WorldWideScience

Sample records for black hole binaries

  1. Transient Black Hole Binaries

    CERN Document Server

    Belloni, T M

    2016-01-01

    The last two decades have seen a great improvement in our understand- ing of the complex phenomenology observed in transient black-hole binary systems, especially thanks to the activity of the Rossi X-Ray Timing Explorer satellite, com- plemented by observations from many other X-ray observatories and ground-based radio, optical and infrared facilities. Accretion alone cannot describe accurately the intricate behavior associated with black-hole transients and it is now clear that the role played by different kinds of (often massive) outflows seen at different phases of the outburst evolution of these systems is as fundamental as the one played by the accretion process itself. The spectral-timing states originally identified in the X-rays and fundamentally based on the observed effect of accretion, have acquired new importance as they now allow to describe within a coherent picture the phenomenology observed at other wave- length, where the effects of ejection processes are most evident. With a particular focu...

  2. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  3. Black Hole Binaries in Quiescence

    CERN Document Server

    Bailyn, Charles D

    2016-01-01

    I discuss some of what is known and unknown about the behavior of black hole binary systems in the quiescent accretion state. Quiescence is important for several reasons: 1) the dominance of the companion star in the optical and IR wavelengths allows the binary parameters to be robustly determined - as an example, we argue that the longer proposed distance to the X-ray source GRO J1655-40 is correct; 2) quiescence represents the limiting case of an extremely low accretion rate, in which both accretion and jets can be observed; 3) understanding the evolution and duration of the quiescent state is a key factor in determining the overall demographics of X-rary binaries, which has taken on a new importance in the era of gravitational wave astronomy.

  4. Close supermassive binary black holes

    Science.gov (United States)

    Gaskell, C. Martin

    2010-01-01

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive blackhole binary (SMB). The AGN J1536+0441 (=SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that 1536+044 is an example of line emission from a disc. If this is correct, the lack of clear optical spectral evidence for close SMBs is significant and argues either that the merging of close SMBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.

  5. Toroidal Horizons in Binary Black Hole Mergers

    OpenAIRE

    Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-01-01

    We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. ...

  6. Modeling Flows Around Merging Black Hole Binaries

    CERN Document Server

    van Meter, James R; Miller, M Coleman; Reynolds, Christopher S; Centrella, Joan M; Baker, John G; Boggs, William D; Kelly, Bernard J; McWilliams, Sean T

    2009-01-01

    Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a step towards solving this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We find qualitative differences in collision and outflow speeds, including a signature of the merger when the net angular momentum of the matter is low, between the results from single and binary black holes, and between nonrotating and rotating holes in binaries. If future magnetohydrodynamic results confirm ...

  7. Hypervelocity binary stars: smoking gun of massive binary black holes

    CERN Document Server

    Lu, Youjun; Lin, D N C

    2007-01-01

    The hypervelocity stars recently found in the Galactic halo are expelled from the Galactic center through interactions between binary stars and the central massive black hole or between single stars and a hypothetical massive binary black hole. In this paper, we demonstrate that binary stars can be ejected out of the Galactic center with velocities up to 10^3 km/s, while preserving their integrity, through interactions with a massive binary black hole. Binary stars are unlikely to attain such high velocities via scattering by a single massive black hole or through any other mechanisms. Based on the above theoretical prediction, we propose a search for binary systems among the hypervelocity stars. Discovery of hypervelocity binary stars, even one, is a definitive evidence of the existence of a massive binary black hole in the Galactic center.

  8. Orbital eccentricities in primordial black holes binaries

    OpenAIRE

    Cholis, Ilias; Kovetz, Ely D.; Ali-Haïmoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Muñoz, Julian B.; Raccanelli, Alvise

    2016-01-01

    It was recently suggested that the merger of $\\sim30\\,M_\\odot$ primordial black holes (PBHs) may provide a significant number of events in gravitational-wave observatories over the next decade, if they make up an appreciable fraction of the dark matter. Here we show that measurement of the eccentricities of the inspiralling binary black holes can be used to distinguish these binaries from those produced by more traditional astrophysical mechanisms. These PBH binaries are formed on highly ecce...

  9. Cassini states for black hole binaries

    OpenAIRE

    Correia, Alexandre C. M.

    2015-01-01

    Cassini states correspond to the equilibria of the spin axis of a body when its orbit is perturbed. They were initially described for planetary satellites, but the spin axes of black hole binaries also present this kind of equilibria. In previous works, Cassini states were reported as spin-orbit resonances, but actually the spin of black hole binaries is in circulation and there is no resonant motion. Here we provide a general description of the spin dynamics of black hole binary systems base...

  10. Modeling Flows Around Merging Black Hole Binaries

    OpenAIRE

    van Meter, James R.; Wise, John H.; Miller, M. Coleman; Reynolds, Christopher S.; Centrella, Joan M.; Baker, John G.; Boggs, William D.; Kelly, Bernard J.; McWilliams, Sean T.

    2009-01-01

    Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the stron...

  11. Toroidal Horizons in Binary Black Hole Mergers

    CERN Document Server

    Bohn, Andy; Teukolsky, Saul A

    2016-01-01

    We find the first binary black hole event horizon with a toroidal topology. It had been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology, but such a phase has never been seen prior to this work. In all previous binary black hole simulations, in the coordinate slicing used to evolve the black holes, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We present a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.

  12. Microlensing Signature of Binary Black Holes

    Science.gov (United States)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  13. Detecting Near-Extremal Binary Black Holes

    Science.gov (United States)

    Hemberger, Daniel

    2014-03-01

    There is an ongoing effort in the gravitational wave astronomy community to construct a template bank for Advanced LIGO that includes gravitational waveforms from binary black hole systems with high mass ratios and spins. Using numerical relativity simulations performed with the Spectral Einstein Code, we assess the prospects for detection and parameter estimation of binaries with spins above the expected template bank cutoff spin. This analysis is restricted to equal-mass, non-precessing binaries.

  14. Binary black holes' effects on electromagnetic fields.

    Science.gov (United States)

    Palenzuela, Carlos; Anderson, Matthew; Lehner, Luis; Liebling, Steven L; Neilsen, David

    2009-08-21

    In addition to producing gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as a possible enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves. PMID:19792706

  15. Quasi periodic oscillations in black hole binaries

    CERN Document Server

    Motta, S E

    2016-01-01

    Fast time variability is the most prominent characteristic of accreting systems and the presence of quasi periodic oscillations (QPOs) is a constant in all accreting systems, from cataclysmic variables to AGNs, passing through black hole and neutron star X-ray binaries and through the enigmatic ultra-luminous X-ray sources. In this paper I will briefly review the current knowledge of QPOs in black hole X-ray binaries, mainly focussing on their observed properties, but also mentioning the most important models that have been proposed to explain the origin of QPOs over the last decades.

  16. Supermassive Black Hole Binaries: The Search Continues

    CERN Document Server

    Bogdanovic, Tamara

    2014-01-01

    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.

  17. Cassini states for black-hole binaries

    CERN Document Server

    Correia, Alexandre C M

    2016-01-01

    Cassini states correspond to equilibria of the spin axis of a celestial body when its orbit is perturbed. They were initially described for planetary satellites, but the spin axes of black-hole binaries also present this kind of equilibria. In previous works, Cassini states were reported as spin-orbit resonances, but actually the spin of black-hole binaries is in circulation and there is no resonant motion. Here we provide a general description of the spin dynamics of black-hole binary systems based on a Hamiltonian formalism. In absence of dissipation the problem is integrable and it is easy to identify all possible trajectories for the spin for a given value of the total angular momentum. As the system collapses due to radiation reaction, the Cassini states are shifted to different positions, which modifies the dynamics around them. This is why the final spin distribution may differ from the initial one. Our method provides a simple way of predicting the distribution of the spin of black-hole binaries at th...

  18. Toroidal horizons in binary black hole mergers

    Science.gov (United States)

    Bohn, Andy; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-09-01

    We find the first binary black hole event horizon with a toroidal topology. It has been predicted that generically the event horizons of merging black holes should briefly have a toroidal topology. However, such a phase has never been seen in numerical simulations. Instead, in all previous simulations, the topology of the event horizon transitions directly from two spheres during the inspiral to a single sphere as the black holes merge. We find a coordinate transformation to a foliation of spacelike hypersurfaces that "cut a hole" through the event horizon surface, resulting in a toroidal event horizon, thus reconciling the numerical work with theoretical expectations. The demonstration requires extremely high numerical precision, which is made possible by a new event horizon code described in a companion paper. A torus could potentially provide a mechanism for violating topological censorship. However, these toroidal event horizons satisfy topological censorship by construction, because we can always trivially apply the inverse coordinate transformation to remove the topological feature.

  19. A Compact Supermassive Binary Black Hole System

    CERN Document Server

    Rodríguez, C; Zavala, R T; Peck, A B; Pollack, L K; Romani, R W

    2006-01-01

    We report on the discovery of a supermassive binary black hole system in the radio galaxy 0402+379, with a projected separation between the two black holes of just 7.3 pc. This is the closest black hole pair yet found by more than two orders of magnitude. These results are based upon recent multi-frequency observations using the Very Long Baseline Array (VLBA) which reveal two compact, variable, flat-spectrum, active nuclei within the elliptical host galaxy of 0402+379. Multi-epoch observations from the VLBA also provide constraints on the total mass and dynamics of the system. Low spectral resolution spectroscopy using the Hobby-Eberly Telescope indicates two velocity systems with a combined mass of the two black holes of ~1.5 x 10^8 solar masses. The two nuclei appear stationary while the jets emanating from the weaker of the two nuclei appear to move out and terminate in bright hot spots. The discovery of this system has implications for the number of close binary black holes that might be sources of gravi...

  20. Flip-flopping binary black holes.

    Science.gov (United States)

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes. PMID:25910104

  1. Flip-flopping binary black holes.

    Science.gov (United States)

    Lousto, Carlos O; Healy, James

    2015-04-10

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of d≈25M between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for t=20 000M and displays a total change in the orientation of the spin of one of the black holes from an initial alignment with the orbital angular momentum to a complete antialignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 post-Newtonian equations of motion and spin evolution to show that this process continuously flip flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  2. Orbital eccentricities in primordial black hole binaries

    Science.gov (United States)

    Cholis, Ilias; Kovetz, Ely D.; Ali-Haïmoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Muñoz, Julian B.; Raccanelli, Alvise

    2016-10-01

    It was recently suggested that the merger of ˜30 M⊙ primordial black holes (PBHs) may provide a significant number of events in gravitational-wave observatories over the next decade, if they make up an appreciable fraction of the dark matter. Here we show that measurement of the eccentricities of the inspiralling binary black holes can be used to distinguish these binaries from those produced by more traditional astrophysical mechanisms. These PBH binaries are formed on highly eccentric orbits and can then merge on time scales that in some cases are years or less, retaining some eccentricity in the last seconds before the merger. This is to be contrasted with massive-stellar-binary, globular-cluster, or other astrophysical origins for binary black holes (BBHs) in which the orbits have very effectively circularized by the time the BBH enters the observable LIGO window. Here we discuss the features of the gravitational-wave signals that indicate this eccentricity and forecast the sensitivity of LIGO and the Einstein Telescope to such effects. We show that if PBHs make up the dark matter, then roughly one event should have a detectable eccentricity given LIGO's expected sensitivity and observing time of six years. The Einstein Telescope should see O (10 ) such events after ten years.

  3. Orbital eccentricities in primordial black holes binaries

    CERN Document Server

    Cholis, Ilias; Ali-Haïmoud, Yacine; Bird, Simeon; Kamionkowski, Marc; Muñoz, Julian B; Raccanelli, Alvise

    2016-01-01

    It was recently suggested that the merger of $\\sim30\\,M_\\odot$ primordial black holes (PBHs) may provide a significant number of events in gravitational-wave observatories over the next decade, if they make up an appreciable fraction of the dark matter. Here we show that measurement of the eccentricities of the inspiralling binary black holes can be used to distinguish these binaries from those produced by more traditional astrophysical mechanisms. These PBH binaries are formed on highly eccentric orbits and can then merge on timescales that in some cases are years or less, retaining some eccentricity in the last seconds before the merger. This is to be contrasted with massive-stellar-binary, globular-cluster, or other astrophysical origins for binary black holes (BBHs) in which the orbits have very effectively circularized by the time the BBH enters the observable LIGO window. Here we discuss the features of the gravitational-wave signals that indicate this eccentricity and forecast the sensitivity of LIGO a...

  4. Hybrid Black-Hole Binary Initial Data

    Science.gov (United States)

    Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-01-01

    "Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."

  5. Minidisks in Binary Black Hole Accretion

    CERN Document Server

    Ryan, Geoffrey

    2016-01-01

    Newtonian simulations have demonstrated that accretion onto binary black holes produces accretion disks around each black hole ("minidisks"), fed by gas streams flowing through the circumbinary cavity from the surrounding circumbinary disk. We study the dynamics and radiation of an individual black hole minidisk using two-dimensional hydrodynamical simulations performed with a new general relativistic version of the moving mesh code Disco. We introduce a co-moving energy variable which enables highly accurate integration of these high Mach number flows. Tidally induced spiral shock waves are excited in the disk and propagate through the ISCO providing a Reynolds stress which causes efficient accretion by purely hydrodynamic means and producing a radiative signature brighter in hard X-rays than the Novikov-Thorne model. Disk cooling is provided by a local blackbody prescription that allows the disk to evolve self-consistently to a temperature profile where hydrodynamic heating is balanced by radiative cooling....

  6. Gravitational waves from binary black holes

    Indian Academy of Sciences (India)

    Bala R Iyer

    2011-07-01

    It is almost a century since Einstein predicted the existence of gravitational waves as one of the consequences of his general theory of relativity. A brief historical overview including Chandrasekhar’s contribution to the subject is first presented. The current status of the experimental search for gravitational waves and the attendant theoretical insights into the two-body problem in general relativity arising from computations of gravitational waves from binary black holes are then broadly reviewed.

  7. Observational signatures of binary supermassive black holes

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, Constanze; Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Miller, M. Coleman [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742 (United States)

    2014-04-20

    Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary active galactic nuclei. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength λ {sub n} at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches ∝λ{sub n}{sup 16/3}; longer wavelength searches are therefore strongly favored. A second signature, first discussed here, is hard X-ray emission with a Wien-like spectrum at a characteristic temperature ∼100 keV produced by Compton cooling of the shock generated when streams from the circumbinary disk hit the accretion disks around the individual black holes. We investigate the observability of both signatures. The hard X-ray signal may be particularly valuable as it can provide an indicator of black hole merger a few decades in advance of the event.

  8. Observational Signatures of Binary Supermassive Black Holes

    CERN Document Server

    Roedig, Constanze; Miller, M Coleman

    2014-01-01

    Observations indicate that most massive galaxies contain a supermassive black hole, and theoretical studies suggest that when such galaxies have a major merger, the central black holes will form a binary and eventually coalesce. Here we discuss two spectral signatures of such binaries that may help distinguish them from ordinary AGN. These signatures are expected when the mass ratio between the holes is not extreme and the system is fed by a circumbinary disk. One such signature is a notch in the thermal continuum that has been predicted by other authors; we point out that it should be accompanied by a spectral revival at shorter wavelengths and also discuss its dependence on binary properties such as mass, mass ratio, and separation. In particular, we note that the wavelength $\\lambda_n$ at which the notch occurs depends on these three parameters in such a way as to make the number of systems displaying these notches $\\propto \\lambda_n^{16/3}$; longer wavelength searches are therefore strongly favored. A sec...

  9. Lyapunov timescales and black hole binaries

    International Nuclear Information System (INIS)

    Black hole binaries support unstable orbits at very close separations. In the simplest case of geodesics around a Schwarzschild black hole the orbits, though unstable, are regular. Under perturbation the unstable orbits can become the locus of chaos. All unstable orbits, whether regular or chaotic, can be quantified by their Lyapunov exponents. The exponents are observationally relevant since the phase of gravitational waves can decohere in a Lyapunov time. If the timescale for dissipation due to gravitational waves is shorter than the Lyapunov time, chaos will be damped and essentially unobservable. We find that the two timescales can be comparable. We emphasize that the Lyapunov exponents must only be used cautiously for several reasons: they are relative and depend on the coordinate system used, they vary from orbit to orbit, and finally they can be deceptively diluted by transient behaviour for orbits which pass in and out of unstable regions

  10. Binary pairs of supermassive black holes - Formation in merging galaxies

    International Nuclear Information System (INIS)

    A process in which supermassive binary blackholes are formed in nuclei of supergiant galaxies due to galaxy mergers is examined. There is growing evidence that mergers of galaxies are common and that supermassive black holes in center of galaxies are also common. Consequently, it is expected that binary black holes should arise in connection with galaxy mergers. The merger process in a galaxy modeled after M87 is considered. The capture probability of a companion is derived as a function of its mass. Assuming a correlation between the galaxy mass and the blackholes mass, the expected mass ratio in binary black holes is calculated. The binary black holes formed in this process are long lived, surviving longer than the Hubble time unless they are perturbed by black holes from successive mergers. The properties of these binaries agree with Gaskell's (1988) observational work on quasars and its interpretation in terms of binary black holes. 39 refs

  11. Measuring Massive Black Hole Binaries with LISA

    Science.gov (United States)

    Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.

    2009-01-01

    The coalescence of two massive black holes produces gravitational waves (GWs) which can be detected by the space-based detector LISA. By measuring these waves, LISA can determine the various parameters which characterize the source. Measurements of the black hole masses and spins will provide information about the growth of black holes and their host galaxies over time. Measurements of a source's sky position and distance may help astronomers identify an electromagnetic counterpart to the GW event. The counterpart's redshift, combined with the GW-measured luminosity distance, can then be used to measure the Hubble constant and the dark energy parameter $w$. Because the potential science output is so high, it is useful to know in advance how well LISA can measure source parameters for a wide range of binaries. We calculate expected parameter estimation errors using the well-known Fisher matrix method. Our waveform model includes the physics of spin precession, as well as subleading harmonics. When these higher-order effects are not included, strong degeneracies between some parameters cause them to be poorly determined by a GW measurement. When precession and subleading harmonics are properly included, the degeneracies are broken, reducing parameter errors by one to several orders of magnitude.

  12. OJ 287 binary black hole system

    CERN Document Server

    Valtonen, Mauri

    2011-01-01

    The light curve of the quasar OJ 287 extends from 1891 up today without major gaps. Here we summarize the results of the 2005 - 2010 observing campaign. The main results are the following: (1) The 2005 October optical outburst came at the expected time, thus confirming the general relativistic precession in the binary black hole system. This result disproved the model of a single black hole system with accretion disk oscillations, as well as several toy models of binaries without relativistic precession. In the latter models the main outburst would have been a year later. (2) The nature of the radiation of the 2005 October outburst was expected to be bremsstrahlung from hot gas at the temperature of $3\\times 10^{5}$ $^{\\circ}$K. This was confirmed by combined ground based and ultraviolet observations using the XMM-Newton X-ray telescope. (3) A secondary outburst of the same nature was expected at 2007 September 13. Within the accuracy of observations (about 6 hours), it started at the correct time. Thus the p...

  13. Birth of Massive Black Hole Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Colpi, M.; /Milan Bicocca U.; Dotti, M.; /Insubria U., Como; Mayer, L.; /Zurich, ETH; Kazantzidis, S.; /KIPAC, Menlo Park

    2007-11-19

    If massive black holes (BHs) are ubiquitous in galaxies and galaxies experience multiple mergers during their cosmic assembly, then BH binaries should be common albeit temporary features of most galactic bulges. Observationally, the paucity of active BH pairs points toward binary lifetimes far shorter than the Hubble time, indicating rapid inspiral of the BHs down to the domain where gravitational waves lead to their coalescence. Here, we review a series of studies on the dynamics of massive BHs in gas-rich galaxy mergers that underscore the vital role played by a cool, gaseous component in promoting the rapid formation of the BH binary. The BH binary is found to reside at the center of a massive self-gravitating nuclear disc resulting from the collision of the two gaseous discs present in the mother galaxies. Hardening by gravitational torques against gas in this grand disc is found to continue down to sub-parsec scales. The eccentricity decreases with time to zero and when the binary is circular, accretion sets in around the two BHs. When this occurs, each BH is endowed with it own small-size ({approx}< 0.01 pc) accretion disc comprising a few percent of the BH mass. Double AGN activity is expected to occur on an estimated timescale of {approx}< 1 Myr. The double nuclear point-like sources that may appear have typical separation of {approx}< 10 pc, and are likely to be embedded in the still ongoing starburst. We note that a potential threat of binary stalling, in a gaseous environment, may come from radiation and/or mechanical energy injections by the BHs. Only short-lived or sub-Eddington accretion episodes can guarantee the persistence of a dense cool gas structure around the binary necessary for continuing BH inspiral.

  14. Massive Binary Black Holes in the Cosmic Landscape

    OpenAIRE

    Colpi, M.; Dotti, M.

    2009-01-01

    Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly. But, if the black holes reach coalescence, then they become the loudest sources of gravitational waves ever in the universe. Nature seems to provide a pathway for the formation of these ex...

  15. Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures

    Directory of Open Access Journals (Sweden)

    M. Dotti

    2012-01-01

    Full Text Available The study of the dynamical evolution of massive black hole pairs in mergers is crucial in the context of a hierarchical galaxy formation scenario. The timescales for the formation and the coalescence of black hole binaries are still poorly constrained, resulting in large uncertainties in the expected rate of massive black hole binaries detectable in the electromagnetic and gravitational wave spectra. Here, we review the current theoretical understanding of the black hole pairing in galaxy mergers, with a particular attention to recent developments and open issues. We conclude with a review of the expected observational signatures of massive binaries and of the candidates discussed in literature to date.

  16. Periastron advance in black-hole binaries.

    Science.gov (United States)

    Le Tiec, Alexandre; Mroué, Abdul H; Barack, Leor; Buonanno, Alessandra; Pfeiffer, Harald P; Sago, Norichika; Taracchini, Andrea

    2011-09-30

    The general relativistic (Mercury-type) periastron advance is calculated here for the first time with exquisite precision in full general relativity. We use accurate numerical relativity simulations of spinless black-hole binaries with mass ratios 1/8≤m(1)/m(2)≤1 and compare with the predictions of several analytic approximation schemes. We find the effective-one-body model to be remarkably accurate and, surprisingly, so also the predictions of self-force theory [replacing m(1)/m(2)→m(1)m(2)/(m(1)+m(2))(2)]. Our results can inform a universal analytic model of the two-body dynamics, crucial for ongoing and future gravitational-wave searches. PMID:22107182

  17. Tests and applications of the SXS binary black hole catalog

    Science.gov (United States)

    Scheel, Mark; Simulations of Extreme Spacetimes (SXS) Collaboration Collaboration

    2016-03-01

    Numerical relativity is the only reliable method of computing the full gravitational waveform--including inspiral, merger, and ringdown--for strongly-gravitating systems like coalescing black holes, which are of foremost importance to gravitational-wave interferometers such as LIGO. We have used the Spectral Einstein Code [black-holes.org/SpEC.html] to construct a public catalog of hundreds of binary black hole simulations, for use by gravitational-wave science, and for calibration of fast analytic models of binary black-hole waveforms. We discuss the current status of the catalog, tests of the resulting waveforms, and selected applications.

  18. Growth of supermassive black holes, galaxy mergers and supermassive binary black holes

    OpenAIRE

    Komossa, S.; Baker, J G; Liu, F. K.

    2016-01-01

    The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the universe, and...

  19. Jets from black hole binaries and Galactic Nuclei

    OpenAIRE

    Mirabel, I.F.

    2000-01-01

    Relativistic outflows are a common phenomenon in accreting black holes. Despite the enormous differences in scale, stellar-mass black holes in binaries and supermassive black holes in Galactic Nuclei produce jets with analogous properties. In both are observed two types of relativistic outflows: 1) steady compact jets with flat-spectrum, and 2) sporadic extended jets with steep-spectrum and apparent superluminal motions. Besides, the most common class of gamma-ray bursts are afterglows from u...

  20. A simple method of constructing binary black hole initial data

    CERN Document Server

    Rácz, István

    2016-01-01

    By applying a parabolic-hyperbolic formulation of constraint equations and superposing Kerr-Schild black holes, a simple method is introduced to initialize time evolution of binary black hole systems. In constructing the initial data no use of boundary conditions in the strong field regime is made. The proposed new method offers a direct control on the ADM parameters of the composite system, and it could also be applied to construct initial data for multiple black holes.

  1. Black Hole - Neutron Star Binary Mergers

    Data.gov (United States)

    National Aeronautics and Space Administration — Gravitational radiation waveforms for black hole-neutron star coalescence calculations. The physical input is Newtonian physics, an ideal gas equation of state with...

  2. Distinguishing Between Formation Channels for Binary Black Holes with LISA

    CERN Document Server

    Breivik, Katelyn; Larson, Shane L; Kalogera, Vassiliki; Rasio, Frederic A

    2016-01-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary-black-hole mergers in the local universe. While ground-based gravitational-wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity of binary black holes in the LISA frequency band can be used discriminate between binaries formed in isolation in galactic fields, and those formed in dense stellar environments such as globular clusters. In this letter, we explore the differences in orbital eccentricities of binary black hole populations as they evolve through the LISA frequency band. Overall we find that there are three distinct populations of orbital eccentricities discernible by LISA. We show that, depending on gravitational-wave frequency, anywhere fro...

  3. Massive Black Hole Binary Mergers in Dynamical Galactic Environments

    OpenAIRE

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars

    2016-01-01

    Gravitational Waves (GW) have now been detected from stellar-mass black hole binaries, and the first observations of GW from Massive Black Hole (MBH) Binaries are expected within the next decade. Pulsar Timing Arrays (PTA), which can measure the years long periods of GW from MBHB, have excluded many standard predictions for the amplitude of a stochastic GW Background (GWB). We use coevolved populations of MBH and galaxies from hydrodynamic, cosmological simulations ('Illustris') to calculate ...

  4. On the nature of the "radio quiet" black hole binaries

    OpenAIRE

    Soleri, Paolo; Fender, Rob

    2011-01-01

    The coupling between accretion processes and ejection mechanisms in accreting black holes in binary systems can be investigated by empirical relations between the X-ray/radio and X-ray/optical-infrared luminosities. These correlations are valid over several orders of magnitude and were initially thought to be universal. However, recently, many black hole binaries have been found to produce jets that, given certain accretion-powered luminosities, are fainter than expected from the earlier corr...

  5. ALIGNMENT OF SUPERMASSIVE BLACK HOLE BINARY ORBITS AND SPINS

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. Coleman [Department of Astronomy and Joint Space-Science Institute, University of Maryland, College Park, MD 20742-2421 (United States); Krolik, Julian H., E-mail: miller@astro.umd.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2013-09-01

    Recent studies of accretion onto supermassive black hole binaries suggest that much, perhaps most, of the matter eventually accretes onto one hole or the other. If so, then for binaries whose inspiral from {approx}1 pc to {approx}10{sup -3}-10{sup -2} pc is driven by interaction with external gas, both the binary orbital axis and the individual black hole spins can be reoriented by angular momentum exchange with this gas. Here we show that, unless the binary mass ratio is far from unity, the spins of the individual holes align with the binary orbital axis in a time {approx}few-100 times shorter than the binary orbital axis aligns with the angular momentum direction of the incoming circumbinary gas; the spin of the secondary aligns more rapidly than that of the primary by a factor {approx}(m{sub 1}/m{sub 2}){sup 1/2} > 1. Thus the binary acts as a stabilizing agent, so that for gas-driven systems, the black hole spins are highly likely to be aligned (or counteraligned if retrograde accretion is common) with each other and with the binary orbital axis. This alignment can significantly reduce the recoil speed resulting from subsequent black hole merger.

  6. Black holes in binary stellar systems and galactic nuclei

    Science.gov (United States)

    Cherepashchuk, A. M.

    2014-04-01

    In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).

  7. Inspiralling, nonprecessing, spinning black hole binary spacetime via asymptotic matching

    Science.gov (United States)

    Ireland, Brennan; Mundim, Bruno C.; Nakano, Hiroyuki; Campanelli, Manuela

    2016-05-01

    We construct a new global, fully analytic, approximate spacetime which accurately describes the dynamics of nonprecessing, spinning black hole binaries during the inspiral phase of the relativistic merger process. This approximate solution of the vacuum Einstein's equations can be obtained by asymptotically matching perturbed Kerr solutions near the two black holes to a post-Newtonian metric valid far from the two black holes. This metric is then matched to a post-Minkowskian metric even farther out in the wave zone. The procedure of asymptotic matching is generalized to be valid on all spatial hypersurfaces, instead of a small group of initial hypersurfaces discussed in previous works. This metric is well suited for long term dynamical simulations of spinning black hole binary spacetimes prior to merger, such as studies of circumbinary gas accretion which requires hundreds of binary orbits.

  8. Alignment of supermassive black hole binary orbits and spins

    CERN Document Server

    Miller, M Coleman

    2013-01-01

    Recent studies of accretion onto supermassive black hole binaries suggest that much, perhaps most, of the matter eventually accretes onto one hole or the other. If so, then for binaries whose inspiral from ~1 pc to 0.001 - 0.01 pc is driven by interaction with external gas, both the binary orbital axis and the individual black hole spins can be reoriented by angular momentum exchange with this gas. Here we show that, unless the binary mass ratio is far from unity, the spins of the individual holes align with the binary orbital axis in a time few-100 times shorter than the binary orbital axis aligns with the angular momentum direction of the incoming circumbinary gas; the spin of the secondary aligns more rapidly than that of the primary by a factor ~(m_1/m_2)^{1/2}>1. Thus the binary acts as a stabilizing agent, so that for gas-driven systems, the black hole spins are highly likely to be aligned (or counteraligned if retrograde accretion is common) with each other and with the binary orbital axis. This alignm...

  9. Retrograde binaries of massive black holes in circumbinary accretion discs

    Science.gov (United States)

    Amaro-Seoane, Pau; Maureira-Fredes, Cristián; Dotti, Massimo; Colpi, Monica

    2016-06-01

    Context. We explore the hardening of a massive black hole binary embedded in a circumbinary gas disc under a specific circumstance: when the binary and the gas are coplanar and the gas is counter-rotating. The binary has unequal mass and the interaction of the gas with the lighter secondary black hole is the main cause of the braking torque on the binary that shrinks with time. The secondary black hole, revolving in the direction opposite to the gas, experiences a drag from gas-dynamical friction and from direct accretion of part of it. Aims: In this paper, using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole, which in turn affect the binary hardening and eccentricity evolution. Methods: We find that realistic accretion prescriptions lead to results that differ from those inferred assuming accretion of all the gas within the Roche Lobe of the secondary black hole. Results: When considering gas accretion within the gravitational influence radius of the secondary black hole (which is smaller than the Roche Lobe radius) to better describe gas inflows, the shrinking of the binary is slower. In addition, in this case, a smaller amount of accreted mass is required to reduce the binary separation by the same amount. Different accretion prescriptions result in different discs' surface densities, which alter the black hole's dynamics back. Full 3D Smoothed-particle hydrodynamics realizations of a number of representative cases, run over a shorter interval of time, validate the general trends observed in the less computationally demanding 2D simulations. Conclusions: Initially circular black hole binaries increase their eccentricity only slightly, which then oscillates around small values (<0.1) while they harden. By contrast, initially eccentric binaries become more and more eccentric. A semi-analytical model describing the black hole's dynamics under

  10. BPASS predictions for Binary Black-Hole Mergers

    CERN Document Server

    Eldridge, J J

    2016-01-01

    Using the Binary Population and Spectral Synthesis code BPASS, we have calculated the rates, timescales and mass distributions for binary black hole mergers as a function of metallicity. We consider these in the context of the recently reported 1st LIGO event detection. We find that the event has a low probability of arising from a stellar population with initial metallicity mass fraction above $Z=0.010$. Binary black hole merger events with the reported masses are most likely in populations between Z=0.0001 and 0.002 (Z < 0.1Z_sun). The masses inferred for the black holes in the binary progenitor of GW 150914 are close to the predicted peak in the mass distribution for such events. We discuss the implications of our analysis for the electromagnetic follow-up of future LIGO event detections.

  11. Effective-one-body modeling of precessing black hole binaries

    Science.gov (United States)

    Taracchini, Andrea; Babak, Stanislav; Buonanno, Alessandra

    2016-03-01

    Merging black hole binaries with generic spins that undergo precessional motion emit complicated gravitational-wave signals. We discuss how such waveforms can be accurately modeled within an effective-one-body approach by (i) exploiting the simplicity of the signals in a frame that corotates with the orbital plane of the binary and (ii) relying on an accurate model of nonprecessing black hole binaries. The model is validated by extensive comparisons to 70 numerical relativity simulations of precessing black hole binaries and can generate inspiral-merger-ringdown waveforms for mass ratios up to 100 and any spin configuration. This work is an essential tool for studying and characterizing candidate gravitational-wave events in science runs of advanced LIGO.

  12. How black holes get their kicks: Radiation recoil in binary black hole mergers

    CERN Document Server

    Hughes, S A; Holz, D E; Hughes, Scott A.; Favata, Marc; Holz, Daniel E.

    2004-01-01

    Gravitational waves from the coalescence of binary black holes carry linear momentum, causing center of mass recoil. This ``radiation rocket'' has important implications for systems with escape speeds of order the recoil velocity. We describe new recoil calculations using high precision black hole perturbation theory to estimate the magnitude of the recoil for the slow ``inspiral'' coalescence phase; coupled with a cruder calculation for the final ``plunge'', we estimate the total recoil imparted to a merged black hole. We find that velocities of many tens to a few hundred km/sec can be achieved fairly easily. The recoil probably never exceeds about 500 km/sec.

  13. Binary Black Hole merger in f(R) theory

    CERN Document Server

    Cao, Zhoujian; Li, Li-Fang

    2016-01-01

    In the near future, gravitational wave detection is set to become an important observational tool for astrophysics. It will provide us with an excellent means to distinguish different gravitational theories. In effective form, many gravitational theories can be cast into an f(R) theory. In this article, we study the dynamics and gravitational waveform of an equal-mass binary black hole system in f(R) theory. We reduce the equations of motion in f(R) theory to the Einstein-Klein-Gordon coupled equations. In this form, it is straightforward to modify our existing numerical relativistic codes to simulate binary black hole mergers in f(R) theory. We considered binary black holes surrounded by a shell of scalar field. We solve the initial data numerically using the Olliptic code. The evolution part is calculated using the extended AMSSNCKU code. Both codes were updated and tested to solve the problem of binary black holes in f(R) theory. Our results show that the binary black hole dynamics in f(R) theory is more c...

  14. Properties of the Binary Black Hole Merger GW150914.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van der Sluys, M V; van Heijningen, J V; Vañó-Viñuales, A; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Brügmann, B; Campanelli, M; Clark, M; Hamberger, D; Kidder, L E; Kinsey, M; Laguna, P; Ossokine, S; Scheel, M A; Szilagyi, B; Teukolsky, S; Zlochower, Y

    2016-06-17

    On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be black hole of mass 62_{-4}^{+4}M_{⊙} and spin 0.67_{-0.07}^{+0.05}. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

  15. What can we learn about black-hole formation from black-hole X-ray binaries?

    OpenAIRE

    Nelemans, G.

    2004-01-01

    I discuss the effect of the formation of a black hole on a (close) binary and show some of the current constraints that the observed properties of black hole X-ray binaries put on the formation of black holes. In particular I discuss the evidence for and against asymmetric kicks imparted on the black hole at formation and find contradicting answers, as there seems to be evidence for kick for individual systems and from the Galactic $z$-distribution of black hole X-ray binaries, but not from t...

  16. Mergers of nonspinning black-hole binaries: Gravitational radiation characteristics

    OpenAIRE

    Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; van Meter, James R.

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of nonspinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an ...

  17. Precessional Instability in Binary Black Holes with Aligned Spins.

    Science.gov (United States)

    Gerosa, Davide; Kesden, Michael; O'Shaughnessy, Richard; Klein, Antoine; Berti, Emanuele; Sperhake, Ulrich; Trifirò, Daniele

    2015-10-01

    Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations are unstable to precession to large misalignment when the binary separation r is between the values r(ud±)=(√(χ(1))±√(qχ(2)))(4)(1-q)(-2)M, where M is the total mass, q≡m(2)/m(1) is the mass ratio, and χ(1) (χ(2)) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes. PMID:26551802

  18. precession: Dynamics of spinning black-hole binaries with python

    Science.gov (United States)

    Gerosa, Davide; Kesden, Michael

    2016-06-01

    We present the numerical code precession, a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave-driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulas obtained from numerical-relativity simulations. precession is a ready-to-use tool to add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation. precession provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where they become detectable, thus linking gravitational-wave observations of spinning black-hole binaries to their astrophysical formation history. The code is also a useful tool to compute initial parameters for numerical-relativity simulations targeting specific precessing systems. precession can be installed from the python Package Index, and it is freely distributed under version control on github, where further documentation is provided.

  19. Electromagnetic Luminosity of the Coalescence of Charged Black Hole Binaries

    CERN Document Server

    Liebling, Steven L

    2016-01-01

    The observation of a possible electromagnetic counterpart by the Fermi GBM group to the aLIGO detection of the merger of a black hole binary has spawned a number of ideas about its source. Furthermore, observations of fast radio bursts (FRBs) have similarly resulted in a range of new models that might endow black hole binaries with electromagnetic signatures. In this context, even the unlikely idea that astrophysical black holes may have significant charge is worth exploring, and here we present results from the simulation of weakly charged black holes as they orbit and merge. Our simulations suggest that a black hole binary with mass comparable to that observed in GW150914 could produce the level of electromagnetic luminosity observed by Fermi GBM ($10^{49}$ ergs/s) with a non-dimensional charge of $q \\equiv Q/M = 10^{-4}$ assuming good radiative efficiency. However even a charge such as this is difficult to imagine avoiding neutralization long enough for the binary to produce its electromagnetic counterpart...

  20. Precessional Instability in Binary Black Holes with Aligned Spins.

    Science.gov (United States)

    Gerosa, Davide; Kesden, Michael; O'Shaughnessy, Richard; Klein, Antoine; Berti, Emanuele; Sperhake, Ulrich; Trifirò, Daniele

    2015-10-01

    Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been test beds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is antialigned. Spins in these configurations are unstable to precession to large misalignment when the binary separation r is between the values r(ud±)=(√(χ(1))±√(qχ(2)))(4)(1-q)(-2)M, where M is the total mass, q≡m(2)/m(1) is the mass ratio, and χ(1) (χ(2)) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near the merger. We describe the origin and nature of the instability using recently developed analytical techniques to characterize fully generic spin precession. This instability provides a channel to circumvent astrophysical spin alignment at large binary separations, allowing significant spin precession prior to merger affecting both gravitational-wave and electromagnetic signatures of stellar-mass and supermassive binary black holes.

  1. Accretion Disks Around Binary Black Holes: A Quasistationary Model

    CERN Document Server

    Liu, Yuk Tung

    2010-01-01

    Tidal torques acting on a gaseous accretion disk around a binary black hole can create a gap in the disk near the orbital radius. At late times, when the binary inspiral timescale due to gravitational wave emission becomes shorter than the viscous timescale in the disk, the binary decouples from the disk and eventually merges. Prior to decoupling the balance between tidal and viscous torques drives the disk to a quasistationary equilibrium state, perturbed slightly by small amplitude, spiral density waves emanating from the edges of the gap. We consider a black hole binary with a companion of smaller mass and construct a simple Newtonian model for a geometrically thin, Keplerian disk in the orbital plane of the binary. We solve the disk evolution equations in steady state to determine the quasistationary, (orbit-averaged) surface density profile prior to decoupling. We use our solution, which is analytic up to simple quadratures, to compute the electromagnetic flux and approximate radiation spectrum during th...

  2. Unstable flip-flopping spinning binary black holes

    Science.gov (United States)

    Lousto, Carlos O.; Healy, James

    2016-06-01

    We provide a unified description of the flip-flop and the antialignment instability effects in spinning black hole binaries in terms of real and imaginary flip-flop frequencies. We find that this instability is only effective for mass ratios 0.5 binary black holes and it is relevant for their astrophysical modeling and final recoil computations.

  3. Geometry of deformed black holes. I. Majumdar-Papapetrou binary

    Science.gov (United States)

    Semerák, O.; Basovník, M.

    2016-08-01

    Although black holes are eminent manifestations of very strong gravity, the geometry of space-time around and even inside them can be significantly affected by additional bodies present in their surroundings. We study such an influence within static and axially symmetric (electro)vacuum space-times described by exact solutions of Einstein's equations, considering astrophysically motivated configurations (such as black holes surrounded by rings) as well as those of pure academic interest (such as specifically "tuned" systems of multiple black holes). The geometry is represented by the simplest invariants determined by the metric (the lapse function) and its gradient (gravitational acceleration), with special emphasis given to curvature (the Kretschmann and Ricci-square scalars). These quantities are analyzed and their level surfaces plotted both above and below the black-hole horizons, in particular near the central singularities. Estimating that the black hole could be most strongly affected by the other black hole, we focus, in this first paper, on the Majumdar-Papapetrou solution for a binary black hole and compare the deformation caused by "the other" hole (and the electrostatic field) with that induced by rotational dragging in the well-known Kerr and Kerr-Newman solutions.

  4. Observation of Gravitational Waves from a Binary Black Hole Merger.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-02-12

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger. PMID:26918975

  5. Observation of Gravitational Waves from a Binary Black Hole Merger.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Da Silva Costa, C F; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Gleason, J R; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Greenhalgh, R J S; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heefner, J; Heidmann, A; Heintze, M C; Heinzel, G; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacobson, M B; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Keppel, D G; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Koranda, S; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J H; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Ramet, C R; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, G H; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shaffer, T; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, M R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Waldman, S J; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, H; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Willems, P A; Williams, L; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-02-12

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

  6. Testing general relativity using golden black-hole binaries

    CERN Document Server

    Ghosh, Abhirup; Johnson-McDaniel, Nathan K; Mishra, Chandra Kant; Ajith, Parameswaran; Del Pozzo, Walter; Nichols, David A; Chen, Yanbei; Nielsen, Alex B; Berry, Christopher P L; London, Lionel

    2016-01-01

    The coalescences of stellar-mass black-hole binaries through their inspiral, merger, and ringdown are among the most promising sources for ground-based gravitational-wave (GW) detectors. If a GW signal is observed with sufficient signal-to-noise ratio, the masses and spins of the black holes can be estimated from just the inspiral part of the signal. Using these estimates of the initial parameters of the binary, the mass and spin of the final black hole can be uniquely predicted making use of general-relativistic numerical simulations. In addition, the mass and spin of the final black hole can be independently estimated from the merger-ringdown part of the signal. If the binary black hole dynamics is correctly described by general relativity, these independent estimates have to be consistent with each other. We present a Bayesian implementation of such a test of general relativity, and outline the expected constraints from upcoming GW observations using the second-generation of ground-based GW detectors.

  7. Understanding the "antikick" in the merger of binary black holes.

    Science.gov (United States)

    Rezzolla, Luciano; Macedo, Rodrigo P; Jaramillo, José Luis

    2010-06-01

    The generation of a large recoil velocity from the inspiral and merger of binary black holes represents one of the most exciting results of numerical-relativity calculations. While many aspects of this process have been investigated and explained, the "antikick," namely, the sudden deceleration after the merger, has not yet found a simple explanation. We show that the antikick can be understood in terms of the radiation from a deformed black hole where the anisotropic curvature distribution on the horizon correlates with the direction and intensity of the recoil. Our analysis is focused on Robinson-Trautman spacetimes and allows us to measure both the energies and momenta radiated in a gauge-invariant manner. At the same time, this simpler setup provides the qualitative and quantitative features of merging black holes, opening the way to a deeper understanding of the nonlinear dynamics of black-hole spacetimes. PMID:20867159

  8. Spinning, Precessing, Black Hole Binary Spacetime via Asymptotic Matching

    CERN Document Server

    Nakano, Hiroyuki; Campanelli, Manuela; West, Eric J

    2016-01-01

    We briefly discuss a method to construct a global, analytic, approximate spacetime for precessing, spinning binary black holes. The spacetime construction is broken into three parts: the inner zones are the spacetimes close to each black hole, and are approximated by perturbed Kerr solutions; the near zone is far from the two black holes, and described by the post-Newtonian metric; and finally the wave (far) zone, where retardation effects need to be taken into account, is well modeled by the post-Minkowskian metric. These individual spacetimes are then stitched together using asymptotic matching techniques to obtain a global solution that approximately satisfies the Einstein field equations. Precession effects are introduced by rotating the black hole spin direction according to the precessing equations of motion, in a way that is consistent with the global spacetime construction.

  9. Massive Black Hole Binary Mergers in Dynamical Galactic Environments

    CERN Document Server

    Kelley, Luke Zoltan; Hernquist, Lars

    2016-01-01

    Gravitational Waves (GW) have now been detected from stellar-mass black hole binaries, and the first observations of GW from Massive Black Hole (MBH) Binaries are expected within the next decade. Pulsar Timing Arrays (PTA), which can measure the years long periods of GW from MBHB, have excluded many standard predictions for the amplitude of a stochastic GW Background (GWB). We use coevolved populations of MBH and galaxies from hydrodynamic, cosmological simulations ('Illustris') to calculate a predicted GWB. The most advanced predictions so far have included binary hardening mechanisms from individual environmental processes. We present the first calculation including all of the environmental mechanisms expected to be involved: dynamical friction, stellar 'loss-cone' scattering, and viscous drag from a circumbinary disk. We find that MBH binary lifetimes are generally multiple gigayears, and only a fraction coalesce by redshift zero. For a variety of parameters, we find all GWB amplitudes to be below the most...

  10. Properties of the Binary Black Hole Merger GW150914

    OpenAIRE

    Abbott, B.P.; Abbott, R.; Abernathy, M. R.; Adhikari, R. X; Anderson, S. B.; Arai, K; Araya, M. C.; Barayoga, J. C.; Barish, B. C.; Berger, B. K.; Billingsley, G.; Blackburn, J. K.; Bork, R.; Brooks, A. F.; Cahillane, C.

    2016-01-01

    On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36^(+5...

  11. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers

    OpenAIRE

    Mandic, Vuk; Bird, Simeon; Cholis, Ilias

    2016-01-01

    Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the universe and compare it to the similar background spectrum due to binary black hole systems of stellar origi...

  12. High-frequency QPO in black hole binaries (Belloni+, 2012)

    NARCIS (Netherlands)

    Belloni, T. M.; Sanna, A.; Mendez, M.

    2013-01-01

    We selected all RXTE observations of known transient black hole binaries available in the archive from the start of the mission until MJD 55601 (2011 February 9), concentrating on the data from the Proportional Counter Array (PCA) instrument. We analysed 22 sources, for a total of 7108 observations.

  13. Long Term Evolution of Massive Black Hole Binaries

    CERN Document Server

    Milosavljevic, M; Milosavljevic, Milos; Merritt, David

    2003-01-01

    The long-term evolution of massive black hole binaries at the centers of galaxies is studied in a variety of physical regimes, with the aim of resolving the ``final parsec problem,'' i.e. how black hole binaries manage to shrink to separations at which emission of gravity waves becomes efficient. A binary ejects stars by the gravitational slingshot and carves out a loss cone in the host galaxy. Continued decay of the binary requires a refilling of the loss cone. We show that the standard treatment of loss cone refilling, derived for collisionally relaxed systems like globular clusters, can substantially underestimate the refilling rates in galactic nuclei. We derive expressions for non-equilibrium loss-cone dynamics and calculate time scales for the decay of massive black hole binaries following galaxy mergers, obtaining significantly higher decay rates than heretofore. Even in the absence of two-body relaxation, decay of binaries can persist due to repeated ejection of stars returning to the nucleus on eccen...

  14. On the origin of black hole spin in high-mass black hole binaries: Cygnus X-1

    CERN Document Server

    Axelsson, Magnus; Davies, Melvyn B; Levan, Andrew J; Ryde, Felix

    2010-01-01

    To date, there have been several detections of high-mass black hole binaries in both the Milky Way and other galaxies. For some of these, the spin parameter of the black hole has been estimated. As many of these systems are quite tight, a suggested origin of the spin is angular momentum imparted by the synchronous rotation of the black hole progenitor with its binary companion. Using Cygnus X-1, the best studied high-mass black hole binary, we investigate this possibility. We find that such an origin of the spin is not likely, and our results point rather to the spin being the result of processes during the collapse.

  15. Galaxy Rotation and Rapid Supermassive Black Hole Binary Coalescence

    CERN Document Server

    Holley-Bockelmann, Kelly

    2015-01-01

    During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form a supermassive black hole binary; this binary can eject stars via 3-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone -- this is the well-known final parsec problem. However it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N larger than 500K, we find that the evolution of the SMBH binary is convergent, and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co...

  16. Black-Hole Binaries, Gravitational Waves, and Numerical Relativity

    Science.gov (United States)

    Kelly, Bernard J.; Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.

    2010-01-01

    Understanding the predictions of general relativity for the dynamical interactions of two black holes has been a long-standing unsolved problem in theoretical physics. Black-hole mergers are monumental astrophysical events ' releasing tremendous amounts of energy in the form of gravitational radiation ' and are key sources for both ground- and spacebased gravitational wave detectors. The black-hole merger dynamics and the resulting gravitational waveforms can only he calculated through numerical simulations of Einstein's equations of general relativity. For many years, numerical relativists attempting to model these mergers encountered a host of problems, causing their codes to crash after just a fraction of a binary orbit cnuld be simulated. Recently ' however, a series of dramatic advances in numerical relativity has ' for the first time, allowed stable / robust black hole merger simulations. We chronicle this remarkable progress in the rapidly maturing field of numerical relativity, and the new understanding of black-hole binary dynamics that is emerging. We also discuss important applications of these fundamental physics results to astrophysics, to gravitationalwave astronomy, and in other areas.

  17. Binary Black Hole Mergers, Gravitational Waves, and LISA

    Science.gov (United States)

    Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; van Meter, J.

    2007-12-01

    The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks.” The magnitude of these kicks has bearing on the production and growth of supermassive blackholes during the epoch of structure formation, and on the retention of black holes in stellar clusters. This work was supported by NASA grant 06-BEFS06-19, and the simulations were carried out using Project Columbia at the NASA Advanced Supercomputing Division (Ames Research Center) and at the NASA Center for Computational Sciences (Goddard Space Flight Center).

  18. Evolution Of Binary Supermassive Black Holes In Rotating Nuclei

    CERN Document Server

    Rasskazov, Alexander

    2016-01-01

    Interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary's orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary's orbital eccentricity as well. We present a general treatment of this problem based on the Fokker-Planck equation for f, defined as the probability distribution for the binary's orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker-Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: 1) the orientation of the binar...

  19. Unstable flip-flopping spinning binary black holes

    CERN Document Server

    Lousto, Carlos O

    2016-01-01

    We give a unified description of the flip-flop effect in spinning binary black holes and the anti-alignment instability in terms of real and imaginary flip-flop frequencies. We find that this instability is only effective for mass ratios $0.5binary black holes and it is relevant for astrophysical modeling and final recoil computations of such binary systems.

  20. Dynamic fisheye grids for binary black hole simulations

    International Nuclear Information System (INIS)

    We present a new warped gridding scheme adapted to simulating gas dynamics in binary black hole spacetimes. The grid concentrates grid points in the vicinity of each black hole to resolve the smaller scale structures there, and rarefies grid points away from each black hole to keep the overall problem size at a practical level. In this respect, our system can be thought of as a ‘double’ version of the fisheye coordinate system, used before in numerical relativity codes for evolving binary black holes. The gridding scheme is constructed as a mapping between a uniform coordinate system—in which the equations of motion are solved—to the distorted system representing the spatial locations of our grid points. Since we are motivated to eventually use this system for circumbinary disc calculations, we demonstrate how the distorted system can be constructed to asymptote to the typical spherical polar coordinate system, amenable to efficiently simulating orbiting gas flows about central objects with little numerical diffusion. We discuss its implementation in the Harm3d code, tailored to evolve the magnetohydrodynamics equations in curved spacetimes. We evaluate the performance of the system’s implementation in Harm3d with a series of tests, such as the advected magnetic field loop test, magnetized Bondi accretion, and evolutions of hydrodynamic discs about a single black hole and about a binary black hole. Like we have done with Harm3d, this gridding scheme can be implemented in other unigrid codes as a (possibly) simpler alternative to adaptive mesh refinement. (paper)

  1. Growth of supermassive black holes, galaxy mergers and supermassive binary black holes

    CERN Document Server

    Komossa, S; Liu, F K

    2016-01-01

    The study of galaxy mergers and supermassive binary black holes (SMBBHs) is central to our understanding of the galaxy and black hole assembly and (co-)evolution at the epoch of structure formation and throughout cosmic history. Galaxy mergers are the sites of major accretion episodes, they power quasars, grow supermassive black holes (SMBHs), and drive SMBH-host scaling relations. The coalescing SMBBHs at their centers are the loudest sources of gravitational waves (GWs) in the universe, and the subsequent GW recoil has a variety of potential astrophysical implications which are still under exploration. Future GW astronomy will open a completely new window on structure formation and galaxy mergers, including the direct detection of coalescing SMBBHs, high-precision measurements of their masses and spins, and constraints on BH formation and evolution in the high-redshift universe.

  2. PRECESSION. Dynamics of spinning black-hole binaries with python

    CERN Document Server

    Gerosa, Davide

    2016-01-01

    We present the numerical code PRECESSION: a new open-source python module to study the dynamics of precessing black-hole binaries in the post-Newtonian regime. The code provides a comprehensive toolbox to (i) study the evolution of the black-hole spins along their precession cycles, (ii) perform gravitational-wave driven binary inspirals using both orbit-averaged and precession-averaged integrations, and (iii) predict the properties of the merger remnant through fitting formulae obtained from numerical-relativity simulations. PRECESSION is a ready-to-use tool to add the black-hole spin dynamics to larger-scale numerical studies such as gravitational-wave parameter estimation codes, population synthesis models to predict gravitational-wave event rates, galaxy merger trees and cosmological simulations of structure formation. PRECESSION provides fast and reliable integration methods to propagate statistical samples of black-hole binaries from/to large separations where they form to/from small separations where t...

  3. Properties of the Binary Black Hole Merger GW150914.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van der Sluys, M V; van Heijningen, J V; Vañó-Viñuales, A; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Brügmann, B; Campanelli, M; Clark, M; Hamberger, D; Kidder, L E; Kinsey, M; Laguna, P; Ossokine, S; Scheel, M A; Szilagyi, B; Teukolsky, S; Zlochower, Y

    2016-06-17

    On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410_{-180}^{+160}  Mpc, corresponding to a redshift 0.09_{-0.04}^{+0.03} assuming standard cosmology. The source location is constrained to an annulus section of 610  deg^{2}, primarily in the southern hemisphere. The binary merges into a black hole of mass 62_{-4}^{+4}M_{⊙} and spin 0.67_{-0.07}^{+0.05}. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime. PMID:27367378

  4. Gravitational Radiation of Binaries Coalescence into Intermediate Mass Black Holes

    Institute of Scientific and Technical Information of China (English)

    李瑾; 仲元红; 潘宇

    2012-01-01

    This paper discusses the gravitation waveforms of binaries coalescence into intermediate mass black holes (about 30 times of the solar mass). We focus on the non-spinning intermediate mass black hole located less than 100 Mpc from earth. By comparing two simulation waveforms (effective one body numerical relativity waveform (EOBNR), phenomenological waveform), we discuss the relationship between the effective distance and frequency; and through analyzing large amounts of data in event, we find that the phenomenological waveform is much smoother than EOBNR waveform, and has higher accuracy at the same effective distance.

  5. Binary black hole late inspiral: Simulations for gravitational wave observations

    CERN Document Server

    Baker, J G; Choi, D I; Kelly, B J; Koppitz, M; McWilliams, S T; Van Meter, J R; Baker, John G.; Centrella, Joan; Choi, Dae-Il; Kelly, Bernard J.; Koppitz, Michael; Meter, James R. van; Williams, Sean T. Mc

    2006-01-01

    Coalescing binary black hole mergers are expected to be the strongest gravitational wave sources for ground-based interferometers, such as the LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Until recently it has been impossible to reliably derive the predictions of General Relativity for the final merger stage, which takes place in the strong-field regime. Recent progress in numerical relativity simulations is, however, revolutionizing our understanding of these systems. We examine here the specific case of merging equal-mass Schwarzschild black holes in detail, presenting new simulations in which the black holes start in the late inspiral stage on orbits with very low eccentricity and evolve for ~1200M through ~7 orbits before merging. We study the accuracy and consistency of our simulations and the resulting gravitational waveforms, which encompass ~14 cycles before merger, and highlight the importance of using frequency (rather than time) to set the physical reference when compari...

  6. Modeling gravitational radiation from coalescing binary black holes

    CERN Document Server

    Baker, J; Loustó, C O; Takahashi, R

    2002-01-01

    With the goal of bringing theory, particularly numerical relativity, to bear on an astrophysical problem of critical interest to gravitational wave observers we introduce a model for coalescence radiation from binary black hole systems. We build our model using the "Lazarus approach", a technique that bridges far and close limit approaches with full numerical relativity to solve Einstein equations applied in the truly nonlinear dynamical regime. We specifically study the post-orbital radiation from a system of equal-mass non-spinning black holes, deriving waveforms which indicate strongly circularly polarized radiation of roughly 3% of the system's total energy and 12% of its total angular momentum in just a few cycles. Supporting this result we first establish the reliability of the late-time part of our model, including the numerical relativity and close-limit components, with a thorough study of waveforms from a sequence of black hole configurations varying from previously treated head-on collisions to rep...

  7. Busting Up Binaries: Encounters Between Compact Binaries and a Supermassive Black Hole

    CERN Document Server

    Addison, Eric; Larson, Shane

    2015-01-01

    Given the stellar density near the galactic center, close encounters between compact object binaries and the supermassive black hole are a plausible occurrence. We present results from a numerical study of close to 13 million such encounters. Consistent with previous studies, we corroborate that, for binary systems tidally disrupted by the black hole, the component of the binary remaining bound to the hole has eccentricity ~ 0.97 and circularizes dramatically by the time it enters the classical LISA band. Our results also show that the population of surviving binaries merits attention. These binary systems experience perturbations to their internal orbital parameters with potentially interesting observational consequences. We investigated the regions of parameter space for survival and estimated the distribution of orbital parameters post-encounter. We found that surviving binaries harden and their eccentricity increases, thus accelerating their merger due gravitational radiation emission and increasing the p...

  8. Precessional instability in binary black holes with aligned spins

    CERN Document Server

    Gerosa, Davide; O'Shaughnessy, Richard; Klein, Antoine; Berti, Emanuele; Sperhake, Ulrich; Trifirò, Daniele

    2015-01-01

    Binary black holes on quasicircular orbits with spins aligned with their orbital angular momentum have been testbeds for analytic and numerical relativity for decades, not least because symmetry ensures that such configurations are equilibrium solutions to the spin-precession equations. In this work, we show that these solutions can be unstable when the spin of the higher-mass black hole is aligned with the orbital angular momentum and the spin of the lower-mass black hole is anti-aligned. Spins in these configurations are unstable to precession to large misalignment when the binary separation $r$ is between the values $r_{\\rm ud\\pm}= (\\sqrt{\\chi_1} \\pm \\sqrt{q \\chi_2})^4 (1-q)^{-2} M$, where $M$ is the total mass, $q \\equiv m_2/m_1$ is the mass ratio, and $\\chi_1$ ($\\chi_2$) is the dimensionless spin of the more (less) massive black hole. This instability exists for a wide range of spin magnitudes and mass ratios and can occur in the strong-field regime near merger. We describe the origin and nature of the i...

  9. Binary black hole shadows, chaotic scattering and the Cantor set

    CERN Document Server

    Shipley, Jake

    2016-01-01

    We investigate the qualitative features of binary black hole shadows using the model of two extremally charged black holes in static equilibrium (a Majumdar--Papapetrou solution). Our perspective is that binary spacetimes are natural exemplars of {\\it chaotic scattering}, because they admit more than one fundamental null orbit, and thus an uncountably-infinite set of perpetual orbits which generate scattering singularities in initial data. Inspired by the three-disc model, we develop an appropriate symbolic dynamics to describe planar null geodesics on the double black hole spacetime. We show that a one-dimensional (1D) black hole shadow may constructed through an iterative procedure akin to the construction of the Cantor set; thus the shadow is self-similar. Next, we study non-planar rays, to understand how angular momentum affects the existence and properties of the fundamental null orbits. Taking slices through 2D shadows, we observe three types of 1D shadow: regular, Cantor-like, and highly chaotic. The s...

  10. Results from Binary Black Hole Simulations in Astrophysics Applications

    Science.gov (United States)

    Baker, John G.

    2007-01-01

    Present and planned gravitational wave observatories are opening a new astronomical window to the sky. A key source of gravitational waves is the merger of two black holes. The Laser Interferometer Space Antenna (LISA), in particular, is expected to observe these events with signal-to-noise ratio's in the thousands. To fully reap the scientific benefits of these observations requires a detailed understanding, based on numerical simulations, of the predictions of General Relativity for the waveform signals. New techniques for simulating binary black hole mergers, introduced two years ago, have led to dramatic advances in applied numerical simulation work. Over the last two years, numerical relativity researchers have made tremendous strides in understanding the late stages of binary black hole mergers. Simulations have been applied to test much of the basic physics of binary black hole interactions, showing robust results for merger waveform predictions, and illuminating such phenomena as spin-precession. Calculations have shown that merging systems can be kicked at up to 2500 km/s by the thrust from asymmetric emission. Recently, long lasting simulations of ten or more orbits allow tests of post-Newtonian (PN) approximation results for radiation from the last orbits of the binary's inspiral. Already, analytic waveform models based PN techniques with incorporated information from numerical simulations may be adequate for observations with current ground based observatories. As new advances in simulations continue to rapidly improve our theoretical understanding of the systems, it seems certain that high-precision predictions will be available in time for LISA and other advanced ground-based instruments. Future gravitational wave observatories are expected to make precision.

  11. Black Hole - Neutron Star Binary Simulations at Georgia Tech

    Science.gov (United States)

    Haas, Roland

    2009-05-01

    Mixed compact object binaries consisting of a black hole and a neutron star are expected to be not only one of the primary sources of gravitational radiation to be observed by interferometric detectors but also the central engine of short gamma-ray bursts. We report on the status of our effort at Georgia Tech to model these mixed binary systems using the moving puncture method. The results are obtained with an enhanced version our vacuum MayaKranc code coupled to the hydrodynamics Whisky code. We present preliminary results of gravitational waveforms and the disruption of the neutron star for simple polytropic equations of state.

  12. ASTRONOMICAL PLATE ARCHIVES AND SUPERMASSIVE BLACK HOLE BINARIES

    Directory of Open Access Journals (Sweden)

    René Hudec

    2013-12-01

    Full Text Available The recent extensive digitisation of astronomical photographic plate archives, the development of new dedicated software and the use of powerful computers have for the first time enabled effective data mining in extensive plate databases, with wide applications in various fields of recent astrophysics. As an example, analyses of supermassive binary black holes (binary blazars require very long time intervals (50 years and more, which cannot be provided by other data sources. Examples of data obtained from data mining in plate archives are presented and briefly discussed.

  13. Distinguishing between Formation Channels for Binary Black Holes with LISA

    Science.gov (United States)

    Breivik, Katelyn; Rodriguez, Carl L.; Larson, Shane L.; Kalogera, Vassiliki; Rasio, Frederic A.

    2016-10-01

    The recent detections of GW150914 and GW151226 imply an abundance of stellar-mass binary black hole (BBH) mergers in the local universe. While ground-based gravitational wave detectors are limited to observing the final moments before a binary merges, space-based detectors, such as the Laser Interferometer Space Antenna (LISA), can observe binaries at lower orbital frequencies where such systems may still encode information about their formation histories. In particular, the orbital eccentricity and mass of BBHs in the LISA frequency band can be used together to discriminate between binaries formed in isolation in galactic fields and those formed in dense stellar environments such as globular clusters. In this letter, we explore the orbital eccentricity and mass of BBH populations as they evolve through the LISA frequency band. Overall we find that there are two distinct populations discernible by LISA. We show that up to ∼ 90 % of binaries formed either dynamically or in isolation have eccentricities that are measurable with LISA. Finally, we note how measured eccentricities of low-mass BBHs evolved in isolation could provide detailed constraints on the physics of black hole natal kicks and common-envelope evolution.

  14. Pulsar-Black Hole Binaries in the Galactic Center

    CERN Document Server

    Faucher-Giguere, C -A

    2010-01-01

    Binaries consisting of a pulsar and a black hole (BH) are a holy grail of astrophysics, both for their significance for stellar evolution and for their potential application as probes of strong gravity. In spite of extensive surveys of our Galaxy and its system of globular clusters, no pulsar-black hole (PSR-BH) binary has been found to date. Clues as to where such systems might exist are therefore highly desirable. We show that if the central parsec around Sgr A* harbors a cluster of ~25,000 stellar BHs (as predicted by mass segregation arguments) and if it is also rich in recycled pulsar binaries (by analogy with globular clusters), then 3-body exchange interactions should produce PSR-BHs in the Galactic center. Simple estimates of the formation rate and survival time of these binaries suggest that a few PSR-BHs should be present in the central parsec today. The proposed formation mechanism makes unique predictions for the PSR-BH properties: 1) the binary would reside within ~1 pc of Sgr A*; 2) the pulsar w...

  15. Tidal disruption events from supermassive black hole binaries

    CERN Document Server

    Coughlin, Eric R; Nixon, Chris; Begelman, Mitchell C

    2016-01-01

    We investigate the pre-disruption gravitational dynamics and post-disruption hydrodynamics of the tidal disruption of stars by supermassive black hole (SMBH) binaries. We focus on binaries with relatively low mass primaries ($10^6M_{\\odot}$), moderate mass ratios, and separations with reasonably long gravitational wave inspiral times (tens of Myr). First, we generate a large ensemble (between 1 and 10 million) of restricted three-body integrations to quantify the statistical properties of tidal disruptions by circular SMBH binaries of initially-unbound stars. Compared to the reference case of a disruption by a single SMBH, the binary potential induces significant variance into the specific energy and angular momentum of the star at the point of disruption. Second, we use Newtonian numerical hydrodynamics to study the detailed evolution of the fallback debris from 120 disruptions randomly selected from the three-body ensemble (excluding only the most deeply penetrating encounters). We find that the overall mor...

  16. Binary black hole shadows, chaotic scattering and the Cantor set

    Science.gov (United States)

    Shipley, Jake O.; Dolan, Sam R.

    2016-09-01

    We investigate the qualitative features of binary black hole shadows using the model of two extremally charged black holes in static equilibrium (a Majumdar–Papapetrou solution). Our perspective is that binary spacetimes are natural exemplars of chaotic scattering, because they admit more than one fundamental null orbit, and thus an uncountably infinite set of perpetual null orbits which generate scattering singularities in initial data. Inspired by the three-disc model, we develop an appropriate symbolic dynamics to describe planar null geodesics on the double black hole spacetime. We show that a one-dimensional (1D) black hole shadow may be constructed through an iterative procedure akin to the construction of the Cantor set; thus the 1D shadow is self-similar. Next, we study non-planar rays, to understand how angular momentum affects the existence and properties of the fundamental null orbits. Taking slices through 2D shadows, we observe three types of 1D shadow: regular, Cantor-like, and highly chaotic. The switch from Cantor-like to regular occurs where outer fundamental orbits are forbidden by angular momentum. The highly chaotic part is associated with an unexpected feature: stable and bounded null orbits, which exist around two black holes of equal mass M separated by {a}1\\lt a\\lt \\sqrt{2}{a}1, where {a}1=4M/\\sqrt{27}. To show how this possibility arises, we define a certain potential function and classify its stationary points. We conjecture that the highly chaotic parts of the 2D shadow possess the Wada property. Finally, we consider the possibility of following null geodesics through event horizons, and chaos in the maximally extended spacetime.

  17. Binary black hole shadows, chaotic scattering and the Cantor set

    Science.gov (United States)

    Shipley, Jake O.; Dolan, Sam R.

    2016-09-01

    We investigate the qualitative features of binary black hole shadows using the model of two extremally charged black holes in static equilibrium (a Majumdar-Papapetrou solution). Our perspective is that binary spacetimes are natural exemplars of chaotic scattering, because they admit more than one fundamental null orbit, and thus an uncountably infinite set of perpetual null orbits which generate scattering singularities in initial data. Inspired by the three-disc model, we develop an appropriate symbolic dynamics to describe planar null geodesics on the double black hole spacetime. We show that a one-dimensional (1D) black hole shadow may be constructed through an iterative procedure akin to the construction of the Cantor set; thus the 1D shadow is self-similar. Next, we study non-planar rays, to understand how angular momentum affects the existence and properties of the fundamental null orbits. Taking slices through 2D shadows, we observe three types of 1D shadow: regular, Cantor-like, and highly chaotic. The switch from Cantor-like to regular occurs where outer fundamental orbits are forbidden by angular momentum. The highly chaotic part is associated with an unexpected feature: stable and bounded null orbits, which exist around two black holes of equal mass M separated by {a}1\\lt a\\lt \\sqrt{2}{a}1, where {a}1=4M/\\sqrt{27}. To show how this possibility arises, we define a certain potential function and classify its stationary points. We conjecture that the highly chaotic parts of the 2D shadow possess the Wada property. Finally, we consider the possibility of following null geodesics through event horizons, and chaos in the maximally extended spacetime.

  18. Observing Mergers of Nonspinning Black Hole Binaries with LISA

    Science.gov (United States)

    McWilliams S.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly Bernard J.; Thorpe, J. Ira; vanMeter, James R.

    2008-01-01

    Recent advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black hole coalescence. We present the application of nonspinning numerical relativity waveforms to the search for and precision measurement of black hole binary coalescences using LISA. In particular, we focus on the advances made in moving beyond the equal mass, nonspinning case into other regions of parameter space, focusing on the case of nonspinning holes with ever-increasing mass ratios. We analyze the available unequal mass merger waveforms from numerical relativity, and compare them to two models, both of which use an effective one body treatment of the inspiral, but which use fundamentally different approaches to the treatment of the merger-ringdown. We confirm the expected mass ratio scaling of the merger, and investigate the changes in waveform behavior and their observational impact with changing mass ratio. Finally, we investigate the potential contribution from the merger portion of the waveform to measurement uncertainties of the binary's parameters for the unequal mass case.

  19. Modeling AGN outbursts from supermassive black hole binaries

    Directory of Open Access Journals (Sweden)

    Tanaka T.

    2012-12-01

    Full Text Available When galaxies merge to assemble more massive galaxies, their nuclear supermassive black holes (SMBHs should form bound binaries. As these interact with their stellar and gaseous environments, they will become increasingly compact, culminating in inspiral and coalescence through the emission of gravitational radiation. Because galaxy mergers and interactions are also thought to fuel star formation and nuclear black hole activity, it is plausible that such binaries would lie in gas-rich environments and power active galactic nuclei (AGN. The primary difference is that these binaries have gravitational potentials that vary – through their orbital motion as well as their orbital evolution – on humanly tractable timescales, and are thus excellent candidates to give rise to coherent AGN variability in the form of outbursts and recurrent transients. Although such electromagnetic signatures would be ideally observed concomitantly with the binary’s gravitational-wave signatures, they are also likely to be discovered serendipitously in wide-field, high-cadence surveys; some may even be confused for stellar tidal disruption events. I discuss several types of possible “smoking gun” AGN signatures caused by the peculiar geometry predicted for accretion disks around SMBH binaries.

  20. Properties of the binary black hole merger GW150914

    CERN Document Server

    ,

    2016-01-01

    On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterise the properties of the source and its parameters. The data around the time of the event were analysed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of $36^{+5}_{-4} M_\\odot$ and $29^{+4}_{-4} M_\\odot$ (for each parameter we report the median value and the range of the 90% credible interval). The dimensionless spin magnitude of the more massive black hole is bound to be $0.7$ (at 90% probability). The luminosity distance to the source is $410^{+160}_{-180}$ Mpc, corresponding to a redshift $0.09^{+0.03}_{-0.04}$ assuming standard cosmology. The source location is constrained to an annulus section of $590$ deg$^2$, primarily in the southern hemisphere. The binary merges into a black h...

  1. Gravitational-wave modes from precessing black-hole binaries

    CERN Document Server

    Boyle, Michael; Ossokine, Serguei; Pfeiffer, Harald P

    2014-01-01

    Gravitational waves from precessing black-hole binaries exhibit features that are absent in nonprecessing systems. The most prominent of these is a parity-violating asymmetry that beams energy and linear momentum preferentially along or opposite to the orbital angular momentum, leading to recoil of the binary. The asymmetry will appear as amplitude and phase modulations at the orbital frequency. For strongly precessing systems, it accounts for at least 3% amplitude modulation for binaries in the sensitivity band of ground-based gravitational-wave detectors, and can exceed 50% for massive systems. Such asymmetric features are also clearly visible when the waves are decomposed into modes of spin-weighted spherical harmonics, and are inherent in the waves themselves---rather than resulting from residual eccentricity in numerical simulations, or from mode-mixing due to precession. In particular, there is generically no instantaneous frame for which the mode decomposition will have any symmetry. We introduce a met...

  2. Coalescence of Black Hole-Neutron Star Binaries

    Directory of Open Access Journals (Sweden)

    Masaru Shibata

    2011-08-01

    Full Text Available We review the current status of general relativistic studies for the coalescence of black hole-neutron star (BH-NS binaries. First, procedures for a solution of BH-NS binaries in quasi-equilibrium circular orbits and the numerical results, such as quasi-equilibrium sequence and mass-shedding limit, of the high-precision computation, are summarized. Then, the current status of numerical-relativity simulations for the merger of BH-NS binaries is described. We summarize our understanding for the merger and/or tidal disruption processes, the criterion for tidal disruption, the properties of the remnant formed after the tidal disruption, gravitational waveform, and gravitational-wave spectrum.

  3. Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries

    CERN Document Server

    Mandel, Ilya

    2016-01-01

    We explore a newly proposed channel to create binary black holes of stellar origin. This scenario applies to massive, tight binaries where mixing induced by rotation and tides transports the products of hydrogen burning throughout the stellar envelopes. This slowly enriches the entire star with helium, preventing the build-up of an internal chemical gradient. The stars remain compact as they evolve nearly chemically homogeneously, eventually forming two black holes, which, we estimate, typically merge 4 to 11 Gyr after formation. Like other proposed channels, this evolutionary pathway suffers from significant theoretical uncertainties, but could be constrained in the near future by data from advanced ground-based gravitational-wave detectors. We perform Monte Carlo simulations of the expected merger rate over cosmic time to explore the implications and uncertainties. Our default model for this channel yields a local binary black hole merger rate of about $10$ Gpc$^{-3}$ yr$^{-1}$ at redshift $z=0$, peaking at...

  4. Binary black holes, gravitational waves, and numerical relativity

    Energy Technology Data Exchange (ETDEWEB)

    Centrella, Joan M [Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771 (United States); Baker, John G [Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771 (United States); Boggs, William D [University of Maryland, Department of Physics, College Park, MD 20742 (United States); Kelly, Bernard J [Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771 (United States); McWilliams, Sean T [University of Maryland, Department of Physics, College Park, MD 20742 (United States); Meter, James R van [Center for Space Science and Technology, University of Maryland Baltimore County, Physics Department, 1000 Hilltop Circle, Baltimore, MD 21250 (United States)

    2007-07-15

    The final merger of comparable mass binary black holes produces an intense burst of gravitational radiation and is one of the strongest sources for both ground-based and space-based gravitational wave detectors. Since the merger occurs in the strong-field dynamical regime of general relativity, numerical relativity simulations of the full Einstein equations in 3-D are required to calculate the resulting gravitational dynamics and waveforms. While this problem has been pursued for more than 30 years, the numerical codes have long been plagued by various instabilities and, overall, progress was incremental. Recently, however, dramatic breakthrough have occurred, resulting in robust simulations of merging black holes. In this paper, we examine these developments and the exciting new results that are emerging.

  5. Retrograde binaries of massive black holes in circum-binary accretion discs

    CERN Document Server

    Amaro-Seoane, Pau; Dotti, Massimo; Colpi, Monica

    2016-01-01

    We explore the hardening of a massive black hole binary embedded in a circum-binary gas disc when the binary and the gas are coplanar and the gas is counter-rotating. The secondary black hole, revolving in the direction opposite to the gas, experiences a drag from gas-dynamical friction and from direct accretion of part of it. Using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole which in turn affect the binary hardening and eccentricity evolution. We find that realistic accretion prescriptions lead to results that differ from those inferred assuming accretion of all the gas within the Roche Lobe of the secondary black hole. Different accretion prescriptions result in different disc's surface densities which alter the black hole's dynamics back. Full 3D SPH realizations of a number of representative cases, run over a shorter interval of time, validate the general trends observed in the less compu...

  6. On the rarity of double black hole binaries: consequences for gravitational-wave detection

    OpenAIRE

    Belczynski, Krzysztof; Taam, Ronald E.; Kalogera, Vassiliki; Rasio, Frederic A.; Bulik, Tomasz

    2006-01-01

    Double black hole binaries are among the most important sources of gravitational radiation for ground-based detectors such as LIGO or VIRGO. Even if formed with lower efficiency than double neutron star binaries, they could dominate the predicted detection rates, since black holes are more massive than neutron stars and therefore could be detected at greater distances. Here we discuss an evolutionary process that can very significantly limit the formation of close double black hole binaries: ...

  7. Inspiral of generic black hole binaries: spin, precession and eccentricity

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Janna; McWilliams, Sean T [Department of Physics and Astronomy, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027 (United States); Contreras, Hugo, E-mail: janna@astro.columbia.edu [Department of Physics, Columbia University, New York, NY 10027 (United States)

    2011-09-07

    Given the absence of observations of black hole binaries, it is critical that the full range of accessible parameter space be explored in anticipation of future observation with gravitational-wave detectors. To this end, we compile the Hamiltonian equations of motion describing the conservative dynamics of the most general black hole binaries and incorporate an effective treatment of dissipation through gravitational radiation, as computed by Will and collaborators. We evolve these equations for systems with orbital eccentricity and precessing spins. We find that, while spin-spin coupling corrections can destroy constant radius orbits in principle, the effect is so small that orbits will reliably tend to quasi-spherical orbits as angular momentum and energy are lost to gravitational radiation. Still, binaries that are initially highly eccentric may retain eccentricity as they pass into the detectable bandwidth of ground-based gravitational-wave detectors. We also show that a useful set of natural frequencies for an orbit demonstrating both spin precession and periastron precession is comprised of (1) the frequency of angular motion in the orbital plane, (2) the frequency of the plane precession and (3) the frequency of radial oscillations. These three natural harmonics shape the observed waveform.

  8. Statistical constraints on binary black hole inspiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Galley, Chad R; Herrmann, Frank; Silberholz, John; Tiglio, Manuel [Department of Physics, Center for Fundamental Physics, Center for Scientific Computation and Mathematical Modeling, Joint Space Institute, University of Maryland, College Park, MD 20742 (United States); Guerberoff, Gustavo, E-mail: tiglio@umd.ed [Facultad de IngenierIa, Instituto de Matematica y EstadIstica, ' Prof. Ing. Rafael Laguardia' , Universidad de la Republica, Montevideo (Uruguay)

    2010-12-21

    We perform a statistical analysis of binary black holes in the post-Newtonian approximation by systematically sampling and evolving the parameter space of initial configurations for quasi-circular inspirals. Through a principal component analysis of spin and orbital angular momentum variables, we systematically look for uncorrelated quantities and find three of them which are highly conserved in a statistical sense, both as functions of time and with respect to variations in initial spin orientations. For example, we find a combination of spin scalar products, 2S-circumflex{sub 1{center_dot}}S-circumflex{sub 2} + (S-circumflex{sub 1{center_dot}}L-circumflex) (S-circumflex{sub 2{center_dot}}L-circumflex), that is exactly conserved in time at the considered post-Newtonian order (including spin-spin and radiative effects) for binaries with equal masses and spin magnitudes evolving in a quasi-circular inspiral. We also look for and find the variables that account for the largest variations in the problem. We present binary black hole simulations of the full Einstein equations analyzing to what extent these results might carry over to the full theory in the inspiral and merger regimes. Among other applications these results should be useful both in semi-analytical and numerical building of templates of gravitational waves for gravitational wave detectors.

  9. Massive Black Hole Binary Mergers in Dynamical Galactic Environments

    Science.gov (United States)

    Kelley, Luke Zoltan; Blecha, Laura; Hernquist, Lars

    2016-10-01

    Gravitational Waves (GW) have now been detected from stellar-mass black hole binaries, and the first observations of GW from Massive Black Hole (MBH) Binaries are expected within the next decade. Pulsar Timing Arrays (PTA), which can measure the years long periods of GW from MBHB, have excluded many standard predictions for the amplitude of a stochastic GW Background (GWB). We use coevolved populations of MBH and galaxies from hydrodynamic, cosmological simulations ('Illustris') to calculate a predicted GWB. The most advanced predictions so far have included binary hardening mechanisms from individual environmental processes. We present the first calculation including all of the environmental mechanisms expected to be involved: dynamical friction, stellar `loss-cone' scattering, and viscous drag from a circumbinary disk. We find that MBH binary lifetimes are generally multiple gigayears, and only a fraction coalesce by redshift zero. For a variety of parameters, we find all GWB amplitudes to be below the most stringent PTA upper limit of A_yr^{-1} ≈ 10^{-15}. Our fairly conservative fiducial model predicts an amplitude of A_yr^{-1} ≈ 0.4× 10^{-15}. At lower frequencies, we find A_{0.1 yr^{-1} ≈ 1.5× 10^{-15} with spectral indices between -0.4 and -0.6-significantly flatter than the canonical value of -2/3 due to purely GW-driven evolution. Typical MBHB driving the GWB signal come from redshifts around 0.3, with total masses of a few times 109 M⊙, and in host galaxies with very large stellar masses. Even without GWB detections, our results can be connected to observations of dual AGN to constrain binary evolution.

  10. Recent Advances in the Numerical Simulations of Binary Black Holes

    CERN Document Server

    Marronetti, Pedro

    2011-01-01

    Since the breakthrough papers from 2005/2006, the field of numerical relativity has experienced a growth spurt that took the two-body problem in general relativity from the category of "really-hard-problems" to the realm of "things-we-know-how-to-do". Simulations of binary black holes in circular orbits, the holy grail of numerical relativity, are now tractable problems that lead to some of the most spectacular results in general relativity in recent years. We cover here some of the latest achievements and highlight the field's next challenges.

  11. Investigating Binary Black Hole Mergers with Principal Component Analysis

    CERN Document Server

    Clark, James; Healy, James; Heng, Ik Siong; Logue, Josh; Mangini, Nicholas; London, Lionel; Pekowsky, Larne; Shoemaker, Deirdre

    2014-01-01

    Despite recent progress in numerical simulations of the coalescence of binary black hole systems, highly asymmetric spinning systems and the construction of accurate physical templates remain challenging and computationally expensive. We explore the feasibility of a prompt and robust test of whether the signals exhibit evidence for generic features that can educate new simulations. We form catalogs of numerical relativity waveforms with distinct physical effects and compute the relative probability that a gravitational wave signal belongs to each catalog. We introduce an algorithm designed to perform this task for coalescence signals using principal component analysis of waveform catalogs and Bayesian model selection and demonstrate its effectiveness.

  12. Parameter estimates in binary black hole collisions using neural networks

    Science.gov (United States)

    Carrillo, M.; Gracia-Linares, M.; González, J. A.; Guzmán, F. S.

    2016-10-01

    We present an algorithm based on artificial neural networks (ANNs), that estimates the mass ratio in a binary black hole collision out of given gravitational wave (GW) strains. In this analysis, the ANN is trained with a sample of GW signals generated with numerical simulations. The effectiveness of the algorithm is evaluated with GWs generated also with simulations for given mass ratios unknown to the ANN. We measure the accuracy of the algorithm in the interpolation and extrapolation regimes. We present the results for noise free signals and signals contaminated with Gaussian noise, in order to foresee the dependence of the method accuracy in terms of the signal to noise ratio.

  13. Parameter estimates in binary black hole collisions using neural networks

    CERN Document Server

    Carrillo, M; González, J A; Guzmán, F S

    2016-01-01

    We present an algorithm based on artificial neural networks (ANNs), that estimates the mass ratio in a binary black hole collision out of given Gravitational Wave (GW) strains. In this analysis, the ANN is trained with a sample of GW signals generated with numerical simulations. The effectiveness of the algorithm is evaluated with GWs generated also with simulations for given mass ratios unknown to the ANN. We measure the accuracy of the algorithm in the interpolation and extrapolation regimes. We present the results for noise free signals and signals contaminated with Gaussian noise, in order to foresee the dependence of the method accuracy in terms of the signal to noise ratio.

  14. On the detectability of dual jets from binary black holes

    CERN Document Server

    Moesta, Philipp; Rezzolla, Luciano; Zanotti, Olindo; Palenzuela, Carlos

    2011-01-01

    We revisit the suggestion that dual jets can be produced during the inspiral and merger of supermassive black holes when these are immersed in a force-free plasma threaded by a uniform magnetic field. By performing independent calculations and by computing the electromagnetic emission in a way which is consistent with estimates using the Poynting flux, we show that a dual-jet structure is present but energetically subdominant with respect to a non-collimated and predominantly quadrupolar emission, which is similar to the one computed when the binary is in electrovacuum. While our findings set serious restrictions on the detectability of dual jets from coalescing binaries, they also increase the chances of detecting an EM counterpart from these systems.

  15. Spacelike gravitational radiation extraction from rotating binary black holes

    Science.gov (United States)

    Imbiriba, Breno C. O.

    2016-07-01

    We introduce an alternate method for gravitational radiation extraction for binary black hole mergers where we do not use a single extraction radius at the intermediate field region but instead use a whole spherical shell of three-dimensional (3D) data and continue its evolution using the linearized (Teukolsky) evolution to a final distant radiation extraction radius. We implement this using the Hahndol code for the 3D evolution, and use the “Lazarus” procedure to convert the numerical data into the linearized data. The final waveform is compatible with the ones obtained from the full 3D evolutions with some minor variations that require further study. In the process, we tested the “Lazarus” method with our numerical 3D implementation and gauges showing that even with the advanced gauges suitable for 3D rotating binary evolutions, we recover the same type of limited results obtained in the original work.

  16. Tidal Disruption Events by a Massive Black Hole Binary

    CERN Document Server

    Ricarte, Angelo; Dai, Lixin; Coppi, Paolo

    2015-01-01

    Massive black hole binaries (MBHBs) are a natural byproduct of galaxy mergers. Previous studies have shown that flares from stellar tidal disruption events (TDEs) are modified by the presence of a secondary perturber, causing interruptions in the light curve. We study the dynamics of TDE debris in the presence of a milliparsec-separated MBHB by integrating ballistic particle orbits in the time-varying potential of the binary. We find that gaps in the light curve appear when material misses the accretion radius on its first return to pericentre. Subsequent recurrences can be decomposed into "continuous" and "delayed" components, which exhibit different behaviour. We find that this potential can substantially alter the locations of stream self-intersections. When debris is confined to the plane, we find that close encounters with the secondary BH leave noticeable signatures on the fallback rate and can result in significant accretion onto the secondary BH. Tight, equal-mass MBHBs accrete equally, periodically t...

  17. Evolution of an Accretion Disk in Binary Black Hole Systems

    CERN Document Server

    Kimura, Shigeo S; Toma, Kenji

    2016-01-01

    We investigate evolution of an accretion disk in binary black hole (BBH) systems, the importance of which is now increasing due to its close relationship to possible electromagnetic counterparts of the gravitational waves (GWs) from mergers of BBHs. Perna et al. (2016) proposed a novel evolutionary scenario of an accretion disk in BBHs in which a disk eventually becomes "dead", i.e., the magnetorotational instability (MRI) becomes inactive. In their scenario, the dead disk survives until {\\it a few seconds before} the merger event. We improve the dead disk model and propose another scenario, taking account of effects of the tidal torque from the companion and the critical ionization degree for MRI activation more carefully. We find that the mass of the dead disk is much lower than that in the Perna's scenario. When the binary separation sufficiently becomes small, the tidal heating reactivates MRI and mass accretion onto the black hole (BH). We also find that this disk "revival" happens {\\it many years before...

  18. Illuminating Black Hole Binary Formation Channels with Spins in Advanced LIGO

    CERN Document Server

    Rodriguez, Carl L; Pankow, Chris; Kalogera, Vicky; Rasio, Frederic A

    2016-01-01

    The recent detections of the binary black hole mergers GW150914 and GW151226 have inaugurated the field of gravitational-wave astronomy. For the two main formation channels that have been proposed for these sources, isolated binary evolution in galactic fields and dynamical formation in dense star clusters, the predicted masses and merger rates overlap significantly, complicating any astrophysical claims that rely on measured masses alone. Here, we examine the distribution of spin- orbit misalignments expected for binaries from the field and from dense star clusters. Under standard assumptions for black-hole natal kicks, we find that black-hole binaries similar to GW150914 could be formed with significant spin-orbit misalignment only through dynamical processes. In particular, these heavy-black-hole binaries can only form with a significant spin-orbit anti-alignment in the dynamical channel. Our results suggest that future detections of merging black hole binaries with measurable spins will allow us to identi...

  19. Accuracy of Binary Black Hole Waveform Models for Advanced LIGO

    Science.gov (United States)

    Kumar, Prayush; Fong, Heather; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Chu, Tony; Brown, Duncan; Lovelace, Geoffrey; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; Simulating Extreme Spacetimes (SXS) Team

    2016-03-01

    Coalescing binaries of compact objects, such as black holes and neutron stars, are the primary targets for gravitational-wave (GW) detection with Advanced LIGO. Accurate modeling of the emitted GWs is required to extract information about the binary source. The most accurate solution to the general relativistic two-body problem is available in numerical relativity (NR), which is however limited in application due to computational cost. Current searches use semi-analytic models that are based in post-Newtonian (PN) theory and calibrated to NR. In this talk, I will present comparisons between contemporary models and high-accuracy numerical simulations performed using the Spectral Einstein Code (SpEC), focusing at the questions: (i) How well do models capture binary's late-inspiral where they lack a-priori accurate information from PN or NR, and (ii) How accurately do they model binaries with parameters outside their range of calibration. These results guide the choice of templates for future GW searches, and motivate future modeling efforts.

  20. Relativistic black hole-neutron star binaries in quasiequilibrium: effects of the black hole excision boundary condition

    OpenAIRE

    Taniguchi, Keisuke; Baumgarte, Thomas W.; Faber, Joshua A.; Shapiro, Stuart L.

    2007-01-01

    We construct new models of black hole-neutron star binaries in quasiequilibrium circular orbits by solving Einstein's constraint equations in the conformal thin-sandwich decomposition together with the relativistic equations of hydrostationary equilibrium. We adopt maximal slicing, assume spatial conformal flatness, and impose equilibrium boundary conditions on an excision surface (i.e., the apparent horizon) to model the black hole. In our previous treatment we adopted a "leading-order" appr...

  1. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.

    Science.gov (United States)

    Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A

    2015-07-31

    The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments. PMID:26274407

  2. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.

    Science.gov (United States)

    Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A

    2015-07-31

    The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.

  3. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    Science.gov (United States)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  4. The parameters of binary black hole system in PKS 1510-089

    Institute of Scientific and Technical Information of China (English)

    Li Juan; Fan Jun-Hui; Yuan Yu-Hai

    2007-01-01

    Observations of PKS 1510-089 indicate the existence of a deep flux minimum with a timescale of ~35 min and an interval of about 336±14 d. A binary black hole system is proposed to be at the nucleus of this object. The secondary black hole orbits around the primary black hole.The minimum is caused by the periodic eclipse of the primary black hole by the secondary black hole.Based on the observations of PKS 1510-089,we estimate the parameters of the binary black hole system.The masses for the primary and secondary black holes are 1.37×109M⊙(M⊙ is the solar mass) and 1.37×107M⊙,and the major axis for this pair being about 0.1 parsec(pc).

  5. Gravitational Radiation Characteristics of Nonspinning Black-Hole Binaries

    Science.gov (United States)

    Kelly, Barnard

    2008-01-01

    "We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source. applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the $\\ell = m$ modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model."

  6. Anatomy of the binary black hole recoil: A multipolar analysis

    CERN Document Server

    Schnittman, Jeremy D; van Meter, James R; Baker, John G; Boggs, William D; Centrella, Joan; Kelly, Bernard J; McWilliams, Sean T

    2007-01-01

    We present a multipolar analysis of the gravitational recoil computed in recent numerical simulations of binary black hole (BH) coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including l=4 are sufficient to accurately reproduce the final recoil velocity (within ~2%) and that only a few dominant modes contribute significantly to it (within ~5%). We describe how the relative amplitudes, and more importantly, the relative phases, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ringdown phases. We also find that the numerical results can be reproduced by an ``effective Newtonian'' formula for the multipole moments obtained by replacing the radial separation in the Newtonian formulae with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes (QNMs). Analytic formulae, obtained by expressin...

  7. Gravitational radiation characteristics of nonspinning black-hole binaries

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, B J; Baker, J G; Boggs, W D; Centrella, J M; Meter, J R van; McWilliams, S T, E-mail: bernard.j.kelly@nasa.go, E-mail: john.g.baker@nasa.go, E-mail: william.d.boggs@nasa.go, E-mail: joan.m.centrella@nasa.go, E-mail: james.r.vanmeter@nasa.go, E-mail: sean.t.mcwilliams@nasa.go [NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States)

    2009-03-01

    We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source, applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the l = m modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.

  8. Gravitational radiation characteristics of nonspinning black-hole binaries

    International Nuclear Information System (INIS)

    We present a detailed descriptive analysis of the gravitational radiation from binary mergers of non-spinning black holes, based on numerical relativity simulations of systems varying from equal-mass to a 6:1 mass ratio. Our analysis covers amplitude and phase characteristics of the radiation, suggesting a unified picture of the waveforms' dominant features in terms of an implicit rotating source, applying uniformly to the full wavetrain, from inspiral through ringdown. We construct a model of the late-stage frequency evolution that fits the l = m modes, and identify late-time relationships between waveform frequency and amplitude. These relationships allow us to construct a predictive model for the late-time waveforms, an alternative to the common practice of modelling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.

  9. Formation of optical lines in black-hole binaries

    CERN Document Server

    Wu, K; Johnston, H; Hunstead, R W; Wu, Kinwah; Soria, Roberto; Johnston, Helen; Hunstead, Richard

    2002-01-01

    The HI Balmer emission lines of black-hole binaries show double-peaked profiles during the high-soft state and the quiescent state. In the high-soft state the profiles are asymmetric with a stronger red peak, but the profiles are symmetric in the quiescent state. We suggest that in the high-soft state the emission lines originate from the temperature-inversion layer caused by irradiative heating of an optically thick accretion disk. Irradiative heating also causes the formation of a disk wind, which mildly absorbs the blue peak of the lines. The double-peaked lines seen in the quiescent state arise from an optically thin disk. In the absence of a disk wind, the lines are unabsorbed and so the symmetry of the line profiles is preserved.

  10. Observing Massive Black-hole Binaries With A Redesigned Lisa

    Science.gov (United States)

    McWilliams, Sean T.

    2012-01-01

    In response to recent events in NASA and ESA, which necessitate the redesign of the Laser Interferometer Space Antenna (LISA) to lower its cost, we present results of a design study that evaluates the impact of various redesigns on the study of massive black-hole binaries (MBHB). As a result of the shift in sensitivity towards higher frequencies in all of the redesigns, the final merger signal will be even more critical for characterizing the coalescence of MBHBs. We assess the achievable parameter accuracy of MBHB measurements with various redesign options, and how well we expect the final design choices to perform. We include spinning mergers with higher harmonics in our calculation, which was never previously included in LISA calculations, and highlights the need to include all of the available physics in order to recover any performance lost in the redesign.

  11. Black hole binary inspiral: Analysis of the plunge

    Science.gov (United States)

    Price, Richard H.; Nampalliwar, Sourabh; Khanna, Gaurav

    2016-02-01

    Binary black hole coalescence has its peak of gravitational-wave generation during the "plunge," the transition from quasicircular early motion to late quasinormal ringing (QNR). Although advances in numerical relativity have provided plunge waveforms, there is still no intuitive or phenomenological understanding of plunge comparable to that of the early and late stages. Here we make progress in developing such understanding by relying on insights of the linear mathematics of the particle perturbation model for the extreme mass limit. Our analysis, based on the Fourier-domain Green function, and a simple initial model, point to the crucial role played by the kinematics near the "light ring" (the circular photon orbit) in determining the plunge radiation and the excitation of QNR. That insight is then shown to successfully explain results obtained for particle motion in a Schwarzschild background.

  12. Black hole binary inspiral: Analysis of the plunge

    CERN Document Server

    Price, Richard H; Khanna, Gaurav

    2015-01-01

    Binary black hole coalescence has its peak of gravitational wave generation during the "plunge," the transition from quasicircular early motion to late quasinormal ringing. Although advances in numerical relativity have provided plunge waveforms, there is still no intuitive or phenomenological understanding of plungecomparable to that of the early and late stages. Here we make progress in developing such understanding by focusing on the excitation of quasinormal ringing (QNR) during the plunge. We rely on insights of the linear mathematics of the particle perturbation model for the extreme mass limit. Our analysis, based on the Fourier domain Green function, and a simple initial model, point to the crucial role played by the kinematics near the "light ring" (the circular photon orbit) in determining the excitation of QNR. That insight is then shown to successfully explain Schwarzschild QNR found with evolution codes. Lastly, a phenomenological explanation is given for the underlying importance of the light ri...

  13. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers

    CERN Document Server

    Mandic, Vuk; Cholis, Ilias

    2016-01-01

    Recent Advanced LIGO detections of binary black hole mergers have prompted multiple studies investigating the possibility that the heavy GW150914 binary system was of primordial origin, and hence could be evidence for dark matter in the form of black holes. We compute the stochastic background arising from the incoherent superposition of such primordial binary black hole systems in the universe and compare it to the similar background spectrum due to binary black hole systems of stellar origin. We investigate the possibility of detecting this background with future gravitational wave detectors, and discuss the possibility of using the stochastic gravitational-wave background measurement to constrain the dark matter component in the form of black holes.

  14. Gravitational waveforms for neutron star binaries from binary black hole simulations

    CERN Document Server

    Barkett, Kevin; Haas, Roland; Ott, Christian D; Bernuzzi, Sebastiano; Brown, Duncan A; Szilágyi, Béla; Kaplan, Jeffrey D; Lippuner, Jonas; Muhlberger, Curran D; Foucart, Francois; Duez, Matthew D

    2015-01-01

    Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of $<1$ radian over $\\sim 15$ orbits. The numerical phase accuracy ...

  15. Jet spectral breaks in black hole X-ray binaries

    CERN Document Server

    Russell, D M; Casella, P; Cantrell, A G; Chatterjee, R; Fender, R P; Gallo, E; Gandhi, P; Homan, J; Maitra, D; Miller-Jones, J C A; O'Brien, K; Shahbaz, T

    2012-01-01

    In X-ray binaries, compact jets are known to commonly radiate at radio to infrared frequencies, whereas at optical to gamma-ray energies, the contribution of the jet is debated. The total luminosity, and hence power of the jet is critically dependent on the position of the break in its spectrum, between optically thick (self-absorbed) and optically thin synchrotron emission. This break, or turnover, has been reported in just one black hole X-ray binary (BHXB) thus far, GX 339-4, and inferred via spectral fitting in two others, A0620-00 and Cyg X-1. Here, we collect a wealth of multiwavelength data from the outbursts of BHXBs during hard X-ray states, in order to search for jet breaks as yet unidentified in their spectral energy distributions. In particular, we report the direct detection of the jet break in the spectrum of V404 Cyg during its 1989 outburst, at nu_b = (1.8 +- 0.3) x 10^14 Hz (1.7 +- 0.2 microns). We increase the number of BHXBs with measured jet breaks from three to eight. Jet breaks are found...

  16. Observing mergers of non-spinning black-hole binaries

    CERN Document Server

    McWilliams, Sean T; Baker, John G

    2010-01-01

    Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied mass ratio on merger signal-to-noise ratios (SNRs) for several detectors, and compare our results with expectations from the test-mass limit. We note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our 1:1 (equal mass) and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This i...

  17. Observing Mergers of Non-Spinning Black-Hole Binaries

    Science.gov (United States)

    McWilliams, Sean T.; Boggs, William D.; Baker, John G.; Kelly, Bernard J.

    2010-01-01

    Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied m8BS ratio on merger signal-to-noise ratios (SNR) for several detectors, and compare our results with expectations from the test-mass limit. We note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our equal-mass and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This is an indicator of the amount of degeneracy in mass ratio for mergers of moderate mass ratio systems.

  18. Do floating orbits in extreme mass ratio binary black holes exist?

    CERN Document Server

    Kapadia, Shasvath J; Glampedakis, Kostas

    2013-01-01

    This paper examines the possibility of floating or non-decaying orbits for extreme mass ratio binary black holes. In the adiabatic approximation, valid in the extreme mass ratio case, if the orbital flux lost due to gravitational radiation reaction is compensated for by the orbital flux gained from the spins of the black holes via superradiant scattering (or, equivalently, tidal acceleration) the orbital decay would be stalled, causing the binary to "float". We show that this flux balance is not, in practice, possible for extreme mass ratio binary black holes with circular equatorial orbits; furthermore, adding eccentricity and inclination to the orbits will not significantly change this null result, thus ruling out the possibility of floating orbits for extreme mass ratio binary black holes. We also argue that binaries consisting of material bodies dense and massive enough to generate gravitational waves detectable by any kind of gravitational wave detector are also unlikely to float. Using a multipolar anal...

  19. Probing the Galactic Binary Black Hole Spin with Photon Timing

    Science.gov (United States)

    Kazanas, Demosthenes

    2007-01-01

    It is generally considered that the X-ray emission in AGN and Galactic Black Hole Candidates is produced by flares above the surface of a geometrically thin optically thick accretion disk, which extends down to the Innermost Stable Circular Orbit (ISCO) of the black hole. We consider the influence of the black hole geometry on the light curves of these flares. To this end we follow a large number of photon orbits emitted impulsively in a locally isotropic fashion, at any phase of the disk orbit and examine their arrival times at infinity by an observer near the plane of the disk. We find out that the presence of the black hole spin induces a certain delay in the photon arrivals, as prograde photon orbits reach the observer on shorter (on the average) times than the retrograde ones. We form a histogram of the differences in photon time arrivals and we find that it exhibits several well defined peaks depending on the flare position and the black hole spin separated by $\\Delta t \\simeq 30 M$, where M is the black hole mass. The peaks disappear as the spin parameter goes to zero, implying that one could in principle measure the value of the black hole spin with timing measurements of sufficiently high signal to noise ratio.

  20. Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries

    Science.gov (United States)

    Mandel, Ilya; de Mink, Selma E.

    2016-05-01

    We explore a newly proposed channel to create binary black holes of stellar origin. This scenario applies to massive, tight binaries where mixing induced by rotation and tides transports the products of hydrogen burning throughout the stellar envelopes. This slowly enriches the entire star with helium, preventing the build-up of an internal chemical gradient. The stars remain compact as they evolve nearly chemically homogeneously, eventually forming two black holes, which we estimate typically merge 4-11 Gyr after formation. Like other proposed channels, this evolutionary pathway suffers from significant theoretical uncertainties, but could be constrained in the near future by data from advanced ground-based gravitational-wave detectors. We perform Monte Carlo simulations of the expected merger rate over cosmic time to explore the implications and uncertainties. Our default model for this channel yields a local binary black hole merger rate of about 10 Gpc-3 yr-1 at redshift z = 0, peaking at twice this rate at z = 0.5. This means that this channel is competitive, in terms of expected rates, with the conventional formation scenarios that involve a common-envelope phase during isolated binary evolution or dynamical interaction in a dense cluster. The events from this channel may be distinguished by the preference for nearly equal-mass components and high masses, with typical total masses between 50 and 110 M⊙. Unlike the conventional isolated binary evolution scenario that involves shrinkage of the orbit during a common-envelope phase, short time delays are unlikely for this channel, implying that we do not expect mergers at high redshift.

  1. Metallicity-constrained merger rates of binary black holes and the stochastic gravitational wave background

    Science.gov (United States)

    Dvorkin, Irina; Vangioni, Elisabeth; Silk, Joseph; Uzan, Jean-Philippe; Olive, Keith A.

    2016-10-01

    The recent detection of the binary black hole merger GW150914 demonstrates the existence of black holes more massive than previously observed in X-ray binaries in our Galaxy. This article explores different scenarios of black hole formation in the context of self-consistent cosmic chemical evolution models that simultaneously match observations of the cosmic star formation rate, optical depth to reionization and metallicity of the interstellar medium. This framework is used to calculate the mass distribution of merging black hole binaries and its evolution with redshift. We also study the implications of the black hole mass distribution for the stochastic gravitational wave background from mergers and from core-collapse events.

  2. Binary black hole mergers from globular clusters: Masses, merger rates, and the impact of stellar evolution

    Science.gov (United States)

    Rodriguez, Carl L.; Chatterjee, Sourav; Rasio, Frederic A.

    2016-04-01

    The recent discovery of GW150914, the binary black hole merger detected by Advanced LIGO, has the potential to revolutionize observational astrophysics. But to fully utilize this new window into the Universe, we must compare these new observations to detailed models of binary black hole formation throughout cosmic time. Expanding upon our previous work [C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Phys. Rev. Lett. 115, 051101 (2015).], we study merging binary black holes formed in globular clusters using our Monte Carlo approach to stellar dynamics. We have created a new set of 52 cluster models with different masses, metallicities, and radii to fully characterize the binary black hole merger rate. These models include all the relevant dynamical processes (such as two-body relaxation, strong encounters, and three-body binary formation) and agree well with detailed direct N -body simulations. In addition, we have enhanced our stellar evolution algorithms with updated metallicity-dependent stellar wind and supernova prescriptions, allowing us to compare our results directly to the most recent population synthesis predictions for merger rates from isolated binary evolution. We explore the relationship between a cluster's global properties and the population of binary black holes that it produces. In particular, we derive a numerically calibrated relationship between the merger times of ejected black hole binaries and a cluster's mass and radius. With our improved treatment of stellar evolution, we find that globular clusters can produce a significant population of massive black hole binaries that merge in the local Universe. We explore the masses and mass ratios of these binaries as a function of redshift, and find a merger rate of ˜5 Gpc-3yr-1 in the local Universe, with 80% of sources having total masses from 32 M⊙ to 64 M⊙. Under standard assumptions, approximately one out of every seven binary black hole mergers

  3. On the Gravitational Wave Background from Black Hole Binaries after the First LIGO Detections

    CERN Document Server

    Cholis, Ilias

    2016-01-01

    The detection of gravitational waves from the merger of binary black holes by the LIGO Collaboration has opened a new window to astrophysics. With the sensitivities of ground based detectors in the coming years we can only detect the local black hole binary mergers. The integrated merger rate can instead be probed by the gravitational-wave background, the incoherent superposition of the released energy in gravitational waves during binary-black-hole coalescence. Through that, the properties of the binary black holes can be studied. In this work we show that by measuring the energy density $\\Omega_{GW}$ (in units of the cosmic critical density) of the gravitational-wave background, we can search for the rare $\\sim 100 M_{\\odot}$ massive black holes formed in the Universe. In addition, we can answer how often the least massive BHs of mass $> 3 M_{\\odot}$ form. Finally, if there are multiple channels for the formation of binary black holes and if any of them predicts a narrow mass range for the black holes, then...

  4. Dynamical formation signatures of black hole binaries in the first detected mergers by LIGO

    CERN Document Server

    O'Leary, Ryan M; Kocsis, Bence

    2016-01-01

    The dynamical formation of stellar-mass black hole-black hole binaries has long been a promising source of gravitational waves for the Laser Interferometer Gravitational-Wave Observatory (LIGO). Mass segregation, gravitational focusing, and multibody dynamical interactions naturally increase the interaction rate between the most massive black holes in dense stellar systems, eventually leading them to merge. We find that dynamical interactions enhance the merger rate of black hole binaries with total mass M_tot roughly as ~M_tot^beta, with beta >~ 4. We find that this relation holds mostly independently of the initial mass function, but the exact value depends on the degree of mass segregation. The detection rate of such massive black hole binaries is only further enhanced by LIGO's greater sensitivity to massive black hole binaries with M_tot <~ 80 solar masses. We find that for power-law BH mass functions dN/dM ~ M^-alpha with alpha <~ 2, LIGO is most likely to detect black hole binaries with a mass tw...

  5. A New Parallel Method for Binary Black Hole Simulations

    Directory of Open Access Journals (Sweden)

    Quan Yang

    2016-01-01

    Full Text Available Simulating binary black hole (BBH systems are a computationally intensive problem and it can lead to great scientific discovery. How to explore more parallelism to take advantage of the large number of computing resources of modern supercomputers is the key to achieve high performance for BBH simulations. In this paper, we propose a scalable MPM (Mesh based Parallel Method which can explore both the inter- and intramesh level parallelism to improve the performance of BBH simulation. At the same time, we also leverage GPU to accelerate the performance. Different kinds of performance tests are conducted on Blue Waters. Compared with the existing method, our MPM can improve the performance from 5x speedup (compared with the normalized speed of 32 MPI processes to 8x speedup. For the GPU accelerated version, our MPM can improve the performance from 12x speedup to 28x speedup. Experimental results also show that when only enough CPU computing resource or limited GPU computing resource is available, our MPM can employ two special scheduling mechanisms to achieve better performance. Furthermore, our scalable GPU acceleration MPM can achieve almost ideal weak scaling up to 2048 GPU computing nodes which enables our software to handle even larger BBH simulations efficiently.

  6. An improved analytical description of inspiralling and coalescing black-hole binaries

    CERN Document Server

    Damour, Thibault

    2009-01-01

    We present an analytical formalism, within the Effective-One-Body framework, which predicts gravitational-wave signals from inspiralling and coalescing black-hole binaries that agree, within numerical errors, with the results of the currently most accurate numerical relativity simulations for several different mass ratios. We think that our formalism opens a realistic possibility of constructing a sufficiently accurate, large bank of gravitational wave templates, as needed both for detection and data analysis of (non spinning) coalescing binary black holes.

  7. Constraints on individual supermassive black hole binaries from pulsar timing array limits on continuous gravitational waves

    Science.gov (United States)

    Schutz, Katelin; Ma, Chung-Pei

    2016-06-01

    Pulsar timing arrays (PTAs) are placing increasingly stringent constraints on the strain amplitude of continuous gravitational waves emitted by supermassive black hole binaries on subparsec scales. In this paper, we incorporate independent information about the dynamical masses Mbh of supermassive black holes in specific galaxies at known distances and use this additional information to further constrain whether or not those galaxies could host a detectable supermassive black hole binary. We estimate the strain amplitudes from individual binaries as a function of binary mass ratio for two samples of nearby galaxies: (1) those with direct dynamical measurements of Mbh in the literature, and (2) the 116 most massive early-type galaxies (and thus likely hosts of the most massive black holes) within 108 Mpc from the MASSIVE Survey. Our exploratory analysis shows that the current PTA upper limits on continuous waves (as a function of angular position in the sky) can already constrain the mass ratios of hypothetical black hole binaries in many galaxies in our samples. The constraints are stronger for galaxies with larger Mbh and at smaller distances. For the black holes with Mbh ≳ 5 × 109 M⊙ at the centres of NGC 1600, NGC 4889, NGC 4486 (M87), and NGC 4649 (M60), any binary companion in orbit within the PTA frequency bands would have to have a mass ratio of a few per cent or less.

  8. Neutron-Star-Black-Hole Binaries Produced by Binary-Driven Hypernovae.

    Science.gov (United States)

    Fryer, Chris L; Oliveira, F G; Rueda, J A; Ruffini, R

    2015-12-01

    Binary-driven hypernovae (BdHNe) within the induced gravitational collapse paradigm have been introduced to explain energetic (E_{iso}≳10^{52}  erg), long gamma-ray bursts (GRBs) associated with type Ic supernovae (SNe). The progenitor is a tight binary composed of a carbon-oxygen (CO) core and a neutron-star (NS) companion, a subclass of the newly proposed "ultrastripped" binaries. The CO-NS short-period orbit causes the NS to accrete appreciable matter from the SN ejecta when the CO core collapses, ultimately causing it to collapse to a black hole (BH) and producing a GRB. These tight binaries evolve through the SN explosion very differently than compact binaries studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and the momentum of the binary. Second, because the explosion time scale is on par with the orbital period, the mass ejection cannot be assumed to be instantaneous. This dramatically affects the post-SN fate of the binary. Finally, the bow shock created as the accreting NS plows through the SN ejecta transfers angular momentum, braking the orbit. These systems remain bound even if a large fraction of the binary mass is lost in the explosion (well above the canonical 50% limit), and even large kicks are unlikely to unbind the system. Indeed, BdHNe produce a new family of NS-BH binaries unaccounted for in current population synthesis analyses and, although they may be rare, the fact that nearly 100% remain bound implies that they may play an important role in the compact merger rate, important for gravitational waves that, in turn, can produce a new class of ultrashort GRBs.

  9. Black hole mass and binary model for BL Lac object OJ 287

    OpenAIRE

    Liu, F. K.; Wu, Xue-Bing

    2002-01-01

    Recent intensive observations of the BL Lac object OJ 287 raise a lot of questions on the models of binary black holes, processing jets, rotating helical jets and thermal instability of slim accretion disks. After carefully analyzing their radio flux and polarization data, Valtaoja et al. (\\cite{valtaoja00}) propose a new binary model. Based on the black hole mass of $4 \\times 10^8 {\\rm M_\\odot}$ estimated with the tight correlations of the black hole masses and the bulge luminosity or centra...

  10. Binary Systems with a Black Hole Component as Sources of Gravitational Waves

    CERN Document Server

    Koçak, D

    2016-01-01

    Discovery of gravitational waves by LIGO team (Abbott et al. 2016) bring a new era for observation of black hole systems. These new observations will improve our knowledge on black holes and gravitational physics. In this study, we present angular momentum loss mechanism through gravitational radiation for selected X-ray binary systems. The angular momentum loss in X-ray binary systems with a black hole companion due to gravitational radiation and mass loss time-scales are estimated for each selected system. In addition, their gravitational wave amplitudes are also estimated and their detectability with gravitational wave detectors has been discussed.

  11. Detecting massive black hole binaries and unveiling their cosmic history with gravitational wave observations

    CERN Document Server

    Sesana, A

    2012-01-01

    Space based gravitational wave astronomy will open a completely new window on the Universe and massive black holes binaries are expected to be among the primary actors on this upcoming stage. The New Gravitational-wave Observatory (NGO) is a space interferometer proposal derived from the former Laser Interferometer Space Antenna (LISA) concept. We describe here its capabilities of observing massive black hole binaries throughout the Universe, measuring their relevant parameters (masses, spins, distance to the observer) to high precision. The statistical properties of the population of detected systems can be used to constrain the massive black hole cosmic history, providing deep insights into the faint, high redshift Universe.

  12. Electromagnetic extraction of energy from black hole-neutron star binaries

    CERN Document Server

    McWilliams, Sean T

    2011-01-01

    The coalescence of black hole-neutron star binaries is expected to be a principal source of gravitational waves for the next generation of detectors, Advanced LIGO and Advanced Virgo. Ideally, these and other gravitational wave sources would have a distinct electromagnetic counterpart, as significantly more information could be gained through two separate channels. In addition, since these detectors will probe distances with non-negligible redshift, a coincident observation of an electromagnetic counterpart to a gravitational wave signal would facilitate a novel measurement of dark energy [1]. For black hole masses not much larger than the neutron star mass, the tidal disruption and subsequent accretion of the neutron star by the black hole provides one avenue for generating an electromagnetic counterpart [2]. However, in this work, we demonstrate that, for all black hole-neutron star binaries observable by Advanced LIGO/Virgo, the interaction of the black hole with the magnetic field of the neutron star will...

  13. From black holes to their progenitors: A full population study in measuring black hole binary parameters from ringdown signals

    CERN Document Server

    Kamaretsos, Ioannis

    2011-01-01

    A perturbed black hole emits gravitational radiation, usually termed the ringdown signal, whose frequency and damping time depends on the mass and spin of the black hole. I investigate the case of a binary black hole merger resulting from two initially non-spinning black holes of various mass ratios, in quasi-circular orbits. The observed ringdown signal will be determined, among other things, by the black hole's spin-axis orientation with respect to Earth, its sky position and polarization angle - parameters which can take any values in a particular observation. I have carried out a statistical analysis of the effect of these variables, focusing on detection and measurement of the multimode ringdown signals using the reformulated European LISA mission, Next Gravitational-Wave Observatory, NGO, the third generation ground-based observatory, Einstein Telescope and the advanced era detector, aLIGO. To the extent possible I have discussed the effect of these results on plausible event rates, as well as astrophys...

  14. Inspiralling, Non-Precessing, Spinning Black Hole Binary Spacetime via Asymptotic Matching

    CERN Document Server

    Ireland, Brennan; Nakano, Hiroyuki; Campanelli, Manuela

    2015-01-01

    We construct a new global, fully analytic, approximate spacetime which accurately describes the dynamics of non-precessing, spinning black hole binaries during the inspiral phase of the relativistic merger process. This approximate solution of the vacuum Einstein's equations can be obtained by asymptotically matching perturbed Kerr solutions near the two black holes to a post-Newtonian metric valid far from the two black holes. This metric is then matched to a post-Minkowskian metric even farther out in the wave zone. The procedure of asymptotic matching is generalized to be valid on all spatial hypersurfaces, instead of a small group of initial hypersurfaces discussed in previous works. This metric is well suited for long term dynamical simulations of spinning black hole binary spacetimes prior to merger, such as studies of circumbinary gas accretion which requires hundreds of binary orbits.

  15. Supermassive binary black holes - possible observational effects in the x-ray emission

    Directory of Open Access Journals (Sweden)

    Jovanović Predrag

    2014-01-01

    Full Text Available Here we discuss the possible observational effects in the X-ray emission from two relativistic accretion disks in a supermassive binary black hole system. For that purpose we developed a model and performed numerical simulations of the X-ray radiation from a relativistic accretion disk around a supermassive black hole, based on the ray-tracing method in the Kerr metric, and applied it to the case of the close binary supermassive black holes. Our results indicate that the broad Fe Kα line is a powerful tool for detecting such systems and studying their properties. The most favorable candidates for observational studies are the supermassive binary black holes in the galactic mergers during the phase when the orbital velocities of their components are very large and exceed several thousand kms -1. [Projekat Ministarstva nauke Republike Srbije, br. 176003: Gravitation and the Large Scale Structure of the Universe i br. 176001: Astrophysical Spectroscopy of Extragalactic Objects

  16. Matched Filtering of Numerical Relativity Templates of Spinning Binary Black Holes

    CERN Document Server

    Vaishnav, Birjoo; Herrmann, Frank; Shoemaker, Deirdre

    2007-01-01

    Tremendous progress has been made towards the solution of the binary-black-hole problem in numerical relativity. The waveforms produced by numerical relativity will play a role in gravitational wave detection as either test-beds for analytic template banks or as template banks themselves. As the parameter space explored by numerical relativity expands, the importance of quantifying the effect that each parameter has on first the detection of gravitational waves and then the parameter estimation of their sources increases. In light of this, we present a study of equal-mass, spinning binary-black-hole evolutions through matched filtering techniques commonly used in data analysis. We study how the match between two numerical waveforms varies with numerical resolution, initial angular momentum of the black holes and the inclination angle between the source and the detector. This study is limited by the fact that the spinning black-hole-binaries are oriented axially and the waveforms only contain approximately two...

  17. Inspiralling, spinning, non-precessing binary black hole spacetime via asymptotic matching

    Science.gov (United States)

    Ireland, Brennan; Mundim, Bruno; Nakano, Hiroyuki; Campanelli, Manuela

    2016-03-01

    We construct and present a new global, fully analytic, approximate spacetime which accurately describes the dynamics of non-precessing, spinning black hole binaries during the inspiral phase of the relativistic merger process. This approximate solution of the vacuum Einstein's equations can be obtained by asymptotically matching perturbed Kerr solutions near the two black holes to a post-Newtonian metric valid far from the two black holes. This metric is then matched to a post-Minkowskian metric even farther out in the wave zone. The procedure of asymptotic matching is generalized to be valid on all spatial hypersurfaces, instead of a small group of initial hypersurfaces discussed in previous works. This metric is well suited for long term dynamical simulations of spinning black hole binary spacetimes prior to merger, such as studies of circumbinary gas accretion which requires hundreds of binary orbits.

  18. Searching for Binary Supermassive Black Holes via Variable Broad Emission Line Shifts: Low Binary Fraction

    CERN Document Server

    Wang, Lile; Ju, Wenhua; Rafikov, Roman R; Ruan, John J; Schneider, Donald P

    2016-01-01

    Supermassive black hole binaries (SMBHs) are expected to result from galaxy mergers, and thus are natural byproducts (and probes) of hierarchical structure formation in the Universe. They are also the primary expected source of low-frequency gravitational wave emission. We search for binary BHs using time-variable velocity shifts in broad Mg II emission lines of quasars with multi-epoch observations. First, we inspect velocity shifts of the binary SMBH candidates identified in Ju et al. (2013), using SDSS spectra with an additional epoch of data that lengthens the typical baseline to ~10 yr. We find variations in the line-of-sight velocity shifts over 10 years that are comparable to the shifts observed over 1-2 years, ruling out the binary model for the bulk of our candidates. We then analyze 1438 objects with 8 yr median time baselines, from which we would expect to see velocity shifts >1000 km/s from sub-pc binaries. We find only one object with an outlying velocity of 448 km/s, indicating, based on our mod...

  19. On the Neutron Star-Black Hole Binaries Produced by Binary-driven Hypernovae

    CERN Document Server

    Fryer, C L; Rueda, J A; Ruffini, R

    2015-01-01

    Binary-driven hypernovae (BdHNe) following the induced gravitational collapse (IGC) paradigm have been introduced to explain the concomitance of energetic long gamma-ray bursts (GRBs) with type Ic supernovae. The progenitor system is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The supernova ejecta of the exploding CO core triggers a hypercritical accretion process onto the NS, which in a few seconds reach the NS critical mass, and gravitationally collapses to a black hole (BH) emitting a GRB. These tight binary systems evolve through the supernova explosion very differently than compact binary progenitors studied in population synthesis calculations. First, the hypercritical accretion onto the NS companion alters both the mass and momentum of the binary. Second, because the explosion timescale is on par with the orbital period, the mass ejection can not be assumed to be instantaneous. Finally, the bow shock created as the accreting NS plows through the supern...

  20. Observation of Gravitational Waves from a Binary Black Hole Merger

    CERN Document Server

    ,

    2016-01-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of $1.0 \\times 10^{-21}$. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\\sigma}. The source lies at a luminosity distance of $410^{+160}_{-180}$ Mpc corresponding to a redshift $z = 0.09^{+0.03}_{-0.04}$. In the source frame, the initial black hole masses are $36^{+5}_{-4} M_\\odot$ and $29^{+4}_{-4} M_\\odot$, and the final black hole mass is $62^{+4}_{-4} M_\\odot$, with $3.0^{+0.5}_{-0.5} M_\\odot c^2$ radiated in gravitational waves. ...

  1. Gravitational waveforms for neutron star binaries from binary black hole simulations

    Science.gov (United States)

    Barkett, Kevin; Scheel, Mark; Haas, Roland; Ott, Christian; Bernuzzi, Sebastiano; Brown, Duncan; Szilagyi, Bela; Kaplan, Jeffrey; Lippuner, Jonas; Muhlberger, Curran; Foucart, Francois; Duez, Matthew

    2016-03-01

    Gravitational waves from binary neutron star (BNS) and black-hole/neutron star (BHNS) inspirals are primary sources for detection by the Advanced Laser Interferometer Gravitational-Wave Observatory. The tidal forces acting on the neutron stars induce changes in the phase evolution of the gravitational waveform, and these changes can be used to constrain the nuclear equation of state. Current methods of generating BNS and BHNS waveforms rely on either computationally challenging full 3D hydrodynamical simulations or approximate analytic solutions. We introduce a new method for computing inspiral waveforms for BNS/BHNS systems by adding the post-Newtonian (PN) tidal effects to full numerical simulations of binary black holes (BBHs), effectively replacing the non-tidal terms in the PN expansion with BBH results. Comparing a waveform generated with this method against a full hydrodynamical simulation of a BNS inspiral yields a phase difference of < 1 radian over ~ 15 orbits. The numerical phase accuracy required of BNS simulations to measure the accuracy of the method we present here is estimated as a function of the tidal deformability parameter λ.

  2. Attempt to explain black hole spin in X-ray binaries with new physics

    CERN Document Server

    Bambi, Cosimo

    2014-01-01

    It is widely believed that the spin of black holes in X-ray binaries is mainly natal. A significant spin-up from accretion is not possible. If the secondary has a low mass, the black hole spin cannot change too much even if the black hole swallows the whole stellar companion. If the secondary has a high mass, its lifetime is too short to transfer the necessary amount of matter and spin the black hole up. However, while black holes formed from the collapse of a massive star with Solar metallicity are expected to have low birth spin, current spin measurements show that some black holes in X-ray binaries are rotating very rapidly. Here I show that, if these objects are not the Kerr black holes of general relativity, the accretion of a small amount of matter ($\\sim 2$~$M_\\odot$) can make them look like very fast-rotating Kerr black holes. Such a possibility is not in contradiction with any observation and it can explain current spin measurements in a very simple way.

  3. Suppression of the accretion rate in thin discs around binary black holes

    Science.gov (United States)

    Ragusa, Enrico; Lodato, Giuseppe; Price, Daniel J.

    2016-08-01

    We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with H/R ≳ 0.1, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs; in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on H/R) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of system accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed after binary coalescence, thus influencing also the evolutionary path both of the binary and of the host galaxy. Our results, being scale-free, are also applicable to equal-mass, circular binaries of stellar mass black holes, such as the progenitor of the recently discovered gravitational wave source GW150914.

  4. The origin and fate of short-period low-mass black-hole binaries

    NARCIS (Netherlands)

    Yungelson, L.R.; Lasota, J.P.; Nelemans, G.; Dubus, G.; Heuvel, E.P.J. van den; Dewi, J.; Portegies Zwart, S.

    2006-01-01

    We present results of a population synthesis study for semidetached short orbital period binaries which contain low-mass (1.5 Mo) donors and massive ( 4 Mo) compact accretors, which in our model represent black holes. Evolution of these binaries is determined by nuclear evolu

  5. Shining Light on Quantum Gravity with Pulsar-Black Hole Binaries

    OpenAIRE

    Estes, John; Kavic, Michael; Lippert, Matthew; Simonetti, John H.

    2016-01-01

    Pulsars are some of the most accurate clocks found in nature, while black holes offer a unique arena for the study of quantum gravity. As such, pulsar-black hole (PSR-BH) binaries provide ideal astrophysical systems for detecting effects of quantum gravity. With the success of aLIGO and the advent of instruments like the SKA and eLISA, the prospects for discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed reso...

  6. Prospects for Detection of Extragalactic Stellar Black Hole Binaries in the Nearby Universe

    CERN Document Server

    Benacquista, Matthew; Mata, Alberto; Belczynski, Krzysztof

    2014-01-01

    Stellar mass black hole binaries have individual masses between 10-80 solar masses. These systems may emit gravitational waves at frequencies detectable at Megaparsec distances by space-based gravitational wave observatories. In a previous study, we determined the selection effects of observing these systems with detectors similar to the Laser Interferometer Space Antenna by using a generated population of binary black holes that covered a reasonable parameter space and calculating their signal-to-noise ratio. We further our study by populating the galaxies in our nearby (less than 30 Mpc) universe with binary black hole systems drawn from a distribution found in the Synthetic Universe to ultimately investigate the likely event rate of detectable binaries from galaxies in the nearby universe.

  7. Search for gravitational waves from binary black hole inspiral, merger and ringdown

    CERN Document Server

    Abadie, J; Abbott, R; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Ajith, P; Allen, B; Allen, G S; Ceron, E Amador; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Arain, M A; Araya, M C; Aronsson, M; Aso, Y; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballinger, T; Ballmer, S; Barker, D; Barnum, S; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauchrowitz, J; Bauer, Th S; Behnke, B; Beker, M G; Belletoile, A; Benacquista, M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Birindelli, S; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Boccara, C; Bock, O; Bodiya, T P; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Boyle, M; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brau, J E; Breyer, J; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Budzyński, R; Bulik, T; Bulten, H J; Buonanno, A; Burguet-Castell, J; Burmeister, O; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cain, J; Calloni, E; Camp, J B; Campagna, E; Campsie, P; Cannizzo, J; Cannon, K; Canuel, B; Cao, J; Capano, C; Carbognani, F; Caride, S; Caudill, S; Cavaglia`, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chaibi, O; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chelkowski, S; Chen, Y; Chincarini, A; Christensen, N; Chua, S S Y; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coulon, J -P; Coward, D M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Danilishin, S L; Dannenberg, R; D'Antonio, S; Danzmann, K; Das, K; Dattilo, V; Daudert, B; Davier, M; Davies, G; Davis, A; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; del Prete, M; Dergachev, V; DeRosa, R; DeSalvo, R; Devanka, P; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Dorsher, S; Douglas, E S D; Drago, M; Drever, R W P; Driggers, J C; Dueck, J; Dumas, J -C; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Ely, G; Engel, R; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Fan, Y; Farr, B F; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flanigan, M; Flasch, K; Foley, S; Forrest, C; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Galimberti, M; Gammaitoni, L; Garofoli, J A; Garufi, F; Gáspár, M E; Gemme, G; Genin, E; Gennai, A; Gholami, I; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gill, C; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Goßler, S; Gouaty, R; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Gustafson, E K; Gustafson, R; Hage, B; Hall, P; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Hayau, J -F; Hayler, T; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A W; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Howell, E J; Hoyland, D; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Jaranowski, P; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J B; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, H; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kondrashov, V; Kopparapu, R; Koranda, S; Kowalska, I; Kozak, D; Krause, T; Kringel, V; Krishnamurthy, S; Krishnan, B; Królak, A; Kuehn, G; Kullman, J; Kumar, R; Kwee, P; Landry, M; Lang, M; Lantz, B; Lastzka, N; Lazzarini, A; Leaci, P; Leong, J; Leonor, I; Leroy, N; Letendre, N; Li, J; Li, T G F; Liguori, N; Lin, H; Lindquist, P E; Lockerbie, N A; Lodhia, D; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Luan, J; Lubinski, M; Lucianetti, A; Lück, H; Lundgren, A D; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majorana, E; Mak, C; Maksimovic, I; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K

    2011-01-01

    We present the first modeled search for gravitational waves using the complete binary black hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LIGO data taken between November 2005 and September 2007 for systems with component masses of 1-99 solar masses and total masses of 25-100 solar masses. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for binary black hole systems with component masses between 19 and 28 solar masses and negligible spin to be no more than 2.0 per Mpc^3 per Myr at 90% confidence.

  8. The redshift factor and the first law of binary black hole mechanics in numerical simulations

    CERN Document Server

    Zimmerman, Aaron; Pfeiffer, Harald P

    2016-01-01

    The redshift factor $z$ is an invariant quantity of fundamental interest in Post-Newtonian and self-force descriptions of compact binaries. It connects different approximation schemes, and plays a central role in the first law of binary black hole mechanics, which links local quantities to asymptotic measures of energy and angular momentum in these systems. Through this law, the redshift factor is conjectured to have a close relation to the surface gravity of the event horizons of black holes in circular orbits. We propose and implement a novel method for extracting the redshift factor on apparent horizons in numerical simulations of quasi-circular binary inspirals. Our results confirm the conjectured relationship between $z$ and the surface gravity of the holes and that the first law holds to a remarkable degree for binary inspirals. The redshift factor allows us to test analytic predictions for $z$ in spacetimes where the binary is only approximately circular, giving a new connection between analytic approx...

  9. Constraining the formation of black-holes in short-period Black-Hole Low-Mass X-ray Binaries

    CERN Document Server

    Repetto, Serena

    2015-01-01

    The formation of stellar mass black holes is still very uncertain. Two main uncertainties are the amount of mass ejected in the supernova event (if any) and the magnitude of the natal kick the black hole receives at birth (if any). Repetto et al. (2012), studying the position of Galactic X-ray binaries containing black holes, found evidence for black holes receiving high natal kicks at birth. In this Paper we extend that study, taking into account the previous binary evolution of the sources as well. The seven short-period black-hole X-ray binaries that we use, are compact binaries consisting of a low-mass star orbiting a black hole in a period less than $1$ day. We trace their binary evolution backwards in time, from the current observed state of mass-transfer, to the moment the black hole was formed, and we add the extra information on the kinematics of the binaries. We find that several systems could be explained by no natal kick, just mass ejection, while for two systems (and possibly more) a high kick is...

  10. The formation and gravitational-wave detection of massive stellar black hole binaries

    International Nuclear Information System (INIS)

    If binaries consisting of two ∼100 M☉ black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several ≳ 150 M☉ stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  11. Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes

    Science.gov (United States)

    Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica

    2016-04-01

    In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.

  12. The formation and gravitational-wave detection of massive stellar black hole binaries

    Energy Technology Data Exchange (ETDEWEB)

    Belczynski, Krzysztof; Walczak, Marek [Astronomical Observatory, Warsaw University, Al. Ujazdowskie 4, 00-478 Warsaw (Poland); Buonanno, Alessandra [Maryland Center for Fundamental Physics and Joint Space-Science Institute, Department of Physics, University of Maryland, College Park, MD 20742 (United States); Cantiello, Matteo [Kavli Institute for Theoretical Physics, University of California, Kohn Hall, Santa Barbara, CA 93106 (United States); Fryer, Chris L. [Computational Computer Science Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Holz, Daniel E. [Enrico Fermi Institute, Department of Physics, and Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Mandel, Ilya [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Miller, M. Coleman, E-mail: kbelczyn@astrouw.edu.pl [Department of Astronomy and Joint Space-Science Institute University of Maryland, College Park, MD 20742-2421 (United States)

    2014-07-10

    If binaries consisting of two ∼100 M{sub ☉} black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several ≳ 150 M{sub ☉} stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  13. Evidence of a Massive Black Hole Companion in the Massive Eclipsing Binary V Puppis

    CERN Document Server

    Qian, S -B; Fernandez-Lajus, E

    2008-01-01

    Up to now, most stellar-mass black holes were discovered in X-ray emitting binaries, in which the black holes are formed through a common-envelope evolu tion. Here we give evidence for the presence of a massive black hole candidate as a tertiary companion in the massive eclipsing binary V Puppis. We found that the orbital period of this short-period binary (P=1.45 days) shows a periodic variation while it undergoes a long-term increase. The cyclic period oscillation can be interpreted by the light-travel time effect via the presence of a third body with a mass no less than 10.4 solar mass. However, no spectral lines of the third body were discovered indicating that it is a massive black hole candidate. The black hole candidate may correspond to the weak X-ray source close to V Puppis discovered by Uhuru, Copernicus, and ROSAT satellites produced by accreting materials from the massive binary via stellar wind. The circumstellar matter with many heavy elements around this binary may be formed by the supernova e...

  14. Accurate Waveforms for Non-spinning Binary Black Holes using the Effective-one-body Approach

    Science.gov (United States)

    Buonanno, Alessandra; Pan, Yi; Baker, John G.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.

    2007-01-01

    Using numerical relativity as guidance and the natural flexibility of the effective-one-body (EOB) model, we extend the latter so that it can successfully match the numerical relativity waveforms of non-spinning binary black holes during the last stages of inspiral, merger and ringdown. Here, by successfully, we mean with phase differences black-hole masses. The final black-hole mass and spin predicted by the numerical simulations are used to determine the ringdown frequency and decay time of three quasi-normal-mode damped sinusoids that are attached to the EOB inspiral-(plunge) waveform at the light-ring. The accurate EOB waveforms may be employed for coherent searches of gravitational waves emitted by non-spinning coalescing binary black holes with ground-based laser-interferometer detectors.

  15. Search for gravitational waves from binary black hole inspirals in LIGO data

    CERN Document Server

    Abbott, B; Adhikari, R; Ageev, A; Agresti, J; Ajith, P; Allen, B; Allen, J; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cannizzo, J; Cannon, K; Cantley, C A; Cao, J; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Dalrymple, J; Danzmann, K; Davies, G; Daw, E; De Bra, D; DeSalvo, R; Delker, T; Dergachev, V; Desai, S; Dhurandhar, S V; Di Credico, A; Ding, H; Drever, R W P; Dupuis, R J; Díaz, M; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; Goggin, L; Goler, S; González, G; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Gustafson, E; Gustafson, R; Günther, M; Hamilton, W O; Hammond, M; Hanna, C; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, G; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Luna, M; Lyons, T T; MacInnis, M; Machenschalk, B; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mandic, V; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Melissinos, A C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mikhailov, E; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Mukherjee, S; Murray, P; Myers, E; Myers, J; Müller, G; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; O'Reilly, B; Olson, T; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robinson, C; Robison, L; Roddy, S; Rodríguez, A; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Ruet, L; Russell, P; Ryan, K; Rüdiger, A; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sarin, P; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sellers, D; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Spjeld, O; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sung, M; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tarallo, M; Tariq, H; Taylor, I; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ward, R; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Woods, D; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Zhang, L; Zhu, R; Zotov, N P; Zucker, M; Zweizig, J

    2006-01-01

    We report on a search for gravitational waves from binary black hole inspirals in the data from the second science run of the LIGO interferometers. The search focused on binary systems with component masses between 3 and 20 solar masses. Optimally oriented binaries with distances up to 1 Mpc could be detected with efficiency of at least 90%. We found no events that could be identified as gravitational waves in the 385.6 hours of data that we searched.

  16. Perturbed disks get shocked. Binary black hole merger effects on accretion disks

    OpenAIRE

    Megevand, Miguel; Anderson, Matthew; Frank, Juhan; Hirschmann, Eric W.; Lehner, Luis; Liebling, Steven L.; Motl, Patrick M; Neilsen, David

    2009-01-01

    The merger process of a binary black hole system can have a strong impact on a circumbinary disk. In the present work we study the effect of both central mass reduction (due to the energy loss through gravitational waves) and a possible black hole recoil (due to asymmetric emission of gravitational radiation). For the mass reduction case and recoil directed along the disk's angular momentum, oscillations are induced in the disk which then modulate the internal energy and bremsstrahlung lumino...

  17. Observing the dynamics of supermassive black hole binaries with pulsar timing arrays.

    Science.gov (United States)

    Mingarelli, C M F; Grover, K; Sidery, T; Smith, R J E; Vecchio, A

    2012-08-24

    Pulsar timing arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here, we show that the detection of gravitational radiation from individually resolvable supermassive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave-induced timing fluctuations both at the pulsar and at Earth are detected. This in turn provides a map of the nonlinear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of supermassive black holes. We discuss the potential, the challenges, and the limitations of these observations. PMID:23002736

  18. Spin-multipole effects in binary black holes and the test-body limit

    OpenAIRE

    Vines, Justin; Steinhoff, Jan

    2016-01-01

    We discuss the Hamiltonian for the conservative dynamics of generic-orbit arbitrary-mass-ratio spinning binary black holes, at the leading post-Newtonian orders at each order in an expansion in spins, to all orders in the spins. The leading-order couplings can all be obtained from a map to the motion of a test black hole (a test body with the spin-induced multipoles of a Kerr black hole) in the Kerr spacetime, as is confirmed with direct post-Newtonian calculations for arbitrary mass ratios. ...

  19. Spin-multipole effects in binary black holes and the test-body limit

    CERN Document Server

    Vines, Justin

    2016-01-01

    We discuss the Hamiltonian for the conservative dynamics of generic-orbit arbitrary-mass-ratio spinning binary black holes, at the leading post-Newtonian orders at each order in an expansion in spins, to all orders in the spins. The leading-order couplings can all be obtained from a map to the motion of a test black hole (a test body with the spin-induced multipoles of a Kerr black hole) in the Kerr spacetime, as is confirmed with direct post-Newtonian calculations for arbitrary mass ratios. Furthermore, all of the couplings can be "deduced" from those of a pole-dipole test body in Kerr.

  20. Black holes in stellar-mass binary systems: expiating original spin?

    Science.gov (United States)

    King, Andrew; Nixon, Chris

    2016-10-01

    We investigate systematically whether accreting black hole systems are likely to reach global alignment of the black hole spin and its accretion disc with the binary plane. In low-mass X-ray binaries (LMXBs), there is only a modest tendency to reach such global alignment, and it is difficult to achieve fully: except for special initial conditions, we expect misalignment of the spin and orbital planes by ˜1 rad for most of the LMXB lifetime. The same is expected in high-mass X-ray binaries. A fairly close approach to global alignment is likely in most stellar-mass ultraluminous X-ray binary systems (ULXs) where the companion star fills its Roche lobe and transfers mass on a thermal or nuclear time-scale to a black hole of lower mass. These systems are unlikely to show orbital eclipses, as their emission cones are close to the hole's spin axis. This offers a potential observational test, as models for ULXs invoking intermediate-mass black holes do predict eclipses for ensembles of ≳ 10 systems. Recent observational work shows that eclipses are either absent or extremely rare in ULXs, supporting the picture that most ULXs are stellar-mass binaries with companion stars more massive than the accretor.

  1. A New Approach to Black hole Spin in X-Ray Binaries

    Institute of Scientific and Technical Information of China (English)

    ZUO Xue-Qin; WANG Ding-Xiong; MA Ren-Yi

    2005-01-01

    @@ A new approach of detecting the black hole spin in x-ray binaries is proposed based on the model of the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC) processes, in which the BZ process is used to power the jet emissions from x-ray binaries, and high frequency quasi-periodic oscillations (QPOs) are explained by a rotating hotspot in the inner region of the accretion disc surrounding a fast-spinning black hole. It is shown that the black hole spins of several x-ray binaries (XTE J1550-564, GRO J1665-40 and GRS 1915+105) can be constrained in a rather narrow range, provided that QPOs and jets coexist in these sources.

  2. Supermassive recoil velocities for binary black-hole mergers with antialigned spins.

    Science.gov (United States)

    González, José A; Hannam, Mark; Sperhake, Ulrich; Brügmann, Bernd; Husa, Sascha

    2007-06-01

    Recent calculations of the recoil velocity in binary black-hole mergers have found the kick velocity to be of the order of a few hundred km/s in the case of nonspinning binaries and about 500 km/s in the case of spinning configurations, and have lead to predictions of a maximum kick of up to 1300 km/s. We test these predictions and demonstrate that kick velocities of at least 2500 km/s are possible for equal-mass binaries with antialigned spins in the orbital plane. Kicks of that magnitude are likely to have significant repercussions for models of black-hole formation, the population of intergalactic black holes, and the structure of host galaxies. PMID:17677893

  3. High-energy observations of black hole binaries with the INTEGRAL satellite

    CERN Document Server

    Del Santo, Melania

    2012-01-01

    Black-hole binaries are important sources through which studying accretion onto compact objects. In the X/gamma-ray domain, these objects show several and complex spectral behaviours and transitions. Based on INTEGRAL observations collected during the last eightyears, we have now a new view on the high energy emission of black-hole binary. An additional component above 200 keV has been observed in a few systems, during either hard/intermediate or low/hard states. The nature of this hard-tail is still debated, as also the one observed in soft states. However, among a number of models, it is usually attributed to the presence of a small fraction of non-thermal electrons in a hot-Comptonising plasma. I review the high energy emission from black hole binary systems and report on some INTEGRAL observations of three different objects: 1E 1740.7-2942, GX 339-4, Cyg X-1.

  4. Modelling gravitational waves from precessing black-hole binaries: Progress, challenges and prospects

    CERN Document Server

    Hannam, Mark

    2013-01-01

    The inspiral and merger of two orbiting black holes is among the most promising sources for the first (hopefully imminent) direct detection of gravitational waves (GWs), and measurements of these signals could provide a wealth of information about astrophysics, fundamental physics and cosmology. Detection and measurement require a theoretical description of the GW signals from all possible black-hole-binary configurations, which can include complicated precession effects due to the black-hole spins. Modelling the GW signal from generic precessing binaries is therefore one of the most urgent theoretical challenges facing GW astronomy. This article briefly reviews the phenomenology of generic-binary dynamics and waveforms, and recent advances in modelling them.

  5. Estimates of black-hole natal kick velocities from observations of low-mass X-ray binaries

    CERN Document Server

    Mandel, Ilya

    2015-01-01

    The birth kicks of black holes, arising from asymmetric mass ejection or neutrino emission during core-collapse supernovae, are of great interest for both observationally constraining supernova models and population-synthesis studies of binary evolution. Recently, several efforts were undertaken to estimate black hole birth kicks from observations of black-hole low-mass X-ray binaries. We follow up on this work, specifically focussing on the highest estimated black-hole kick velocities. We find that existing observations do not require black hole birth kicks in excess of approximately 100 km/s, although higher kicks are not ruled out.

  6. Extremely fast orbital decay of the black hole X-ray binary Nova Muscae 1991

    CERN Document Server

    Hernández, J I González; Rebolo, R; Casares, J

    2016-01-01

    We present new medium-resolution spectroscopic observations of the black hole X-ray binary Nova Muscae 1991 taken with X-Shooter spectrograph installed at the 8.2m-VLT telecope. These observations allow us to measure the time of inferior conjunction of the secondary star with the black hole in this system that, together with previous measurements, yield an orbital period decay of $\\dot P=-20.7\\pm12.7$ ms yr$^{-1}$ ($-24.5\\pm15.1$ $\\mu $s per orbital cycle). This is significantly faster than those previously measured in the other black hole X-ray binaries A0620-00 and XTE J1118+480. No standard black hole X-ray binary evolutionary model is able to explain this extremely fast orbital decay. At this rate, the secondary star would reach the event horizon (as given by the Schwarzschild radius of about 32 km) in roughly 2.7 Myr. This result has dramatic implications on the evolution and lifetime of black hole X-ray binaries.

  7. Ultra-low frequency gravitational radiation from massive black hole binaries

    CERN Document Server

    Rajagopal, M; Rajagopal, Mohan; Romani, Roger W

    1994-01-01

    For massive black hole binaries produced in galactic mergers, we examine the possibility of inspiral induced by interaction with field stars. We model the evolution of such binaries for a range of galaxy core and binary parameters, using numerical results from the literature to compute the binary's energy and angular momentum loss rates due to stellar encounters and including the effect of back-action on the field stars. We find that only a small fraction of binary systems can merge within a Hubble time via unassisted stellar dynamics. External perturbations may, however, cause efficient inspiral. Averaging over a population of central black holes and galaxy mergers, we compute the expected background of gravitational radiation with periods Pw ~1-10y. Comparison with sensitivities from millisecond pulsar timing suggests that the strongest sources may be detectable with modest improvements to present experiments.

  8. The formation of black-holes in low-mass X-ray binaries

    OpenAIRE

    S. F. Portegies Zwart; Verbunt, F.; Ergma, E.

    1997-01-01

    We calculate the formation rates of low-mass X-ray binaries with a black hole. Both a semi-analytic and a more detailed model predict formation rates two orders of magnitude lower than derived from the observations. Solution of this conundrum requires either that stars with masses less than 20M$_\\odot$ can evolve into a black hole, or that stellar wind from a member of a binary is accompanied by a much larger loss of angular momentum than hitherto assumed.

  9. High-Resolution Observations of a Binary Black Hole Candidate

    Science.gov (United States)

    Tsai, Chao-Wei; Phillips, Chris; Norris, Ray; Jarrett, Thomas; Emonts, Bjorn; Cluver, Michelle; Eisenhardt, Peter; Stern, Daniel; Assef, Roberto

    2012-10-01

    We propose a 12-hour 2.3 GHz continuum Long Baseline Array (LBA) observation of WISE J2332-5056, a newly discovered supermassive black hole (SMBH) merger candidate that is located in the nearby universe (z = 0.3447). Our recently acquired 9 GHz ATCA map shows unusual radio morphology: a one-sided, smaller (and likely younger) FR-I jet perpendicular to a larger, Doppler-boosted FR-II jet. Follow-up Gemini-S/GMOS spectroscopy of this WISE-selected radio galaxy reveals broad emission lines blue-shifted by > 3,500 km/s with respect to the narrow lines and host galaxy, hallmarks of a dual AGN system. Combined, the optical spectroscopy and radio morphology of this object are strongly suggestive of a black hole merger system. Even in the local universe these systems are extremely difficult to identify; yet the process of supermassive blackhole growth is vital toward understanding galaxy evolution from the early to the current universe. Moreover, nearby merging SMBHs may serve as outstanding targets for gravitational wave studies. The proposed high resolution LBA map, reaching 50 pc resolution at the source redshift will allow us to investigate the SMBH merger scenario hypothesis.

  10. Determining the progenitors of merging black-hole binaries

    CERN Document Server

    Raccanelli, Alvise; Bird, Simeon; Cholis, Ilias; Munoz, Julian B

    2016-01-01

    We investigate a possible method for determining the progenitors of black hole (BH) mergers observed via their gravitational wave (GW) signal. We argue that measurements of the cross-correlation of the GW events with overlapping galaxy catalogs may provide an additional tool in determining if BH mergers trace the stellar mass of the Universe, as would be expected from mergers of the endpoints of stellar evolution. If on the other hand the BHs are of primordial origin, as has been recently suggested, their merging would be preferentially hosted by lower biased objects, and thus have a lower cross-correlation with luminous galaxies. Here we forecast the expected precision of the cross-correlation measurement for current and future GW detectors such as LIGO and the Einstein Telescope. We then predict how well these instruments can distinguish the model that identifies high-mass BH-BH mergers as the merger of primordial black holes that constitute the dark matter in the Universe from more traditional astrophysica...

  11. Determining the progenitors of merging black-hole binaries

    Science.gov (United States)

    Raccanelli, Alvise; Kovetz, Ely D.; Bird, Simeon; Cholis, Ilias; Muñoz, Julian B.

    2016-07-01

    We investigate a possible method for determining the progenitors of black-hole (BH) mergers observed via their gravitational wave (GW) signal. We argue that measurements of the cross-correlation of the GW events with overlapping galaxy catalogs may provide an additional tool in determining if BH mergers trace the stellar mass of the Universe, as would be expected from mergers of the end points of stellar evolution. If, on the other hand, the BHs are of primordial origin, as has been recently suggested, their merging would be preferentially hosted by lower biased objects and thus have a lower cross-correlation with luminous galaxies. Here, we forecast the expected precision of the cross-correlation measurement for current and future GW detectors such as LIGO and the Einstein Telescope. We then predict how well these instruments can distinguish the model that identifies high-mass BH-BH mergers as the merger of primordial black holes that constitute the dark matter in the Universe from more traditional astrophysical sources.

  12. Black holes in stellar-mass binary systems: expiating original spin?

    CERN Document Server

    King, Andrew

    2016-01-01

    We investigate systematically whether accreting black hole systems are likely to reach global alignment of the black hole spin and its accretion disc with the binary plane. In low-mass X-ray binaries (LMXBs) there is only a modest tendency to reach such global alignment, and it is difficult to achieve fully: except for special initial conditions we expect misalignment of the spin and orbital planes by ~1 radian for most of the LMXB lifetime. The same is expected in high-mass X-ray binaries (HMXBs). A fairly close approach to global alignment is likely in most stellar-mass ultraluminous X-ray binary systems (ULXs) where the companion star fills its Roche lobe and transfers on a thermal timescale to a black hole of lower mass. These systems are unlikely to show orbital eclipses, as their emission cones are close to the hole's spin axis. This offers a potential observational test, as models for ULXs invoking intermediate-mass black holes do predict eclipses for ensembles of > ~10 systems. Recent observational wo...

  13. Double-double radio galaxies: remnants of merger of supermassive binary black holes

    CERN Document Server

    Liu, F K; Cao, S L; Wu, Xue-Bing

    2003-01-01

    The activity of active galaxy may be triggered by the merge of galaxies and present-day galaxies are probably the product of successive minor mergers. The frequent galactic merges at high redshift imply that active galaxy harbors supermassive unequal-mass binary black holes in its center at least once during its life time. In this paper, we showed that the recently discovered double-lobed FR II radio galaxies are the remnants of such supermassive binary black holes. The inspiraling secondary black hole opens a gap in the accretion disk and removes the inner accretion disk when it merges into the primary black hole, leaving a big hole of about several hundreds of Schwarzschild radius in the vicinity of the post-merged supermassive black hole and leading to an interruption of jet formation. When the outer accretion disk slowly refills the big hole on a viscous time scale, the jet formation restarts and the interaction of the recurrent jets and the inter-galactic medium forms a secondary pair of lobes. We applie...

  14. ELECTROMAGNETIC EXTRACTION OF ENERGY FROM BLACK-HOLE-NEUTRON-STAR BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, Sean T.; Levin, Janna, E-mail: stmcwill@princeton.edu [Institute for Strings, Cosmology and Astroparticle Physics (ISCAP), Columbia University, New York, NY 10027 (United States)

    2011-12-01

    The coalescence of black-hole-neutron-star binaries is expected to be a principal source of gravitational waves for the next generation of detectors, Advanced LIGO and Advanced Virgo. For black hole masses not much larger than the neutron star mass, the tidal disruption of the neutron star by the black hole provides one avenue for generating an electromagnetic counterpart. However, in this work, we demonstrate that, for all black-hole-neutron-star binaries observable by Advanced LIGO/Virgo, the interaction of the black hole with the magnetic field of the neutron star will generate copious luminosity, comparable to supernovae and active galactic nuclei. This novel effect may have already been observed as a new class of very short gamma-ray bursts by the Swift Gamma-Ray Burst Telescope. These events may be observable to cosmological distances, so that any black-hole-neutron-star coalescence detectable with gravitational waves by Advanced LIGO/Virgo could also be detectable electromagnetically.

  15. A close-pair binary in a distant triple supermassive black hole system.

    Science.gov (United States)

    Deane, R P; Paragi, Z; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H-R; Grainge, K; Rumsey, C

    2014-07-01

    Galaxies are believed to evolve through merging, which should lead to some hosting multiple supermassive black holes. There are four known triple black hole systems, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs), which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.

  16. Shining Light on Quantum Gravity with Pulsar-Black Hole Binaries

    CERN Document Server

    Estes, John; Lippert, Matthew; Simonetti, John H

    2016-01-01

    Pulsars are some of the most accurate clocks found in nature, while black holes offer a unique arena for the study of quantum gravity. As such, pulsar-black hole (PSR-BH) binaries provide ideal astrophysical systems for detecting effects of quantum gravity. With the success of aLIGO and the advent of instruments like the SKA and eLISA, the prospects for discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed resolutions to the black hole information paradox. We propose using timing signals from a pulsar beam passing through the region near a BH event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a black hole lead to an increase in the measured root-mean-square deviation of arrival times of pulsar pulses traveling near the horizon. This allows for a clear observational test of the nonviolent nonlocality proposal for black hole information escape. For a ...

  17. Intermediate-mass-ratio black hole binaries II: Modeling Trajectories and Gravitational Waveforms

    CERN Document Server

    Nakano, Hiroyuki; Lousto, Carlos O; Campanelli, Manuela

    2011-01-01

    We revisit the scenario of small-mass-ratio (q) black-hole binaries; performing new, more accurate, simulations of mass ratios 10:1 and 100:1 for initially nonspinning black holes. We propose fitting functions for the trajectories of the two black holes as a function of time and mass ratio (in the range 1/100 < q < 1/10$) that combine aspects of post-Newtonian trajectories at smaller orbital frequencies and plunging geodesics at larger frequencies. We then use these trajectories to compute waveforms via black hole perturbation theory. Using the advanced LIGO noise curve, we see a match of ~99.5% for the leading (l,m)=(2,2) mode between the numerical relativity and perturbative waveforms. Nonleading modes have similarly high matches. We thus prove the feasibility of efficiently generating a bank of gravitational waveforms in the intermediate-mass-ratio regime using only a sparse set of full numerical simulations.

  18. Intermediate-mass-ratio black hole binaries. II. Modeling trajectories and gravitational waveforms

    Science.gov (United States)

    Nakano, Hiroyuki; Zlochower, Yosef; Lousto, Carlos O.; Campanelli, Manuela

    2011-12-01

    We revisit the scenario of small-mass-ratio (q) black hole binaries; performing new, more accurate, simulations of mass ratios 10:1 and 100:1 for initially nonspinning black holes. We propose fitting functions for the trajectories of the two black holes as a function of time and mass ratio (in the range 1/100≤q≤1/10) that combine aspects of post-Newtonian trajectories at smaller orbital frequencies and plunging geodesics at larger frequencies. We then use these trajectories to compute waveforms via black hole perturbation theory. Using the advanced LIGO noise curve, we see a match of ˜99.5% for the leading (ℓ,m)=(2,2) mode between the numerical relativity and perturbative waveforms. Nonleading modes have similarly high matches. We thus prove the feasibility of efficiently generating a bank of gravitational waveforms in the intermediate-mass-ratio regime using only a sparse set of full numerical simulations.

  19. Gravitational-wave memory revisited: memory from the merger and recoil of binary black holes

    CERN Document Server

    Favata, Marc

    2009-01-01

    Gravitational-wave memory refers to the permanent displacement of the test masses in an idealized (freely-falling) gravitational-wave interferometer. Inspiraling binaries produce a particularly interesting form of memory--the Christodoulou memory. Although it originates from nonlinear interactions at 2.5 post-Newtonian order, the Christodoulou memory affects the gravitational-wave amplitude at leading (Newtonian) order. Previous calculations have computed this non-oscillatory amplitude correction during the inspiral phase of binary coalescence. Using an "effective-one-body" description calibrated with the results of numerical relativity simulations, the evolution of the memory during the inspiral, merger, and ringdown phases, and the memory's final saturation value, are calculated. Using this model for the memory, the prospects for its detection are examined, particularly for supermassive black hole binary coalescences that LISA will detect with high signal-to-noise ratios. Coalescing binary black holes also ...

  20. Rapid merger of binary primordial black holes: An implication for GW150914

    Science.gov (United States)

    Hayasaki, Kimitake; Takahashi, Keitaro; Sendouda, Yuuiti; Nagataki, Shigehiro

    2016-08-01

    We propose a new scenario for the evolution of the binaries of primordial black holes (PBH). We consider dynamical friction by ambient dark matter, scattering of dark matter particles with a highly eccentric orbit besides the standard two-body relaxation process to refill the loss cone, and interaction between the binary and a circumbinary disk, assuming that PBHs do not constitute the bulk of dark matter. Binary PBHs lose the energy and angular momentum by these processes, which could be sufficiently efficient for a typical configuration. Such a binary coalesces due to the gravitational wave emission on a time scale much shorter than the age of the universe. We estimate the density parameter of the resultant gravitational wave background. Astrophysical implications concerning the formation of intermediate-mass to supermassive black holes is also discussed.

  1. Rapid merger of binary primordial black holes: An implication for GW150914

    Science.gov (United States)

    Hayasaki, Kimitake; Takahashi, Keitaro; Sendouda, Yuuiti; Nagataki, Shigehiro

    2016-07-01

    We propose a new scenario for the evolution of the binaries of primordial black holes (PBH). We consider dynamical friction by ambient dark matter, scattering of dark matter particles with a highly eccentric orbit besides the standard two-body relaxation process to refill the loss cone, and interaction between the binary and a circumbinary disk, assuming that PBHs do not constitute the bulk of dark matter. Binary PBHs lose the energy and angular momentum by these processes, which could be sufficiently efficient for a typical configuration. Such a binary coalesces due to the gravitational wave emission on a time scale much shorter than the age of the universe. We estimate the density parameter of the resultant gravitational wave background. Astrophysical implications concerning the formation of intermediate-mass to supermassive black holes is also discussed.

  2. Line Shapes Emitted from Spiral Structures around Symmetric Orbits of Supermassive Binary Black Holes

    Indian Academy of Sciences (India)

    M. Smailagić; E. Bon

    2015-12-01

    Variability of active galactic nuclei is not well understood. One possible explanation is existence of supermassive binary black holes (SMBBH) in their centres. It is expected that major mergers are common in the Universe. It is expected that each supermassive black hole of every galaxy eventually finish as a SMBBH system in the core of newly formed galaxy. Here we model the emission line profiles of active galactic nuclei (AGN) assuming that the flux and emission line shape variations are induced by supermassive binary black hole systems (SMBBH). We assume that the accreting gas inside the circumbinary (CB) disk is photo ionized by mini accretion disk emission around each SMBBH. We calculate variations of emission line flux, shifts and shapes for different parameters of SMBBH orbits. We consider cases with different masses and inclinations for circular orbits and measure the effect to the shape of emission line profiles and flux variability.

  3. Line Shapes Emitted from Spiral Structures around Symmetric Orbits of Supermassive Binary Black Holes

    CERN Document Server

    Smailagić, Marijana

    2016-01-01

    Variability of active galactic nuclei is not well understood. One possible explanation is existence of supermassive binary black holes (SMBBH) in their centres. It is expected that major mergers are common in the Universe. It is expected that each supermassive black hole of every galaxy eventually finish as a SMBBH system in the core of newly formed galaxy. Here we model the emission line profiles of active galactic nuclei (AGN) assuming that the flux and emission line shapes variation are induced by supermassive binary black hole systems (SMBBH). We assume that accreting gas inside of circumbinary (CB) disk is photo ionized by mini accretion disk emission around each SMBBH. We calculate variations of emission line flux, shifts and shapes for different parameters of SMBBH orbits. We consider cases with different masses and inclinations for circular orbits and measure the effect to the shape of emission line profiles and flux variability.

  4. Search for Gravitational Waves from Intermediate Mass Binary Black Holes

    CERN Document Server

    Abadie, J; Abbott, R; Abbott, T D; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adhikari, R; Affeldt, C; Agathos, M; Agatsuma, K; Ajith, P; Allen, B; Ceron, E Amador; Amariutei, D; Anderson, S B; Anderson, W G; Arai, K; Arain, M A; Araya, M C; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Baragoya, J C B; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Beck, D; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Belletoile, A; Belopolski, I; Benacquista, M; Berliner, J M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bouhou, B; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Bulik, T; Bulten, H J; Buonanno, A; Burguet-Castell, J; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campsie, P; Cannizzo, J; Cannon, K; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Caudill, S; Cavaglia, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chaibi, O; Chalermsongsak, T; Charlton, P; Chassande-Mottin, E; Chelkowski, S; Chen, W; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H; Chow, J; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Ciani, G; Clark, D E; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P -F; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Cutler, R M; Dahl, K; Danilishin, S L; Dannenberg, R; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Del Pozzo, W; del Prete, M; Dent, T; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Diaz, M; Dietz, A; Donovan, F; Dooley, K L; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J -C; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Endroczi, G; Engel, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, Y; Farr, B F; Fazi, D; Fehrmann, H; Feldbaum, D; Feroz, F; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Flanigan, M; Foley, S; Forsi, E; Forte, L A; Fotopoulos, N; Fournier, J -D; Franc, J; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Friedrich, D; Fritschel, P; Frolov, V V; Fujimoto, M -K; Fulda, P J; Fyffe, M; Gair, J; Galimberti, M; Gammaitoni, L; Garcia, J; Garufi, F; Gaspar, M E; Gemme, G; Geng, R; Genin, E; Gennai, A; Gergely, L A; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil, S; Gill, C; Gleason, J; Goetz, E; Goggin, L M; Gonzalez, G; Gorodetsky, M L; Gossler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Gray, N; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grosso, R; Grote, H; Grunewald, S; Guidi, G M; Gupta, R; Gustafson, E K; Gustafson, R; Ha, T; Hallam, J M; Hammer, D; Hammond, G; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Hayau, J -F; Heefner, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hendry, M A; Heng, I S; Heptonstall, A W; Herrera, V; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Hosken, D J; Hough, J; Howell, E J; Hughey, B; Husa, S; Huttner, S H; Inta, R; Isogai, T; Ivanov, A; Izumi, K; Jacobson, M; James, E; Jang, Y J; Jaranowski, P; Jesse, E; Johnson, W W; Jones, D I; Jones, G; Jones, R; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawamura, S; Kawazoe, F; Kelley, D; Kells, W; Keppel, D G; Keresztes, Z; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B; Kim, C; Kim, H; Kim, K; Kim, N; Kim, Y -M; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kranz, O; Kringel, V; Krishnamurthy, S; Krishnan, B; Krolak, A; Kuehn, G; Kumar, R; Kwee, P; Lam, P K; Landry, M; Lantz, B; Lastzka, N; Lawrie, C; Lazzarini, A; Leaci, P; Lee, C H; Lee, H K; Lee, H M; Leong, J R; Leonor, I; Leroy, N; Letendre, N; Li, J

    2012-01-01

    We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100--450 solar masses and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88 solar masses, for non-spinning sources, the rate density upper limit is 0.13 per Mpc^3 per Myr at the 90% confidence level.

  5. Accretion and Orbital Inspiral in Gas-Assisted Supermassive Black Hole Binary Mergers

    CERN Document Server

    Rafikov, Roman R

    2016-01-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant $\\dot M$ accretion disk solution. Suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semi-major axis, the binary can merge in less than its mass-doubling time due to accretion. T...

  6. GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M

    2016-04-01

    The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict Ω_{GW}(f=25  Hz)=1.1_{-0.9}^{+2.7}×10^{-9} with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.

  7. GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-04-01

    The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30 M⊙, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict ΩGW(f =25 Hz )=1. 1-0.9+2.7×10-9 with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.

  8. Using Pulsars to Detect Massive Black Hole Binaries via Gravitational Radiation Sagittarius A* and Nearby Galaxies

    CERN Document Server

    Lommen, A N; Lommen, Andrea N.; Backer, Donald C.

    2001-01-01

    Pulsar timing measurements can be used to detect gravitational radiation from massive black hole binaries. The ~106d quasi-periodic flux variations in Sagittarius A* at radio wavelengths reported by Zhao, Bower, & Goss (2001) may be due to binarity of the massive black hole that is presumed to be responsible for the radio emission. A 106d equal-mass binary black hole is unlikely based on its short inspiral lifetime and other arguments. Nevertheless the reported quasi-periodicity has led us to consider whether the long-wavelength gravitational waves from a conjectured binary might be detected in present or future precision timing of millisecond pulsars. While present timing cannot reach the level expected for an equal-mass binary, we estimate that future efforts could. This inquiry has led us to further consider the detection of binarity in the massive black holes now being found in nearby galaxies. For orbital periods of ~2000d where the pulsar timing measurements are most precise, we place upper limits o...

  9. Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes

    CERN Document Server

    Mainetti, Deborah; Campana, Sergio; Colpi, Monica

    2016-01-01

    In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double peaked flare (Mandel & Levin 2015). In this paper we perform for the first time, with GADGET2, a suite of SPH simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the syst...

  10. A simple estimate of gravitational wave memory in binary black hole systems

    CERN Document Server

    Garfinkle, David

    2016-01-01

    A simple estimate is given of gravitational wave memory for the inspiral and merger of a binary black hole system. Here the memory is proportional to the total energy radiated and has a simple angular dependence. This estimate might be helpful in finding better numerical relativity memory waveforms.

  11. The formation of the black hole in the X-ray binary system V404 Cyg

    NARCIS (Netherlands)

    J.C.A. Miller-Jones; P.G. Jonker; G. Nelemans; S. Portegies Zwart; V. Dhawan; W. Brisken; E. Gallo; M.P. Rupen

    2009-01-01

    Using new and archival radio data, we have measured the proper motion of the black hole X-ray binary V404 Cyg to be 9.2 +/- 0.3 mas yr(-1). Combined with the systemic radial velocity from the literature, we derive the full three-dimensional heliocentric space velocity of the system, which we use to

  12. GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-04-01

    The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict Ω_{GW}(f=25  Hz)=1.1_{-0.9}^{+2.7}×10^{-9} with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity. PMID:27081965

  13. A simple estimate of gravitational wave memory in binary black hole systems

    Science.gov (United States)

    Garfinkle, David

    2016-09-01

    A simple estimate is given of gravitational wave memory for the inspiral and merger of a binary black hole system. Here the memory is proportional to the total energy radiated and has a simple angular dependence. Estimates of this sort might be helpful as a consistency check for numerical relativity memory waveforms.

  14. Search for Binary Black Hole Candidates from the VLBI Images of AGNs

    Indian Academy of Sciences (India)

    Xiang Liu

    2014-09-01

    We have searched the core-jet pairs in the VLBI scales (< 1 kpc), from several VLBI catalogues, and found out 5 possible Binary Black Hole (BBH) candidates. We present here the search results and analyse the candidates preliminarily. We plan to study with multi-band VLBI observation. We also plan to carry out optical line investigation in future.

  15. Detection of radial velocity shifts due to black hole binaries near merger

    CERN Document Server

    McKernan, B

    2015-01-01

    The barycenter of a massive black hole binary will lie outside the event horizon of the primary black hole for modest values of mass ratio and binary separation. Analagous to radial velocity shifts in stellar emission lines caused by the tug of planets, the radial velocity of the primary black hole around the barycenter can leave a tell-tale oscillation in the broad component of Fe K$\\alpha$ emission from accreting gas. Near-future X-ray telescopes such as Astro-H and Athena will have the energy resolution ($\\delta E/E \\lesssim 10^{-3}$) to search nearby active galactic nuclei (AGN) for the presence of binaries with mass ratios $q \\gtrsim 0.01$, separated by several hundred gravitational radii. The general-relativistic and Lense-Thirring precession of the periapse of the secondary orbit imprints a detectable modulation on the oscillations. The lowest mass binaries in AGN will oscillate many times within typical X-ray exposures, leading to a broadening of the line wings and an over-estimate of black hole spin ...

  16. FORMATION OF BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Inspired by the recent identification in extragalactic globular clusters of the first candidate black hole-white dwarf (BH-WD) X-ray binaries, where the compact accretors may be stellar-mass black holes (BHs), we explore how such binaries could be formed in a dynamical environment. We provide analyses of the formation rates via well-known formation channels like binary exchange and physical collisions and propose that the only possibility of forming BH-WD binaries is via coupling these usual formation channels with subsequent hardening and/or triple formation. In particular, we find that the most important mechanism for the creation of a BH-WD X-ray binary from an initially dynamically formed BH-WD binary is mass transfer induced in a triple system via the Kozai mechanism. Furthermore, we find that BH-WD binaries that evolve into X-ray sources can be formed by exchanges of a BH into a WD-WD binary or possibly by collisions of a BH and a giant star. If BHs undergo significant evaporation from the cluster or form a completely detached subcluster of BHs, then we cannot match the observationally inferred production rates even using the most optimistic estimates of formation rates. To explain the observations with stellar-mass BH-WD binaries, at least 1% of all formed BHs, or presumably 10% of the BHs present in the core now, must be involved in interactions with the rest of the core stellar population.

  17. Merging black hole binaries in galactic nuclei: implications for advanced-LIGO detections

    CERN Document Server

    Antonini, Fabio

    2016-01-01

    Motivated by the recent detection of gravitational waves from the black hole binary merger GW150914, we study the dynamical evolution of black holes in galactic nuclei where massive star clusters reside. With masses of ~10^7M_Sun and sizes of only a few parsecs, nuclear star clusters are the densest stellar systems observed in the local universe and represent a robust environment where (stellar mass) black hole binaries can dynamically form, harden and merge. We show that due to their large escape speeds, nuclear star clusters can keep a large fraction of their merger remnants while also evolving rapidly enough that the holes can sink back to the central regions where they can swap in new binaries that can subsequently harden and merge. This process can repeat several times and produce black hole mergers of several tens of solar masses similar to GW150914 and up to a few hundreds of solar masses, without the need of invoking extremely low metallicity environments or implausible initial conditions. We use a se...

  18. The Role of the Kozai--Lidov Mechanism in Black Hole Binary Mergers in Galactic Centers

    Science.gov (United States)

    VanLandingham, John H.; Miller, M. Coleman; Hamilton, Douglas P.; Richardson, Derek C.

    2016-09-01

    In order to understand the rate of merger of stellar mass black hole binaries (BHBs) by gravitational wave (GW) emission it is important to determine the major pathways to merger. We use numerical simulations to explore the evolution of BHBs inside the radius of influence of supermassive black holes (SMBHs) in galactic centers. In this region, the evolution of binaries is dominated by perturbations from the central SMBH. In particular, as first pointed out by Antonini and Perets, the Kozai–Lidov mechanism trades relative inclination of the BHB to the SMBH for eccentricity of the BHB, and for some orientations can bring the BHB to an eccentricity near unity. At very high eccentricities, GW emission from the BHB can become efficient, causing the members of the BHB to coalesce. We use a novel combination of two N-body codes to follow this evolution. We are required to simulate small systems to follow the behavior accurately. We have completed 400 simulations that range from ∼300 stars around a 103 {M}ȯ black hole to ∼4500 stars around a 104 {M}ȯ black hole. These simulations are the first to follow the internal orbit of a binary near an SMBH while also following the changes to its external orbit self-consistently. We find that this mechanism could produce mergers at a maximum rate per volume of ∼100 Gpc‑3 yr‑1 or considerably less if the inclination oscillations of the binary remain constant as the BHB inclination to the SMBH changes, or if the binary black hole fraction is small.

  19. SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL SKY SURVEY SPECTROSCOPIC SAMPLE

    International Nuclear Information System (INIS)

    Supermassive black hole (SMBH) binaries are expected in a ΛCDM cosmology given that most (if not all) massive galaxies contain a massive black hole (BH) at their center. So far, however, direct evidence for such binaries has been elusive. We use cross-correlation to search for temporal velocity shifts in the Mg II broad emission lines of 0.36 9 M☉ BHs in SMBH binaries, we are sensitive to velocity drifts for binary separations of ∼0.1 pc with orbital periods of ∼100 yr. We find seven candidate sub-parsec-scale binaries with velocity shifts >3.4σ ∼ 280 km s–1, where σ is our systematic error. Comparing the detectability of SMBH binaries with the number of candidates (N ≤ 7), we can rule out that most 109 M☉ BHs exist in ∼0.03-0.2 pc scale binaries, in a scenario where binaries stall at sub-parsec scales for a Hubble time. We further constrain that ≤16% (one-third) of quasars host SMBH binaries after considering gas-assisted sub-parsec evolution of SMBH binaries, although this result is very sensitive to the assumed size of the broad line region. We estimate the detectability of SMBH binaries with ongoing or next-generation surveys (e.g., Baryon Oscillation Spectroscopic Survey, Subaru Prime Focus Spectrograph), taking into account the evolution of the sub-parsec binary in circumbinary gas disks. These future observations will provide longer time baselines for searches similar to ours and may in turn constrain the evolutionary scenarios of SMBH binaries

  20. Concise estimate of the expected number of detections for stellar-mass binary black holes by eLISA

    OpenAIRE

    Kyutoku, Koutarou; Seto, Naoki

    2016-01-01

    We study prospects for detecting extragalactic binary black holes similar to GW150914 by evolved Laser Interferometer Space Antenna (eLISA). We find that the majority of detected binary black holes will not merge within reasonable observation periods of eLISA in any configuration. While long-arm detectors are highly desired for promoting multi-band gravitational-wave astronomy by increasing the detections of merging binaries, the number of total detections can be increased also by improving t...

  1. The black hole candidate binary A0620-00

    Science.gov (United States)

    Haswell, Carole Ann

    The compact object in A0620-00 was previously established as a leading black hole candidate by observations implying a minimum compact object mass, M1 approx. = 3M solar magnitude. To exclude the possibility of a neutron star primary, the constraints on M1 need to be improved. Two avenues of investigation were pursued. The mass ratio of the system, q = M1/M sub 2, was determined by observations of the radial velocity variations of the H(alpha) emission from the accretion disk around the compact object. If the wavelength shifts give an unbiased estimate of the orbital motion of the compact object, q = 10.6 + or - 2.0. However contamination by nonaxisymmetric disk emission is indicated, so q is more uncertain than the reported formal errors. The orbital inclination of the system was examined by modelling of multicolor orbital light curves, which exhibit ellipsoidal variations. The ellipsoidal amplitudes imply a spectra type of K3-K4 for the mass donor. Light curves obtained in 1986/1987 exhibit a grazing eclipse of the mass donor star by the accretion disk, providing tight constraints on the orbital inclination and the radius of the accretion disk. The accretion disk radius is comparable to the tidal radius. Limits on the orbital inclination were derived which lead to limits on the mass of the compact object: 5.50 + or - 0.15 less than or + = M1 less than or = 6.26 + or - 0.17 for q = 5.0; 4.28 + or - 0.12 less than or = M1 less than or = 4.86 + or - 0.13 for q = 10.6; 3.79 + or - 0.10 less than or = M1 less than or = 4.68 + or - 0.13 for q = 15.0. A lower limit on the mass ratio, q greater than 6.47, is established by demanding that M2 less than or = 0.85 M solar magnitude, the mass of a Roche lobe-filling main sequence star. The spectral type of the mass donor implies that q is greater than 10.6 is unlikely. Hence the results imply M1 greater than or = 4.28 + or - 0.12, which is well above the upper limit on the mass of a neutron star. This is compelling evidence

  2. Dynamical excision boundaries in spectral evolutions of binary black hole spacetimes

    International Nuclear Information System (INIS)

    Simulations of binary black hole systems using the Spectral Einstein Code (SpEC) are done on a computational domain that excises the regions inside the black holes. It is imperative that the excision boundaries are outflow boundaries with respect to the hyperbolic evolution equations used in the simulation. We employ a time-dependent mapping between the fixed computational frame and the inertial frame through which the black holes move. The time-dependent parameters of the mapping are adjusted throughout the simulation by a feedback control system in order to follow the motion of the black holes, to adjust the shape and size of the excision surfaces so that they remain outflow boundaries, and to prevent large distortions of the grid. We describe in detail the mappings and control systems that we use. We show how these techniques have been essential in the evolution of binary black hole systems with extreme configurations, such as large spin magnitudes and high mass ratios, especially during the merger, when apparent horizons are highly distorted and the computational domain becomes compressed. The techniques introduced here may be useful in other applications of partial differential equations that involve time-dependent mappings. (paper)

  3. Suppression of the accretion rate in thin discs around binary black holes

    CERN Document Server

    Ragusa, Enrico; Price, Daniel J

    2016-01-01

    We present three-dimensional Smoothed Particle Hydrodynamics (SPH) simulations investigating the dependence of the accretion rate on the disc thickness around an equal-mass, circular black hole binary system. We find that for thick/hot discs, with $H/R\\gtrsim 0.1$, the binary torque does not prevent the gas from penetrating the cavity formed in the disc by the binary (in line with previous investigations). The situation drastically changes for thinner discs, in this case the mass accretion rate is suppressed, such that only a fraction (linearly dependent on $H/R$) of the available gas is able to flow within the cavity and accrete on to the binary. Extrapolating this result to the cold and thin accretion discs expected around supermassive black hole binary systems implies that this kind of systems accretes less material than predicted so far, with consequences not only for the electromagnetic and gravitational waves emissions during the late inspiral phase but also for the recoil speed of the black hole formed...

  4. A Proposed Search for the Detection of Gravitational Waves from Eccentric Binary Black Holes

    CERN Document Server

    Tiwari, Vaibhav; Christensen, Nelson; Huerta, Eliu; Mohapatra, Satya; Gopakumar, Achamveedu; Haney, Maria; Parameswaran, Ajith; McWilliams, Sean; Vedovato, Gabriele; Drago, Marco; Salemi, Francesco; Prodi, Giovanni; Lazzaro, Claudia; Tiwari, Shubhanshu; Mitselmakher, Guenakh; Da Silva, Filipe

    2015-01-01

    Most of compact binary systems are expected to circularize before the frequency of emitted gravitational waves (GWs) enters the sensitivity band of the ground based interferometric detectors. However, several mechanisms have been proposed for the formation of binary systems, which retain eccentricity throughout their lifetimes. Since no matched-filtering algorithm has been developed to extract continuous GW signals from compact binaries on orbits with low to moderate values of eccentricity, and available algorithms to detect binaries on quasi-circular orbits are sub-optimal to recover these events, in this paper we propose a search method for detection of gravitational waves produced from the coalescences of eccentric binary black holes (eBBH). We study the search sensitivity and the false alarm rates on a segment of data from the second joint science run of LIGO and Virgo detectors, and discuss the implications of the eccentric binary search for the advanced GW detectors.

  5. Supermassive Black Hole Binaries: Environment and Galaxy Host Properties of PTA and eLISA sources

    CERN Document Server

    Palafox, Eva Martínez; Colín, Pedro; Gottlöber, Stefan

    2014-01-01

    Supermassive black hole (BH) binaries would comprise the strongest sources of gravitational waves (GW) once they reach <<1 pc separations, for both pulsar timing arrays (PTAs) and space based (SB) detectors. While BH binaries coalescences constitute a natural outcome of the cosmological standard model and galaxy mergers, their dynamical evolution is still poorly understood and therefore their abundances at different stages. We use a dynamical model for the decay of BH binaries coupled with a cosmological simulation and semi-empirical approaches to the occupation of haloes by galaxies and BHs, in order to follow the evolution of the properties distribution of galaxies hosting BH binaries candidates to decay due to GWs emission. Our models allow us to relax simplifying hypothesis about the binaries occupation in galaxies and their mass, as well as redshift evolution. Following previously proposed electromagnetic (EM) signatures of binaries in the subpc regime, that include spectral features and variabilit...

  6. Rapid formation of supermassive black hole binaries in galaxy mergers with gas.

    Science.gov (United States)

    Mayer, L; Kazantzidis, S; Madau, P; Colpi, M; Quinn, T; Wadsley, J

    2007-06-29

    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that after the merger of two massive galaxies, a SMBH binary will form, shrink because of stellar or gas dynamical processes, and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas because of the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years after the collision between two spiral galaxies. A massive, turbulent, nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than 1 million years as a result of the gravitational drag from the gas rather than from the stars. PMID:17556550

  7. Numerical method for binary black hole/neutron star initial data: Code test

    CERN Document Server

    Tsokaros, A A; Tsokaros, Antonios A.; Uryu, Koji

    2007-01-01

    A new numerical method to construct binary black hole/neutron star initial data is presented. The method uses three spherical coordinate patches; Two of these are centered at the binary compact objects and cover a neighborhood of each object; the third patch extends to the asymptotic region. As in the Komatsu-Eriguchi-Hachisu method, nonlinear elliptic field equations are decomposed into a flat space Laplacian and a remaining nonlinear expression that serves in each iteration as an effective source. The equations are solved iteratively, integrating a Green's function against the effective source at each iteration. Detailed convergence tests for the essential part of the code are performed for a few types of selected Green's functions to treat different boundary conditions. Numerical computation of the gravitational potential of a fluid source, and a toy model for a binary black hole field are carefully calibrated with the analytic solutions to examine accuracy and convergence of the new code. As an example of...

  8. Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, L.; /Zurich U. /Zurich, ETH; Kazantzidis, S.; /KIPAC, Menlo Park; Madau, P.; /UC, Santa Cruz /Garching, Max Planck Inst.; Colpi, M.; /Milan Bicocca U.; Quinn, T.; /Washington U., Seattle; Wadsley, J.; /McMaster U.

    2008-03-24

    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that, following the merger of two massive galaxies, a SMBH binary will form, shrink due to stellar or gas dynamical processes and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas due to the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years following the collision between two spiral galaxies. A massive, turbulent nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than a million years as a result of the gravitational drag from the gas rather than from the stars.

  9. Pulsar timing arrays and the challenge of massive black hole binary astrophysics

    CERN Document Server

    Sesana, Alberto

    2014-01-01

    Pulsar timing arrays (PTAs) are designed to detect gravitational waves (GWs) at nHz frequencies. The expected dominant signal is given by the superposition of all waves emitted by the cosmological population of supermassive black hole (SMBH) binaries. Such superposition creates an incoherent stochastic background, on top of which particularly bright or nearby sources might be individually resolved. In this contribution I describe the properties of the expected GW signal, highlighting its dependence on the overall binary population, the relation between SMBHs and their hosts, and their coupling with the stellar and gaseous environment. I describe the status of current PTA efforts, and prospect of future detection and SMBH binary astrophysics.

  10. Fossil Gas and the Electromagnetic Precursor of Supermassive Binary Black Hole Mergers

    CERN Document Server

    Chang, P; Menou, K; Quataert, E

    2009-01-01

    Using a one-dimensional height integrated model, we calculate the evolution of an unequal mass binary black hole with a coplanar gas disk that contains a gap due to the presence of the secondary black hole. Viscous evolution of the outer circumbinary disk initially hardens the binary, while the inner disk drains onto the primary (central) black hole. As long as the inner disk remains cool and thin at low $\\dot{M}_{\\rm ext}$ (rather than becoming hot and geometrically thick), the mass of the inner disk reaches an asymptotic mass typically $\\sim 10^{-3}-10^{-4}\\Msun$. Once the semimajor axis shrinks below a critical value, angular momentum losses from gravitational waves dominate over viscous transport in hardening the binary. The inner disk then no longer responds viscously to the inspiraling black holes. Instead, tidal interactions with the secondary rapidly drive the inner disk into the primary. Tidal and viscous dissipation in the inner disk lead to a late time brightening in luminosity $L\\propto t_{\\rm min...

  11. Remnant of binary black-hole mergers: New simulations and peak luminosity studies

    CERN Document Server

    Healy, James

    2016-01-01

    We present the results of 61 new simulations of nonprecessing spinning black hole binaries with mass ratios $q=m_1/m_2$ in the range $1\\leq q\\leq1/3$ and individual spins covering the parameter space $-0.85\\leq\\alpha_{1,2}\\leq0.85$. We additionally perform 10 new simulations of nonspinning black hole binaries with mass ratios covering the range $1/6\\leq q<1$. We follow the evolution for typically the last ten orbits before merger down to the formation of the final remnant black hole. This allows for assessment of the accuracy of our previous empirical formulae for relating the binary parameters to the remnant final black hole mass, spin and recoil. We use the new simulation to improve the fit to the above remnant formulae and add a formula for the peak luminosity of gravitational waves, produced around the merger of the two horizons into one. We find excellent agreement (typical errors $\\sim0.1-0.2\\%$) for the mass and spin, and $\\sim5\\%$ for the recoil and peak luminosity. These formulae have direct appli...

  12. Black hole mass and binary model for BL Lac object OJ 287

    CERN Document Server

    Liu, F K; Wu, Xue-Bing

    2002-01-01

    Recent intensive observations of the BL Lac object OJ 287 raise a lot of questions on the models of binary black holes, processing jets, rotating helical jets and thermal instability of slim accretion disks. After carefully analyzing their radio flux and polarization data, Valtaoja et al. (\\cite{valtaoja00}) propose a new binary model. Based on the black hole mass of $4 \\times 10^8 {\\rm M_\\odot}$ estimated with the tight correlations of the black hole masses and the bulge luminosity or central velocity dispersion of host galaxies, we computed the physical parameters of the new binary scenario. The impact of the secondary on the accretion disk around the primary black hole causes strong shocks propagating inwards and outwards, whose arrival at the jet roots is identified with the rapid increase of optical polarization and the large change of polarization angle at about 0.30 yr after the first main optical flare. An increase of optical polarization, a large rotation of positional angle and a small synchrotron f...

  13. The Formation and Gravitational-Wave Detection of Massive Stellar Black-Hole Binaries

    CERN Document Server

    Belczynski, Krzysztof; Cantiello, Matteo; Holz, Daniel E; Fryer, Chris L; Mandel, Ilya; Miller, M Coleman; Walczak, Marek

    2014-01-01

    If binaries consisting of two 100 Msun black holes exist they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z=2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several stars with mass greater than 150 Msun in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black-hole--black-hole binary remains too wide to be able to coalesce wi...

  14. Astrophysical Implications of the Binary Black-Hole Merger GW150914

    CERN Document Server

    ,

    2016-01-01

    The discovery of the gravitational-wave source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black-hole systems that inspiral and merge within the age of the Universe. Such black-hole mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively "heavy" black holes ($\\gtrsim 25\\, M_\\odot$) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with metallicity lower than $\\sim 1/2$ of the solar value. The rate of binary black-hole mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions ($\\gtrsim 1 \\, \\mathrm{Gpc}^{-3} \\, \\mathrm{yr}^{-1}$) from both types of formation models. The low measured redshift ($z \\sim 0.1$) of GW150914 and the low inferr...

  15. A Global Look at Reflection in Black-Hole X-ray Binaries Using RXTE

    Science.gov (United States)

    Steiner, James F.; Garcia, Javier; Reis, Ruben C.; McClintock, Jeffrey E.

    2014-08-01

    Spectral reflection is ubiquitous in black-hole X-ray binaries, and is produced by the coronal hard X-ray emission illuminating the cooler accretion disk. The observed interplay between coronal and reflection spectral components provides insight into the geometry of the corona - an attribute which is presently only weakly constrained We present first results from a new campaign analyzing all RXTE PCU-2 spectra of accreting stellar-mass black holes. A simple but self-consistent treatment of disk, coronal, and reflection emission highlights changes evident in the coronal geometry between soft and hard spectral states.

  16. From X-ray binaries to quasars black holes on all mass scales black holes on all mass scales

    CERN Document Server

    Ho, L C; Maccarone, T J

    2005-01-01

    This volume brings together contributions from many of the world's leading authorities on black hole accretion. The papers within represent part of a new movement to make use of the relative advantages of studying stellar mass and supermassive black holes and to bring together the knowledge gained from the two approaches. The topics discussed here run the gamut of the state of the art in black hole observational and theoretical work-variability, spectroscopy, disk-jet connections, and multi-wavelength campaigns on black holes are all covered. Reprinted from ASTROPHYSICS AND SPACE SCIENCE, 300:1-3 (2005)

  17. Measuring the spin of black holes in binary systems using gravitational waves.

    Science.gov (United States)

    Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-06-27

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries.

  18. Measuring the spin of black holes in binary systems using gravitational waves.

    Science.gov (United States)

    Vitale, Salvatore; Lynch, Ryan; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-06-27

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground-based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions and the opportunity of measuring spins directly through GW observations. In this Letter, we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientations, and signal-to-noise ratios, as detected by an advanced LIGO-Virgo network. We find that for moderate or high signal-to-noise ratio the spin magnitudes can be estimated with errors of a few percent (5%-30%) for neutron star-black hole (black hole-black hole) systems. Spins' tilt angle can be estimated with errors of 0.04 rad in the best cases, but typical values will be above 0.1 rad. Errors will be larger for signals barely above the threshold for detection. The difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum and that a sudden change of behavior occurs when a system is observed from angles such that the plane of the orbit can be seen both from above and below during the time the signal is in band. This study suggests that direct measurement of black hole spin by means of GWs can be as precise as what can be obtained from x-ray binaries. PMID:25014800

  19. Measuring the spin of black holes in binary systems using gravitational waves

    CERN Document Server

    Vitale, Salvatore; Veitch, John; Raymond, Vivien; Sturani, Riccardo

    2014-01-01

    Compact binary coalescences are the most promising sources of gravitational waves (GWs) for ground based detectors. Binary systems containing one or two spinning black holes are particularly interesting due to spin-orbit (and eventual spin-spin) interactions, and the opportunity of measuring spins directly through GW observations. In this letter we analyze simulated signals emitted by spinning binaries with several values of masses, spins, orientation, and signal-to-noise ratio. We find that spin magnitudes and tilt angles can be estimated to accuracy of a few percent for neutron star--black hole systems and $\\sim$ 5-30% for black hole binaries. In contrast, the difference in the azimuth angles of the spins, which may be used to check if spins are locked into resonant configurations, cannot be constrained. We observe that the best performances are obtained when the line of sight is perpendicular to the system's total angular momentum, and that a sudden change of behavior occurs when a system is observed from ...

  20. Binary Black Hole Mergers in the first Advanced LIGO Observing Run

    CERN Document Server

    ,

    2016-01-01

    The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to $100 M_\\odot$ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than $5\\sigma$ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We d...

  1. A massive binary black-hole system in OJ 287 and a test of general relativity.

    Science.gov (United States)

    Valtonen, M J; Lehto, H J; Nilsson, K; Heidt, J; Takalo, L O; Sillanpää, A; Villforth, C; Kidger, M; Poyner, G; Pursimo, T; Zola, S; Wu, J-H; Zhou, X; Sadakane, K; Drozdz, M; Koziel, D; Marchev, D; Ogloza, W; Porowski, C; Siwak, M; Stachowski, G; Winiarski, M; Hentunen, V-P; Nissinen, M; Liakos, A; Dogru, S

    2008-04-17

    Tests of Einstein's general theory of relativity have mostly been carried out in weak gravitational fields where the space-time curvature effects are first-order deviations from Newton's theory. Binary pulsars provide a means of probing the strong gravitational field around a neutron star, but strong-field effects may be best tested in systems containing black holes. Here we report such a test in a close binary system of two candidate black holes in the quasar OJ 287. This quasar shows quasi-periodic optical outbursts at 12-year intervals, with two outburst peaks per interval. The latest outburst occurred in September 2007, within a day of the time predicted by the binary black-hole model and general relativity. The observations confirm the binary nature of the system and also provide evidence for the loss of orbital energy in agreement (within 10 per cent) with the emission of gravitational waves from the system. In the absence of gravitational wave emission the outburst would have happened 20 days later. PMID:18421348

  2. Bifurcation timescales in power spectra of black hole binaries and ultraluminous X-ray sources

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    For black hole binaries(BHBs) and active galactic nuclei(AGNs),bifurcation timescales(BTs) Δtb exist,below which time-domain power is significantly higher than the corresponding Fourier power.Quasi-periodic oscillations(QPOs) are removed from the Fourier spectra of BHBs.A relationship between BT,black hole mass and bolometric luminosity is derived.Strong anti-correlation between BT and luminosity of Cyg X-1 is found.After removing the QPOs,BTs are also obtained for two ultraluminous X-ray sources(ULXs),M82 X-1 and NGC5408 X-1.The results support that they harbor intermediate mass black holes(IMBHs).

  3. eLISA eccentricity measurements as tracers of binary black hole formation

    CERN Document Server

    Nishizawa, Atsushi; Klein, Antoine; Sesana, Alberto

    2016-01-01

    Up to hundreds of black hole binaries individually resolvable by eLISA will coalesce in the Advanced LIGO/Virgo band within ten years, allowing for multi-band gravitational wave observations. Binaries formed via dynamical interactions in dense star clusters are expected to have eccentricities $e_0\\sim 10^{-3}$-$10^{-1}$ at the frequencies $f_0=10^{-2}$ Hz where eLISA is most sensitive, while binaries formed in the field should have negligible eccentricity in both frequency bands. We estimate that eLISA should always be able to detect a nonzero $e_0$ whenever $e_0\\gtrsim 10^{-2}$; if $e_0\\sim 10^{-3}$, eLISA should detect nonzero eccentricity for a fraction $\\sim 90\\%$ ($\\sim 25\\%$) of binaries when the observation time is $T_{\\rm obs}=5$ ($2$) years, respectively. Therefore eLISA observations of BH binaries have the potential to distinguish between field and cluster formation scenarios.

  4. Multi-messenger approaches to binary supermassive black holes in the ‘continuous-wave’ regime

    International Nuclear Information System (INIS)

    Pulsar timing arrays are sensitive to gravitational waves from supermassive black hole (SMBH) binaries at orbital separations of ≪1 pc. There is currently an observational paucity of such systems, although they are central figures in studies of galaxy evolution, merger dynamics, and active nucleus formation. We review the prospects of detecting SMBH binaries through electromagnetic radiative processes thought to be associated with galaxy mergers and late-stage binary evolution. We then discuss the scientific goals of joint pulsar timing and electromagnetic studies of these systems, including the facilitation of binary parameter estimation, identifying galactic hosts of gravitational wave emitters, and relevant studies of merger dynamics and cosmology. The use of upcoming high-precision timing arrays with the International pulsar timing array and the square kilometre array, combined with ongoing electromagnetic observing campaigns to identify active SMBH binaries, provide generous possibilities for multi-messenger astrophysics in the near future. (paper)

  5. Searching for GW signals from eccentric supermassive black-hole binaries with pulsar-timing arrays

    Science.gov (United States)

    Taylor, Stephen; Gair, Jonathan; Huerta, Eliu; McWilliams, Sean

    2015-04-01

    The mergers of massive galaxies leads to the formation of supermassive black-hole binaries in the common merger remnants. Various mechanisms have been proposed to harden these binaries into the adiabatic GW inspiral regime, from interactions with circumbinary disks to stellar scattering. It may be the case that these mechanisms leave the binary with a residual eccentricity, such that the deviation to the time-of-arrival of pulsar signals induced by the emitted GW passing between the Earth and a pulsar will contain a signature of this eccentricity. Current pulsar-timing search pipelines only probe circular binary systems, but much effort is now being devoted to considering the influence of the binary environment on GW signals. We will detail our efforts in constructing a generalised GW search pipeline to constrain the eccentricity of single systems with arrays of precisely-timed pulsars, which may shed light on the influence of various supermassive black-hole binary hardening mechanisms and illuminate the importance of environmental couplings.

  6. Detecting eccentric supermassive black hole binaries with pulsar timing arrays: Resolvable source strategies

    CERN Document Server

    Taylor, S R; Gair, J R; McWilliams, S T

    2015-01-01

    The couplings between supermassive black-hole binaries and their environments within galactic nuclei have been well studied as part of the search for solutions to the final parsec problem. The scattering of stars by the binary or the interaction with a circumbinary disk may efficiently drive the system to sub-parsec separations, allowing the binary to enter a regime where the emission of gravitational-waves can drive it to merger within a Hubble time. However, these interactions can also affect the orbital parameters of the binary. In particular, they may drive an increase in binary eccentricity which survives until the system's gravitational-wave signal enters the pulsar-timing array band. Therefore, if we can measure the eccentricity from observed signals, we can potentially deduce some of the properties of the binary environment. To this end, we build on previous techniques to present a general Bayesian pipeline with which we can detect and estimate the parameters of an eccentric supermassive black-hole bi...

  7. SUPERMASSIVE BLACK HOLE BINARY EVOLUTION IN AXISYMMETRIC GALAXIES: THE FINAL PARSEC PROBLEM IS NOT A PROBLEM

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fazeel Mahmood [Department of Space Science, Institute of Space Technology, P.O. Box 2750 Islamabad (Pakistan); Holley-Bockelmann, Kelly [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Berczik, Peter; Just, Andreas, E-mail: khan@ari.uni-heidelberg.de, E-mail: just@ari.uni-heidelberg.de, E-mail: berczik@ari.uni-heidelberg.de, E-mail: k.holley@vanderbilt.edu [Astronomisches Rechen-Institut, Zentrum fuer Astronomie, University of Heidelberg, Moenchhof-Strasse 12-14, D-69120 Heidelberg (Germany)

    2013-08-20

    During a galaxy merger, the supermassive black hole (SMBH) in each galaxy is thought to sink to the center of the potential and form an SMBH binary; this binary can eject stars via three-body scattering, bringing the SMBHs ever closer. In a static spherical galaxy model, the binary stalls at a separation of about a parsec after ejecting all the stars in its loss cone-this is the well-known final parsec problem. Earlier work has shown that the centrophilic orbits in triaxial galaxy models are key in refilling the loss cone at a high enough rate to prevent the black holes from stalling. However, the evolution of binary SMBHs has never been explored in axisymmetric galaxies, so it is not clear if the final parsec problem persists in these systems. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in galaxy models with a range of ellipticity. For the first time, we show that mere axisymmetry can solve the final parsec problem; we find the SMBH evolution is independent of N for an axis ratio of c/a = 0.8, and that the SMBH binary separation reaches the gravitational radiation regime for c/a = 0.75.

  8. Assessing the Detectability of Gravitational Waves from Coalescing Binary Black Holes with Precessing Spin

    Science.gov (United States)

    Frederick, Sara; Privitera, Stephen; Weinstein, Alan J.; LIGO Scientific Collaboration

    2015-01-01

    The Advanced LIGO and Virgo gravitational wave detectors will come online within the year and are expected to outperform the strain sensitivity of initial LIGO/Virgo detectors by an order of magnitude and operate with greater bandwidth, possibly to frequencies as low as 10 Hz. Coalescing binary black holes (BBH) are anticipated to be among the most likely sources of gravitational radiation observable by the detectors. Searches for such systems benefit greatly from the use of accurate predictions for the gravitational wave signal to filter the data. The component black holes of these systems are predicted to have substantial spin, which greatly influences the gravitational waveforms from these sources; however, recent LIGO/Virgo searches have made use of banks of waveform models which neglect the effects of the component spins. The inclusion of spinning components is relatively simplified when the spins are taken to be aligned with the orbital angular momentum, though the difficult task of including precession (allowing for mis-aligned component spins) remains a goal of this work. We aim to assess the ability of the GSTLAL gravitational wave search pipeline using IMR aligned-spin template waveforms to recover signals from generically spinning black hole binaries injected into simulated Advanced LIGO and Virgo detector noise. If black holes are highly spinning as predicted, use of aligned-spin template banks in upcoming searches could increase the detection rate of these systems in Advanced LIGO and Virgo data, providing the opportunity for a deeper understanding of the sources.

  9. Gravitational waves from nonspinning black hole-neutron star binaries: dependence on equations of state

    CERN Document Server

    Kyutoku, Koutarou; Taniguchi, Keisuke

    2010-01-01

    We report results of a numerical-relativity simulation for the merger of a black hole-neutron star binary with a variety of equations of state (EOSs) modeled by piecewise polytropes. We focus in particular on the dependence of the gravitational waveform at the merger stage on the EOSs. The initial conditions are computed in the moving-puncture framework, assuming that the black hole is nonspinning and the neutron star has an irrotational velocity field. For a small mass ratio of the binaries (e.g., MBH/MNS = 2 where MBH and MNS are the masses of the black hole and neutron star, respectively), the neutron star is tidally disrupted before it is swallowed by the black hole irrespective of the EOS. Especially for less-compact neutron stars, the tidal disruption occurs at a more distant orbit. The tidal disruption is reflected in a cutoff frequency of the gravitational-wave spectrum, above which the spectrum amplitude exponentially decreases. A clear relation is found between the cutoff frequency of the gravitatio...

  10. Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars

    Science.gov (United States)

    Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.

    2004-01-01

    One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.

  11. A close-pair binary in a distant triple supermassive black-hole system

    CERN Document Server

    Deane, R P; Jarvis, M J; Coriat, M; Bernardi, G; Fender, R P; Frey, S; Heywood, I; Klöckner, H -R; Grainge, K; Rumsey, C

    2014-01-01

    Galaxies are believed to evolve through merging, which should lead to multiple supermassive black holes in some. There are four known triple black hole systems, with the closest pair being 2.4 kiloparsecs apart (the third component is more distant at 3 kiloparsecs), which is far from the gravitational sphere of influence of a black hole with mass $\\sim$10$^9$ M$_\\odot$ (about 100 parsecs). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs. Here we report observations of a triple black hole system at redshift z=0.39, with the closest pair separated by $\\sim$140 parsecs. The presence of the tight pair is imprinted onto the properties of the large-scale radio jets, as a rotationally-symmetric helical modulation, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs ar...

  12. Initial data for black hole-neutron star binaries, with rotating stars

    CERN Document Server

    Tacik, Nick; Pfeiffer, Harald P; Muhlberger, Curran; Kidder, Lawrence E; Scheel, Mark A; Szilagyi, Bela

    2016-01-01

    The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole--neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as $S_{\\rm BH}/M_{\\rm BH}^2=0.99$.

  13. The Lazarus project A pragmatic approach to binary black hole evolutions

    CERN Document Server

    Baker, J; Loustó, C O

    2002-01-01

    We present a detailed description of techniques developed to combine 3D numerical simulations and, subsequently, a single black hole close-limit approximation. This method has made it possible to compute the first complete waveforms covering the post-orbital dynamics of a binary black hole system with the numerical simulation covering the essential non-linear interaction before the close limit becomes applicable for the late time dynamics. To determine when close-limit perturbation theory is applicable we apply a combination of invariant a priori estimates and a posteriori consistency checks of the robustness of our results against exchange of linear and non-linear treatments near the interface. Once the numerically modeled binary system reaches a regime that can be treated as perturbations of the Kerr spacetime, we must approximately relate the numerical coordinates to the perturbative background coordinates. We also perform a rotation of a numerically defined tetrad to asymptotically reproduce the tetrad re...

  14. Fast and accurate prediction of numerical relativity waveforms from binary black hole mergers using surrogate models

    CERN Document Server

    Blackman, Jonathan; Galley, Chad R; Szilagyi, Bela; Scheel, Mark A; Tiglio, Manuel; Hemberger, Daniel A

    2015-01-01

    Simulating a binary black hole coalescence by solving Einstein's equations is computationally expensive, requiring days to months of supercomputing time. In this paper, we construct an accurate and fast-to-evaluate surrogate model for numerical relativity (NR) waveforms from non-spinning binary black hole coalescences with mass ratios from $1$ to $10$ and durations corresponding to about $15$ orbits before merger. Our surrogate, which is built using reduced order modeling techniques, is distinct from traditional modeling efforts. We find that the full multi-mode surrogate model agrees with waveforms generated by NR to within the numerical error of the NR code. In particular, we show that our modeling strategy produces surrogates which can correctly predict NR waveforms that were {\\em not} used for the surrogate's training. For all practical purposes, then, the surrogate waveform model is equivalent to the high-accuracy, large-scale simulation waveform but can be evaluated in a millisecond to a second dependin...

  15. The NINJA-2 project: Detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    CERN Document Server

    :,; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Beyersdorf, P T; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corpuz, A; Corsi, A; Costa, C A; Coughlin, M W; Coughlin, S; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Donath, A; Donovan, F; Dooley, K L; Doravari, S; Dossa, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K; Gustafson, E K; Gustafson, R; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Hooper, S; Hopkins, P; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N; Kim, N G; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kremin, A; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C -H; Lee, H K; Lee, H M; Lee, J; Leonardi, M; Leong, J R; Roux, A Le; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Litvine, V; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Luijten, E; Lundgren, A P; Lynch, R; Ma, Y; Macarthur, J; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyers, P; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Milde, S; Miller, J; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moesta, P; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Kumar, D Nanda; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Qin, J; Quetschke, V; Quintero, E; Quiroga, G; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Re, V; Read, J; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Rhoades, E; Ricci, F; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Rodruck, M; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Stebbins, J; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Urban, A L; Urbanek, K; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; Brand, J F J van den; Broeck, C Van Den; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Walker, M; Wallace, L; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yang, Z; Yoshida, S; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J; Boyle, M; Brügmann, B; Buchman, L T; Campanelli, M; Chu, T; Etienne, Z B; Hannam, M; Healy, J; Hinder, I; Kidder, L E; Laguna, P; Liu, Y T; London, L; Lousto, C O; Lovelace, G; MacDonald, I; Marronetti, P; Mösta, P; Müller, D; Mundim, B C; Nakano, H; Paschalidis, V; Pekowsky, L; Pollney, D; Pfeiffer, H P; Ponce, M; Pürrer, M; Reifenberger, G; Reisswig, C; Santamaría, L; Scheel, M A; Shapiro, S L; Shoemaker, D; Sopuerta, C F; Sperhake, U; Szilágyi, B; Taylor, N W; Tichy, W; Tsatsin, P; Zlochower, Y

    2014-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave astrophysics communities. The purpose of NINJA is to study the ability to detect gravitational waves emitted from merging binary black holes and recover their parameters with next-generation gravitational-wave observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete binary black hole hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a "blind injection challenge" similar to that conducted in recent LIGO and Virgo science runs, we added 7 hybrid waveforms to two months of data recolored to predictions of Advanced LIGO and Advanced Virgo sensitivity curves during their first observing runs. The resulting data was analyzed by gravitational-wave detection algorithms and 6 of the waveforms were recovered w...

  16. The Case for Massive, Evolving Winds in Black Hole X-ray Binaries

    CERN Document Server

    Neilsen, Joseph

    2013-01-01

    In the last decade, high-resolution X-ray spectroscopy has revolutionized our understanding of the role of accretion disk winds in black hole X-ray binaries. Here I present a brief review of the state of wind studies in black hole X-ray binaries, focusing on recent arguments that disk winds are not only extremely massive, but also highly variable. I show how new and archival observations at high timing and spectral resolution continue to highlight the intricate links between the inner accretion flow, relativistic jets, and accretion disk winds. Finally, I discuss methods to infer the driving mechanisms of observed disk winds and their implications for connections between mass accretion and ejection processes.

  17. Multivariate Classification with Random Forests for Gravitational Wave Searches of Black Hole Binary Coalescence

    CERN Document Server

    Baker, Paul T; Hodge, Kari A; Talukder, Dipongkar; Capano, Collin; Cornish, Neil J

    2014-01-01

    Searches for gravitational waves produced by coalescing black hole binaries with total masses $\\gtrsim25\\,$M$_\\odot$ use matched filtering with templates of short duration. Non-Gaussian noise bursts in gravitational wave detector data can mimic short signals and limit the sensitivity of these searches. Previous searches have relied on empirically designed statistics incorporating signal-to-noise ratio and signal-based vetoes to separate gravitational wave candidates from noise candidates. We report on sensitivity improvements achieved using a multivariate candidate ranking statistic derived from a supervised machine learning algorithm. We apply the random forest of bagged decision trees technique to two separate searches in the high mass $\\left( \\gtrsim25\\,\\mathrm{M}_\\odot \\right)$ parameter space. For a search which is sensitive to gravitational waves from the inspiral, merger, and ringdown (IMR) of binary black holes with total mass between $25\\,$M$_\\odot$ and $100\\,$M$_\\odot$, we find sensitive volume impr...

  18. Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction

    CERN Document Server

    Racine, Etienne

    2008-01-01

    We analyze in detail the spin precession equations in binary black hole systems, when the tidal torque on a Kerr black hole is taken into account. We show that completing the precession equations with this term reveals the existence of a conserved quantity at 2PN order when restricting attention to orbits with negligible eccentricity and averaging over orbital motion. This quantity allows one to solve the (orbit-averaged) precession equations exactly in the case of equal masses and arbitrary spins, neglecting radiation reaction. For unequal masses, an exact solution does not exist in closed form, but we are still able to derive accurate approximate analytic solutions. We also show how to incorporate radiation reaction effects into our analytic solutions adiabatically, and compare the results to solutions obtained numerically. For various configurations of the binary, the relative difference in the accumulated orbital phase computed using our analytic solutions versus a full numerical solution vary from about ...

  19. Mergers of Black-Hole Binaries with Aligned Spins: Waveform Characteristics

    Science.gov (United States)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; McWilliams, Sean T.; Centrella, Joan

    2011-01-01

    "We apply our gravitational-waveform analysis techniques, first presented in the context of nonspinning black holes of varying mass ratio [1], to the complementary case of equal-mass spinning black-hole binary systems. We find that, as with the nonspinning mergers, the dominant waveform modes phases evolve together in lock-step through inspiral and merger, supporting the previous model of the binary system as an adiabatically rigid rotator driving gravitational-wave emission - an implicit rotating source (IRS). We further apply the late-merger model for the rotational frequency introduced in [1], along with a new mode amplitude model appropriate for the dominant (2, plus or minus 2) modes. We demonstrate that this seven-parameter model performs well in matches with the original numerical waveform for system masses above - 150 solar mass, both when the parameters are freely fit, and when they are almost completely constrained by physical considerations."

  20. Catalog of 174 binary black hole simulations for gravitational wave astronomy.

    Science.gov (United States)

    Mroué, Abdul H; Scheel, Mark A; Szilágyi, Béla; Pfeiffer, Harald P; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Lovelace, Geoffrey; Ossokine, Serguei; Taylor, Nicholas W; Zenginoğlu, Anıl; Buchman, Luisa T; Chu, Tony; Foley, Evan; Giesler, Matthew; Owen, Robert; Teukolsky, Saul A

    2013-12-13

    This Letter presents a publicly available catalog of 174 numerical binary black hole simulations following up to 35 orbits. The catalog includes 91 precessing binaries, mass ratios up to 8∶1, orbital eccentricities from a few percent to 10(-5), black hole spins up to 98% of the theoretical maximum, and radiated energies up to 11.1% of the initial mass. We establish remarkably good agreement with post-Newtonian precession of orbital and spin directions for two new precessing simulations, and we discuss other applications of this catalog. Formidable challenges remain: e.g., precession complicates the connection of numerical and approximate analytical waveforms, and vast regions of the parameter space remain unexplored.

  1. Un-modeled search for black hole binary systems in the NINJA project

    CERN Document Server

    Cadonati, Laura; Fischetti, Sebastian; Guidi, Gianluca; Mohapatra, Satyanarayan R P; Sturani, Riccardo; Viceré, Andrea

    2009-01-01

    The gravitational wave signature from binary black hole coalescences is an important target for LIGO and VIRGO. The Numerical INJection Analysis (NINJA) project brought together the numerical relativity and gravitational wave data analysis communities, with the goal to optimize the detectability of these events. In its first instantiation, the NINJA project produced a simulated data set with numerical waveforms from binary black hole coalescences of various morphologies (spin, mass ratio, initial conditions), superimposed to Gaussian colored noise at the design sensitivity for initial LIGO and VIRGO. We analyzed this simulated data set with the Q-pipeline burst algorithm. This code, designed for the all-sky detection of gravitational wave bursts with minimal assumptions on the shape of the waveform, filters the data with a bank of sine-Gaussians, or sinusoids with Gaussian envelope. The algorithm's performance was compared to matched filtering with ring-down templates. The results are qualitatively consistent...

  2. The final spin from binary black holes in quasi-circular orbits

    CERN Document Server

    Hofmann, Fabian; Rezzolla, Luciano

    2016-01-01

    We revisit the problem of predicting the spin magnitude and direction of the black hole resulting from the merger of two black holes with arbitrary masses and spins inspiralling in quasi-circular orbits. We do this by analyzing a catalog of 641 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit and perturbative calculations, we improve our previously proposed phenomenological formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy with our previous expressions, the new formula is a simple algebraic function of the initial system parameters and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum, but can be employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially for almost extremal progenitor spins...

  3. Parameter estimation and uncertainty for gravitational waves from binary black holes

    Science.gov (United States)

    Berry, Christopher; LIGO Scientific Collaboration; Virgo Collaboration

    2016-03-01

    Binary black holes are one of the most promising sources of gravitational waves that could be observed by Advanced LIGO. To accurately infer the parameters of an astrophysical signal, it is necessary to have a reliable model of the gravitational waveform. Uncertainty in the waveform leads to uncertainty in the measured parameters. For loud signals, this theoretical uncertainty could dominate statistical uncertainty, to be the primary source of error in gravitational-wave astronomy. However, we expect the first candidate events will be closer to the detection threshold. We look at how parameter estimation would be influenced by the use of different waveform models for a binary black-hole signal near detection threshold, and how this can be folded in to a Bayesian analysis.

  4. Electromagnetic signatures of supermassive black hole binaries resolved by PTAs

    CERN Document Server

    Tanaka, Takamitsu L

    2013-01-01

    Pulsar timing arrays (PTAs) may eventually be able to detect not only the stochastic gravitational-wave (GW) background of SMBH binaries, but also individual, particularly massive binaries whose signals stick out above the background. In this contribution, we discuss the possibility of identifying and studying such `resolved' binaries through their electromagnetic emission. The host galaxies of such binaries are themselves expected to be also very massive and rare, so that out to redshifts z~2 a unique massive galaxy may be identified as the host. At higher redshifts, the PTA error boxes are larger and may contain as many as several hundred massive-galaxy interlopers. In this case, the true counterpart may be identified, if it is accreting gas efficiently, as an active galactic nucleus (AGN) with a peculiar spectrum and variable emission features. Specifically, the binary's tidal torques expel the gas from the inner part of the accretion disk, making it unusually dim in X-ray and UV bands and in broad optical...

  5. Jets in neutron star X-ray binaries: a comparison with black holes

    OpenAIRE

    Migliari, S.; Fender, R. P.

    2005-01-01

    (Abridged) We present a comprehensive study of the relation between radio and X-ray emission in neutron star X-ray binaries, use this to infer the general properties of the disc-jet coupling in such systems, and compare the results quantitatively with those already established for black hole systems. There are clear qualitative similarities between the two classes of object: hard states below about 1% of the Eddington luminosity produce steady jets, while transient jets are associated with ou...

  6. The Status of Black-Hole Binary Merger Simulations with Numerical Relativity

    OpenAIRE

    McWilliams, Sean T.

    2010-01-01

    The advent of long-term stability in numerical relativity has yielded a windfall of answers to long-standing questions regarding the dynamics of space-time, matter, and electromagnetic fields in the strong-field regime of black-hole binary mergers. In this review, we will briefly summarize the methodology currently applied to these problems, emphasizing the most recent advancements. We will discuss recent results of astrophysical relevance, and present some novel interpretation. Though we pri...

  7. Electromagnetic extraction of energy from black hole-neutron star binaries

    OpenAIRE

    McWilliams, Sean T.; Levin, Janna

    2011-01-01

    The coalescence of black hole-neutron star binaries is expected to be a principal source of gravitational waves for the next generation of detectors, Advanced LIGO and Advanced Virgo. Ideally, these and other gravitational wave sources would have a distinct electromagnetic counterpart, as significantly more information could be gained through two separate channels. In addition, since these detectors will probe distances with non-negligible redshift, a coincident observation of an electromagne...

  8. The NINJA-2 project: Detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    OpenAIRE

    Aasi, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Lewis, J.; Barone, F; Li, T. G. F.; Libbrecht, K.

    2014-01-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion mo...

  9. No time for dead time: timing analysis of bright black hole binaries with NuSTAR

    DEFF Research Database (Denmark)

    Bachetti, Matteo; Harrison, Fiona A.; Cook, Rick;

    2015-01-01

    Timing of high-count-rate sources with the NuSTAR Small Explorer Mission requires specialized analysis techniques. NuSTAR was primarily designed for spectroscopic observations of sources with relatively low count rates rather than for timing analysis of bright objects. The instrumental dead time ...... techniques. We apply this technique to NuSTAR observations of the black hole binaries GX 339-4, Cyg X-1, and GRS 1915+105....

  10. Inhomogeneous accretion discs and the soft states of black hole X-ray binaries

    OpenAIRE

    Dexter, Jason; Quataert, Eliot

    2012-01-01

    Observations of black hole binaries (BHBs) have established a rich phenomenology of X-ray states. The soft states range from the low variability, accretion disc dominated thermal state (TD) to the higher variability, non-thermal steep power law state (SPL). The disc component in all states is typically modeled with standard thin disc accretion theory. However, this theory is inconsistent with optical/UV spectral, variability, and gravitational microlensing observations of active galactic nucl...

  11. Black Holes

    Science.gov (United States)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  12. Jet spectral breaks in black hole X-ray binaries

    NARCIS (Netherlands)

    D.M. Russell; S. Markoff; P. Casella; A.G. Cantrell; R. Chatterjee; R.P. Fender; E. Gallo; P. Gandhi; J. Homan; D. Maitra; J.C.A. Miller Jones; K. O'Brien; T. Shahbaz

    2013-01-01

    In X-ray binaries, compact jets are known to commonly radiate at radio to infrared frequencies, whereas at optical to γ-ray energies, the contribution of the jet is debated. The total luminosity, and hence power of the jet, is critically dependent on the position of the break in its spectrum, betwee

  13. On the black hole from merging binary neutron stars: how fast can it spin?

    CERN Document Server

    Kastaun, Wolfgang; Alic, Daniela; Rezzolla, Luciano; Font, Jose A

    2013-01-01

    The merger of two neutron stars will in general lead to the formation of a torus surrounding a black hole whose rotational energy can be tapped to potentially power a short gamma-ray burst. We have studied the merger of equal-mass binaries with spins aligned with the orbital angular momentum to determine the maximum spin the black hole can reach. Our initial data consists of irrotational binaries to which we add various amounts of rotation to increase the total angular momentum. Although the initial data violates the constraint equations, the use of the constraint-damping CCZ4 formulation yields evolutions with violations smaller than those with irrotational initial data and standard formulations. Interestingly, we find that a limit of $J/M^2 \\simeq 0.89$ exists for the dimensionless spin and that any additional angular momentum given to the binary ends up in the torus rather than in the black hole, thus providing another nontrivial example supporting the cosmic censorship hypothesis.

  14. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    Science.gov (United States)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  15. 2.5PN kick from black-hole binaries in circular orbit: Nonspinning case

    CERN Document Server

    Mishra, Chandra Kant; Iyer, Bala R

    2013-01-01

    Using the Multipolar post-Minskowskian formalism, we compute the linear momentum flux from black-hole binaries in circular orbits and having no spins. The total linear momentum flux contains various types of instantaneous (which are functions of the retarded time) and hereditary (which depends on the dynamics of the binary in the past) terms both of which are analytically computed. In addition to the inspiral contribution, we use a simple model of plunge to compute the kick or recoil accumulated during this phase.

  16. Gravitational wave background from Population III binary black holes consistent with cosmic reionization

    OpenAIRE

    Inayoshi, Kohei; Kashiyama, Kazumi; Visbal, Eli; Haiman, Zoltan

    2016-01-01

    The recent discovery of the gravitational wave source GW150914 has revealed a coalescing binary black hole (BBH) with masses of $\\sim 30~M_\\odot$. Previous proposals for the origin of such a massive binary include Population III (PopIII) stars. PopIII stars are efficient producers of BBHs and of a gravitational wave background (GWB) in the $10-100$ Hz band, and also of ionizing radiation in the early Universe. We quantify the relation between the amplitude of the GWB ($\\Omega_{\\rm gw}$) and t...

  17. Error analysis of numerical gravitational waveforms from coalescing binary black holes

    Science.gov (United States)

    Fong, Heather; Chu, Tony; Kumar, Prayush; Pfeiffer, Harald; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela; SXS Collaboration

    2016-03-01

    The Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) has finished a successful first observation run and will commence its second run this summer. Detection of compact object binaries utilizes matched-filtering, which requires a vast collection of highly accurate gravitational waveforms. This talk will present a set of about 100 new aligned-spin binary black hole simulations. I will discuss their properties, including a detailed error analysis, which demonstrates that the numerical waveforms are sufficiently accurate for gravitational wave detection purposes, as well as for parameter estimation purposes.

  18. Evolution of binary supermassive black holes and the final-parsec problem

    CERN Document Server

    Vasiliev, Eugene

    2014-01-01

    I review the evolution of binary supermassive black holes and focus on the stellar-dynamical mechanisms that may help to overcome the final-parsec problem - the possible stalling of the binary at a separation much larger than is required for an efficient gravitational wave emission. Recent N-body simulations have suggested that a departure from spherical symmetry in the nucleus of the galaxy may keep the rate of interaction of stars with the binary at a high enough level so that the binary continues to shrink rather rapidly. However, a major problem of all these simulations is that they do not probe the regime where collisionless effects are dominant - in other words, the number of particles in the simulation is still not sufficient to reach the asymptotic behaviour of the system. I present a novel Monte Carlo method for simulating both collisional and collisionless evolution of non-spherical stellar systems, and apply it for the problem of binary supermassive black hole evolution. I show that in triaxial gal...

  19. A three-stage search for supermassive black-hole binaries in LISA data

    Science.gov (United States)

    Brown, Duncan A.; Crowder, Jeff; Cutler, Curt; Mandel, Ilya; Vallisneri, Michele

    2007-10-01

    Gravitational waves from the inspiral and coalescence of supermassive black-hole (SMBH) binaries with masses m1 ~ m2 ~ 106Modot are likely to be among the strongest sources for the Laser Interferometer Space Antenna (LISA). We describe a three-stage data-analysis pipeline designed to search for and measure the parameters of SMBH binaries in LISA data. The first stage uses a time frequency track-search method to search for inspiral signals and provide a coarse estimate of the black-hole masses m1, m2 and the coalescence time of the binary tc. The second stage uses a sequence of matched-filter template banks, seeded by the first stage, to improve the measurement accuracy of the masses and coalescence time. Finally, a Markov chain Monte Carlo search is used to estimate all nine physical parameters of the binary (masses, coalescence time, distance, initial phase, sky position and orientation). Using results from the second stage substantially shortens the Markov chain burn-in time and allows us to determine the number of SMBH-binary signals in the data before starting parameter estimation. We demonstrate our analysis pipeline using simulated data from the first Mock LISA Data Challenge. We discuss our plan for improving this pipeline and the challenges that will be faced in real LISA data analysis.

  20. A Three-Stage Search for Supermassive Black Hole Binaries in LISA Data

    CERN Document Server

    Brown, Duncan A; Cutler, Curt; Mandel, Ilya; Vallisneri, Michele

    2007-01-01

    Gravitational waves from the inspiral and coalescence of supermassive black-hole (SMBH) binaries with masses ~10^6 Msun are likely to be among the strongest sources for the Laser Interferometer Space Antenna (LISA). We describe a three-stage data-analysis pipeline designed to search for and measure the parameters of SMBH binaries in LISA data. The first stage uses a time-frequency track-search method to search for inspiral signals and provide a coarse estimate of the black-hole masses m_1, m_2 and of the coalescence time of the binary t_c. The second stage uses a sequence of matched-filter template banks, seeded by the first stage, to improve the measurement accuracy of the masses and coalescence time. Finally, a Markov Chain Monte Carlo search is used to estimate all nine physical parameters of the binary. Using results from the second stage substantially shortens the Markov Chain burn-in time and allows us to determine the number of SMBH-binary signals in the data before starting parameter estimation. We de...

  1. Insights into the astrophysics of supermassive black hole binaries from pulsar timing observations

    International Nuclear Information System (INIS)

    Pulsar timing arrays (PTAs) are designed to detect the predicted gravitational wave (GW) background produced by a cosmological population of supermassive black hole (SMBH) binaries. In this contribution, I review the physics of such GW background, highlighting its dependence on the overall binary population, the relation between SMBHs and their hosts, and their coupling with the stellar and gaseous environment. The latter is particularly relevant when it drives the binaries to extreme eccentricities (e > 0.9), which might be the case for stellar-driven systems. This causes a substantial suppression of the low-frequency signal, potentially posing a serious threat to the effectiveness of PTA observations. A future PTA detection will allow us to directly observe for the first time subparsec SMBH binaries on their way to the GW-driven coalescence, providing important answers of the outstanding questions related to the physics underlying the formation and evolution of these spectacular sources. (paper)

  2. Brownian motion of massive black hole binaries and the final parsec problem

    CERN Document Server

    Bortolas, E; Dotti, M; Spera, M; Mapelli, M

    2016-01-01

    Massive black hole binaries (BHBs) are expected to be one of the most powerful sources of gravitational waves (GWs) in the frequency range of the pulsar timing array and of forthcoming space-borne detectors. They are believed to form in the final stages of galaxy mergers, and then harden by slingshot ejections of passing stars. However, evolution via the slingshot mechanism may be ineffective if the reservoir of interacting stars is not readily replenished, and the binary shrinking may come to a halt at roughly a parsec separation. Recent simulations suggest that the departure from spherical symmetry, naturally produced in merger remnants, leads to efficient loss cone refilling, preventing the binary from stalling. However, current N-body simulations able to accurately follow the evolution of BHBs are limited to very modest particle numbers. Brownian motion may artificially enhance the loss cone refilling rate in low-N simulations, where the binary encounters a larger population of stars due its random motion...

  3. Massive Black Hole Binary Inspirals: Results from the LISA Parameter Estimation Taskforce

    CERN Document Server

    Arun, K G; Berti, Emanuele; Cornish, Neil; Cutler, Curt; Gair, Jonathan; Hughes, Scott A; Iyer, Bala R; Lang, Ryan N; Mandel, Ilya; Porter, Edward K; Sathyaprakash, Bangalore S; Sinha, Siddhartha; Sintes, Alicia M; Trias, Miquel; Broeck, Chris Van Den; Volonteri, Marta

    2008-01-01

    The LISA Parameter Estimation (LISAPE) Taskforce was formed in September 2007 to provide the LISA Project with vetted codes, source distribution models, and results related to parameter estimation. The Taskforce's goal is to be able to quickly calculate the impact of any mission design changes on LISA's science capabilities, based on reasonable estimates of the distribution of astrophysical sources in the universe. This paper describes our Taskforce's work on massive black-hole binaries (MBHBs). Given present uncertainties in the formation history of MBHBs, we adopt four different population models, based on (i) whether the initial black-hole seeds are small or large, and (ii) whether accretion is efficient or inefficient at spinning up the holes. We compare four largely independent codes for calculating LISA's parameter-estimation capabilities. All codes are based on the Fisher-matrix approximation, but in the past they used somewhat different signal models, source parametrizations and noise curves. We show ...

  4. The Binary Black Hole Scenario for the BL Lacertae Object AO 0235+16

    Institute of Scientific and Technical Information of China (English)

    G. E. Romero; Jun-Hui Fan; S. E. Nuza

    2003-01-01

    Recent analysis of the long term radio light curve of the extremely variable BL Lacertae object AO 0235t16 by Raiteri et al. have revealed the presence of recurrent outbursts with a period of ~ 5.7 ± 0.5yr. Periodicity analysis of the optical light curve also shows evidence for a shorter period. Here we discuss whether such a behavior can be explained by a binary black hole model where the accretion disk of one of the supermassive black holes is precessing due to the tidal effects of the companion. We estimate the mass of the accreting hole and analyze constraints on the secondary mass and the orbital parameters of the system. It is possible to provide a viable interpretation of the available multiwavelength data.

  5. Gravitational wave quasinormal mode from Population III massive black hole binaries in various models of population synthesis

    OpenAIRE

    Kinugawa, Tomoya; Nakano, Hiroyuki; Nakamura, Takashi

    2016-01-01

    Focusing on the remnant black holes after merging binary black holes, we show that ringdown gravitational waves of Population III binary black holes mergers can be detected with the rate of $5.9-500~{\\rm events~yr^{-1}}~({\\rm SFR_p}/ (10^{-2.5}~M_\\odot~{\\rm yr^{-1}~Mpc^{-3}})) \\cdot ({\\rm [f_b/(1+f_b)]/0.33})$ for various parameters and functions. This rate is estimated for the events with SNR$>8$ for the second generation gravitational wave detectors such as KAGRA. Here, ${\\rm SFR_p}$ and ${...

  6. Confronting Numerical Relativity With Nature: A model-independent characterization of binary black-hole systems in LIGO

    Science.gov (United States)

    Jani, Karan; Clark, James; Shoemaker, Deirdre; LIGO Scientific Collaboration; Virgo Collaboration

    2016-03-01

    Stellar and Intermediate mass binary black hole systems (10-1000 solar masses) are likely to be among the strongest sources of gravitational wave detection in Advanced LIGO. In this talk we discuss the prospects for the detection and characterization of these extreme astrophysical system using robust, morphology-independent analysis techniques. In particular, we demonstrate how numerical relativity simulations of black hole collisions may be combined with waveform reconstructions to constrain properties of a binary black-hole system using only exact solutions from general relativity and any potential gravitational wave signal in the data.

  7. Warping and tearing of misaligned circumbinary disks around eccentric supermassive black hole binaries

    Science.gov (United States)

    Hayasaki, K.; Sohn, B. W.; Okazaki, A. T.; Jung, T.; Zhao, G.; Naito, T.

    2015-07-01

    We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter α larger than a critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed for small amplitude warps as α > √H/(3r) for H/rlesssim0.1, where H is the disk scale height. If α warp radius is inside the tearing radius, where most of disk material is likely to rapidly accrete onto SMBHs. In warped and torn disks, both the tidal-warp and the tearing radii most strongly depend on the binary semi-major axis, although they also mildly depend on the other orbital and disk parameters. This strong dependence enables us to estimate the semi-major axis, once the tidal warp or tearing radius is determined observationally: for the tidal warp radius of 0.1 pc, the semi-major axis is estimated to be ~10-2 pc for 107 Msolar black hole with typical orbital and disk parameters. We also briefly discuss the possibility that central objects of observed warped maser disks in active galactic nuclei are supermassive black hole binaries.

  8. Relativistic mergers of black hole binaries have large, similar masses, low spins and are circular

    Science.gov (United States)

    Amaro-Seoane, Pau; Chen, Xian

    2016-05-01

    Gravitational waves are a prediction of general relativity, and with ground-based detectors now running in their advanced configuration, we will soon be able to measure them directly for the first time. Binaries of stellar-mass black holes are among the most interesting sources for these detectors. Unfortunately, the many different parameters associated with the problem make it difficult to promptly produce a large set of waveforms for the search in the data stream. To reduce the number of templates to develop, one must restrict some of the physical parameters to a certain range of values predicted by either (electromagnetic) observations or theoretical modelling. In this work, we show that `hyperstellar' black holes (HSBs) with masses 30 ≲ MBH/M⊙ ≲ 100, i.e black holes significantly larger than the nominal 10 M⊙, will have an associated low value for the spin, i.e. a < 0.5. We prove that this is true regardless of the formation channel, and that when two HSBs build a binary, each of the spin magnitudes is also low, and the binary members have similar masses. We also address the distribution of the eccentricities of HSB binaries in dense stellar systems using a large suite of three-body scattering experiments that include binary-single interactions and long-lived hierarchical systems with a highly accurate integrator, including relativistic corrections up to O(1/c^5). We find that most sources in the detector band will have nearly zero eccentricities. This correlation between large, similar masses, low spin and low eccentricity will help to accelerate the searches for gravitational-wave signals.

  9. Detecting black-hole binary clustering via the second-generation gravitational-wave detectors

    Science.gov (United States)

    Namikawa, Toshiya; Nishizawa, Atsushi; Taruya, Atsushi

    2016-07-01

    The first discovery of the gravitational-wave (GW) event, GW150914, suggests a higher merger rate of black-hole (BH) binaries. If this is true, a number of BH binaries will be observed via the second-generation GW detectors, and the statistical properties of the observed BH binaries can be scrutinized. A naive but important question to ask is whether the spatial distribution of BH binaries faithfully traces the matter inhomogeneities in the Universe or not. Although the BH binaries are thought to be formed inside the galaxies in most of the scenarios, there is no observational evidence to confirm such a hypothesis. Here, we estimate how well the second-generation GW detectors can statistically confirm the BH binaries to be a tracer of the large-scale structure by looking at the auto- and cross-correlation of BH binaries with photometric galaxies and weak-lensing measurements, finding that, with a 3 year observation, the >3 σ detection of a nonzero signal is possible if the BH merger rate today is n˙ 0≳100 Gpc-3 yr-1 and the clustering bias of BH binaries is bBH ,0≳1.5 .

  10. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.

    2016-06-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ . The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3. 4-0.9+0.7×10-22 . The inferred source-frame initial black hole masses are 14.2-3.7+8.3 M⊙ and 7. 5-2.3+2.3 M⊙, and the final black hole mass is 20.8-1.7+6.1 M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 44 0-190+180 Mpc corresponding to a redshift of 0.0 9-0.04+0.03. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  11. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    CERN Document Server

    ,

    2016-01-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 $\\sigma$. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of $3.4_{-0.9}^{+0.7} \\times 10^{-22}$. The inferred source-frame initial black hole masses are $14.2_{-3.7}^{+8.3} M_{\\odot}$ and $7.5_{-2.3}^{+2.3} M_{\\odot}$ and the final black hole mass is $20.8_{-1.7}^{+6.1} M_{\\odot}$. We find that at least one of the component black holes has spin greater than 0.2....

  12. Gravitational-wave memory revisited: Memory from the merger and recoil of binary black holes

    International Nuclear Information System (INIS)

    Gravitational-wave memory refers to the permanent displacement of the test masses in an idealized (freely-falling) gravitational-wave interferometer. Inspiraling binaries produce a particularly interesting form of memory-the Christodoulou memory. Although it originates from nonlinear interactions at 2.5 post-Newtonian order, the Christodoulou memory affects the gravitational-wave amplitude at leading (Newtonian) order. Previous calculations have computed this non-oscillatory amplitude correction during the inspiral phase of binary coalescence. Using an 'effective-one-body' description calibrated with the results of numerical relativity simulations, the evolution of the memory during the inspiral, merger, and ringdown phases, as well as the memory's final saturation value, are calculated. Using this model for the memory, the prospects for its detection are examined, particularly for supermassive black hole binary coalescences that LISA will detect with high signal-to-noise ratios. Coalescing binary black holes also experience center-of-mass recoil due to the anisotropic emission of gravitational radiation. These recoils can manifest themselves in the gravitational-wave signal in the form of a 'linear' memory and a Doppler shift of the quasi-normal-mode frequencies. The prospects for observing these effects are also discussed.

  13. Nova Sco and coalescing low mass black hole binaries as LIGO sources

    CERN Document Server

    Sipior, M S; Sipior, Michael S.; Sigurdsson, Steinn

    2002-01-01

    Double neutron star binaries, analogous to the well known Hulse--Taylor pulsar PSR 1913+16, are guaranteed-to-exist sources of high frequency gravitational radiation detectable by LIGO. There is considerable uncertainty in the estimated rate of coalescence of such systems, with conservative estimates of ~1 per million years per galaxy, and optimistic theoretical estimates one or more magnitude larger. Formation rates of low-mass black hole-neutron star binaries may be higher than those of NS-NS binaries, and may dominate the detectable LIGO signal rate. We estimate the enhanced coalescence rate for BH-BH binaries due to weak asymmetric kicks during the formation of low mass black holes like Nova Sco, and find they may contribute significantly to the LIGO signal rate, possibly dominating the phase I detectable signals if the range of BH masses for which there is significant kick is broad enough. For a standard Salpeter IMF, assuming mild natal kicks, we project that the R6 merger rate of BH-BH systems is ~0.5,...

  14. Binary black hole merger rates inferred from luminosity function of ultra-luminous X-ray sources

    Science.gov (United States)

    Inoue, Yoshiyuki; Tanaka, Yasuyuki T.; Isobe, Naoki

    2016-10-01

    The Advanced Laser Interferometer Gravitational-Wave Observatory (aLIGO) has detected direct signals of gravitational waves (GWs) from GW150914. The event was a merger of binary black holes whose masses are 36^{+5}_{-4} M_{{⊙}} and 29^{+4}_{-4} M_{{⊙}}. Such binary systems are expected to be directly evolved from stellar binary systems or formed by dynamical interactions of black holes in dense stellar environments. Here we derive the binary black hole merger rate based on the nearby ultra-luminous X-ray source (ULX) luminosity function (LF) under the assumption that binary black holes evolve through X-ray emitting phases. We obtain the binary black hole merger rate as 5.8(tULX/0.1 Myr)- 1λ- 0.6exp ( - 0.30λ) Gpc- 3 yr- 1, where tULX is the typical duration of the ULX phase and λ is the Eddington ratio in luminosity. This is coincident with the event rate inferred from the detection of GW150914 as well as the predictions based on binary population synthesis models. Although we are currently unable to constrain the Eddington ratio of ULXs in luminosity due to the uncertainties of our models and measured binary black hole merger event rates, further X-ray and GW data will allow us to narrow down the range of the Eddington ratios of ULXs. We also find the cumulative merger rate for the mass range of 5 M⊙ ≤ MBH ≤ 100 M⊙ inferred from the ULX LF is consistent with that estimated by the aLIGO collaboration considering various astrophysical conditions such as the mass function of black holes.

  15. Monitoring the Black Hole Binary GRS 1758-258 with INTEGRAL and RXTE

    Science.gov (United States)

    Pottschmidt, Katja; Chernyakova, Masha; Lubinski, Piotr; Migliari, Simone; Smith, David M.; Zdziarski, Andrzej A.; Tomsick, John A.; Bezayiff, N.; Kreykenbohm, Ingo; Kretschmar, Peter; Kalemci, Emrah

    2008-01-01

    The microquasar GRS 1758-258 is one of only three persistent black hole binaries that spend most of their time in the hard spectral state, the other two being Cyg X-l and 1E 1741.7-2942. It therefore provides the rare opportunity for an extensive long term study of this important black hole state which is associated with strong variability and radio jet emission. INTEGRAL has been monitoring the source since the first Galactic Center Deep Exposure season in spring 2003 during two 2-3 months long Galactic Center viewing epochs each year, amounting to 11 epochs including spring of 2008. With the exception of the last epoch quasi-simultaneous RXTE monitoring observations are available as well. Here we present an analysis of the epoch averaged broad band spectra which display considerable long term variability, most notably the occurrence of two soft/off states, extreme examples for the hysteretic behavior of black hole binaries. The hard source spectrum and long exposures allow us to extend the analysis for several epochs to approximately 800 keV using PICsIT data and address the question of the presence of a non-thermal Comptonization component.

  16. The black hole binary V404 Cygni: an obscured AGN analogue

    CERN Document Server

    Motta, S E; Sánchez-Fernández, C; Giustini, M; Kuulkers, E

    2016-01-01

    Typical black hole binaries in outburst show spectral states and transitions, characterized by a clear connection between the inflow onto the black hole and outflow from its vicinity. The transient stellar mass black hole binary V404 Cyg apparently does not fit in this picture. Its outbursts are characterized by intense flares and intermittent low-flux states, with a dynamical range of several orders of magnitude on timescales of hours. During the 2015 June-July X-ray outburst a joint Swift and INTEGRAL observing campaign captured V404 Cyg in one of these low-flux states. The simultaneous Swift/XRT and INTEGRAL/JEM-X/ISGRI spectrum is reminiscent of that of obscured/absorbed AGN. It can be modeled as a Comptonization spectrum, heavily absorbed by a partial covering, high-column density material ($N_\\textrm{H} \\approx 1.4\\times10^{24}\\,\\textrm{cm}^{-2}$), and a dominant reflection component, including a narrow Iron-K$\\alpha$ line. Such spectral distribution can be produced by a geometrically thick accretion fl...

  17. Gravitational-wave cutoff frequencies of tidally disruptive neutron star-black hole binary mergers

    CERN Document Server

    Pannarale, Francesco; Kyutoku, Koutarou; Lackey, Benjamin D; Shibata, Masaru

    2015-01-01

    Tidal disruption has a dramatic impact on the outcome of neutron star-black hole mergers. The phenomenology of these systems can be divided in three classes: nondisruptive, mildly disruptive or disruptive. The cutoff frequency of the gravitational radiation produced during the merger (which is potentially measurable by interferometric detectors) is very different in each regime, and when the merger is disuptive it carries information on the neutron star equation of state. Here we use semianalytical tools to derive a formula for the critical binary mass ratio $Q=M_{\\rm BH}/M_{\\rm NS}$ below which mergers are disruptive as a function of the stellar compactness $\\mathcal{C}=M_{\\rm NS}/R_{\\rm NS}$ and the dimensionless black hole spin $\\chi$. We then employ a new gravitational waveform amplitude model, calibrated to $134$ general relativistic numerical simulations of binaries with black hole spin (anti-)aligned with the orbital angular momentum, to obtain a fit to the gravitational-wave cutoff frequency in the di...

  18. Unmodeled search for black hole binary systems in the NINJA project

    Science.gov (United States)

    Cadonati, Laura; Chatterji, Shourov; Fischetti, Sebastian; Guidi, Gianluca; Mohapatra, Satyanarayan R. P.; Sturani, Riccardo; Viceré, Andrea

    2009-10-01

    The gravitational-wave signature from binary black hole coalescences is an important target for ground-based interferometric detectors such as LIGO and Virgo. The Numerical INJection Analysis (NINJA) project brought together the numerical relativity and gravitational wave data analysis communities, with the goal to optimize the detectability of these events. In its first instantiation, the NINJA project produced a simulated data set with numerical waveforms from binary black hole coalescences of various morphologies (spin, mass ratio, initial conditions), superimposed to Gaussian colored noise at the design sensitivity for initial LIGO and Virgo. We analyzed the NINJA simulated data set with the Q-pipeline algorithm, designed for the all-sky detection of gravitational-wave bursts with minimal assumptions on the shape of the waveform. The algorithm filters the data with a bank of sine-Gaussians, sinusoids with Gaussian envelope, to identify significant excess power in the time-frequency domain. We compared the performance of this burst search algorithm with lalapps_ring, which match-filters data with a bank of ring-down templates to specifically target the final stage of a coalescence of black holes. A comparison of the output of the two algorithms on NINJA data in a single detector analysis yielded qualitatively consistent results; however, due to the low simulation statistics in the first NINJA project, it is premature to draw quantitative conclusions at this stage, and further studies with higher statistics and real detector noise will be needed.

  19. A burst search for gravitational waves from binary black holes

    CERN Document Server

    Pankow, C; Mitselmakher, G; Yakushin, I; Vedovato, G; Drago, M; Mercer, R A; Ajith, P

    2009-01-01

    Compact binary coalescence (CBC) is one of the most promising sources of gravitational waves. These sources are usually searched for with matched filters which require accurate calculation of the GW waveforms and generation of large template banks. We present a complementary search technique based on algorithms used in un-modeled searches. Initially designed for detection of un-modeled bursts, which can span a very large set of waveform morphologies, the search algorithm presented here is constrained for targeted detection of the smaller subset of CBC signals. The constraint is based on the assumption of elliptical polarisation for signals received at the detector. We expect that the algorithm is sensitive to CBC signals in a wide range of masses, mass ratios, and spin parameters. In preparation for the analysis of data from the fifth LIGO-Virgo science run (S5), we performed preliminary studies of the algorithm on test data. We present the sensitivity of the search to different types of simulated CBC wavefor...

  20. Migration of massive black hole binaries in self--gravitating accretion discs: Retrograde versus prograde

    CERN Document Server

    Roedig, Constanze

    2013-01-01

    We study the interplay between mass transfer, accretion and gravitational torques onto a black hole binary migrating in a self-gravitating, retrograde circumbinary disc. A direct comparison with an identical prograde disc shows that: (i) because of the absence of resonances, the cavity size is a factor a(1+e) smaller for retrograde discs; (ii) nonetheless the shrinkage of a circular binary semi--major axis, a, is identical in both cases; (iii) a circular binary in a retrograde disc remains circular while eccentric binaries grow more eccentric. For non-circular binaries, we measure the orbital decay rates and the eccentricity growth rates to be exponential as long as the binary orbits in the plane of its disc. Additionally, for these co-planar systems, we find that interaction (~ non--zero torque) stems only from the cavity edge plus a(1+e) in the disc, i.e. for dynamical purposes, the disc can be treated as a annulus of small radial extent. We find that simple 'dust' models in which the binary- disc interacti...

  1. Evolution Of Massive Black Hole Binaries In Rotating Stellar Nuclei: Implications For Gravitational Wave Detection

    CERN Document Server

    Rasskazov, Alexander

    2016-01-01

    We compute the isotropic gravitational wave (GW) background produced by binary supermassive black holes (SBHs) in galactic nuclei. In our model, massive binaries evolve at early times via gravitational-slingshot interaction with nearby stars, and at later times by the emission of GWs. Our expressions for the rate of binary hardening in the "stellar" regime are taken from the recent work of Vasiliev et al., who show that in the non-axisymmetric galaxies expected to form via mergers, stars are supplied to the center at high enough rates to ensure binary coalescence on Gyr timescales. We also include, for the first time, the extra degrees of freedom associated with evolution of the binary's orbital plane; in rotating nuclei, interaction with stars causes the orientation and the eccentricity of a massive binary to change in tandem, leading in some cases to very high eccentricities (e>0.9) before the binary enters the GW-dominated regime. We argue that previous studies have over-estimated the mean ratio of SBH mas...

  2. Detecting Black-Hole Binary Clustering via the Second-Generation Gravitational-Wave Detectors

    CERN Document Server

    Namikawa, Toshiya; Taruya, Atsushi

    2016-01-01

    First discovery of the gravitational wave (GW) event, GW150914, suggests a higher merger rate of black-hole (BH) binaries. If this is true, a number of BH binaries will be observed via the second-generation GW detectors, and the statistical properties of the observed BH binaries can be scrutinized. A naive but important question to ask is whether the spatial distribution of BH binaries faithfully traces the matter inhomogeneities in the Universe or not. Although the BH binaries are thought to be formed inside the galaxies in most of the scenarios, there is no observational evidence to confirm such a hypothesis. Here, we estimate how well the second-generation GW detectors can statistically confirm the BH binaries to be a tracer of the large-scale structure by looking at the auto- and cross-correlation of BH binaries with photometric galaxies and weak lensing measurements, finding that, with a three-year observation, the $>3\\sigma$ detection of non-zero signal is possible if the BH merger rate today is $\\dot{n...

  3. The Lazarus project: A pragmatic approach to binary black hole evolutions

    International Nuclear Information System (INIS)

    We present a detailed description of techniques developed to combine 3D numerical simulations and, subsequently, a single black hole close-limit approximation. This method has made it possible to compute the first complete waveforms covering the post-orbital dynamics of a binary-black-hole system with the numerical simulation covering the essential nonlinear interaction before the close limit becomes applicable for the late time dynamics. In order to couple full numerical and perturbative methods we must address several questions. To determine when close-limit perturbation theory is applicable we apply a combination of invariant a priori estimates and a posteriori consistency checks of the robustness of our results against exchange of linear and nonlinear treatments near the interface. Our method begins with a specialized application of standard numerical techniques adapted to the presently realistic goal of brief, but accurate simulations. Once the numerically modeled binary system reaches a regime that can be treated as perturbations of the Kerr spacetime, we must approximately relate the numerical coordinates to the perturbative background coordinates. We also perform a rotation of a numerically defined tetrad to asymptotically reproduce the tetrad required in the perturbative treatment. We can then produce numerical Cauchy data for the close-limit evolution in the form of the Weyl scalar ψ4 and its time derivative ∂tψ4 with both objects being first order coordinate and tetrad invariant. The Teukolsky equation in Boyer-Lindquist coordinates is adopted to further continue the evolution. To illustrate the application of these techniques we evolve a single Kerr hole and compute the spurious radiation as a measure of the error of the whole procedure. We also briefly discuss the extension of the project to make use of improved full numerical evolutions and outline the approach to a full understanding of astrophysical black-hole-binary systems which we can now

  4. On the detection of eccentric supermassive black hole binaries with pulsar timing arrays

    Science.gov (United States)

    Huerta, Eliu; McWilliams, Sean; Gair, Jonathan; Taylor, Stephen

    2015-04-01

    It is believed that supermassive black holes (SMBHs) with masses between a million up to a few billion solar masses are ubiquitous in nearby galactic nuclei. Hence, the merger of a pair of galaxies hosting these compact objects may result in the formation of a compact binary that decays to small orbital separations via interactions with its stellar and gaseous environments. Recent studies suggest that these formation channels imply that SMBH binaries may have large orbital eccentricities when they become dominated by gravitational wave emission. In light of these considerations, we present a novel and comprehensive framework that we put at work to carry out an end-to-end analysis of the effect of eccentricity on the amplitude and spectrum of a stochastic, isotropic gravitational wave background from SMBH binaries and single resolvable sources that may be detected with Pulsar Timing Arrays.

  5. Short GRB and binary black hole standard sirens as a probe of dark energy

    CERN Document Server

    Dalal, N; Hughes, S A; Jain, B; Dalal, Neal; Holz, Daniel E.; Hughes, Scott A.; Jain, Bhuvnesh

    2006-01-01

    Observations of the gravitational radiation from well-localized, inspiraling compact object binaries can measure absolute source distances with high accuracy. When coupled with an independent determination of redshift through an electromagnetic counterpart, these standard sirens can provide an excellent probe of the expansion history of the Universe and the dark energy. Short gamma-ray bursts, if produced by merging neutron star binaries, would be standard sirens with known redshifts detectable by ground-based GW networks such as LIGO-II, Virgo, and AIGO. Depending upon the collimation of these GRBs, a single year of observation of their gravitational waves can measure the Hubble constant to about 2%. When combined with measurement of the absolute distance to the last scattering surface of the cosmic microwave background, this determines the dark energy equation of state parameter w to 9%. Similarly, supermassive binary black hole inspirals will be standard sirens detectable by LISA. Depending upon the precis...

  6. Gravitational waves from binary supermassive black holes missing in pulsar observations.

    Science.gov (United States)

    Shannon, R M; Ravi, V; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J-B; Wen, L; Wyithe, J S B; Zhu, X-J

    2015-09-25

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves. PMID:26404832

  7. Formation of Nuclear Disks and Supermassive Black Hole Binaries in Multi-Scale Hydrodynamical Galaxy Mergers

    CERN Document Server

    Mayer, Lucio; Escala, Andres

    2008-01-01

    (Abridged) We review the results of the first multi-scale, hydrodynamical simulations of mergers between galaxies with central supermassive black holes (SMBHs) to investigate the formation of SMBH binaries in galactic nuclei. We demonstrate that strong gas inflows produce nuclear disks at the centers of merger remnants whose properties depend sensitively on the details of gas thermodynamics. In numerical simulations with parsec-scale spatial resolution in the gas component and an effective equation of state appropriate for a starburst galaxy, we show that a SMBH binary forms very rapidly, less than a million years after the merger of the two galaxies. Binary formation is significantly suppressed in the presence of a strong heating source such as radiative feedback by the accreting SMBHs. We also present preliminary results of numerical simulations with ultra-high spatial resolution of 0.1 pc in the gas component. These simulations resolve the internal structure of the resulting nuclear disk down to parsec sca...

  8. Gravitational waves from binary supermassive black holes missing in pulsar observations

    CERN Document Server

    Shannon, R M; Lentati, L T; Lasky, P D; Hobbs, G; Kerr, M; Manchester, R N; Coles, W A; Levin, Y; Bailes, M; Bhat, N D R; Burke-Spolaor, S; Dai, S; Keith, M J; Osłowski, S; Reardon, D J; van Straten, W; Toomey, L; Wang, J -B; Wen, L; Wyithe, J S B; Zhu, X -J

    2015-01-01

    Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems will modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrain the characteristic amplitude of this background, $A_{\\rm c,yr}$, to be < $1.0\\times10^{-15}$ with 95% confidence. This limit excludes predicted ranges for $A_{\\rm c,yr}$ from current models with 91-99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments, and that higher-cadence and shorter-wavelength observations would result in an increased sensitivity to gravitational waves.

  9. MAXI J1659-152: the shortest orbital period black-hole binary

    DEFF Research Database (Denmark)

    Kuulkers, E.; Kouveliotou, C.; van der Horst, A. J.;

    Following the detection of a bright new X-ray source, MAXI J1659-152, a series of observations was triggered with almost all currently flying high-energy missions. We report here on XMM-Newton, INTEGRAL and RXTE observations during the early phase of the X-ray outburst of this transient black-hole...... candidate. We confirm the dipping nature in the X-ray light curves. We find that the dips recur on a period of 2.4139+/-0.0005 hrs, and interpret this as the orbital period of the system. It is thus the shortest period black-hole X-ray binary known to date. Using the various observables, we derive...

  10. A magnetic model for low/hard state of black hole binaries

    CERN Document Server

    Ye, Yong-Chun; Huang, Chang-Yin; Cao, Xiao-Feng

    2015-01-01

    A magnetic model for low/hard state (LHS) of black hole X-ray binaries (BHXBs),H1743-322 and GX 339-4, is proposed based on the transportation of magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with quasi-steady jet is modelled based on transportation of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio/X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model.

  11. The Status of Black-Hole Binary Merger Simulations with Numerical Relativity

    CERN Document Server

    McWilliams, Sean T

    2010-01-01

    The advent of long-term stability in numerical relativity has yielded a windfall of answers to long-standing questions regarding the dynamics of space-time, matter, and electromagnetic fields in the strong-field regime of black-hole binary mergers. In this review, we will briefly summarize the methodology currently applied to these problems, emphasizing the most recent advancements. We will discuss recent results of astrophysical relevance, and present some novel interpretation. Though we primarily present a review, we also present a simple analytical model for the time-dependent Poynting flux from two orbiting black holes immersed in a magnetic field, which compares favorably with recent numerical results. Finally, we will discuss recent advancements in our theoretical understanding of merger dynamics and gravitational waveforms that have resulted from interpreting the ever-growing body of numerical relativity results.

  12. Mergers of non-spinning black-hole binaries: Gravitational radiation characteristics

    CERN Document Server

    Baker, John G; Centrella, Joan; Kelly, Bernard J; McWilliams, Sean T; van Meter, James R

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an {\\em implicit rotating source}. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the $\\ell=m$ modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the $\\ell=m$ modes among all mass-ratios. We identify relationships, with...

  13. The status of black-hole binary merger simulations with numerical relativity

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, Sean T, E-mail: sean@astro.columbia.edu [Institute for Strings, Cosmology and Astroparticle Physics (ISCAP), Columbia University, New York, NY 10027 (United States); Physics Department, Princeton University, Princeton, NJ 08544 (United States)

    2011-07-07

    The advent of long-term stability in numerical relativity has yielded a windfall of answers to long-standing questions regarding the dynamics of space-time, matter, and electromagnetic fields in the strong-field regime of black-hole binary mergers. In this review, we will briefly summarize the methodology currently applied to these problems, emphasizing the most recent advancements. We will discuss recent results of astrophysical relevance, and present some novel interpretation. Although we primarily present a review, we also present a simple analytical model for the time-dependent Poynting flux from two orbiting black holes immersed in a magnetic field, which compares favorably with recent numerical results. Finally, we will discuss recent advancements in our theoretical understanding of merger dynamics and gravitational waveforms that have resulted from interpreting the ever-growing body of numerical relativity results.

  14. Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    CERN Document Server

    Abbott, B; Adhikari, R; Ageev, A; Allen, B; Amin, R; Anderson, S B; Anderson, W G; Araya, M; Armandula, H; Ashley, M; Asiri, F; Aufmuth, P; Aulbert, C; Babak, S; Balasubramanian, R; Ballmer, S; Barish, B C; Barker, C; Barker, D; Barnes, M; Barr, B; Barton, M A; Bayer, K; Beausoleil, R; Belczynski, K; Bennett, R; Berukoff, S J; Betzwieser, J; Bhawal, B; Bilenko, I A; Billingsley, G; Black, E; Blackburn, K; Blackburn, L; Bland, B; Bochner, B; Bogue, L; Bork, R; Bose, S; Brady, P R; Braginsky, V B; Brau, J E; Brown, D A; Bullington, A; Bunkowski, A; Buonanno, A; Burgess, R; Busby, D; Butler, W E; Byer, R L; Cadonati, L; Cagnoli, G; Camp, J B; Cantley, C A; Cardenas, L; Carter, K; Casey, M M; Castiglione, J; Chandler, A; Chapsky, J; Charlton, P; Chatterji, S; Chelkowski, S; Chen, Y; Chickarmane, V; Chin, D; Christensen, N; Churches, D; Cokelaer, T; Colacino, C; Coldwell, R; Coles, M; Cook, D; Corbitt, T; Coyne, D; Creighton, J D E; Creighton, T D; Crooks, D R M; Csatorday, P; Cusack, B J; Cutler, C; D'Ambrosio, E; Danzmann, K; Daw, E; De Bra, D; Delker, T; Dergachev, V; DeSalvo, R; Dhurandhar, S V; Di Credico, A; Ding, H; Drever, R W P; Dupuis, R J; Edlund, J A; Ehrens, P; Elliffe, E J; Etzel, T; Evans, M; Evans, T; Fairhurst, S; Fallnich, C; Farnham, D; Fejer, M M; Findley, T; Fine, M; Finn, L S; Franzen, K Y; Freise, A; Frey, R; Fritschel, P; Frolov, V V; Fyffe, M; Ganezer, K S; Garofoli, J; Giaime, J A; Gillespie, A; Goda, K; González, G; Goler, S; Grandclément, P; Grant, A; Gray, C; Gretarsson, A M; Grimmett, D; Grote, H; Grünewald, S; Günther, M; Gustafson, E; Gustafson, R; Hamilton, W O; Hammond, M; Hanson, J; Hardham, C; Harms, J; Harry, G; Hartunian, A; Heefner, J; Hefetz, Y; Heinzel, G; Heng, I S; Hennessy, M; Hepler, N; Heptonstall, A; Heurs, M; Hewitson, M; Hild, S; Hindman, N; Hoang, P; Hough, J; Hrynevych, M; Hua, W; Ito, M; Itoh, Y; Ivanov, A; Jennrich, O; Johnson, B; Johnson, W W; Johnston, W R; Jones, D I; Jones, L; Jungwirth, D; Kalogera, V; Katsavounidis, E; Kawabe, K; Kawamura, S; Kells, W; Kern, J; Khan, A; Killbourn, S; Killow, C J; Kim, C; King, C; King, P; Klimenko, S; Koranda, S; Kotter, K; Kovalik, Yu; Kozak, D; Krishnan, B; Landry, M; Langdale, J; Lantz, B; Lawrence, R; Lazzarini, A; Lei, M; Leonor, I; Libbrecht, K; Libson, A; Lindquist, P; Liu, S; Logan, J; Lormand, M; Lubinski, M; Luck, H; Lyons, T T; Machenschalk, B; MacInnis, M; Mageswaran, M; Mailand, K; Majid, W; Malec, M; Mann, F; Marin, A; Marka, S; Maros, E; Mason, J; Mason, K; Matherny, O; Matone, L; Mavalvala, N; McCarthy, R; McClelland, D E; McHugh, M; McNabb, J W C; Mendell, G; Mercer, R A; Meshkov, S; Messaritaki, E; Messenger, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyoki, S; Mohanty, S; Moreno, G; Mossavi, K; Müller, G; Mukherjee, S; Murray, P; Myers, J; Nagano, S; Nash, T; Nayak, R; Newton, G; Nocera, F; Noel, J S; Nutzman, P; Olson, T; O'Reilly, B; Ottaway, D J; Ottewill, A; Ouimette, D A; Overmier, H; Owen, B J; Pan, Y; Papa, M A; Parameshwaraiah, V; Parameswariah, C; Pedraza, M; Penn, S; Pitkin, M; Plissi, M; Prix, R; Quetschke, V; Raab, F; Radkins, H; Rahkola, R; Rakhmanov, M; Rao, S R; Rawlins, K; Ray-Majumder, S; Re, V; Redding, D; Regehr, M W; Regimbau, T; Reid, S; Reilly, K T; Reithmaier, K; Reitze, D H; Richman, S; Riesen, R; Riles, K; Rivera, B; Rizzi, A; Robertson, D I; Robertson, N A; Robison, L; Roddy, S; Rollins, J; Romano, J D; Romie, J; Rong, H; Rose, D; Rotthoff, E; Rowan, S; Rüdiger, A; Russell, P; Ryan, K; Salzman, I; Sandberg, V; Sanders, G H; Sannibale, V; Sathyaprakash, B; Saulson, P R; Savage, R; Sazonov, A; Schilling, R; Schlaufman, K; Schmidt, V; Schnabel, R; Schofield, R; Schutz, B F; Schwinberg, P; Scott, S M; Seader, S E; Searle, A C; Sears, B; Seel, S; Seifert, F; Sengupta, A S; Shapiro, C A; Shawhan, P; Shoemaker, D H; Shu, Q Z; Sibley, A; Siemens, X; Sievers, L; Sigg, D; Sintes, A M; Smith, J R; Smith, M; Smith, M R; Sneddon, P H; Spero, R; Stapfer, G; Steussy, D; Strain, K A; Strom, D; Stuver, A; Summerscales, T; Sumner, M C; Sutton, P J; Sylvestre, J; Takamori, A; Tanner, D B; Tariq, H; Taylor, I; Taylor, R; Thorne, K A; Thorne, K S; Tibbits, M; Tilav, S; Tinto, M; Tokmakov, K V; Torres, C; Torrie, C; Traylor, G; Tyler, W; Ugolini, D W; Ungarelli, C; Vallisneri, M; Van Putten, M H P M; Vass, S; Vecchio, A; Veitch, J; Vorvick, C; Vyachanin, S P; Wallace, L; Walther, H; Ward, H; Ware, B; Watts, K; Webber, D; Weidner, A; Weiland, U; Weinstein, A; Weiss, R; Welling, H; Wen, L; Wen, S; Whelan, J T; Whitcomb, S E; Whiting, B F; Wiley, S; Wilkinson, C; Willems, P A; Williams, P R; Williams, R; Willke, B; Wilson, A; Winjum, B J; Winkler, W; Wise, S; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yoshida, S; Zaleski, K D; Zanolin, M; Zawischa, I; Zhang, L; Zhu, R; Zotov, N P; Zucker, M; Zweizig, J

    2005-01-01

    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--$1.0 M_\\odot$. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--$1.0 M_\\odot$, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.

  15. Relativistic Accretion Disk Models of High State Black Hole X-ray Binary Spectra

    CERN Document Server

    Davis, S W; Hubeny, I; Turner, N J; Davis, Shane W.; Blaes, Omer M.; Hubeny, Ivan; Turner, Neal J.

    2004-01-01

    We present calculations of non-LTE, relativistic accretion disk models applicable to the high/soft state of black hole X-ray binaries. We include the effects of thermal Comptonization and bound-free and free-free opacities of all abundant ion species. We present spectra calculated for a variety of accretion rates, black hole spin parameters, disk inclinations, and stress prescriptions. We also consider nonzero inner torques on the disk, and explore different vertical dissipation profiles, including some which are motivated by recent radiation MHD simulations of magnetorotational turbulence. Bound-free metal opacity generally produces significantly less spectral hardening than previous models which only considered Compton scattering and free-free opacity. It also tends to keep the effective photosphere near the surface, resulting in spectra which are remarkably independent of the stress prescription and vertical dissipation profile, provided little dissipation occurs above the effective photosphere. We provide...

  16. Perturbed disks get shocked. Binary black hole merger effects on accretion disks

    CERN Document Server

    Megevand, Miguel; Frank, Juhan; Hirschmann, Eric W; Lehner, Luis; Liebling, Steven L; Motl, Patrick M; Neilsen, David

    2009-01-01

    The merger process of a binary black hole system can have a strong impact on a circumbinary disk. In the present work we study the effect of both central mass reduction (due to the energy loss through gravitational waves) and a possible black hole recoil (due to asymmetric emission of gravitational radiation). For the mass reduction case and recoil directed along the disk's angular momentum, oscillations are induced in the disk which then modulate the internal energy and bremsstrahlung luminosities. On the other hand, when the recoil direction has a component orthogonal to the disk's angular momentum, the disk's dynamics are strongly impacted, giving rise to relativistic shocks. The shock heating leaves its signature in our proxies for radiation, the total internal energy and bremsstrahlung luminosity. Interestingly, for cases where the kick velocity is below the smallest orbital velocity in the disk (a likely scenario in real AGN), we observe a common, characteristic pattern in the internal energy of the dis...

  17. A model for 3:2 HFQPO pairs in black hole binaries based on cosmic battery

    CERN Document Server

    Huang, Chang-Yin; Wang, Ding-Xiong; Li, Yang

    2016-01-01

    A model for 3:2 high-frequency quasi-periodic oscillations (HFQPOs) with 3:2 pairs observed in four black hole X-ray binaries (BHXBs) is proposed by invoking the epicyclic resonances with the magnetic connection (MC) between a spinning black hole (BH) with a relativistic accretion disc. It turns out that the MC can be worked out due to Poynting-Robertson cosmic battery (PRCB), and the 3:2 HFQPO pairs associated with the steep power-law states can be fitted in this model. Furthermore, the severe damping problem in the epicyclic resonance model can be overcome by transferring energy from the BH to the inner disc via the MC process for emitting X-rays with sufficient amplitude and coherence to produce the HFQPOs. In addition, we discuss the important role of the magnetic field in state transition of BHXBs.

  18. Accretion and Orbital Inspiral in Gas-assisted Supermassive Black Hole Binary Mergers

    Science.gov (United States)

    Rafikov, Roman R.

    2016-08-01

    Many galaxies are expected to harbor binary supermassive black holes (SMBHs) in their centers. Their interaction with the surrounding gas results in the accretion and exchange of angular momentum via tidal torques, facilitating binary inspiral. Here, we explore the non-trivial coupling between these two processes and analyze how the global properties of externally supplied circumbinary disks depend on the binary accretion rate. By formulating our results in terms of the angular momentum flux driven by internal stresses, we come up with a very simple classification of the possible global disk structures, which differ from the standard constant \\dot{M} accretion disk solution. The suppression of accretion by the binary tides, leading to a significant mass accumulation in the inner disk, accelerates binary inspiral. We show that once the disk region strongly perturbed by the viscously transmitted tidal torque exceeds the binary semimajor axis, the binary can merge in less than its mass-doubling time due to accretion. Thus, unlike the inspirals driven by stellar scattering, the gas-assisted merger can occur even if the binary is embedded in a relatively low-mass disk (lower than its own mass). This is important for resolving the “last parsec” problem for SMBH binaries and understanding powerful gravitational wave sources in the universe. We argue that the enhancement of accretion by the binary found in some recent simulations cannot persist for a long time and should not affect the long-term orbital inspiral. We also review existing simulations of SMBH binary–disk coupling and propose a numerical setup which is particularly well suited to verifying our theoretical predictions.

  19. A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33.

    Science.gov (United States)

    Orosz, Jerome A; McClintock, Jeffrey E; Narayan, Ramesh; Bailyn, Charles D; Hartman, Joel D; Macri, Lucas; Liu, Jiefeng; Pietsch, Wolfgang; Remillard, Ronald A; Shporer, Avi; Mazeh, Tsevi

    2007-10-18

    Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 +/- 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 +/- 6.9) companion, there must have been a 'common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.

  20. Probing the presence of a single or binary black hole in the globular cluster NGC 6752 with pulsar dynamics

    CERN Document Server

    Colpi, M; Possenti, A; Colpi, Monica; Mapelli, Michela; Possenti, Andrea

    2003-01-01

    The five millisecond pulsars that inhabit NGC 6752 display locations or accelerations that are quite unusual compared to all other pulsars known in globular clusters. In particular PSR-A, a binary pulsar, lives in the cluster halo, while PSR-B and PSR-E, located in the core, show remarkably high negative spin derivatives. This is suggestive that some uncommon dynamical process is at play in the cluster core that we attribute to the presence of a massive perturber. We here investigate whether a single intermediate-mass black hole, lying on the extrapolation of the Mass versus Sigma relation observed in galaxy spheroids, or a less massive binary consisting of two black holes could play the requested role. To this purpose we simulated binary-binary encounters involving PSR-A, its companion star, and the black hole(s). Various scenarios are discussed in detail. In our close 4-body encounters, a black hole-black hole binary may attract on a long-term stable orbit a millisecond pulsar. Timing measurements on the ca...

  1. Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni.

    Science.gov (United States)

    Kimura, Mariko; Isogai, Keisuke; Kato, Taichi; Ueda, Yoshihiro; Nakahira, Satoshi; Shidatsu, Megumi; Enoto, Teruaki; Hori, Takafumi; Nogami, Daisaku; Littlefield, Colin; Ishioka, Ryoko; Chen, Ying-Tung; King, Sun-Kun; Wen, Chih-Yi; Wang, Shiang-Yu; Lehner, Matthew J; Schwamb, Megan E; Wang, Jen-Hung; Zhang, Zhi-Wei; Alcock, Charles; Axelrod, Tim; Bianco, Federica B; Byun, Yong-Ik; Chen, Wen-Ping; Cook, Kem H; Kim, Dae-Won; Lee, Typhoon; Marshall, Stuart L; Pavlenko, Elena P; Antonyuk, Oksana I; Antonyuk, Kirill A; Pit, Nikolai V; Sosnovskij, Aleksei A; Babina, Julia V; Baklanov, Aleksei V; Pozanenko, Alexei S; Mazaeva, Elena D; Schmalz, Sergei E; Reva, Inna V; Belan, Sergei P; Inasaridze, Raguli Ya; Tungalag, Namkhai; Volnova, Alina A; Molotov, Igor E; de Miguel, Enrique; Kasai, Kiyoshi; Stein, William L; Dubovsky, Pavol A; Kiyota, Seiichiro; Miller, Ian; Richmond, Michael; Goff, William; Andreev, Maksim V; Takahashi, Hiromitsu; Kojiguchi, Naoto; Sugiura, Yuki; Takeda, Nao; Yamada, Eiji; Matsumoto, Katsura; James, Nick; Pickard, Roger D; Tordai, Tamás; Maeda, Yutaka; Ruiz, Javier; Miyashita, Atsushi; Cook, Lewis M; Imada, Akira; Uemura, Makoto

    2016-01-01

    How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries-for example, XTE J1118+480 (ref. 4) and GX 339-4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hole of nine solar masses (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion--not the actual rate--would then be the critical factor causing large-amplitude oscillations in long-period systems.

  2. The Observation of Gravitational Waves from a Binary Black Hole Merger

    Science.gov (United States)

    Reitze, David

    2016-03-01

    On September 14, 2015, the two LIGO detectors operating at Hanford, WA and Livingston, LA nearly simultaneously recorded a strong trigger consistent with the passage of gravitational waves. An extensive and thorough analysis by the LIGO Scientific Collaboration and the Virgo Collaboration over the following months determined the gravitational waves to originate from the final stage of the inspiral of two black holes with masses approximately 36 and 29 Msun merging to form a 62 Msun black hole located at a distance of roughly 410 Mpc.This discovery is remarkable in many ways. In addition to being the first direct measurement of a gravitational wave by an earth-based detector, this is the first observation of coalescing binary black hole system and the first evidence that ``heavy'' stellar mass black holes exist. The measured gravitational waveform was determined to be highly consistent with that predicted by general relativity for the merger of two black holes. In this talk, the first of two in this special session on the discovery of GW150914, I'll cover a number of topics related to the detection, including a brief description of the operation and performance of the Advanced LIGO detectors during the first `O1' Observing Run as well as the data quality verification methods used to determine the validity of the detection. I'll also present the searches that were used to find and establish the statistical confidence of the event, as well as provide an estimate of its sky localization. Finally, I will discuss the plans for future observations by LIGO, Virgo and other gravitational wave detectors over the next few years and, time permitting, present the short term and longer term programs for improving the sensitivity and range of gravitational wave detectors over the next ten years.

  3. Repetitive Patterns in Rapid Optical Variations in the Nearby Black-hole Binary V404 Cygni

    CERN Document Server

    Kimura, Mariko; Kato, Taichi; Ueda, Yoshihiro; Nakahira, Satoshi; Shidatsu, Megumi; Enoto, Teruaki; Hori, Takafumi; Nogami, Daisaku; Littlefield, Colin; Ishioka, Ryoko; Chen, Ying-Tung; King, Sun-Kun; Wen, Chih-Yi; Wang, Shiang-Yu; Lehner, Matthew J; Schwamb, Megan E; Wang, Jen-Hung; Zhang, Zhi-Wei; Alcock, Charles; Axelrod, Tim; Bianco, Federica B; Byun, Yong-Ik; Chen, Wen-Ping; Cook, Kem H; Kim, Dae-Won; Lee, Typhoon; Marshall, Stuart L; Pavlenko, Elena P; Antonyuk, Oksana I; Antonyuk, Kirill A; Pit, Nikolai V; Sosnovskij, Aleksei A; Babina, Julia V; Baklanov, Aleksei V; Pozanenko, Alexei S; Mazaeva, Elena D; Schmalz, Sergei E; Reva, Inna V; Belan, Sergei P; Inasaridze, Raguli Ya; Tungalag, Namkhai; Volnova, Alina A; Molotov, Igor E; de Miguel, Enrique; Kasai, Kiyoshi; Stein, William; Dubovsky, Pavol A; Kiyota, Seiichiro; Miller, Ian; Richmond, Michael; Goff, William; Andreev, Maksim V; Takahashi, Hiromitsu; Kojiguchi, Naoto; Sugiura, Yuki; Takeda, Nao; Yamada, Eiji; Matsumoto, Katsura; James, Nick; Pickard, Roger D; Tordai, Tamás; Maeda, Yutaka; Ruiz, Javier; Miyashita, Atsushi; Cook, Lewis M; Imada, Akira; Uemura, Makoto

    2016-01-01

    How black holes accrete surrounding matter is a fundamental, yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disc, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass accretion rate, such as GRS 1915+105. These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from X-ray or optical variations with small amplitudes and fast ($\\lesssim$10 sec) timescales often observed in other black hole binaries (e.g., XTE J1118+480 and GX 339-4). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hol...

  4. Detecting Eccentric Supermassive Black Hole Binaries with Pulsar Timing Arrays: Resolvable Source Strategies

    Science.gov (United States)

    Taylor, S. R.; Huerta, E. A.; Gair, J. R.; McWilliams, S. T.

    2016-01-01

    The couplings between supermassive black hole binaries (SMBHBs) and their environments within galactic nuclei have been well studied as part of the search for solutions to the final parsec problem. The scattering of stars by the binary or the interaction with a circumbinary disk may efficiently drive the system to sub-parsec separations, allowing the binary to enter a regime where the emission of gravitational waves can drive it to merger within a Hubble time. However, these interactions can also affect the orbital parameters of the binary. In particular, they may drive an increase in binary eccentricity which survives until the system’s gravitational-wave (GW) signal enters the pulsar-timing array (PTA) band. Therefore, if we can measure the eccentricity from observed signals, we can potentially deduce some of the properties of the binary environment. To this end, we build on previous techniques to present a general Bayesian pipeline with which we can detect and estimate the parameters of an eccentric SMBHB system with PTAs. Additionally, we generalize the PTA {{ F }}{{e}}-statistic to eccentric systems, and show that both this statistic and the Bayesian pipeline are robust when studying circular or arbitrarily eccentric systems. We explore how eccentricity influences the detection prospects of single GW sources, as well as the detection penalty incurred by employing a circular waveform template to search for eccentric signals, and conclude by identifying important avenues for future study.

  5. Evolution of binary black holes in self gravitating discs: dissecting the torques

    CERN Document Server

    Roedig, Constanze; Dotti, Massimo; Cuadra, Jorge; Amaro-Seoane, Pau; Haardt, Francesco

    2012-01-01

    We analyse 3D SPH simulations of the evolution of initially quasi-circular massive black hole binaries (BHBs) residing in the central hollow (cavity) of self-gravitating circumbinary discs. We perform a set of simulations adopting different thermodynamics for the gas within the cavity and for the 'numerical size' of the black holes. We study the interplay between gas accretion and gravity torques in changing the binary elements (semi-major axis and eccentricity) and its total angular momentum budget. We pay special attention to the gravity torques, by analysing their physical origin and location. We show that (i) the BHB eccentricity grows due to gravity torques from the inner edge of the disc, independently of the accretion and the adopted thermodynamics; (ii) the semi-major axis decay depends not only on the gravity torques but also on their subtle interplay with the disc-binary angular momentum transfer due to accretion; (iii) the spectral structure of the gravity torques is predominately caused by disc ed...

  6. LFN, QPO and fractal dimension of X-ray light curves from black hole binaries

    Science.gov (United States)

    Prosvetov, Art; Grebenev, Sergey

    The origin of the low frequency noise (LFN) and quasi-periodic oscillations (QPO) observed in X-ray flux of Galactic black hole binaries is still not recognized in spite of multiple studies and attempts to model this phenomenon. There are known correlations between the QPO frequency, X-ray power density, X-ray flux and spectral state of the system, but there is no model that can do these dependences understandable. For the low frequency (~1 Hz) QPO we still have no even an idea capable to explain their production and don't know even what part of an accretion disc is responsible for them. Here we attempted to measure the fractal dimension of X-ray light curves of several black hole X-ray binaries and to study its correlation with the frequency of quasi periodic oscillations observed in their X-ray light-curves. The fractal dimension is a measure of the space-filling capacity of the light curves' profile. To measure the fractal dimension we used R/S method, which is fast enough and has good reputation in financial analytic and materials sciences. We found that if no QPO were observed in X-ray flux from the particular source, the fractal dimension is equal to the unique value which is independent on the source, its luminosity or its spectral state. On the other hand if QPO were detected in the flux, the fractal dimension deviated from its usual value. Also, we found a clear correlation between the QPO frequency and the fractal dimension of the emission. The relationship between these two parameters is solid but nonlinear. We believe that the analysis of X-ray light curves of black hole binaries using the fractal dimension has a good scientific potential and may provide an addition information on the geometry of accretion flow and fundamental physical parameters of the system.

  7. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    OpenAIRE

    Abbott, B. P.; Sakellariadou, Maria

    2016-01-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a signifi...

  8. Musings on Lorentz Violation Given the Recent Gravitational-Wave Observations of Coalescing Binary Black Holes

    CERN Document Server

    Yunes, Nicolas

    2016-01-01

    The recent observation of gravitational waves by the LIGO/Virgo collaboration provides a unique opportunity to probe the extreme gravity of coalescing binary black holes. In this regime, the gravitational interaction is not only strong, but the spacetime curvature is large, characteristic velocities are a non-negligible fraction of the speed of light, and the time scale on which the curvature and gravity change is small. This contribution discusses some consequences of these observations on modifications to General Relativity, with a special emphasis on Lorentz-violating theories.

  9. Using Pulsar Timing observations to understand the formation and evolution of supermassive black hole binaries

    Science.gov (United States)

    Cornish, Neil; Sampson, Laura; McWilliams, Sean

    2015-04-01

    The astrophysical processes that form and harden supermassive black hole binaries impart distinct features that may be observed in the gravitational-wave spectrum within the sensitive frequency range of Pulsar Timing Arrays (PTA). We investigate how well the various formation and hardening mechanisms can be constrained by applying Bayesian inference to simulated PTA data sets. We find that even without strong priors on the merger rate, any detection of the signal will place interesting constraints on the astrophysical models. Folding in priors on the merger rate allows us to place interesting constraints on the astrophysical models even before a detection is made.

  10. NGC300 X-1 and IC10 X-1: a new breed of black hole binary?

    OpenAIRE

    Barnard, R.; Clark, J. S.; Kolb, U. C.

    2008-01-01

    Context. IC 10 X-1 has recently been confirmed as a black hole (BH) + Wolf-Rayet (WR) X-ray binary, and NGC 300 X-1 is thought to be. The only other known BH+WR candidate is Cygnus X-3. IC 10 X-1 and NGC 300 X-1 have similar X-ray properties, with 0.3-10 keV luminosities ~1038 erg s-1, and their X-ray lightcurves exhibit orbital periods ~30 h. Aims. We investigate similarities between IC 10 X-1 and NGC 300 X-1, as well as differences between these systems and the known Galactic BH bina...

  11. Accretion Disks Around Binary Black Holes: A Simple GR-Hybrid Evolution Model

    OpenAIRE

    Shapiro, Stuart L.

    2013-01-01

    We consider a geometrically thin, Keplerian disk in the orbital plane of a binary black hole (BHBH) consisting of a spinning primary and low-mass secondary (mass ratio q < 1). To account for the principle effects of general relativity (GR), we propose a modification of the standard Newtonian evolution equation for the (orbit-averaged) time-varying disk surface density. In our modified equation the viscous torque in the disk is treated in full GR, while the tidal torque is handled in the Newto...

  12. Intermediate-mass-ratio black-hole binaries: numerical relativity meets perturbation theory.

    Science.gov (United States)

    Lousto, Carlos O; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-05-28

    We study black-hole binaries in the intermediate-mass-ratio regime 0.01≲q≲0.1 with a new technique that makes use of nonlinear numerical trajectories and efficient perturbative evolutions to compute waveforms at large radii for the leading and nonleading (ℓ, m) modes. As a proof-of-concept, we compute waveforms for q=1/10. We discuss applications of these techniques for LIGO and VIRGO data analysis and the possibility that our technique can be extended to produce accurate waveform templates from a modest number of fully nonlinear numerical simulations. PMID:20867082

  13. Gravitational waves from quasicircular black-hole binaries in dynamical Chern-Simons gravity.

    Science.gov (United States)

    Yagi, Kent; Yunes, Nicolás; Tanaka, Takahiro

    2012-12-21

    Dynamical Chern-Simons gravity cannot be strongly constrained with current experiments because it reduces to general relativity in the weak-field limit. This theory, however, introduces modifications in the nonlinear, dynamical regime, and thus it could be greatly constrained with gravitational waves from the late inspiral of black-hole binaries. We complete the first self-consistent calculation of such gravitational waves in this theory. For favorable spin orientations, advanced ground-based detectors may improve existing solar system constraints by 6 orders of magnitude. PMID:23368447

  14. Intermediate-mass-ratio black-hole binaries: numerical relativity meets perturbation theory.

    Science.gov (United States)

    Lousto, Carlos O; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela

    2010-05-28

    We study black-hole binaries in the intermediate-mass-ratio regime 0.01≲q≲0.1 with a new technique that makes use of nonlinear numerical trajectories and efficient perturbative evolutions to compute waveforms at large radii for the leading and nonleading (ℓ, m) modes. As a proof-of-concept, we compute waveforms for q=1/10. We discuss applications of these techniques for LIGO and VIRGO data analysis and the possibility that our technique can be extended to produce accurate waveform templates from a modest number of fully nonlinear numerical simulations.

  15. Optical re-brightening of the black hole binary XTE J1859+226

    Science.gov (United States)

    Corral-Santana, J. M.; Rodríguez-Gil, P.; Hurley, D.; Casares, J.

    2010-09-01

    Observations of the black hole binary XTE J1859+226 revealed an unexpected optical re-brightening. Images were taken with the Nordic Optical Telescope (NOT) using ALFOSC on Jul 13-14, the William Herschel Telescope (WHT) with ACAM on Aug 8 and the Isaac Newton Telescope (INT) with WFC on Aug 19 at the Observatorio del Roque de los Muchachos, La Palma, Spain. The target is found ~1 magnitude brighter than its quiescence level of R=22.48 +- 0.07 as reported in Zurita et al.

  16. Modelling aperiodic X-ray variability in black hole binaries as propagating mass accretion rate fluctuations: a short review

    CERN Document Server

    Ingram, Adam

    2015-01-01

    Black hole binary systems can emit very bright and rapidly varying X-ray signals when material from the companion accretes onto the black hole, liberating huge amounts of gravitational potential energy. Central to this process of accretion is turbulence. In the propagating mass accretion rate fluctuations model, turbulence is generated throughout the inner accretion flow, causing fluctuations in the accretion rate. Fluctuations from the outer regions propagate towards the black hole, modulating the fluctuations generated in the inner regions. Here, I present the theoretical motivation behind this picture before reviewing the array of statistical variability properties observed in the light curves of black hole binaries that are naturally explained by the model. I also discuss the remaining challenges for the model, both in terms of comparison to data and in terms of including more sophisticated theoretical considerations.

  17. Modelling aperiodic X-ray variability in black hole binaries as propagating mass accretion rate fluctuations: A short review

    Science.gov (United States)

    Ingram, A. R.

    2016-05-01

    Black hole binary systems can emit very bright and rapidly varying X-ray signals when material from the companion accretes onto the black hole, liberating huge amounts of gravitational potential energy. Central to this process of accretion is turbulence. In the propagating mass accretion rate fluctuations model, turbulence is generated throughout the inner accretion flow, causing fluctuations in the accretion rate. Fluctuations from the outer regions propagate towards the black hole, modulating the fluctuations generated in the inner regions. Here, I present the theoretical motivation behind this picture before reviewing the array of statistical variability properties observed in the light curves of black hole binaries that are naturally explained by the model. I also discuss the remaining challenges for the model, both in terms of comparison to data and in terms of including more sophisticated theoretical considerations.

  18. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    Energy Technology Data Exchange (ETDEWEB)

    Bagchi, Manjari [International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560012 (India); Torres, Diego F., E-mail: manjari.bagchi@icts.res.in, E-mail: dtorres@ieec.uab.es [ICREA and Institute of Space Sciences, Barcelona 2a Planta E-08193 (Spain)

    2014-08-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?.

  19. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    CERN Document Server

    Bagchi, Manjari

    2014-01-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?

  20. Gas squeezing during the merger of a supermassive black hole binary

    CERN Document Server

    Cerioli, Alice; Price, Daniel J

    2016-01-01

    We study accretion rates during the gravitational wave-driven merger of a binary supermassive black hole embedded in an accretion disc, formed by gas driven to the centre of the galaxy. We use 3D simulations performed with PHANTOM, a Smoothed Particle Hydrodynamics code. Contrary to previous investigations, we show that there is evidence of a "squeezing phenomenon", caused by the compression of the inner disc gas when the secondary black hole spirals towards the primary. This causes an increase in the accretion rates that always exceed the Eddington rate. We have studied the main features of the phenomenon for a mass ratio $q = 10^{-3}$ between the black holes, including the effects of numerical resolution, the secondary accretion radius and the disc thickness. With our disc model with a low aspect ratio, we show that the mass expelled from the orbit of the secondary is negligible ($< 5\\%$ of the initial disc mass), different to the findings of previous 2D simulations with thicker discs. The increase in th...

  1. MAXI J1659-152: the shortest orbital period black-hole binary

    CERN Document Server

    Kuulkers, E; van der Horst, A J; Belloni, T; Chenevez, J; Ibarra, A; Munoz-Darias, T; Bazzano, A; Bel, M Cadolle; De Cesare, G; Trigo, M Diaz; Jourdain, E; Lubinski, P; Natalucci, L; Ness, J -U; Parmar, A; Pollock, A M T; Rodriguez, J; Roques, J -P; Sanchez-Fernandez, C; Ubertini, P; Winkler, C

    2011-01-01

    Following the detection of a bright new X-ray source, MAXI J1659-152, a series of observations was triggered with almost all currently flying high-energy missions. We report here on XMM-Newton, INTEGRAL and RXTE observations during the early phase of the X-ray outburst of this transient black-hole candidate. We confirm the dipping nature in the X-ray light curves. We find that the dips recur on a period of 2.4139+/-0.0005 hrs, and interpret this as the orbital period of the system. It is thus the shortest period black-hole X-ray binary known to date. Using the various observables, we derive the properties of the source. The inclination of the accretion disk with respect to the line of sight is estimated to be 60-75 degrees. The companion star to the black hole is possibly a M5 dwarf star, with a mass and radius of about 0.15 M_sun and 0.23 R_sun, respectively. The system is rather compact (orbital separation is about 1.35 R_sun) and is located at a distance of roughly 7 kpc. In quiescence, MAXI J1659-152 is e...

  2. Post-merger evolution of a neutron star-black hole binary with neutrino transport

    CERN Document Server

    Foucart, Francois; Roberts, Luke; Duez, Matthew D; Haas, Roland; Kidder, Lawrence E; Ott, Christian D; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela

    2015-01-01

    We present a first simulation of the post-merger evolution of a black hole-neutron star binary in full general relativity using an energy-integrated general relativistic truncated moment formalism for neutrino transport. We describe our implementation of the moment formalism and important tests of our code, before studying the formation phase of a disk after a black hole-neutron star merger. We use as initial data an existing general relativistic simulation of the merger of a neutron star of 1.4 solar mass with a black hole of 7 solar mass and dimensionless spin a/M=0.8. Comparing with a simpler leakage scheme for the treatment of the neutrinos, we find noticeable differences in the neutron to proton ratio in and around the disk, and in the neutrino luminosity. We find that the electron neutrino luminosity is much lower in the transport simulations, and that the remnant is less neutron-rich. The spatial distribution of the neutrinos is significantly affected by relativistic effects. Over the short timescale e...

  3. The Binary Black Hole Model for Mrk 231 Cannot Explain the Observed Emission Lines

    CERN Document Server

    Leighly, Karen M; Gallagher, Sarah C; Lucy, Adrian B

    2016-01-01

    Mrk 231 is a nearby quasar with an unusually red continuum, generally explained as heavy reddening by dust (e.g., Leighly et al. 2014). Yan et al. 2015 proposed that Mrk 231 is a milli-parsec black-hole binary with little intrinsic reddening. The large-mass black hole experiences advection-dominated accretion, emitting little continuum, while the accretion disk of the small-mass black hole emits as an ordinary quasar, dominating the observed weak UV continuum and contributing all of the photoionizing flux. We demonstrate that this model is untenable for four reasons. (1) To produce the observed near-infrared emission lines, the equivalent widths would have to be ~100 times larger than typical values with respect to the photoionizing continuum, a situation that seems energetically unlikely. (2) We use the photoionization code Cloudy to demonstrate it is not possible to produce the HeI* emission line intensity for the observed HeI*/Pbeta flux ratios, even if the line-emitting gas intersects all of the photoioni...

  4. Inhomogeneous accretion discs and the soft states of black hole X-ray binaries

    Science.gov (United States)

    Dexter, Jason; Quataert, Eliot

    2012-10-01

    Observations of black hole binaries (BHBs) have established a rich phenomenology of X-ray states. The soft states range from the low variability, accretion disc dominated thermal (TD) state to the higher variability, non-thermal steep power law (SPL) state. The disc component in all states is typically modelled with standard thin disc accretion theory. However, this theory is inconsistent with optical/UV spectral, variability and gravitational microlensing observations of active galactic nuclei (AGNs), the supermassive analogues of BHBs. An inhomogeneous disc (ID) model with large (≃0.4 dex) temperature fluctuations in each radial annulus can qualitatively explain all of these AGN observations. The inhomogeneity may be a consequence of instabilities in radiation-dominated discs, and therefore may be present in BHBs as well. We show that ID models can explain many features of the TD and SPL states of BHBs. The observed relationships between spectral hardness, disc fraction and rms variability amplitude in BHBs are reproduced with temperature fluctuations similar to those inferred in AGNs, suggesting a unified picture of luminous accretion discs across orders of magnitude in black hole mass. This picture can be tested with spectral fitting of ID models, X-ray polarization observations and radiation magnetohydrodynamic simulations. If BHB accretion discs are indeed inhomogeneous, only the most disc-dominated states (disc fraction ≳0.95) can be used to robustly infer black hole spin using current continuum fitting methods.

  5. Relativistic mergers of black hole binaries have large, similar masses, low spins and are circular

    CERN Document Server

    Amaro-Seoane, Pau

    2015-01-01

    Gravitational waves are a prediction of general relativity, and with ground-based detectors now running in their advanced configuration, we will soon be able to measure them directly for the first time. Binaries of stellar-mass black holes are among the most interesting sources for these detectors. Unfortunately, the many different parameters associated with the problem make it difficult to promptly produce a large set of waveforms for the search in the data stream. To reduce the number of templates to develop, and hence speed up the search, one must restrict some of the physical parameters to a certain range of values predicted by either (electromagnetic) observations or theoretical modeling. This allows one to avoid the need to blindly cover the whole parameter space. In this work we show that "hyperstellar" black holes (HSBs) with masses $30 \\lesssim M_{\\rm BH}/M_{\\odot} \\lesssim 100$, i.e black holes significantly larger than the nominal $10\\,M_{\\odot}$, will have an associated low value for the spin, i.e...

  6. Mergers of Unequal Mass Galaxies: Supermassive Black Hole Binary Evolution and Structure of Merger Remnants

    CERN Document Server

    Khan, Fazeel Mahmood; Berczik, Peter; Berentzen, Ingo; Just, Andreas; Spurzem, Rainer

    2012-01-01

    Galaxy centers are residing places for Super Massive Black Holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves for the Laser Interferometer Space Antenna (LISA). In spherical galaxy models, SMBH binaries stall at a separation of approximately one parsec, leading to the "final parsec problem" (FPP). On the other hand, it has been shown that merger-induced triaxiality of the remnant in equal-mass mergers is capable of supporting a constant supply of stars on so-called centrophilic orbits that interact with the binary and thus avoid the FPP. In this paper, using a set of direct N-body simulations of mergers of initially spherically symmetric galaxies with different mass ratios, we show that the merger-induced triaxiality is able to drive unequal-mass SMBH binaries to coalescence. The binary hardening rates are high and depend only weakly on the...

  7. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO

    CERN Document Server

    ,

    2016-01-01

    On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015. GW150914 was observed with a matched filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\\sigma}.

  8. Binary Black Holes in Dense Star Clusters: Exploring the Theoretical Uncertainties

    CERN Document Server

    Chatterjee, Sourav; Rasio, Frederic A

    2016-01-01

    Recent theoretical studies with N-body simulations predict that large numbers of stellar black holes (BHs) could remain bound to some globular clusters (GCs) at present, and merging BH--BH binaries are produced dynamically in significant numbers. Here we systematically vary model assumptions within existing uncertainties and study their effects on the evolution of BHs in GCs and the final structural properties of GCs. We use a parallel Monte Carlo code, which provides much higher computational speed than direct N-body codes, thereby allowing large numbers of models to be computed. We find that variations in initial assumptions can set otherwise identical initial clusters on completely different evolutionary paths, significantly affecting their observable properties at present, or even affecting the cluster's very survival to the present. However, these changes usually do not affect the numbers or properties of merging BH--BH binaries produced by GCs. The only exception is that varying assumptions about stella...

  9. Origin and Implications of high eccentricities in massive black hole binaries at sub-pc scales

    CERN Document Server

    Roedig, Constanze

    2011-01-01

    We outline the eccentricity evolution of sub-parsec massive black hole binaries (MBHBs) forming in galaxy mergers. In both stellar and gaseous environments, MBHBs are expected to grow large orbital eccentricities before they enter the gravitational wave (GW) observational domain. We re--visit the predicted eccentricities detectable by space based laser interferometers (as the proposed ELISA/NGO) for both environments. Close to coalescence, many MBHBs will still maintain detectable eccentricities, spanning a broad range from <10^{-5} up to <~ 0.5. Stellar and gas driven dynamics lead to distinct distributions, with the latter favoring larger eccentricities. At larger binary separations, when emitted GWs will be observed by pulsar timing arrays (PTAs), the expected eccentricities are usually quite large, in the range 0.01-0.7, which poses an important issue for signal modelling and detection algorithms. In this window, large eccentricities also have implications on proposed electromagnetic counterparts to...

  10. Identifying Decaying Supermassive Black Hole Binaries from their Variable Electromagnetic Emission

    CERN Document Server

    Haiman, Zoltán; Menou, Kristen; Lippai, Zoltán; Frei, Zsolt

    2008-01-01

    Supermassive black hole binaries (SMBHBs) with masses in the range 10^4-10^7 M_sun/(1+z), produced in galaxy mergers, are thought to complete their coalescence due to the emission of gravitational waves (GWs). The anticipated detection of the GWs by the LISA will constitute a milestone for fundamental physics and astrophysics. While the GW signatures themselves will provide a treasure trove of information, if the source can be securely identified in electromagnetic (EM) bands, this would open up entirely new scientific opportunities, to probe fundamental physics, astrophysics, and cosmology. We discuss several ideas, involving wide-field telescopes, that may be useful in locating electromagnetic counterparts to SMBHBs detected by LISA. In particular, the binary may produce a variable electromagnetic flux, such as a roughly periodic signal due to the orbital motion prior to coalescence, or a prompt transient signal caused by shocks in the circumbinary disk when the SMBHB recoils and "shakes" the disk. We discu...

  11. Constraining the dark energy equation of state using LISA observations of spinning Massive Black Hole binaries

    CERN Document Server

    Petiteau, Antoine; Sesana, Alberto

    2011-01-01

    Gravitational wave signals from coalescing Massive Black Hole (MBH) binaries could be used as standard sirens to measure cosmological parameters. The future space based gravitational wave observatory Laser Interferometer Space Antenna (LISA) will detect up to a hundred of those events, providing very accurate measurements of their luminosity distances. To constrain the cosmological parameters we also need to measure the redshift of the galaxy (or cluster of galaxies) hosting the merger. This requires the identification of a distinctive electromagnetic event associated to the binary coalescence. However, putative electromagnetic signatures may be too weak to be observed. Instead, we study here the possibility of constraining the cosmological parameters by enforcing statistical consistency between all the possible hosts detected within the measurement error box of a few dozen of low redshift (z<3) events. We construct MBH populations using merger tree realizations of the dark matter hierarchy in a LambdaCDM ...

  12. A Population of Short-Period Variable Quasars from PTF as Supermassive Black Hole Binary Candidates

    CERN Document Server

    Charisi, M; Haiman, Z; Price-Whelan, A M; Graham, M J; Bellm, E C; Laher, R R; Marka, S

    2016-01-01

    Supermassive black hole binaries (SMBHBs) at sub-parsec separations should be common in galactic nuclei, as a result of frequent galaxy mergers. Hydrodynamical simulations of circumbinary discs predict strong periodic modulation of the mass accretion rate on time-scales comparable to the orbital period of the binary. As a result, SMBHBs may be recognized by the periodic modulation of their brightness. We conducted a statistical search for periodic variability in a sample of 35,383 spectroscopically confirmed quasars in the photometric database of the Palomar Transient Factory (PTF). We analysed Lomb-Scargle periodograms and assessed the significance of our findings by modeling each individual quasar's variability as a damped random walk (DRW). We identified 50 quasars with significant periodicity beyond the DRW model, typically with short periods of a few hundred days. We find 33 of these to remain significant after a re-analysis of their periodograms including additional optical data from the intermediate-PT...

  13. Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni

    Science.gov (United States)

    Kimura, Mariko; Isogai, Keisuke; Kato, Taichi; Ueda, Yoshihiro; Nakahira, Satoshi; Shidatsu, Megumi; Enoto, Teruaki; Hori, Takafumi; Nogami, Daisaku; Littlefield, Colin; Ishioka, Ryoko; Chen, Ying-Tung; King, Sun-Kun; Wen, Chih-Yi; Wang, Shiang-Yu; Lehner, Matthew J.; Schwamb, Megan E.; Wang, Jen-Hung; Zhang, Zhi-Wei; Alcock, Charles; Axelrod, Tim; Bianco, Federica B.; Byun, Yong-Ik; Chen, Wen-Ping; Cook, Kem H.; Kim, Dae-Won; Lee, Typhoon; Marshall, Stuart L.; Pavlenko, Elena P.; Antonyuk, Oksana I.; Antonyuk, Kirill A.; Pit, Nikolai V.; Sosnovskij, Aleksei A.; Babina, Julia V.; Baklanov, Aleksei V.; Pozanenko, Alexei S.; Mazaeva, Elena D.; Schmalz, Sergei E.; Reva, Inna V.; Belan, Sergei P.; Inasaridze, Raguli Ya.; Tungalag, Namkhai; Volnova, Alina A.; Molotov, Igor E.; Miguel, Enrique De; Kasai, Kiyoshi; Stein, William L.; Dubovsky, Pavol A.; Kiyota, Seiichiro; Miller, Ian; Richmond, Michael; Goff, William; Andreev, Maksim V.; Takahashi, Hiromitsu; Kojiguchi, Naoto; Sugiura, Yuki; Takeda, Nao; Yamada, Eiji; Matsumoto, Katsura; James, Nick; Pickard, Roger D.; Tordai, Tamás; Maeda, Yutaka; Ruiz, Javier; Miyashita, Atsushi; Cook, Lewis M.; Imada, Akira; Uemura, Makoto

    2016-01-01

    How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries—for example, XTE J1118+480 (ref. 4) and GX 339-4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hole of nine solar masses (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion—not the actual rate—would then be the critical factor causing large-amplitude oscillations in long-period systems.

  14. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S

    2016-06-17

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180}  Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity. PMID:27367379

  15. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.

    Science.gov (United States)

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S

    2016-06-17

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180}  Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  16. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    Science.gov (United States)

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-01

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater. PMID:26551801

  17. Understanding Black Hole X-ray Binaries: The Case of Cygnus X-1

    Science.gov (United States)

    Pottschmidt, Katja

    2008-01-01

    Black Hole X-ray Binaries are known to display distinct emission states that differ in their X-ray spectra, their X-ray timing properties (on times scales less than 1 s) and their radio emission. In recent years monitoring observations, specially with NASA's Rossi X-ray Timing Explorer (RXTE), have provided us with detailed empirical modeling of the phenomenology of the different states as well as a unification scheme of the long term evolution of black holes, transient and persistent, in terms of these states. Observations of the persistent High Mass X-ray Binary (HMXB) Cygnus X-l have been at the forefront of learning about black hole states since its optical identification through a state transition in 1973. In this talk I will present in depth studies of several different aspects of the accretion process in this system. The main data base for these studies is an ongoing RXTE and Ryle radio telescope bi-weekly monitoring campaign that started in 1997. I will discuss high-resolution timing results, especially power spectra, which first gave rise to the Lorentzian description now widely used for black hole and neutron star binaries, and time lags, which we found to be especially well suited to identify state transitions. The evolution of spectral, timing, and radio parameters over years will be shown, including the rms-flux relation and the observation of a clearly correlated radio/x-ray flare. We also observed Cygnus X-1 with INTEGRAL, which allowed us to extend timing and spectral studies to higher energies, with XMM, which provided strong constraints on the parameters of the 6.4 keV iron fluorescence line, and with Chandra, which provided the most in depth study to date of the stellar wind in this system. Models based on the physical conditions in the accretion region are still mainly concentrated on the one or other of the observational areas but they are expanding: as an example I will review results from a jet model for the quantitative description of the

  18. Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity

    Science.gov (United States)

    Sperhake, Ulrich; Berti, Emanuele; Cardoso, Vitor; González, José A.; Brügmann, Bernd; Ansorg, Marcus

    2008-09-01

    We study the transition from inspiral to plunge in general relativity by computing gravitational waveforms of nonspinning, equal-mass black-hole binaries. We consider three sequences of simulations, starting with a quasicircular inspiral completing 1.5, 2.3 and 9.6 orbits, respectively, prior to coalescence of the holes. For each sequence, the binding energy of the system is kept constant and the orbital angular momentum is progressively reduced, producing orbits of increasing eccentricity and eventually a head-on collision. We analyze in detail the radiation of energy and angular momentum in gravitational waves, the contribution of different multipolar components and the final spin of the remnant, comparing numerical predictions with the post-Newtonian approximation and with extrapolations of point-particle results. We find that the motion transitions from inspiral to plunge when the orbital angular momentum L=Lcrit≃0.8M2. For Lcensorship conjecture.

  19. Massive black hole binaries from runaway collisions: the impact of metallicity

    Science.gov (United States)

    Mapelli, Michela

    2016-07-01

    The runaway collision scenario is one of the most promising mechanisms to explain the formation of intermediate-mass black holes (IMBHs) in young dense star clusters. On the other hand, the massive stars that participate in the runaway collisions lose mass by stellar winds. In this paper, we discuss new N-body simulations of massive (6.5 × 104 M⊙) star clusters, in which we added upgraded recipes for stellar winds and supernova explosion at different metallicity. We follow the evolution of the principal collision product (PCP), through dynamics and stellar evolution, till it forms a stellar remnant. At solar metallicity, the mass of the final merger product spans from few solar masses up to ˜30 M⊙. At low metallicity (0.01-0.1 Z⊙) the maximum remnant mass is ˜250 M⊙, in the range of IMBHs. A large fraction (˜0.6) of the PCPs are not ejected from the parent star cluster and acquire stellar or black hole (BH) companions. Most of the long-lived binaries hosting a PCP are BH-BH binaries. We discuss the importance of this result for gravitational wave detection.

  20. The Role of the Kozai-Lidov Mechanism in Black Hole Binary Mergers in Galactic Centers

    CERN Document Server

    VanLandingham, John H; Hamilton, Douglas P; Richardson, Derek C

    2016-01-01

    In order to understand the rate of merger of stellar-mass black hole binaries (BHBs) by gravitational wave (GW) emission it is important to determine the major pathways to merger. We use numerical simulations to explore the evolution of BHBs inside the radius of influence of supermassive black holes (SMBHs) in galactic centers. In this region the evolution of binaries is dominated by perturbations from the central SMBH. In particular, as first pointed out by Antonini and Perets, the Kozai-Lidov (KL) mechanism trades relative inclination of the BHB to the SMBH for eccentricity of the BHB, and for some orientations can bring the BHB to an eccentricity near unity. At very high eccentricities, GW emission from the BHB can become efficient, causing the members of the BHB to coalesce. We use a novel combination of two N-body codes to follow this evolution. We are forced to simulate small systems to follow the behavior accurately. We have completed 400 simulations that range from $\\sim$ 300 stars around a $10^{3}$ M...

  1. Massive black hole binaries from runaway collisions: the impact of metallicity

    CERN Document Server

    Mapelli, Michela

    2016-01-01

    The runaway collision scenario is one of the most promising mechanisms to explain the formation of intermediate-mass black holes (IMBHs) in young dense star clusters. On the other hand, the massive stars that participate in the runaway collisions lose mass by stellar winds. In this paper, we discuss new N-body simulations of massive (6.5x10^4 Msun) star clusters, in which we added upgraded recipes for stellar winds and supernova explosion at different metallicity. We follow the evolution of the principal collision product (PCP), through dynamics and stellar evolution, till it forms a stellar remnant. At solar metallicity, the mass of the final merger product spans from few solar masses up to ~30 Msun. At low metallicity (0.01-0.1 Zsun) the maximum remnant mass is ~250 Msun, in the range of IMBHs. A large fraction (~0.6) of the PCPs are not ejected from the parent star cluster and acquire stellar or black hole (BH) companions. Most of the long-lived binaries hosting a PCP are BH-BH binaries. We discuss the imp...

  2. Inclination dependence of QPO phase lags in black hole X-ray binaries

    CERN Document Server

    Eijnden, J van den; Uttley, P; Motta, S E; Belloni, T M; Gardenier, D W

    2016-01-01

    Quasi-periodic oscillations (QPOs) with frequencies from $\\sim0.05$-$30$ Hz are a common feature in the X-ray emission of accreting black hole binaries. As the QPOs originate from the innermost accretion flow, they provide the opportunity to probe the behaviour of matter in extreme gravity. In this paper, we present a systematic analysis of the inclination dependence of phase lags associated with both Type-B and Type-C QPOs in a sample of 15 Galactic black hole binaries. We find that the phase lag at the Type-C QPO frequency strongly depends on inclination, both in evolution with QPO frequency and sign. Although we find that the Type-B QPO soft lags are associated with high inclination sources, the source sample is too small to confirm this as a significant inclination dependence. These results are consistent with a geometrical origin of Type-C QPOs and a different origin for Type-B and Type-C QPOs. We discuss the possibility that the phase lags originate from a pivoting spectral power law during each QPO cyc...

  3. Prospects for intermediate mass black hole binary searches with advanced gravitational-wave detectors

    CERN Document Server

    Mazzolo, G; Drago, M; Necula, V; Pankow, C; Prodi, G A; Re, V; Tiwari, V; Vedovato, G; Yakushin, I; Klimenko, S

    2014-01-01

    We estimated the sensitivity of the upcoming advanced, ground-based gravitational-wave observatories (the upgraded LIGO and Virgo and the KAGRA interferometers) to coalescing intermediate mass black hole binaries (IMBHB). We added waveforms modeling the gravitational radiation emitted by IMBHBs to detectors' simulated data and searched for the injected signals with the coherent WaveBurst algorithm. The tested binary's parameter space covers non-spinning IMBHBs with source-frame total masses between 50 and 1050 $\\text{M}_{\\odot}$ and mass ratios between $1/6$ and 1$\\,$. We found that advanced detectors could be sensitive to these systems up to a range of a few Gpc. A theoretical model was adopted to estimate the expected observation rates, yielding up to a few tens of events per year. Thus, our results indicate that advanced detectors will have a reasonable chance to collect the first direct evidence for intermediate mass black holes and open a new, intriguing channel for probing the Universe over cosmological...

  4. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    CERN Document Server

    Wu, Mao-Chun; Yuan, Ye-Fei; Gan, Zhao-Ming

    2016-01-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron-self Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value $\\dot M \\sim 3\\alpha\\ \\dot M_{\\rm Edd}$, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down onto the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary our results are consistent with the truncated accretion scenari...

  5. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    Science.gov (United States)

    Wu, Mao-Chun; Xie, Fu-Guo; Yuan, Ye-Fei; Gan, Zhaoming

    2016-06-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron self-Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value dot{M} ˜ 3α dot{M}_Edd, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down on to the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary, our results are consistent with the truncated accretion scenario for the state transition.

  6. WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C., E-mail: btetaren@ualberta.ca [Department of Physics, University of Alberta, CCIS 4-181, Edmonton, AB T6G 2E1 (Canada)

    2016-02-15

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory, Monitor of All-Sky X-ray Image, Rossi X-ray Timing Explorer, and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (∼40%) of the Galactic transient BHXB outburst sample over the past ∼20 years. Our findings suggest that this “hard-only” behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these “hard-only” outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population.

  7. Chandra reveals a black-hole X-ray binary within the ultraluminous supernova remnant MF 16

    OpenAIRE

    Roberts, T P; Colbert, E. J. M.

    2003-01-01

    We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraodinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black-hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black-hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly...

  8. THE FIRST SPECTROSCOPICALLY RESOLVED SUB-PARSEC ORBIT OF A SUPERMASSIVE BINARY BLACK HOLE

    Energy Technology Data Exchange (ETDEWEB)

    Bon, E.; Jovanovic, P.; Bon, N.; Popovic, L. C. [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia); Marziani, P. [INAF, Osservatorio Astronomico di Padova, Padova (Italy); Shapovalova, A. I. [Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz, Karachaevo-Cherkesia 369167 (Russian Federation); Borka Jovanovic, V.; Borka, D. [Isaac Newton Institute of Chile, Yugoslavia Branch, Belgrade (Serbia); Sulentic, J. [Instituto de Astrofisica de Andalucia, CSIC, Apdo. 3004, E-18080 Granada (Spain)

    2012-11-10

    One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole (BH) system in their cores. Here, we present an observational evidence for the first spectroscopically resolved sub-parsec orbit of a such system in the core of Seyfert galaxy NGC 4151. Using a method similar to those typically used for spectroscopic binary stars, we obtained radial velocity curves of the supermassive binary system, from which we calculated orbital elements and made estimates about the masses of the components. Our analysis shows that periodic variations in the light and radial velocity curves can be accounted for by an eccentric, sub-parsec Keplerian orbit with a 15.9 year period. The flux maximum in the light curve corresponds to the approaching phase of the secondary component toward the observer. According to the obtained results, we speculate that the periodic variations in the observed H{alpha} line shape and flux are due to shock waves generated by the supersonic motion of the components through the surrounding medium. Given the large observational effort needed to reveal this spectroscopically resolved binary orbital motion, we suggest that many such systems may exist in similar objects even if they are hard to find. Detecting more of them will provide us with insight into the BH mass growth process.

  9. On the Formation of Galactic Black Hole Low-Mass X-ray Binaries

    CERN Document Server

    Wang, Chen; Li, Xiang-Dong

    2016-01-01

    Currently, there are 24 black hole (BH) X-ray binary systems that have been dynamically confirmed in the Galaxy. Most of them are low-mass X-ray binaries (LMXBs) comprised of a stellar-mass BH and a low-mass donor star. Although the formation of these systems has been extensively investigated, some crucial issues remain unresolved. The most noticeable one is that, the low-mass companion has difficulties in ejecting the tightly bound envelope of the massive primary during the spiral-in process. While initially intermediate-mass binaries are more likely to survive the common envelope (CE) evolution, the resultant BH LMXBs mismatch the observations. In this paper, we use both stellar evolution and binary population synthesis to study the evolutionary history of BH LMXBs. We test various assumptions and prescriptions for the supernova mechanisms that produce BHs, the binding energy parameter, the CE efficiency, and the initial mass distributions of the companion stars. We obtain the birthrate and the distribution...

  10. The Origin of Black Hole Spin in Galactic Low-Mass X-ray Binaries

    CERN Document Server

    Fragos, Tassos

    2014-01-01

    Galactic field black hole (BH) low-mass X-ray binaries (LMXBs) are believed to form in situ via the evolution of isolated binaries. In the standard formation channel, these systems survived a common envelope phase, after which the remaining helium core of the primary star and the subsequently formed BH are not expected to be highly spinning. However, the measured spins of BHs in LMXBs cover the whole range of spin parameters from a*~0 to a*~1. We propose here that the BH spin in LMXBs is acquired through accretion onto the BH during their long and stable accretion phase. In order to test this hypothesis, we calculated extensive grids of binary evolutionary sequences in which a BH accretes matter from a close companion. For each evolutionary sequence, we examined whether, at any point in time, the calculated binary properties are in agreement with their observationally inferred counterparts of 16 observed Galactic LMXBs. Mass-transfer sequences that simultaneously satisfy all observational constraints represen...

  11. The Final Spin from Binary Black Holes in Quasi-circular Orbits

    Science.gov (United States)

    Hofmann, Fabian; Barausse, Enrico; Rezzolla, Luciano

    2016-07-01

    We revisit the problem of predicting the spin magnitude and direction of the black hole (BH) resulting from the merger of two BHs with arbitrary masses and spins inspiraling in quasi-circular orbits. We do this by analyzing a catalog of 619 recent numerical-relativity simulations collected from the literature and spanning a large variety of initial conditions. By combining information from the post-Newtonian approximation, the extreme mass-ratio limit, and perturbative calculations, we improve our previously proposed phenomenological formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy with our previous expressions, the new formula is a simple algebraic function of the initial system parameters and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum but can be employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially for almost extremal progenitor spins and for small mass ratios, yielding an rms error σ ≈ 0.002 for aligned/anti-aligned binaries and σ ≈ 0.006 for generic binaries. Our new formula is suitable for cosmological applications and can be employed robustly in the analysis of the gravitational waveforms from advanced interferometric detectors.

  12. A probable Milli-Parsec Supermassive Binary Black Hole in the Nearest Quasar Mrk 231

    CERN Document Server

    Yan, Chang-Shuo; Dai, Xinyu; Yu, Qingjuan

    2015-01-01

    Supermassive binary black holes (BBHs) are unavoidable products of galaxy mergers and are expected to exist in the cores of many quasars. Great effort has been made during the past several decades to search for BBHs among quasars; however, observational evidence for BBHs remains elusive and ambiguous, which is difficult to reconcile with theoretical expectations. In this paper, we show that the distinct optical-to-UV spectrum of Mrk 231 can be well interpreted as emission from accretion flows onto a BBH, with a semimajor axis of ~590AU and an orbital period of ~1.2 year. The flat optical and UV continua are mainly emitted from a circumbinary disk and a mini-disk around the secondary black hole (BH), respectively; and the observed sharp drop off and flux deficit at wavelength lambda ~ 4000-2500 Angstrom is due to a gap (or hole) opened by the secondary BH migrating within the circumbinary disk. If confirmed by future observations, this BBH will provide a unique laboratory to study the interplay between BBHs an...

  13. Modified viscosity in accretion disks. Application to Galactic black hole binaries, intermediate mass black holes and AGN

    CERN Document Server

    Grzędzielski, Mikołaj; Czerny, Bożena; Wu, Qingwen

    2016-01-01

    Black holes surrounded by accretion disks are present in the Universe in different scales of masses, from microquasars up to the Active Galactic Nuclei. The current picture of the accretion disk theory remains still ad hoc, due the complexity of the magnetic field action. In addition, the accretion disks at high Eddington rates can be radiation-pressure dominated and, according to some of the heating prescriptions, thermally unstable. The observational verification of their resulting variability patterns may shed the light on both the role of radiation pressure and magnetic field in the accretion process. We compute the structure and time evolution of an accretion disk. We supplement this model with a modified viscosity prescription, which can to some extent describe the magnetization of the disk. We study the results for a large grid of models and derive conclusions separately for different scales of black hole masses. We show the dependences between the flare, or outburst, duration, its amplitude and period...

  14. Misaligned gas discs around eccentric black-hole binaries and implications for the final-parsec problem

    CERN Document Server

    Aly, Hossam; Nixon, Chris; King, Andrew

    2015-01-01

    We investigate the evolution of low mass (Md /Mb = 0.005) misaligned gaseous discs around eccentric supermassive black hole (SMBH) binaries. These are expected to form from randomly oriented accretion events onto a SMBH binary formed in a galaxy merger. When expanding the interaction terms between the binary and a circular ring to quadrupole order and averaging over the binary orbit, we expect four non-precessing disc orientations: aligned or counter-aligned with the binary, or polar orbits around the binary eccentricity vector with either sense of rotation. All other orientations precess around either of these, with the polar precession dominating for high eccentricity. These expectations are borne out by smoothed particle hydrodynamics simulations of initially misaligned viscous circumbinary discs, resulting in the formation of polar rings around highly eccentric binaries in contrast to the co-planar discs around circular binaries. Moreover, we observe disc tearing and violent interactions between different...

  15. Repetitive patterns in rapid optical variations in the nearby black-hole binary V404 Cygni.

    Science.gov (United States)

    Kimura, Mariko; Isogai, Keisuke; Kato, Taichi; Ueda, Yoshihiro; Nakahira, Satoshi; Shidatsu, Megumi; Enoto, Teruaki; Hori, Takafumi; Nogami, Daisaku; Littlefield, Colin; Ishioka, Ryoko; Chen, Ying-Tung; King, Sun-Kun; Wen, Chih-Yi; Wang, Shiang-Yu; Lehner, Matthew J; Schwamb, Megan E; Wang, Jen-Hung; Zhang, Zhi-Wei; Alcock, Charles; Axelrod, Tim; Bianco, Federica B; Byun, Yong-Ik; Chen, Wen-Ping; Cook, Kem H; Kim, Dae-Won; Lee, Typhoon; Marshall, Stuart L; Pavlenko, Elena P; Antonyuk, Oksana I; Antonyuk, Kirill A; Pit, Nikolai V; Sosnovskij, Aleksei A; Babina, Julia V; Baklanov, Aleksei V; Pozanenko, Alexei S; Mazaeva, Elena D; Schmalz, Sergei E; Reva, Inna V; Belan, Sergei P; Inasaridze, Raguli Ya; Tungalag, Namkhai; Volnova, Alina A; Molotov, Igor E; de Miguel, Enrique; Kasai, Kiyoshi; Stein, William L; Dubovsky, Pavol A; Kiyota, Seiichiro; Miller, Ian; Richmond, Michael; Goff, William; Andreev, Maksim V; Takahashi, Hiromitsu; Kojiguchi, Naoto; Sugiura, Yuki; Takeda, Nao; Yamada, Eiji; Matsumoto, Katsura; James, Nick; Pickard, Roger D; Tordai, Tamás; Maeda, Yutaka; Ruiz, Javier; Miyashita, Atsushi; Cook, Lewis M; Imada, Akira; Uemura, Makoto

    2016-01-01

    How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries-for example, XTE J1118+480 (ref. 4) and GX 339-4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hole of nine solar masses (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion--not the actual rate--would then be the critical factor causing large-amplitude oscillations in long-period systems. PMID:26738590

  16. Curious case of gravitational lensing by binary black holes: a tale of two photon spheres, new relativistic images and caustics

    CERN Document Server

    Patil, Mandar; Narasimha, D

    2016-01-01

    Binary black holes have been in limelight off late due to the detection of gravitational waves from coalescing compact binaries in the events GW150914 and GW151226. In this paper we study gravitational lensing by the binary black holes modeled as equal mass Majumdar-Papapetrou dihole metric and show that this system displays features that are quite unprecedented and absent in any other lensing configuration investigated so far. We restrict our attention to the light rays which move on the plane midway between the two identical black holes, which allows us to employ techniques developed for the equatorial lensing in spherically symmetric spacetimes. If distance between the two black holes is below a certain threshold value, the system admits two photon spheres. As in the case of single black hole, infinitely many relativistic images are formed due to the light rays which turn back from the region outside the outer (unstable) photon sphere, all of which lie beyond a critical angular radius with respect to the l...

  17. Concise estimate of the expected number of detections for stellar-mass binary black holes by eLISA

    Science.gov (United States)

    Kyutoku, Koutarou; Seto, Naoki

    2016-10-01

    We study prospects for detecting extragalactic binary black holes similar to GW150914 by evolved Laser Interferometer Space Antenna (eLISA). We find that the majority of detected binary black holes will not merge within reasonable observation periods of eLISA in any configuration. While long-arm detectors are highly desired for promoting multiband gravitational-wave astronomy by increasing the detections of merging binaries, the number of total detections can be increased also by improving the acceleration noise. A monochromatic approximation works well to derive semiquantitative features of observational prospects for non-merging binaries with clearly indicating the parameter dependence. Our estimate also suggests that the number of galaxies in the error volume is so small that the host galaxy may be determined uniquely with high confidence.

  18. Concise estimate of the expected number of detections for stellar-mass binary black holes by eLISA

    CERN Document Server

    Kyutoku, Koutarou

    2016-01-01

    We study prospects for detecting extragalactic binary black holes similar to GW150914 by evolved Laser Interferometer Space Antenna (eLISA). We find that the majority of detected binary black holes will not merge within reasonable observation periods of eLISA in any configuration. While long-arm detectors are highly desired for promoting multi-band gravitational-wave astronomy by increasing the detections of merging binaries, the number of total detections can be increased also by improving the acceleration noise. A monochromatic approximation works well to derive semiquantitative features of observational prospects for non-merging binaries with clearly indicating the parameter dependence. Our estimate also suggests that the number of galaxies in the error volume is so small that the host galaxy may be determined uniquely with high confidence.

  19. The Quest for the Largest Depleted Galaxy Core: Supermassive Black Hole Binaries and Stalled Infalling Satellites

    Science.gov (United States)

    Bonfini, Paolo; Graham, Alister W.

    2016-10-01

    Partially depleted cores are practically ubiquitous in luminous early-type galaxies (M B ≲ -20.5 mag) and are typically smaller than 1 kpc. In one popular scenario, supermassive black hole (SMBH) binaries—established during dry (i.e., gas-poor) galaxy mergers—kick out the stars from a galaxy’s central region via three-body interactions. Here, this “binary black hole scouring scenario” is probed at its extremes by investigating the two galaxies reported to have the largest partially depleted cores found to date: 2MASX J09194427+5622012 and 2MASX J17222717+3207571 (the brightest galaxy in Abell 2261). We have fit these galaxy’s two-dimensional light distribution using the core-Sérsic model and found that the former galaxy has a core-Sérsic break radius {R}b,{cS}=0.55 {{kpc}}, which is three times smaller than the published value. We use this galaxy to caution that other reportedly large break radii may too have been overestimated if they were derived using the “sharp-transition” (inner core)-to-(outer Sérsic) model. In the case of 2MASX J17222717+3207571, we obtain R b,cS = 3.6 kpc. While we confirm that this is the biggest known partially depleted core of any galaxy, we stress that it is larger than expected from the evolution of SMBH binaries—unless one invokes substantial gravitational-wave-induced (black hole-)recoil events. Given the presence of multiple nuclei located (in projection) within the core radius of this galaxy, we explored and found support for the alternative “stalled infalling perturber” core-formation scenario, in which this galaxy’s core could have been excavated by the action of an infalling massive perturber.

  20. Searching for the Nearest Extragalactic Binary Black Hole: A Spectroscopic Study of NGC 4736

    Science.gov (United States)

    Gustafsson, Annika; Kwan, Teiler J.; Fisher, Robert Scott; Mason, Rachel

    2016-01-01

    In 1995 and 1996, Maoz et al. concluded that the nearby galaxy NGC 4736 (d=16 million light years) is in the late stages of a merger event. After further investigation, in 2005, Maoz et al. observed UV variability in the nuclear region of NGC 4736, revealing a second unknown source in the nucleus. Since late stage mergers are an ideal location to search for binary black holes (BBH), members of our team hypothesized that the second source could be a second black hole, making this a potential BBH system. This is important since observational evidence for their existence remains sparse, even though BBH are predicted by many theories and potentially play an important role in galaxy evolution. In January of 2008, NGC 4736 was observed with the GMOS-N instrument on Gemini North. Optical longslit spectra of the nuclear region were obtained with spatial resolution of 0.1454''/pixel and a spectral resolution of R~1700. At this resolution, the two nuclear sources are spatially resolved at a projected separation of 2.5''. As a result, we can classify the nature of the second source by looking at the optical line ratios following Ho et al. (1997). High signal-to-noise spectra of the unknown source displayed strong emission of [SII] and [NII], but an extremely weak [OIII] emission line. The unknown source has a calculated [NII]/[Hα] ratio of 1.37 and an upper limit of 0.6 for the [OIII]/[Hβ] ratio. Placing the unknown source on the BPT-NII diagram (Baldwin et al., 1981), we tentatively conclude that it is a low-luminosity second black hole potentially making NGC 4736 the nearest BBH system. The result will enable future high-spectral and spatial resolution observations of a low-luminosity system in extremely late stages of merging, which will be a significant step forward in validating models of galaxy mergers and AGN activity.

  1. Constraints on Black Hole/Host Galaxy Co-evolution and Binary Stalling Using Pulsar Timing Arrays

    CERN Document Server

    Simon, Joseph

    2016-01-01

    Pulsar timing arrays are now setting increasingly tight limits on the gravitational wave background from binary supermassive black holes. But as upper limits grow more constraining, what can be implied about galaxy evolution? We investigate which astrophysical parameters have the largest impact on strain spectrum predictions and provide a simple framework to directly translate between measured values for the parameters of galaxy evolution and PTA limits on the gravitational wave background of binary supermassive black holes. We find that the most influential observable is the relation between a host galaxy's central bulge and its central black hole, $\\mbox{$M_{\\bullet}$-$M_{\\rm bulge}$}$, which has the largest effect on the mean value of the characteristic strain amplitude. However, the variance of each prediction is dominated by uncertainties in the galaxy stellar mass function. Using this framework with the best published PTA limit, we can set limits on the shape and scatter of the $\\mbox{$M_{\\bullet}$-$M_{...

  2. THE ORIGIN OF BLACK HOLE SPIN IN GALACTIC LOW-MASS X-RAY BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Fragos, T. [Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Sauverny (Switzerland); McClintock, J. E., E-mail: anastasios.fragkos@unige.ch [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-02-10

    Galactic field black hole (BH) low-mass X-ray binaries (LMXBs) are believed to form in situ via the evolution of isolated binaries. In the standard formation channel, these systems survived a common envelope phase, after which the remaining helium core of the primary star and the subsequently formed BH are not expected to be highly spinning. However, the measured spins of BHs in LMXBs cover the whole range of spin parameters. We propose here that the BH spin in LMXBs is acquired through accretion onto the BH after its formation. In order to test this hypothesis, we calculated extensive grids of detailed binary mass-transfer sequences. For each sequence, we examined whether, at any point in time, the calculated binary properties are in agreement with their observationally inferred counterparts of 16 Galactic LMXBs. The ''successful'' sequences give estimates of the mass that the BH has accreted since the onset of Roche-Lobe overflow. We find that in all Galactic LMXBs with measured BH spin, the origin of the spin can be accounted for by the accreted matter, and we make predictions about the maximum BH spin in LMXBs where no measurement is yet available. Furthermore, we derive limits on the maximum spin that any BH can have depending on current properties of the binary it resides in. Finally we discuss the implication that our findings have on the BH birth-mass distribution, which is shifted by ∼1.5 M {sub ☉} toward lower masses, compared to the currently observed one.

  3. Black holes

    CERN Document Server

    Chrúsciel, P T

    2002-01-01

    This paper is concerned with several not-quantum aspects of black holes, with emphasis on theoretical and mathematical issues related to numerical modeling of black hole space-times. Part of the material has a review character, but some new results or proposals are also presented. We review the experimental evidence for existence of black holes. We propose a definition of black hole region for any theory governed by a symmetric hyperbolic system of equations. Our definition reproduces the usual one for gravity, and leads to the one associated with the Unruh metric in the case of Euler equations. We review the global conditions which have been used in the Scri-based definition of a black hole and point out the deficiencies of the Scri approach. Various results on the structure of horizons and apparent horizons are presented, and a new proof of semi-convexity of horizons based on a variational principle is given. Recent results on the classification of stationary singularity-free vacuum solutions are reviewed. ...

  4. Mergers of Black Hole -- Neutron Star binaries. I. Methods and First Results

    CERN Document Server

    Rantsiou, E; Laguna, P; Rasio, F; Rantsiou, Emmanouela; Kobayashi, Shiho; Laguna, Pablo; Rasio, Frederic

    2007-01-01

    We use a 3-D relativistic SPH (Smoothed Particle Hydrodynamics) code to study mergers of black hole -- neutron star (BH--NS) binary systems with low mass ratios, adopting $M_{NS}/M_{BH} \\simeq 0.1$ as a representative case. The outcome of such mergers depends sensitively on both the magnitude of the BH spin and its obliquity (i.e., the inclination of the binary orbit with respect to the equatorial plane of the BH). In particular, only systems with sufficiently high BH spin parameter $a$ and sufficiently low orbital inclinations allow any NS matter to escape or to form a long-lived disk outside the BH horizon after disruption. Mergers of binaries with orbital inclinations above $\\sim60^o$ lead to complete prompt accretion of the entire NS by the BH, even for the case of an extreme Kerr BH. We find that the formation of a significant disk or torus of NS material around the BH always requires a near-maximal BH spin and a low initial inclination of the NS orbit just prior to merger.

  5. NGC300 X-1 and IC10 X-1: a new breed of black hole binary?

    CERN Document Server

    Barnard, R; Kolb, U C

    2008-01-01

    [ABRIDGED] IC10 X-1 has recently been confirmed as a black hole (BH) + Wolf-Rayet (WR) X-ray binary, and NGC300 X-1 is thought to be. IC10 X-1 and NGC300 X-1 have similar X-ray properties, with luminosities ~10^38 erg/s, and orbital periods ~30 hr. We investigate similarities between these two, as well as differences between them and the known Galactic BH binary systems. We have examined XMM-Newton observations of NGC300 X-1 and IC10 X-1. We extracted lightcurves and spectra; power density spectra (PDS) were constructed from the lightcurves, and the X-ray emission spectra were modeled. Each source exhibits PDS that are characteristic of disc-accreting X-ray binaries (XBs) in the high state. In this state, Galactic XBs with known BH primaries have soft, thermal emission; however the emission spectra of our targets are predominantly non-thermal. Furthermore, the Observation 1 spectrum of NGC300 X-1 is strikingly similar to that of IC10 X-1. The remarkable similarity between the behaviour of NGC300 X-1 in Observ...

  6. Strong gravitational wave background from Population III binary black holes consistent with cosmic reionization

    CERN Document Server

    Inayoshi, Kohei; Visbal, Eli; Haiman, Zoltan

    2016-01-01

    The recent discovery of the gravitational wave source GW150914 has revealed a coalescing binary black hole (BBH) with masses of $\\sim 30~\\odot$. A possible origin of such a massive binary is Population III (PopIII) stars. PopIII stars are efficient producers of BBHs and of a gravitational wave background (GWB) in the $10-100$ Hz band, and also of ionizing radiation in the early Universe. We show that PopIII stars that are consistent with the recent Planck measurement of a low electron scattering optical depth $\\tau_{\\rm e}=0.066\\pm0.016$ could still produce a GWB dominating other binary populations. Moreover, the spectral index of the background from PopIII BBHs becomes flatter at $f\\gtrsim 20$ Hz than the value ${\\rm d}\\ln \\Omega_{\\rm gw}/{\\rm d}\\ln f\\approx 2/3$ generically produced by lower-redshift and less-massive BBHs. A detection of this unique flattening by the future O5 LIGO/Virgo would be a smoking gun of a high-chirp mass, high-redshift BBH population, as expected from PopIII stars. It would also c...

  7. Gravitational waves from black hole-neutron star binaries I: Classification of waveforms

    CERN Document Server

    Shibata, Masaru; Yamamoto, Tetsuro; Taniguchi, Keisuke

    2009-01-01

    Using our new numerical-relativity code SACRA, long-term simulations for inspiral and merger of black hole (BH)-neutron star (NS) binaries are performed, focusing particularly on gravitational waveforms. As the initial conditions, BH-NS binaries in a quasiequilibrium state are prepared in a modified version of the moving-puncture approach. The BH is modeled by a nonspinning moving puncture and for the NS, a polytropic equation of state with $\\Gamma=2$ and the irrotational velocity field are employed. The mass ratio of the BH to the NS, $Q=M_{\\rm BH}/M_{\\rm NS}$, is chosen in the range between 1.5 and 5. The compactness of the NS, defined by ${\\cal C}=GM_{\\rm NS}/c^2R_{\\rm NS}$, is chosen to be between 0.145 and 0.178. For a large value of $Q$ for which the NS is not tidally disrupted and is simply swallowed by the BH, gravitational waves are characterized by inspiral, merger, and ringdown waveforms. In this case, the waveforms are qualitatively the same as that from BH-BH binaries. For a sufficiently small va...

  8. Determining Reliability of Existing Gravitational Waveforms in Parameter Estimation for Binary Black Holes

    Science.gov (United States)

    Bustos, Cesar; Sandeen, Ben; Chennakesavalu, Shriram; Littenberg, Tyson; Farr, Ben; Kalogera, Vassiliki

    2016-01-01

    Gravitational Waves (GWs) were predicted by Einstein's Theory of General Relativity as ripples in space-time that propagate outward from a source. Strong GW sources consist of compact binary systems such as Binary Neutron Stars (BNS) or Binary Black Holes (BBHs) that experience orbital shrinkage (inspiral) and eventual merger. Indirect evidence for the existence of GWs has been obtained through radio pulsar studies in BNS systems. A study of BBHs and other compact objects has limitations in the electromagnetic spectrum, therefore direct detections of GWs will open a new window into their nature. The effort targeting direct GWs detection is anchored on the development of a detector known as Advanced LIGO (Laser Interferometer Gravitational Wave Observation). Although detecting GW sources represents an anticipated breakthrough in physics, making GW astrophysics a reality critically relies on our ability to determine and measure the physical parameters associated with GW sources. We use Markov Chain Monte Carlo (MCMC) simulations on high-performance computing clusters for parameter estimation on high dimensional spaces (GW sources - 15 parameters). The quality of GW parameter estimation greatly depends on having the best possible knowledge of the expected waveform. Unfortunately, BBH GW production is very complex and our best waveforms are not valid across the full parameter space. With large-scale simulations we examine quantitatively the limitations of these waveforms in terms of extracting the astrophysical properties of BBH GW sources. We find that current waveforms are inadequate for BBH of unequal masses and demonstrate that improved waveforms are critically needed.

  9. Constraining stellar binary black hole formation scenarios with eLISA eccentricity measurements

    CERN Document Server

    Nishizawa, Atsushi; Berti, Emanuele; Klein, Antoine

    2016-01-01

    A space-based interferometer such as eLISA could observe few to few thousands progenitors of black hole binaries (BHBs) similar to those recently detected by Advanced LIGO. Gravitational radiation circularizes the orbit during inspiral, but some BHBs retain a measurable eccentricity at the low frequencies where eLISA is most sensitive. The eccentricity of a BHB carries precious information about its formation channel: BHBs formed in the field, in globular clusters, or close to a massive black hole (MBH) have distinct eccentricity distributions in the eLISA band. We generate mock eLISA observations, folding in measurement errors, and using Bayesian model selection we study whether eLISA measurements can identify the BHB formation channel. We find that a handful of observations would suffice to tell whether BHBs were formed in the gravitational field of a MBH. Conversely, several tens of observations are needed to tell apart field formation from globular cluster formation. A five-year eLISA mission with the lon...

  10. New Evidence for a Black Hole in the Compact Binary Cygnus X-3

    CERN Document Server

    Shrader, Chris; Shaposhnikov, Nikolai

    2010-01-01

    The bright and highly variable X-ray and radio source known as Cygnus X-3 was among the first X-ray sources discovered, yet it remains in many ways an enigma. Its known to consist of a massive, Wolf-Rayet primary in an extremely tight orbit with a compact object. Yet one of the most basic of parameters - the mass of the compact object - is not known. Nor is it even clear whether its is a neutron star or a black hole. In this Paper we present our analysis of the broad-band high-energy continua covering a substantial range in luminosity and spectral morphology. We apply these results to a recently identified scaling relationship which has been demonstrated to provide reliable estimates of the compact object mass in a number of accretion powered binaries. This analysis leads us to conclude that the compact object in Cygnus X-3 has a mass greater than $4.2M_\\odot$ thus clearly indicative of a black hole and as such resolving a long-standing issue. The full range of uncertainty in our analysis and from using a ran...

  11. A magnetic model for low/hard state of black hole binaries

    Science.gov (United States)

    Ye, Yong-Chun; Wang, Ding-Xiong; Huang, Chang-Yin; Cao, Xiao-Feng

    2016-03-01

    A magnetic model for the low/hard state (LHS) of two black hole X-ray binaries (BHXBs), H1743-322 and GX 339-4, is proposed based on transport of the magnetic field from a companion into an accretion disk around a black hole (BH). This model consists of a truncated thin disk with an inner advection-dominated accretion flow (ADAF). The spectral profiles of the sources are fitted in agreement with the data observed at four different dates corresponding to the rising phase of the LHS. In addition, the association of the LHS with a quasi-steady jet is modeled based on transport of magnetic field, where the Blandford-Znajek (BZ) and Blandford-Payne (BP) processes are invoked to drive the jets from BH and inner ADAF. It turns out that the steep radio/X-ray correlations observed in H1743-322 and GX 339-4 can be interpreted based on our model.

  12. Sky Localization of Complete Inspiral-Merger-Ringdown Signals for Nonspinning Black Hole Binaries with LISA

    Science.gov (United States)

    McWilliams, Sean T.; Lang, Ryan N.; Baker, John G.; Thorpe, James Ira

    2011-01-01

    We investigate the capability of LISA to measure the sky position of equal-mass, nonspinning black hole binaries, including for the first time the entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the complete three-channel LISA response. For an ensemble of systems near the peak of LISA's sensitivity band, with total rest mass of 2 x l0(exp 6) Stellar Mass at a redshift of z = 1 with random orientations and sky positions, we find median sky localization errors of approximately approx. 3 arcminutes. This is comparable to the field of view of powerful electromagnetic telescopes, such as the James Webb Space Telescope, that could be used to search for electromagnetic signals associated with merging black holes. We investigate the way in which parameter errors decrease with measurement time, focusing specifically on the additional information provided during the merger-ringdown segment of the signal. We find that this information improves all parameter estimates directly, rather than through diminishing correlations with any subset of well-determined parameters.

  13. Radiative Spectra from Disk Corona and Inner Hot Flow in Black Hole X-ray Binaries

    CERN Document Server

    Kawabata, Ryoji

    2010-01-01

    To understand the origin of hard X-ray emissions from black hole X-ray binaries during their low/hard states, we calculate the X-ray spectra of black-hole accretion flow for the following three configurations of hot and cool media: (a) an inner hot flow and a cool outer disk (inner hot flow model), (b) a cool disk sandwiched by disk coronae (disk corona model), and (c) the combination of those two (hybrid model). The basic features we require for successful models are (i) significant hard X-ray emission whose luminosity exceeds that of soft X-rays, (ii) high hard X-ray luminosities in the range of (0.4 - 30) times 10^{37} erg s^{-1}, and (iii) the existence of two power-law components in the hard X-ray band with the photon indices of Gamma_s ~ 2 > Gamma_h, where Gamma_s and Gamma_h are the photon indices of the softer (10 keV) power-law components, respectively. Contribution by non-thermal electrons nor time-dependent evolution are not considered. We find that Models (a) and (b) can be ruled out, since the sp...

  14. Parameter estimation for binary black holes with networks of third generation gravitational-wave detectors

    CERN Document Server

    Vitale, Salvatore

    2016-01-01

    The two binary black-hole (BBH) coalescences detected by LIGO, GW150914 and GW151226, were relatively nearby sources, with a redshift of ~0.1. As the sensitivity of Advanced LIGO and Virgo increases in the next few years, they will eventually detect heavy BBHs up to redshifts of ~1. However, these are still relatively small distances compared with the size of the Universe, or with those encountered in most areas of astrophysics. In order to study BBH during the epoch of reionization, or black holes born from population III stars, more sensitive instruments are needed. Third-generation gravitational-wave detectors, such as the Einstein Telescope or the Cosmic Explorer are already in an advanced R&D stage. These detectors will be roughly a factor of 10 more sensitive than the current generation, and be able to detect BBH mergers beyond a redshift of 20. In this paper we quantify the precision with which these new facilities will be able to estimate the parameters of stellar-mass, heavy, and intermediate-mas...

  15. Sky localization of complete inspiral-merger-ringdown signals for nonspinning massive black hole binaries

    CERN Document Server

    McWilliams, Sean T; Baker, John G; Thorpe, James Ira

    2011-01-01

    We investigate the capability of LISA to measure the sky position of equal-mass, nonspinning black hole binaries, combining for the first time the entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the complete three-channel LISA response. We consider an ensemble of systems near the peak of LISA's sensitivity band, with total rest mass of 2\\times10^6 M\\odot, a redshift of z = 1, and randomly chosen orientations and sky positions. We find median sky localization errors of approximately \\sim3 arcminutes. This is comparable to the field of view of powerful electromagnetic telescopes, such as the James Webb Space Telescope, that could be used to search for electromagnetic signals associated with merging massive black holes. We investigate the way in which parameter errors decrease with measurement time, focusing specifically on the additional information provided during the merger-ringdown segment of the signal. We find that this information improves all parameter estimates directly, rathe...

  16. Mergers of Non-spinning Black-hole Binaries: Gravitational Radiation Characteristics

    Science.gov (United States)

    Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an implicit rotating source. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the l = m modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the l = m modes among all mass-ratios. We identify relationships, with a simple interpretation in terms of the implicit rotating source, among the evolution of frequency and amplitude, which hold for the late-time radiation. These detailed relationships provide sufficient information about the late-time radiation to yield a predictive model for the late-time waveforms, an alternative to the common practice of modeling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.

  17. Inspiral, merger and ringdown of unequal mass black hole binaries: a multipolar analysis

    CERN Document Server

    Berti, E; Cardoso, V; González, J A; Hannam, M; Husa, S; Sperhake, U; Berti, Emanuele; Bruegmann, Bernd; Cardoso, Vitor; Gonzalez, Jose A.; Hannam, Mark; Husa, Sascha; Sperhake, Ulrich

    2007-01-01

    We study the inspiral, merger and ringdown of unequal mass black hole binaries by analyzing a catalogue of numerical simulations for seven different values of the mass ratio (from q=M2/M1=1 to q=4). We compare numerical and Post-Newtonian results by projecting the waveforms onto spin-weighted spherical harmonics, characterized by angular indices (l,m). We find that the Post-Newtonian equations predict remarkably well the relation between the wave amplitude and the orbital frequency for each (l,m), and that the convergence of the Post-Newtonian series to the numerical results is non-monotonic. To leading order the total energy emitted in the merger phase scales like eta^2 and the spin of the final black hole scales like eta, where eta=q/(1+q)^2 is the symmetric mass ratio. We study the multipolar distribution of the radiation, finding that odd-l multipoles are suppressed in the equal mass limit. Higher multipoles carry a larger fraction of the total energy as q increases. We introduce and compare three differe...

  18. Implementing a search for gravitational waves from non-precessing, spinning binary black holes

    CERN Document Server

    Capano, Collin; Privitera, Stephen; Buonanno, Alessandra

    2016-01-01

    Searching for gravitational waves (GWs) from binary black holes (BBHs) with LIGO and Virgo involves matched-filtering data against a set of representative signal waveforms --- a template bank --- chosen to cover the full signal space of interest with as few template waveforms as possible. Although the component black holes may have significant angular momenta (spin), previous searches for BBHs have filtered LIGO and Virgo data using only waveforms where both component spins are zero. This leads to a loss of signal-to-noise ratio for signals where this is not the case. Combining the best available template placement techniques and waveform models, we construct a template bank of GW signals from BBHs with component spins $\\chi_{1,2}\\in [-0.99, 0.99]$ aligned with the orbital angular momentum, component masses $m_{1,2}\\in [2, 48]\\,\\mathrm{M}_\\odot$, and total mass $M_\\mathrm{total} \\leq 50\\,\\mathrm{M}_\\odot$. Using effective-one-body waveforms with spin effects, we show that less than $3\\%$ of the maximum signal...

  19. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    DEFF Research Database (Denmark)

    Rana, Vikram; Loh, Alan; Corbel, Stephane;

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3–30...

  20. Prospects of eLISA for detecting Galactic binary black holes similar to GW150914

    Science.gov (United States)

    Seto, Naoki

    2016-07-01

    We discuss the prospects of eLISA for detecting gravitational waves (GWs) from Galactic binary black holes (BBHs) similar to GW150914. For a comoving merger rate that is consistent with current observation, eLISA is likely to identify at least one BBH with a sufficient signal-to-noise ratio. In addition, eLISA has a potential to measure the eccentricity of the BBH as small as e ˜ 0.02, corresponding to the residual value e ˜ 10-6 at 10 Hz. Therefore, eLISA could provide us with a crucial information to understand the formation processes of relatively massive BBHs like GW150914. We also derive a simple scaling relation for the expected number of detectable Galactic BBHs.

  1. Fast radio bursts and their possible "afterglows" as Kerr-Newman black hole binaries

    CERN Document Server

    Liu, Tong; Liu, Mo-Lin; Li, Ang

    2016-01-01

    Fast radio bursts (FRBs) are radio transients lasting only about a few milliseconds. They seem to occur at cosmological distances. We propose that these events can be originated in the collapse of the magnetosphere of Kerr-Newman black holes (KNBHs). We show that the closed orbits of charged particles in the magnetosphere of these objects are unstable. After examining their dependences on the mass, charge, and angular momentum of the particle and the spin of the KNBH, we conclude that the resulting timescale and radiation mechanism fit well with the extant observations of FRBs. Furthermore, we argue that the merger of a KNBH binary is one of the plausible central engines for potential gamma-ray or radio "afterglow" following a certain FRBs, and can also account for gravitational wave (GW) events like GW 150914. Our model leads to predictions that can be tested by combined multi-wavelength electromagnetic and GW observations.

  2. Supplement: The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914

    CERN Document Server

    Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calder'on; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavagli`a, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Del'eglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; D'iaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; K'ef'elian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Kr'olak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; L"uck, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Maga~na-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Porter, E; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; P"urrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosi'nska, D; Rowan, S; R"udiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepa'nczyk, M J; Tacca, M; Talukder, D; Tanner, D B; T'apai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; T"oyr"a, D; Travasso, F; Traylor, G; Trifir`o, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vas'uth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Vicer'e, A; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; zny, A Zadro; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-01-01

    Supplemental information for a Letter reporting the rate of binary black hole (BBH) coalescences inferred from 16 days of coincident Advanced LIGO observations surrounding the transient gravitational wave signal GW150914. In that work we reported various rate estimates whose 90\\% credible intervals fell in the range $2$--$600 \\, \\mathrm{Gpc}^{-3} \\mathrm{yr}^{-1}$. Here we give details of our method and computations, including information about our search pipelines, a derivation of our likelihood function for the analysis, a description of the astrophysical search trigger distribution expected from merging BBHs, details on our computational methods, a description of the effects and our model for calibration uncertainty, and an analytic method of estimating our detector sensitivity that is calibrated to our measurements.

  3. Jets in black-hole and neutron-star X-ray binaries

    Science.gov (United States)

    Kylafis, Nikolaos

    2016-07-01

    Jets have been observed from both neutron-star and black-hole X-ray binaries. There are many similarities between the two and a few differences. I will offer a physical explanation of the formation and destruction of jets from compact objects and I will discuss the similarities and differences in the two types. The basic concept in the physical explanation is the Cosmic Battery, the mechanism that creates the required magnetic field for the jet ejection. The Cosmic Battery operates efficiently in accretion flows consisting of an inner hot flow and an outer thin accretion disk, independently of the nature of the compact object. It is therefore natural to always expect a jet in the right part of a spectral hardness - luminosity diagram and to never expect a jet in the left part. As a consequence, most of the phenomenology of an outburst can be explained with only one parameter, the mass accretion rate.

  4. MOCCA-SURVEY Database I: Coalescing Binary Black Holes Originating From Globular Clusters

    CERN Document Server

    Askar, Abbas; Gondek-Rosińska, Dorota; Giersz, Mirek; Bulik, Tomasz

    2016-01-01

    In this first of a series of papers, we utilize results for around two thousand star cluster models simulated using the MOCCA code for star cluster evolution (Survey Database I) to determine the astrophysical properties and local merger rate densities for coalescing binary black holes (BBHs) originating from globular clusters (GCs). We extracted information for all coalescing BBHs that escape the cluster models and subsequently merge within a Hubble time along with BBHs that are retained in our GC models and merge inside the cluster via gravitational wave (GW) emission. By obtaining results from a substantial number of realistic star cluster models that cover different initial parameters, we have an extremely large statistical sample of BBHs with stellar mass and massive stellar BH ($\\lesssim 100M_{\\odot}$) components that merge within a Hubble time. Using this data, we estimate local merger rate densities for these BBHs originating from GCs to be at least 5.4 ${\\rm Gpc}^{-3}\\,{\\rm yr}^{-1}$

  5. Theoretical Physics Implications of the Binary Black-Hole Merger GW150914

    CERN Document Server

    Yunes, Nicolas; Pretorius, Frans

    2016-01-01

    The gravitational-wave observation GW150914 by Advanced LIGO provides the first opportunity to learn about physics in the extreme gravity of coalescing binary black holes. The LIGO/Virgo collaboration has verified that this observation is consistent with General Relativity, constraining the presence of parametric anomalies in the signal. This paper expands this analysis to a larger class of anomalies, highlighting the inferences that can be drawn on non-standard theoretical physics mechanisms that would affect the signal. We find that GW150914 constrains a plethora of mechanisms associated with the generation and propagation of gravitational waves, including the activation of scalar fields, gravitational leakage into large extra dimensions, the variability of Newton's constant, the speed of gravity, a modified dispersion relation, gravitational Lorentz violation and the strong equivalence principle. Unlike other observations that limit these mechanisms, GW150914 is a direct probe of dynamical strong-field gra...

  6. Prospects of eLISA for Detecting Galactic Binary Black Holes Similar to GW150914

    CERN Document Server

    Seto, Naoki

    2016-01-01

    We discuss the prospects of eLISA for detecting gravitational waves (GWs) from Galactic binary black holes (BBHs) similar to GW150914. For a comoving merger rate that is consistent with current observation, eLISA is likely to identify at least one BBH with a sufficient signal-to-noise ratio. In addition, eLISA has a potential to measure the eccentricity of the BBH as small as $e\\sim 0.05$, corresponding to the residual value $e\\sim 10^{-6}$ at 10Hz. Therefore, eLISA could provide us with a crucial information to understand the formation processes of relatively massive BBHs like GW150914. We also derive a simple scaling relation for the expected number of detectable Galactic BBHs.

  7. Template Banks for Binary black hole searches with Numerical Relativity waveforms

    CERN Document Server

    Kumar, Prayush; Brown, Duncan A; Pfeiffer, Harald P; Cannon, Kipp; Boyle, Michael; Kidder, Lawrence E; Mroue, Abdul H; Scheel, Mark A; Szilagyi, Bela; Zenginoglu, Anil

    2013-01-01

    Gravitational waves (GW) from coalescing stellar-mass black hole binaries (BBH) are expected to be detected by the Advanced Laser Interferometer Gravitational-wave Observatory and Advanced Virgo. Detection searches operate by matched-filtering the detector data using a bank of waveform templates. Traditionally, template banks for BBH are constructed from intermediary analytical waveform models which are calibrated against numerical relativity simulations and which can be aluated for any choice of BBH parameters. This paper explores an alternative to the traditional approach, namely the construction of template banks directly from numerical BBH simulations. Using non-spinning BBH systems as an example, we demonstrate which regions of the mass-parameter plane can be covered with existing numerical BBH waveforms. We estimate the required number and required length of BBH simulations to cover the entire non-spinning BBH parameter plane up to mass-ratio 10, thus illustrating that our approach can be used to guide ...

  8. Inhomogeneous accretion discs and the soft states of black hole X-ray binaries

    CERN Document Server

    Dexter, Jason

    2012-01-01

    Observations of black hole binaries (BHBs) have established a rich phenomenology of X-ray states. The soft states range from the low variability, accretion disc dominated thermal state (TD) to the higher variability, non-thermal steep power law state (SPL). The disc component in all states is typically modeled with standard thin disc accretion theory. However, this theory is inconsistent with optical/UV spectral, variability, and gravitational microlensing observations of active galactic nuclei (AGNs), the supermassive analogs of BHBs. An inhomogeneous disc (ID) model with large (~0.4 dex) temperature fluctuations in each radial annulus can qualitatively explain all of these AGN observations. The inhomogeneity may be a consequence of instabilities in radiation dominated discs, and therefore may be present in BHBs as well. We show that ID models can explain many features of the TD and SPL states of BHBs. The observed relationships between spectral hardness, disc fraction, and rms variability amplitude in BHBs ...

  9. Key Elements of Robustness in Binary Black Hole Evolutions using Spectral Methods

    CERN Document Server

    Szilagyi, Bela

    2014-01-01

    As a network of advanced-era gravitational wave detectors is nearing its design sensitivity, efficient and accurate waveform modeling becomes more and more relevant. Understanding of the nature of the signal being sought can have an order unity effect on the event rates seen in these instruments. The paper provides a description of key elements of the Spectral Einstein Code ({\\tt SpEC}), with details of our spectral adaptive mesh refinement (AMR) algorithm that has been optimized for binary black hole (BBH) evolutions. We expect that the gravitational waveform catalog produced by our code will have a central importance in both the detection and parameter estimation of gravitational waves in these instruments.

  10. Perfecting the Frankenstein Approach: Improved asymptotically matched initial data for non-spinning black hole binaries

    Science.gov (United States)

    Yunes, Nicolas; Tichy, Wolfgang

    2006-04-01

    The accuracy of gravitational wave templates produced by numerical simulations is partially determined by the initial data chosen. A promising method to construct accurate data employs asymptotic matching to construct an approximate global 4-metric. In this talk, we will apply this method to a binary system of non-spinning black holes and discuss improvements. A global metric can be constructed by asymptotically matching two tidally perturbed Schwarzschild metrics in isotropic coordinates valid near each hole to an ADMTT post-Newtonian metric valid far from them. As a result, adjacent metrics agree in the matching region up to uncontrolled remainders in the approximations. We build a smooth global 4-metric with transition functions, carefully constructed to avoid introducing errors larger than those in the approximations. The main improvement arises by using metrics in similar coordinates before performing the matching. This similarity leads to adjacent metrics that are similar even near the horizons, thus allowing for a smoother transition and constraint violations. We also construct a map that takes this metric to Kerr-Schild coordinates near each hole.

  11. Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226

    Science.gov (United States)

    Yunes, Nicolás; Yagi, Kent; Pretorius, Frans

    2016-10-01

    The gravitational wave observations GW150914 and GW151226 by Advanced LIGO provide the first opportunity to learn about physics in the extreme gravity environment of coalescing binary black holes. The LIGO Scientific Collaboration and the Virgo Collaboration have verified that this observation is consistent with Einstein's theory of general relativity, constraining the presence of certain parametric anomalies in the signal. This paper expands their analysis to a larger class of anomalies, highlighting the inferences that can be drawn on nonstandard theoretical physics mechanisms that could otherwise have affected the observed signals. We find that these gravitational wave events constrain a plethora of mechanisms associated with the generation and propagation of gravitational waves, including the activation of scalar fields, gravitational leakage into large extra dimensions, the variability of Newton's constant, the speed of gravity, a modified dispersion relation, gravitational Lorentz violation and the strong equivalence principle. Though other observations limit many of these mechanisms already, GW150914 and GW151226 are unique in that they are direct probes of dynamical strong-field gravity and of gravitational wave propagation. We also show that GW150914 constrains inferred properties of exotic compact object alternatives to Kerr black holes. We argue, however, that the true potential for GW150914 to both rule out exotic objects and constrain physics beyond general relativity is severely limited by the lack of understanding of the coalescence regime in almost all relevant modified gravity theories. This event thus significantly raises the bar that these theories have to pass, both in terms of having a sound theoretical underpinning and reaching the minimal level of being able to solve the equations of motion for binary merger events. We conclude with a discussion of the additional inferences that can be drawn if the lower-confidence observation of an

  12. Brownian motion of massive black hole binaries and the final parsec problem

    Science.gov (United States)

    Bortolas, E.; Gualandris, A.; Dotti, M.; Spera, M.; Mapelli, M.

    2016-09-01

    Massive black hole binaries (BHBs) are expected to be one of the most powerful sources of gravitational waves in the frequency range of the pulsar timing array and of forthcoming space-borne detectors. They are believed to form in the final stages of galaxy mergers, and then harden by slingshot ejections of passing stars. However, evolution via the slingshot mechanism may be ineffective if the reservoir of interacting stars is not readily replenished, and the binary shrinking may come to a halt at roughly a parsec separation. Recent simulations suggest that the departure from spherical symmetry, naturally produced in merger remnants, leads to efficient loss cone refilling, preventing the binary from stalling. However, current N-body simulations able to accurately follow the evolution of BHBs are limited to very modest particle numbers. Brownian motion may artificially enhance the loss cone refilling rate in low-N simulations, where the binary encounters a larger population of stars due its random motion. Here we study the significance of Brownian motion of BHBs in merger remnants in the context of the final parsec problem. We simulate mergers with various particle numbers (from 8k to 1M) and with several density profiles. Moreover, we compare simulations where the BHB is fixed at the centre of the merger remnant with simulations where the BHB is free to random walk. We find that Brownian motion does not significantly affect the evolution of BHBs in simulations with particle numbers in excess of one million, and that the hardening measured in merger simulations is due to collisionless loss cone refilling.

  13. Big Game Hunting in the Andromeda Galaxy: identifiying and weighing black holes in low mass X-ray Binaries

    Science.gov (United States)

    Barnard, R.

    2004-07-01

    We have devised a new technique for identifying stellar mass black holes in low mass X-ray binaries, and have applied it to XMM-Newton observations of two X-ray sources in M31. In particular we search for low accretion rate power density spectra; these are very similar for all LMXB, whether the primary is a black hole or a neutron star. Galactic neutron star LMXB exhibit these distinctive PDS at very low luminosities ( ˜ 1036 erg s-1) while black hole LMXB can exhibit them at luminosities > 1038 erg s-1! Following the work of van der Klis (1994), we assume a maximum accretion rate (as a fraction of the Eddington limit) for low accretion rate PDS that is constant for all LMXB, and obtain an empirical value of ˜ 10% Eddington. We have so far discovered two candidate black hole binaries in M31, exhibiting low accretion rate PDS at up to 3×1038 and 5×1037 erg s-1. If we assume that they are at 5×1037 erg s-1 is likely to have a black hole primary.

  14. On geometry of deformed black holes: I. Majumdar-Papapetrou binary

    CERN Document Server

    Semerák, O

    2016-01-01

    Although black holes are eminent manifestations of very strong gravity, the geometry of space-time around and even inside them can be significantly affected by additional bodies present in their surroundings. We study such an influence within static and axially symmetric (electro-)vacuum space-times described by exact solutions of Einstein's equations, considering astrophysically motivated configurations (such as black holes surrounded by rings) as well as those of pure academic interest (such as specifically "tuned" systems of multiple black holes). The geometry is represented by the simplest invariants determined by the metric (the lapse function) and its gradient (gravitational acceleration), with special emphasis given to curvature (the Kretschmann and Ricci-square scalars). These quantities are analyzed and their level surfaces plotted both above and below the black-hole horizons, in particular near the central singularities. Estimating that the black hole could be most strongly affected by the other bla...

  15. A Radio-Selected Black Hole X-ray Binary Candidate in the Milky Way Globular Cluster M62

    CERN Document Server

    Chomiuk, Laura; Maccarone, Thomas J; Miller-Jones, James C A; Heinke, Craig; Noyola, Eva; Seth, Anil C; Ransom, Scott

    2013-01-01

    We report the discovery of a candidate stellar-mass black hole in the Milky Way globular cluster M62. We detected the black hole candidate, which we term M62-VLA1, in the core of the cluster using deep radio continuum imaging from the Karl G. Jansky Very Large Array. M62-VLA1 is a faint source, with a flux density of 18.7 +/- 1.9 microJy at 6.2 GHz and a flat radio spectrum (alpha=-0.24 +/- 0.42, for S_nu = nu^alpha). M62 is the second Milky Way cluster with a candidate stellar-mass black hole; unlike the two candidate black holes previously found in the cluster M22, M62-VLA1 is associated with a Chandra X-ray source, supporting its identification as a black hole X-ray binary. Measurements of its radio and X-ray luminosity, while not simultaneous, place M62-VLA1 squarely on the well-established radio--X-ray correlation for stellar-mass black holes. In archival Hubble Space Telescope imaging, M62-VLA1 is coincident with a star near the lower red giant branch. This possible optical counterpart shows a blue exce...

  16. Gravitational wave quasinormal mode from Population III massive black hole binaries in various models of population synthesis

    CERN Document Server

    Kinugawa, Tomoya; Nakamura, Takashi

    2016-01-01

    Focusing on the remnant black holes after merging binary black holes, we show that ringdown gravitational waves of Population III binary black holes mergers can be detected with the rate of $5.9-500~{\\rm events~yr^{-1}}~({\\rm SFR_p}/ (10^{-2.5}~M_\\odot~{\\rm yr^{-1}~Mpc^{-3}})) \\cdot ({\\rm [f_b/(1+f_b)]/0.33})$ for various parameters and functions. This rate is estimated for the events with SNR$>8$ for the second generation gravitational wave detectors such as KAGRA. Here, ${\\rm SFR_p}$ and ${\\rm f_b}$ are the peak value of the Population III star formation rate and the fraction of binaries, respectively. When we consider only the events with SNR$>35$, the event rate becomes $0.046-4.21~{\\rm events~yr^{-1}}~({\\rm SFR_p}/ (10^{-2.5}~M_\\odot~{\\rm yr^{-1}~Mpc^{-3}})) \\cdot ({\\rm [f_b/(1+f_b)]/0.33})$. This suggest that for remnant black hole's spin $q_f>0.95$ we have the event rate with SNR$>35$ less than $0.037~{\\rm events~yr^{-1}}~({\\rm SFR_p}/ (10^{-2.5}~M_\\odot~{\\rm yr^{-1}~Mpc^{-3}})) \\cdot ({\\rm [f_b/(1+f_b...

  17. Anomalous Low States and Long Term Variability in the Black Hole Binary LMC X-3

    CERN Document Server

    Smale, Alan P

    2012-01-01

    Rossi X-ray Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration (~3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of ~hours-weeks, and the X-ray spectrum implies an upper limit of 1.2x10^35 erg s^-1. Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the ~188 day duration. These episodes share some characteristics with the "anomalous low states" in the neutron star binary Her X-1. The average period and amplitude of the variability of LMC X-3 have different values between these episodes. We char...

  18. Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence

    CERN Document Server

    Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calder'on; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavagli`a, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Costa, C F Da Silva; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Del'eglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; D'iaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J -D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; Gonz'alez, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jim'enez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; K'ef'elian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y -M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Kr'olak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; L"uck, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Zertuche, L Magaña; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; M'arka, S; M'arka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; P"urrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosi'nska, D; Rowan, S; R"udiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Sch"onbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepa'nczyk, M J; Tacca, M; Talukder, D; Tanner, D B; T'apai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; T"oyr"a, D; Travasso, F; Traylor, G; Trifir`o, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vas'uth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Vicer'e, A; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; zny, A Zadro; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Campanelli, M; Chu, T; Clark, M; Fauchon-Jones, E; Fong, H; Hannam, M; Healy, J; Hemberger, D; Hinder, I; Husa, S; Kalaghati, C; Khan, S; Kidder, L E; Kinsey, M; Laguna, P; London, L T; Lousto, C O; Lovelace, G; Ossokine, S; Pannarale, F; Pfeiffer, H P; Scheel, M; Shoemaker, D M; Szilagyi, B; Teukolsky, S; Vinuales, A Vano; Zlochower, Y

    2016-01-01

    We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, accounting for all the spin-weighted quadrupolar modes, and separately accounting for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported in LVC_PE[1] (at 90% confidence), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Followup simulations performed using previously-estimated binary parameters most resemble the data. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz \\in [64 - 82M_\\odot], mass ratio q = m2/m1 \\in [0.6,1], and effective aligned spin \\chi_eff \\in [-0.3, 0.2], where \\chi_{eff} = (S1/m1 + S2/m2) \\cdot\\hat{L} /M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulation...

  19. Measuring intermediate mass black hole binaries with advanced gravitational wave detectors

    CERN Document Server

    Veitch, John; Mandel, Ilya

    2015-01-01

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger and ringdown signals of aligned-spin effective-one-body waveforms (SEOBNR) to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50 and 500 $M_\\odot$ and mass ratios between 0.1 and 1. We find that (i) at total masses below ~200 $M_\\odot$, where the signal-to-noise-ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; (iv) sp...

  20. Comparisons of eccentric binary black hole simulations with post-Newtonian models

    CERN Document Server

    Hinder, Ian; Laguna, Pablo; Shoemaker, Deirdre

    2008-01-01

    We present the first comparison between numerical relativity (NR) simulations of an eccentric binary black hole system with corresponding post-Newtonian (PN) results. We evolve an equal-mass, non-spinning configuration with an initial eccentricity e = 0.1 for 21 gravitational wave cycles before merger, and find agreement in the gravitational wave phase with an adiabatic eccentric PN model with 2 PN radiation reaction within 0.1 radians for 8 cycles. The NR and PN phase difference grows to 0.8 radians by 5 cycles before merger. We find that these results can be obtained by expanding the eccentric PN expressions in terms of the frequency-related variable x = (omega M)^{2/3} with M the total mass of the binary. When using instead the mean motion n = 2 pi/P, where P is the orbital period, the comparison leads to significant disagreements with NR. We also introduce a new method for matching NR and PN waveforms, based on extrapolating parameters determined from least squares fitting as t -> -infinity.

  1. VLBI observations of the shortest orbital period black hole binary, MAXI J1659-152

    Science.gov (United States)

    Paragi, Z.; van der Horst, A. J.; Belloni, T.; Miller-Jones, J. C. A.; Linford, J.; Taylor, G.; Yang, J.; Garrett, M. A.; Granot, J.; Kouveliotou, C.; Kuulkers, E.; Wijers, R. A. M. J.

    2013-06-01

    The X-ray transient MAXI J1659-152 was discovered by Swift/Burst Alert Telescope and it was initially identified as a gamma-ray burst. Soon its Galactic origin and binary nature were established. There exists a wealth of multiwavelength monitoring data for this source, providing a great coverage of the full X-ray transition in this candidate black hole binary system. We obtained two epochs of European very long baseline interferometry (VLBI) Network (EVN) electronic-VLBI and four epochs of Very Long Baseline Array data of MAXI J1659-152 which show evidence for outflow in the early phases. The overall source properties (polarization, milliarcsecond-scale radio structure, flat radio spectrum) are described well with the presence of a compact jet in the system through the transition from the hard-intermediate to the soft X-ray spectral state. The apparent dependence of source size and the radio core position on the observed flux density (luminosity-dependent core shift) supports this interpretation as well. We see no evidence for major discrete ejecta during the outburst. For the source proper motion we derive 2σ upper limits of 115 μas d-1 in right ascension, and 37 μas d-1 in declination, over a time baseline of 12 d. These correspond to velocities of 1400 and 440 km s-1, respectively, assuming a source distance of ˜7 kpc.

  2. VLBI observations of the shortest orbital period black hole binary, MAXI J1659-152

    CERN Document Server

    Paragi, Z; Belloni, T; Miller-Jones, J C A; Linford, J; Taylor, G; Yang, J; Garrett, M A; Granot, J; Kouveliotou, C; Kuulkers, E; Wijers, R A M J

    2013-01-01

    The X-ray transient MAXI J1659-152 was discovered by Swift/BAT and it was initially identified as a GRB. Soon its Galactic origin and binary nature were established. There exists a wealth of multi-wavelength monitoring data for this source, providing a great coverage of the full X-ray transition in this candidate black hole binary system. We obtained two epochs of European VLBI Network (EVN) electronic-VLBI (e-VLBI) and four epochs of Very Long Baseline Array (VLBA) data of MAXI J1659-152 which show evidence for outflow in the early phases. The overall source properties (polarization, milliarcsecond-scale radio structure, flat radio spectrum) are described well with the presence of a compact jet in the system through the transition from the hard-intermediate to the soft X-ray spectral state. The apparent dependence of source size and the radio core position on the observed flux density (luminosity dependent core shift) support this interpretation as well. We see no evidence for major discrete ejecta during th...

  3. Recurring flares from supermassive black hole binaries: implications for tidal disruption candidates and OJ 287

    CERN Document Server

    Tanaka, Takamitsu L

    2013-01-01

    I discuss the possibility that accreting, supermassive black hole (SMBH) binaries with sub-parsec separations produce luminous, periodically recurring outbursts that interrupt periods of relative quiescence. This hypothesis is motivated by two characteristics found in simulations of binaries embedded in prograde accretion discs: (i) the formation of a central, low-density cavity, and (ii) the leakage of circumbinary gas into this cavity, occurring once per orbit, via discrete streams on nearly radial trajectories. The first feature will diminish the emergent optical/UV flux of the system relative to active galactic nuclei (AGN) powered by single SMBHs, while the second is likely to trigger periodic fluctuations in the emergent flux. I propose a simple toy model in which a leaked stream crosses its own orbit and shocks, converting its bulk kinetic energy to heat. The result is a hot, optically thick flow that is quickly accreted and produces a flare with an AGN-like spectrum that peaks in the UV and ranges fro...

  4. Electromagnetic counterparts of supermassive black hole binaries resolved by pulsar timing arrays

    CERN Document Server

    Tanaka, Takamitsu; Menou, Kristen

    2011-01-01

    Pulsar timing arrays (PTAs) are expected to detect gravitational waves (GWs) from individual low-redshift (z10^9 Msun) black hole (SMBH) binaries with orbital periods of approx. 0.1 - 10 yrs. Identifying the electromagnetic (EM) counterparts of these sources would provide confirmation of putative direct detections of GWs, present a rare opportunity to study the environments of compact SMBH binaries, and could enable the use of these sources as standard sirens for cosmology. Here we consider the feasibility of such an EM identification. We show that because the host galaxies of resolved PTA sources are expected to be exceptionally massive and rare, it should be possible to find unique hosts of resolved sources out to redshift z=0.2. At higher redshifts, the PTA error boxes are larger, and may contain as many as 100 massive-galaxy interlopers. The number of candidates, however, remains tractable for follow-up searches in upcoming wide-field EM surveys. We develop a toy model to characterize the dynamics and the...

  5. Preparations for detecting and characterizing gravitational-wave signals from binary black hole coalescences

    CERN Document Server

    Dayanga, Thilina

    2013-01-01

    We evaluate how well EOBNR waveforms, obtained from the effective one-body formalism, perform in detecting gravitational wave (GW) signals from binary black hole (BBH) coalescences modelled by numerical relativity (NR) groups participating in the second edition of the numerical injection analysis (NINJA-2). In this study, NINJA-2 NR-based signals that are available in the public domain were injected in simulated Gaussian, stationary data prepared for three LIGO-Virgo detectors with early Advanced LIGO sensitivities. Here we studied only non-spinning BBH signals. A total of 2000 such signals from 20 NR-based signal families were injected in a two-month long data set. The all-sky, all-time compact binary coalescence (CBC) search pipeline was run along with an added coherent stage to search for those signals. We find that the EOBNR templates are only slightly less efficient (by a few percent) in detecting non-spinning NR-based signals than in detecting EOBNR injections. On the other hand, the coherent stage impr...

  6. Gravitational-wave observations of binary black holes: Effect of non-quadrupole modes

    CERN Document Server

    Varma, Vijay; Husa, Sascha; Bustillo, Juan Calderon; Hannam, Mark; Puerrer, Michael

    2014-01-01

    We study the effect of non-quadrupolar modes in the detection and parameter estimation of gravitational waves (GWs) from non-spinning black-hole binaries. We evaluate the loss of signal-to-noise ratio and the systematic errors in the estimated parameters when one uses a quadrupole-mode template family to detect GW signals with all the relevant modes, for target signals with total masses $20 M_\\odot \\leq M \\leq 250 M_\\odot$ and mass ratios $1 \\leq q \\leq 18$. Target signals are constructed by matching numerical-relativity simulations describing the late inspiral, merger and ringdown of the binary with post-Newtonian/effective-one-body waveforms describing the early inspiral. We find that waveform templates modeling only the quadrupolar modes of the GW signal are sufficient (loss of detection rate $< 10\\%$) for the detection of GWs with mass ratios $q\\leq4$ using advanced GW observatories. Neglecting the effect of non-quadrupole modes will introduce systematic errors in the estimated parameters. The systemat...

  7. The Missing Link: Bayesian Detection and Measurement of Intermediate-Mass Black-Hole Binaries

    CERN Document Server

    Graff, Philip B; Sathyaprakash, B S

    2015-01-01

    We perform Bayesian analysis of gravitational-wave signals from non-spinning, intermediate-mass black-hole binaries (IMBHBs) with observed total mass, $M_{\\mathrm{obs}}$, from $50\\mathrm{M}_{\\odot}$ to $500\\mathrm{M}_{\\odot}$ and mass ratio $1\\mbox{--}4$ using advanced LIGO and Virgo detectors. We employ inspiral-merger-ringdown waveform models based on the effective-one-body formalism and include subleading modes of radiation beyond the leading $(2,2)$ mode. The presence of subleading modes increases signal power for inclined binaries and allows for improved accuracy and precision in measurements of the masses as well as breaking of extrinsic parameter degeneracies. For low total masses, $M_{\\mathrm{obs}} \\lesssim 50 \\mathrm{M}_{\\odot}$, the observed chirp mass $\\mathcal{M}_{\\rm obs} = M_{\\mathrm{obs}}\\,\\eta^{3/5}$ ($\\eta$ being the symmetric mass ratio) is better measured. In contrast, as increasing power comes from merger and ringdown, we find that the total mass $M_{\\mathrm{obs}}$ has better relative prec...

  8. Mergers of Supermassive Black Hole Binaries in Gas-rich Environments: Models of Event Rates and Electromagnetic Signatures

    Science.gov (United States)

    Tanaka, Takamitsu

    2011-12-01

    Supermassive black holes permeate the observable Universe, residing in the nuclei of all or nearly all nearby massive galaxies and powering luminous quasars as far as ten billion light years away. These monstrous objects must grow through a combination of gas accretion and mergers of less massive black holes. The direct detection of the mergers by future gravitational-wave detectors will be a momentous scientific achievement, providing tests of general relativity and revealing the cosmic evolution of supermassive black holes. An additional --- and arguably equally rewarding --- challenge is the concomitant observation of merging supermassive black holes with both gravitational and electromagneticwaves. Such synergistic, "multi-messenger" studies can probe the expansion history of the Universe and shed light on the details of accretion astrophysics. This thesis examines the mergers of supermassive black hole binaries and the observable signatures of these events. First, we consider the formation scenarios for the earliest supermassive black holes. This investigation is motivated by the Sloan Digital Sky Survey observation of a quasar that appears to be powered by a supermassive black hole with a mass of billions of solar masses, already in place one billion years after the Big Bang. Second, we develop semianalytic, time-dependent-models for the thermal emission from circumbinary gas disks around merging black holes. Our calculations corroborate the qualitative conclusion of a previous study that for black hole mergers detectable by a space-based gravitational-wave observatory, a gas disk near the merger remnant may exhibit a dramatic brightening of soft X-rays on timescales of several years. Our results suggest that this "afterglow" may become detectable more quickly after the merger than previously estimated. Third, we investigate whether these afterglow episodes could be observed serendipitously by forthcoming wide-field, high-cadence electromagnetic surveys

  9. Ultramassive Black Hole Coalescence

    CERN Document Server

    Khan, Fazeel; Berczik, Peter

    2015-01-01

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gr...

  10. Robust GRMHD Evolutions of Merging Black-Hole Binaries in Magnetized Plasma

    Science.gov (United States)

    Kelly, Bernard; Etienne, Zachariah; Giacomazzo, Bruno; Baker, John

    2016-03-01

    Black-hole binary (BHB) mergers are expected to be powerful sources of gravitational radiation at stellar and galactic scales. A typical astrophysical environment for these mergers will involve magnetized plasmas accreting onto each hole; the strong-field gravitational dynamics of the merger may churn this plasma in ways that produce characteristic electromagnetic radiation visible to high-energy EM detectors on and above the Earth. Here we return to a cutting-edge GRMHD simulation of equal-mass BHBs in a uniform plasma, originally performed with the Whisky code. Our new tool is the recently released IllinoisGRMHD, a compact, highly-optimized ideal GRMHD code that meshes with the Einstein Toolkit. We establish consistency of IllinoisGRMHD results with the older Whisky results, and investigate the robustness of these results to changes in initial configuration of the BHB and the plasma magnetic field, and discuss the interpretation of the ``jet-like'' features seen in the Poynting flux post-merger. Work supported in part by NASA Grant 13-ATP13-0077.

  11. Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity

    CERN Document Server

    Sperhake, U; Cardoso, V; González, J A; Brügmann, B; Ansorg, M

    2007-01-01

    We study the transition from inspiral to plunge in general relativity by computing gravitational waveforms of non-spinning, equal-mass black-hole binaries. We consider two sequences of simulations. The longer (shorter) sequence starts with a quasi-circular inspiral completing about 2.3 (1.5) orbits prior to coalescence of the holes. For each sequence, the binding energy of the system is kept constant and the orbital angular momentum is progressively reduced to zero, producing orbits of increasing eccentricity and eventually a head-on collision. We analyze in detail the radiation of energy and angular momentum in gravitational waves, the contribution of different multipolar components and the final spin of the remnant. We find that the motion transitions from inspiral to plunge when the orbital angular momentum L=L_crit is about 0.8M. For L

  12. Implementing a search for gravitational waves from binary black holes with nonprecessing spin

    Science.gov (United States)

    Capano, Collin; Harry, Ian; Privitera, Stephen; Buonanno, Alessandra

    2016-06-01

    Searching for gravitational waves (GWs) from binary black holes (BBHs) with LIGO and Virgo involves matched-filtering data against a set of representative signal waveforms—a template bank—chosen to cover the full signal space of interest with as few template waveforms as possible. Although the component black holes may have significant angular momenta (spin), previous searches for BBHs have filtered LIGO and Virgo data using only waveforms where both component spins are zero. This leads to a loss of signal-to-noise ratio for signals where this is not the case. Combining the best available template placement techniques and waveform models, we construct a template bank of GW signals from BBHs with component spins χ1 ,2∈[-0.99 ,0.99 ] aligned with the orbital angular momentum, component masses m1 ,2∈[2 ,48 ]M⊙ , and total mass Mtotal≤50 M⊙ . Using effective-one-body waveforms with spin effects, we show that less than 3% of the maximum signal-to-noise ratio (SNR) of these signals is lost due to the discreetness of the bank, using the early Advanced LIGO noise curve. We use simulated Advanced LIGO noise to compare the sensitivity of this bank to a nonspinning bank covering the same parameter space. In doing so, we consider the competing effects between improved SNR and signal-based vetoes and the increase in the rate of false alarms of the aligned-spin bank due to covering a larger parameter space. We find that the aligned-spin bank can be a factor of 1.3-5 more sensitive than a nonspinning bank to BBHs with dimensionless spins >+0.6 and component masses ≳20 M⊙ . Even larger gains are obtained for systems with equally high spins but smaller component masses.

  13. Testing theories for longterm accretion variability in black hole X-ray binaries

    Science.gov (United States)

    Cambier, Hal J.

    Many X-ray sources are now understood to be "black hole X-ray binaries'' in which a stellar remnant black hole either tidally "squeezes'' gas off a companion star, or pulls in some fraction the companion's wind. This gas can drain inward through a dense, thin disk characterized by thermalized radiation, or a sparse and radiatively-inefficient flow, or some combination of the two. Observations at other energies often provide crucial information, but our primary tools to study accretion, especially closest to the black hole, are X-ray spectra and their time evolution. This evolution includes numerous behaviors spanning orders of magnitude in timescale and luminosity, and also hints at spatial structure since draining is generally faster at smaller radii. This includes variability at time-scales of weeks to months which remains difficult to explain despite an abundance of possible variability mechanisms since direct simulations covering the full spatial and temporal range remain impractical. After reviewing general aspects of accretion, I present both more and less familiar forms of longterm variability. Based on these, I argue the problem involves finding a physical process (or combination) that can generate repeatable yet adjustable cycles in luminosity and evolution of low and high energy spectral components, while letting the ionization instability dominate conventional outbursts. Specific models examined include: disks embedded in, and interacting with, hot, sparse flows, and another instability that quenches viscous-draining of the disk at more fundamental level. Testing these theories, alone and in combination, motivates building a very general and simplified numerical model presented here. I find that two-phase flow models still predict excessive recondensation in LMC X-3 among other problems, while the viscosity-quenching instability may account for rapid drops and slow recoveries in disk accretion rate but also likely requires diffusivity orders of magnitude

  14. A quasi-periodic modulation of the iron line centroid energy in the black hole binary H1743-322

    Science.gov (United States)

    Ingram, Adam; van der Klis, Michiel; Middleton, Matthew; Done, Chris; Altamirano, Diego; Heil, Lucy; Uttley, Phil; Axelsson, Magnus

    2016-09-01

    Accreting stellar-mass black holes often show a `Type-C' quasi-periodic oscillation (QPO) in their X-ray flux and an iron emission line in their X-ray spectrum. The iron line is generated through continuum photons reflecting off the accretion disc, and its shape is distorted by relativistic motion of the orbiting plasma and the gravitational pull of the black hole. The physical origin of the QPO has long been debated, but is often attributed to Lense-Thirring precession, a General Relativistic effect causing the inner flow to precess as the spinning black hole twists up the surrounding space-time. This predicts a characteristic rocking of the iron line between red- and blueshift as the receding and approaching sides of the disc are respectively illuminated. Here we report on XMM-Newton and NuSTAR observations of the black hole binary H1743-322 in which the line energy varies systematically over the ˜4 s QPO cycle (3.70σ significance), as predicted. This provides strong evidence that the QPO is produced by Lense-Thirring precession, constituting the first detection of this effect in the strong gravitation regime. There are however elements of our results harder to explain, with one section of data behaving differently than all the others. Our result enables the future application of tomographic techniques to map the inner regions of black hole accretion discs.

  15. ANOMALOUS LOW STATES AND LONG-TERM VARIABILITY IN THE BLACK HOLE BINARY LMC X-3

    International Nuclear Information System (INIS)

    Rossi X-ray Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration (∼3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of ∼hours-weeks, and the X-ray spectrum implies an upper limit of 1.2 × 1035 erg s–1. Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the ∼188 day duration. These episodes share some characteristics with the 'anomalous low states' in the neutron star binary Her X-1. The average period and amplitude of the variability of LMC X-3 have different values between these episodes. We characterize the long-term variability of LMC X-3 before and after the two events using conventional and nonlinear time series analysis methods, and show that, as is the case in Her X-1, the characteristic amplitude of the variability is related to its characteristic timescale. Furthermore, the relation is in the same direction in both systems. This suggests that a similar mechanism gives rise to the long-term variability, which in the case of Her X-1 is reliably modeled with a tilted, warped precessing accretion disk.

  16. Anomalous Low States and Long-term Variability in the Black Hole Binary LMC X-3

    Science.gov (United States)

    Smale, Alan P.; Boyd, Patricia T.

    2012-09-01

    Rossi X-ray Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration (~3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of ~hours-weeks, and the X-ray spectrum implies an upper limit of 1.2 × 1035 erg s-1. Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the ~188 day duration. These episodes share some characteristics with the "anomalous low states" in the neutron star binary Her X-1. The average period and amplitude of the variability of LMC X-3 have different values between these episodes. We characterize the long-term variability of LMC X-3 before and after the two events using conventional and nonlinear time series analysis methods, and show that, as is the case in Her X-1, the characteristic amplitude of the variability is related to its characteristic timescale. Furthermore, the relation is in the same direction in both systems. This suggests that a similar mechanism gives rise to the long-term variability, which in the case of Her X-1 is reliably modeled with a tilted, warped precessing accretion disk.

  17. Anomalous Low States and Long Term Variability in the Black Hole Binary LMC X-3

    Science.gov (United States)

    Smale, Alan P.; Boyd, Patricia T.

    2012-01-01

    Rossi X-my Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration (approx 3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of approx hours-weeks, and the X-ray spectrum implies an upper limit of 1.2 x 10(exp 35) erg/s, Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the approx 188 day duration. These episodes share some characteristics with the "anomalous low states" in the neutron star binary Her X-I. The average period and amplitude of the Variability of LMC X-3 have different values between these episodes. We characterize the long-term variability of LMC X-3 before and after the two events using conventional and nonlinear time series analysis methods, and show that, as is the case in Her X-I, the characteristic amplitude of the variability is related to its characteristic timescale. Furthermore, the relation is in the same direction in both systems. This suggests that a similar mechanism gives rise to the long-term variability, which in the case of Her X-I is reliably modeled with a tilted, warped precessing accretion disk.

  18. Gravitational wave background from Population III binary black holes consistent with cosmic reionization

    Science.gov (United States)

    Inayoshi, Kohei; Kashiyama, Kazumi; Visbal, Eli; Haiman, Zoltán

    2016-09-01

    The recent discovery of the gravitational wave source GW150914 has revealed a coalescing binary black hole (BBH) with masses of ˜30 M⊙. Previous proposals for the origin of such a massive binary include Population III (PopIII) stars. PopIII stars are efficient producers of BBHs and of a gravitational wave background (GWB) in the 10-100 Hz band, and also of ionizing radiation in the early Universe. We quantify the relation between the amplitude of the GWB (Ωgw) and the electron scattering optical depth (τe), produced by PopIII stars, assuming that fesc ≈ 10 per cent of their ionizing radiation escapes into the intergalactic medium. We find that PopIII stars would produce a GWB that is detectable by the future O5 LIGO/Virgo if τe ≳ 0.07, consistent with the recent Planck measurement of τe = 0.055 ± 0.09. Moreover, the spectral index of the background from PopIII BBHs becomes as small as dln Ωgw/dln f ≲ 0.3 at f ≳ 30 Hz, which is significantly flatter than the value ˜2/3 generically produced by lower redshift and less-massive BBHs. A detection of the unique flattening at such low frequencies by the O5 LIGO/Virgo will indicate the existence of a high-chirp mass, high-redshift BBH population, which is consistent with the PopIII origin. A precise characterization of the spectral shape near 30-50 Hz by the Einstein Telescope could also constrain the PopIII initial mass function and star formation rate.

  19. Identifying decaying supermassive black hole binaries from their variable electromagnetic emission

    Energy Technology Data Exchange (ETDEWEB)

    Haiman, Zoltan; Menou, Kristen [Department of Astronomy, Columbia University, New York, NY (United States); Kocsis, Bence [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Lippai, Zoltan; Frei, Zsolt [Institute of Physics, Eoetvoes University, Budapest (Hungary)

    2009-05-07

    Supermassive black hole binaries (SMBHBs) with masses in the mass range approx(10{sup 4}-10{sup 7}) M{sub o-dot}/(1 + z), produced in galaxy mergers, are thought to complete their coalescence due to the emission of gravitational waves (GWs). The anticipated detection of the GWs by the future Laser Interferometric Space Antenna (LISA) will constitute a milestone for fundamental physics and astrophysics. While the GW signatures themselves will provide a treasure trove of information, if the source can be securely identified in electromagnetic (EM) bands, this would open up entirely new scientific opportunities, to probe fundamental physics, astrophysics and cosmology. We discuss several ideas, involving wide-field telescopes, that may be useful in locating electromagnetic counterparts to SMBHBs detected by LISA. In particular, the binary may produce a variable electromagnetic flux, such as a roughly periodic signal due to the orbital motion prior to coalescence, or a prompt transient signal caused by shocks in the circumbinary disc when the SMBHB recoils and 'shakes' the disc. We discuss whether these time-variable EM signatures may be detectable, and how they can help in identifying a unique counterpart within the localization errors provided by LISA. We also discuss a possibility of identifying a population of coalescing SMBHBs statistically, in a deep optical survey for periodically variable sources, before LISA detects the GWs directly. The discovery of such sources would confirm that gas is present in the vicinity and is being perturbed by the SMBHB-serving as a proof of concept for eventually finding actual LISA counterparts.

  20. Chemical Abundances in the Secondary Star of the Black Hole Binary V4641 Sagittarii (SAX J1819.3-2525)

    CERN Document Server

    Sadakane, K; Aoki, W; Arimoto, N; Takada-Hidai, M; Ohnishi, T; Tajitsu, A; Beers, T C; Iwamoto, N; Tominaga, N; Umeda, H; Maeda, K; Nomoto, K; Sadakane, Kozo; Arai, Akira; Aoki, Wako; Arimoto, Nobuo; Takada-Hidai, Masahide; Ohnishi, Takashi; Tajitsu, Akito; Beers, Timothy C.; Iwamoto, Nobuyuki; Tominaga, Nozomu; Umeda, Hideyuki; Maeda, Keiichi; Nomoto, Ken'ichi

    2006-01-01

    We report on detailed spectroscopic studies performed for the secondary star in the black hole binary (micro-quasar) V4641 Sgr in order to examine its surface chemical composition and to see if its surface shows any signature of pollution by ejecta from a supernova explosion. High-resolution spectra of V4641 Sgr observed in the quiescent state in the blue-visual region are compared with those of the two bright well-studied B9 stars (14 Cyg and $\

  1. Galaxies with Supermassive Binary Black Holes: (III) The Roche Lobes and Jiang-Yeh Lobe in a Core System

    CERN Document Server

    Yeh, Li-Chin

    2016-01-01

    Three-dimensional equi-potential surfaces of a galactic system with supermassive binary black holes are discussed herein. The conditions of topological transitions for the important surfaces, i.e. Roche Lobes and Jiang-Yeh Lobe, are studied in this paper. In addition, the mathematical properties of the Jacobi surfaces are investigated analytically. Finally, a numerical procedure for determining the regions of the Roche Lobes and Jiang-Yeh Lobe is suggested.

  2. A possible close supermassive black-hole binary in a quasar with optical periodicity.

    Science.gov (United States)

    Graham, Matthew J; Djorgovski, S G; Stern, Daniel; Glikman, Eilat; Drake, Andrew J; Mahabal, Ashish A; Donalek, Ciro; Larson, Steve; Christensen, Eric

    2015-02-01

    Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic and can be due to a variety of physical mechanisms; it is also well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 ± 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of about 9 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can provide important constraints on models of galaxy formation and evolution. PMID:25561176

  3. Tracing the reverberation lag in the hard state of black hole X-ray binaries

    CERN Document Server

    De Marco, B; Muñoz-Darias, T; Nandra, K

    2015-01-01

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous RXTE observations to obtain broad-band energy coverage of both the disc and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability signal-to-noise ratio (e.g. typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4 in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (~0.05-9 Hz) we observe the hard lags intrinsic to the power law component, already well-known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disc variability. At low-frequencies (long time scales) the disc c...

  4. Revisiting galactic black hole binary GX 339-4 by using 2007 - 2014 Swift XRT observations

    Science.gov (United States)

    Azizi, Febrie Ahmad; Vierdayanti, Kiki; Putra, Mahasena

    2015-09-01

    This work aims to study the X-ray properties of the galactic black hole binary GX 339-4. Focus of the study is on exploration of data from Swift-XRT in exclusively photon-counting mode. We use data from 2007 up to August 2014, which contain about 40 pointing observations with level 1 data. The flux of GX 339-4 varies in a factor of 100 during this period of observations. For the purpose of this work, we also try to develop a system to conduct standard SWIFT XRT data reduction automatically, in order to greatly reduce time when working with data bulk, which produces images, lightcurves as well as spectra. We also develop another system to conduct fitting of bulk spectral data with a two-component model, disk blackbody and power-law. The fitting results show that no data have a reduced chi-squared > 2. The fraction of the disk to total flux and the power-law to total flux range from 0.00389 - 0.994 and 0.00605 - 0.996, respectively. From the analysis of the disk component, we obtain the value of the innermost disk radius that does not show any large scale truncation which is in a good agreement with a previous study that used 2007 - 2011 Swift-XRT data, indicating that the systems we developed work properly.

  5. Impact of Mergers on USA Parameter Estimation for Nonspinning Black Hole Binaries

    Science.gov (United States)

    McWilliams, Sean T.; Thorpe, James Ira; Baker, John G.; Kelly, Bernard J.

    2011-01-01

    We investigate the precision with which the parameters describing the characteristics and location of nonspinning black hole binaries can be measured with the Laser Interferometer Space Antenna (LISA). By using complete waveforms including the inspiral, merger and ringdown portions of the signals, we find that LISA will have far greater precision than previous estimates for nonspinning mergers that ignored the merger and ringdown. Our analysis covers nonspinning waveforms with moderate mass ratios, q > or = 1/10, and total masses 10(exp 5) time observations, the later parts of the signal lead to significant improvements in sky-position precision in the last hours and even the final minutes of observation. For comparable mass systems with total mass M/M_{Sun} = approx. 10(exp 6), we find that the increased precision resulting from including the merger is comparable to the increase in signal-to-noise ratio. For the most precise systems under investigation, half can be localized to within O(10 arcmin), and 18% can be localized to within O(1 arcmin).

  6. The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914

    CERN Document Server

    Abbott, B P; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schillingdag, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torresddag, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-01-01

    A transient gravitational-wave signal was identified in the twin Advanced LIGO detectors on September 14, 2015 at 09:50:45 UTC (GW150914). To assess the implications of this discovery, the detectors remained in operation with unchanged configurations over a period of 39 d around the time of the signal. A search of 16 days of simultaneous two-detector observational data found GW150914 to have a false alarm probability (FAP) of $2 \\times 10^{-7}$. Parameter estimation followup on this trigger identifies its source as a binary black hole (BBH) merger with component masses $(m_1, m_2) = 36^{+5}_{-4}, 29^{+4}_{-4} \\, M_\\odot$ at redshift $z = 0.09^{+0.03}_{-0.04}$. Here we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the universe have the same masses and spins as this event, imposing a false alarm threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible r...

  7. Super-massive binary black holes and emission lines in active galactic nuclei

    CERN Document Server

    Popovic, Luka C

    2011-01-01

    The broad emission spectral lines emitted from AGNs are our main probe of the geometry and physics of the broad line region (BLR) close to the SMBH. There is a group of AGNs that emits very broad and complex line profiles, showing two displaced peaks, one blueshifted and one redshifted from the systemic velocity defined by the narrow lines, or a single such peak. It has been proposed that such line shapes could indicate a supermassive binary black hole (SMB) system. We discuss here how the presence of an SMB will affect the BLRs of AGNs and what the observational consequences might be. We review previous claims of SMBs based on broad line profiles and find that they may have non-SMB explanations as a consequence of a complex BLR structure. Because of these effects it is very hard to put limits on the number of SMBs from broad line profiles. It is still possible, however, that unusual broad line profiles in combination with other observational effects (line ratios, quasi-periodical oscillations, spectropolarim...

  8. NANOGrav Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries in Circular Orbits

    CERN Document Server

    Arzoumanian, Z; Burke-Spolaor, S; Chamberlin, S J; Chatterjee, S; Cordes, J M; Demorest, P B; Deng, X; Dolch, T; Ellis, J A; Ferdman, R D; Finn, L S; Garver-Daniels, N; Jenet, F; Jones, G; Kaspi, V M; Koop, M; Lam, M; Lazio, T J W; Lommen, A N; Lorimer, D R; Luo, J; Lynch, R S; Madison, D R; McLaughlin, M; McWilliams, S T; Nice, D J; Palliyaguru, N; Pennucci, T T; Ransom, S M; Sesana, A; Siemens, X; Stairs, I H; Stinebring, D R; Stovall, K; Swiggum, J; Vallisneri, M; van Haasteren, R; Wang, Y; Zhu, W W

    2014-01-01

    The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project currently observes 43 pulsars using the Green Bank and Arecibo radio telescopes. In this work we use a subset of 17 pulsars timed for a span of roughly five years (2005--2010). We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Within the timing data, we perform a search for continuous gravitational waves from individual supermassive black hole binaries in circular orbits using robust frequentist and Bayesian techniques. We find that there is no evidence for the presence of a detectable continuous gravitational wave; however, we can use these data to place the most constraining upper limits to date on the strength of such gravitational waves. Using the full 17 pulsar dataset we place a 95% upper limit on the sky-averaged strain amplitude of $h_0\\lesssim 3.8\\times 10^{-14}$ at a frequency of 10 nHz. Furthermore, we place 95% ...

  9. Periastron Advance in Spinning Black Hole Binaries: Comparing Effective-One-Body and Numerical Relativity

    CERN Document Server

    Hinderer, Tanja; Mroué, Abdul H; Hemberger, Daniel A; Lovelace, Geoffrey; Pfeiffer, Harald P

    2013-01-01

    We compute the periastron advance using the effective-one-body formalism for binary black holes moving on quasi-circular orbits and having spins collinear with the orbital angular momentum. We compare the predictions with the periastron advance recently computed in accurate numerical-relativity simulations and find remarkable agreement for a wide range of spins and mass ratios. These results do not use any numerical-relativity calibration of the effective-one-body model, and stem from two key ingredients in the effective-one-body Hamiltonian: (i) the mapping of the two-body dynamics of spinning particles onto the dynamics of an effective spinning particle in a (deformed) Kerr spacetime, fully symmetrized with respect to the two-body masses and spins, and (ii) the resummation, in the test-particle limit, of all post-Newtonian (PN) corrections linear in the spin of the particle. In fact, even when only the leading spin PN corrections are included in the effective-one-body spinning Hamiltonian but all the test-p...

  10. Impact of mergers on LISA parameter estimation for nonspinning black hole binaries

    CERN Document Server

    McWilliams, Sean T; Baker, John G; Kelly, Bernard J

    2009-01-01

    We investigate the precision with which the parameters describing the characteristics and location of nonspinning black hole binaries can be measured with the Laser Interferometer Space Antenna (LISA). By using complete waveforms including the inspiral, merger and ringdown portions of the signals, we find that LISA will have far greater precision than previous estimates for nonspinning mergers that ignored the merger and ringdown. Our analysis covers nonspinning waveforms with moderate mass ratios, q >= 1/10, and total masses 10^5 < M/M_{Sun} < 10^7. We compare the parameter uncertainties using the Fisher matrix formalism, and establish the significance of mass asymmetry and higher-order content to the predicted parameter uncertainties resulting from inclusion of the merger. In real-time observations, the later parts of the signal lead to significant improvements in sky-position precision in the last hours and even the final minutes of observation. For comparable mass systems with total mass M/M_{Sun} =...

  11. European Pulsar Timing Array Limits on Continuous Gravitational Waves from Individual Supermassive Black Hole Binaries

    CERN Document Server

    Babak, Stanislav; Sesana, Alberto; Brem, Patrick; Rosado, Pablo A; Taylor, Stephen R; Lassus, Antoine; Hessels, Jason W T; Bassa, Cees G; Burgay, Marta; Caballero, R Nicolas; Champion, David J; Cognard, Ismael; Desvignes, Gregory; Gair, Jonathan R; Guillemot, Lucas; Janssen, Gemma H; Karuppusamy, Ramesh; Kramer, Michael; Lazarus, Patrick; Lee, K J; Lentati, Lindley; Liu, Kuo; Mingarelli, Chiara M F; Oslowsky, Stefan; Perrodin, Delphine; Possenti, Andrea; Purver, Mark B; Sanidas, Sotiris; Smits, Roy; Stappers, Ben; Theureau, Gilles; Tiburzi, Caterina; van Haasteren, Rutger; Vecchio, Alberto; Verbiest, Joris P W

    2015-01-01

    We have searched for continuous gravitational wave (CGW) signals produced by individually resolvable, circular supermassive black hole binaries (SMBHBs) in the latest EPTA dataset, which consists of ultra-precise timing data on 41 millisecond pulsars. We develop frequentist and Bayesian detection algorithms to search both for monochromatic and frequency-evolving systems. None of the adopted algorithms show evidence for the presence of such a CGW signal, indicating that the data are best described by pulsar and radiometer noise only. Depending on the adopted detection algorithm, the 95\\% upper limit on the sky-averaged strain amplitude lies in the range $6\\times 10^{-15}10^9$M$_\\odot$ out to a distance of about 25Mpc, and with $\\cal{M}_c>10^{10}$M$_\\odot$ out to a distance of about 1Gpc ($z\\approx0.2$). We show that state-of-the-art SMBHB population models predict $<1\\%$ probability of detecting a CGW with the current EPTA dataset, consistent with the reported non-detection. We stress, however, that PTA lim...

  12. Initial data for high-compactness black hole-neutron star binaries

    Science.gov (United States)

    Henriksson, Katherine; Foucart, François; Kidder, Lawrence E.; Teukolsky, Saul A.

    2016-05-01

    For highly compact neutron stars, constructing numerical initial data for black hole-neutron star binary evolutions is very difficult. We describe improvements to an earlier method that enable it to handle these more challenging cases. These improvements were found by invoking a general relaxation principle that may be helpful in improving robustness in other initial data solvers. We examine the case of a 6:1 mass ratio system in inspiral close to merger, where the star is governed by a polytropic {{Γ }}=2, an SLy, or an LS220 equation of state (EOS). In particular, we are able to obtain a solution with a realistic LS220 EOS for a star with compactness 0.26 and mass 1.98 M ⊙, which is representative of the highest reliably determined neutron star masses. For the SLy EOS, we can obtain solutions with a comparable compactness of 0.25, while for a family of polytropic equations of state, we obtain solutions with compactness up to 0.21, the largest compactness that is stable in this family. These compactness values are significantly higher than any previously published results.

  13. Efficiency of nonspinning templates in gravitational wave searches for aligned-spin binary black holes

    CERN Document Server

    Cho, Hee-Suk

    2016-01-01

    We study the efficiency of nonspinning waveform templates in gravitational wave searches for aligned-spin binary black holes (BBHs). We use PhenomD, which is the most recent phenomenological waveform model designed to generate the full inspiral-merger-ringdown waveforms emitted from BBHs with the spins aligned with the orbital angular momentum. Here, we treat the effect of aligned-spins with a single spin parameter $\\chi$. We consider the BBH signals with moderately small spins in the range of $-0.4\\leq \\chi \\leq 0.4$. Using nonspinning templates, we calculate fitting factors of the aligned-spin signals in a wide mass range up to $\\sim 100 M_{\\odot}$. We find that the signals with negative spins can have higher fitting factors than those with positive spins. If $\\chi = 0.3$, only the highly asymmetric-mass signals can have the fitting factors exceeding the threshold of 0.965, while the fitting factors for all of the signals can be larger than the threshold if $\\chi = -0.3$. We demonstrate that the discrepancy...

  14. A Dynamical Study of the Black Hole X-ray Binary Nova Muscae 1991

    CERN Document Server

    Wu, Jianfeng; McClin