate for a dynamical black hole gives a measure of when Hawking radiation can be killed off by an incoming flux of matter or radiation. Our result strictly suggests that we have to revise the Hawking radiation expectation for primordial black holes that have grown substantially since they were created in the early universe. We also infer that this frequency cut off can be a parameter that shows the primordial black hole growth at the emission moment. (orig.)

  18. Black hole formation in a contracting universe

    Energy Technology Data Exchange (ETDEWEB)

    Quintin, Jerome; Brandenberger, Robert H., E-mail: jquintin@physics.mcgill.ca, E-mail: rhb@hep.physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montréal, QC, H3A 2T8 Canada (Canada)

    2016-11-01

    We study the evolution of cosmological perturbations in a contracting universe. We aim to determine under which conditions density perturbations grow to form large inhomogeneities and collapse into black holes. Our method consists in solving the cosmological perturbation equations in complete generality for a hydrodynamical fluid. We then describe the evolution of the fluctuations over the different length scales of interest and as a function of the equation of state for the fluid, and we explore two different types of initial conditions: quantum vacuum and thermal fluctuations. We also derive a general requirement for black hole collapse on sub-Hubble scales, and we use the Press-Schechter formalism to describe the black hole formation probability. For a fluid with a small sound speed (e.g., dust), we find that both quantum and thermal initial fluctuations grow in a contracting universe, and the largest inhomogeneities that first collapse into black holes are of Hubble size and the collapse occurs well before reaching the Planck scale. For a radiation-dominated fluid, we find that no black hole can form before reaching the Planck scale. In the context of matter bounce cosmology, it thus appears that only models in which a radiation-dominated era begins early in the cosmological evolution are robust against the formation of black holes. Yet, the formation of black holes might be an interesting feature for other models. We comment on a number of possible alternative early universe scenarios that could take advantage of this feature.

  19. The effect of spherical shells of matter on the Schwarzschild black hole

    International Nuclear Information System (INIS)

    Dray, T.; Rijksuniversiteit Utrecht; Hooft, G. 't

    1985-01-01

    Based on previous work we show how to join two Schwarzschild solutions, possibly with different masses along null cylinders each representing a spherical shell of infalling or outgoing massless matter. One of the Schwarzschild masses can be zero, i.e. one region can be flat. The above procedure can be repeated to produce spacetimes with a C 0 metric describing several different (possibly flat) Schwarzschild regions separated by shells of matter. An exhaustive treatment of the ways of combining four such regions is given; the extension to many regions is then straightforward. Cases of special interest are: (1) the scattering of two spherical gravitational ''shock waves'' at the horizon of a Schwarzschild black hole, and (2) a configuration involving only one external universe, which may be relevant to quantization problems in general relativity. In the latter example, only an infinitesimal amount of matter is sufficient to remove the ''Wheeler wormhole'' to another universe. (orig.)

  20. Black hole dynamics at large D

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    We demonstrate that the classical dynamics of black holes can be reformulated as a dynamical problem of a codimension one membrane moving in flat space. This membrane - roughly the black hole event horizon - carries a conserved charge current and stress tensor which source radiation. This `membrane paradigm' may be viewed as a simplification of the equations of general relativity at large D, and suggests the possibility of using 1/D as a useful expansion parameter in the analysis of complicated four dimensional solutions of general relativity, for instance the collision between two black holes.

  1. Black hole ringdown echoes and howls

    Science.gov (United States)

    Nakano, Hiroyuki; Sago, Norichika; Tagoshi, Hideyuki; Tanaka, Takahiro

    2017-07-01

    Recently the possibility of detecting echoes of ringdown gravitational waves from binary black hole mergers was shown. The presence of echoes is expected if the black hole is surrounded by a mirror that reflects gravitational waves near the horizon. Here, we present slightly more sophisticated templates motivated by a waveform which is obtained by solving the linear perturbation equation around a Kerr black hole with a complete reflecting boundary condition in the stationary traveling wave approximation. We estimate that the proposed template can bring about a 10% improvement in the signal-to-noise ratio.

  2. Simulations of black holes in compactified spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Zilhao, Miguel; Herdeiro, Carlos [Centro de Fisica do Porto, Departamento de Fisica e Astronomia, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); Cardoso, Vitor; Nerozzi, Andrea; Sperhake, Ulrich; Witek, Helvi [Centro Multidisciplinar de Astrofisica, Deptartamento de Fisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Gualtieri, Leonardo, E-mail: mzilhao@fc.up.pt [Dipartimento di Fisica, Universita di Roma ' Sapienza' and Sezione INFN Roma1, P.A. Moro 5, 00185, Roma (Italy)

    2011-09-22

    From the gauge/gravity duality to braneworld scenarios, black holes in compactified spacetimes play an important role in fundamental physics. Our current understanding of black hole solutions and their dynamics in such spacetimes is rather poor because analytical tools are capable of handling a limited class of idealized scenarios, only. Breakthroughs in numerical relativity in recent years, however, have opened up the study of such spacetimes to a computational treatment which facilitates accurate studies of a wider class of configurations. We here report on recent efforts of our group to perform numerical simulations of black holes in cylindrical spacetimes.

  3. Black Holes and the Information Paradox

    Science.gov (United States)

    't Hooft, Gerard

    In electromagnetism, like charges repel, opposite charges attract. A remarkable feature of the gravitational force is that like masses attract. This gives rise to an instability: the more mass you have, the stronger the attractive force, until an inevitable implosion follows, leading to a "black hole". It is in the black hole where an apparent conflict between Einstein's General Relativity and the laws of Quantum Mechanics becomes manifest. Most physicists now agree that a black hole should be described by a Schrödinger equation, with a Hermitean Hamiltonian, but this requires a modification of general relativity. Both General Relativity and Quantum mechanics are shaking on their foundations.

  4. Quantum black holes and Planck's constant

    International Nuclear Information System (INIS)

    Ross, D.K.

    1987-01-01

    It is shown that the Planck-scale black holes of quantum gravity must obey a consistency condition relating Planck's constant to the integral of the mass of the black holes over time, if the usual path integral formulation of quantum mechanics is to make sense on physical spacetime. It is also shown, using time-dependent perturbation theory in ordinary quantum mechanics, that a massless particle will not propagate on physical spacetime with the black holes present unless the same condition is met. (author)

  5. Fast plunges into Kerr black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hadar, Shahar [Racah Institute of Physics, Hebrew University,Jerusalem 91904 (Israel); Porfyriadis, Achilleas P.; Strominger, Andrew [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)

    2015-07-15

    Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. For rapidly rotating black holes such fast plunges may be studied in the context of the Kerr/CFT correspondence because they occur in the near-horizon region where dynamics are governed by the infinite dimensional conformal symmetry. In this paper we use conformal transformations to analytically solve for the radiation emitted from fast plunges into near-extreme Kerr black holes. We find perfect agreement between the gravity and CFT computations.

  6. Black hole entropy, universality, and horizon constraints

    International Nuclear Information System (INIS)

    Carlip, Steven

    2006-01-01

    To ask a question about a black hole in quantum gravity, one must restrict initial or boundary data to ensure that a black hole is actually present. For two-dimensional dilaton gravity, and probably a much wider class of theories, I show that the imposition of a 'stretched horizon' constraint modifies the algebra of symmetries at the horizon, allowing the use of conformal field theory techniques to determine the asymptotic density of states. The result reproduces the Bekenstein-Hawking entropy without any need for detailed assumptions about the microscopic theory. Horizon symmetries may thus offer an answer to the problem of universality of black hole entropy

  7. Black hole entropy, universality, and horizon constraints

    Energy Technology Data Exchange (ETDEWEB)

    Carlip, Steven [Department of Physics, University of California, Davis, CA 95616 (United States)

    2006-03-01

    To ask a question about a black hole in quantum gravity, one must restrict initial or boundary data to ensure that a black hole is actually present. For two-dimensional dilaton gravity, and probably a much wider class of theories, I show that the imposition of a 'stretched horizon' constraint modifies the algebra of symmetries at the horizon, allowing the use of conformal field theory techniques to determine the asymptotic density of states. The result reproduces the Bekenstein-Hawking entropy without any need for detailed assumptions about the microscopic theory. Horizon symmetries may thus offer an answer to the problem of universality of black hole entropy.

  8. Stationary Black Holes: Uniqueness and Beyond

    Directory of Open Access Journals (Sweden)

    Heusler Markus

    1998-01-01

    Full Text Available The spectrum of known black hole solutions to the stationary Einstein equations has increased in an unexpected way during the last decade. In particular, it has turned out that not all black hole equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black hole space-times ceases to exist in self-gravitating non-linear field theories. This text aims to review some of the recent developments and to discuss them in the light of the uniqueness theorem for the Einstein-Maxwell system.

  9. Primordial black holes from fifth forces

    Science.gov (United States)

    Amendola, Luca; Rubio, Javier; Wetterich, Christof

    2018-04-01

    Primordial black holes can be produced by a long-range attractive fifth force stronger than gravity, mediated by a light scalar field interacting with nonrelativistic "heavy" particles. As soon as the energy fraction of heavy particles reaches a threshold, the fluctuations rapidly become nonlinear. The overdensities collapse into black holes or similar screened objects, without the need for any particular feature in the spectrum of primordial density fluctuations generated during inflation. We discuss whether such primordial black holes can constitute the total dark matter component in the Universe.

  10. Stationary Black Holes: Uniqueness and Beyond

    Directory of Open Access Journals (Sweden)

    Piotr T. Chruściel

    2012-05-01

    Full Text Available The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.

  11. Entropy Inequality Violations from Ultraspinning Black Holes.

    Science.gov (United States)

    Hennigar, Robie A; Mann, Robert B; Kubizňák, David

    2015-07-17

    We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold.

  12. New class of accelerating black hole solutions

    International Nuclear Information System (INIS)

    Camps, Joan; Emparan, Roberto

    2010-01-01

    We construct several new families of vacuum solutions that describe black holes in uniformly accelerated motion. They generalize the C metric to the case where the energy density and tension of the strings that pull (or push) on the black holes are independent parameters. These strings create large curvatures near their axis and when they have infinite length they modify the asymptotic properties of the spacetime, but we discuss how these features can be dealt with physically, in particular, in terms of 'wiggly cosmic strings'. We comment on possible extensions and extract lessons for the problem of finding higher-dimensional accelerating black hole solutions.

  13. Depilating Global Charge From Thermal Black Holes

    CERN Document Server

    March-Russell, John David; March-Russell, John; Wilczek, Frank

    2001-01-01

    At a formal level, there appears to be no difficulty involved in introducing a chemical potential for a globally conserved quantum number into the partition function for space-time including a black hole. Were this possible, however, it would provide a form of black hole hair, and contradict the idea that global quantum numbers are violated in black hole evaporation. We demonstrate dynamical mechanisms that negate the formal procedure, both for topological charge (Skyrmions) and complex scalar-field charge. Skyrmions collapse to the horizon; scalar-field charge fluctuates uncontrollably.

  14. Semiclassical approach to black hole evaporation

    International Nuclear Information System (INIS)

    Lowe, D.A.

    1993-01-01

    Black hole evaporation may lead to massive or massless remnants, or naked singularities. This paper investigates this process in the context of two quite different two-dimensional black hole models. The first is the original Callan-Giddings-Harvey-Strominger (CGHS) model, the second is another two-dimensional dilaton-gravity model, but with properties much closer to physics in the real, four-dimensional, world. Numerical simulations are performed of the formation and subsequent evaporation of black holes and the results are found to agree qualitatively with the exactly solved modified CGHS models, namely, that the semiclassical approximation breaks down just before a naked singularity appears

  15. Horizon structure of rotating Bardeen black hole and particle acceleration

    International Nuclear Information System (INIS)

    Ghosh, Sushant G.; Amir, Muhammed

    2015-01-01

    We investigate the horizon structure and ergosphere in a rotating Bardeen regular black hole, which has an additional parameter (g) due to the magnetic charge, apart from the mass (M) and the rotation parameter (a). Interestingly, for each value of the parameter g, there exists a critical rotation parameter (a = a E ), which corresponds to an extremal black hole with degenerate horizons, while for a < a E it describes a non-extremal black hole with two horizons, and no black hole for a > a E . We find that the extremal value a E is also influenced by the parameter g, and so is the ergosphere. While the value of a E remarkably decreases when compared with the Kerr black hole, the ergosphere becomes thicker with the increase in g.We also study the collision of two equal mass particles near the horizon of this black hole, and explicitly show the effect of the parameter g. The center-of-mass energy (E CM ) not only depend on the rotation parameter a, but also on the parameter g. It is demonstrated that the E CM could be arbitrarily high in the extremal cases when one of the colliding particles has a critical angular momentum, thereby suggesting that the rotating Bardeen regular black hole can act as a particle accelerator. (orig.)

  16. Horizon Wavefunction of Generalized Uncertainty Principle Black Holes

    Directory of Open Access Journals (Sweden)

    Luciano Manfredi

    2016-01-01

    Full Text Available We study the Horizon Wavefunction (HWF description of a Generalized Uncertainty Principle inspired metric that admits sub-Planckian black holes, where the black hole mass m is replaced by M=m1+β/2MPl2/m2. Considering the case of a wave-packet shaped by a Gaussian distribution, we compute the HWF and the probability PBH that the source is a (quantum black hole, that is, that it lies within its horizon radius. The case β0, where a minimum in PBH is encountered, thus meaning that every particle has some probability of decaying to a black hole. Furthermore, for sufficiently large β we find that every particle is a quantum black hole, in agreement with the intuitive effect of increasing β, which creates larger M and RH terms. This is likely due to a “dimensional reduction” feature of the model, where the black hole characteristics for sub-Planckian black holes mimic those in (1+1 dimensions and the horizon size grows as RH~M-1.

  17. Scattering of particles by deformed non-rotating black holes

    International Nuclear Information System (INIS)

    Pei, Guancheng; Bambi, Cosimo

    2015-01-01

    We study the excitation of axial quasi-normal modes of deformed non-rotating black holes by test particles and we compare the associated gravitational wave signal with that expected in general relativity from a Schwarzschild black hole. Deviations from standard predictions are quantified by an effective deformation parameter, which takes into account deviations from both the Schwarzschild metric and the Einstein equations. We show that, at least in the case of non-rotating black holes, it is possible to test the metric around the compact object, in the sense that the measurement of the gravitational wave spectrum can constrain possible deviations from the Schwarzschild solution. (orig.)

  18. Infinite volume of noncommutative black hole wrapped by finite surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baocheng, E-mail: zhangbc.zhang@yahoo.com [School of Mathematics and Physics, China University of Geosciences, Wuhan 430074 (China); You, Li, E-mail: lyou@mail.tsinghua.edu.cn [State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China)

    2017-02-10

    The volume of a black hole under noncommutative spacetime background is found to be infinite, in contradiction with the surface area of a black hole, or its Bekenstein–Hawking (BH) entropy, which is well-known to be finite. Our result rules out the possibility of interpreting the entropy of a black hole by counting the number of modes wrapped inside its surface if the final evaporation stage can be properly treated. It implies the statistical interpretation for the BH entropy can be independent of the volume, provided spacetime is noncommutative. The effect of radiation back reaction is found to be small and doesn't influence the above conclusion.

  19. Asymptotic Reissner–Nordström black holes

    International Nuclear Information System (INIS)

    Hendi, S.H.

    2013-01-01

    We consider two types of Born–Infeld like nonlinear electromagnetic fields and obtain their interesting black hole solutions. The asymptotic behavior of these solutions is the same as that of a Reissner–Nordström black hole. We investigate the geometric properties of the solutions and find that depending on the value of the nonlinearity parameter, the singularity covered with various horizons. -- Highlights: •We investigate two types of the BI-like nonlinear electromagnetic fields in the Einsteinian gravity. •We analyze the effects of nonlinearity on the electromagnetic field. •We examine the influences of the nonlinearity on the geometric properties of the black hole solutions

  20. On the black hole interior in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Israel, Roy [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel); Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan; Liram, Lior [Physics Department, Tel-Aviv University,Ramat-Aviv, 69978 (Israel)

    2017-05-17

    The potential behind the horizon of an eternal black hole in classical theories is described in terms of data that is available to an external observer — the reflection coefficient of a wave that scatters on the black hole. In GR and perturbative string theory (in α{sup ′}), the potential is regular at the horizon and it blows up at the singularity. The exact reflection coefficient, that is known for the SL(2,ℝ){sub k}/U(1) black hole and includes non-perturbative α{sup ′} effects, seems however to imply that there is a highly non-trivial structure just behind the horizon.