WorldWideScience

Sample records for black carbon soot

  1. The Toxicological Mechanisms of Environmental Soot (Black Carbon and Carbon Black: Focus on Oxidative Stress and Inflammatory Pathways

    Directory of Open Access Journals (Sweden)

    Rituraj Niranjan

    2017-06-01

    Full Text Available The environmental soot and carbon blacks (CBs cause many diseases in humans, but their underlying mechanisms of toxicity are still poorly understood. Both are formed after the incomplete combustion of hydrocarbons but differ in their constituents and percent carbon contents. For the first time, “Sir Percival Pott” described soot as a carcinogen, which was subsequently confirmed by many others. The existing data suggest three main types of diseases due to soot and CB exposures: cancer, respiratory diseases, and cardiovascular dysfunctions. Experimental models revealed the involvement of oxidative stress, DNA methylation, formation of DNA adducts, and Aryl hydrocarbon receptor activation as the key mechanisms of soot- and CB-induced cancers. Metals including Si, Fe, Mn, Ti, and Co in soot also contribute in the reactive oxygen species (ROS-mediated DNA damage. Mechanistically, ROS-induced DNA damage is further enhanced by eosinophils and neutrophils via halide (Cl− and Br− dependent DNA adducts formation. The activation of pulmonary dendritic cells, T helper type 2 cells, and mast cells is crucial mediators in the pathology of soot- or CB-induced respiratory disease. Polyunsaturated fatty acids (PUFAs were also found to modulate T cells functions in respiratory diseases. Particularly, telomerase reverse transcriptase was found to play the critical role in soot- and CB-induced cardiovascular dysfunctions. In this review, we propose integrated mechanisms of soot- and CB-induced toxicity emphasizing the role of inflammatory mediators and oxidative stress. We also suggest use of antioxidants and PUFAs as protective strategies against soot- and CB-induced disorders.

  2. Density separation of combustion-derived soot and petrogenic graphitic black carbon: Quantification and isotopic characterization

    International Nuclear Information System (INIS)

    Veilleux, M-H; Gelinas, Y; Dickens, A F; Brandes, J

    2009-01-01

    The black carbon continuum is composed of a series of carbon-rich components derived from combustion or metamorphism and characterized by contrasting environmental behavior and susceptibility to oxidation. In this work, we present a micro-scale density fractionation method that allows isolating the small quantities of soot-like and graphitic material usually found in natural samples. Organic carbon and δ 13 C mass balance calculations were used to quantify the relative contributions of the two fractions to thermally-stable organic matter from a series of aquatic sediments. Varying proportions of soot-like and graphitic material were found in these samples, with large variations in δ 13 C signatures suggesting important differences in their origin and/or dynamics in the environment.

  3. Sources and burial fluxes of soot black carbon in sediments on the Mackenzie, Chukchi, and Bering Shelves

    Science.gov (United States)

    Yang, Weifeng; Guo, Laodong

    2018-03-01

    Black carbon (BC) has been recognized as a climate forcing and a major component in the global carbon budget. However, studies on BC in the Arctic Ocean remain scarce. We report here variations in the abundance, sources and burial fluxes of sedimentary soot black carbon (soot-BC) in the western Arctic Ocean. The soot-BC contents averaged 1.6 ± 0.3, 0.46 ± 0.04 and 0.56 ± 0.10 mg-C g-1 on the Mackenzie, Chukchi and Bering Shelves, respectively, accounting for 16.6%, 10.2% and 10.4% of the total organic carbon in surface sediment. Temporally, contents of soot-BC remained fairly stable before 1910, but increased rapidly after the 1970s on the Mackenzie Shelf, indicating enhanced source input related to warming. Comparable δ13C signatures of soot-BC (- 24.95‰ to - 24.57‰) to C3 plants pointed to a major biomass source of soot-BC to the Beaufort Sea. Soot-BC showed similar temporal patterns with large fluctuations in the Chukchi/Bering shelf regions, implying the same source terms for soot-BC in these areas. Two events with elevated soot-BC corresponded to a simultaneous increase in biomass combustion and fossil fuel (coal and oil) consumption in Asia. The similar temporal variability in sedimentary soot-BC between the Arctic shelves and Asian lakes and the comparable δ13C values manifested that anthropogenic emission from East Asia was an important source of soot-BC in the western Arctic and subarctic regions. The burial fluxes of soot-BC, estimated from both 137Cs- and 210Pb-derived sedimentation rates, were 2.43 ± 0.42 g-C m-2 yr-1 on the Mackenzie Shelf, representing an efficient soot-BC sink. Soot-BC showed an increase in buried fluxes from 0.56 ± 0.02 g-C m-2 yr-1 during 1963-1986 to 0.88 ± 0.05 g-C m-2 yr-1 after 1986 on the Chukchi Shelf, and from 1.00 ± 0.18 g-C m-2 yr-1 to 2.58 ± 1.70 g-C m-2 yr-1 on the Bering Shelf, which were consistent with recent anthropogenically enhanced BC input observed especially in Asia. Overall, the three Arctic

  4. Investigation of black soot staining in houses

    Energy Technology Data Exchange (ETDEWEB)

    Fugler, D. [Canada Mortgage and Housing Corp., Ottawa, ON (Canada)

    2000-07-01

    Air quality investigators are frequently called upon to determine the origin of streaking, staining or soot marks in both new and old homes. Those marks display common characteristics: black marks along baseboards at interior or exterior walls, behind furniture and at doorways; black smudges on window frames and plastic cabinets; and even shadowing of studs on exterior wall drywall in a few cases. In most instances, carbon soot from a combustion source is the culprit. The combustion sources include furnaces, water heaters, fireplaces, gas dryers, gas ranges, smoking, vehicle exhaust and candle burning. Scepticism about candle soot is prevalent among callers. As a result, a study was initiated in homes where occupants burn candles regularly to investigate soot problems. Samples were collected from five homes, and included stained carpets, filters, and swab samples of black dust or soot. All the houses selected for the study had been built within a three-year period. Some samples of candles commonly burned in those homes were burnt in a laboratory. Air quality audits had been performed in the homes and had revealed other potential pollutant sources. Best practices for cost-effective clean up and control of soot were researched in industry information. The tests conducted in the laboratory found materials consistent with candle soot or residue during microscopic investigations, but no link was established with the stained material obtained from the homes. A few tips for homeowners were included concerning candle burning, and tips for builders were also offered. 1 tab.

  5. Sensitivity of the Single Particle Soot Photometer to different black carbon types

    Science.gov (United States)

    Laborde, M.; Mertes, P.; Zieger, P.; Dommen, J.; Baltensperger, U.; Gysel, M.

    2012-05-01

    Black carbon (BC) is now mainly of anthropogenic origin. It is the dominant light absorbing component of atmospheric aerosols, playing an important role in the earth's radiative balance and therefore relevant to climate change studies. In addition, BC is known to be harmful to human beings making it relevant to policy makers. Nevertheless, the measurement of BC remains biased by the instrument-based definition of BC. The Single Particle Soot Photometer (SP2), allows the measurement of the refractory BC (rBC) mass of individual particles using laser-induced incandescence. However, the SP2 needs an empirical calibration to retrieve the rBC mass from the incandescence signal and the sensitivity of the SP2 differs between different BC types. Ideally, for atmospheric studies, the SP2 should be calibrated using ambient particles containing a known mass of ambient rBC. However, such "ambient BC" calibration particles cannot easily be obtained and thus commercially available BC particles are commonly used for SP2 calibration instead. In this study we tested the sensitivity of the SP2 to different BC types in order to characterize the potential error introduced by using non-ambient BC for calibration. The sensitivity of the SP2 was determined, using an aerosol particle mass analyzer, for rBC from thermodenuded diesel exhaust, wood burning exhaust and ambient particles as well as for commercially available products: Aquadag® and fullerene soot. Thermodenuded, fresh diesel exhaust has been found to be ideal for SP2 calibration for two reasons. First, the small amount of non-BC matter upon emission reduces the risk of bias due to incomplete removal of non-BC matter and second, it is considered to represent atmospheric rBC in urban locations where diesel exhaust is the main source of BC. The SP2 was found to be up to 16% less sensitive to rBC from thermodenuded ambient particles (≤15 fg) than rBC from diesel exhaust, however, at least part of this difference can be explained

  6. Sensitivity of the Single Particle Soot Photometer to different black carbon types

    Directory of Open Access Journals (Sweden)

    M. Laborde

    2012-05-01

    Full Text Available Black carbon (BC is now mainly of anthropogenic origin. It is the dominant light absorbing component of atmospheric aerosols, playing an important role in the earth's radiative balance and therefore relevant to climate change studies. In addition, BC is known to be harmful to human beings making it relevant to policy makers. Nevertheless, the measurement of BC remains biased by the instrument-based definition of BC. The Single Particle Soot Photometer (SP2, allows the measurement of the refractory BC (rBC mass of individual particles using laser-induced incandescence. However, the SP2 needs an empirical calibration to retrieve the rBC mass from the incandescence signal and the sensitivity of the SP2 differs between different BC types. Ideally, for atmospheric studies, the SP2 should be calibrated using ambient particles containing a known mass of ambient rBC. However, such "ambient BC" calibration particles cannot easily be obtained and thus commercially available BC particles are commonly used for SP2 calibration instead. In this study we tested the sensitivity of the SP2 to different BC types in order to characterize the potential error introduced by using non-ambient BC for calibration. The sensitivity of the SP2 was determined, using an aerosol particle mass analyzer, for rBC from thermodenuded diesel exhaust, wood burning exhaust and ambient particles as well as for commercially available products: Aquadag® and fullerene soot.

    Thermodenuded, fresh diesel exhaust has been found to be ideal for SP2 calibration for two reasons. First, the small amount of non-BC matter upon emission reduces the risk of bias due to incomplete removal of non-BC matter and second, it is considered to represent atmospheric rBC in urban locations where diesel exhaust is the main source of BC. The SP2 was found to be up to 16% less sensitive to rBC from thermodenuded ambient particles (≤15 fg than rBC from diesel exhaust, however, at least part

  7. Black carbon aerosol properties measured by a single particle soot photometer in emissions from biomass burning in the laboratory and field

    Science.gov (United States)

    G. R. McMeeking; J. W. Taylor; A. P. Sullivan; M. J. Flynn; S. K. Akagi; C. M. Carrico; J. L. Collett; E. Fortner; T. B. Onasch; S. M. Kreidenweis; R. J. Yokelson; C. Hennigan; A. L. Robinson; H. Coe

    2010-01-01

    We present SP2 observations of BC mass, size distributions and mixing state in emissions from laboratory and field biomass fires in California, USA. Biomass burning is the primary global black carbon (BC) source, but understanding of the amount emitted and its physical properties at and following emission are limited. The single particle soot photometer (SP2) uses a...

  8. Arctic Black Carbon Loading and Profile Using the Single-Particle Soot Photometer (SP2) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, Arthur J [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-05-01

    One of the major issues confronting aerosol climate simulations of the Arctic and Antarctic cryospheres is the lack of detailed data on the vertical and spatial distribution of aerosols with which to test these models. This is due, in part, to the inherent difficulty of conducting such measurements in extreme environments. However given the pronounced sensitivity of the polar regions to radiative balance perturbations, it is incumbent upon our community to better understand and quantify these perturbations, and their unique feedbacks, so that robust model predictions of this region can be realized. One class of under-measured radiative forcing agents in the polar region is the absorbing aerosol—black carbon and brown carbon. Black carbon (BC; also referred to as light-absorbing carbon [LAC], refractory black carbon [rBC], and soot) is second only to CO2 as a positive forcing agent. Roughly 60% of BC emissions can be attributed to anthropogenic sources (fossil fuel combustion and open-pit cooking), with the remaining fraction being due to biomass burning. Brown carbon (BrC), a major component of biomass burning, collectively refers to non-BC carbonaceous aerosols that typically possess minimal light absorption at visible wavelengths but exhibit pronounced light absorption in the near-ultraviolet (UV) spectrum. Both species can be sourced locally or be remotely transported to the Arctic region and are expected to perturb the radiative balance. The work conducted in this field campaign addresses one of the more glaring deficiencies currently limiting improved quantification of the impact of BC radiative forcing in the cryosphere: the paucity of data on the vertical and spatial distributions of BC. By expanding the Gulfstream aircraft (G-1) payload for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility-sponsored ACME-V campaign to include the Single-Particle Soot Photometer (SP2)) and leveraging the ACME-V campaign

  9. NASA: Black soot fuels global warming

    CERN Multimedia

    2003-01-01

    New research from NASA's Goddard Space Center scientists suggests emissions of black soot have been altering the way sunlight reflects off Earth's snow. The research indicates the soot could be responsible for as much as 25 percent of global warming over the past century (assorted news items, 1 paragraph each).

  10. Soot on snow in Iceland: First results on black carbon and organic carbon in Iceland 2016 snow and ice samples, including the glacier Solheimajökull

    Science.gov (United States)

    Meinander, Outi; Dagsson-Waldhauserova, Pavla; Gritsevich, Maria; Aurela, Minna; Arnalds, Olafur; Dragosics, Monika; Virkkula, Aki; Svensson, Jonas; Peltoniemi, Jouni; Kontu, Anna; Kivekäs, Niku; Leppäranta, Matti; de Leeuw, Gerrit; Laaksonen, Ari; Lihavainen, Heikki; Arslan, Ali N.; Paatero, Jussi

    2017-04-01

    New results on black carbon (BC) and organic carbon (OC) on snow and ice in Iceland in 2016 will be presented in connection to our earlier results on BC and OC on Arctic seasonal snow surface, and in connection to our 2013 and 2016 experiments on effects of light absorbing impurities, including Icelandic dust, on snow albedo, melt and density. Our sampling included the glacier Solheimajökull in Iceland. The mass balance of this glacier is negative and it has been shrinking during the last 20 years by 900 meters from its southwestern corner. Icelandic snow and ice samples were not expected to contain high concentrations of BC, as power generation with domestic renewable water and geothermal power energy sources cover 80 % of the total energy consumption in Iceland. Our BC results on filters analyzed with a Thermal/Optical Carbon Aerosol Analyzer (OC/EC) confirm this assumption. Other potential soot sources in Iceland include agricultural burning, industry (aluminum and ferroalloy production and fishing industry), open burning, residential heating and transport (shipping, road traffic, aviation). On the contrary to low BC, we have found high concentrations of organic carbon in our Iceland 2016 samples. Some of the possible reasons for those will be discussed in this presentation. Earlier, we have measured and reported unexpectedly low snow albedo values of Arctic seasonally melting snow in Sodankylä, north of Arctic Circle. Our low albedo results of melting snow have been confirmed by three independent data sets. We have explained these low values to be due to: (i) large snow grain sizes up to 3 mm in diameter (seasonally melting snow); (ii) meltwater surrounding the grains and increasing the effective grain size; (iii) absorption caused by impurities in the snow, with concentration of elemental carbon (black carbon) in snow of 87 ppb, and organic carbon 2894 ppb. The high concentrations of carbon were due to air masses originating from the Kola Peninsula, Russia

  11. Biomass burning plumes and the aging of black carbon aerosols in the tropopause region observed with the CARIBIC single particle soot photometer

    Science.gov (United States)

    Ditas, J.; Ma, N.; Zhang, Y.; Assmann, D. N.; Neumaier, M.; Wang, S.; Wang, J.; Zahn, A.; Hermann, M.; Brenninkmeijer, C. A. M.; Poeschl, U.; Su, H.; Cheng, Y.

    2017-12-01

    Biomass burning (BB) events can release large amounts of refractory black carbon (rBC) into the upper troposphere and lowermost stratosphere (UT/LMS) (Dahlkötter et al., 2014). To explore this effect, a Single Particle Soot Photometer (SP2) was added to the scientific payload of the instrumented CARIBIC container that is installed monthly in the cargo bay of a passenger aircraft (the IAGOS-CARIBIC atmospheric observatory, www.iagos.org). Regular measurement flights with different destinations are performed, covering an area of about 120°W to 120°E and 75°N to 30°S. A wide range of in situ measurements (CO, O3, greenhouse gases, aerosol particles and volatile organic compounds) is combined with a collection of air and aerosol samples for laboratory analyses. Since August 2014, the SP2 measures BC number and mass concentration at altitudes between 8 and 12 km. More than 600 BC measurement hours show a strong impact of BB emissions on the lowermost stratosphere. The BB plumes are identified with the help of concurrent carbon monoxide and acetonitrile measurements showing substantially increased concentrations compared to their background level. Transported into the lowermost stratosphere, BB smoke can be transported over long distances and the BC particles can stay in the atmosphere up to one year. The monthly missions of four consecutive CARIBIC flights sometimes enable to revisit a certain air mass, as was the case during a measurement flight to San Francisco in August 2014, with a stopover time of 2h. The revisited biomass burning plume located over the Altlantic ocean near Greenland was traced back by backward and forward trajectories to open fires in Canada (upper Fig.). The transit time of the smoke plume was estimated to 16 - 19h which perfectly matches our flight time difference ( 18h). Based on the LEO-fit method (Leading Edge Only fit) from Gao et al. (2007), the mixing state of the BC particles within the BB plume was calculated. Our unique data set

  12. Post-depositional enrichment of black soot in snow-pack and accelerated melting of Tibetan glaciers

    International Nuclear Information System (INIS)

    Xu Baiqing; Joswiak, Daniel R; Zhao Huabiao; Cao Junji; Liu Xianqin; He Jianqiao

    2012-01-01

    The post-depositional enrichment of black soot in snow-pack was investigated by measuring the redistribution of black soot along monthly snow-pits on a Tien Shan glacier. The one-year experiment revealed that black soot was greatly enriched, defined as the ratio of concentration to original snow concentration, in the unmelted snow-pack by at least an order of magnitude. Greatest soot enrichment was observed in the surface snow and the lower firn-pack within the melt season percolation zone. Black carbon (BC) concentrations as high as 400 ng g −1 in the summer surface snow indicate that soot can significantly contribute to glacier melt. BC concentrations reaching 3000 ng g −1 in the bottom portion of the firn pit are especially concerning given the expected equilibrium-line altitude (ELA) rise associated with future climatic warming, which would expose the dirty underlying firn and ice. Since most of the accumulation area on Tibetan glaciers is within the percolation zone where snow densification is characterized by melting and refreezing, the enrichment of black soot in the snow-pack is of foremost importance. Results suggest the effect of black soot on glacier melting may currently be underestimated. (letter)

  13. Durable superhydrophobic carbon soot coatings for sensor applications

    Science.gov (United States)

    Esmeryan, K. D.; Radeva, E. I.; Avramov, I. D.

    2016-01-01

    A novel approach for the fabrication of durable superhydrophobic (SH) carbon soot coatings used in quartz crystal microbalance (QCM) based gas or liquid sensors is reported. The method uses modification of the carbon soot through polymerization of hexamethyldisiloxane (HMDSO) by means of glow discharge RF plasma. The surface characterization shows a fractal-like network of carbon nanoparticles with diameter of ~50 nm. These particles form islands and cavities in the nanometer range, between which the plasma polymerized hexamethyldisiloxane (PPHMDSO) embeds and binds to the carbon chains and QCM surface. Such modified surface structure retains the hydrophobic nature of the soot and enhances its robustness upon water droplet interactions. Moreover, it significantly reduces the insertion loss and dynamic resistance of the QCM compared to the commonly used carbon soot/epoxy resin approach. Furthermore, the PPHMDSO/carbon soot coating demonstrates durability and no aging after more than 40 probing cycles in water based liquid environments. In addition, the surface layer keeps its superhydrophobicity even upon thermal annealing up to 540 °C. These experiments reveal an opportunity for the development of soot based SH QCMs with improved electrical characteristics, as required for high-resolution gas or liquid measurements.

  14. Molecular simulation of polycyclic aromatic hydrocarbon sorption to black carbon

    NARCIS (Netherlands)

    Haftka, J.J.H.; Parsons, J.R.; Govers, H.A.J.

    2009-01-01

    Strong sorption of hydrophobic organic contaminants to soot or black carbon (BC) is an important environmental process limiting the bioremediation potential of contaminated soils and sediments. Reliable methods to predict BC sorption coefficients for organic contaminants are therefore required. A

  15. New Nanotech from an Ancient Material: Chemistry Demonstrations Involving Carbon-Based Soot

    Science.gov (United States)

    Campbell, Dean J.; Andrews, Mark J.; Stevenson, Keith J.

    2012-01-01

    Carbon soot has been known since antiquity, but has recently been finding new uses as a robust, inexpensive nanomaterial. This paper describes the superhydrophobic properties of carbon soot films prepared by combustion of candle wax or propane gas and introduces some of the optical absorption and fluorescence properties of carbon soot particles.…

  16. Black carbon radiative forcing at TOA decreased during aging.

    Science.gov (United States)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-12-05

    During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot particles. These soot particles were entirely embedded into large sulfate particle by further aging, and becoming heavily coated soot particles. In clear-sky conditions, black carbon radiative forcing with different aging states were investigated for the bottom and top of atmosphere (BOA and TOA). The simulations showed that black carbon radiative forcing increased at BOA and decreased at TOA after their aging processes. Thinly and heavily coated states increased up to ~12% and ~35% black carbon radiative forcing at BOA, and black carbon radiative forcing at TOA can reach to ~20% and ~100% smaller for thinly and heavily coated states than those of freshly emitted states, respectively. The effect of aging states of black carbon radiative forcing was varied with surface albedo, aerosol optical depth and solar zenith angles. These findings would be helpful for the assessments of climate change.

  17. Impacts of vehicle exhaust black soot on germination of gram seed (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-02-01

    Full Text Available An investigation was initiated to examine the effects of carbon soot collected from exhaust tube of 15 years old petrol and diesel operated vehicles on gram seed germination and biochemical changes of seedling. In view of the widespread cultivation of gram seed in India and long-term impact of black carbon is the warming of the atmosphere as per the recommendation of IPCC (2007. Black soot were separately treated with different doses and the effects of these treatment had on seed germination, seedling vigor, chlorophyll and carotenoid content, root and shoot growth, protein, sugar, phenol and proline estimation were studied. The treatment T6 significantly affected on seed germination (84% as well as seedling vigor and chlorophyll content. But other treatment promoted both seed germination and seedling vigor along with enhancement of other biochemical constituents. On the other hand micrograph study revealed that treatments T1 and T4 both showed negative effects on stomata rather than the ultra-structure of xylem and phloem.

  18. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions

    International Nuclear Information System (INIS)

    Long, Christopher M.; Nascarella, Marc A.; Valberg, Peter A.

    2013-01-01

    Airborne particles containing elemental carbon (EC) are currently at the forefront of scientific and regulatory scrutiny, including black carbon, carbon black, and engineered carbon-based nanomaterials, e.g., carbon nanotubes, fullerenes, and graphene. Scientists and regulators sometimes group these EC-containing particles together, for example, interchangeably using the terms carbon black and black carbon despite one being a manufactured product with well-controlled properties and the other being an undesired, incomplete-combustion byproduct with diverse properties. In this critical review, we synthesize information on the contrasting properties of EC-containing particles in order to highlight significant differences that can affect hazard potential. We demonstrate why carbon black should not be considered a model particle representative of either combustion soots or engineered carbon-based nanomaterials. Overall, scientific studies need to distinguish these highly different EC-containing particles with care and precision so as to forestall unwarranted extrapolation of properties, hazard potential, and study conclusions from one material to another. -- Highlights: •Major classes of elemental carbon-containing particles have distinct properties. •Despite similar names, carbon black should not be confused with black carbon. •Carbon black is distinguished by a high EC content and well-controlled properties. •Black carbon particles are characterized by their heterogenous properties. •Carbon black is not a model particle representative of engineered nanomaterials. -- This review demonstrates the significant physical and chemical distinctions between elemental carbon-containing particles e.g., carbon black, black carbon, and engineered nanomaterials

  19. Use of the Single Particle Soot Photometer (SP2) as a pre-filter for ice nucleation measurements: effect of particle mixing state and determination of SP2 conditions to fully vaporize refractory black carbon

    Science.gov (United States)

    Schill, Gregory P.; DeMott, Paul J.; Levin, Ezra J. T.; Kreidenweis, Sonia M.

    2018-05-01

    Ice nucleation is a fundamental atmospheric process that impacts precipitation, cloud lifetimes, and climate. Challenges remain to identify and quantify the compositions and sources of ice-nucleating particles (INPs). Assessment of the role of black carbon (BC) as an INP is particularly important due to its anthropogenic sources and abundance at upper-tropospheric cloud levels. The role of BC as an INP, however, is unclear. This is, in part, driven by a lack of techniques that directly determine the contribution of refractory BC (rBC) to INP concentrations. One previously developed technique to measure this contribution uses the Single Particle Soot Photometer (SP2) as a pre-filter to an online ice-nucleating particle counter. In this technique, rBC particles are selectively heated to their vaporization temperature in the SP2 cavity by a 1064 nm laser. From previous work, however, it is unclear under what SP2 conditions, if any, the original rBC particles were fully vaporized. Furthermore, previous work also left questions about the effect of the SP2 laser on the ice-nucleating properties of several INP proxies and their mixtures with rBC.To answer these questions, we sampled the exhaust of an SP2 with a Scanning Mobility Particle Sizer and a Continuous Flow Diffusion Chamber. Using Aquadag® as an rBC proxy, the effect of several SP2 instrument parameters on the size distribution and physical properties of particles in rBC SP2 exhaust were explored. We found that a high SP2 laser power (930 nW/(220 nm PSL)) is required to fully vaporize a ˜ 0.76 fg rBC particle. We also found that the exhaust particle size distribution is minimally affected by the SP2 sheath-to-sample ratio; the size of the original rBC particle, however, greatly influences the size distribution of the SP2 exhaust. The effect of the SP2 laser on the ice nucleation efficiency of Snomax®, NX-illite, and Suwannee River Fulvic Acid was studied; these particles acted as proxies for biological, illite

  20. Potential impacts of black carbon on the marine microbial community

    NARCIS (Netherlands)

    Malits, A.; Cattaneo, R.; Sintes, E.; Gasol, J.M.; Herndl, G.J.; Weinbauer, M.G.

    2015-01-01

    Black carbon (BC) is the carbonaceous residue of the incomplete combustion of fossil fuels and biomass and encompasses a range of chemically heterogeneous substances from partly charred plant material to highly condensed soot aerosols. We addressed the potential role of BC aerosol deposition on

  1. Soot, unburned carbon and ultrafine particle emissions from air- and oxy-coal flames

    International Nuclear Information System (INIS)

    Morris, W.J.; Yu, Dunxi; Wendt, J.O.L.

    2010-01-01

    Oxy-coal combustion is one possible solution for the mitigation of greenhouse gases. In this process coal is burned in oxygen, rather than air, and the temperatures in the boiler are mitigated by recycling flue gases, so that the inlet mixture may contain either 27 % O 2 to match adiabatic flame temperatures, or 32 % O 2 to match gaseous radiation heat fluxes in the combustion chamber. However, a major issue for heat transfer from coal combustion is the radiative heat transmission from soot. For this research, air and oxy coal firing were compared regarding the emission of soot. A 100 kW down-fired laboratory combustor was used to determine effects of switching from air to oxy-firing on soot, unburned carbon and ultrafine particle emissions from practical pulverized coal flames. Of interest here were potential chemical effects of substitution of the N 2 in air by CO 2 in practical pulverized coal flames. The oxy-coal configuration investigated used once-through CO 2 , simulating cleaned flue gas recycle with all contaminants and water removed. Three coals were each burned in: a) air, b) 27 % O 2 / 73 % CO 2 , c) 32 % O 2 / 68 % CO 2 . Tests were conducted at (nominally) 3 %, 2 %, 1 % and 0 % O 2 in the exhaust (dry basis). For each condition, particulate samples were iso kinetically withdrawn far from the radiant zone, and analyzed using a photoacoustic analyzer (PA) for black carbon, a scanning mobility particle sizer (SMPS) for ultrafine particles, and a total sample loss on ignition (LOI) method for unburned carbon in ash. Data suggest that at low stoichiometric ratios, ultrafine particles consist primarily of black carbon, which, for the bituminous coal, is produced in lesser amounts under oxy-fired conditions than under the air-fired condition, even when adiabatic flame temperatures are matched. However, significant changes in mineral matter vaporization were not observed unless the flames were hotter. These and other results are interpreted in the light of

  2. Cosmic: Carbon Monoxide And Soot In Microgravity Inverse Combustion

    Science.gov (United States)

    Mikofski, M. A.; Blevins, L. G.; Davis, R. W.; Moore, E. F.; Mulholland, G. W.; Sacksteder, Kurt (Technical Monitor)

    2003-01-01

    Almost seventy percent of fire related deaths are caused by the inhalation of toxins such as CO and soot that are produced when fires become underventilated.(1) Although studies have established the importance of CO formation during underventilated burning,(2) the formation processes of CO (and soot) in underventilated fires are not well understood. The goal of the COSMIC project is to study the formation processes of CO and soot in underventilated flames. A potential way to study CO and soot production in underventilated flames is the use of inverse diffusion flames (IDFs). An IDF forms between a central air jet and a surrounding fuel jet. IDFs are related to underventilated flames because they may allow CO and soot to escape unoxidized. Experiments and numerical simulations of laminar IDFs of CH4 and C2H4 were conducted in 1-g and micro-g to study CO and soot formation. Laminar flames were studied because turbulent models of underventilated fires are uncertain. Microgravity was used to alter CO and soot pathways. A IDF literature survey, providing background and establishing motivation for this research, was presented at the 5th IWMC.(3) Experimental results from 1-g C2H4 IDFs and comparisons with simulations, demonstrating similarities between IDFs and underventilated fires, were presented at the 6th IWMC.(4) This paper will present experimental results from micro-g and 1-g IDFs of CH4 and C2H4 as well as comparisons with simulations, further supporting the relation between IDFs and underventilated flames.

  3. NATO Workshop on Soot in Combustion Systems

    CERN Document Server

    Prado, G

    1983-01-01

    Our interest in Mulhouse for carbon black and soot began some 30 years ago when J.B. Donnet developed the concept of surface chemistry of carbon and its involvement in interactions with gas, liquid and solid phases. In the late sixties, we began to study soot formation in pyrolytic systems and later on in flames. The idea of organ1z1ng a meeting on soot formation originated some four or five years ago, through discussions among Professor J.B. Howard, Dr. A. D'Alessio and ourselves. At that time the scientific community was becoming aware of the necessity to strictly control soot formation and emission. Being involved in the study of surface properties of carbon black as well as of formation of soot, we realized that the combustion community was not always fully aware of the progress made by the physical-chemists on carbon black. Reciprocally, the carbon specialists were often ignoring the research carried out on soot in flames. One objective of this workshop was to stimulate discussions between these two scie...

  4. Morphological study of fluorescent carbon Nanoparticles (F-CNPs) from ground coffee waste soot oxidation by diluted acid

    Science.gov (United States)

    Gea, S.; Tjandra, S.; Joshua, J.; Wirjosentono, B.

    2018-02-01

    Coffee ground waste utilization for fluorescent carbon nanoparticles (F-CNPs) through soot oxidation with diluted HNO3 has been conducted. Soot was obtained through three different treatments to coffee ground waste; which was burned in furnaceat 550°C and 650°C and directly burned in a heat-proofcontainer. Then they were analyzed morphologically with Scanning Electron Microscope (SEM) instrument. Soot from direct burning indicated the optimum result where it has denser pores compared to other two soots. Soot obtained from direct burning was refluxed in diluted HNO3 for 12 hours to perform the oxidation. Yellowish brown supernatant was later observed which lead to green fluorescent under the UV light. F-CNPs characterization was done in Transmission Electron Microscopy, which showed that 7.4-23.4 nm of particle size were distributed.

  5. Effects of black carbon on bioturbination-induced benthic fluxes of polychlorinated biphenyls

    NARCIS (Netherlands)

    Koelmans, A.A.; Jonker, M.T.O.

    2011-01-01

    It is unknown whether carbonaceous geosorbents, such as black carbon (BC) affect bioturbation by benthic invertebrates, thereby possibly affecting sediment–water exchange of sediment-bound contaminants. Here, we assess the effects of oil soot on polychlorinated biphenyl (PCB) mass transfer from

  6. Carbon Nanostructure of Diesel Soot Particles Emitted from 2 and 4 Stroke Marine Engines Burning Different Fuels.

    Science.gov (United States)

    Lee, Won-Ju; Park, Seul-Hyun; Jang, Se-Hyun; Kim, Hwajin; Choi, Sung Kuk; Cho, Kwon-Hae; Cho, Ik-Soon; Lee, Sang-Min; Choi, Jae-Hyuk

    2018-03-01

    Diesel soot particles were sampled from 2-stroke and 4-stroke engines that burned two different fuels (Bunker A and C, respectively), and the effects of the engine and fuel types on the structural characteristics of the soot particle were analyzed. The carbon nanostructures of the sampled particles were characterized using various techniques. The results showed that the soot sample collected from the 4-stroke engine, which burned Bunker C, has a higher degree of order of the carbon nanostructure than the sample collected from the 2-stroke engine, which burned Bunker A. Furthermore, the difference in the exhaust gas temperatures originating from the different engine and fuel types can affect the nanostructure of the soot emitted from marine diesel engines.

  7. Delayed condensation and frost formation on superhydrophobic carbon soot coatings by controlling the presence of hydrophilic active sites

    Science.gov (United States)

    Esmeryan, Karekin D.; Castano, Carlos E.; Mohammadi, Reza; Lazarov, Yuliyan; Radeva, Ekaterina I.

    2018-02-01

    Condensation frosting is an undesired natural phenomenon that could be impeded efficiently using appropriate wettability and morphologically patterned surfaces. The icephobic properties of carbon soot and the fabrication scalability of its synthesis method are a good foundation for anti-frosting applications; however, the fundamentals of frost growth and spreading on sooted surfaces have not been examined yet. In this study, we investigate the anti-frosting performance of three groups of superhydrophobic soot coatings by means of 16 MHz quartz crystal microbalances (QCMs). The analysis of the real-time sensor signal of each soot coated QCM pattern shows that frost formation and its propagation velocity depend on the quantity of oxygen functionalities and structural defects in the material. In turn, the reduction of both parameters shifts the onset of frost growth to temperatures below  -20 °C, whereas the interdroplet ice bridging is slowed by a factor of four. Moreover, high-resolution scanning electron micrographs of the samples imply delamination upon defrosting of the soot with spherical-like morphology via polar interactions driven mechanism. These results reveal an opportunity for control of frost incipiency on sooted surfaces by adjusting the synthesis conditions and depositing soot coatings with as low as possible content of hydrophilic active sites.

  8. Invited article summarizing the Science To Achieve Results research portfolio on Black Carbon for the journal EM of the Air and Waste Management Association.

    Science.gov (United States)

    Where there’s smoke, there’s fire – and black carbon. Black carbon is the sooty material emitted from combustion processes, including diesel engines and other sources that burn fossil fuels, biofuels, or biomass. This soot contributes to fine particulate matter,...

  9. Characterization of Black Carbon Mixing State Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Davidovits, P. [Boston College, Chestnut Hill, MA (United States); Lewis, E. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Onasch, T. B. [Aerodyne Research, Billerica, MA (United States)

    2016-04-01

    Interpreting the temporal relationship between the scattering and incandescence signals recorded by the Single Particle Soot Photometer (SP2), Sedlacek et al. (2012) reported that 60% of the refractory black carbon containing particles in a plume containing biomass burning tracers exhibited non-core-shell structure. Because the relationship between the rBC (refractory black carbon) incandescence and the scattering signals had not been reported in the peer-reviewed literature, and to further evaluate the initial interpretation by Sedlacek et al., a series of experiments was undertaken to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance to characterize this signal relationship. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate), and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermochemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources. This work was communicated in a 2015 publication (Sedlacek et al. 2015)

  10. Comparison of the Raman spectra of ion irradiated soot and collected extraterrestrial carbon

    Science.gov (United States)

    Brunetto, R.; Pino, T.; Dartois, E.; Cao, A.-T.; d'Hendecourt, L.; Strazzulla, G.; Bréchignac, Ph.

    2009-03-01

    We use a low pressure flame to produce soot by-products as possible analogues of the carbonaceous dust present in diverse astrophysical environments, such as circumstellar shells, diffuse interstellar medium, planetary disks, as well as in our own Solar System. Several soot samples, displaying an initial chemical diversity from aromatic to aliphatic dominated material, are irradiated with 200-400 keV H +, He +, and Ar ++ ions, with fluences comprised between 10 14 and 10 16 ions/cm 2, to simulate expected radiation induced modification on extraterrestrial carbon. The evolution of the samples is monitored using Raman spectroscopy, before, during, and after irradiation. A detailed analysis of the first- and second-order Raman spectra is performed, using a fitting combination of Lorentzian and/or Gaussian-shaped bands. Upon irradiation, the samples evolve toward an amorphous carbon phase. The results suggest that the observed variations are more related to vacancy formation than ionization processes. A comparison with Raman spectra of extraterrestrial organic matter and other irradiation experiments of astrophysically relevant carbonaceous materials is presented. The results are consistent with previous experiments showing mostly amorphization of various carbonaceous materials. Irradiated soots have Raman spectra similar to those of some meteorites, IDPs, and Comet Wild 2 grains collected by the Stardust mission. Since the early-Sun expected irradiation fluxes sufficient for amorphization are compatible with accretion timescales, our results support the idea that insoluble organic matter (IOM) observed in primitive meteorites has experienced irradiation-induced amorphization prior to the accretion of the parent bodies, emphasizing the important role played by early solar nebula processing.

  11. Relating black carbon content to reduction of snow albedo

    Science.gov (United States)

    Brandt, R. E.; Warren, S. G.; Clarke, A. D.

    2011-12-01

    In remote snow of the Northern Hemisphere, the levels of soot pollution are in the parts-per-billion (ppb) range, where the effect on albedo is at the level of a few percent. A reduction of albedo by 1-2% is significant for climate but is difficult to detect experimentally, because snow albedo depends on several other variables. In our work to quantify the climatic effect of black carbon (BC) in snow, we therefore do not directly measure the albedo reduction. Instead, we use a two-step procedure: (1) We collect snow samples, melt and filter them, and analyze the filters spectrophotometrically for BC concentration. (2) We use the BC amount from the filter measurement, together with snow grain size, in a radiative transfer model to compute the albedo reduction. Our radiative transfer model uses the discrete ordinates algorithm DISORT 2.0. We have chosen a representative BC size distribution and optical constants, and have incorporated those of mineral dust as well. While a given mass of BC causes over an order of magnitude more snow albedo reduction compared to dust, a snowpack containing dust mutes the albedo-reducing effect of BC. Because the computed reduction of snow albedo is model-based, it requires experimental verification. We doubt that direct measurement of albedo-reduction will be feasible in nature, because of the vertical variation of both snow grain size and soot content, and because the natural soot content is small. We conclude that what is needed is an artificial snowpack, with uniform grain size and large uniform soot content (ppm not ppb), to produce a large signal on albedo. We have chosen to pursue this experiment outdoors rather than in the laboratory, for the following reasons: (1) The snowpack in the field of view is uniformly illuminated if the source of radiation is the Sun. (2) Visible radiation penetrates into the snow, so photons emerge horizontally distant from where they entered. In the limited width of a laboratory snowpack, radiation

  12. The impact of carbon dioxide and exhaust gas recirculation on the oxidative reactivity of soot from ethylene flames and diesel engines

    Science.gov (United States)

    Al-Qurashi, Khalid O.

    Restrictive emissions standards to reduce nitrogen oxides (NOx) and particulate matter (PM) emissions from diesel engines necessitate the development of advanced emission control technology. The engine manufacturers in the United States have implemented the exhaust gas recirculation (EGR) and diesel particulate filters (DPF) to meet the stringent emissions limits on NOx and PM, respectively. Although the EGR-DPF system is an effective means to control diesel engine emissions, there are some concerns associated with its implementation. The chief concern with this system is the DPF regenerability, which depends upon several factors, among which are the physicochemical properties of the soot. Despite the plethora of research that has been conducted on DPF regenerability, the impact of EGR on soot reactivity and DPF regenerability is yet to be examined. This work concerns the impact of EGR on the oxidative reactivity of diesel soot. It is part of ongoing research to bridge the gap in establishing a relationship between soot formation conditions, properties, and reactivity. This work is divided into three phases. In the first phase, carbon dioxide (CO2) was added to the intake charge of a single cylinder engine via cylinders of compressed CO2. This approach simulates the cold-particle-free EGR. The results showed that inclusion of CO2 changes the soot properties and yields synergistic effects on the oxidative reactivity of the resulting soot. The second phase of this research was motivated by the findings from the first phase. In this phase, post-flame ethylene soot was produced from a laboratory co-flow laminar diffusion flame to better understand the mechanism by which the CO2 affects soot reactivity. This phase was accomplished by successfully isolating the dilution, thermal, and chemical effects of the CO2. The results showed that all of these effects account for a measurable increase in soot reactivity. Nevertheless, the thermal effect was found to be the most

  13. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    Science.gov (United States)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  14. Formation of Soot in Counterflow Diffusion Flames with Carbon Dioxide Dilution

    KAUST Repository

    Wang, Yu

    2016-05-04

    Experimental and numerical modeling studies have been performed to investigate the effect of CO2 dilution on soot formation in ethylene counterflow diffusion flames. Thermal and chemical effects of CO2 addition on soot growth was numerically identified by using a fictitious CO2 species, which was treated as inert in terms of chemical reactions. The results showed that CO2 addition reduces soot formation both thermodynamically and chemically. In terms of chemical effect, the addition of CO2 decreases soot formation through various pathways, including: (1) reduced soot precursor (PAH) formation leading to lower inception rates and soot number density, which in turn results in lower surface area for soot mass addition; (2) reduced H, CH3, and C3H3 concentrations causing lower H abstraction rate and therefore less active site per surface area for soot growth; and (3) reduced C2H2 mole fraction and thus a slower C2H2 mass addition rate. In addition, the sooting limits were also measured for ethylene counterflow flames in both N2 and CO2 atmosphere and the results showed that sooting region was significantly reduced in the CO2 case compared to the N2 case. © 2016 Taylor & Francis.

  15. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments

    International Nuclear Information System (INIS)

    Koelmans, A.A.; Nowack, B.; Wiesner, M.R.

    2009-01-01

    In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to aggregation or degradation, and MCNP burial in deeper sediment layers. The resultant steady state MCNP levels are compared with BCNP levels calculated from soot levels in sediments and weight fractions of nanosized fractions of these soot particles. MCNP/BCNP ratios range from 10 -7 to 10 -4 (w:w). This suggests that the often acclaimed effect of MCNPs on organic pollutant binding and bioavailability will likely be below the level of detection if natural BCNPs are present, even if binding to MCNP is one to two orders of magnitude stronger than to BCNPs. Furthermore, exposure and toxic effects of MCNPs in sediments and soils will be negligible compared to that of BCNPs. - Concentrations of manufactured carbon-based nanoparticles in sediments and soils will be negligible compared to levels of black carbon (soot) nanoparticles

  16. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars).

    Science.gov (United States)

    Harvey, Omar R; Kuo, Li-Jung; Zimmerman, Andrew R; Louchouarn, Patrick; Amonette, James E; Herbert, Bruce E

    2012-02-07

    The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R(50), for assessing biochar quality for carbon sequestration is proposed. The R(50) is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R(50), with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R(50) and biochar recalcitrance. As presented here, the R(50) is immediately applicable to pre-land application screening of biochars into Class A (R(50) ≥ 0.70), Class B (0.50 ≤ R(50) carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, whereas Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R(50), to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.

  17. Emissions & Measurements - Black Carbon | Science ...

    Science.gov (United States)

    Emissions and Measurement (EM) research activities performed within the National Risk Management Research Lab NRMRL) of EPA's Office of Research and Development (ORD) support measurement and laboratory analysis approaches to accurately characterize source emissions, and near source concentrations of air pollutants. They also support integrated Agency research programs (e.g., source to health outcomes) and the development of databases and inventories that assist Federal, state, and local air quality managers and industry implement and comply with air pollution standards. EM research underway in NRMRL supports the Agency's efforts to accurately characterize, analyze, measure and manage sources of air pollution. This pamphlet focuses on the EM research that NRMRL researchers conduct related to black carbon (BC). Black Carbon is a pollutant of concern to EPA due to its potential impact on human health and climate change. There are extensive uncertainties in emissions of BC from stationary and mobile sources. Emissions and Measurement (EM) research activities performed within the National Risk Management Research Lab NRMRL) of EPA's Office of Research and Development (ORD)

  18. Optics of Water Cloud Droplets Mixed with Black-Carbon Aerosols

    Science.gov (United States)

    Mishchenko, Michael I.; Liu, Li; Cairns, Brian; Mackowski, Daniel W.

    2014-01-01

    We use the recently extended superposition T-matrix method to calculate scattering and absorption properties of micrometer-sized water droplets contaminated by black carbon. Our numerically exact results reveal that, depending on the mode of soot-water mixing, the soot specific absorption can vary by a factor exceeding 6.5. The specific absorption is maximized when the soot material is quasi-uniformly distributed throughout the droplet interior in the form of numerous small monomers. The range of mixing scenarios captured by our computations implies a wide range of remote sensing and radiation budget implications of the presence of black carbon in liquid-water clouds. We show that the popular Maxwell-Garnett effective-medium approximation can be used to calculate the optical cross sections, single-scattering albedo, and asymmetry parameter for the quasi-uniform mixing scenario, but is likely to fail in application to other mixing scenarios and in computations of the elements of the scattering matrix.

  19. Facile synthesis of nano cauliflower and nano broccoli like hierarchical superhydrophobic composite coating using PVDF/carbon soot particles via gelation technique.

    Science.gov (United States)

    Sahoo, Bichitra Nanda; Balasubramanian, Kandasubramanian

    2014-12-15

    We have elucidated a cost effective fabrication technique to produce superhydrophobic polyvinylidene fluoride (PVDF/DMF/candle soot particle and PVDF/DMF/camphor soot particle composite) porous materials. The water repellent dry composite was formed by the interaction of non-solvent (methanol) into PVDF/carbon soot particles suspension in N,N-dimethylformamide (DMF). It is seen that longer quenching time effectively changes the surface morphology of dry composites. The nano broccoli like hierarchical microstructure with micro or nano scaled roughen surface was obtained for PVDF/DMF/camphor soot particle, which reveals water contact angle of 172° with roll off angle of 2°. However, composite coating of PVDF/DMF/candle soot particle shows nano cauliflower like hierarchical, which illustrates water contact angle of 169° with roll off angle of 3°. To elucidate the enhancement of water repellent property of PVDF composites, we further divulge the evolution mechanism of nano cauliflower and nano broccoli structure. In order to evaluate the water contact angle of PVDF composites, surface diffusion of water inside the pores is investigated. Furthermore, the addition of small amount of carbon soot particles in composite not only provides the crystallization of PVDF, but also leads to dramatical amendment of surface morphology which increases the surface texture and roughness for superhydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Effects of airborne black carbon pollution on maize

    Science.gov (United States)

    Illes, Bernadett; Anda, Angela; Soos, Gabor

    2013-04-01

    The black carbon (BC) changes the radiation balance of the Earth and contributes to global warming. The airborne BC deposited on the surface of plant, changing the radiation balance, water balance and the total dry matter (TDM) content of plant. The objective of our study was to investigate the impact of soot originated from motor vehicle exhaust on maize. The field experiment was carried out in Keszthely Agrometeorological Research Station (Hungary) in three consecutive years (2010, 2011, 2012) of growing season. The test plant was the maize hybrid Sperlona (FAO 340) with short growing season. The BC was chemically "pure", which means that it is free any contaminants (e.g. heavy metals). The BC was coming from the Hankook Tyre Company (Dunaújváros, Hungary), where used that for improve the wear resistance of tires. We used a motorised sprayer of SP 415 type to spray the BC onto the leaf surface. The leaf area index (LAI) was measured each week on the same 12 sample maize in each treatment using an LI 3000A automatic planimeter (LI-COR, Lincoln, NE). Albedo was measured by pyranometers of the CMA-11 type (Kipp & Zonen, Vaisala), what we placed the middle of the plot of 0.3 ha. The effects of BC were studied under two different water supplies: evapotranspirometers of Thornthwaite type were used for "ad libitum" treatment and rainfed treatment in field plots. In 2010 and 2012, a big difference was not observed in the case of LAI in the effects of BC. However, in 2011 there was a significant difference. The LAI of the BC polluted maize was higher (10-15%, P<0.05), than the LAI of the control maize in the rainfed plot and in the ET chambers, respectively. The albedo of the BC contaminated maize decreased (15-30%, P<0.05) in all three years. We also detected that the green plant surface of maize increased on BC contaminated treatment. These results may suggest that the plant is able to absorb the additional carbon source through the leaves. The albedo decreased

  1. Technical Note: The single particle soot photometer fails to reliably detect PALAS soot nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Gysel

    2012-12-01

    Full Text Available The single particle soot photometer (SP2 uses laser-induced incandescence (LII for the measurement of atmospheric black carbon (BC particles. The BC mass concentration is obtained by combining quantitative detection of BC mass in single particles with a counting efficiency of 100% above its lower detection limit. It is commonly accepted that a particle must contain at least several tenths of a femtogram BC in order to be detected by the SP2.

    Here we show the result that most BC particles from a PALAS spark discharge soot generator remain undetected by the SP2, even if their BC mass, as independently determined with an aerosol particle mass analyser (APM, is clearly above the typical lower detection limit of the SP2. Comparison of counting efficiency and effective density data of PALAS soot with flame generated soot (combustion aerosol standard burner, CAST, fullerene soot and carbon black particles (Cabot Regal 400R reveals that particle morphology can affect the SP2's lower detection limit. PALAS soot particles are fractal-like agglomerates of very small primary particles with a low fractal dimension, resulting in a very low effective density. Such loosely packed particles behave like "the sum of individual primary particles" in the SP2's laser. Accordingly, most PALAS soot particles remain undetected as the SP2's laser intensity is insufficient to heat the primary particles to their vaporisation temperature because of their small size (Dpp ≈ 5–10 nm. Previous knowledge from pulsed laser-induced incandescence indicated that particle morphology might have an effect on the SP2's lower detection limit, however, an increase of the lower detection limit by a factor of ∼5–10, as reported here for PALAS soot, was not expected.

    In conclusion, the SP2's lower detection limit at a certain laser power depends primarily on the total BC mass per particle for compact particles with sufficiently high effective

  2. A model study of aggregates composed of spherical soot monomers with an acentric carbon shell

    Science.gov (United States)

    Luo, Jie; Zhang, Yongming; Zhang, Qixing

    2018-01-01

    Influences of morphology on the optical properties of soot particles have gained increasing attentions. However, studies on the effect of the way primary particles are coated on the optical properties is few. Aimed to understand how the primary particles are coated affect the optical properties of soot particles, the coated soot particle was simulated using the acentric core-shell monomers model (ACM), which was generated by randomly moving the cores of concentric core-shell monomers (CCM) model. Single scattering properties of the CCM model with identical fractal parameters were calculated 50 times at first to evaluate the optical diversities of different realizations of fractal aggregates with identical parameters. The results show that optical diversities of different realizations for fractal aggregates with identical parameters cannot be eliminated by averaging over ten random realizations. To preserve the fractal characteristics, 10 realizations of each model were generated based on the identical 10 parent fractal aggregates, and then the results were averaged over each 10 realizations, respectively. The single scattering properties of all models were calculated using the numerically exact multiple-sphere T-matrix (MSTM) method. It is found that the single scattering properties of randomly coated soot particles calculated using the ACM model are extremely close to those using CCM model and homogeneous aggregate (HA) model using Maxwell-Garnett effective medium theory. Our results are different from previous studies. The reason may be that the differences in previous studies were caused by fractal characteristics but not models. Our findings indicate that how the individual primary particles are coated has little effect on the single scattering properties of soot particles with acentric core-shell monomers. This work provides a suggestion for scattering model simplification and model selection.

  3. Immersion microcalorimetry of a carbon black

    International Nuclear Information System (INIS)

    Mendelbaum, Georges

    1966-01-01

    This research thesis first reports a detailed bibliographical study on various topics (fabrication of carbon black, oxidation, immersion heat, adsorptions, main existing theories, and thermodynamics) and then the development of immersion and adsorption microcalorimetry apparatuses aimed at studying the surface of a carbon black and the influence of the oxidation of this carbon black on the adsorption of polar and non-polar solvents. Immersion heats of a raw or oxidised carbon black have been measured in water, in cyclohexane and in methanol. The adsorption of methanol at 20 C and that of nitrogen at -196 C have also been measured. The author outlines that degassing conditions had to be taken into account before performing measurements [fr

  4. Structure and properties of carbon black particles

    Science.gov (United States)

    Xu, Wei

    Structure and properties of carbon black particles were investigated using atomic force microscopy, gas adsorption, Raman spectroscopy, and X-ray diffraction. Supplementary information was obtained using TEM and neutron scattering. The AFM imaging of carbon black aggregates provided qualitative visual information on their morphology, complementary to that obtained by 3-D modeling based on TEM images. Our studies showed that carbon black aggregates were relatively flat. The surface of all untreated carbon black particles was found to be rough and its fractal dimension was 2.2. Heating reduced the roughness and fractal dimension for all samples heat treated at above 1300 K to 2.0. Once the samples were heat treated rapid cooling did not affect the surface roughness. However, rapid cooling reduced crystallite sizes, and different Raman spectra were obtained for carbon blacks of various history of heat treatment. By analyzing the Raman spectra we determined the crystallite sizes and identified amorphous carbon. The concentration of amorphous carbon depends on hydrogen content. Once hydrogen was liberated at increased temperature, the concentration of amorphous carbon was reduced and crystallites started to grow. Properties of carbon blacks at high pressure were also studied. Hydrostatic pressure did not affect the size of the crystallites in carbon black particles. The pressure induced shift in Raman frequency of the graphitic component was a result of increased intermolecular forces and not smaller crystallites. Two methods of determining the fractal dimension, the FHH model and the yardstick technique based on the BET theory were used in the literature. Our study proved that the FHH model is sensitive to numerous assumptions and leads to wrong conclusions. On the other hand the yardstick method gave correct results, which agreed with the AFM results.

  5. Graft-copolymerization onto carbon black

    International Nuclear Information System (INIS)

    Nakase, Yoshiaki; Nishii, Masanobu; Kijima, Toshiyuki; Kato, Hiroshi.

    1988-07-01

    Radiation-induced graft copolymerization of vinyl monomer onto carbon black was performed. During the γ-ray- and electron beam-induced polymerization (In-source), or the electron beam post-polymerization, the graft-copolymerization behavior was affected by the kinds of both carbon blacks and monomers, i.e. the smaller the size of carbon black particles, the higher the apparent grafted fraction. Homopolymer in the grafted carbon black samples was washed out by the solvent of the polymer, and the extracted polymer seemed to be dimer or trimer of the used monomer. In the case of the post-polymerization with the pre-irradiation doses of 50 Mrad, homopolymer was hardly observed. The polymer sheets of plastics or rubbers with grafted carbon black had an electrical conductivity unalterable considerably by the heating cycles. The particles of grafted carbon black in the sheet might be kept much more at the surface layer within 100 nm depth than at the inner layer. (author)

  6. Sorption kinetics and equilibrium of the herbicide diuron to carbon nanotubes or soot in absence and presence of algae.

    Science.gov (United States)

    Schwab, Fabienne; Camenzuli, Louise; Knauer, Katja; Nowack, Bernd; Magrez, Arnaud; Sigg, Laura; Bucheli, Thomas D

    2014-09-01

    Carbon nanotubes (CNT) are strong sorbents for organic micropollutants, but changing environmental conditions may alter the distribution and bioavailability of the sorbed substances. Therefore, we investigated the effect of green algae (Chlorella vulgaris) on sorption of a model pollutant (diuron, synonyms: 3-(3,4-Dichlorophenyl)-1,1-dimethylurea, DCMU) to CNT (multi-walled purified, industrial grade, pristine, and oxidized; reference material: Diesel soot). In absence of algae, diuron sorption to CNT was fast, strong, and nonlinear (Freundlich coefficients: 10(5.79)-10(6.24) μg/kgCNT·(μg/L)(-n) and 0.62-0.70 for KF and n, respectively). Adding algae to equilibrated diuron-CNT mixtures led to 15-20% (median) diuron re-dissolution. The relatively high amorphous carbon content slowed down ad-/desorption to/from the high energy sorption sites for both industrial grade CNT and soot. The results suggest that diuron binds readily, but - particularly in presence of algae - partially reversibly to CNT, which is of relevance for environmental exposure and risk assessment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Carbon nanofibers extracted from soot as a sorbent for the determination of aromatic amines from wastewater effluent samples.

    Science.gov (United States)

    Vadukumpully, Sajini; Basheer, Chanbasha; Jeng, Cheng Suh; Valiyaveettil, Suresh

    2011-06-10

    The isolation and characterization of carbon nanofibers from soot obtained by burning natural oil is reported. The fibers were extracted from the soot with tetrahydrofuran followed by sonication. The carbon nanofibers were mixed with poly(vinyl alcohol) and electrospun to get the nanofiber mat. The extraction ability of electrospun nanofibers for the separation and preconcentration of aromatic compounds such as 3-nitroaniline, 4-chloroaniline, 4-bromoaniline and 3,4-dichloroaniline were tested and efficiently evaluated using high performance liquid chromatography. Under optimized conditions, the method showed good linearity in a range of 0.5-50 μg L⁻¹ with correlation coefficient ranging from 0.989 to 0.998. High precision of the extraction with RSD values of 4.5-5.8% and low LOD value in a range of 0.009-0.081μg L⁻¹ for all aniline compounds were achieved. The proposed microextraction method offers advantages such as easy operation, high recovery, fast extraction, minimal use of organic solvent and elimination of tedious solvent evaporation and reconstitution steps. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Incentives for small clubs of Arctic countries to limit black carbon and methane emissions

    Science.gov (United States)

    Aakre, Stine; Kallbekken, Steffen; Van Dingenen, Rita; Victor, David G.

    2018-01-01

    Although addressing climate change will ultimately require global cooperation, substantial progress may be achieved through small clubs of countries, where it is easier to forge and implement deals needed for policy coordination. Here we quantify the gains from cooperation in the Arctic region and find that nearly 90% of the potential for abating black carbon can be reached by countries acting in self-interest alone because soot, the main source of black carbon, causes severe harm to human health along with warming. Abating methane, by contrast, requires more cooperation because impacts are more diffused geographically. Well-designed clubs with as few as four members can realize more than 80% of the full group cooperation potential for reducing these pollutants. The pivotal player in every effective club is Russia—most other members of the Arctic Council, the institution most focused on advancing the collective interests of the region, offer little leverage on the problems at hand.

  9. Soot in the air may have serious climatic consequences

    International Nuclear Information System (INIS)

    Seip, Hans Martin

    2002-01-01

    Emissions of soot in China and India may be an important cause of changed summer weather in China, with increasing floods in the south-east and increasing droughts in the north-east. In addition to the greenhouse gases, the particulate matter (aerosols) in the air has an important effect on the climate. Most particles have a cooling effect since they reflect solar radiation. However, some particles are dark as they contain soot ('black carbon'). Such particles, which are formed by incomplete combustion of coal, oil and biomass, absorb solar radiation and thus have a warming effect, even if they reduce the solar irradiation on the ground. Soot particles do not have quite the same effect as the greenhouse gases. The soot particles absorb solar radiation, while the greenhouse gases absorb terrestrial heat radiation. In addition, the residence time of the soot particles in the atmosphere is shorter than that of, say, carbon dioxide. The concentration is therefore much higher in areas close to emission sources than elsewhere

  10. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2006-01-01

    Full Text Available Although the definition and measurement techniques for atmospheric 'black carbon' ('BC' or 'elemental carbon'' ('EC' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ('brown carbon, Cbrown' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes from (1 spectral aerosol light absorption measurements near specific combustion sources, (2 observations of spectral properties of water extracts of continental aerosol, (3 laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4 indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of 'BC' and 'EC' over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of Cbrown is high relative to that of soot carbon. Chemical measurements to determine 'EC' are biased by the refractory nature of Cbrown as well as by complex matrix interferences. Optical measurements of 'BC' suffer from a number of problems: (1 many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2 there is no unique conversion factor between light absorption and 'EC' or 'BC' concentration in ambient aerosols, and (3 the difference in spectral properties between the different types of LAC, as well as the chemical complexity of Cbrown, lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our

  11. Distribution, Transport, and Accumulation of Pyrogenic Black Carbon in Post-Wildfire Watersheds

    Science.gov (United States)

    Galanter, A.; Cadol, D. D.; Frey, B.; Lohse, K. A.

    2014-12-01

    Large, high severity wildfires greatly alter forest structure, water quality, and soil development/erosion. With increased frequency of such wildfires also follows heavy post-wildfire debris flows and flooding which deliver high loads of sediment and pyrogenic black carbon (PyC) to downstream waterways. The accumulation of PyC is a multi-faceted and dynamic issue in the critical zone. Generated by incomplete combustion of organic matter, PyC (in the form of soot and char) impacts turbidity, biological and chemical oxygen demand, and pH. In addition, PyC has the potential to sequester contaminants and can store carbon over short and long timescales. The impacts of two recent wildfires in Northern New Mexico are studied with the goal of understanding the fluxes and residence times of PyC in post-wildfire, mountainous watersheds. Employing burn severity maps and geospatial data, we selected three sites to collect soil and water samples to characterize PyC: a control, an area impacted by a large, severe burn (2011), and an area impacted by a smaller, less severe burn (2013). By collaborating with researchers at the Jemez Critical Zone Observatory, soil samples are being analyzed and will provide pre-wildfire PyC concentrations for the 2013 burn area. In this study, PyC is treated as both a particulate and a solute that is transported throughout the watershed as well as degraded in soils, surface water and groundwater. We used two black carbon quantification methods: the chemo-thermal oxidation (CTO-375) method to distinguish between soil soot and char, and the benzene polycarboxylic acids (BPCA) method to quantify the total concentrations of PyC in soil and water samples. Preliminary soil data from the CTO-375 method show comparable soot concentrations in the control, 2011, and 2013 burn indicating that the soot is more recalcitrant than char and remains in the watershed long after a wildfire. This data also suggests that the fluxes of black carbon over short time

  12. Absorbing Aerosols: Field and Laboratory Studies of Black Carbon and Dust

    Science.gov (United States)

    Aiken, A. C.; Flowers, B. A.; Dubey, M. K.

    2011-12-01

    Currently, absorbing aerosols are thought to be the most uncertain factor in atmospheric climate models (~0.4-1.2 W/m2), and the 2nd most important factor after CO2 in global warming (1.6 W/m2; Ramanathan and Carmichael, Nature Geoscience, 2008; Myhre, Science, 2009). While most well-recognized atmospheric aerosols, e.g., sulfate from power-plants, have a cooling effect on the atmosphere by scattering solar radiation, black carbon (BC or soot) absorbs sunlight strongly which results in a warming of the atmosphere. Dust particles are also present globally and can absorb radiation, contributing to a warmer and drier atmosphere. Direct on-line measurements of BC and hematite, an absorbing dust aerosol, can be made with the Single Particle Soot Photometer (SP2), which measures the mass of the particles by incandescence on an individual particle basis. Measurements from the SP2 are combined with absorption measurements from the three-wavelength photoacoustic soot spectrometer (PASS-3) at 405, 532, and 781 nm and the ultraviolet photoacoustic soot spectrometer (PASS-UV) at 375 nm to determine wavelength-dependent mass absorption coefficients (MACs). Laboratory aerosol samples include flame-generated soot, fullerene soot, Aquadag, hematite, and hematite-containing dusts. Measured BC MAC's compare well with published values, and hematite MAC's are an order of magnitude less than BC. Absorbing aerosols measured in the laboratory are compared with those from ambient aerosols measured during the Las Conchas fire and BEACHON-RoMBAS. The Las Conchas fire was a wildfire in the Jemez Mountains of New Mexico that burned over 100,000 acres during the Summer of 2011, and BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study) is a field campaign focusing on biogenic aerosols at the Manitou Forest Observatory near Colorado Springs, CO in Summer 2011. Optical properties and size

  13. Numerical Investigation of Soot Formation in Non-premixed Flames

    KAUST Repository

    Abdelgadir, Ahmed Gamaleldin

    2017-01-01

    Soot is a carbon particulate formed as a result of the combustion of fossil fuels. Due to the health hazard posed by the carbon particulate, government agencies have applied strict regulations to control soot emissions from road vehicles, airplanes

  14. The pH-dependent adsorption of tributyltin to charcoals and soot

    International Nuclear Information System (INIS)

    Fang Liping; Borggaard, Ole K.; Marcussen, Helle; Holm, Peter E.; Bruun Hansen, Hans Christian

    2010-01-01

    Widespread use of tributyltin (TBT) poses a serious environmental problem. Adsorption by black carbon (BC) may strongly affect its behavior. The adsorption of TBT to well characterized soot and two charcoals with specific surface area in the range of 62-111 m 2 g -1 have been investigated with main focus on pH effects. The charcoals but not soot possess acidic functional groups. TBT adsorption reaches maximum at pH 6-7 for charcoals, and at pH > 6 for soot. Soot has between 1.5 and 15 times higher adsorption density (0.09-1.77 μmol m -2 ) than charcoals, but charcoals show up to 17 times higher sorption affinities than soot. TBT adsorption is successfully described by a new pH-dependent dual Langmuir model considering electrostatic and hydrophobic adsorption, and pH effects on TBT speciation and BC surface charge. It is inferred that strong sorption of the TBTOH species to BC may affect TBT toxicity. - Tributyltin adsorption to black carbon increases at increasing pH but charcoal exhibits electrostatic and hydrophobic adsorption, whereas soot only adsorbs hydrophobically.

  15. The pH-dependent adsorption of tributyltin to charcoals and soot

    Energy Technology Data Exchange (ETDEWEB)

    Fang Liping, E-mail: fang@life.ku.d [Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark); Borggaard, Ole K.; Marcussen, Helle; Holm, Peter E.; Bruun Hansen, Hans Christian [Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark)

    2010-12-15

    Widespread use of tributyltin (TBT) poses a serious environmental problem. Adsorption by black carbon (BC) may strongly affect its behavior. The adsorption of TBT to well characterized soot and two charcoals with specific surface area in the range of 62-111 m{sup 2} g{sup -1} have been investigated with main focus on pH effects. The charcoals but not soot possess acidic functional groups. TBT adsorption reaches maximum at pH 6-7 for charcoals, and at pH > 6 for soot. Soot has between 1.5 and 15 times higher adsorption density (0.09-1.77 {mu}mol m{sup -2}) than charcoals, but charcoals show up to 17 times higher sorption affinities than soot. TBT adsorption is successfully described by a new pH-dependent dual Langmuir model considering electrostatic and hydrophobic adsorption, and pH effects on TBT speciation and BC surface charge. It is inferred that strong sorption of the TBTOH species to BC may affect TBT toxicity. - Tributyltin adsorption to black carbon increases at increasing pH but charcoal exhibits electrostatic and hydrophobic adsorption, whereas soot only adsorbs hydrophobically.

  16. Pyrolytic carbon black composite and method of making the same

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.; Paranthaman, Mariappan Parans; Bi, Zhonghe

    2016-09-13

    A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. A method of making a battery electrode is also disclosed.

  17. Chemical composition and heterogeneous reactivity of soot generated in the combustion of diesel and GTL (Gas-to-Liquid) fuels and amorphous carbon Printex U with NO2 and CF3COOH gases

    Science.gov (United States)

    Tapia, A.; Salgado, S.; Martín, P.; Villanueva, F.; García-Contreras, R.; Cabañas, B.

    2018-03-01

    The heterogeneous reactions of nitrogen dioxide (NO2) and trifluoroacetic acid (CF3COOH) with soot produced by diesel and GTL (gas-to-liquid) fuels were investigated using a Knudsen flow reactor with mass spectrometry as a detection system for gas phase species. Soot was generated with a 4 cylinder diesel engine working under steady-state like urban operation mode. Heterogeneous reaction of the mentioned gases with a commercial carbon, Printex U, used as reference, was also analyzed. The initial and the steady-state uptake coefficients, γ0 and γss, respectively, were measured indicating that GTL soot reacts faster than diesel soot and Printex U carbon for NO2 gas reactant. According to the number of reacted molecules on the surface, Printex U soot presents more reducing sites than diesel and GTL soot. Initial uptake coefficients for GTL and diesel soot for the reaction with CF3COOH gas reactant are very similar and no clear conclusions can be obtained related to the initial reactivity. The number of reacted molecules calculated for CF3COOH reactions shows values two orders of magnitude higher than the corresponding to NO2 reactions, indicating a greater presence of basic functionalities in the soot surfaces. More information of the surface composition has been obtained using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) before and after the reaction of soot samples with gas reactants. As conclusion, the interface of diesel and GTL soot before reaction mainly consists of polycyclic aromatic hydrocarbons (PAHs), nitro-compounds as well as ether functionalities. After reaction with gas reactant, it was observed that PAHs and nitro-compounds remain on the soot surface and new spectral bands such as carbonyl groups (carboxylic acids, aldehydes, esters and ketones) are observed. Physical properties of soot from both fuels studied such as BET surface isotherm and SEM analysis were also developed and related to the observed reactivity.

  18. Cellphones as a Distributed Platform for Black Carbon Data Collection

    Science.gov (United States)

    Ramanathan, N.; Ramana, M.; Lukac, M. L.; Siva, P.; Ahmed, T.; Kar, A.; Rehman, I.; Ramanathan, V.

    2010-12-01

    Black carbon (BC), the visible component of soot that gives emissions such as diesel engine exhaust their dark color, has come to be recognized as a major contributor to global warming, and a frontline concern for climate change strategies (Ramanathan 2001, Jacobson 2010). We have developed a new low-cost instrument for gathering and measuring atmospheric BC concentrations that leverages cellphones to transmit data from an air filtration unit to a centralized database for analysis. Our new system relies on image processing techniques, as opposed to other more expensive optical methods, to interpret images of filters captured with a cellphone camera. As a result, the entire system costs less than $500 (and is orders of magnitude cheaper than an Aethalometer, the prevailing method for measuring atmospheric BC). We are working with three community groups in Los Angeles, and will recruit three groups in the San Francisco Bay Area, to enable 40 citizens to be actively engaged in monitoring BC across California. We are working with The Energy Resources Institute, an international NGO based in India, to deploy this instrument with 60 people in conjunction with Project Surya, which aims to deploy clean cookstoves and rigorously evaluate their impact on BC emissions. Field tests of this new instrument performed in California report an average error of 0.28 µg/m3 when compared with an Aethelometer. These excellent results hold the promise of making large-scale data collection of BC feasible and relatively easy to reproduce (Ramanathan et al., forthcoming). The use of cellphones for data collection permits monitoring of BC to occur on a greater, more comprehensive scale not previously possible, and serves as a means of instituting more precise, variation-sensitive evaluations of emissions. By storing the data in a publicly available repository, our system will provide real-time access to mass-scale BC measurements to researchers and the public. Through our pilot

  19. Carbon nanoparticles from corn stalk soot and its novel application as stationary phase of hydrophilic interaction chromatography and per aqueous liquid chromatography

    International Nuclear Information System (INIS)

    Li Yuanyuan; Xu Luan; Chen Tong; Liu Xiaoyan; Xu Zhigang; Zhang Haixia

    2012-01-01

    Highlights: ► Carbon nanoparticles (6–18 nm in size) were prepared from corn stalk soot. ► CNPs-based silica were used as novel chromatography stationary phase. ► The new phase shows good separation selectivity for polar compounds. ► The new phase had the similar retention for polar probes in HILIC and PALC modes. ► In contrast to PALC, under HILIC conditions high efficiencies were achieved. - Abstract: Carbon nanoparticles (CNPs) (6–18 nm in size) were prepared by refluxing corn stalk soot in nitric acid. The obtained acid-oxidized CNPs are soluble in water due to the existence of carboxylic and hydroxyl groups. 13 C NMR measurement shows the CNPs are mainly of sp 2 and sp 3 carbon structure different from CNPs obtained from candle soot and natural gas soot. Furthermore, these CNPs exhibit unique photoluminescence properties. Interestingly, the CNPs might be exploited to immobilize on the surface of porous silica particles as chromatographic stationary phase. The resultant packing material was evaluated by high-performance liquid chromatography, indicating that the new stationary phase could be used in hydrophilic interaction liquid chromatography (HILIC) and per aqueous liquid chromatography (PALC) modes. The separation of five nucleosides, four sulfa compounds and safflower injection was achieved by using the new column in the HILIC and PALC modes, respectively.

  20. Studies of activated carbon and carbon black for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R; Mueller, S; Koetz, R; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  1. 129 Xe-NMR of carbon black filled elastomers

    International Nuclear Information System (INIS)

    Sperling-Ischinsky, K.; Veeman, W.S.

    1999-01-01

    It is shown that 129 Xe-NMR is a powerful tool to investigate carbon black and carbon black filled elastomers. For the carbon black material itself the 129 Xe chemical shift of xenon adsorbed at the surface of carbon black aggregates yields information about the relative average pore size of the carbon black aggregates. The experimental 129 Xe-NMR results of carbon black filled ethylene-propylene-diene (EPDM) can be explained when it is assumed that the xenon atoms in the bound EPDM fraction exchange rapidly on the NMR time scale between a state where they are adsorbed on the carbon black surface and a state in which they are absorbed in the EPDM layer. This would imply that the carbon black aggregates are not completely covered with EPDM chains. (author)

  2. Black carbon in aerosol during BIBLE B

    Science.gov (United States)

    Liley, J. Ben; Baumgardner, D.; Kondo, Y.; Kita, K.; Blake, D. R.; Koike, M.; Machida, T.; Takegawa, N.; Kawakami, S.; Shirai, T.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment (BIBLE) A and B campaigns over the tropical western Pacific during springtime deployed a Gulfstream-II aircraft with systems to measure ozone and numerous precursor species. Aerosol measuring systems included a MASP optical particle counter, a condensation nucleus (CN) counter, and an absorption spectrometer for black carbon. Aerosol volume was very low in the middle and upper troposphere during both campaigns, and during BIBLE A, there was little aerosol enhancement in the boundary layer away from urban areas. In BIBLE B, there was marked aerosol enhancement in the lowest 3 km of the atmosphere. Mixing ratios of CN in cloud-free conditions in the upper troposphere were in general higher than in the boundary layer, indicating new particle formation from gaseous precursors. High concentrations of black carbon were observed during BIBLE B, with mass loadings up to 40 μg m-3 representing as much as one quarter of total aerosol mass. Strong correlations with hydrocarbon enhancement allow the determination of a black carbon emission ratio for the fires at that time. Expressed as elemental carbon, it is about 0.5% of carbon dioxide and 6% of carbon monoxide emissions from the same fires, comparable to methane production, and greater than that of other hydrocarbons.

  3. Modified carbon black materials for lithium-ion batteries

    Science.gov (United States)

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  4. Black carbon: The reverse of its dark side

    NARCIS (Netherlands)

    Koelmans, A.A.; Jonker, M.T.O.; Cornelissen, G.; Bucheli, T.D.; Noort, van P.C.M.; Gustafsson, O.

    2006-01-01

    The emission of black carbon is known to cause major environmental problems. Black carbon particles contribute to global warming, carry carcinogenic compounds and cause serious health risks. Here, we show another side of the coin. We review evidence that black carbon may strongly reduce the risk

  5. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    Science.gov (United States)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  6. Catalytic oxidation of soot over alkaline niobates

    International Nuclear Information System (INIS)

    Pecchi, G.; Cabrera, B.; Buljan, A.; Delgado, E.J.; Gordon, A.L.; Jimenez, R.

    2013-01-01

    Highlights: ► No previous reported studies about alkaline niobates as catalysts for soot oxidation. ► NaNbO 3 and KNbO 3 perovskite-type oxides show lower activation energy than other lanthanoid perovskite-type oxides. ► The alkaline niobate does not show deactivation by metal loss. - Abstract: The lack of studies in the current literature about the assessment of alkaline niobates as catalysts for soot oxidation has motivated this research. In this study, the synthesis, characterization and assessment of alkaline metal niobates as catalysts for soot combustion are reported. The solids MNbO 3 (M = Li, Na, K, Rb) are synthesized by a citrate method, calcined at 450 °C, 550 °C, 650 °C, 750 °C, and characterized by AAS, N 2 adsorption, XRD, O 2 -TPD, FTIR and SEM. All the alkaline niobates show catalytic activity for soot combustion, and the activity depends basically on the nature of the alkaline metal and the calcination temperature. The highest catalytic activity, expressed as the temperature at which combustion of carbon black occurs at the maximum rate, is shown by KNbO 3 calcined at 650 °C. At this calcination temperature, the catalytic activity follows an order dependent on the atomic number, namely: KNbO 3 > NaNbO 3 > LiNbO 3 . The RbNbO 3 solid do not follow this trend presumably due to the perovskite structure was not reached. The highest catalytic activity shown by of KNbO 3 , despite the lower apparent activation energy of NaNbO 3 , stress the importance of the metal nature and suggests the hypothesis that K + ions are the active sites for soot combustion. It must be pointed out that alkaline niobate subjected to consecutive soot combustion cycles does not show deactivation by metal loss, due to the stabilization of the alkaline metal inside the perovskite structure.

  7. Biomass Burning Emissions of Black Carbon from African Sources

    Science.gov (United States)

    Aiken, A. C.; Leone, O.; Nitschke, K. L.; Dubey, M. K.; Carrico, C.; Springston, S. R.; Sedlacek, A. J., III; Watson, T. B.; Kuang, C.; Uin, J.; McMeeking, G. R.; DeMott, P. J.; Kreidenweis, S. M.; Robinson, A. L.; Yokelson, R. J.; Zuidema, P.

    2016-12-01

    Biomass burning (BB) emissions are a large source of carbon to the atmosphere via particles and gas phase species. Carbonaceous aerosols are emitted along with gas-phase carbon monoxide (CO) and carbon dioxide (CO2) that can be used to determine particulate emission ratios and modified combustion efficiencies. Black carbon (BC) aerosols are potentially underestimated in global models and are considered to be one of the most important global warming factors behind CO2. Half or more BC in the atmosphere is from BB, estimated at 6-9 Tg/yr (IPCC, 5AR) and contributing up to 0.6 W/m2 atmospheric warming (Bond et al., 2013). With a potential rise in drought and extreme events in the future due to climate change, these numbers are expected to increase. For this reason, we focus on BC and organic carbon aerosol species that are emitted from forest fires and compare their emission ratios, physical and optical properties to those from controlled laboratory studies of single-source BB fuels to understand BB carbonaceous aerosols in the atmosphere. We investigate BC in concentrated BB plumes as sampled from the new U.S. DOE ARM Program campaign, Layered Atlantic Smoke Interactions with Clouds (LASIC). The ARM Aerosol Mobile Facility 1 (AMF1) and Mobile Aerosol Observing System (MAOS) are currently located on Ascension Island in the South Atlantic Ocean, located midway between Angola and Brazil. The location was chosen for sampling maximum aerosol outflow from Africa. The far-field aged BC from LASIC is compared to BC from indoor generation from single-source fuels, e.g. African grass, sampled during Fire Lab At Missoula Experiments IV (FLAME-IV). BC is measured with a single-particle soot photometer (SP2) alongside numerous supporting instrumentation, e.g. particle counters, CO and CO2 detectors, aerosol scattering and absorption measurements, etc. FLAME-IV includes both direct emissions and well-mixed aerosol samples that have undergone dilution, cooling, and condensation. BC

  8. Effect of strain rate on sooting limits in counterflow diffusion flames of gaseous hydrocarbon fuels: Sooting temperature index and sooting sensitivity index

    KAUST Repository

    Wang, Yu

    2014-05-01

    The effect of the strain rate on the sooting limits in counterflow diffusion flames was investigated in various gaseous hydrocarbon fuels by varying the nitrogen dilution in the fuel and oxidizer streams. The sooting limit was defined as the critical fuel and oxygen mole fraction at which soot started to appear in the elastic light scattering signal. The sooting region for normal alkane fuels at a specified strain rate, in terms of the fuel and oxygen mole fraction, expanded as the number of carbon atoms increased. The alkene fuels (ethylene, propene) tested had a higher propensity for sooting as compared with alkane fuels with the same carbon numbers (ethane, propane). Branched iso-butane had a higher propensity for sooting than did n-butane. An increase in the strain rate reduced the tendency for sooting in all the fuels tested. The sensitivity of the sooting limit to the strain rate was more pronounced for less sooting fuels. When plotted in terms of calculated flame temperature, the critical oxygen mole fraction exhibited an Arrhenius form under sooting limit conditions, which can be utilized to significantly reduce the effort required to determine sooting limits at different strain rates. We found that the limiting temperatures of soot formation flames are viable sooting metrics for quantitatively rating the sooting tendency of various fuels, based on comparisons with threshold soot index and normalized smoke point data. We also introduce a sooting temperature index and a sooting sensitivity index, two quantitative measures to describe sooting propensity and its dependence on strain rate. © 2013 The Combustion Institute.

  9. Carbon nanotube-based black coatings

    Science.gov (United States)

    Lehman, J.; Yung, C.; Tomlin, N.; Conklin, D.; Stephens, M.

    2018-03-01

    Coatings comprising carbon nanotubes are very black, that is, characterized by uniformly low reflectance over a broad range of wavelengths from the visible to far infrared. Arguably, there is no other material that is comparable. This is attributable to the intrinsic properties of graphitic material as well as the morphology (density, thickness, disorder, and tube size). We briefly describe a history of other coatings such as nickel phosphorous, gold black, and carbon-based paints and the comparable structural morphology that we associate with very black coatings. The need for black coatings is persistent for a variety of applications ranging from baffles and traps to blackbodies and thermal detectors. Applications for space-based instruments are of interest and we present a review of space qualification and the results of outgassing measurements. Questions of nanoparticle safety depend on the nanotube size and aspect ratio as well as the nature and route of exposure. We describe the growth of carbon nanotube forests along with the catalyst requirements and temperature limitations. We also describe coatings derived from carbon nanotubes and applied like paint. Building the measurement apparatus and determining the optical properties of something having negligible reflectance are challenging and we summarize the methods and means for such measurements. There exists information in the literature for effective media approximations to model the dielectric function of vertically aligned arrays. We summarize this along with the refractive index of graphite from the literature that is necessary for modeling the optical properties. In our experience, the scientific questions can be overshadowed by practical matters, so we provide an appendix of recipes for making as-grown and sprayed coatings along with an example of reflectance measurements.

  10. Coatings of black carbon in Tijuana, Mexico, during the CalMex Campaign

    Science.gov (United States)

    Takahama, S.; Russell, L. M.; Duran, R.; Subramanian, R.; Kok, G.

    2010-12-01

    Black carbon number and mass concentrations were measured by a single-particle soot photometer (SP2; by Droplet Measurement Technologies) in Tijuana, Mexico between May 15, 2010, and June 30, 2010, for the CalMex campaign. The measurement site, Parque Morelos, is a recreational area located in the Southeast region of Tijuana. The SP2 was equipped with 8-channels of signal detection that spans a wider range of sensitivity for incandescing and scattering measurements than traditional configurations. The campaign-average number concentration of incandescing particles was 280 #/cc, peaking during traffic activity in the mornings. Incandescing particles made up 50% of all particles (incandescing and purely scattering) detected by the SP2. The mode of the number size distribution estimated for black carbon, according to estimated mass-equivalent diameters, was approximately 100 nm or smaller. Temporal variations in estimated coating thicknesses for these black carbon particles are discussed together with co-located measurements of organic aerosol and inorganic salts.

  11. Small particles big effect? - Investigating ice nucleation abilities of soot particles

    Science.gov (United States)

    Mahrt, Fabian; David, Robert O.; Lohmann, Ulrike; Stopford, Chris; Wu, Zhijun; Kanji, Zamin A.

    2017-04-01

    Atmospheric soot particles are primary particles produced by incomplete combustion of biomass and/or fossil fuels. Thus soot mainly originates from anthropogenic emissions, stemming from combustion related processes in transport vehicles, industrial and residential uses. Such soot particles are generally complex mixtures of black carbon (BC) and organic matter (OM) (Bond et al., 2013; Petzold et al., 2013), depending on the sources and the interaction of the primary particles with other atmospheric matter and/or gases BC absorbs solar radiation having a warming effect on global climate. It can also act as a heterogeneous ice nucleating particle (INP) and thus impact cloud-radiation interactions, potentially cooling the climate (Lohmann, 2002). Previous studies, however, have shown conflicting results concerning the ice nucleation ability of soot, limiting the ability to predict its effects on Earth's radiation budget. Here we present a laboratory study where we systematically investigate the ice nucleation behavior of different soot particles. Commercial soot samples are used, including an amorphous, industrial carbon frequently used in coatings and coloring (FW 200, Orion Engineered Carbons) and a fullerene soot (572497 ALDRICH), e.g. used as catalyst. In addition, we use soot generated from a propane flame Combustion Aerosol Standard Generator (miniCAST, JING AG), as a proxy for atmospheric soot particles. The ice nucleation ability of these soot types is tested on size-selected particles for a wide temperature range from 253 K to 218 K, using the Horizontal Ice Nucleation Chamber (HINC), a Continuous Flow Diffusion Chamber (CFDC) (Kanji and Abbatt, 2009). Ice nucleation results from these soot surrogates will be compared to chemically more complex real world samples, collected on filters. Filters will be collected during the 2016/2017 winter haze periods in Beijing, China and represent atmospheric soot particles with sources from both industrial and residential

  12. Black carbon network in Mexico. First Results

    Science.gov (United States)

    Barrera, Valter; Peralta, Oscar; Granado, Karen; Ortinez, Abraham; Alvarez-Ospina, Harry; Espinoza, Maria de la Luz; Castro, Telma

    2017-04-01

    After the United Nations Framework Convention on Climate Change celebrated in Paris 2016, many countries should adopt some mechanisms in the next years to contribute to mitigate greenhouse gas emissions and support sustainable development. Mexico Government has adopted an unconditional international commitment to carry out mitigation actions that would result in the reduction of 51% in black carbon (BC) emissions by year 2030. However, many BC emissions have been calculated by factor emissions. Since optical measurements of environmental BC concentrations can vary according the different components and their subsequence wavelength measure, it's important to obtain more accurate values. BC is formally defined as an ideally light-absorbing substance composed by carbon (Bond et al., 2013), and is the second main contributor (behind Carbon Dioxide; CO2) to positive radiative forcing (Ramanathan and Carmichael, 2008). Recently, BC has been used as an additional indicator in air quality management in some cities because is emitted from the incomplete combustion of fossil fuels, biofuel and biomass burning in both anthropogenic and it is always emitted with other particles and gases, such as organic carbon (OC), nitrogen oxides (NOx), and sulfur dioxide (SO2). Black Carbon, PM2.5 and pollutant gases were measured from January 2015 to December 2015 at three main cities in Mexico, and two other places to evaluate the BC concentration levels in the country. The urban background sites (Mexico City, Monterrey, Guadalajara, MXC-UB, GDL-UB, MTY-UB), a sub-urban background site (Juriquilla, Queretaro, JUR-SUB) and a regional background site (Altzomoni, ALT-RB). Results showed the relationship between BC and PM2.5 in the 3 large cities, with BC/PM2.5 ratios near 0.14 to 0.09 and a high BC-CO relationship in all the year in Mexico City, who showed that mobile sources are a common, at least in cities with a non-significant biomass burning emission related to agriculture or coal

  13. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-01-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders. -- Highlights: ► New superposition T-matrix code is applied to soot aerosols. ► Quasi-Rayleigh side-scattering peak in linear depolarization (LD) is explained. ► LD measurements can be used for morphological characterization of soot aerosols

  14. Dielectric properties of PMMA/Soot nanocomposites.

    Science.gov (United States)

    Clayton, Lanetra M; Cinke, Martin; Meyyappan, M; Harmon, Julie P

    2007-07-01

    Dielectric analysis (DEA) of relaxation behavior in poly(methyl methacrylate) (PMMA) soot nanocomposites is described herein. The soot, an inexpensive material, consists of carbon nanotubes, amorphous and graphitic carbon and metal particles. Results are compared to earlier studies on PMMA/multi-walled nanotube (MWNT) composites and PMMA/single-walled nanotube (SWNT) composites. The beta relaxation process appeared to be unaffected by the presence of the soot, as was noted earlier in nanotube composites. The gamma relaxation region in PMMA, normally dielectrically inactive, was "awakened" in the PMMA/soot composite. This occurrence is consistent with previously published data on nanotube composites. The dielectric permittivity, s', increased with soot content. The sample with 1% soot exhibited a permittivity (at 100 Hz and 25 degrees C) of 7.3 as compared to 5.1 for neat PMMA. Soot increased the dielectric strength, deltaE, of the composites. The 1% soot sample exhibited a dielectric strength of 6.38, while the neat PMMA had a value of 2.95 at 40 degrees C. The symmetric broadening term (alpha) was slightly higher for the 1% composite at temperatures near the secondary relaxation and near the primary relaxation, but all samples deviated from symmetrical semi-circular behavior (alpha = 1). The impact of the soot filler is seen more clearly in dielectric properties than in mechanical properties studies conducted earlier.

  15. Effect of carbon black nanoparticles on methane/air explosions: Influence at low initial turbulence

    Science.gov (United States)

    Torrado, David; Glaude, Pierre-Alexandre; Dufaud, Olivier

    2017-06-01

    Nanoparticles are widely used in industrial applications as additives to modify materials properties such as resistance, surface, rheology or UV-radiation. As a consequence, the quantification and characterization of nanoparticles have become almost compulsory, including the understanding of the risks associated to their use. Since a few years ago, several studies of dust explosion properties involving nano-sized powder have been published. During the production and industrial use of nanoparticles, simultaneous presence of gas / vapor / solvents and dispersed nanoparticles mixtures might be obtained, increasing the risk of a hybrid mixture explosion. The aim of this work is to study the severity of the explosion of carbon black nanoparticles/methane mixtures and understand the influence of adding nanopowders on the behavior of the gas explosions. These results are also useful to understand the influence of soot on the efficiency of the gas combustion. Two grades of carbon black nanoparticles (ranging from 20 to 300 nm average diameter) have been mixed with methane. Tests have been performed on these mixtures in a standard 20 L explosion sphere. Regarding the scale precision, the lowest concentration of carbon black nanoparticles was set at 0.5 g.m-3. Tests were also performed at 2.5 g.m-3, which is still far below 60 g.m-3, the minimum explosive concentration of such powders previously determined in our laboratory. The influence of carbon black particles on the severity of the explosions has been compared to that of pure gas. It appears that the use of carbon black nanoparticles increases the explosion overpressure for lean methane mixtures at low initial turbulences by c. 10%. Similar results were obtained for high initial turbulent systems. Therefore, it seems that carbon black nanoparticles have an impact on the severity of the explosion even for quiescent systems, as opposed to systems involving micro-sized powders that require dispersion at high turbulence

  16. Black Carbon at the Mt. Bachelor Observatory Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, Dan A. [Univ. of Washington, Bothell, WA (United States); Sedlacek, Arthur [Brookhaven National Lab. (BNL), Upton, NY (United States); Laing, James R. [Univ. of Washington, Bothell, WA (United States)

    2017-03-01

    This campaign was initiated to measure refractory black carbon (rBC, as defined in Schwarz et al. (2010)) at the Mt. Bachelor Observatory (MBO) using the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility single-particle soot photometer (SP2; unit 54). MBO is a high-elevation site located on the summit of Mt. Bachelor in central Oregon, USA (43.979°N, 121.687°W, 2,763 meters ASL). This site is operated by Professor Dan Jaffe’s group at the University of Washington Bothell and has been used continuously as an atmospheric observatory for the past 12 years (Jaffe et al., 2005; Gratz et al., 2014). The location of MBO allows frequent sampling of the free troposphere along with a wide array of plumes from regional and distant sources. MBO is currently supported with funding from the National Science Foundation (NSF) to the Principal Investigator (PI; D. Jaffe) via the project “Influence of Free Tropospheric Ozone and PM on Surface Air Quality in the Western U.S.” (#1447832) covering the period 03/15/2015 to 02/28/2018. The SP2 instrument from Droplet Measurement Technologies provides particle-resolved measurements of rBC mass loading, size and mass distributions, and mixing state. The SP2 was installed at MBO on 6/27/2016 and ran through 9/23/2016. Additional measurements at MBO during this campaign included carbon monoxide (CO), fine particulate matter (PM1), aerosol light scattering coefficients (σscat) at three wavelengths using a TSI nephelometer, aerosol absorption coefficients (σabs) with the Brechtel tricolor absorption photometer (TAP), aerosol number size distributions with a scanning mobility particle sizer spectrometer (SMPS), and black carbon (eBC) with an aethalometer. BC data from this campaign have been submitted to the ARM Data Archive. Black carbon (BC) is the predominant light-absorbing aerosol constituent in the atmosphere, and is estimated to exert a positive radiative forcing second only to CO

  17. Rethinking the distinction between black and brown carbon

    Science.gov (United States)

    Adler, G. A.; Franchin, A.; Lamb, K. D.; Manfred, K.; Middlebrook, A. M.; Schwarz, J. P.; Wagner, N.; Washenfelder, R. A.; Womack, C.; Murphy, D. M.

    2017-12-01

    Aerosol radiative properties contribute large uncertainty to modeling of the earth's radiative budget. Black carbon (BC) aerosols originate from combustion processes and substantially contribute to warming and uncertainty - ongoing efforts are focused on reducing their anthropogenic emissions even as their emissions from biomass burning sources, such as wildfire, may increase in the future. Quantifying the radiative effect of BC is challenging, in part due to its association with other light absorbing materials including Brown carbon organic aerosol (BrC) that absorbs primarily blue and ultraviolet light while BC absorbs broadly across the visible. Conventionally BrC is thought of a low volatility spherical particles, distinguishing it from BC, which has a distinctive agglomerate morphology and is refractory at high temperatures. However, the separation of BC and BrC is often operationally defined and dependent on the measurement method. Using measurements of aerosol morphology, mass, absorption, and refractory BC mass content we were able to identify a light absorbing contribution from biomass burning aerosol that does not correspond to either BC or BrC as conventionally defined. Our measurements were collected from realistic biomass burning fires at the Missoula Fire Sciences Laboratory as part of the NOAA FIREX project (2016) and from extensive natural wildfire sampled aloft during NASA SEAC4RS field study (2013). We coin the term Dark Brown Carbon (DBrC) to describe this material, which absorbs broadly across the visible and survives thermal denuding at 250°C but does not incandesce in laser induced incandesce (LII) measurements. DBrC may be an intermediate burning stage product between polycyclic aromatic hydrocarbons (PAHs) and the mature soot. DBrC deserves further study to quantify its abundance and aging in ambient biomass burning plumes, and its relationship to tar balls. Our findings show that more than half of the light absorption in biomass burning

  18. Graft polymerization of vynil monomers at carbon black surface (1)

    International Nuclear Information System (INIS)

    Haryono Arumbinang.

    1976-01-01

    Effect of aromatic condensates containing functional group on carbon black surface, effect of pH condensates on carbon black chemisorption, analysis and configuration of functional group, the crystal structure, property measurement standard, particle diameter measurement, oil adsorption, colour capacity, volatile acid content, electric resistence and the volume of the granular or carbon black dust, are given. Electron paramagnetic resonance determination of the amount of free radicals on carbon black surface, its oxidation and effects on the surface and inner structure of carbon black, and graft polymerization by radiation copolymerization, are discussed. Experiments on radiation graft copolymerization by acrylic acid, methacrylate, and glycidol methacrylate, in a vacuum condition, have been carried out. It is concluded that further research on the modification and configuration of carbon black should be developed. (author)

  19. Influence and efficiency of catalytic stripper in organic carbon removal from laboratory generated soot aerosols

    Science.gov (United States)

    A catalytic stripper (CS) is a device used to remove the semi-volatile, typically organic carbon, fraction by passing raw or diluted exhaust over an oxidation catalyst heated to 300˚C. The oxidation catalyst used in this study is a commercially available diesel oxidation ca...

  20. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kameya, Yuki, E-mail: ykameya@anl.gov; Lee, Kyeong O. [Argonne National Laboratory, Center for Transportation Research (United States)

    2013-10-15

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed.

  1. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    Science.gov (United States)

    Kameya, Yuki; Lee, Kyeong O.

    2013-10-01

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed.

  2. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    International Nuclear Information System (INIS)

    Kameya, Yuki; Lee, Kyeong O.

    2013-01-01

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed

  3. Prenatal Exposure to Carbon Black (Printex 90)

    DEFF Research Database (Denmark)

    Jackson, Petra; Vogel, Ulla; Wallin, Håkan

    2011-01-01

    Maternal pulmonary exposure to ultrafine particles during pregnancy may affect the health of the child. Developmental toxicity of carbon black (Printex 90) nanoparticles was evaluated in a mouse model. Time-mated mice were intratracheally instilled with Printex 90 dispersed in Millipore water on ...... on gestation days (GD) 7, 10, 15 and 18, with total doses of 11, 54 and 268 mu g Printex 90/animal. The female offspring prenatally exposed to 268 mu g Printex 90/animal displayed altered habituation pattern during the Open field test....

  4. Influence of public transport in black carbon

    Science.gov (United States)

    Vasquez, Y.; Oyola, P.; Gramsch, E. V.; Moreno, F.; Rubio, M.

    2013-05-01

    As a consequence of poor air quality in Santiago de Chile, several measures were taken by the local authorities to improve the environmental conditions and protect the public health. In year 2005 the Chilean government implemented a project called "Transantiago" aimed to introduce major modifications in the public transportation system. The primary objectives of this project were to: provide an economically, socially and environmentally sustainable service and improve the quality of service without increasing fares. In this work we evaluate the impact of the Transantiago system on the black carbon pollution along four roads directly affected by the modification to the transport system. The black carbon has been used to evaluate changes in air quality due to changes in traffic. The assessment was done using measurements of black carbon before Transantiago (June-July 2005) and after its implementation (June-July 2007). Four sites were selected to monitor black carbon at street levels, one site (Alameda) that represents trunk-bus streets, i.e., buses crossing the city through main avenues. Buses using these streets had an important technological update with respect to 2005. Two streets (Usach and Departamental) show a mixed condition, i.e., they combine feeder and trunk buses. These streets combine new EURO III buses with old buses with more than 3 years of service. The last street (Eliodoro Yañez) represent private cars road without public transportation and did not experience change. Hence, the results from the years 2005 and 2007 can be directly compared using an appropriate methodology. To ensure that it was not the meteorological conditions that drive the trends, the comparison between year 2005 and 2007 was done using Wilcoxon test and a regression model. A first assessment at the four sites suggested a non decrease in black carbon concentration from 2005 to 2007, except for Alameda. A first statistical approach confirmed small increases in BC in Usach and E

  5. The Ice Nucleation Activity of Surface Modified Soot

    Science.gov (United States)

    Häusler, Thomas; Witek, Lorenz; Felgitsch, Laura; Hitzenberger, Regina; Grothe, Hinrich

    2017-04-01

    The ice nucleation efficiency of many important atmospheric particles remains poorly understood. Since soot is ubiquitous in the Earth's troposphere, they might have the potential to significantly impact the Earth's climate (Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 1998). Here we present the ice nucleation activity (INA) in immersion freezing mode of different types of soot. Therefor a CAST (combustion aerosol standard) generator was used to produce different kinds of soot samples. The CAST generator combusts a propane-air-mixture and deposits thereby produced soot on a polyvinyl fluoride filter. By varying the propane to air ratio, the amount of organic portion of the soot can be varied from black carbon (BC) with no organic content to brown carbon (BrC) with high organic content. To investigate the impact of functional sites of ice nuclei (IN), the soot samples were exposed to NO2 gas for a certain amount of time (30 to 360 minutes) to chemically modify the surface. Immersion freezing experiments were carried out in a unique reaction gadget. In this device a water-in-oil suspension (with the soot suspended in the aqueous phase) was cooled till the freezing point and was observed through a microscope (Pummer et al., 2012; Zolles et al., 2015) It was found that neither modified nor unmodified BC shows INA. On the contrary, unmodified BrC shows an INA at -32˚ C, which can be increased up to -20˚ C. The INA of BrC depends on the duration of NO2- exposure. To clarify the characteristics of the surface modifications, surface sensitive analysis like infrared spectroscopy and X-ray photoelectron spectroscopy were carried out. Finlayson-Pitts, B. J. and Pitts, J. N. J.: Chemistry of the Upper and Lower Atmosphere, Elsevier, New York, 2000. Pummer, B. G., Bauer, H., Bernardi, J., Bleicher, S., and Grothe, H.: Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen, Atmos Chem Phys, 12, 2541-2550, 2012. Seinfeld, J

  6. End of the "Little Ice Age" in the Alps not forced by industrial black carbon

    Science.gov (United States)

    Sigl, Michael; Osmont, Dimtri; Gabrieli, Jacopo; Barbante, Carlo; Schwikowski, Margit

    2016-04-01

    Light absorbing aerosols present in the atmosphere and cryosphere play an important role in the climate system. Their presence in ambient air and snow changes radiative properties of these media, thus contributing to increased atmospheric warming and snowmelt. High spatio-temporal variability of aerosol concentrations in these media and a shortage of long-term observations contribute to large uncertainties in properly assigning the climate effects of these aerosols through time. Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Radiative forcing by increasing deposition of industrial black carbon to snow has been suggested as the main driver of the abrupt glacier retreats in the Alps (Painter et al. 2012). Basis for this hypothesis were model simulations using ice-core measurements of elemental carbon at low temporal resolution from two ice cores in the Alps. Here we present sub-annually resolved, well replicated ice-core measurements of refractory black carbon (rBC; using a SP2 soot photometer), mineral dust (Fe, Ca), biomass burning (NH4, K) and distinctive industrial pollution tracers (Bi, Pb, SO4) from an ice core in the Alps covering the past 250 years. These reconstructions allow to precisely compare the timing of observed acceleration of glacier melt in the mid-19th century with that of the increase of soot deposition on ice-sheets caused by the industrialization of Western Europe. Our study suggests that at the time when European rBC emission rates started to significantly increase Alpine glaciers have already experienced more than 70% of their total 19th century length reduction. Industrial BC emissions can therefore not been considered as the primary forcing of the rapid deglaciation at the end of the Little Ice Age in the Alps. References: Painter, T. H., M. G. Flanner, G. Kaser, B. Marzeion, R. A. VanCuren, and W. Abdalati (2013), End of the Little Ice

  7. Chemically treated carbon black waste and its potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Pengwei; Maneerung, Thawatchai; Ng, Wei Cheng; Zhen, Xu [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Dai, Yanjun [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Tong, Yen Wah [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Ting, Yen-Peng [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Koh, Shin Nuo [Sembcorp Industries Ltd., 30 Hill Street #05-04, 179360 (Singapore); Wang, Chi-Hwa, E-mail: chewch@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Neoh, Koon Gee, E-mail: chenkg@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore)

    2017-01-05

    Highlights: • Hazardous impurities separated from carbon black waste with little damage to solid. • Heavy metals were effectively removed from carbon black waste by HNO{sub 3} leaching. • Treated carbon black waste has high adsorption capacity (∼356.4 mg{sub dye}/g). • Carbon black waste was also found to show high electrical conductivity (10 S/cm). - Abstract: In this work, carbon black waste – a hazardous solid residue generated from gasification of crude oil bottom in refineries – was successfully used for making an absorbent material. However, since the carbon black waste also contains significant amounts of heavy metals (especially nickel and vanadium), chemical leaching was first used to remove these hazardous impurities from the carbon black waste. Acid leaching with nitric acid was found to be a very effective method for removal of both nickel and vanadium from the carbon black waste (i.e. up to 95% nickel and 98% vanadium were removed via treatment with 2 M nitric acid for 1 h at 20 °C), whereas alkali leaching by using NaOH under the same condition was not effective for removal of nickel (less than 10% nickel was removed). Human lung cells (MRC-5) were then used to investigate the toxicity of the carbon black waste before and after leaching. Cell viability analysis showed that the leachate from the original carbon black waste has very high toxicity, whereas the leachate from the treated samples has no significant toxicity. Finally, the efficacy of the carbon black waste treated with HNO{sub 3} as an absorbent for dye removal was investigated. This treated carbon black waste has high adsorption capacity (∼361.2 mg {sub dye}/g {sub carbonblack}), which can be attributed to its high specific surface area (∼559 m{sup 2}/g). The treated carbon black waste with its high adsorption capacity and lack of cytotoxicity is a promising adsorbent material. Moreover, the carbon black waste was found to show high electrical conductivity (ca. 10 S

  8. Thermal properties of carbon black aqueous nanofluids for solar absorption

    Directory of Open Access Journals (Sweden)

    Han Dongxiao

    2011-01-01

    Full Text Available Abstract In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  9. Black carbon surface oxidation and organic composition of beech-wood soot aerosols

    Directory of Open Access Journals (Sweden)

    J. C. Corbin

    2015-10-01

    oxygenated carbonaceous ions (CO1-2+, potassium (K+, and water (H2O+ and related fragments. The C4+ : C3+ ratio, but not the C1+ : C3+ ratio, was consistent with the BC-structure trends of Corbin et al. (2015c. The CO1-2+ signals likely originated from BC surface groups: upon aging, both CO+ and CO2+ increased relative to C1-3+ while CO2+ simultaneously increased relative to CO+. Factor analysis (positive matrix factorization of SP-AMS and AMS data, using a modified error model to address peak-integration uncertainties, indicated that the surface composition of the BC was approximately constant across all stages of combustion for both fresh and aged samples. These results represent the first time-resolved measurements of in situ BC surface aging and suggest that the surface of beech-wood BC may be modelled as a single chemical species.

  10. Emissions of soot particles from heat generators

    Science.gov (United States)

    Lyubov, V. K.; Popov, A. N.; Popova, E. I.

    2017-11-01

    «Soot carbon» or «Soot» - incomplete combustion or thermal decomposition particulate carbon product of hydrocarbons consisting of particles of various shapes and sizes. Soot particles are harmful substances Class 2 and like a dust dispersed by wind for thousands of kilometers. Soot have more powerful negative factor than carbon dioxide. Therefore, more strict requirements on ecological and economical performance for energy facilities at Arctic areas have to be developed to protect fragile Arctic ecosystems and global climate change from degradation and destruction. Quantity of soot particles in the flue gases of energy facilities is a criterion of effectiveness for organization of the burning process. Some of heat generators do not provide the required energy and environmental efficiency which results in irrational use of energy resources and acute pollution of environment. The paper summarizes the results of experimental study of solid particles emission from wide range of capacity boilers burning different organic fuels (natural gas, fuel oil, coal and biofuels). Special attention is paid to environmental and energy performance of the biofuels combustion. Emissions of soot particles PM2.5 are listed. Structure, composition and dimensions of entrained particles with the use of electronic scanning microscope Zeiss SIGMA VP were also studied. The results reveal an impact of several factors on soot particles emission.

  11. Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes

    Science.gov (United States)

    Jäckel, N.; Weingarth, D.; Zeiger, M.; Aslan, M.; Grobelsek, I.; Presser, V.

    2014-12-01

    This study investigates carbon onions (∼400 m2 g-1) as a conductive additive for supercapacitor electrodes of activated carbon and compares their performance with carbon black with high or low internal surface area. We provide a study of the electrical conductivity and electrochemical behavior between 2.5 and 20 mass% addition of each of these three additives to activated carbon. Structural characterization shows that the density of the resulting film electrodes depends on the degree of agglomeration and the amount of additive. Addition of low surface area carbon black (∼80 m2 g-1) enhances the power handling of carbon electrodes but significantly lowers the specific capacitance even when adding small amounts of carbon black. A much lower decrease in specific capacitance is observed for carbon onions and the best values are seen for carbon black with a high surface area (∼1390 m2 g-1). The overall performance benefits from the addition of any of the studied additives only at either high scan rates and/or electrolytes with high ion mobility. Normalization to the volume shows a severe decrease in volumetric capacitance and only at high current densities nearing 10 A g-1 we can see an improvement of the electrode capacitance.

  12. Aging of Black Carbon during Atmospheric Transport: Understanding Results from the DOE's 2010 CARES and 2012 ClearfLo Campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, R. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mazzoleni, Claudio [Michigan Technological Univ., Houghton, MI (United States)

    2016-08-31

    Over the course of this project, we have analyzed data and samples from the CARES and ClearfLo campaigns, as well as conducted or participated in laboratory experiments designed to better understand black carbon mixing state and climate-relevant properties. The laboratory campaigns took place at PNNL and CMU to study various climate-relevant aerosol properties of different sources of soot mixing with secondary organic aerosol precursors. The DMT photoacoustic extinctiometers (PAXs) procured by CMU through this grant were deployed for these experiments, as well as experiments characterizing the optical properties of cookstove soot emissions at Colorado State University (CSU). Results from some of these activities were summarized in the previous progress report. This final report presents the manuscripts that have been published (many in the period since the last progress report), lists presentations at different conferences based on grant-related activities, and presents some results that are likely to be submitted for publication in 2016.

  13. Detection of carbon monoxide (CO) in sooting hydrocarbon flames using femtosecond two-photon laser-induced fluorescence (fs-TPLIF)

    Science.gov (United States)

    Wang, Yejun; Kulatilaka, Waruna D.

    2018-01-01

    Ultrashort-pulse, femtosecond (fs)-duration, two-photon laser-induced fluorescence (fs-TPLIF) measurements of carbon monoxide (CO) are reported in rich, sooting hydrocarbon flames. CO-TPLIF detection using conventional nanosecond or picosecond lasers are often plagued by photochemical interferences, specifically under fuel-rich flames conditions. In the current study, we investigate the commonly used CO two-photon excitation scheme of the B1Σ+ ← X1Σ+ electronic transition, using approximately 100-fs-duration excitation pulses. Fluorescence emission was observed in the Ångström band originating from directly populated B1Σ+ upper state, as well as, in the third positive band from collisionally populated b3Σ+ upper state. The current work was focused on the Ångström band emission. Interference from nascent C2 emissions originating from hot soot particles in the flame could be reduced to a negligible level using a narrower detection gate width. In contrast, avoiding interferences from laser-generated C2 Swan-band emissions required specific narrowband spectral filtering in sooting flame conditions. The observed less than quadratic laser pulse energy dependence of the TPLIF signal suggests the presence of strong three-photon ionization and stimulated emission processes. In a range of CH4/air and C2H4/air premixed flames investigated, the measured CO fluorescence signals agree well with the calculated equilibrium CO number densities. Reduced-interference CO-TPLIF imaging in premixed C2H4/O2/N2 jet flames is also reported.

  14. Reinforcement of Multiwalled Carbon Nanotube in Nitrile Rubber: In Comparison with Carbon Black, Conductive Carbon Black, and Precipitated Silica

    Directory of Open Access Journals (Sweden)

    Atip Boonbumrung

    2016-01-01

    Full Text Available The properties of nitrile rubber (NBR reinforced by multiwalled carbon nanotube (MWCNT, conductive carbon black (CCB, carbon black (CB, and precipitated silica (PSi were investigated via viscoelastic behavior, bound rubber content, electrical properties, cross-link density, and mechanical properties. The filler content was varied from 0 to 15 phr. MWCNT shows the greatest magnitude of reinforcement considered in terms of tensile strength, modulus, hardness, and abrasion resistance followed by CCB, CB, and PSi. The MWCNT filled system also exhibits extremely high levels of filler network and trapped rubber even at relatively low loading (5 phr leading to high electrical properties and poor dynamic mechanical properties. Although CCB possesses the highest specific surface area, it gives lower level of filler network than MWCNT and also gives the highest elongation at break among all fillers. Both CB and PSi show comparable degree of reinforcement which is considerably lower than CCB and MWCNT.

  15. Black carbon sequestration as an alternative to bioenergy

    International Nuclear Information System (INIS)

    Fowles, Malcolm

    2007-01-01

    Most policy and much research concerning the application of biomass to reduce global warming gas emissions has concentrated either on increasing the Earth's reservoir of biomass or on substituting biomass for fossil fuels, with or without CO 2 sequestration. Suggested approaches entail varied risks of impermanence, delay, high costs, and unknowable side-effects. An under-researched alternative approach is to extract from biomass black (elemental) carbon, which can be permanently sequestered as mineral geomass and may be relatively advantageous in terms of those risks. This paper reviews salient features of black carbon sequestration and uses a high-level quantitative model to compare the approach with the alternative use of biomass to displace fossil fuels. Black carbon has been demonstrated to produce significant benefits when sequestered in agricultural soil, apparently without bad side-effects. Black carbon sequestration appears to be more efficient in general than energy generation, in terms of atmospheric carbon saved per unit of biomass; an exception is where biomass can efficiently displace coal-fired generation. Black carbon sequestration can reasonably be expected to be relatively quick and cheap to apply due to its short value chain and known technology. However, the model is sensitive to several input variables, whose values depend heavily on local conditions. Because characteristics of black carbon sequestration are only known from limited geographical contexts, its worldwide potential will not be known without multiple streams of research, replicated in other contexts. (author)

  16. Source attribution of black carbon in Arctic snow.

    Science.gov (United States)

    Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D

    2009-06-01

    Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon.

  17. Are emissions of black carbon from gasoline vehicles underestimated? Insights from near and on-road measurements.

    Science.gov (United States)

    Liggio, John; Gordon, Mark; Smallwood, Gregory; Li, Shao-Meng; Stroud, Craig; Staebler, Ralf; Lu, Gang; Lee, Patrick; Taylor, Brett; Brook, Jeffrey R

    2012-05-01

    Measurements of black carbon (BC) with a high-sensitivity laser-induced incandescence (HS-LII) instrument and a single particle soot photometer (SP2) were conducted upwind, downwind, and while driving on a highway dominated by gasoline vehicles. The results are used with concurrent CO(2) measurements to derive fuel-based BC emission factors for real-world average fleet and heavy-duty diesel vehicles separately. The derived emission factors from both instruments are compared, and a low SP2 bias (relative to the HS-LII) is found to be caused by a BC mass mode diameter less than 75 nm, that is most prominent with the gasoline fleet but is not present in the heavy-duty diesel vehicle exhaust on the highway. Results from both the LII and the SP2 demonstrate that the BC emission factors from gasoline vehicles are at least a factor of 2 higher than previous North American measurements, and a factor of 9 higher than currently used emission inventories in Canada, derived with the MOBILE 6.2C model. Conversely, the measured BC emission factor for heavy-duty diesel vehicles is in reasonable agreement with previous measurements. The results suggest that greater attention must be paid to black carbon from gasoline engines to obtain a full understanding of the impact of black carbon on air quality and climate and to devise appropriate mitigation strategies. © 2012 American Chemical Society

  18. 1 Mixing state and absorbing properties of black carbon during Arctic haze

    Science.gov (United States)

    Zanatta, Marco; Gysel, Martin; Eleftheriadis, Kosas; Laj, Paolo; Hans-Werner, Jacobi

    2016-04-01

    The Arctic atmosphere is periodically affected by the Arctic haze occurring in spring. One of its particulate components is the black carbon (BC), which is considered to be an important contributor to climate change in the Arctic region. Beside BC-cloud interaction and albedo reduction of snow, BC may influence Arctic climate interacting directly with the solar radiation, warming the corresponding aerosol layer (Flanner, 2013). Such warming depends on BC atmospheric burden and also on the efficiency of BC to absorb light, in fact the light absorption is enhanced by mixing of BC with other atmospheric non-absorbing materials (lensing effect) (Bond et al., 2013). The BC reaching the Arctic is evilly processed, due to long range transport. Aging promote internal mixing and thus absorption enhancement. Such modification of mixing and is quantification after long range transport have been observed in the Atlantic ocean (China et al., 2015) but never investigated in the Arctic. During field experiments conducted at the Zeppelin research site in Svalbard during the 2012 Arctic spring, we investigated the relative precision of different BC measuring techniques; a single particle soot photometer was then used to assess the coating of Arctic black carbon. This allowed quantifying the absorption enhancement induced by internal mixing via optical modelling; the optical assessment of aged black carbon in the arctic will be of major interest for future radiative forcing assessment.Optical characterization of the total aerosol indicated that in 2012 no extreme smoke events took place and that the aerosol population was dominated by fine and non-absorbing particles. Low mean concentration of rBC was found (30 ng m-3), with a mean mass equivalent diameter above 200 nm. rBC concentration detected with the continuous soot monitoring system and the single particle soot photometer was agreeing within 15%. Combining absorption coefficient observed with an aethalometer and rBC mass

  19. Ice Nucleation of Soot Particles in the Cirrus Regime: Is Pore Condensation and Freezing Relevant for Soot?

    Science.gov (United States)

    Kanji, Z. A.; Mahrt, F.; David, R.; Marcolli, C.; Lohmann, U.; Fahrni, J.; Brühwiler, D.

    2017-12-01

    Heterogeneous ice nucleation (HIN) onto soot particles from previous studies have produced inconsistent results of temperature and relative humidity conditions required for freezing depending on the source of soot particle investigated. The ability of soot to act as HIN depended on the type of soot and size of particle. Often homogenous freezing conditions or water saturation conditions were required to freeze soot particles, rendering HIN irrelevant. Using synthesised mesoporous silica particles, we show pore condensation and freezing works with experiments performed in the Zurich Ice Nucleation Chamber (ZINC). By testing a variety of soot particles in parallel in the Horizontal Ice Nucleation Chamber (HINC), we suggest that previously observed HIN on soot particles is not the responsible mechanism for ice formation. Laboratory generated CAST brown and black soot, commercially available soot and acid treated soot were investigated for their ice nucleation abilities in the mixed-phase and cirrus cloud temperature regimes. No heterogeneous ice nucleation activity is inferred at T > -38 °C (mixed-phase cloud regime), however depending on particle size and soot type, HIN was observed for T nucleation of ice in the pores or cavities that are ubiquitous in soot particles between the primary spherules. The ability of some particles to freeze at lower relative humidity compared to others demonstrates why hydrophobicity plays a role in ice nucleation, i.e. controlling the conditions at which these cavities fill with water. Thus for more hydrophobic particles pore filling occurs at higher relative humidity, and therefore freezing of pore water and ice crystal growth. Future work focusses on testing the cloud processing ability of soot particles and water adsorption isotherms of the different soot samples to support the hydrophobicity inferences from the ice nucleation results.

  20. Synthesis of multiwalled carbon nanotube from different grades of carbon black using arc discharge method

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Neha, E-mail: n4neha31@gmail.com [Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani (India); Sharma, N. N. [Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani (India); Director, School of Automobile, Mechanical & Mechatronics, Manipal University,Jaipur,India (India)

    2016-04-13

    This paper describes the synthesis of nanotube from different grades (Tread * A(non-ASTM), N134,N121,N660 and N330)of carbon black using DC arc discharge method at 40A current for 60sec. Carbon black samples of different grades were procured from industry (Aditya Birla Science and Technology Limited, India). Scanning Electron Micrographs (SEM) of the deposited carbon nanostructures suggests that MWCNTs are formed at 40A and for a minimal exposure time of 60sec.The result formed indicates the N330 grade of carbon black gets converted to MWCNTs (Multiwall Carbon nanotube) as compared to other grades.

  1. Adsorption of Remazol Black B dye on Activated Carbon Felt

    Directory of Open Access Journals (Sweden)

    Donnaperna Lucio

    2008-11-01

    Full Text Available The adsorption of Remazol Black B (anionic dye on a microporous activated carbon felt is investigated from its aqueous solution. The surface chemistry of activated carbon is studied using X-ray microanalysis, "Boehm" titrations and pH of PZC measurements which indicates that the surface oxygenated groups are mainly acidic in nature. The kinetics of Remazol Black B adsorption is observed to be pH dependent and governed by the diffusion of the dye molecules. The experimental data can be explained by "intra-particle diffusion model". For Remazol Black B, the Khan model is best suited to simulate the adsorption isotherms.

  2. Black carbon and particulate matter (PM2.5) concentrations in New York City's subway stations.

    Science.gov (United States)

    Vilcassim, M J Ruzmyn; Thurston, George D; Peltier, Richard E; Gordon, Terry

    2014-12-16

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m(3), with 1 min average peaks >100 μg/m(3), while real time PM2.5 levels ranged from 35 to 200 μg/m(3). Mean EC levels ranged from 9 to 12.5 μg/m(3). At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m(3), respectively. This study shows that both BC soot and PM levels in NYC's subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted.

  3. A Community Network of 100 Black Carbon Sensors

    Science.gov (United States)

    Preble, C.; Kirchstetter, T.; Caubel, J.; Cados, T.; Keeling, C.; Chang, S.

    2017-12-01

    We developed a low-cost black carbon sensor, field tested its performance, and then built and deployed a network of 100 sensors in West Oakland, California. We operated the network for 100 days beginning mid-May 2017 to measure spatially resolved black carbon concentrations throughout the community. West Oakland is a San Francisco Bay Area mixed residential and industrial community that is adjacent to regional port and rail yard facilities and surrounded by major freeways. As such, the community is affected by diesel particulate matter emissions from heavy-duty diesel trucks, locomotives, and ships associated with freight movement. In partnership with Environmental Defense Fund, the Bay Area Air Quality Management District, and the West Oakland Environmental Indicators Project, we deployed the black carbon monitoring network outside of residences and business, along truck routes and arterial streets, and at upwind locations. The sensor employs the filter-based light transmission method to measure black carbon and has good precision and correspondence with current commercial black carbon instruments. Throughout the 100-day period, each of the 100 sensors transmitted data via a cellular network. A MySQL database was built to receive and manage the data in real-time. The database included diagnostic features to monitor each sensor's operational status and facilitate the maintenance of the network. Spatial and temporal patterns in black carbon concentrations will be presented, including patterns around industrial facilities, freeways, and truck routes, as well as the relationship between neighborhood concentrations and the BAAQMD's monitoring site. Lessons learned during this first of its kind black carbon monitoring network will also be shared.

  4. Method for removing soot from exhaust gases

    Science.gov (United States)

    Suib, Steven L.; Dharmarathna, D. A. Saminda; Pahalagedara, Lakshitha R.

    2018-01-16

    A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine and collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).

  5. Single Particle Soot Photometer intercomparison at the AIDA chamber

    Directory of Open Access Journals (Sweden)

    M. Laborde

    2012-12-01

    Full Text Available Soot particles, consisting of black carbon (BC, organic carbon (OC, inorganic salts, and trace elements, are emitted into the atmosphere during incomplete combustion. Accurate measurements of atmospheric BC are important as BC particles cause adverse health effects and impact the climate.

    Unfortunately, the accurate measurement of the properties and mass concentrations of BC particles remains difficult. The Single Particle Soot Photometer (SP2 can contribute to improving this situation by measuring the mass of refractory BC in individual particles as well as its mixing state.

    Here, the results of the first detailed SP2 intercomparison, involving 6 SP2s from 6 different research groups, are presented, including the most evolved data products that can presently be calculated from SP2 measurements.

    It was shown that a detection efficiency of almost 100% down to 1 fg BC per particle can readily be achieved, and that this limit can be pushed down to ∼0.2 fg BC with optimal SP2 setup. Number and mass size distributions of BC cores agreed within ±5% and ±10%, respectively, in between the SP2s, with larger deviations in the range below 1 fg BC.

    The accuracy of the SP2's mass concentration measurement depends on the calibration material chosen. The SP2 has previously been shown to be equally sensitive to fullerene soot and ambient BC from sources where fossil fuel was dominant and less sensitive to fullerene soot than to Aquadag. Fullerene soot was therefore chosen as the standard calibration material by the SP2 user community; however, many data sets rely solely on Aquadag calibration measurements. The difference in SP2 sensitivity was found to be almost equal (fullerene soot to Aquadag response ratio of ∼0.75 at 8.9 fg BC for all SP2s. This allows the calculation of a fullerene soot equivalent calibration curve from a measured Aquadag calibration, when no fullerene soot calibration is available. It could be

  6. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    Science.gov (United States)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  7. Neutron scattering analysis of rubber carbon black composite structure

    International Nuclear Information System (INIS)

    Hjelm, R.P. Jr.; Wampler, W.A.; Gerspacher, M.

    1994-01-01

    We explore the uses of small-angle neutron scattering to dissect component form, structure and distribution in carbon black-reinforced rubber by varying the contrast of the system relative to some fluid by changing the fluid scattering-length density. This is the method of contrast variation. Contrast variation allows us to separate scattering contributions from the different components. Here, we extend our studies on high surface area (HSA) carbon black suspended in cyclohexane/deuterocyclohexane to HSA mixed with polyisoprene as a gel of ''bound'' rubber swollen with the same solvent mixtures. Contrast variation of swollen composite gels shows that there are two length scales in the gel structure. Above 1 nm fluctuations in the carbon black predominate. Interactions with elastomer hold the HSA aggregates appart. Below 1 nm the scattering is largely from the elastomer. The smooth surface structure of the carbon black is unaltered by the interactions with elastomer and appears smooth over length scales above about 1 nm. These results show that contrast variation can provide information on composite structure that is not available by other means. This information relates to the reinforcement mechanism of elastomers by carbon blacks

  8. Gravimetric determination of the iodine number of carbon black

    International Nuclear Information System (INIS)

    Murphy, L.J. Jr.

    1991-01-01

    This paper discusses a gravimetric method for the determination of the iodine adsorption number of carbon black. It comprises determining the concentration of an accurately weighed iodine blank solution by adding a standardized titrant to the iodine solution until a titration endpoint is reached and determining the concentration of the iodine solution by accurately weighing the amount of the standardized titrant necessary to reach the endpoint, accurately weighing an amount of carbon black and adding an appropriate amount of an accurately weighed portion of the iodine solution, equilibrating the carbon black-iodine solution mixture, adding the standardized titrant to an accurately weighed portion of the supernatant from the carbon black-iodine mixture until a titration endpoint is reached and determining the concentration of the supernatant by accurately weighing the amount of the standardized titrant necessary to reach the endpoint, wherein the titration endpoint of the supernatant is obtained using an indicating and a reference electrode, and calculating the iodine adsorption number of the carbon black based on the gravimetrically determined concentration of the titrant, the iodine solution, and the supernatant

  9. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    OpenAIRE

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-01-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as d...

  10. A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements

    Directory of Open Access Journals (Sweden)

    R. S. Stone

    2014-06-01

    Full Text Available Abstract Aerosols, transported from distant source regions, influence the Arctic surface radiation budget. When deposited on snow and ice, carbonaceous particles can reduce the surface albedo, which accelerates melting, leading to a temperature-albedo feedback that amplifies Arctic warming. Black carbon (BC, in particular, has been implicated as a major warming agent at high latitudes. BC and co-emitted aerosols in the atmosphere, however, attenuate sunlight and radiatively cool the surface. Warming by soot deposition and cooling by atmospheric aerosols are referred to as “darkening” and “dimming” effects, respectively. In this study, climatologies of spectral aerosol optical depth AOD (2001–2011 and Equivalent BC (EBC (1989–2011 from three Arctic observatories and from a number of aircraft campaigns are used to characterize Arctic aerosols. Since the 1980s, concentrations of BC in the Arctic have decreased by more than 50% at ground stations where in situ observations are made. AOD has increased slightly during the past decade, with variations attributed to changing emission inventories and source strengths of natural aerosols, including biomass smoke and volcanic aerosol, further influenced by deposition rates and airflow patterns.

  11. Improved technique for measuring the size distribution of black carbon particles in rainwater and snow samples

    Science.gov (United States)

    Mori, T.; Moteki, N.; Ohata, S.; Koike, M.; Azuma, K. G.; Miyazaki, Y.; Kondo, Y.

    2015-12-01

    Black carbon (BC) is the strongest contributor to sunlight absorption among atmospheric aerosols. Quantitative understanding of wet deposition of BC, which strongly affects the spatial distribution of BC, is important to improve our understandings on climate change. We have devised a technique for measuring the masses of individual BC particles in rainwater and snow samples, as a combination of a nebulizer and a single-particle soot photometer (SP2) (Ohata et al. 2011, 2013; Schwarz et al. 2012; Mori et al. 2014). We show two important improvements in this technique: 1)We have extended the upper limit of detectable BC particle diameter from 0.9 μm to about 4.0 μm by modifying the photodetector for measuring the laser-induced incandescence signal. 2)We introduced a pneumatic nebulizer Marin-5 (Cetac Technologies Inc., Omaha, NE, USA) and experimentally confirmed its high extraction efficiency (~50%) independent of particle diameter up to 2.0 μm. Using our improved system, we simultaneously measured the size distribution of BC particles in air and rainwater in Tokyo. We observed that the size distribution of BC in rainwater was larger than that in air, indicating that large BC particles were effectively removed by precipitation. We also observed BC particles with diameters larger than 1.0 μm, indicating that further studies of wet deposition of BC will require the use of the modified SP2.

  12. Influences on the fraction of hydrophobic and hydrophilic black carbon in the atmosphere

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-05-01

    Full Text Available Black carbon (BC is a short term climate forcer that directly warms the atmosphere, slows convection, and hinders quantification of the effect of greenhouse gases on climate change. The atmospheric lifetime of BC particles with respect to nucleation scavenging in clouds is controlled by their ability to serve as cloud condensation nuclei (CCN. To serve as CCN under typical conditions, hydrophobic BC particles must acquire hygroscopic coatings. However, the quantitative relationship between coatings and hygroscopic properties for ambient BC particles is not known nor is the time scale for hydrophobic-to-hydrophilic conversion. Here we introduce a method for measuring the hygroscopicity of externally and internally mixed BC particles by coupling a single particle soot photometer with a humidified tandem differential mobility analyzer. We test this technique using uncoated and coated laboratory generated model BC compounds and apply it to characterize the hygroscopicity distribution of ambient BC particles. From these data we derive that the observed number fraction of BC that is CCN active at 0.2 % supersaturation is generally low in an urban area near sources and that it varies with the trajectory of the airmass. We anticipate that our method can be combined with measures of air parcel physical and photochemical age to provide the first quantitative estimates for characterizing hydrophobic-to-hydrophilic conversion rates in the atmosphere.

  13. Effect of sterilization on mineralization of straw and black carbon

    OpenAIRE

    Bobul'ská, Lenka; Bruun, Sander; Fazekašová, Danica

    2013-01-01

    The study was aimed at investigating the role of microorganisms in the degradation of BC (black carbon). CO evolution was measured under sterilized and non-sterilized soil using BC and straw amendments. Black carbon and straw were produced from homogenously C labelled roots of barley (Hordeum vulgare) with a specific activity 2.9 MBq g C. Production of BC was implemented at 300 °C for 24 h in a muffle oven, incubated in soil and C in the evolved CO was measured after 0.5, 1, 2, 4, 8, 16, 26 a...

  14. Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder

    NARCIS (Netherlands)

    Marinho, B.; Gomes Ghislandi, M.; Tkalya, E.; Koning, C.E.; With, de G.

    2012-01-01

    The electrical conductivity of different carbon materials (multi-walled carbon nanotubes, graphene, carbon black and graphite), widely used as fillers in polymeric matrices, was studied using compacts produced by a paper preparation process and by powder compression. Powder pressing assays show that

  15. Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements

    Directory of Open Access Journals (Sweden)

    I. Crawford

    2011-09-01

    Full Text Available The ice nucleation efficiency of propane flame soot particles with and without a sulphuric acid coating was investigated using the aerosol and cloud chamber facility AIDA (Aerosol Interaction and Dynamics in the Atmosphere. The test soot for cloud formation simulations was produced using a propane flame Combustion Aerosol Standard generator (CAST, Jing-CAST Technologies. The organic carbon content (OC of the test soot was altered in a reproducible fashion by changing the fuel/air mixture of the generator. The soot content of ice nuclei was subsequently investigated using a combination of a pumped counterflow virtual impactor (PCVI to separate and evaporate the ice crystals, and a DMT single particle soot photometer (SP2 to examine the mixing state of the BC containing ice residuals.

    Ice nucleation was found to be most efficient for uncoated soot of low organic carbon content (~5 % organic carbon content where deposition freezing occurred at an ice saturation ratio Sice ~ 1.22 at a temperature T = 226.6 K with 25 % of the test soot becoming active as ice nuclei. Propane flame soot of higher organic carbon content (~30 % and ~70 % organic carbon content showed significantly lower ice nucleation efficiency (an activated fraction of the order of a few percent in the experiments than the low organic carbon content soot, with water saturation being required for freezing to occur. Ice nucleation occurred over the range Sice = 1.22–1.70, and T = 223.2–226.6 K. Analysis of the SP2 data showed that the 5 % organic carbon content soot had an undetectable OC coating whereas the 30 % organic carbon content soot had a thicker or less volatile OC coating.

    The application of a sulphuric acid coating to the flame soot shifted the threshold of the onset of freezing towards that of the homogeneous freezing of sulphuric acid; for the minimum OC flame soot this inhibited nucleation since the

  16. Using measurements for evaluation of black carbon modeling

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2011-01-01

    Full Text Available The ever increasing use of air quality and climate model assessments to underpin economic, public health, and environmental policy decisions makes effective model evaluation critical. This paper discusses the properties of black carbon and light attenuation and absorption observations that are the key to a reliable evaluation of black carbon model and compares parametric and nonparametric statistical tools for the quantification of the agreement between models and observations. Black carbon concentrations are simulated with TM5/M7 global model from July 2002 to June 2003 at four remote sites (Alert, Jungfraujoch, Mace Head, and Trinidad Head and two regional background sites (Bondville and Ispra. Equivalent black carbon (EBC concentrations are calculated using light attenuation measurements from January 2000 to December 2005. Seasonal trends in the measurements are determined by fitting sinusoidal functions and the representativeness of the period simulated by the model is verified based on the scatter of the experimental values relative to the fit curves. When the resolution of the model grid is larger than 1° × 1°, it is recommended to verify that the measurement site is representative of the grid cell. For this purpose, equivalent black carbon measurements at Alert, Bondville and Trinidad Head are compared to light absorption and elemental carbon measurements performed at different sites inside the same model grid cells. Comparison of these equivalent black carbon and elemental carbon measurements indicates that uncertainties in black carbon optical properties can compromise the comparison between model and observations. During model evaluation it is important to examine the extent to which a model is able to simulate the variability in the observations over different integration periods as this will help to identify the most appropriate timescales. The agreement between model and observation is accurately described by the overlap of

  17. Comparative DEMS study on the electrochemical oxidation of carbon blacks

    DEFF Research Database (Denmark)

    Ashton, Sean James; Arenz, Matthias

    2012-01-01

    Publication year: 2012 Source:Journal of Power Sources, Volume 217 Sean J. Ashton, Matthias Arenz The intention of the study presented here is to compare the electrochemical oxidation tendencies of a pristine Ketjen Black EC300 high surface area (HSA) carbon black, and four graphitised counterparts...... heat-treated between 2100 and 3200 °C, such as those typically used as corrosion resistant carbon (CRC) supports for polymer electrolyte membrane fuel cell (PEMFC) catalysts. A methodology combining cyclic voltammetry (CV) and differential electrochemical mass spectrometry (DEMS) is used, which allows......; however, CRC samples graphitised =2800 °C did not exhibit this same behaviour. Highlights ¿ We quantitatively determine electrooxidation of carbon support materials. ¿ We can distinguish between the total and partial electrooxidation. ¿ Non or mildly heat treated carbon forms passivating layer. ¿ Heat...

  18. Higher Atmosphere Heating due to black carbon Over the Northern Part of India

    Science.gov (United States)

    Tiwari, S.; Singh, S., , Dr

    2017-12-01

    Light-absorbing, atmospheric particles have gained greater attention in recent years because of their direct and indirect impacts on regional and global climate. Atmospheric black carbon (BC) aerosol (also called soot particle) is a leading climate warming agent, yet uncertainties in the global direct aerosol radiative forcing remain large. Based on a year of aerosol absorption measurements at seven wavelengths, BC concentrations were investigated in Dhanbad, the coal capital of India. Coal is routinely burned for cooking and residential heat as well as in small industries. The mean daily concentrations of ultraviolet-absorbing black carbon measured at 370 nm (UVBC) and black carbon measured at 880 nm (BC) were 9.8 ± 5.7 and 6.5 ± 3.8 μg m-3, respectively. The difference between UVBC and BC, Delta-C, is an indicator of biomass or residential coal burning and averaged 3.29 ± 4.61 μg m-3. An alternative approach uses the calculation of the Angstrom Exponent (AE) to estimate the amounts of biomass/coal and traffic BC. Biomass/coal burning contributed 87% and fossil fuel combustion contributed 13% to the annual average BC concentration. In the post-monsoon season, potential source contribution function analysis showed that air masses came from the central and northwestern Indo-Gangetic Plains resulting in mean UVBC values of 10.9 μg m-3 and BC of 7.2 μg m-3. The mean winter UVBC and BC concentrations were 15.0 and 10.1 μg m-3, respectively. These highest values were largely driven by local sources under conditions of poor dispersion. The direct radiative forcing (DRF) due to UVBC and BC at the surface (SFC) and the top of the atmosphere (TOA) were calculated. The mean atmospheric heating rates due to UVBC and BC were estimated to be 1.40°K day-1 and 1.18°K day-1, respectively. This high heating rate may affect the monsoon circulation in this region.

  19. Impacts of Stratospheric Black Carbon on Agriculture

    Science.gov (United States)

    Xia, L.; Robock, A.; Elliott, J. W.

    2017-12-01

    A regional nuclear war between India and Pakistan could inject 5 Tg of soot into the stratosphere, which would absorb sunlight, decrease global surface temperature by about 1°C for 5-10 years and have major impacts on precipitation and the amount of solar radiation reaching Earth's surface. Using two global gridded crop models forced by one global climate model simulation, we investigate the impacts on agricultural productivity in various nations. The crop model in the Community Land Model 4.5 (CLM-crop4.5) and the parallel Decision Support System for Agricultural Technology (pDSSAT) in the parallel System for Integrating Impact Models and Sectors are participating in the Global Gridded Crop Model Intercomparison. We force these two crop models with output from the Whole Atmospheric Community Climate Model to characterize the global agricultural impact from climate changes due to a regional nuclear war. Crops in CLM-crop4.5 include maize, rice, soybean, cotton and sugarcane, and crops in pDSSAT include maize, rice, soybean and wheat. Although the two crop models require a different time frequency of weather input, we downscale the climate model output to provide consistent temperature, precipitation and solar radiation inputs. In general, CLM-crop4.5 simulates a larger global average reduction of maize and soybean production relative to pDSSAT. Global rice production shows negligible change with climate anomalies from a regional nuclear war. Cotton and sugarcane benefit from a regional nuclear war from CLM-crop4.5 simulation, and global wheat production would decrease significantly in the pDSSAT simulation. The regional crop yield responses to a regional nuclear conflict are different for each crop, and we present the changes in production on a national basis. These models do not include the crop responses to changes in ozone, ultraviolet radiation, or diffuse radiation, and we would like to encourage more modelers to improve crop models to account for those

  20. Electrical conductivity of short carbon fibers and carbon black-reinforced chloroprene rubber

    International Nuclear Information System (INIS)

    Khoshniat, A. R.; MirAli, M.; Hemmati, M.; Afshar Taromi, F.; Katbab, A.

    2002-01-01

    Elastomers and plastics are intrinsically insulating materials, but by addition of some conductive particles such as conductive carbon black, carbon fibers and metals, they can change to conductive form. Conductivity of these composites are due to formation of the lattices of conductive filler particles in polymer chains. In this report, conductivity of chloroprene rubber filled with carbon black and carbon fibers as a function of temperature and pressure are studied. Electrical conductivity of chloroprene in a function of temperature and pressure are studied. Electrical conductivity of chloroprene in the presence of carbon black with proper mixing conditions increases to the conductivity level of semiconductors and even in the presence of carbon fibers it increases to the level of a conductor material. Meanwhile, the sensitivity of this compound to heat and pressure rises. Thus these composites have found various applications in the manufacture of heat and pressure sensitive sensors

  1. Synthesis and luminescence of nanodiamonds from carbon black

    International Nuclear Information System (INIS)

    Hu Shengliang; Tian Fei; Bai Peikang; Cao Shirui; Sun Jing; Yang Jing

    2009-01-01

    Dispersed nanodiamonds just several nanometers in diameter have been successfully synthesized using carbon black as the carbon source by a long-pulse-width laser irradiation in water at room temperature and normal pressure. The produced nanodiamonds can emit strong visible light after simple surface passivation. The light emission is attributed to the surface states related to linkage groups formed on nanodiamond surface. The surface-passivated nanodiamonds with stable photoluminescence have high potential application in bioimaging and medicine

  2. Exploration of biodegradation mechanisms of black carbon-bound nonylphenol in black carbon-amended sediment

    International Nuclear Information System (INIS)

    Cheng, Guanghuan; Sun, Mingyang; Ge, Xinlei; Xu, Xinhua; Lin, Qi; Lou, Liping

    2017-01-01

    The present study aimed to investigate biodegradation mechanisms of black carbon (BC)-bound contaminants in BC-amended sediment when BC was applied to control organic pollution. The single-point Tenax desorption technique was applied to track the species changes of nonylphenol (NP) during biodegradation process in the rice straw carbon (RC)-amended sediment. And the correlation between the biodegradation and desorption of NP was analyzed. Results showed that microorganisms firstly degraded the rapid-desorbing NP (6 h Tenax desorption) in RC-amended sediment. The biodegradation facilitated the desorption of slow-desorbing NP, which was subsequently degraded as well (192 h Tenax desorption). Notably, the final amount of NP degradation was greater than that of NP desorption, indicating that absorbed NP by RC amendment can be degraded by microorganisms. Finally, the residual NP amount in RC-amended sediment was decided by RC content and its physicochemical property. Moreover, the presence of the biofilm was observed by the confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) so that microorganisms were able to overcome the mass transfer resistance and directly utilized the absorbed NP. Therefore, single-point Tenax desorption alone may not be an adequate basis for the prediction of the bioaccessibility of contaminants to microorganisms or bioremediation potential in BC-amended sediment. - Highlights: • Biodegradation mechanism of RC-bound NP in sediment was examined. • The microbe prioritized the degradation of NP in desorption fraction. • The microbe formed the biofilm to directly degrade part of non-desorbable NP. • Residual NP amount was decided by RC content and physicochemical property. • Quantifying biodegradation by bioavailability will underestimate the actual outcomes. - The microbes directly degrade the non-desorbable NP bound to amended RC, so quantifying the biodegradation only by desorption will underestimate the

  3. Sooting Characteristics and Modeling in Counterflow Diffusion Flames

    KAUST Repository

    Wang, Yu

    2013-11-01

    Soot formation is one of the most complex phenomena in combustion science and an understanding of the underlying physico-chemical mechanisms is important. This work adopted both experimental and numerical approaches to study soot formation in laminar counterfl ow diffusion flames. As polycyclic aromatic hydrocarbons (PAHs) are the precursors of soot particles, a detailed gas-phase chemical mechanism describing PAH growth upto coronene for fuels with 1 to 4 carbon atoms was validated against laminar premixed and counter- flow diffusion fl ames. Built upon this gas-phase mechanism, a soot model was then developed to describe soot inception and surface growth. This soot model was sub- sequently used to study fuel mixing effect on soot formation in counterfl ow diffusion flames. Simulation results showed that compared to the baseline case of the ethylene flame, the doping of 5% (by volume) propane or ethane in ethylene tends to increase the soot volume fraction and number density while keeping the average soot size almost unchanged. These results are in agreement with experimental observations. Laser light extinction/scattering as well as laser induced fluorescence techniques were used to study the effect of strain rate on soot and PAH formation in counterfl ow diffusion ames. The results showed that as strain rate increased both soot volume fraction and PAH concentrations decreased. The concentrations of larger PAH were more sensitive to strain rate compared to smaller ones. The effect of CO2 addition on soot formation was also studied using similar experimental techniques. Soot loading was reduced with CO2 dilution. Subsequent numerical modeling studies were able to reproduce the experimental trend. In addition, the chemical effect of CO2 addition was analyzed using numerical data. Critical conditions for the onset of soot were systematically studied in counterfl ow diffusion ames for various gaseous hydrocarbon fuels and at different strain rates. A sooting

  4. Highly Loaded Carbon Black Supported Pt Catalysts for Fuel Cells

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Larsen, M.J.; Zdražil, Miroslav; Gulková, Daniela; Vít, Zdeněk; Šolcová, Olga; Soukup, Karel; Koštejn, Martin; Bonde, J.L.; Maixnerová, Lucie; Odgaard, M.

    2015-01-01

    Roč. 256, NOV 1 (2015), s. 375-383 ISSN 0920-5861 R&D Projects: GA MŠk(CZ) 7HX13003 EU Projects: European Commission(XE) 303466 - IMMEDIATE Institutional support: RVO:67985858 Keywords : carbon black * fuell cell * electrocatalyst Subject RIV: CI - Industrial Chemistry , Chemical Engineering Impact factor: 4.312, year: 2015

  5. Electron Tomography of Nanoparticle Clusters: Implications for Atmospheric Lifetimes and Radiative Forcing of Soot

    Science.gov (United States)

    vanPoppel, Laura H.; Friedrich, Heiner; Spinsby, Jacob; Chung, Serena H.; Seinfeld, John H.; Buseck, Peter R.

    2005-01-01

    Nanoparticles are ubiquitous in nature. Their large surface areas and consequent chemical reactivity typically result in their aggregation into clusters. Their chemical and physical properties depend on cluster shapes, which are commonly complex and unknown. This is the first application of electron tomography with a transmission electron microscope to quantitatively determine the three-dimensional (3D) shapes, volumes, and surface areas of nanoparticle clusters. We use soot (black carbon, BC) nanoparticles as an example because it is a major contributor to environmental degradation and global climate change. To the extent that our samples are representative, we find that quantitative measurements of soot surface areas and volumes derived from electron tomograms differ from geometrically derived values by, respectively, almost one and two orders of magnitude. Global sensitivity studies suggest that the global burden and direct radiative forcing of fractal BC are only about 60% of the value if it is assumed that BC has a spherical shape.

  6. Snow darkening caused by black carbon emitted from fires

    Science.gov (United States)

    Engels, Jessica; Kloster, Silvia; Bourgeois, Quentin

    2014-05-01

    We implemented the effect of snow darkening caused by black carbon (BC) emitted from forest fires into the Max Planck Institute for Meteorology Earth System Model (MPI-M ESM) to estimate its potential climate impact of present day fire occurrence. Considerable amounts of black carbon emitted from fires are transported into snow covered regions. Already very small quantities of black carbon reduce the snow reflectance, with consequences for snow melting and snow spatial coverage. Therefore, the SNICAR (SNow And Ice Radiation) model (Flanner and Zender (2005)) is implemented in the land surface component (JSBACH) of the atmospheric general circulation model ECHAM6, developed at the MPI-M. The SNICAR model includes amongst other processes a complex calculation of the snow albedo depending on black carbon in snow and snow grain growth depending on water vapor fluxes for a five layer snow scheme. For the implementation of the SNICAR model into the one layer scheme of ECHAM6-JSBACH, we used the SNICAR-online version (http://snow.engin.umich.edu). This single-layer simulator provides the albedo of snow for selectable combinations of impurity content (e.g. black carbon), snow grain size, and incident solar flux characteristics. From this scheme we derived snow albedo values for black carbon in snow concentrations ranging between 0 and 1500 ng(BC)/g(snow) and for different snow grain sizes for the visible (0.3 - 0.7 µm) and near infrared range (0.7 - 1.5 µm). As snow grains grow over time, we assign different snow ages to different snow grain sizes (50, 150, 500, and 1000 µm). Here, a radius of 50 µm corresponds to new snow, whereas a radius of 1000 µm corresponds to old snow. The required snow age is taken from the BATS (Biosphere Atmosphere Transfer Scheme, Dickinson et al. (1986)) snow albedo implementation in ECHAM6-JSBACH. Here, we will present an extended evaluation of the model including a comparison of modeled black carbon in snow concentrations to observed

  7. Potassium and soot interaction in fast biomass pyrolysis at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Hofmann Larsen, Flemming; Shchukarev, Andrey

    2018-01-01

    2 reactivity was studied by thermogravimetric analysis. The XPS results showed that potassium incorporation with oxygen-containing surface groups in the soot matrix did not occur during high temperature pyrolysis. The potassium was mostly found as water-soluble salts such as KCl, KOH, KHCO3 and K2CO...... potassium amount was incorporated in the soot matrix during pyrolysis. Raman spectroscopy results showed that the carbon chemistry of biomass soot also affected the CO2 reactivity. The less reactive pinewood soot was more graphitic than herbaceous biomass soot samples with the disordered carbon structure...

  8. Bird specimens track 135 years of atmospheric black carbon and environmental policy

    Science.gov (United States)

    DuBay, Shane G.; Fuldner, Carl C.

    2017-10-01

    Atmospheric black carbon has long been recognized as a public health and environmental concern. More recently, black carbon has been identified as a major, ongoing contributor to anthropogenic climate change, thus making historical emission inventories of black carbon an essential tool for assessing past climate sensitivity and modeling future climate scenarios. Current estimates of black carbon emissions for the early industrial era have high uncertainty, however, because direct environmental sampling is sparse before the mid-1950s. Using photometric reflectance data of >1,300 bird specimens drawn from natural history collections, we track relative ambient concentrations of atmospheric black carbon between 1880 and 2015 within the US Manufacturing Belt, a region historically reliant on coal and dense with industry. Our data show that black carbon levels within the region peaked during the first decade of the 20th century. Following this peak, black carbon levels were positively correlated with coal consumption through midcentury, after which they decoupled, with black carbon concentrations declining as consumption continued to rise. The precipitous drop in atmospheric black carbon at midcentury reflects policies promoting burning efficiency and fuel transitions rather than regulating emissions alone. Our findings suggest that current emission inventories based on predictive modeling underestimate levels of atmospheric black carbon for the early industrial era, suggesting that the contribution of black carbon to past climate forcing may also be underestimated. These findings build toward a spatially dynamic emission inventory of black carbon based on direct environmental sampling.

  9. Chinese Soot on a Vietnamese Soup

    Science.gov (United States)

    Mari, X.

    2015-12-01

    Black Carbon (BC) is an aerosol emitted as soot during biomass burning and fossil fuels combustion together with other carbonaceous aerosols such as organic carbon (OC) and polyaromatic hydrocarbons (PAHs). While the impacts of BC on health and climate have been studied for many years, studies about its deposition and impact on marine ecosystems are scares. This is rather surprising considering that a large fraction of atmospheric BC deposits on the surface of the ocean via dry or wet deposition. On a global scale, deposition on the ocean is about 45 Tg C per year, with higher fluxes in the northern hemisphere and in inter-tropical regions, following the occurrence of the hot-spots of concentration. In the present study conducted on shore, in Haiphong and Halong cities, North Vietnam, we measured the seasonal variations of atmospheric BC, OC and PAHs during a complete annual cycle. The presentation will discuss the atmospheric results in terms of seasonal variability and sources. Inputs to the marine system are higher during the dry season, concomitantly with the arrival of air masses enriched in BC coming from the North. However, the carbon fingerprint can significantly differ at shorter time periods depending on the air mass pathway and speed. Our work leads to the characterization and the determination of the relative contribution of more specific sources like local traffic, which includes tourism and fishing boats, coal dust emitted from the nearby mine, and long-range transported aerosols. This variable input of carbonaceous aerosols might have consequences for the cycling and the repartition of carbon and nutrients in the marine ecosystem of Halong Bay.

  10. Black (pyrogenic carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions

    Directory of Open Access Journals (Sweden)

    C. M. Preston

    2006-01-01

    Full Text Available The carbon (C cycle in boreal regions is strongly influenced by fire, which converts biomass and detrital C mainly to gaseous forms (CO2 and smaller proportions of CO and CH4, and some 1–3% of mass to pyrogenic C (PyC. PyC is mainly produced as solid charred residues, including visually-defined charcoal, and a black carbon (BC fraction chemically defined by its resistance to laboratory oxidation, plus much lower proportions of volatile soot and polycyclic aromatic hydrocarbons (PAHs. All PyC is characterized by fused aromatic rings, but varying in cluster sizes, and presence of other elements (N, O and functional groups. The range of PyC structures is often described as a continuum from partially charred plant materials, to charcoal, soot and ultimately graphite which is formed by the combination of heat and pressure. There are several reasons for current interest in defining more precisely the role of PyC in the C cycle of boreal regions. First, PyC is largely resistant to decomposition, and therefore contributes to very stable C pools in soils and sediments. Second, it influences soil processes, mainly through its sorption properties and cation exchange capacity, and third, soot aerosols absorb solar radiation and may contribute to global warming. However, there are large gaps in the basic information needed to address these topics. While charcoal is commonly defined by visual criteria, analytical methods for BC are mainly based on various measures of oxidation resistance, or on yield of benzenepolycarboxylic acids. These methods are still being developed, and capture different fractions of the PyC structural continuum. There are few quantitative reports of PyC production and stocks in boreal forests (essentially none for boreal peatlands, and results are difficult to compare due to varying experimental goals and methods, as well as inconsistent terminology. There are almost no direct field measurements of BC aerosol production from boreal

  11. Multi-wavelength Characterization of Brown and Black Carbon from Filter Samples

    Science.gov (United States)

    Johnson, M. M.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Gyawali, M. S.; Arnott, W. P.; Wang, X.; Chakrabarty, R. K.; Moosmüller, H.; Watson, J. G.; Chow, J. C.

    2014-12-01

    Particulate matter (PM) scatters and absorbs solar radiation and thereby affects visibility, the Earth's radiation balance, and properties and lifetimes of clouds. Understanding the radiative forcing (RF) of PM is essential to reducing the uncertainty in total anthropogenic and natural RF. Many instruments that measure light absorption coefficients (βabs [λ], Mm-1) of PM have used light at near-infrared (NIR; e.g., 880 nm) or red (e.g., 633 nm) wavelengths. Measuring βabs over a wider wavelength range, especially including the ultraviolet (UV) and visible, allows for contributions from black carbon (BC), brown carbon (BrC), and mineral dust (MD) to be differentiated. This will help to determine PM RF and its emission sources. In this study, source and ambient samples collected on Teflon-membrane and quartz-fiber filters are used to characterize and develop a multi-wavelength (250 - 1000 nm) filter-based measurement method of PM light absorption. A commercially available UV-visible spectrometer coupled with an integrating sphere is used for quantifying diffuse reflectance and transmittance of filter samples, from which βabs and absorption Ǻngström exponents (AAE) of the PM deposits are determined. The filter-based light absorption measurements of laboratory generated soot and biomass burning aerosol are compared to 3-wavelength photoacoustic absorption measurements to evaluate filter media and loading effects. Calibration factors are developed to account for differences between filter types (Teflon-membrane vs. quartz-fiber), and between filters and in situ photoacoustic absorption values. Application of multi-spectral absorption measurements to existing archived filters, including specific source samples (e.g. diesel and gasoline engines, biomass burning, dust), will also be discussed.

  12. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  13. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in

  14. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-09-01

    Full Text Available Black carbon (BC aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2 measurements of refractory BC (rBC mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA operated by the Facility for Airborne Atmospheric Measurements (FAAM. We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS and used positive matrix factorization to separate hydrocarbon-like (HOA and oxygenated organic aerosols (OOA. We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA did change for

  15. Black carbon measurements during winter 2013-2014 in Athens and intercomparison between different techniques

    Science.gov (United States)

    Liakakou, Eleni; Stravroulas, Jason; Roukounakis, Nikolaos; Paraskevopoulou, Despina; Fourtziou, Luciana; Psiloglou, Vassilis; Gerasopoulos, Evangelos; Sciare, Jean; Mihalopoulos, Nikolaos

    2014-05-01

    Black carbon (BC) is a particulate pollutant species emitted from the combustion of fuels, biomass burning for agricultural purposes and forest fires, with the first two anthropogenic sources being the major contributors to the atmospheric burden of BC. The presence of BC is important due to its direct and indirect physicochemical effects and its use as a tracer of burning and subsequent transport processes. Black carbon measurements took place during winter 2013 -2014 in the frame of a pollution monitoring experiment conducted at the urban site of Thissio, Athens (city center) at the premises of the National Observatory of Athens. The economic crisis in Greece and the resulting turn of Athens inhabitants to wood burning for domestic heating, has led to increased daily concentrations of BC in the range of 2-6 μg m-3, peaking at night time (15-20 μg m-3). Three different optical methods were used for the determination of BC. A Particle Soot Absorption Photometer (PSAP; Radiance Research) commercial instrument was used to monitor the light absorption coefficient (σap) at 565 nm of ambient aerosols, with 1 minute resolution. During parts of the campaign, a portable Aethalometer (AE-42; Magee Scientific) was also used to provide measurement of the aerosol BC content at 7 wavelengths over 5 minutes intervals. Exploiting the measurements at different wavelengths is was feasible to separate wood burning BC from BC related to fossil fuel. Two Multi Angle Absorption Photometers (MAAP; Thermo) were also operated as reference. Finally, aerosol samples were collected on 12-hour basis using a sequential dichotomous sampler for the sampling of PM2.5, PM2.5-10and PM10 fractions of aerosols on quartz filters, and the filters were analyzed for elemental carbon (EC) by a thermal - optical transmission technique. The main objective of the study is the intercomparison of the different BC monitoring techniques under a large range of ambient concentrations achieved due to the special

  16. Simultaneous measurement of the concentrations of soot particles and gas species in light hydrocarbon flames using mass spectrometry

    International Nuclear Information System (INIS)

    Li, Qingxun; Liu, Fang; Wang, Dezheng; Wang, Tiefeng

    2014-01-01

    Besides gas species concentrations, soot volume fractions are also important data in the study of flames. This work describes the simultaneous measurement of the concentrations of soot and gas species in light hydrocarbon flames by in situ sampling and mass spectrometry (MS).The reaction medium was frozen by sampling into a very low-pressure tube, and the soot selectivity (proportion of carbon atoms in the reactant converted to soot) was determined from the C and H mass balances using the measured concentrations of the gas species and the mass of soot present per unit gas volume. The H/C ratio of the soot was measured by a thermogravimetry–mass spectrometry combination. The soot volume fraction was calculated from the soot selectivity and density of the soot. The soot selectivity measured by this reduced pressure sampling mass spectrometry (RPSMS) method was verified by measurements using the gravimetric sampling technique where the mass of soot collected in a volume of gas was weighed by a high precision balance. For most of the measurements, the uncertainty in the soot volume fraction was ±5%, but this would be larger when the soot volume fractions are less than 1 ppm. For demonstration, the RPSMS method was used to study a methane fuel-rich flame where the soot volume fractions were 1–5 ppm. The simultaneous measurement of concentrations of soot and gas species is useful for the quantitative study of flames. (paper)

  17. Determination of the spectral behaviour of atmospheric soot using different particle models

    Science.gov (United States)

    Skorupski, Krzysztof

    2017-08-01

    In the atmosphere, black carbon aggregates interact with both organic and inorganic matter. In many studies they are modeled using different, less complex, geometries. However, some common simplification might lead to many inaccuracies in the following light scattering simulations. The goal of this study was to compare the spectral behavior of different, commonly used soot particle models. For light scattering simulations, in the visible spectrum, the ADDA algorithm was used. The results prove that the relative extinction error δCext, in some cases, can be unexpectedly large. Therefore, before starting excessive simulations, it is important to know what error might occur.

  18. Potential climate impact of black carbon emitted by rockets

    Science.gov (United States)

    Ross, Martin; Mills, Michael; Toohey, Darin

    2010-12-01

    A new type of hydrocarbon rocket engine is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. A global climate model predicts that emissions from a fleet of 1000 launches per year of suborbital rockets would create a persistent layer of black carbon particles in the northern stratosphere that could cause potentially significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical stratospheric ozone abundances are predicted to change as much as 1%, while polar ozone changes by up to 6%. Polar surface temperatures change as much as one degree K regionally with significant impacts on polar sea ice fractions. After one decade of continuous launches, globally averaged radiative forcing from the black carbon would exceed the forcing from the emitted CO2 by a factor of about 105 and would be comparable to the radiative forcing estimated from current subsonic aviation.

  19. Electromagnetic properties of carbon black and barium titanate composite materials

    International Nuclear Information System (INIS)

    Wang Guiqin; Chen Xiaodong; Duan Yuping; Liu Shunhua

    2008-01-01

    Nanocrystalline carbon black/barium titanate compound particle (CP) was synthesized by sol-gel method. The phase structure and morphology of compound particle were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM) and Raman spectrum measurements, the electroconductivity was test by trielectrode arrangement and the precursor powder was followed by differential scanning calorimetric measurements (DSC) and thermal gravimetric analysis (TGA). In addition, the complex relative permittivity and permeability of compound particle were investigated by reflection method. The compound particle/epoxide resin composite (CP/EP) with different contents of CP were measured. The results show barium titanate crystal is tetragonal phase and its grain is oval shape with 80-100 nm which was coated by carbon black film. As electromagnetic (EM) complex permittivity, permeability and reflection loss (RL) shown that the compound particle is mainly a kind of electric and dielectric lossy materials and exhibits excellent microwave absorption performance in the X- and Ku-bands

  20. Barrow Black Carbon Source and Impact Study Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Tate [Baylor Univ., Waco, TX (United States)

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.

  1. Contribution of Black Carbon Aerosol to Drying of the Mediterranean

    Science.gov (United States)

    Tang, T.; Shindell, D. T.; Samset, B. H.; Boucher, O.; Forster, P.; Hodnebrog, Ø.; Myhre, G.; Sillmann, J.; Voulgarakis, A.; Andrews, T.; Faluvegi, G.; Fläschner, D.; Iverson, T.; Kasoar, M.; Kharin, V. V.; Kirkevag, A.; Lamarque, J. F.; Olivié, D.; Richardson, T.; Stjern, C.; Takemura, T.; Zwiers, F. W.

    2017-12-01

    Atmospheric aerosols affect cloud properties, radiative balance and thus, the hydrological cycle. Many studies have reported that precipitation has decreased in the Mediterranean since the mid-20th century, and investigated possible mechanisms. So far, however, the effects of aerosol forcing on Mediterranean precipitation remain largely unknown. Here we compare observed Mediterranean precipitation trends during 1951-2010 with responses to individual forcing in a set of state-of-the-art global climate models. Our analyses suggest that nearly one-third (30%) of the observed precipitation decrease may be attributable to black carbon forcing. The remainder is most strongly linked to forcing of well-mixed greenhouse gases (WMGHGs), with scattering sulfate aerosols having negligible impacts. Black carbon caused an enhanced positive North Atlantic Oscillation (NAO)/Arctic Oscillation (AO)-like sea level pressure (SLP) pattern, characterized by higher SLP at mid-latitudes and lower SLP at high-latitudes. This SLP change diverted the jet stream and storm tracks further northward, reducing precipitation in the Mediterranean while increasing precipitation in Northern Europe. The results from this study suggest that future black carbon emissions may significantly affect regional water resources, agricultural practices, ecosystems, and economy in the Mediterranean region.

  2. Personal exposure to Black Carbon in transport microenvironments

    Science.gov (United States)

    Dons, Evi; Int Panis, Luc; Van Poppel, Martine; Theunis, Jan; Wets, Geert

    2012-08-01

    We evaluated personal exposure of 62 individuals to the air pollutant Black Carbon, using 13 portable aethalometers while keeping detailed records of their time-activity pattern and whereabouts. Concentrations encountered in transport are studied in depth and related to trip motives. The evaluation comprises more than 1500 trips with different transport modes. Measurements were spread over two seasons. Results show that 6% of the time is spent in transport, but it accounts for 21% of personal exposure to Black Carbon and approximately 30% of inhaled dose. Concentrations in transport were 2-5 times higher compared to concentrations encountered at home. Exposure was highest for car drivers, and car and bus passengers. Concentrations of Black Carbon were only half as much when traveling by bike or on foot; when incorporating breathing rates, dose was found to be twice as high for active modes. Lowest 'in transport' concentrations were measured in trains, but nevertheless these concentrations are double the concentrations measured at home. Two thirds of the trips are car trips, and those trips showed a large spread in concentrations. In-car concentrations are higher during peak hours compared to off-peak, and are elevated on weekdays compared to Saturdays and even more so on Sundays. These findings result in significantly higher exposure during car commute trips (motive 'Work'), and lower concentrations for trips with motive 'Social and leisure'. Because of the many factors influencing exposure in transport, travel time is not a good predictor of integrated personal exposure or inhaled dose.

  3. Potential contributions of asphalt and coal tar to black carbon quantification in urban dust, soils, and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y.; Mahler, B.J.; Van Metre, P.C.; Ligouis, B.; Werth, C.J. [University of Illinois Urbana Champaign, Urbana, IL (USA). Dept. of Civil & Environmental Engineering

    2010-12-01

    Measurements of black carbon (BC) using either chemical or thermal oxidation methods are generally thought to indicate the amount of char and/or soot present in a sample. In urban environments, however, asphalt and coal-tar particles worn from pavement are ubiquitous and, because of their pyrogenic origin, could contribute to measurements of BC. Here we explored the effect of the presence of asphalt and coal-tar particles on the quantification of BC in a range of urban environmental sample types, and evaluated biases in the different methods used for quantifying BC. Samples evaluated were pavement dust, residential and commercial area soils, lake sediments from a small urban watershed, and reference materials of asphalt and coal tar. Total BC was quantified using chemical treatment through acid dichromate (Cr{sub 2}O{sub 7}) oxidation and chemo-thermal oxidation at 375{sup o}C (CTO-375). BC species, including soot and char/charcoal, asphalt, and coal tar, were quantified with organic petrographic analysis. Comparison of results by the two oxidation methods and organic petrography indicates that both coal tar and asphalt contribute to BC quantified by Cr{sub 2}O{sub 7} oxidation, and that coal tar contributes to BC quantified by CTO-375. These results are supported by treatment of asphalt and coal-tar reference samples with Cr2O7 oxidation and CTO-375. The reference asphalt is resistant to Cr{sub 2}O{sub 7} oxidation but not to CTO-375, and the reference coal tar is resistant to both Cr2O7 oxidation and CTO-375. These results indicate that coal tar and/or asphalt can contribute to BC measurements in samples from urban areas using Cr{sub 2}O{sub 7} oxidation or CTO-375, and caution is advised when interpreting BC measurements made with these methods.

  4. A contribution of black and brown carbon to the aerosol light absorption

    Science.gov (United States)

    Kim, Sang-Woo; Cho, Chaeyoon; Jo, Duseong; Park, Rokjin

    2017-04-01

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols and is typically dominated by soot-like elemental carbon (EC). Organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC; Alexander et al., 2008). These two aerosols contribute to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer, but most optical instruments that quantify light absorption are unable to distinguish one type of absorbing aerosol from another (Moosmüller et al. 2009). In this study, we separate total aerosol absorption from these two different light absorbers from co-located simultaneous in-situ measurements, such as Continuous Soot Monitoring System (COSMOS), Continuous Light Absorption Photometer (CLAP) and Sunset EC/OC analyzer, at Gosan climate observatory, Korea. We determine the mass absorption cross-section (MAC) of BC, and then estimate the contribution of BC and BrC on aerosol light absorption, together with a global 3-D chemical transport model (GEOS-Chem) simulation. At 565 nm wavelength, BC MAC is found to be about 5.4±2.8 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements during January-May 2012. This value is similar to those from Alexander et al. (2008; 4.3 ˜ 4.8 m2 g-1 at 550 nm) and Chung et al. (2012; 5.1 m2 g-1 at 520 nm), but slightly lower than Bond and Bergstrom (2006; 7.5±1.2 m2 g-1 at 550 nm). The COMOS BC mass concentration calculated with 5.4 m2 g-1 of BC MAC shows a good agreement with thermal EC concentration, with a good slope (1.1). Aerosol absorption coefficient and BC mass concentration from COSMOS, meanwhile, are approximately 25 ˜ 30 % lower than those of CLAP. This difference can be attributable to the contribution of volatile light-absorbing aerosols (i.e., BrC). The absorption coefficient of BrC, which is determined by the difference of

  5. Refractory black carbon at the Whistler Peak High Elevation Research Site - Measurements and simulations

    Science.gov (United States)

    Hanna, Sarah J.; Xu, Jun-Wei; Schroder, Jason C.; Wang, Qiaoqiao; McMeeking, Gavin R.; Hayden, Katherine; Leaitch, W. Richard; Macdonald, AnneMarie; von Salzen, Knut; Martin, Randall V.; Bertram, Allan K.

    2018-05-01

    Measurements of black carbon at remote and high altitude locations provide an important constraint for models. Here we present six months of refractory black carbon (rBC) data collected in July-August of 2009, June-July of 2010, and April-May of 2012 using a single particle soot photometer (SP2) at the remote Whistler High Elevation Research Site in the Coast Mountains of British Columbia (50.06°N, 122.96°W, 2182 m a.m.s.l). In order to reduce regional boundary layer influences, only measurements collected during the night (2000-0800 PST) were considered. Times impacted by local biomass burning were removed from the data set, as were periods of in-cloud sampling. Back trajectories and back trajectory cluster analysis were used to classify the sampled air masses as Southern Pacific, Northern Pacific, Western Pacific/Asian, or Northern Canadian in origin. The largest rBC mass median diameter (182 nm) was seen for air masses in the Southern Pacific cluster, and the smallest (156 nm) was seen for air masses in the Western Pacific/Asian cluster. Considering all the clusters, the median mass concentration of rBC was 25.0 ± 7.6 ng/m3-STP. The Northern Pacific, Southern Pacific, Western Pacific/Asian, and Northern Canada clusters had median mass concentrations of 25.0 ± 7.6, 21.3 ± 6.9, 25.0 ± 7.9, and 40.6 ± 12.9 ng/m3-STP, respectively. We compared these measurements with simulations from the global chemical transport model GEOS-Chem. The default GEOS-Chem simulations overestimated the median rBC mass concentrations for the different clusters by a factor of 1.2-2.2. The largest difference was observed for the Northern Pacific cluster (factor of 2.2) and the smallest difference was observed for the Northern Canada cluster (factor of 1.2). A sensitivity simulation that excluded Vancouver emissions still overestimated the median rBC mass concentrations for the different clusters by a factor of 1.1-2.0. After implementation of a revised wet scavenging scheme, the

  6. The Contribution of Black Carbon to Ice Nucleating Particle Concentrations from Prescribed Burns and Wildfires

    Science.gov (United States)

    Schill, G. P.; DeMott, P. J.; Suski, K. J.; Emerson, E. W.; Rauker, A. M.; Kodros, J.; Levin, E. J.; Hill, T. C. J.; Farmer, D.; Pierce, J. R.; Kreidenweis, S. M.

    2017-12-01

    Black carbon (BC) has been implicated as a potential immersion-mode ice nucleating particle (INP) because of its relative abundance in the upper troposphere. Furthermore, several field and aircraft measurements have observed positive correlations between BC and INP concentrations. Despite this, the efficiency of BC to act as an immersion-mode INP is poorly constrained. Indeed, previous results from laboratory studies are in conflict, with estimates of BC's impact on INP ranging from no impact to being efficient enough to rival the well-known INP mineral dust. It is, however, becoming clear that the ice nucleation activity of BC may depend on both its fuel type and combustion conditions. For example, previous work has shown that diesel exhaust BC is an extremely poor immersion-mode INP, but laboratory burns of biomass fuels indicate that BC can contribute up to 70% of all INP for some fuel types. Given these dependencies, we propose that sampling from real-world biomass burning sources would provide the most useful new information on the contribution of BC to atmospheric INP. In this work, we will present recent results looking at the sources of INP from prescribed burns and wildfires. To determine the specific contribution of refractory black carbon (rBC) to INP concentrations, we utilized a new technique that couples the Single Particle Soot Photometer (SP2) to the Colorado State University Continuous Flow Diffusion Chamber (CFDC). The SP2 utilizes laser-induced incandescence to quantify rBC mass on a particle-by-particle basis; in doing so, it also selectively destroys rBC particles by heating them to their vaporization temperature. Thus, the SP2 can be used as a selective pre-filter for rBC into the CFDC. Furthermore, we have also used a filter-based technique for measuring INP, the Ice Spectrometer, which can employ pretreatments such as heating and digestion by H2O2 to determine the contribution of heat-labile and organic particles, respectively.

  7. A cellphone based system for large-scale monitoring of black carbon

    Science.gov (United States)

    Ramanathan, N.; Lukac, M.; Ahmed, T.; Kar, A.; Praveen, P. S.; Honles, T.; Leong, I.; Rehman, I. H.; Schauer, J. J.; Ramanathan, V.

    2011-08-01

    Black carbon aerosols are a major component of soot and are also a major contributor to global and regional climate change. Reliable and cost-effective systems to measure near-surface black carbon (BC) mass concentrations (hereafter denoted as [BC]) globally are necessary to validate air pollution and climate models and to evaluate the effectiveness of BC mitigation actions. Toward this goal we describe a new wireless, low-cost, ultra low-power, BC cellphone based monitoring system (BC_CBM). BC_CBM integrates a Miniaturized Aerosol filter Sampler (MAS) with a cellphone for filter image collection, transmission and image analysis for determining [BC] in real time. The BC aerosols in the air accumulate on the MAS quartz filter, resulting in a coloration of the filter. A photograph of the filter is captured by the cellphone camera and transmitted by the cellphone to the analytics component of BC_CBM. The analytics component compares the image with a calibrated reference scale (also included in the photograph) to estimate [BC]. We demonstrate with field data collected from vastly differing environments, ranging from southern California to rural regions in the Indo-Gangetic plains of Northern India, that the total BC deposited on the filter is directly and uniquely related to the reflectance of the filter in the red wavelength, irrespective of its source or how the particles were deposited. [BC] varied from 0.1 to 1 μg m -3 in Southern California and from 10 to 200 μg m -3 in rural India in our field studies. In spite of the 3 orders of magnitude variation in [BC], the BC_CBM system was able to determine the [BC] well within the experimental error of two independent reference instruments for both indoor air and outdoor ambient air. Accurate, global-scale measurements of [BC] in urban and remote rural locations, enabled by the wireless, low-cost, ultra low-power operation of BC_CBM, will make it possible to better capture the large spatial and temporal variations in

  8. Black Carbon Measurements From Ireland's Transboundary Network (TXB)

    Science.gov (United States)

    Spohn, T. K.; Martin, D.; O'Dowd, C. D. D.

    2017-12-01

    Black Carbon (BC) is carbonaceous aerosol formed by incomplete fossil fuel combustion. Named for its light absorbing properties, it acts to trap heat in the atmosphere, thus behaving like a greenhouse gas, and is considered a strong, short-lived climate forcer by the International Panel on Climate Change (IPCC). Carbonaceous aerosols from biomass burning (BB) such as forest fires and residential wood burning, also known as brown carbon, affect the ultra violet (UV) light absorption in the atmosphere as well. In 2016 a three node black carbon monitoring network was established in Ireland as part of a Transboundary Monitoring Network (TXB). The three sites (Mace Head, Malin Head, and Carnsore Point) are coastal locations on opposing sides of the country, and offer the opportunity to assess typical northern hemispheric background concentrations as well national and European pollution events. The instruments deployed in this network (Magee Scientific AE33) facilitate elimination of the changes in response due to `aerosol loading' effects; and a real-time calculation of the `loading compensation' parameter which offers insights into aerosol optical properties. Additionally, these instruments have an inbuilt algorithm, which estimates the difference in absorption in the ultraviolet wavelengths (mostly by brown carbon) and the near infrared wavelengths (only by black carbon).Presented here are the first results of the BC measurements from the three Irish stations, including instrument validation, seasonal variation as well as local, regional, and transboundary influences based on air mass trajectories as well as concurrent in-situ observations (meteorological parameters, particle number, and aerosol composition). A comparison of the instrumental algorithm to off-line sensitivity calculations will also be made to assess the contribution of biomass burning to BC pollution events.

  9. A New Method to Obtain the Black Carbon Mixing State of Biomass and Combustion Aerosols

    Science.gov (United States)

    Irwin, M.; Liu, D.; Joshi, R.; Allan, J. D.; Coe, H.; Flynn, M.; Olfert, J. S.; Broda, K.; Fu, P.; Sun, Y.; Ge, X.; Wang, J.

    2017-12-01

    Black carbon particles (BC) significantly contribute to warming effects in the atmosphere, altering weather systems, and pose significant health risks. These impacts are especially efficient at regional hotspots with high emissions of pollutants, such as in fast-developing megacities. These urban environments have the most population exposure, and improving the understanding of the sources and the processing of pollutants in these environments is critical in guiding policy making. Here we present the results of BC characterization in Beijing during the winter of 2016 (10th Nov-10th Dec), as part of a large joint UK-China field experiment. During this experiment, we successfully gathered 4 weeks of continuous measurements, including several severe pollution events in Beijing. MethodologyThe mixing state of BC, which is how BC is associated with non-BC material (its coating) within a particle, is crucial to determine its lifetime in the atmosphere and also its optical properties. However precisely quantifying the BC mixing state has posed a challenge, in part due to complex particle morphology. We have applied morphology-independent measurements of BC mixing state on a single-particle basis throughout this experiment: mono-dispersed particle mass (MP) is selected using a Centrifugal Particle Mass Analyser (CPMA, Cambustion Ltd) and a single particle soot photometer (SP2, DMT inc.) was used downstream of the CPMA to measure the refractory BC mass (MrBC). The full scan of CPMA masses (21 mass bins covering most of MP) are performed every half hour, following polydispersed particles measured without running CPMA.

  10. Ice Nucleation Activity of Black Carbon and Organic Aerosol Emitted from Biomass Burning

    Science.gov (United States)

    Rauker, A. M.; Schill, G. P.; Hill, T. C. J.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.

    2017-12-01

    Ice-nucleating particles (INPs) must be present in clouds warmer than approximately -36 °C for initial ice crystal formation to occur. Although rare, they modify the lifetime, albedo and precipitation rates of clouds. Black carbon (BC) particles are present in the upper troposphere, and have been implicated as possible INPs, but recent research has not led to a consensus on their importance as INPs. Biomass burning is known to be a source of INPs as well as a major contributor to BC concentrations. Preliminary research from both prescribed burns (Manhattan, Kanas) and wildfires (Boise, Idaho and Weldon, Colorado), using the Colorado State University Continuous Flow Diffusion Chamber (CSU-CFDC) coupled to a Single Particle Soot Photometer (SP2), suggest that BC contributed ≤ 10% to INP concentrations in biomass burning conditions. To evaluate the identity of non-BC as an INP, filters were collected downwind from the same prescribed burns and wildfires, and particles re-suspended in water were subjected to the immersion freezing method to quantify INP concentrations. The contributions of biological and total organic species to INP concentrations were determined through heat and hydrogen peroxide pre-treatments. Total INPs ranged from 0.88 - 31 L-1 air at -20 °C with 82 - 99 % of the INPs at that temperature being organic (i.e., deactivated by H2O2 digestion). Results are consistent with CSU-CFDC-SP2 derived rBC INP contributions from the same fires. The results from the study also support previous findings that prescribed burns and wildfires produce plumes enriched in INPs.

  11. Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions

    Science.gov (United States)

    Lee, Alex K. Y.; Chen, Chia-Li; Liu, Jun; Price, Derek J.; Betha, Raghu; Russell, Lynn M.; Zhang, Xiaolu; Cappa, Christopher D.

    2017-12-01

    Black carbon (BC) emitted from incomplete combustion can result in significant impacts on air quality and climate. Understanding the mixing state of ambient BC and the chemical characteristics of its associated coatings is particularly important to evaluate BC fate and environmental impacts. In this study, we investigate the formation of organic coatings on BC particles in an urban environment (Fontana, California) under hot and dry conditions using a soot-particle aerosol mass spectrometer (SP-AMS). The SP-AMS was operated in a configuration that can exclusively detect refractory BC (rBC) particles and their coatings. Using the -log(NOx / NOy) ratio as a proxy for photochemical age of air masses, substantial formation of secondary organic aerosol (SOA) coatings on rBC particles was observed due to active photochemistry in the afternoon, whereas primary organic aerosol (POA) components were strongly associated with rBC from fresh vehicular emissions in the morning rush hours. There is also evidence that cooking-related organic aerosols were externally mixed from rBC. Positive matrix factorization and elemental analysis illustrate that most of the observed SOA coatings were freshly formed, providing an opportunity to examine SOA coating formation on rBCs near vehicular emissions. Approximately 7-20 wt % of secondary organic and inorganic species were estimated to be internally mixed with rBC on average, implying that rBC is unlikely the major condensation sink of SOA in this study. Comparison of our results to a co-located standard high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) measurement suggests that at least a portion of SOA materials condensed on rBC surfaces were chemically different from oxygenated organic aerosol (OOA) particles that were externally mixed with rBC, although they could both be generated from local photochemistry.

  12. Seasonal Progression of the Deposition of Black Carbon by Snowfall at Ny-Ålesund, Spitsbergen

    Science.gov (United States)

    Sinha, P. R.; Kondo, Y.; Goto-Azuma, K.; Tsukagawa, Y.; Fukuda, K.; Koike, M.; Ohata, S.; Moteki, N.; Mori, T.; Oshima, N.; Førland, E. J.; Irwin, M.; Gallet, J.-C.; Pedersen, C. A.

    2018-01-01

    Deposition of black carbon (BC) aerosol in the Arctic lowers snow albedo, thus contributing to warming in the region. However, the processes and impacts associated with BC deposition are poorly understood because of the scarcity and uncertainties of measurements of BC in snow with adequate spatiotemporal resolution. We sampled snowpack at two sites (11 m and 300 m above sea level) at Ny-Ålesund, Spitsbergen, in April 2013. We also collected falling snow near the surface with a windsock from September 2012 to April 2013. The size distribution of BC in snowpack and falling snow was measured using a single-particle soot photometer combined with a characterized nebulizer. The BC size distributions did not show significant variations with depth in the snowpack, suggesting stable size distributions in falling snow. The BC number and mass concentrations (CNBC and CMBC) at the two sites agreed to within 19% and 10%, respectively, despite the sites' different snow water equivalent (SWE) loadings. This indicates the small influence of the amount of SWE (or precipitation) on these quantities. Average CNBC and CMBC in snowpack and falling snow at nearly the same locations agreed to within 5% and 16%, after small corrections for artifacts associated with the sampling of the falling snow. This comparison shows that the dry deposition was a small contributor to the total BC deposition. CMBC were highest (2.4 ± 3.0 μg L-1) in December-February and lowest (1.2 ± 1.2 μg L-1) in September-November.

  13. Black carbon's contribution to aerosol absorption optical depth over S. Korea

    Science.gov (United States)

    Lamb, K.; Perring, A. E.; Beyersdorf, A. J.; Anderson, B. E.; Segal-Rosenhaimer, M.; Redemann, J.; Holben, B. N.; Schwarz, J. P.

    2017-12-01

    Aerosol absorption optical depth (AAOD) monitored by ground-based sites (AERONET, SKYNET, etc.) is used to constrain climate radiative forcing from black carbon (BC) and other absorbing aerosols in global models, but few validation studies between in situ aerosol measurements and ground-based AAOD exist. AAOD is affected by aerosol size distributions, composition, mixing state, and morphology. Megacities provide appealing test cases for this type of study due to their association with very high concentrations of anthropogenic aerosols. During the KORUS-AQ campaign in S. Korea, which took place in late spring and early summer of 2016, in situ aircraft measurements over the Seoul Metropolitan Area and Taehwa Research Forest (downwind of Seoul) were repeated three times per flight over a 6 week period, providing significant temporal coverage of vertically resolved aerosol properties influenced by different meteorological conditions and sources. Measurements aboard the NASA DC-8 by the NOAA Humidified Dual Single Particle Soot Photometers (HD-SP2) quantified BC mass, size distributions, mixing state, and the hygroscopicity of BC containing aerosols. The in situ BC mass vertical profiles are combined with estimated absorption enhancement calculated from observed optical size and hygroscopicity using Mie theory, and then integrated over the depth of the profile to calculate BC's contribution to AAOD. Along with bulk aerosol size distributions and hygroscopicity, bulk absorbing aerosol optical properties, and on-board sky radiance measurements, these measurements are compared with ground-based AERONET site measurements of AAOD to evaluate closure between in situ vertical profiles of BC and AAOD measurements. This study will provide constraints on the relative importance of BC (including lensing and hygroscopicity effects) and non-BC components to AAOD over S. Korea.

  14. High Altitude Emissions of Black Carbon Aerosols: Potential Climate Implications

    Science.gov (United States)

    Satheesh, S. K.

    2017-12-01

    Synthesizing a series of ground-based and airborne measurements of aerosols over the Indian region during summer and pre-monsoon seasons have revealed the persistence of elevated absorbing aerosol layers over most of the Indian region; more than 50% of which located above clouds. Subsequent, in situ measurements of black carbon (BC) using high-altitude balloons, showed surprising layers with high concentrations in the middle and upper troposphere even at an altitude of 8 to 10 kms. Simultaneous measurements of the vertical thermal structure have shown localized warming due to BC absorption leading to large reduction in lapse rate and sharp temperature inversion, which in turn increases the atmospheric stability. This aerosol-induced stable layer is conducive for maintaining the black carbon layer longer at that level, leading thereby to further solar absorption and subsequently triggering dry convection. These observations support the `solar escalator' concept through which absorption-warming-convection cycles lead to self-lifting of BC to upper troposphere or even to lower stratosphere under favorable conditions in a matter of a few days. Employing an on-line regional chemistry transport model (WRF-Chem), incorporating aircraft emissions, it is shown that emissions from high-flying aircrafts as the most likely source of these elevated black carbon layers. These in-situ injected particles, produce significant warming of the thin air in those heights and lift these layers to even upper tropospheric/lower stratospheric heights, aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere, especially during monsoon season when the tropical tropopause layer is known to be thinnest. These simulations are further supported by the CALIPSO space-borne LIDAR derived extinction coefficient profiles. Based on

  15. Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries

    International Nuclear Information System (INIS)

    Dominko, Robert; Gaberscek, Miran; Drofenik, Jernej; Bele, Marjan; Jamnik, Janez

    2003-01-01

    The influence of carbon black content and carbon black distribution on performance of oxide-based cathodes, such as LiCoO 2 and LiMn 2 O 4 , is investigated. The electronic conductivity of oxide material/carbon black composites is compared with electrochemical characteristics of the same composites. Uniformity of carbon black distribution in cathode composites is achieved using novel coating technology in cathode preparation. In this technology, the active particles are first pretreated in a gelatin solution. The adsorbed gelatin then controls the deposition of carbon black so that carbon black particles are uniformly distributed in the final composite. The influence of various parameters, such as pH of gelatin, amount of gelatin and concentration of carbon black on the uniformity of carbon black distribution is investigated. It is shown that the conventional technology of cathode preparation yields quite non-uniform distribution of carbon black in cathode material. At the end, we demonstrate that uniformity of carbon black distribution has a crucial impact on reversible capacity, especially at high current densities

  16. Black Carbon and Particulate Matter (PM2.5) Concentrations in New York City’s Subway Stations

    Science.gov (United States)

    2015-01-01

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m3, with 1 min average peaks >100 μg/m3, while real time PM2.5 levels ranged from 35 to 200 μg/m3. Mean EC levels ranged from 9 to 12.5 μg/m3. At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m3, respectively. This study shows that both BC soot and PM levels in NYC’s subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted. PMID:25409007

  17. Toxicity assessment of carbon black waste: A by-product from oil refineries

    International Nuclear Information System (INIS)

    Zhen, Xu; Ng, Wei Cheng; Fendy; Tong, Yen Wah; Dai, Yanjun; Neoh, Koon Gee; Wang, Chi-Hwa

    2017-01-01

    Highlights: • Carbon black waste extract decreased cell viability in a dose and time-dependent manner. • Apoptosis of human cell lines was induced by carbon black waste extract. • Carbon black waste extract elicited oxidative stress by increasing intracellular ROS generation. • Carbon black waste extract impaired antioxidant enzymatic activities of human cell lines. • The high toxicity of carbon black waste extract could be attributed mainly to the effect of vanadium. - Abstract: In Singapore, approximately 30 t/day of carbon-based solid waste are produced from petrochemical processes. This carbon black waste has been shown to possess physical properties that are characteristic of a good adsorbent such as high external surface area. Therefore, there is a growing interest to reutilize and process this carbon black waste into secondary materials such as adsorbents. However, the carbon black waste obtained from petrochemical industries may contain heavy metals that are hazardous to human health and the environment, hence restricting its full potential for re-utilization. Therefore, it is important to examine the possible toxicity effects and toxicity mechanism of carbon black waste on human health. In this study, inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis showed that the heavy metals, vanadium (V), molybdenum (Mo) and nickel (Ni), were present in the carbon black waste in high concentrations. Three human cell lines (HepG2 cells, MRC-5 cells and MDA-MB-231 cells) were used to investigate the toxicity of carbon black waste extract in a variety of in vitro assays. Results from MTS assays indicated that carbon black waste extract decreased the viability of all three cell lines in a dose and time-dependent manner. Observations from confocal microscopy further confirmed this phenomenon. Flow cytometry assay also showed that carbon black waste extract induced apoptosis of human cell lines, and the level of apoptosis increased with

  18. Toxicity assessment of carbon black waste: A by-product from oil refineries

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, Xu; Ng, Wei Cheng [NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602 (Singapore); Fendy; Tong, Yen Wah [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Dai, Yanjun [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai, 200240 (China); Neoh, Koon Gee, E-mail: chenkg@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore); Wang, Chi-Hwa, E-mail: chewch@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 (Singapore)

    2017-01-05

    Highlights: • Carbon black waste extract decreased cell viability in a dose and time-dependent manner. • Apoptosis of human cell lines was induced by carbon black waste extract. • Carbon black waste extract elicited oxidative stress by increasing intracellular ROS generation. • Carbon black waste extract impaired antioxidant enzymatic activities of human cell lines. • The high toxicity of carbon black waste extract could be attributed mainly to the effect of vanadium. - Abstract: In Singapore, approximately 30 t/day of carbon-based solid waste are produced from petrochemical processes. This carbon black waste has been shown to possess physical properties that are characteristic of a good adsorbent such as high external surface area. Therefore, there is a growing interest to reutilize and process this carbon black waste into secondary materials such as adsorbents. However, the carbon black waste obtained from petrochemical industries may contain heavy metals that are hazardous to human health and the environment, hence restricting its full potential for re-utilization. Therefore, it is important to examine the possible toxicity effects and toxicity mechanism of carbon black waste on human health. In this study, inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis showed that the heavy metals, vanadium (V), molybdenum (Mo) and nickel (Ni), were present in the carbon black waste in high concentrations. Three human cell lines (HepG2 cells, MRC-5 cells and MDA-MB-231 cells) were used to investigate the toxicity of carbon black waste extract in a variety of in vitro assays. Results from MTS assays indicated that carbon black waste extract decreased the viability of all three cell lines in a dose and time-dependent manner. Observations from confocal microscopy further confirmed this phenomenon. Flow cytometry assay also showed that carbon black waste extract induced apoptosis of human cell lines, and the level of apoptosis increased with

  19. Roles of black carbon on the fate of heavy metals and agrochemicals in soil

    Science.gov (United States)

    Char(coal) and other black carbon materials can comprise up to 35% of total organic carbon in US agricultural soils, and are known to strongly and often irreversibly bind contaminants including heavy metals. Black carbon has received renewed interests in recent years as a solid co-product formed du...

  20. Emission characteristics of refractory black carbon aerosols from fresh biomass burning: a perspective from laboratory experiments

    Science.gov (United States)

    Pan, Xiaole; Kanaya, Yugo; Taketani, Fumikazu; Miyakawa, Takuma; Inomata, Satoshi; Komazaki, Yuichi; Tanimoto, Hiroshi; Wang, Zhe; Uno, Itsushi; Wang, Zifa

    2017-11-01

    The emission characteristics of refractory black carbon (rBC) from biomass burning are essential information for numerical simulations of regional pollution and climate effects. We conducted combustion experiments in the laboratory to investigate the emission ratio and mixing state of rBC from the burning of wheat straw and rapeseed plants, which are the main crops cultivated in the Yangtze River Delta region of China. A single particle soot photometer (SP2) was used to measure rBC-containing particles at high temporal resolution and with high accuracy. The combustion state of each burning case was indicated by the modified combustion efficiency (MCE), which is calculated using the integrated enhancement of carbon dioxide and carbon monoxide concentrations relative to their background values. The mass size distribution of the rBC particles showed a lognormal shape with a mode mass equivalent diameter (MED) of 189 nm (ranging from 152 to 215 nm), assuming an rBC density of 1.8 g cm-3. rBC particles less than 80 nm in size (the lower detection limit of the SP2) accounted for ˜ 5 % of the total rBC mass, on average. The emission ratios, which are expressed as ΔrBC / ΔCO (Δ indicates the difference between the observed and background values), displayed a significant positive correlation with the MCE values and varied between 1.8 and 34 ng m-3 ppbv-1. Multi-peak fitting analysis of the delay time (Δt, or the time of occurrence of the scattering peak minus that of the incandescence peak) distribution showed that rBC-containing particles with rBC MED = 200 ± 10 nm displayed two peaks at Δt = 1.7 µs and Δt = 3.2 µs, which could be attributed to the contributions from both flaming and smoldering combustion in each burning case. Both the Δt values and the shell / core ratios of the rBC-containing particles clearly increased as the MCE decreased from 0.98 (smoldering-dominant combustion) to 0.86 (flaming-dominant combustion), implying the great importance of the

  1. Characterizing the Vertical and Spatial Distribution of Black Carbon on the North Slope of Alaska

    Science.gov (United States)

    Sedlacek, A. J., III; Feng, Y.; Biraud, S.; Springston, S. R.

    2016-12-01

    The Polar Regions are recognized for their pronounced sensitivity to changes in radiative forcing. Indeed, the Cryosphere is often referred to as the `canary in the coalmine' for climate change in the popular literature. It is this sensitivity that provides both motivation and need for targeted measurement campaigns to test the behavior and predictive capabilities of current climate models to so as to improve our understanding of which factors are most important in Arctic climate change. One class of under measured radiative forcing agents in the Polar Region is the absorbing aerosol - black carbon and brown carbon. In particular, the paucity of vertical profile information of BC is partly responsible for the difficulty of reducing uncertainty in model assessment of aerosol radiative impact at high latitudes. During the summer of 2015, a Single-Particle Soot Photometer (SP2) was deployed aboard the DOE Gultstream-1 (G-1) aircraft to measure refractory BC (rBC) concentrations as part of the DOE-sponsored ACME-V (ARM Airborne Carbon Measurements) campaign. This campaign was conducted from June through to mid-September along the North Slope of Alaska and was punctuated by vertical profiling over 5 sites (Atquasuk, Barrow, Ivotuk, Oliktok, and Toolik). In addition, measurement of CO, CO2 and CH4 were also taken to provide information on the spatial and seasonal differences in GHG sources and how these sources correlate with BC. Comparisons between observations and a global climate model (CAM5) simulations will be shown along with a discussion on the ability of the model to capture observed monthly mean profiles of BC and stratified aerosol layers. Additionally, the capability of the SP2 to partition rBC-containing particles into nascent or aged allows an evaluation of how well the CAM5 model captures long distant transported aged carbonaceous aerosols. Finally model sensitivity studies will be presented that investigated the relative importance of the different

  2. Final Progress Report for Collaborative Research: Aging of Black Carbon during Atmospheric Transport: Understanding Results from the DOE’s 2010 CARES and 2012 ClearfLo Campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Mazzoleni, Claudio [Michigan Technological Univ., Houghton, MI (United States); Subramanian, R. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-08-31

    Over the course of this project, we have analyzed data and samples from the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the Clear air for London (ClearfLo) campaign, as well as conducted or participated in laboratory experiments designed to better understand black carbon mixing state and climate-relevant properties. The laboratory campaigns took place at the Pacific Northwest National Laboratory and Carnegie Mellon University to study various climate-relevant aerosol properties of different sources of soot mixing with secondary organic aerosol precursors. Results from some of these activities were summarized in the previous progress report. This final report presents the manuscripts that have been published (many in the period since the last progress report), lists presentations at different conferences based on grant-related activities, and presents some results that are likely to be submitted for publication in the near future.

  3. T-matrix modeling of linear depolarization by morphologically complex soot and soot-containing aerosols

    Science.gov (United States)

    Mishchenko, Michael I.; Liu, Li; Mackowski, Daniel W.

    2013-07-01

    We use state-of-the-art public-domain Fortran codes based on the T-matrix method to calculate orientation and ensemble averaged scattering matrix elements for a variety of morphologically complex black carbon (BC) and BC-containing aerosol particles, with a special emphasis on the linear depolarization ratio (LDR). We explain theoretically the quasi-Rayleigh LDR peak at side-scattering angles typical of low-density soot fractals and conclude that the measurement of this feature enables one to evaluate the compactness state of BC clusters and trace the evolution of low-density fluffy fractals into densely packed aggregates. We show that small backscattering LDRs measured with ground-based, airborne, and spaceborne lidars for fresh smoke generally agree with the values predicted theoretically for fluffy BC fractals and densely packed near-spheroidal BC aggregates. To reproduce higher lidar LDRs observed for aged smoke, one needs alternative particle models such as shape mixtures of BC spheroids or cylinders.

  4. Optics of Water Microdroplets with Soot Inclusions: Exact Versus Approximate Results

    Science.gov (United States)

    Liu, Li; Mishchenko, Michael I.

    2016-01-01

    We use the recently generalized version of the multi-sphere superposition T-matrix method (STMM) to compute the scattering and absorption properties of microscopic water droplets contaminated by black carbon. The soot material is assumed to be randomly distributed throughout the droplet interior in the form of numerous small spherical inclusions. Our numerically-exact STMM results are compared with approximate ones obtained using the Maxwell-Garnett effective-medium approximation (MGA) and the Monte Carlo ray-tracing approximation (MCRTA). We show that the popular MGA can be used to calculate the droplet optical cross sections, single-scattering albedo, and asymmetry parameter provided that the soot inclusions are quasi-uniformly distributed throughout the droplet interior, but can fail in computations of the elements of the scattering matrix depending on the volume fraction of soot inclusions. The integral radiative characteristics computed with the MCRTA can deviate more significantly from their exact STMM counterparts, while accurate MCRTA computations of the phase function require droplet size parameters substantially exceeding 60.

  5. Centennial black carbon turnover observed in a Russia steppe soil

    Energy Technology Data Exchange (ETDEWEB)

    Hammes, K.; Torn, M.S.; Lapenas, A.G.; Schmidt, M.W.I.

    2008-09-15

    Black carbon (BC), from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m{sup -2}, or about 7-10% of total organic C in 1900. With cessation of biomass burning, BC stocks decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182-541 years), much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene poly carboxylic acids (BPCA) as molecular markers. The proportions of less-condensed (and thus more easily degradable) BC structures decreased, whereas the highly condensed (and more recalcitrant) BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.

  6. Centennial black carbon turnover observed in a Russian steppe soil

    Directory of Open Access Journals (Sweden)

    K. Hammes

    2008-09-01

    Full Text Available Black carbon (BC, from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m−2, or about 7–10% of total organic C in 1900. With cessation of biomass burning, BC stocks decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182–541 years, much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene polycarboxylic acids (BPCA as molecular markers. The proportions of less-condensed (and thus more easily degradable BC structures decreased, whereas the highly condensed (and more recalcitrant BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.

  7. Sooting turbulent jet flame: characterization and quantitative soot measurements

    Science.gov (United States)

    Köhler, M.; Geigle, K. P.; Meier, W.; Crosland, B. M.; Thomson, K. A.; Smallwood, G. J.

    2011-08-01

    Computational fluid dynamics (CFD) modelers require high-quality experimental data sets for validation of their numerical tools. Preferred features for numerical simulations of a sooting, turbulent test case flame are simplicity (no pilot flame), well-defined boundary conditions, and sufficient soot production. This paper proposes a non-premixed C2H4/air turbulent jet flame to fill this role and presents an extensive database for soot model validation. The sooting turbulent jet flame has a total visible flame length of approximately 400 mm and a fuel-jet Reynolds number of 10,000. The flame has a measured lift-off height of 26 mm which acts as a sensitive marker for CFD model validation, while this novel compiled experimental database of soot properties, temperature and velocity maps are useful for the validation of kinetic soot models and numerical flame simulations. Due to the relatively simple burner design which produces a flame with sufficient soot concentration while meeting modelers' needs with respect to boundary conditions and flame specifications as well as the present lack of a sooting "standard flame", this flame is suggested as a new reference turbulent sooting flame. The flame characterization presented here involved a variety of optical diagnostics including quantitative 2D laser-induced incandescence (2D-LII), shifted-vibrational coherent anti-Stokes Raman spectroscopy (SV-CARS), and particle image velocimetry (PIV). Producing an accurate and comprehensive characterization of a transient sooting flame was challenging and required optimization of these diagnostics. In this respect, we present the first simultaneous, instantaneous PIV, and LII measurements in a heavily sooting flame environment. Simultaneous soot and flow field measurements can provide new insights into the interaction between a turbulent vortex and flame chemistry, especially since soot structures in turbulent flames are known to be small and often treated in a statistical manner.

  8. Barrow Black Carbon Source and Impact Study Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Tate

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact campaign was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility site in Barrow, Alaska. The carbonaceous component was characterized by measuring the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the PM, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine PM fractions (PM2.5) and 49 coarse (PM10) PM fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the Barrow Black Carbon Source and Impact (BBCSI) study used standard Tisch “hi-vol” motors that have a known lifetime of approximately 1 month under constant use; this necessitated monthly maintenance, and it is suggested that, for future deployment in the Arctic, the motors be upgraded to industrial blowers. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric PM samples from Barrow, Alaska, from July 2012 to June 2013. Preliminary analysis of the OC and BC concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer. However, the annual OC concentrations had a very different seasonal pattern with the highest concentrations during the summer, lowest concentrations during the fall, and increased concentrations during the winter and spring (Figure 1).

  9. Seasonal features of black carbon measured at Syowa Station, Antarctica

    Science.gov (United States)

    Hara, K.; Osada, K.; Yabuki, M.; Shiobara, M.; Yamanouchi, T.

    2015-12-01

    Black carbon (BC) is one of important aerosol constituents because the strong light absorption ability. Low concentrations of aerosols and BC let BC make insignificant contribution to aerosol radiative forcing in the Antarctica at the moment. Because of less or negligible source strength of BC in the Antarctic circle, BC can be used as a tracer of transport from the mid-latitudes. This study aims to understand seasonal feature, transport pathway, and origins of black carbon in the Antarctic coats. Black carbon measurement has been made using 7-wavelength aethalometer at Syowa Station, Antarctica since February, 2005. Mass BC concentrations were estimated from light attenuation by Weingartner's correction procedure (Weingartner et al., 2003) in this study. Detection limit was 0.2 - 0.4 ng/m3 in our measurement conditions (2-hour resolution and flow rate of ca. 10LPM). BC concentrations ranged from near detection limit to 55.7 ng/m3 at Syowa Station, Antarctica during the measurements. No trend has been observed since February, 2005. High BC concentrations were coincident with poleward flow from the mid-latitudes under the storm conditions by cyclone approach, whereas low BC concentrations were found in transport from coastal regions and the Antarctic continent. Considering that outflow from South America and Southern Africa affect remarkably air quality in the Southern Ocean of Atlantic and Indian Ocean sectors, BC at Syowa Station might be originated from biomass burning and human activity on South America and Southern Africa. Seasonal features of BC at Syowa Station shows maximum in September - October and lower in December - April. Spring maximum in September - October was obtained at the other Antarctic stations (Neumayer, Halley, South pole, and Ferraz). Although second maximum was found in January at the other stations, the maximum was not observed at Syowa Station.

  10. Penelitian pengaruh campuran carbon black dan china clay terhadap sifat tegangan putus dan kekerasan karet vulkanisat

    Directory of Open Access Journals (Sweden)

    Supraptiningsih Supraptiningsih

    1999-07-01

    Full Text Available It has been done a research of the influence of mixed carbon black and hardness properties on the vulcanization of rubber. It has been made with additive of carbon black and china clay mixed, in total variation. The result is seen that total variation of carbon black and china clay not influence to tensile strength, but their interacton can do it. The hardness of vulcanization of rubber will be influence by total variation of carbon black china clay anad their interaction.

  11. Computational Investigation of Soot and Radiation in Turbulent Reacting Flows

    Science.gov (United States)

    Lalit, Harshad

    This study delves into computational modeling of soot and infrared radiation for turbulent reacting flows, detailed understanding of both of which is paramount in the design of cleaner engines and pollution control. In the first part of the study, the concept of Stochastic Time and Space Series Analysis (STASS) as a numerical tool to compute time dependent statistics of radiation intensity is introduced for a turbulent premixed flame. In the absence of high fidelity codes for large eddy simulation or direct numerical simulation of turbulent flames, the utility of STASS for radiation imaging of reacting flows to understand the flame structure is assessed by generating images of infrared radiation in spectral bands dominated by radiation from gas phase carbon dioxide and water vapor using an assumed PDF method. The study elucidates the need for time dependent computation of radiation intensity for validation with experiments and the need for accounting for turbulence radiation interactions for correctly predicting radiation intensity and consequently the flame temperature and NOx in a reacting fluid flow. Comparison of single point statistics of infrared radiation intensity with measurements show that STASS can not only predict the flame structure but also estimate the dynamics of thermochemical scalars in the flame with reasonable accuracy. While a time series is used to generate realizations of thermochemical scalars in the first part of the study, in the second part, instantaneous realizations of resolved scale temperature, CO2 and H2O mole fractions and soot volume fractions are extracted from a large eddy simulation (LES) to carry out quantitative imaging of radiation intensity (QIRI) for a turbulent soot generating ethylene diffusion flame. A primary motivation of the study is to establish QIRI as a computational tool for validation of soot models, especially in the absence of conventional flow field and measured scalar data for sooting flames. Realizations of

  12. Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology

    International Nuclear Information System (INIS)

    Pantea, Dana; Darmstadt, Hans; Kaliaguine, Serge; Roy, Christian

    2003-01-01

    Conductive carbon blacks from different manufacturers were studied in order to obtain some insight into the relation between their electrical conductivity and their surface properties. The surface chemistry was studied by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS), whereas the topology of the carbon black surface was investigated using low-pressure nitrogen adsorption. All these techniques yield information on the graphitic character of the surface. In general, the electrical conductivity of the conductive blacks increases with the graphitic character of the surface. For low surface area conductive blacks, the electrical conductivity correlates well with the surface chemistry. In the case of the XPS and SIMS data, this correlation is also valid when other types of carbon blacks such as thermal and furnace blacks are included, confirming the determining influence of the carbon black surface chemistry on the electrical conductivity

  13. Black carbon emissions in gasoline vehicle exhaust: a measurement and instrument comparison.

    Science.gov (United States)

    Kamboures, Michael A; Hu, Shishan; Yu, Yong; Sandoval, Julia; Rieger, Paul; Huang, Shiou-Mei; Zhang, Sherry; Dzhema, Inna; Huo, Darey; Ayala, Alberto; Chang, M C Oliver

    2013-08-01

    A pilot study was conducted to evaluate the performance and agreement of several commercially available black carbon (BC) measurement instruments, when applied to the quantification of BC in light-duty vehicle (LDV) exhaust. Samples from six vehicles, three fuels, and three driving cycles were used. The pilot study included determinations of the method detection limit (MDL) and repeatability. With respect to the MDL, the real-time instruments outperformed the time-integrated instruments, with MDL = 0.12 mg/mi for the AE51 Aethalometer, and 0.15 mg/mi for the Micro Soot Sensor (MSS), versus 0.38 mg/mi for the IMPROVE_A thermal/ optical method, and 0.35 mg/mi for the OT21_T Optical Transmissometer. The real-time instruments had repeatability values ranging from 30% to 35%, which are somewhat better than those of the time-integrated instruments (40-41%). These results suggest that, despite being less resource intensive, real-time methods can be equivalent or superior to time-integrated methods in terms of sensitivity and repeatability. BC mass data, from the photoacoustic and light attenuation instruments, were compared against same-test EC data, determined using the IMPROVE_A method. The MSS BC data was well correlated with EC, with R2 = 0.85 for the composite results and R2 = 0.86 for the phase-by-phase (PBP) results. The correlation of BC, by the AE51, AE22, and OT21_T with EC was moderate to weak. The weaker correlation was driven by the inclusion of US06 test data in the linear regression analysis. We hypothesize that test-cycle-dependent BC:EC ratios are due to the different physicochemical properties of particulate matter (PM) in US06 and Federal Test Procedure (FTP) tests. Correlation amongst the real-time MSS, PASS-1, AE51, and AE22 instruments was excellent (R2 = 0.83-0.95), below 1 mg/mi levels. In the process of investigating these BC instruments, we learned that BC emissions at sub-1 mg/mi levels can be measured and are achievable by current

  14. Sensitive method for dosing carboxylic functions of carbons and its application to the study of thermally processed carbon blacks

    International Nuclear Information System (INIS)

    Bernardin, Jacques

    1968-01-01

    This research thesis reports the development of a sensitive method for the dosing of carboxylic functions present at the surface of carbon blacks, and the use of this method to study the evolution of a carbon black during heat treatments. After a brief description of modes of fabrication of carbon blacks and of their structure, the author proposes an overview of knowledge on their oxidation and functional analysis. After having outlined that existing methods do not allow the measurement of function quantities less than ten micro-equivalent per gram of carbon, the author reports the development of a method which allows such measurements. By using this method, the author shows that carboxylic groups of a carbon black, oxidized by air or not, decompose during degassing by forming carbon dioxide, and that, reciprocally, the released carbon dioxide is exclusively produced by the decomposition of carboxylic groups [fr

  15. An approach to a black carbon emission inventory for Mexico by two methods

    International Nuclear Information System (INIS)

    Cruz-Núñez, Xochitl

    2014-01-01

    A black carbon (BC) emission inventory for Mexico is presented. Estimate was performed by using two approaches, based on fuel consumption and emission factors in a top-down scheme, and the second from PM25 emission data and its correlation with black carbon by source category, assuming that black carbon = elemental carbon. Results show that black carbon emissions are in interval 53–473 Gg using the fuel consumption approach and between 62 and 89 using the sector method. Black carbon key sources come from biomass burning in the rural sector, with 47 percent share to the National total. Mobile sources emissions account to 16% to the total. An opportunity to reduce, in the short-term, carbon dioxide equivalent (CO2-eq) emissions by reducing black carbon emissions would be obtained in reducing emissions mainly from biomass burning in rural housing sector and diesel emissions in the transport sector with important co-benefits in direct radiative forcing, public health and air quality. - Highlights: • Black carbon emissions are estimated between 53 and 473 Gg/year on a fuel consumption method. • Black carbon emissions are estimated between 62 and 89 Gg/year on a sector method

  16. An approach to a black carbon emission inventory for Mexico by two methods

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Núñez, Xochitl, E-mail: xcruz@unam.mx

    2014-05-01

    A black carbon (BC) emission inventory for Mexico is presented. Estimate was performed by using two approaches, based on fuel consumption and emission factors in a top-down scheme, and the second from PM25 emission data and its correlation with black carbon by source category, assuming that black carbon = elemental carbon. Results show that black carbon emissions are in interval 53–473 Gg using the fuel consumption approach and between 62 and 89 using the sector method. Black carbon key sources come from biomass burning in the rural sector, with 47 percent share to the National total. Mobile sources emissions account to 16% to the total. An opportunity to reduce, in the short-term, carbon dioxide equivalent (CO2-eq) emissions by reducing black carbon emissions would be obtained in reducing emissions mainly from biomass burning in rural housing sector and diesel emissions in the transport sector with important co-benefits in direct radiative forcing, public health and air quality. - Highlights: • Black carbon emissions are estimated between 53 and 473 Gg/year on a fuel consumption method. • Black carbon emissions are estimated between 62 and 89 Gg/year on a sector method.

  17. Upgrading pyrolytic residue from waste tires to commercial carbon black.

    Science.gov (United States)

    Zhang, Xue; Li, Hengxiang; Cao, Qing; Jin, Li'e; Wang, Fumeng

    2018-05-01

    The managing and recycling of waste tires has become a worldwide environmental challenge. Among the different disposal methods for waste tires, pyrolysis is regarded as a promising route. How to effectively enhance the added value of pyrolytic residue (PR) from waste tires is a matter of great concern. In this study, the PRs were treated with hydrochloric and hydrofluoric acids in turn under ultrasonic waves. The removal efficiency for the ash and sulfur was investigated. The pyrolytic carbon black (PCB) obtained after treating PR with acids was analyzed by X-ray fluorescence spectrophotometry, Fourier transform infrared spectrometry, X-ray diffractometry, laser Raman spectrometry, scanning electron microscopy, thermogravimetric (TG) analysis, and physisorption apparatus. The properties of PCB were compared with those of commercial carbon black (CCB) N326 and N339. Results showed PRs from waste tires were mainly composed of carbon, sulfur, and ash. The carbon in PCB was mainly from the CCB added during tire manufacture rather than from the pyrolysis of pure rubbers. The removal percentages for the ash and sulfur of PR are 98.33% (from 13.98 wt % down to 0.24 wt %) and 70.16% (from 1.81 wt % down to 0.54 wt %), respectively, in the entire process. The ash was mainly composed of metal oxides, sulfides, and silica. The surface properties, porosity, and morphology of the PCB were all close to those of N326. Therefore, PCB will be a potential alternative of N326 and reused in tire manufacture. This route successfully upgrades PR from waste tires to the high value-added CCB and greatly increases the overall efficiency of the waste tire pyrolysis industry.

  18. Evaluation of various carbon blacks and dispersing agents for use in the preparation of uranium microspheres with carbon

    Science.gov (United States)

    Hunt, R. D.; Johnson, J. A.; Collins, J. L.; McMurray, J. W.; Reif, T. J.; Brown, D. R.

    2018-01-01

    A comparison study on carbon blacks and dispersing agents was performed to determine their impacts on the final properties of uranium fuel kernels with carbon. The main target compositions in this internal gelation study were 10 and 20 mol % uranium dicarbide (UC2), which is UC1.86, with the balance uranium dioxide. After heat treatment at 1900 K in flowing carbon monoxide in argon for 12 h, the density of the kernels produced using a X-energy proprietary carbon suspension, which is commercially available, ranged from 96% to 100% of theoretical density (TD), with full conversion of UC to UC2 at both carbon concentrations. However, higher carbon concentrations such as a 2.5 mol ratio of carbon to uranium in the feed solutions failed to produce gel spheres with the proprietary carbon suspension. The kernels using our former baseline of Mogul L carbon black and Tamol SN were 90-92% of TD with full conversion of UC to UC2 at a variety of carbon levels. Raven 5000 carbon black and Tamol SN were used to produce 10 mol % UC2 kernels with 95% of TD. However, an increase in the Raven 5000 concentration led to a kernel density below 90% of TD. Raven 3500 carbon black and Tamol SN were used to make very dense kernels without complete conversion to UC2. The selection of the carbon black and dispersing agent is highly dependent on the desired final properties of the target kernels.

  19. Aircraft observations of enhancement and depletion of black carbon mass in the springtime Arctic

    Directory of Open Access Journals (Sweden)

    J. R. Spackman

    2010-10-01

    Full Text Available Understanding the processes controlling black carbon (BC in the Arctic is crucial for evaluating the impact of anthropogenic and natural sources of BC on Arctic climate. Vertical profiles of BC mass loadings were observed from the surface to near 7-km altitude in April 2008 using a Single-Particle Soot Photometer (SP2 during flights on the NOAA WP-3D research aircraft from Fairbanks, Alaska. These measurements were conducted during the NOAA-sponsored Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC project. In the free troposphere, the Arctic air mass was influenced by long-range transport from biomass-burning and anthropogenic source regions at lower latitudes especially during the latter part of the campaign. Average BC mass mixing ratios peaked at about 150 ng BC (kg dry air −1 near 5.5 km altitude in the aged Arctic air mass and 250 ng kg−1 at 4.5 km in biomass-burning influenced air. BC mass loadings were enhanced by up to a factor of 5 in biomass-burning influenced air compared to the aged Arctic air mass. At the bottom of some of the profiles, positive vertical gradients in BC were observed over the sea-ice. The vertical profiles generally occurred in the vicinity of open leads in the sea-ice. In the aged Arctic air mass, BC mass loadings more than doubled with increasing altitude within the ABL and across the boundary layer transition while carbon monoxide (CO remained constant. This is evidence for depletion of BC mass in the ABL. BC mass loadings were positively correlated with O3 in ozone depletion events (ODEs for all the observations in the ABL. Since bromine catalytically destroys ozone in the ABL after being released as molecular bromine in regions of new sea-ice formation at the surface, the BC–O3 correlation suggests that BC particles were removed by a surface process such as dry deposition. We develop a box model to estimate the dry deposition flux of BC

  20. Monumental heritage exposure to urban black carbon pollution

    Science.gov (United States)

    Patrón, D.; Lyamani, H.; Titos, G.; Casquero-Vera, J. A.; Cardell, C.; Močnik, G.; Alados-Arboledas, L.; Olmo, F. J.

    2017-12-01

    In this study, aerosol light-absorption measurements obtained at three sites during a winter campaign were used to analyse and identify the major sources of Black Carbon (BC) particles in and around the Alhambra monument, a UNESCO World Heritage Site that receives over 2 million visitors per year. The Conditional Bivariate Probability Function and the Aethalometer model were employed to identify the main sources of BC particles and to estimate the contributions of biomass burning and fossil fuel emissions to the total Equivalent Black Carbon (EBC) concentrations over the monumental complex. Unexpected high levels of EBC were found at the Alhambra, comparable to those measured in relatively polluted European urban areas during winter. EBC concentrations above 3.0 μg/m3, which are associated with unacceptable levels of soiling and negative public reactions, were observed at Alhambra monument on 13 days from 12 October 2015 to 29 February 2016, which can pose a risk to its long-term conservation and may cause negative social and economic impacts. It was found that road traffic emissions from the nearby urban area and access road to the Alhambra were the main sources of BC particles over the monument. However, biomass burning emissions were found to have very small impact on EBC concentrations at the Alhambra. The highest EBC concentrations were observed during an extended stagnant episode associated with persistent high-pressure systems, reflecting the large impact that can have these synoptic conditions on BC over the Alhambra.

  1. PTCR effect in carbon black/copolymer composites

    International Nuclear Information System (INIS)

    Costa, L.C.; Chakki, A.; Achour, M.E.; Graca, M.P.F.

    2011-01-01

    Some materials show an abrupt increase in resistivity when the temperature changes only over a few degrees. This phenomenon, known as PTCR effect (positive temperature coefficient of resistivity), has been largely studied in the last few years, due to its potential applications in industry. Particularly, it can be used in auto controlled heaters, temperature sensors, protection circuits and in security systems for power electronic circuits. In this work we present the study of the electrical properties of the percolating system carbon black particles filled with ethylene butylacrylate copolymer composite (EBA), in the temperature range from -100 to 100 o C and in frequencies between 10 Hz and 100 kHz. The PTCR effect was observed at temperatures slightly above the room temperature, for concentrations higher than that of the percolation critical concentration. The mechanism responsible for the change in resistivity, at this stage, is predominantly tunnelling, wherein the conductive filler particles are not in physical contact, and the electrons tunnel through the insulating gap between them. At low temperatures, such as below and close to the glass transition temperature, the DC conductivity obeys the Arrhenius law. The calculated activation energy values are independent of carbon black contents inside the copolymer matrix, suggesting that these particles do not interact significantly with the chain segments of the macromolecules in the EBA copolymer.

  2. PTCR effect in carbon black/copolymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Costa, L.C., E-mail: kady@fis.ua.p [I3N and Physics Department, University of Aveiro, 3810-193 Aveiro (Portugal); Chakki, A.; Achour, M.E. [LASTID, Physics Department, Faculty of Sciences, Ibn Tofail University, BP 133, 14000 Kenitra (Morocco); Graca, M.P.F. [I3N and Physics Department, University of Aveiro, 3810-193 Aveiro (Portugal)

    2011-01-15

    Some materials show an abrupt increase in resistivity when the temperature changes only over a few degrees. This phenomenon, known as PTCR effect (positive temperature coefficient of resistivity), has been largely studied in the last few years, due to its potential applications in industry. Particularly, it can be used in auto controlled heaters, temperature sensors, protection circuits and in security systems for power electronic circuits. In this work we present the study of the electrical properties of the percolating system carbon black particles filled with ethylene butylacrylate copolymer composite (EBA), in the temperature range from -100 to 100 {sup o}C and in frequencies between 10 Hz and 100 kHz. The PTCR effect was observed at temperatures slightly above the room temperature, for concentrations higher than that of the percolation critical concentration. The mechanism responsible for the change in resistivity, at this stage, is predominantly tunnelling, wherein the conductive filler particles are not in physical contact, and the electrons tunnel through the insulating gap between them. At low temperatures, such as below and close to the glass transition temperature, the DC conductivity obeys the Arrhenius law. The calculated activation energy values are independent of carbon black contents inside the copolymer matrix, suggesting that these particles do not interact significantly with the chain segments of the macromolecules in the EBA copolymer.

  3. Century-long Record of Black Carbon in an Ice Core from the Eastern Pamirs: Estimated Contributions from Biomass Burning

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mo; Xu, B.; Kaspari, Susan D.; Gleixner, Gerd; Schwab, Valerie; Zhao, Huabiao; Wang, Hailong; Yao, Ping

    2015-08-01

    We analyzed refractory black carbon (rBC) in an ice core spanning 1875-2000 AD from Mt. Muztagh Ata, the Eastern Pamirs, using a Single Particle Soot Photometer (SP2). Additionally a pre-existing levoglucosan record from the same ice core was used to differentiate rBC that originated from open fires, energy-related combustion of biomass, and fossil fuel combustion. Mean rBC concentrations increased four-fold since the mid-1970s and reached maximum values at the end of 1980s. The observed decrease of the rBC concentrations during the 1990s was likely driven by the economic recession of former USSR countries in Central Asia. Levoglucosan concentrations showed a similar temporal trend to rBC concentrations, exhibiting a large increase around 1980 AD followed by a decrease in the 1990s that was likely due to a decrease in energy-related biomass combustion. The time evolution of levoglucosan/rBC ratios indicated stronger emissions from open fires during the 1940s-1950s, while the increase in rBC during the 1980s-1990s was caused from an increase in energy-related combustion of biomass and fossil fuels.

  4. An improved method for quantitatively measuring the sequences of total organic carbon and black carbon in marine sediment cores

    Science.gov (United States)

    Xu, Xiaoming; Zhu, Qing; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Jianping; Wang, Jianghai

    2018-01-01

    Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse effects on human activities. Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling. Evaluating such a reservoir calls for quantitative studies of marine carbon burial, which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences. However, the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties, i.e., (1) a very limited amount of each subsample versus the diverse analytical items, (2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data, and (3) a large number of subsamples versus the rapid batch measurements. In this work, (i) adopting the customized disposable ceramic crucibles with the microporecontrolled ability, (ii) developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization, and (iii) optimizing procedures and carbon-sulfur analyzer, we have built a novel Wang-Xu-Yuan method (the WXY method) for measuring the contents of total organic carbon or black carbon in marine sediment cores, which includes the procedures of pretreatment, weighing, acidification, chemothermal oxidation and quantification; and can fully meet the requirements of establishing their highresolution temporal sequences, whatever in the recovery, experimental efficiency, accuracy and reliability of the measurements, and homogeneity of samples. In particular, the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario, which further results in the very high recovery rates for total organic carbon and black carbon. This new technique may provide a significant support for

  5. Laboratory Measurements of Mass Specific Absorption Spectra for Suites of Black Carbon-like, Biomass Burning and Mineral Dust Aerosols

    Science.gov (United States)

    Radney, J.; Zangmeister, C.

    2017-12-01

    Light-absorbing atmospheric aerosols can be grouped into three categories: black carbon (BC), brown carbon (BrC) or mineral dust (MD). In many cases, the absorption of these species is best quantified using a mass-specific absorption cross section (MAC) since the particles are in the Rayleigh regime (BC) or optically thin (BrC and MD); notably, MAC values are both traceable to the SI and transferrable between photoacoustic spectroscopy and filter-based absorption measurements. Here, we present laboratory measurements of MAC for all three light-absorbing aerosol classes. Particles were size- and mass-selected using a differential mobility analyzer and aerosol particle mass analyzer, respectively, with absorption coefficients (αabs) and number concentrations (N) being measured by a broadband photoacoustic spectrometer and condensation particle counter, respectively. This suite of instrumentation allows for direct quantification of MAC from the measured parameters (MAC = αabs/Nmp). Further, the measurements contained > 8 data points spanning λ = 405 nm to 840 nm allowing for spectral curvatures (i.e. the Absorption Angstrom Exponent or AAE) to be fit from many data points versus the more common 2-point interpolations. For the carbonaceous, BC-like aerosols - five samples generated from flames, spark discharge soot (i.e. fullerene soot), graphene, reduced graphene oxide (rGO), and fullerene (C60) - we found: 1) measured MAC ranged between 2.4 m2 g-1 and 8.6 m2 g-1 at λ = 550 nm, 2) most AAEs ranged between 0.5 and 1.3; C60 AAE was 7.5 ± 0.9 and 3) MAC spectra were dependent on fuel type and formation conditions. For BrC particles generated from smoldering combustion of 3 hardwood (Oak, Hickory and Mesquite) and 3 softwood species (Western redcedar, Blue spruce and Baldcypress), we found: 1) median MAC values ranged from 1.4 x 10-2 m2 g-1 to 7.9 x 10-2 m2 g-1 at λ = 550 nm, 2) AAE values ranged between 3.5 and 6.2, and 3) Oak, Western redcedar and Blue spruce

  6. Black Carbon Aging from SOA Coatings and Coagulation with Diesel BC Emissions during SAAS at the PNNL Environmental Chamber

    Science.gov (United States)

    Aiken, A. C.; Liu, S.; Dubey, M. K.; Zaveri, R. A.; Shilling, J. E.; Gourihar, K.; Pekour, M. S.; Subramanian, R.; Zelenyuk, A.; Wilson, J. M.; Mazzoleni, C.; China, S.; Sharma, N.

    2014-12-01

    Black carbon (BC) is considered to be potentially the 2nd most important global warming factor behind CO2 (Bond et al., 2013). Uncertainties exist due to BC morphology and mixing state on the extent of the warming that it causes, e.g. Cappa et al., 2012. Core-shell BC is expected to enhance absorption by up to a factor of 2, but has yet to be observed to this extent from ambient data. Experiments were conducted during the Soot Aerosol Aging Study (SAAS) Laboratory Campaign at Pactific Northwest National Laboratory's Environmental Chamber in the winter of 2013-2014 to investigate the relationship between coatings and enhancements from diesel emissions. Direct on-line measurements were made with the single particle soot photometer (SP2) from fresh and aged BC from coating and coagulation experiments with secondary organic aerosol (SOA) formed in the chamber. BC measurements are coupled with photoactoustic measurements spanning the visible region to probe BC enhancements when mixed with SOA. Here we focus on the enhancements at 781 nm, that are tracked throughout SOA growth on BC, as determined from SP2 coating thicknesses. Thermal denuder (TD) experiments are conducted and enhancements are calculated from two different methods that agree well with each other, confirming the observed results. BC measurements are also compared with co-located measurements from SPLAT-II and filter analysis using SEM and TEM. BC coagulated with SOA produces minimal absorption enhancement values, whereas coatings are observed to have significant enhancement values at 300 degrees C, e.g. 1.3 for thickly coated BC. BC particles were coagulated with SOA in the chamber since this morphology has been observed in wildfire emissions (Sedlacek et al., 2012). Since we did not observe appreciable enhancements for the coagulated BC, we expect that ambient emissions dominated by this particle type to have enhancements due to other sources, such as brown carbon (BrC) that is often co-emitted (Saleh et

  7. Ambient black carbon particle hygroscopic properties controlled by mixing state and composition

    Directory of Open Access Journals (Sweden)

    D. Liu

    2013-02-01

    Full Text Available The wet removal of black carbon aerosol (BC in the atmosphere is a crucial factor in determining its atmospheric lifetime and thereby the vertical and horizontal distributions, dispersion on local and regional scales, and the direct, semi-direct and indirect radiative forcing effects. The in-cloud scavenging and wet deposition rate of freshly emitted hydrophobic BC will be increased on acquisition of more-hydrophilic components by coagulation or coating processes. The lifetime of BC is still subject to considerable uncertainty for most of the model inputs, which is largely due to the insufficient constraints on the BC hydrophobic-to-hydrophilic conversion process from observational field data. This study was conducted at a site along UK North Norfolk coastline, where the BC particles were transported from different regions within Western Europe. A hygroscopicity tandem differential mobility analyser (HTDMA was coupled with a single particle soot photometer (SP2 to measure the hygroscopic properties of BC particles and associated mixing state in real time. In addition, a Soot Particle AMS (SP-AMS measured the chemical compositions of additional material associated with BC particles. The ensemble of BC particles persistently contained a less-hygroscopic mode at a growth factor (gf of around 1.05 at 90% RH (dry diameter 163 nm. Importantly, a more-hygroscopic mode of BC particles was observed throughout the experiment, the gf of these BC particles extended up to ~1.4–1.6 with the minimum between this and the less hygroscopic mode at a gf ~1.25, or equivalent effective hygroscopicity parameter κ ~0.1. The gf of BC particles (gfBC was highly influenced by the composition of associated soluble material: increases of gfBC were associated with secondary inorganic components, and these increases were more pronounced when ammonium nitrate was in the BC particles; however the presence of secondary organic matter suppressed

  8. Sources of uncertainties in modelling black carbon at the global scale

    NARCIS (Netherlands)

    Vignati, E.; Karl, M.; Krol, M.C.; Wilson, J.; Stier, P.; Cavalli, F.

    2010-01-01

    Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in

  9. Plasma polymerization surface modification of Carbon black and its effect in elastomers

    NARCIS (Netherlands)

    Mathew, T.; Datta, Rabin; Dierkes, Wilma K.; Talma, Auke; Ooij, W.J.; Noordermeer, Jacobus W.M.

    2011-01-01

    Surface modification of carbon black by plasma polymerization was aimed to reduce its surface energy in order to compatibilize the filler with various elastomers. A fullerenic carbon black was used for the modification process. Thermogravimetric analysis, wetting behavior with liquids of known

  10. Towards Soil and Sediment Inventories of Black Carbon

    Science.gov (United States)

    Masiello, C. A.

    2008-12-01

    A body of literature on black carbon (BC) concentrations in soils and sediments is rapidly accumulating, but as of yet, there are no global or regional inventories of BC in either reservoir. Soil and sediment BC inventories are badly needed for a range of fields. For example, in oceanography a global sediment BC inventory is crucial in understanding the role of biomass burning in the development of stable marine carbon reservoirs, including dissolved organic carbon and sedimentary organic carbon. Again in the marine environment, BC likely strongly impacts the fate and transport of anthropogenic pollutants: regional inventories of BC in sediments will help develop better environmental remediation strategies. In terrestrial systems well-constrained natural BC soil inventories would help refine ecological, agricultural, and soil biogeochemical studies. BC is highly sorptive of nutrients including nitrogen and phosphorous. The presence of BC in ecosystems almost certainly alters N and P cycling; however, without soil BC inventories, we cannot know where BC has a significant impact. BC's nutrient sorptivity and water-holding capacity make it an important component of agricultural soils, and some researchers have proposed artificially increasing soil BC inventories to improve soil fertility. Natural soil BC concentrations in some regions are quite high, but without a baseline inventory, it is challenging to predict when agricultural amendment will significantly exceed natural conditions. And finally, because BC is one of the most stable fractions of organic carbon in soils, understanding its concentration and regional distribution will help us track the dynamics of soil organic matter response to changing environmental conditions. Developing effective regional and global BC inventories is challenging both because of data sparsity and methodological intercomparison issues. In this presentation I will describe a roadmap to generating these valuable inventories.

  11. Correlation between rheological and mechanical properties of black PE100 compounds – Effect of carbon black masterbatch

    Directory of Open Access Journals (Sweden)

    G. Pircheraghi

    2017-08-01

    Full Text Available Black PE100 compounds were prepared using a co-rotating twin screw extruder by addition of carbon black masterbatches containing 35–40 wt% carbon black and different polymer carriers to a pipe grade PE100 material with bimodal molecular weight distribution. Different properties of carbon black masterbatches and PE100 black compounds were evaluated using thermal, rheological and mechanical tests. Rheological results indicated an inverse correlation between melt flow index (MFI of masterbatch samples and storage modulus, complex viscosity and shear viscosity of black compounds, while flow instabilities of compounds were also postponed to higher shear rates. TGA indicated that masterbatch with highest value of MFI contained highest amount of low molecular weight lubricants which resulted in inhibition of strain hardening behavior in tensile test of its respective black compound unlike all other samples, reflecting possible suppressing of its long term resistance to slow crack growth. This behavior is attributable to facilitated crystallization and chain folding of longer chains in the presence of low molecular weight lubricants in this sample and consequently formation of thicker lamellas as confirmed by DSC, hence lowering density of entanglements in amorphous area and inhibition of strain hardening.

  12. Development and test of a soot-specific method for immission measurement. Pt. 3. Content determination of tire abrasion in atmospherical elementary carbon; Weiterentwicklung und Erprobung eines Immissionsmessverfahrens zur spezifischen Erfassung von Russpartikeln. T. 3. Ermittlung des Anteils von Reifenabrieb am atmosphaerischen elementaren Kohlenstoff

    Energy Technology Data Exchange (ETDEWEB)

    Pfaender, N.; Weinberg, G.; Wild, U.

    1996-12-01

    The purpose of this study was to find out methods of discrimination between diesel soot and tire abrasion in carbons of aerosol filter samples. A method of determination between diesel soot and tire abrasion should be found because of the offered standard methods (combustion methods) do not distinguish between the carbon forms. A considerable content of tire abrasion traffic control samples of ``carbon`` would require a correction of the integral ascertained carbon concentration. Three sets of samples have been investigated with the help of TEM, SEM, EDX and ESCA. One basis for discrimination is the chemical activity of the surfaces. While the tire abrasion shows a chemically saturated polymer surface, the diesel soot has a chemically very active soot surface. A second basis for discrimination is the very different particle-size distribution of the diesel soot and the tire abrasion particles. This has been ascertained with the help of TEM and SEM. The results of 3 sets of samples show that a corresponding semi-quantitative discrimination with morphological, element analytical and surface analytical methods between diesel soot and tire abrasion is possible. The main result is a low to very low abundance of the tire abrasion in the total carbon contents. An absolute determination fails mainly because of the interference of the tire abrasion analysis with molecular hydrocarbons. The samples succumb to chemical ageing, where especially diesel soot partially oxidizes. A Thermal treatment also changes the chemical nature of the soot components. (orig.) [Deutsch] Die Aufgabe dieser Arbeit war es, Methoden zu finden, die in einer Aerosolfilterprobe Kohlenstoffe nach Dieselruss und Reifenabrieb zu unterscheiden vermoegen. Es sollte eine grobe Quantitifizerung des Reifenabrieb am Dieselruss ermittelt werden, da in den vorgeschlagenen Standardverfahren (Oxidationsverfahren) nicht zwischen den Kohlenstoff-Formen unterschieden werden kann, was bei erheblichen Anteilen von

  13. Numerical Investigation of Soot Formation in Non-premixed Flames

    KAUST Repository

    Abdelgadir, Ahmed Gamaleldin

    2017-05-01

    Soot is a carbon particulate formed as a result of the combustion of fossil fuels. Due to the health hazard posed by the carbon particulate, government agencies have applied strict regulations to control soot emissions from road vehicles, airplanes, and industrial plants. Thus, understanding soot formation and evolution is critical. Practical combustion devices operate at high pressure and in the turbulent regime. Elevated pressures and turbulence on soot formation significantly and fundamental understanding of these complex interactions is still poor. In this study, the effects of pressure and turbulence on soot formation and growth are investigated numerically. As the first step, the evolution of the particle size distribution function (PSDF) and soot particles morphology are investigated in turbulent non-premixed flames. A Direct Simulation Monte Carlo (DSMC) code is developed and used. The stochastic reactor describes the evolution of soot in fluid parcels following Lagrangian trajectories in a turbulent flow field. The trajectories are sampled from a Direct Numerical Simulation (DNS) of an n-heptane turbulent non-premixed flame. Although individual trajectories display strong bimodality as in laminar flames, the ensemble-average PSDF possesses only one mode and a broad tail, which implies significant polydispersity induced by turbulence. Secondly, the effect of the flow and mixing fields on soot formation at atmospheric and elevated pressures is investigated in coflow laminar diffusion flames. The experimental observation and the numerical prediction of the spatial distribution are in good agreement. Based on the common scaling methodology of the flames (keeping the Reynolds number constant), the scalar dissipation rate decreases as pressure increases, promoting the formation of PAH species and soot. The decrease of the scalar dissipation rate significantly contributes to soot formation occurring closer to the nozzle and outward on the flames wings as pressure

  14. Optical Properties of Small Ice Crystals with Black Carbon Inclusions

    Science.gov (United States)

    Yang, X.; Geier, M.; Arienti, M.

    2013-12-01

    The optical properties of ice crystals play a fundamental role in modeling atmospheric radiation and hydrological cycle, which are critical in monitoring climate change. While Black Carbon (BC) is recognized as the dominant absorber with positive radiative forcing (warming) (Ramanathan & Carmichael, 2008), in-situ observations (Cappa, et al, 2012) indicate that the characterization of the mixing state of BC with ice crystals and other non-BC particles in global climate models (Ghan & Schwartz, 2007) needs further investigation. The limitation in the available mixing models is due to the drastically different absorbing properties of BC compared to other aerosols. We explore the scattering properties of ice crystals (in shapes commonly found in cirrus clouds and contrails - Yang, et al. 2012) with the inclusion of BC particles. The Discrete Dipole Approximation (DDA) (Yurkin & Hoekstra, 2011) is utilized to directly calculate the optical properties of the crystals with multiple BC inclusions, modeled as a distribution of spheres. The results are then compared with the most popular models of internal and external mixing (Liou, et al. 2011). The DDA calculations are carried out over a broad range of BC particle sizes and volume fractions within the crystal at the 532 nm wavelength and for ice crystals smaller than 50 μm. The computationally intensive database generated in this study is critical for understanding the effect of different types of BC inclusions on the atmosphere radiative forcing. Examples will be discussed to illustrate the modification of BC optical properties by encapsulation in ice crystals and how the parameterization of the BC mixing state in global climate models can be improved. Acknowledgements Support by Sandia National Laboratories' LDRD (Laboratory Directed Research and Development) is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  15. Comparative studies of industrial grade carbon black powders

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, Komal, E-mail: komalchawla.rs@gmail.com; Chauhan, Alok P. S., E-mail: chauhan.alok@gmail.com, E-mail: alok.chauhan@alumni.stonybrook.edu [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida-201307, UP, India. (India)

    2016-05-06

    Comparative studies of two dissimilar industrial grade Carbon Black (CB) powders (N375 and N405) were conducted. The structure, surface area and particle size are the three important characteristics of CB powder that determine their processability and application as filler in preparing rubber compounds. The powders were characterized for their structure using dibutyl phthalate absorption (DBPA), particle size via laser particle size analyzer and surface area by nitrogen adsorption method. The structural characterization showed that N405 had lower DBPA in comparison to N375, confirming low structure of N405 grade CB powder. It was observed from the particle size analysis that N375 was coarser than N405 grade CB. The total surface area values were determined by the BET method based on the cross sectional area of the nitrogen molecule. N375, a coarse grade CB powder with high structure, depicted less surface area as compared to N405.

  16. Black carbon and West African Monsoon precipitation. Observations and simulations

    International Nuclear Information System (INIS)

    Huang, J.; Adams, A.; Zhang, C.; Wang, C.

    2009-01-01

    We have recently investigated large-scale co-variability between aerosol and precipitation and other meteorological variables in the West African Monsoon (WAM) region using long term satellite observations and reanalysis data. In this study we compared the observational results to a global model simulation including only direct radiative forcing of black carbon (BC). From both observations and model simulations we found that in boreal cold seasons anomalously high African aerosols are associated with significant reductions in cloud amount, cloud top height, and surface precipitation. These results suggest that the observed precipitation reduction in the WAM region is caused by radiative effect of BC. The result also suggests that the BC effect on precipitation is nonlinear. (orig.)

  17. Enhancement of micropore filling of water on carbon black by platinum loading

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Naoya, E-mail: miyajima@yamanashi.ac.jp [Interdisciplinary Graduate School of Medicine and Engineering, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Hatori, Hiroaki [Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Radovic, Ljubisa R. [Department of Energy and Geo-Environmental Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Yamada, Yoshio [Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan)

    2010-10-15

    Two kinds of typical carbons, carbon black and activated carbon fibers, were modified with platinum nanoparticles without changing their original pore structures. The surface properties of the modified carbons were investigated by measuring of water adsorption isotherms. Micropore filling of water was facilitated by the presence of platinum nanoparticles on the surface of the carbon black. On the other hand, such a filling effect was not observed in the case of the activated carbon fibers. A critical content and/or size of platinum nanoparticles could be required to promote efficiently the water adsorption.

  18. Enhanced light absorptivity of black carbon with air pollution development in urban Beijing, China

    Science.gov (United States)

    Zhang, Y.; Zhang, Q.; Cheng, Y.; Su, H.; He, K.

    2017-12-01

    The impacts of black carbon (BC) aerosols on air quality and climate are dependent on BC light absorptivity. However, the light absorptivity of ambient BC-containing particles remains conflicting. In this work, we investigated the evolution of BC light absorptivity with pollution development in urban Beijing, China. We found that the mass absorption cross-section (MAC) of ambient BC-containing particles measured during the campaign increased with BC mass concentration, which can be attributed to more coating materials on BC surface with pollution development. A single-particle soot photometer (SP2) measurement showed that the coating thickness (CT) of BC-containing particles increased by 48% with PM1 and BC mass concentration increasing from 10 μg m-3 and 0.3 μg m-3 to 230 μg m-3 and 12 μg m-3. Based on Mie calculation, the CT increase could led to light absorption enhancement (Eab) of BC-containing particles increasing by 22%, consistent with the increase of measured MAC. The relationship between growth rate of BC light absorptivity (kEab) and that of PM1 or rBC concentration (kPM1 or krBC) showed that kEab ≈ 4.8% kPM1 or kEab ≈ 2.5% krBC. The analysis of effective emission intensity (EEI) for BC revealed that the enhancement of BC light absorptivity with increasing pollution levels was dominated by regional transport. During the pollution period, 63% of BC over Beijing originated from regional sources. The aging of these regional BC during atmospheric transport controlled the increase of coating materials for BC-containing particles observed in Beijing. As a result of enhanced light absorptivity with pollution development, BC forcing efficiency could increase by 20% during polluted period. Our work identified the importance of BC on radiative forcing under polluted environment, which is determined by not only the increase of BC mass concentration, but also the enhancement of BC forcing efficiency due to more coating materials.

  19. Light absorption and scattering by aggregates: Application to black carbon and snow grains

    International Nuclear Information System (INIS)

    Liou, K.N.; Takano, Y.; Yang, P.

    2011-01-01

    under the condition of equal geometrical cross section area for both external and internal mixing states; however, nonspherical snowflakes scatter less light in forward directions than spheres, resulting in a substantial reduction of the asymmetry factor. We further demonstrate that small soot particles on the order of 1 μm internally mixed with snow grains could effectively reduce snow albedo by as much as 5-10%. Indeed, the depositions of black carbon would substantially reduce mountain-snow albedo, which would lead to surface warming and snowmelt, critical to regional climatic surface temperature amplification and feedback.

  20. Soot and radiation in combusting boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Beier, R.A.

    1981-12-01

    In most fires thermal radiation is the dominant mode of heat transfer. Carbon particles within the fire are responsible for most of this emitted radiation and hence warrant quantification. As a first step toward understanding thermal radiation in full scale fires, an experimental and theoretical study is presented for a laminar combusting boundary layer. Carbon particulate volume fraction profiles and approximate particle size distributions are experimentally determined in both free and forced flow for several hydrocarbon fuels and PMMA (polymethylmethacrylate). A multiwavelength laser transmission technique determines a most probable radius and a total particle concentration which are two unknown parameters in an assumed Gauss size distribution. A sooting region is observed on the fuel rich side of the main reaction zone. For free flow, all the flames are in air, but the free stream ambient oxygen mass fraction is a variable in forced flow. To study the effects of radiation heat transfer, a model is developed for a laminar combusting boundary layer over a pyrolyzing fuel surface. An optically thin approximation simplifies the calculation of the radiant energy flux at the fuel surface. For the free flames in air, the liquid fuel soot volume fractions, f/sub v/, range from f/sub v/ approx. 10/sup -7/ for n-heptane, a paraffin, to f/sub v/ approx. 10/sup -7/ for toluene, an aromatic. The PMMA soot volume fractions, f/sub v/ approx. 5 x 10/sup -7/, are approximately the same as the values previously reported for pool fires. Soot volume fraction increases monotonically with ambient oxygen mass fraction in the forced flow flames. For all fuels tested, a most probable radius between 20 nm and 80 nm is obtained which varies only slightly with oxygen mass fraction, streamwise position, or distance normal to the fuel surface. The theoretical analysis yields nine dimensionless parameters, which control the mass flux rate at the pyrolyzing fuel surface.

  1. Characterization of black carbon in the ambient air of Agra, India: Seasonal variation and meteorological influence

    Science.gov (United States)

    Gupta, Pratima; Singh, Shalendra Pratap; Jangid, Ashok; Kumar, Ranjit

    2017-09-01

    This study characterizes the black carbon in Agra, India home to the Taj Mahal—and situated in the Indo-Gangetic basin. The mean black carbon concentration is 9.5 μg m-3 and, owing to excessive biomass/fossil fuel combustion and automobile emissions, the concentration varies considerably. Seasonally, the black carbon mass concentration is highest in winter, probably due to the increased fossil fuel consumption for heating and cooking, apart from a low boundary layer. The nocturnal peak rises prominently in winter, when the use of domestic heating is excessive. Meanwhile, the concentration is lowest during the monsoon season because of the turbulent atmospheric conditions and the process of washout by precipitation. The ratio of black carbon to brown carbon is less than unity during the entire study period, except in winter (December). This may be because that biomass combustion and diesel exhaust are major black carbon contributors in this region, while a higher ratio in winter may be due to the increased consumption of fossil fuel and wood for heating purposes. ANOVA reveals significant monthly variation in the concentration of black carbon; plus, it is negatively correlated with wind speed and temperature. A high black carbon mass concentration is observed at moderate (1-2 m s-1) wind speed, as compared to calm or turbulent atmospheric conditions.

  2. Soot particles at an elevated site in eastern China during the passage of a strong cyclone

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Hongya [State Key Laboratory of Coal Resources and Safe Mining, School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 (China); Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan); Shao, Longyi [State Key Laboratory of Coal Resources and Safe Mining, School of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083 (China); Zhang, Daizhou, E-mail: dzzhang@pu-kumamoto.ac.jp [Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan)

    2012-07-15

    Atmospheric particles larger than 0.2 {mu}m were collected at the top of Mt. Tai (36.25 Degree-Sign N, 117.10 Degree-Sign E, 1534 m a.s.l.) in eastern China in May 2008 during the passage of a strong cyclone. The particles were analyzed with electron microscopes and characterized by morphology, equivalent diameter and elemental composition. Soot particles with coating (coated soot particles) and those without apparent coating (naked soot particles) were predominant in the diameter range smaller than 0.6 {mu}m in all samples. The number-size distribution of the relative abundance of naked soot particles in the prefrontal air was similar to that in the postfrontal air and their size modes were around 0.2-0.3 {mu}m. However, the distribution of inclusions of coated soot particles showed a mode in the range of 0.1-0.3 {mu}m. The coating degree of coated soot particles, which was defined by the ratio of the diameter of inclusion to the diameter of particle body, showed a mode around 0.5 with the range of 0.3-0.6. These results indicate that the status of soot particles in the prefrontal and postfrontal air was similar although air pollution levels were dramatically different. In addition, the relative abundance of accumulation mode particles increased with the decrease of soot particles after the front passage. - Highlights: Black-Right-Pointing-Pointer Particles at an elevated site in eastern China in a strong cyclone were studied. Black-Right-Pointing-Pointer Aged status of soot particles in the prefrontal and postfrontal air was similar. Black-Right-Pointing-Pointer Soot particles in elevated layers could be considered as aged ones.

  3. Measuring and predicting sooting tendencies of oxygenates, alkanes, alkenes, cycloalkanes, and aromatics on a unified scale

    Energy Technology Data Exchange (ETDEWEB)

    Das, Dhrubajyoti D.; St. John, Peter C.; McEnally, Charles S.; Kim, Seonah; Pfefferle, Lisa D.

    2018-04-01

    Databases of sooting indices, based on measuring some aspect of sooting behavior in a standardized combustion environment, are useful in providing information on the comparative sooting tendencies of different fuels or pure compounds. However, newer biofuels have varied chemical structures including both aromatic and oxygenated functional groups, which expands the chemical space of relevant compounds. In this work, we propose a unified sooting tendency database for pure compounds, including both regular and oxygenated hydrocarbons, which is based on combining two disparate databases of yield-based sooting tendency measurements in the literature. Unification of the different databases was made possible by leveraging the greater dynamic range of the color ratio pyrometry soot diagnostic. This unified database contains a substantial number of pure compounds (greater than or equal to 400 total) from multiple categories of hydrocarbons important in modern fuels and establishes the sooting tendencies of aromatic and oxygenated hydrocarbons on the same numeric scale for the first time. Using this unified sooting tendency database, we have developed a predictive model for sooting behavior applicable to a broad range of hydrocarbons and oxygenated hydrocarbons. The model decomposes each compound into single-carbon fragments and assigns a sooting tendency contribution to each fragment based on regression against the unified database. The model's predictive accuracy (as demonstrated by leave-one-out cross-validation) is comparable to a previously developed, more detailed predictive model. The fitted model provides insight into the effects of chemical structure on soot formation, and cases where its predictions fail reveal the presence of more complicated kinetic sooting mechanisms. This work will therefore enable the rational design of low-sooting fuel blends from a wide range of feedstocks and chemical functionalities.

  4. Accounting for black carbon lowers estimates of blue carbon storage services.

    Science.gov (United States)

    Chew, Swee Theng; Gallagher, John B

    2018-02-07

    The canopies and roots of seagrass, mangrove, and saltmarsh protect a legacy of buried sedimentary organic carbon from resuspension and remineralisation. This legacy's value, in terms of mitigating anthropogenic emissions of CO 2 , is based on total organic carbon (TOC) inventories to a depth likely to be disturbed. However, failure to subtract allochthonous recalcitrant carbon overvalues the storage service. Simply put, burial of oxidation-resistant organics formed outside of the ecosystem provides no additional protection from remineralisation. Here, we assess whether black carbon (BC), an allochthonous and recalcitrant form of organic carbon, is contributing to a significant overestimation of blue carbon stocks. To test this supposition, BC and TOC contents were measured in different types of seagrass and mangrove sediment cores across tropical and temperate regimes, with different histories of air pollution and fire together with a reanalysis of published data from a subtropical system. The results suggest current carbon stock estimates are positively biased, particularly for low-organic-content sandy seagrass environs, by 18 ± 3% (±95% confidence interval) and 43 ± 21% (±95% CI) for the temperate and tropical regions respectively. The higher BC fractions appear to originate from atmospheric deposition and substantially enrich the relatively low TOC fraction within these environs.

  5. Effect of Dimethyl Ether Mixing on Soot Size Distribution in Premixed Ethylene Flame

    KAUST Repository

    Li, Zepeng

    2016-04-21

    As a byproduct of incomplete combustion, soot attracts increasing attentions as extensive researches exploring serious health and environmental effects from soot particles. Soot emission reduction requires a comprehensive understanding of the mechanism for polycyclic aromatic hydrocarbons and of soot formation and aging processes. Therefore, advanced experimental techniques and numerical simulations have been conducted to investigate this procedure. In order to investigate the effects of dimethyl ether (DME) mixing on soot particle size distribution functions (PSDFs), DME was mixed in premixed ethylene/oxygen/argon at flames at the equivalence ratio of 2.0 with a range of mixing ratio from 0% to 30% of the total carbon fed. Two series of atmospheric pressure flames were tested in which cold gas velocity was varied to obtain different flame temperatures. The evolution of PSDFs along the centerline of the flame was determined by burner stabilized stagnation probe and scanning mobility particle sizer (SMPS) techniques, yielding the PSDFs for various separation distances above the burner surface. Meanwhile, the flame temperature profiles were carefully measured by a thermocouple and the comparison to that of simulated laminar premixed burner-stabilized stagnation flame was satisfactory. Additionally, to understand the chemical role of DME mixing in soot properties, characterization measurements were conducted on soot samples using thermo-gravimetric analysis (TGA) and elemental analysis (EA). Results of the evolution of PSDFs and soot volume fraction showed that adding DME into ethylene flame could reduce soot yield significantly. The addition of DME led to the decrease of both the soot nucleation rate and the particle mass growth rate. To explain the possible mechanism for the observation, numerical simulations were performed. Although DME addition resulted in the slight increase of methyl radicals from pyrolysis, the decrease in acetylene and propargyl radicals

  6. Black carbon emissions in Russia: A critical review

    Science.gov (United States)

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa; Denysenko, Artur; Smith, Steven J.; Staniszewski, Aaron; Hao, Wei Min; Liu, Liang; Bond, Tami C.

    2017-08-01

    This study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.

  7. Uptake mechanism for iodine species to black carbon.

    Science.gov (United States)

    Choung, Sungwook; Um, Wooyong; Kim, Minkyung; Kim, Min-Gyu

    2013-09-17

    Natural organic matter (NOM) plays an important role in determining the fate and transport of iodine species such as iodide (I(-)) and iodate (IO3(-)) in groundwater system. Although NOM exists as diverse forms in environments, prior iodine studies have mainly focused on uptake processes of iodide and iodate to humic materials. This study was conducted to determine the iodide and iodate uptake potential for a particulate NOM (i.e., black carbon [BC]). A laboratory-produced BC and commercial humic acid were used for batch experiments to compare their iodine uptake properties. The BC exhibited >100 times greater uptake capability for iodide than iodate at low pH of ~3, while iodide uptake was negligible for the humic acid. The uptake properties of both solids strongly depend on the initial iodine aqueous concentrations. After uptake reaction of iodide to the BC, X-ray absorption fine structure spectroscopy results indicated that the iodide was converted to electrophilic species, and iodine was covalently bound to carbon atom in polycyclic aromatic hydrocarbons present in the BC. The computed distribution coefficients (i.e., Kd values) suggest that the BC materials retard significantly the transport of iodide at low pH in environmental systems containing even a small amount of BC.

  8. Photo-lability of deep ocean dissolved black carbon

    Directory of Open Access Journals (Sweden)

    A. Stubbins

    2012-05-01

    Full Text Available Dissolved black carbon (DBC, defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzenepolycarboxylic acid (BPCA oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance were determined over the course of a 28 day irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM-C to 55 ± 15 nM-C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. The concentration of DBC correlated with CDOM absorbance and the quality of DBC indicated by the ratios of different BPCAs correlated with CDOM absorbance spectral slope, suggesting the optical properties of CDOM may provide a proxy for both DBC concentrations and quality in natural waters. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 years. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Consequently, photo-degradation is posited as the primary sink for oceanic DBC and the apparent survival of DBC molecules in the oceans for millennia appears to be facilitated not by their

  9. Binder-Free and Carbon-Free Nanoparticle Batteries: A Method for Nanoparticle Electrodes without Polymeric Binders or Carbon Black

    KAUST Repository

    Ha, Don-Hyung; Islam, Mohammad A.; Robinson, Richard D.

    2012-01-01

    In this work, we have developed a new fabrication method for nanoparticle (NP) assemblies for Li-ion battery electrodes that require no additional support or conductive materials such as polymeric binders or carbon black. By eliminating

  10. Structure aggregation of carbon black in ethylene-propylene diene polymer

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The modulus of filled and unfilled Ethylene-propylene diene rubber (EPDM vulcanizates was used to predict the shape-factor of carbon black aggregation in the polymer. Four types of carbon black that vary in particle size and structure were used in this study. Quadratic curves relating the carbon black volume concentration and the modulus ratio of filled and unfilled rubber vulcanizates were used to adopt the shape factor of certain carbon black type. The shape factor of MT, HAF, SRF and Lampblack were 3, 3.75, 4 and 4.25 respectively. X-ray diffraction technique (XRD was also used to evaluate the relative size of crystallite on the filler surface to that of the rubber and correlating it to the shape factor of carbon black aggregation in the polymer. Effect of the pH values and structure of carbon blacks used on the shape factor of filler aggregates were also studied. It was found that the shape factor is independent on the particle size while it is dependent on the pH value and structure of carbon black. Also the crystallites size of the filler is proportional to the shape factor.

  11. Evaluating The Performance of Asphalt Concrete Mixes by Utilizing Carbon Black as Asphalt Modifier

    Directory of Open Access Journals (Sweden)

    Aliaa Faleh Al.ani

    2018-02-01

    Full Text Available Carbon black produced from several factories in Iraq is expected to provide a reinforcing agent for asphalt paving materials. Carbon black has many characteristics that distinguish  it from conventional mineral fillers, as well as their different function in pavement mixtures. Theory and exercise advanced  in the inclusive utilize of carbon black as a reinforcing agent for rubber has led to concept of asphalt reinforcement. The very fine particles of micro filler added in different contents will be dispersed in asphalt cement improving the mechanical properties of asphalt concrete mixes. In this Four percentages rates were utilized; 0, 3, 6, and 9 percent adding to asphalt grade (60-70. Mixes of asphalt concrete were destined at their optimum asphalt content (OAC then experienced to assess their engineering characteristics that contain moisture of damage, permanent deformation, modulus of resilient and characteristics of fatigue. These characteristics have been assessed utilizing indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Mixtures improved with carbon black were existed to have amended permanent deformation and fatigue characteristics, else exhibited high resilient modulus and lower moisture susceptibility. Result showed that a rate changed from 3 to 9 percent has shown an increase in resilient modulus for increment of carbon black and modulus of resilient for mixes with 9 percent carbon black was 1.4 times that for mixes with 0 percent carbon black. The altering of carbon black from a range (3-9 percent has modified the fatigue property of the asphalt concrete mixes as determined by flexural test, Significantly, to modify the asphalt concrete manner taken the  percent of carbon black 6, and to produce the mixes more durable , higher resistance to distresses by adding the local knowledge.

  12. Influence of sample composition on aerosol organic and black carbon determinations

    Energy Technology Data Exchange (ETDEWEB)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550{degrees}C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations.

  13. Influence of sample composition on aerosol organic and black carbon determinations

    International Nuclear Information System (INIS)

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550 degrees C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations

  14. Influence of plasma treatment of carbon blacks on electrochemical activity of Pt/carbon blacks catalysts for DMFCs

    Science.gov (United States)

    Kim, Seok; Cho, Mi-Hwa; Lee, Jae-Rock; Park, Soo-Jin

    In this work, in order to improve the dispersion of platinum catalysts deposited on carbon materials, the effects of surface plasma treatment of carbon blacks (CBs) were investigated. The surface characteristics of the CBs were determined by fourier transformed-infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and Boehm's titration method. The electrochemical properties of the plasma-treated CBs-supported Pt (Pt/CBs) catalysts were analyzed by linear sweep voltammetry (LSV) experiments. From the results of FT-IR and acid-base values, N 2-plasma treatment of the CBs at 300 W intensity led to a formation of a free radical on the CBs. The peak intensity increased with increase of the treatment time, due to the formation of new basic functional groups (such as C-N, C dbnd N, -NH 3 +, -NH, and dbnd NH) by the free radical on the CBs. Accordingly, the basic values were enhanced by the basic functional groups. However, after a specific reaction time, N 2-plasma treatment could hardly influence on change of the surface functional groups of CBs, due to the disappearance of free radical. Consequently, it was found that optimal treatment time was 30 s for the best electro activity of Pt/CBs catalysts and the N 2-plasma treated Pt/CBs possessed the better electrochemical properties than the pristine Pt/CBs.

  15. Effect of sulfur and Nano- carbon black on the mechanical properties of hard rubber

    Directory of Open Access Journals (Sweden)

    Mohamed Hamza Al-Maamori

    2018-01-01

    Full Text Available To improve the properties of hard rubber(Ebonite from natural rubber, added Nano-Carbon black, where measured the properties of tensile, density, hardness and the properties of the vulcanization of a group of samples with different amount of sulfur from 18-36 pphr and different of carbon black (18-26-30 pphr. The results showed that the best carbon black ratio is 30 pphr, where it gives a balance between tensile properties of hand and toughness and flexibility of on the other hand and reduce brittleness in hard rubber.

  16. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    Science.gov (United States)

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated

  17. Black carbon and mineral dust in snow cover on the Tibetan Plateau

    Science.gov (United States)

    Zhang, Yulan; Kang, Shichang; Sprenger, Michael; Cong, Zhiyuan; Gao, Tanguang; Li, Chaoliu; Tao, Shu; Li, Xiaofei; Zhong, Xinyue; Xu, Min; Meng, Wenjun; Neupane, Bigyan; Qin, Xiang; Sillanpää, Mika

    2018-02-01

    Snow cover plays a key role for sustaining ecology and society in mountainous regions. Light-absorbing particulates (including black carbon, organic carbon, and mineral dust) deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snow and ice. This study focused on understanding the role of black carbon and other water-insoluble light-absorbing particulates in the snow cover of the Tibetan Plateau (TP). The results found that the black carbon, organic carbon, and dust concentrations in snow cover generally ranged from 202 to 17 468 ng g-1, 491 to 13 880 ng g-1, and 22 to 846 µg g-1, respectively, with higher concentrations in the central to northern areas of the TP. Back trajectory analysis suggested that the northern TP was influenced mainly by air masses from Central Asia with some Eurasian influence, and air masses in the central and Himalayan region originated mainly from Central and South Asia. The relative biomass-burning-sourced black carbon contributions decreased from ˜ 50 % in the southern TP to ˜ 30 % in the northern TP. The relative contribution of black carbon and dust to snow albedo reduction reached approximately 37 and 15 %, respectively. The effect of black carbon and dust reduced the snow cover duration by 3.1 ± 0.1 to 4.4 ± 0.2 days. Meanwhile, the black carbon and dust had important implications for snowmelt water loss over the TP. The findings indicate that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections, particularly in the high-altitude cryosphere.

  18. Emission characteristics of refractory black carbon aerosols from fresh biomass burning: a perspective from laboratory experiments

    Directory of Open Access Journals (Sweden)

    X. Pan

    2017-11-01

    Full Text Available The emission characteristics of refractory black carbon (rBC from biomass burning are essential information for numerical simulations of regional pollution and climate effects. We conducted combustion experiments in the laboratory to investigate the emission ratio and mixing state of rBC from the burning of wheat straw and rapeseed plants, which are the main crops cultivated in the Yangtze River Delta region of China. A single particle soot photometer (SP2 was used to measure rBC-containing particles at high temporal resolution and with high accuracy. The combustion state of each burning case was indicated by the modified combustion efficiency (MCE, which is calculated using the integrated enhancement of carbon dioxide and carbon monoxide concentrations relative to their background values. The mass size distribution of the rBC particles showed a lognormal shape with a mode mass equivalent diameter (MED of 189 nm (ranging from 152 to 215 nm, assuming an rBC density of 1.8 g cm−3. rBC particles less than 80 nm in size (the lower detection limit of the SP2 accounted for ∼ 5 % of the total rBC mass, on average. The emission ratios, which are expressed as ΔrBC ∕ ΔCO (Δ indicates the difference between the observed and background values, displayed a significant positive correlation with the MCE values and varied between 1.8 and 34 ng m−3 ppbv−1. Multi-peak fitting analysis of the delay time (Δt, or the time of occurrence of the scattering peak minus that of the incandescence peak distribution showed that rBC-containing particles with rBC MED  =  200 ± 10 nm displayed two peaks at Δt  =  1.7 µs and Δt  =  3.2 µs, which could be attributed to the contributions from both flaming and smoldering combustion in each burning case. Both the Δt values and the shell / core ratios of the rBC-containing particles clearly increased as the MCE decreased from 0.98 (smoldering

  19. Grafting the surface of carbon nanotubes and carbon black with the chemical properties of hyperbranched polyamines

    Science.gov (United States)

    Morales-Lara, Francisco; Domingo-García, María; López-Garzón, Rafael; Luz Godino-Salido, María; Peñas-Sanjuán, Antonio; López-Garzón, F. Javier; Pérez-Mendoza, Manuel; Melguizo, Manuel

    2016-01-01

    Controlling the chemistry on the surface of new carbon materials is a key factor to widen the range of their applicability. In this paper we show a grafting methodology of polyalkylamines to the surface of carbon nanomaterials, in particular, carbon nanotubes and a carbon black. The aim of this work is to reach large degrees of covalent functionalization with hyperbranched polyethyleneimines (HBPEIs) and to efficiently preserve the strong chelating properties of the HBPEIs when they are fixed to the surface of these carbon materials. This functionalization opens new possibilities of using these carbon nanotubes-based hybrids. The results show that the HBPEIs are covalently attached to the carbon materials, forming hybrids. These hybrids emerge from the reaction of amine functions of the HBPEIs with carbonyls and carboxylic anhydrides of the carbon surface which become imine and imide bonds. Thus, due to the nature of these bonds, the pre-oxidized samples with relevant number of C=O groups showed an increase in the degree of functionalization with the HBPEIs. Furthermore, both the acid-base properties and the coordination capacity for metal ions of the hybrids are equivalent to that of the free HBPEIs in solution. This means that the chemical characteristics of the HBPEIs have been efficiently transferred to the hybrids. To reach this conclusion we have developed a novel procedure to assess the acid-base and the coordination properties of the hybrids (solids) by means of potentiometric titration. The good agreement of the values obtained for the hybrids and for the free HBPEIs in aqueous solution supports the reliability of the procedure. Moreover, the high capacity of the hybrids to capture Ni2+ by complexation opens new possibilities of using these hybrids to capture high-value metal ions such as Pd2+ and Pt2+.

  20. Global anthropogenic emissions of particulate matter including black carbon

    Science.gov (United States)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  1. Global anthropogenic emissions of particulate matter including black carbon

    Directory of Open Access Journals (Sweden)

    Z. Klimont

    2017-07-01

    Full Text Available This paper presents a comprehensive assessment of historical (1990–2010 global anthropogenic particulate matter (PM emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10, as well as primary carbonaceous aerosols including black carbon (BC and organic carbon (OC. The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping, presented for 25 global regions, and allocated to 0.5°  ×  0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global

  2. Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    , Ce1-xREExO2-δ (REE = Pr, Sm)) and metal oxides (LiMn2O4, Ag2O). Materials showing the highest activity in carbon black (Mn2O3, CeO2, Ce0.6Pr0.4O2-δ, Ag2O) were subsequently tested for catalytic activity toward bituminous coal, as revealed by both I-V-P curves and electrochemical impedance...... spectroscopy (EIS). Catalytic activity was evaluated as a function of various physical characteristics of doped ceria and manganese-based materials....

  3. Russia's black carbon emissions: focus on diesel sources

    Directory of Open Access Journals (Sweden)

    N. Kholod

    2016-09-01

    Full Text Available Black carbon (BC is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder. Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  4. Black carbon reduction will weaken the aerosol net cooling effect

    Science.gov (United States)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2014-12-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  5. The impact of black wattle encroachment of indigenous grasslands on soil carbon, Eastern Cape, South Africa

    DEFF Research Database (Denmark)

    Oelofse, Myles; Birch-Thomsen, Torben; Magid, Jakob

    2016-01-01

    adverse environmental impacts in South Africa. Little is known about the effects of black wattle encroachment on soil carbon, therefore the aim of this study was to investigate the impact of black wattle encroachment of natural grassland on soil carbon stocks and dynamics. Focussing on two sites...... in the Eastern Cape, South Africa, the study analysed carbon stocks in soil and litter on a chronosequence of black wattle stands of varying ages (up to >50 years) and compared these with adjacent native grassland. The study found that woody encroachment of grassland at one site had an insignificant effect...... on soil and litter carbon stocks. The second site showed a clear decline in combined soil and litter carbon stocks following wattle encroachment. The lowest stock was in the oldest wattle stand, meaning that carbon stocks are still declining after 50 years of encroachment. The results from the two sites...

  6. Soot Formation in Laminar Premixed Methane/Oxygen Flames at Atmospheric Pressure

    Science.gov (United States)

    Xu, F.; Lin, K.-C.; Faeth, G. M.

    1998-01-01

    Flame structure and soot formation were studied within soot-containing laminar premixed mc1hane/oxygen flames at atmospheric pressure. The following measurements were made: soot volume fractions by laser extinction, soot temperatures by multiline emission, gas temperatures (where soot was absent) by corrected fine-wire thermocouples, soot structure by thermophoretic sampling and transmission electron microscope (TEM), major gas species concentrations by sampling and gas chromatography, and gas velocities by laser velocimetry. Present measurements of gas species concentrations were in reasonably good agreement with earlier measurements due to Ramer et al. as well as predictions based on the detailed mechanisms of Frenklach and co-workers and Leung and Lindstedt: the predictions also suggest that H atom concentrations are in local thermodynamic equilibrium throughout the soot formation region. Using this information, it was found that measured soot surface growth rates could be correlated successfully by predictions based on the hydrogen-abstraction/carbon-addition (HACA) mechanisms of both Frenklach and co-workers and Colket and Hall, extending an earlier assessment of these mechanisms for premixed ethylene/air flames to conditions having larger H/C ratios and acetylene concentrations. Measured primary soot particle nucleation rates were somewhat lower than the earlier observations for laminar premixed ethylene/air flames and were significantly lower than corresponding rates in laminar diffusion flames. for reasons that still must be explained.

  7. Black carbon emissions from biomass and coal in rural China

    Science.gov (United States)

    Zhang, Weishi; Lu, Zifeng; Xu, Yuan; Wang, Can; Gu, Yefu; Xu, Hui; Streets, David G.

    2018-03-01

    Residential solid fuel combustion makes a major contribution to black carbon (BC) emissions in China. A new estimation of BC emissions from rural solid biomass and coal consumption has been derived from field survey data. The following new contributions are made: (1) emission factors are collected and reviewed; (2) household energy data are collected from field survey data and from the literature; (3) a new extrapolation method is developed to extend the field survey data to other locations; (4) the ownership and usage of two stove types are estimated and considered in the emission calculations; and (5) uncertainties associated with the estimation results are quantified. It is shown that rural households with higher income will consume less biomass but more coal. Agricultural acreage and temperature also significantly influence the amount of solid fuel consumed in rural areas. It is estimated that 640 ± 245 Gg BC/y were emitted to the atmosphere due to residential solid fuel consumption in rural China in 2014. Emissions of BC from straw, wood, and coal contributed 42 ± 13%, 36 ± 15%, and 22 ± 10% of the total, respectively. We show that effective BC mitigation (a reduction of 47%) could be obtained through widespread introduction of improved stoves in rural households.

  8. Black Carbon Radiative Forcing over the Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    He, Cenlin; Li, Qinbin; Liou, K. N.; Takano, Y.; Gu, Yu; Qi, L.; Mao, Yuhao; Leung, Lai-Yung R.

    2014-11-28

    We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. Our best estimate of the annual BC snow albedo forcing in the Plateau is 2.9 W m-2 (uncertainty: 1.5–5.0 W m-226 ). We find that BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing and coated BC increases the forcing by 30-50% compared with uncoated BC, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. Our best estimate of the annual BC DRF at the top of the atmosphere is 2.3 W m-2 (uncertainty: 0.7–4.3 W m-230 ) in the Plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network (AERONET) observations. The BC forcings are attributed to emissions from different regions.

  9. Preparation and characterization of dopamine-decorated hydrophilic carbon black

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Lijun; Lu Yonglai [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Yiqing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China); Zhang Liqun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Wencai, E-mail: wangw@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China)

    2012-05-01

    Inspired by the bio-adhesive proteins secreted by mussels for attachment to almost all wet substrates, a facile method involving oxidative polymerization of dopamine was proposed to prepare highly hydrophilic carbon black (CB) particles. A self-assembled polydopamine (PDA) ad-layer was formed via the oxidative polymerization of dopamine on the surface of CB simply by dipping the CB into an alkaline dopamine solution and mildly stirring at room temperature. The process is simple, controllable, and environment-friendly. The surface composition and structure of the CB were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The surface morphology of the CB was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the PDA ad-layer was successfully deposited on the CB surfaces. The PDA-functionalized CB (CB-PDA) gave a stable colloidal dispersion in water. Contact angle measurement results indicated that the hydrophilicity of CB was significantly improved after dopamine modification. TGA results confirmed that the modified CB maintained good heat resistance. The method provided a facile route to prepare hydrophilic CB having terminal hydroxyl groups.

  10. Daily personal exposure to black carbon: A pilot study

    Science.gov (United States)

    Williams, Ryan D.; Knibbs, Luke D.

    2016-05-01

    Continuous personal monitoring is the benchmark for air pollution exposure assessment. Black carbon (BC) is a strong marker of primary combustion like vehicle and biomass emissions. There have been few studies that quantified daily personal BC exposure and the contribution that different microenvironments make to it. In this pilot study, we used a portable aethalometer to measure BC concentrations in an individual's breathing zone at 30-s intervals while he performed his usual daily activities. We used a GPS and time-activity diary to track where he spent his time. We performed twenty 24-h measurements, and observed an arithmetic mean daily exposure concentration of 603 ng/m3. We estimated that changing commute modes from bus to train reduced the 24-h mean BC exposure concentration by 29%. Switching from open windows to closed windows and recirculated air in a car led to a reduction of 32%. Living in a home without a wood-fired heater caused a reduction of 50% compared with a wood-heated home. Our preliminary findings highlight the potential utility of simple approaches to reduce a person's daily BC exposure.

  11. Black carbon emissions from biomass and coal in rural China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weishi; Lu, Zifeng; Xu, Yuan; Wang, Can; Gu, Yefu; Xu, Hui; Streets, David G.

    2018-03-01

    Residential solid fuel combustion makes a major contribution to black carbon (BC) emissions in China. A new estimation of BC emissions from rural solid biomass and coal consumption has been derived from field survey data. The following new contributions are made: (1) emission factors are collected and reviewed; (2) household energy data are collected from field survey data and from the literature; (3) a new extrapolation method is developed to extend the field survey data to other locations; (4) the ownership and usage of two stove types are estimated and considered in the emission calculations; and (5) uncertainties associated with the estimation results are quantified. It is shown that rural households with higher income will consume less biomass but more coal. Agricultural acreage and temperature also significantly influence the amount of solid fuel consumed in rural areas. It is estimated that 640±245 Gg BC/y were emitted to the atmosphere due to residential solid fuel consumption in rural China in 2014. Emissions of BC from straw, wood, and coal contributed 42±13%, 36±15%, and 22±10% of the total, respectively. We show that effective BC mitigation (a reduction of 47%) could be obtained through widespread introduction of improved stoves in rural households

  12. Field Measurements of Black Carbon Yields from Gas Flaring.

    Science.gov (United States)

    Conrad, Bradley M; Johnson, Matthew R

    2017-02-07

    Black carbon (BC) emissions from gas flaring in the oil and gas industry are postulated to have critical impacts on climate and public health, but actual emission rates remain poorly characterized. This paper presents in situ field measurements of BC emission rates and flare gas volume-specific BC yields for a diverse range of flares. Measurements were performed during a series of field campaigns in Mexico and Ecuador using the sky-LOSA optical measurement technique, in concert with comprehensive Monte Carlo-based uncertainty analyses. Parallel on-site measurements of flare gas flow rate and composition were successfully performed at a subset of locations enabling direct measurements of fuel-specific BC yields from flares under field conditions. Quantified BC emission rates from individual flares spanned more than 4 orders of magnitude (up to 53.7 g/s). In addition, emissions during one notable ∼24-h flaring event (during which the plume transmissivity dropped to zero) would have been even larger than this maximum rate, which was measured as this event was ending. This highlights the likely importance of superemitters to global emission inventories. Flare gas volume-specific BC yields were shown to be strongly correlated with flare gas heating value. A newly derived correlation fitting current field data and previous lab data suggests that, in the context of recent studies investigating transport of flare-generated BC in the Arctic and globally, impacts of flaring in the energy industry may in fact be underestimated.

  13. Black carbon aerosols and the third polar ice cap

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  14. Black Carbon Inclusive Multichemical Modeling of PBDE and PCB Biomagnification and -Transformation in Estuarine Food Webs

    NARCIS (Netherlands)

    Paolo, C.; Gandhi, N.; Bhavsar, S.; Heuvel-Greve, van den M.J.; Koelmans, A.A.

    2010-01-01

    Bioavailability and bioaccumulation of polybrominated diphenylethers (PBDEs) are affected by adsorption on black carbon (BC) and metabolism in biota, respectively. Recent studies have addressed these two processes separately, illustrating their importance in assessing contaminant dynamics. In order

  15. Self-sensing piezoresistive cement composite loaded with carbon black particles

    KAUST Repository

    Monteiro, André O.; Cachim, Paulo B.; Da Costa, Pedro M. F. J.

    2017-01-01

    Strain sensors can be embedded in civil engineering infrastructures to perform real-time service life monitoring. Here, the sensing capability of piezoresistive cement-based composites loaded with carbon black (CB) particles is investigated. Several

  16. Thermal conductivity and stability of nano size carbon black filled PDMS: Fuel cell perspective

    CSIR Research Space (South Africa)

    Chen, H

    2011-01-01

    Full Text Available Carbon black filled Polydimethylsiloxane (PDMS) was considered as a prospective bipolar plate material candidate for a Fuel Cell. In this perspective, thermal conductivity and stability of the composites were investigated. Samples with filler weight...

  17. Characterization of Black and Brown Carbon Concentrations and Sources during winter in Beijing

    Science.gov (United States)

    Yan, Caiqing; Liu, Yue; Hansen, Anthony D. A.; Močnik, Griša; Zheng, Mei

    2017-04-01

    Carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), play important roles in air quality, human health, and climate change. A better understanding of sources of light-absorbing carbonaceous aerosol (including black carbon and brown carbon) is particular critical for formulating emission-based control strategies and reducing uncertainties in current aerosol radiative forcing estimates. Beijing, the capital of China, has experienced serious air pollution problems and high concentrations of carbonaceous aerosols in recent years, especially during heating seasons. During November and December of 2016, several severe haze episodes occurred in Beijing, with hourly average PM2.5 mass concentration up to 400 μg/m3. In this study, concentration levels and sources of black carbon and brown carbon were investigated based on 7-wavelength Aethalometer (AE-33) with combination of other PM2.5 chemical composition information. Contributions of traffic and non-traffic emissions (e.g., coal combustion, biomass burning) were apportioned, and brown carbon was separated from black carbon. Our preliminary results showed that (1) Concentrations of BC were around 5.3±4.2 μg/m3 during the study period, with distinct diurnal variations during haze and non-haze days. (2) Traffic emissions contributed to about 37±17% of total BC, and exhibited higher contributions during non-haze days compared to haze days. (3) Coal combustion was a major source of black carbon and brown carbon in Beijing, which was more significant compared to biomass burning. Sources and the relative contributions to black carbon and brown carbon during haze and non-haze days will be further discussed.

  18. Selection and Characterization of Carbon Black and Surfactants for Development of Small Scale Uranium Oxicarbide Kernels

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL

    2006-01-01

    This report supports the effort for development of small scale fabrication of UCO (a mixture of UO{sub 2} and UC{sub 2}) fuel kernels for the generation IV high temperature gas reactor program. In particular, it is focused on optimization of dispersion conditions of carbon black in the broths from which carbon-containing (UO{sub 2} {center_dot} H{sub 2}O + C) gel spheres are prepared by internal gelation. The broth results from mixing a hexamethylenetetramine (HMTA) and urea solution with an acid-deficient uranyl nitrate (ADUN) solution. Carbon black, which is previously added to one or other of the components, must stay dispersed during gelation. The report provides a detailed description of characterization efforts and results, aimed at identification and testing carbon black and surfactant combinations that would produce stable dispersions, with carbon particle sizes below 1 {micro}m, in aqueous HMTA/urea and ADUN solutions. A battery of characterization methods was used to identify the properties affecting the water dispersability of carbon blacks, such as surface area, aggregate morphology, volatile content, and, most importantly, surface chemistry. The report introduces the basic principles for each physical or chemical method of carbon black characterization, lists the results obtained, and underlines cross-correlations between methods. Particular attention is given to a newly developed method for characterization of surface chemical groups on carbons in terms of their acid-base properties (pK{sub a} spectra) based on potentiometric titration. Fourier-transform infrared (FTIR) spectroscopy was used to confirm the identity of surfactants, both ionic and non-ionic. In addition, background information on carbon black properties and the mechanism by which surfactants disperse carbon black in water is also provided. A list of main physical and chemical properties characterized, samples analyzed, and results obtained, as well as information on the desired trend or

  19. Global emission inventory and atmospheric transport of black carbon. Evaluation of the associated exposure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rong

    2015-06-01

    This thesis presents research focusing on the improvement of high-resolution global black carbon (BC) emission inventory and application in assessing the population exposure to ambient BC. A particular focus of the thesis is on the construction of a high-resolution (both spatial and sectorial) fuel consumption database, which is used to develop the emission inventory of black carbon. Above all, the author updates the global emission inventory of black carbon, a resource subsequently used to study the atmospheric transport of black carbon over Asia with the help of a high-resolution nested model. The thesis demonstrates that spatial bias in fuel consumption and BC emissions can be reduced by means of the sub-national disaggregation approach. Using the inventory and nested model, ambient BC concentrations can be better validated against observations. Lastly, it provides a complete uncertainty analysis of global black carbon emissions, and this uncertainty is taken into account in the atmospheric modeling, helping to better understand the role of black carbon in regional and global air pollution.

  20. Characteristics of black carbon in snow from Laohugou No. 12 glacier on the northern Tibetan Plateau.

    Science.gov (United States)

    Zhang, Yulan; Kang, Shichang; Li, Chaoliu; Gao, Tanguang; Cong, Zhiyuan; Sprenger, Michael; Liu, Yajun; Li, Xiaofei; Guo, Junming; Sillanpää, Mika; Wang, Kun; Chen, Jizu; Li, Yang; Sun, Shiwei

    2017-12-31

    Black carbon (BC) emitted from the incomplete combustion of biomass and fossil fuel impacts the climate system, cryospheric change, and human health. This study documents black carbon deposition in snow from a benchmark glacier on the northern Tibetan Plateau. Significant seasonality of BC concentrations indicates different input or post-depositional processes. BC particles deposited in snow had a mass volume median diameter slightly larger than that of black carbon particles typically found in the atmosphere. Also, unlike black carbon particles in the atmosphere, the particles deposited in snow did not exhibit highly fractal morphology by Scanning Transmission Electron Microscope. Footprint analysis indicated BC deposited on the glacier in summer originated mainly from Central Asia; in winter, the depositing air masses generally originated from Central Asia and Pakistan. Anthropogenic emissions play an important role on black carbon deposition in glacial snow, especially in winter. The mass absorption efficiency of BC in snow at 632nm exhibited significantly seasonality, with higher values in summer and lower values in winter. The information on black carbon deposition in glacial snow provided in this study could be used to help mitigate the impacts of BC on glacier melting on the northern Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Advantage of SBR/carbon black masterbatch for tire tread application

    Energy Technology Data Exchange (ETDEWEB)

    Sone, K.; Ishiguro, M.; Akimoto, H.; Ishida, M.

    1992-04-01

    The performance required of tire tread is becoming more severe and more various year by year, as social demands on tires have been changing. To improve wear resistance, driving safety and good drive feeling, new HP tires (high performance passenger car tires) are developed intensively. In addition, good fuel efficiency is required to satisfy the CAFE rule, which was proposed for a better global environment. To support this movement of the tire industry, material suppliers are making an effort to supply better materials. Mitsubishi Kasei has been improving the quality and production process of WMB, a SBR/carbon black master-batch produced by co-coagulation of SBR latex, carbon black and extender oil under the wet dispersion process. Compared to the tire tread made from dry-mixing compounds, that made from the WMB shows the following characteristics: (1) the abrasion resistance and the durability are higher; (2) from the viscoelastic properties, skid performance and driving stability are expected to be improved. These characteristics are remarkable when WMB is compounded in the recipes for HP and racing tires using fine carbon black. In this article, these features of WMB are studied from the view point of carbon black dispersion and polymer-carbon black interaction. Furthermore, the changes of carbon black structure during abrasion and fatigue process are analyzed and the mechanisms of these processes are discussed.

  2. Preparation of carbon black masterbatch for PET using polymeric dispersing agents

    Energy Technology Data Exchange (ETDEWEB)

    Oh, D.H. [Kyungpook National University, Taegu (Korea, Republic of); Lim, J.C. [Pukyong National University, Pusan (Korea, Republic of); Seo, K.H. [Yeungnam College of Science and Technology, Taegu (Korea, Republic of)

    1999-03-01

    Three kinds of copolyesters, dispersing agents, were synthesized from the polycondensation reaction of dimethylterephthalate (DMT), dimethylisophthalate (DMI), sebacic acid (SA), and 1,4-butanediol (BD). Carbon black masterbatches were prepared by mixing carbon black into the dispersing agents (1 : 1.3 weight ratio) in a Brabender Plasticorder Using single screw extruder, masterbatches were compounded with poly(ethylene terephthalate) in 3 wt% concentration and mechanical properties of the compounds were investigated Gel permeation chromatography data implied that thermal degradation of polymeric dispersing agents was not significant through dispersion. Capillary rheometer test showed that PBTI has the highest viscosity and shear sensitivity among the there dispersing agents. Volume resistivities of masterbatch and transmission electron micrographs showed that dispersity of carbon black was improved with increasing melt viscosity of dispersing agent. The ultimate performance and mechanical characteristics of carbon black filled PET compounds depended directly on dispersion quality of the carbon black in masterbatch. Mechanical properties of compounds were improved with increasing dispersity of carbon black and with increasing content of rigid aromatic group in the copolyester dispersing agent. 30 refs., 9 figs., 5 tabs.

  3. Analyzing 20 years of Black Carbon measurements in Germany

    Science.gov (United States)

    Kutzner, R. D.; Quedenau, J.; Kuik, F.; von Schneidemesser, E.; Schmale, J.

    2016-12-01

    Black Carbon (BC) is an important short-lived climate-forcing pollutant contributing to global warming through absorption of sunlight. In addition, BC, as a component of particulate matter (PM) exerts adverse health effects. Anthropogenic emission sources of BC include residential heating, transport, and agricultural fires, and the dominant natural emission source is wildfires. Despite the adverse effects of BC, legislation that requires mandatory monitoring of BC concentrations does not currently exist in the European Union (EU). Instead, BC is only indirectly monitored as component of PM10 and PM2.5 (PM with a diameter smaller 10 µm and 2.5 µm, respectively). Before the introduction of mandatory PM10 and PM2.5 monitoring in the EU in 2005 and 2015, respectively, `black smoke' (BS), a surrogate for BC, was a required measurement in Germany from the early 1990s. The annual mean limit value was 14 µg/m3 from 1995 and 8 µg/m³ from 1998. In 2004, many measurements were stopped, with the repeal of the regulations. In most German federal states a limited number BC monitoring stations continued to operate. We present a synthesis of BC data from 213 stations across Germany covering the period between 1994 and 2014. Due to the lack of a standardized method and respective legislation, the data set is very heterogeneous relying on twelve different measurement methods including chemical, optical, and thermal-optical methods. Stations include, among others, urban background, traffic and rural. We highlight results from the year 2009, as it is the year with the largest measurement coverage based on the same measurement method, with 28 stations. Further, we calculated trends in BC concentrations for 13 stations with at least 10 years of data, for median concentrations, as well as 5th percentile (background) and 95th percentile (peak episodes). Preliminary results suggest that concentrations have generally declined, with a larger trend at traffic stations compared to urban

  4. Analysis of the physical properties of black carbon coatings from near-road to remote aging scales

    Science.gov (United States)

    Krasowsky, T. S.; McMeeking, G. R.; Sioutas, C.; Ban-Weiss, G. A.

    2017-12-01

    As black carbon (BC) particles are transported in the atmosphere, they acquire soluble coatings with important environmental implications. However, there is still vast uncertainty associated with "how" and "when" coatings accumulate on BC particles, including at rapid time-scales (e.g., adjacent to major roadways) and at more remote locations. A Single-Particle Soot Photometer (SP2) was used to measure refractory BC during the summer months in Los Angeles, California. BC physical properties were compared near a major freeway and at a remote receptor site in Redlands, California, approximately 100 km east of the downtown Los Angeles area. We have attempted to reduce uncertainty associated with the mechanisms that govern the procurement of soluble coatings on BC by investigating various meteorological regimes and comparing weekday to weekend BC properties. BC coatings were quantified using the "Lag-Time" and "Leading-Edge-Only" methods. Results reported here show an increased fraction of thickly-coated BC particles up to 115 meters from the roadway where competing partial pressure and vapor pressure causes various species to condense on BC as distance from the roadway increases. However, the median coating thickness for all BC particles measured near the roadway on August 4, 2016 was approximately 0 nm indicating BC particles near major roads are mostly uncoated. Despite ever-changing meteorological regimes at the receptor site, BC at the receptor site exhibited remarkably similar properties to BC measured 115 meters from the roadway. Although the overall mixing states were not vastly different at the roadway source and receptor sites, there were systematic mixing state dependencies based on changes in meteorological regimes and the day of week measured. On weekends, a higher relative portion of gasoline vehicles than diesel trucks may be leading to relatively more secondary organic aerosols to coat proportionately less BC mass.

  5. Visualizing the mobility of silver during catalytic soot oxidation

    DEFF Research Database (Denmark)

    Gardini, Diego; Christensen, Jakob M.; Damsgaard, Christian Danvad

    2016-01-01

    The catalytic activity and mobility of silver nanoparticles used as catalysts in temperature programmed oxidation of soot:silver (1:5 wt:wt) mixtures have been investigated by means of flow reactor experiments and in situ environmental transmission electron microscopy (ETEM). The carbon oxidation...

  6. Are emissions of black carbon from gasoline vehicles overestimated? Real-time, in situ measurement of black carbon emission factors.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Zhao, Shuhui; Zheng, Mei; Mu, Chao; Du, Ke

    2016-03-15

    Accurately quantifying black carbon (BC) emission factors (EFs) is a prerequisite for estimation of BC emission inventory. BC EFs determined by measuring BC at the roadside or chasing a vehicle on-road may introduce large uncertainty for low emission vehicles. In this study, BC concentrations were measured inside the tailpipe of gasoline vehicles with different engine sizes under different driving modes to determine the respective EFs. BC EFs ranged from 0.005-7.14 mg/kg-fuel under the speeds of 20-70 km/h, 0.05-28.95 mg/kg-fuel under the accelerations of 0.5-1.5m/s(2). Although the water vapor in the sampling stream could result in an average of 12% negative bias, the BC EFs are significantly lower than the published results obtained with roadside or chasing vehicle measurement. It is suggested to conduct measurement at the tailpipe of gasoline vehicles instead of in the atmosphere behind the vehicles to reduce the uncertainty from fluctuation in ambient BC concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Comparison of structural health assessment capabilities in epoxy – carbon black and epoxy – carbon nanotube nanocomposites

    OpenAIRE

    F. Inam; B. R. Bhat; N. Luhyna; T. Vo

    2014-01-01

    A novel method for comparing structural health of different types of brittle epoxy nanocomposites filled with carbon nanostructured fillers is presented. Epoxy – 0.2 vol% carbon black (CB) and epoxy – 0.2 vol% carbon nanotube (CNT) nanocomposite bars were prepared by calendering and thermal curing. Nanocomposite bars were subjected to Vickers diamond indentation to produce sub-surface damage. Electrical conductivities were analysed by 4-point method to estimate the structural damage caused by...

  8. 20 years of Black Carbon measurements in Germany

    Science.gov (United States)

    Kutzner, Rebecca; Quedenau, Jörn; Kuik, Friderike; von Schneidemesser, Erika; Schmale, Julia

    2016-04-01

    Black Carbon (BC) is an important short-lived climate-forcing pollutant contributing to global warming through absorption of sunlight. At the same time, BC, as a component of particulate matter (PM) exerts adverse health effects, like decreased lung function and exacerbated asthma. Globally, anthropogenic emission sources of BC include residential heating, transport, and agricultural fires, while the dominant natural emission sources are wildfires. Despite the various adverse effects of BC, legislation that requires mandatory monitoring of BC concentrations does not currently exist in the European Union. Instead, BC is only indirectly monitored as component of PM10 and PM2.5 (particulate matter with a diameter smaller 10 μm and 2.5 μm). Before the introduction of mandatory PM10 and PM2.5 monitoring in the European Union in 2005 and 2015, respectively, 'black smoke', a surrogate for BC, was a required measurement in Germany from the early 1990s. The annual mean limit value was 14 μg m-3 from 1995 and 8 μg m-3 from 1998 onwards. Many 'black smoke' measurements were stopped in 2004, with the repeal of the regulations obtaining at the time. However, in most German federal states a limited number BC monitoring stations continued to operate. Here we present a synthesis of BC data from 213 stations across Germany covering the period between 1994 and 2014. Due to the lack of a standardized method and respective legislation, the data set is very heterogeneous relying on twelve different measurement methods including chemical, optical, and thermal-optical methods. Stations include locations classified as background, urban-background, industrial and traffic among other types. Raw data in many different formats has been modelled and integrated in a relational database, allowing various options for further data analysis. We highlight results from the year 2009, as it is the year with the largest measurement coverage based on the same measurement method, with 30 stations. In

  9. Impacts of black carbon and co-pollutant emissions from transportation sector in Mexico City

    Science.gov (United States)

    Zavala, Miguel; Almanza, Victor; Garcia, Agustin; Jazcilevich, Aron; Lei, Wenfang; Molina, Luisa

    2016-04-01

    Black carbon is one of the most important short-lived climate-forcing agents, which is harmful to human health and also contributes significantly to climate change. Transportation is one of the largest sources of black carbon emissions in many megacities and urban complexes, with diesel vehicles leading the way. Both on-road and off-road vehicles can emit substantial amounts of harmful BC-containing particulate matter (PM) and are also responsible for large emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and many other co-emitted volatile organic compounds (VOCs). Regionally, black carbon emissions contributions from mobile sources may vary widely depending on the technical characteristics of the vehicle fleet, the quality and chemical properties of the fuels consumed, and the degree of local development and economic activities that foster wider and more frequent or intensive use of vehicles. This presentation will review and assess the emissions of black carbon from the on-road and off-road transportation sector in the Mexico City Metropolitan Area. Viable mitigation strategies, including innovative technological alternatives to reduce black carbon and co-pollutants in diesel vehicles and their impacts on climate, human health and ecosystems will be described.

  10. Sources of uncertainties in modelling black carbon at the global scale

    Directory of Open Access Journals (Sweden)

    E. Vignati

    2010-03-01

    Full Text Available Our understanding of the global black carbon (BC cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the measurements used for the model evaluation.

    The schemes for the atmospheric processing of black carbon that have been tested with the model are (i a simple approach considering BC as bulk aerosol and a simple treatment of the removal with fixed 70% of in-cloud black carbon concentrations scavenged by clouds and removed when rain is present and (ii a more complete description of microphysical ageing within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol, which results in a global average of 40% in-cloud black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer atmospheric lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, indicating that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of

  11. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    Science.gov (United States)

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  12. Dynamac molecular structure of plant biomass-derived black carbon (Biochar)

    Science.gov (United States)

    Char black carbon (BC), the solid residue of incomplete combustion, is continuously being added to soils and sediments due to natural vegetation fires, anthropogenic pollution, and new strategies for carbon sequestration (“biochar”). Here we present a molecular-level assessment o...

  13. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments

    NARCIS (Netherlands)

    Koelmans, A.A.; Nowack, B.; Wiesner, M.

    2009-01-01

    In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to

  14. Evaluating the capabilities of portable black carbon monitors and photometers for measuring airborne carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Naomi; Ogura, Isamu, E-mail: i-ogura@aist.go.jp; Kotake, Mari; Kishimoto, Atsuo; Honda, Kazumasa [Technology Research Association for Single Wall Carbon Nanotubes (TASC) (Japan)

    2013-11-15

    For daily monitoring of occupational exposure to aerosolized carbon nanotubes (CNTs) where CNTs are manufactured and handled, inexpensive real-time measuring methods are preferable. In this study, we evaluated the capabilities of a portable black carbon monitor (BCM; also called an aethalometer) and a light-scattering aerosol photometer in detecting airborne CNTs. The responses of these instruments to airborne CNTs, aerosolized through vortex shaking, were evaluated by comparing the measurements of CNT mass concentrations made by these instruments to those determined through thermal carbon analysis. Results showed that their raw readings underestimated CNT mass concentrations in most cases. Their sensitivities depended on the type of CNTs and decreased with the particle sizes of aerosolized CNT clumps. We also found that the sensitivity of the BCM tended to substantially decrease with increasing filter load, even before the point at which the filter should be replaced as recommended by the manufacturer, which could be attributed to a clean environmental condition (i.e., the absence of ubiquitous light-scattering material). As an example of the use of these instruments for measuring airborne CNTs in the presence of background aerosols, a CNT-handling simulation was also conducted. Although both the BCM and the photometer could detect CNT emissions, the BCM was more sensitive to the detection of emitted CNTs in the presence of background aerosols. The correction factors obtained from the response evaluations could enhance the measurement accuracy of these instruments, which will be helpful for the daily monitoring of CNTs at workplaces.

  15. Evaluating the capabilities of portable black carbon monitors and photometers for measuring airborne carbon nanotubes

    International Nuclear Information System (INIS)

    Hashimoto, Naomi; Ogura, Isamu; Kotake, Mari; Kishimoto, Atsuo; Honda, Kazumasa

    2013-01-01

    For daily monitoring of occupational exposure to aerosolized carbon nanotubes (CNTs) where CNTs are manufactured and handled, inexpensive real-time measuring methods are preferable. In this study, we evaluated the capabilities of a portable black carbon monitor (BCM; also called an aethalometer) and a light-scattering aerosol photometer in detecting airborne CNTs. The responses of these instruments to airborne CNTs, aerosolized through vortex shaking, were evaluated by comparing the measurements of CNT mass concentrations made by these instruments to those determined through thermal carbon analysis. Results showed that their raw readings underestimated CNT mass concentrations in most cases. Their sensitivities depended on the type of CNTs and decreased with the particle sizes of aerosolized CNT clumps. We also found that the sensitivity of the BCM tended to substantially decrease with increasing filter load, even before the point at which the filter should be replaced as recommended by the manufacturer, which could be attributed to a clean environmental condition (i.e., the absence of ubiquitous light-scattering material). As an example of the use of these instruments for measuring airborne CNTs in the presence of background aerosols, a CNT-handling simulation was also conducted. Although both the BCM and the photometer could detect CNT emissions, the BCM was more sensitive to the detection of emitted CNTs in the presence of background aerosols. The correction factors obtained from the response evaluations could enhance the measurement accuracy of these instruments, which will be helpful for the daily monitoring of CNTs at workplaces

  16. Low-temperature atmospheric oxidation of mixtures of titanium and carbon black or brown

    International Nuclear Information System (INIS)

    Elizarova, V.A.; Babaitsev, I.V.; Barzykin, V.V.; Gerusova, V.P.; Rozenband, V.I.

    1984-01-01

    This article reports on the thermogravimetric investigation of mixtures of titanium no. 2 and carbon black with various mass carbon contents. Adding carbon black (as opposed to boron) to titanium leads to an increase in the rate of heat release of the oxidation reaction. An attempt is made to clarify the low-temperature oxidation mechanism of titanium mixtures in air. An x-ray phase and chemical (for bound carbon) analysis of specimens of a stoichiometric Ti + C mixture after heating in air to a temperature of 650 0 C at the rate of 10 0 /min was conducted. The results indicate that the oxidation of the titanium-carbon mixture probably proceeds according to a more complex mechanism associated with the transport of the gaseous carbon oxidation products and their participation in the titanium oxidation

  17. Investigations of the long-term effects of LII on soot and bath gas

    KAUST Repository

    Cenker, Emre

    2017-08-24

    A combination of high-repetition rate imaging, laser extinction measurements, two-colour soot pyrometry imaging, and high-resolution transmission electron microscopy of thermophoretically sampled soot is used to investigate the long-term and permanent effects of rapid heating of in-flame soot during laser-induced incandescence (LII). Experiments are carried out on a laminar non-premixed co-annular ethylene/air flame with various laser fluences. The high-repetition rate images clearly show that the heated and the neighbouring laser-border zones undergo a permanent transformation after the laser pulse, and advect vertically with the flow while the permanent marking is preserved. The soot volume fraction at the heated zone reduces due to the sublimation of soot and the subsequent enhanced oxidation. At the laser-border zones, however, optical thickness increases that may be due to thermophoretic forces drawing hot particles towards relatively cooler zones and the rapid compression of the bath gas induced by the pressure waves created by the expansion of the desorbed carbon clusters. Additionally sublimed carbon clusters can condense onto existing particles and contribute to increase of the optical thickness. Time-resolved two-colour pyrometry imaging show that the increased temperature of soot both in the heated and neighbouring laser-border zones persists for several milliseconds. This can be associated to the increase in the bath-gas temperature, and a change in the wavelength-dependent emissivity of soot particles induced by the thermal annealing of soot. Ex-situ analysis show that the lattice structure of the soot sampled at the laser-border zones tend to change and soot becomes more graphitic. This may be attributed to thermal annealing induced by elevated temperature.

  18. The effects of additional black carbon on Arctic sea ice surface albedo: variation with sea ice type and snow cover

    OpenAIRE

    A. A. Marks; M. D. King

    2013-01-01

    Black carbon in sea ice will decrease sea ice surface albedo through increased absorption of incident solar radiation, exacerbating sea ice melting. Previous literature has reported different albedo responses to additions of black carbon in sea ice and has not considered how a snow cover may mitigate the effect of black carbon in sea ice. Sea ice is predominately snow covered. Visible light absorption and light scattering coefficients are calculated for a typical first year and multi-y...

  19. A mechanistic study on the simultaneous elimination of soot and nitric oxide from engine exhaust

    KAUST Repository

    Raj, Abhijeet; Zainuddin, Zakwan; Sander, Markus; Kraft, Markus

    2011-01-01

    The non-catalytic interaction between soot and nitric oxide (NO) resulting in their simultaneous elimination was studied on different types of reactive site present on soot. The reaction mechanism proposed previously was extended by including seven new reaction pathways for which the reaction energetics and kinetics were studied using density functional theory and transition state theory. This has led to the calculation of a new rate for the removal of carbon monoxide (CO) from soot. The new pathways have been added to our polycyclic aromatic hydrocarbon (PAH) growth model and used to simulate the NO-soot interaction to form CO, N2 and N2O. The simulation results show satisfactory agreement with experiment for the new CO removal rate. The NO-soot reaction was found to depend strongly on the soot site type and temperature. For a set of temperatures, computed PAH structures were analysed to determine the functional groups responsible for the decrease in the reactivity of soot with NO with increasing reaction time. In isothermal conditions, it was found that as temperature is increased, the number of oxygen atoms remaining on the soot surface decreases, while the number of nitrogen atoms increases for a given reaction time. © 2010 Elsevier Ltd. All rights reserved.

  20. A mechanistic study on the simultaneous elimination of soot and nitric oxide from engine exhaust

    KAUST Repository

    Raj, Abhijeet

    2011-04-01

    The non-catalytic interaction between soot and nitric oxide (NO) resulting in their simultaneous elimination was studied on different types of reactive site present on soot. The reaction mechanism proposed previously was extended by including seven new reaction pathways for which the reaction energetics and kinetics were studied using density functional theory and transition state theory. This has led to the calculation of a new rate for the removal of carbon monoxide (CO) from soot. The new pathways have been added to our polycyclic aromatic hydrocarbon (PAH) growth model and used to simulate the NO-soot interaction to form CO, N2 and N2O. The simulation results show satisfactory agreement with experiment for the new CO removal rate. The NO-soot reaction was found to depend strongly on the soot site type and temperature. For a set of temperatures, computed PAH structures were analysed to determine the functional groups responsible for the decrease in the reactivity of soot with NO with increasing reaction time. In isothermal conditions, it was found that as temperature is increased, the number of oxygen atoms remaining on the soot surface decreases, while the number of nitrogen atoms increases for a given reaction time. © 2010 Elsevier Ltd. All rights reserved.

  1. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2009-01-01

    Full Text Available This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV oxide, carbon(II oxide, hydrogen, methane, hydrogen sulfide, nitrogen, oxygen, and water vapor.The quantitative composition and lower caloric value of process tail gases change depending on the type of feedstock used in the production, as well as the type of process. The lower caloric value of process tail gases is relatively small with values ranging between 1500 and 2300 kJ m–3.In the conventional production of oil-furnace carbon black, process tail gases purified from carbon black dust are freely released into the atmosphere untreated. In this manner, the process tail gases pollute the air in the town of Kutina, because their quantitative values are much higher than the prescribed emissions limits for hydrogen sulfide and carbon(II oxide. A logical solution for the prevention of such air pollution is combustion of the process tail gases, i. e. their thermal oxidation. For this purpose, a specially designed flare system has been developed. Consuming minimum amounts of natural gas needed for oxidation, the flare system is designed to combust low caloric process tail gases with 99 % efficiency. Thus, the toxic and flammable components of the tail gases (hydrogen sulfide, hydrogen, carbon(II oxide, methane and other trace hydrocarbons would be transformed into environmentally acceptable components (sulfur(IV oxide, water, carbon(IV oxide and nitrogen(IV oxide, which are in compliance with the emissions limit values prescribed by law.Proper operation of this flare system in the production of oil-furnace carbon black would solve

  2. Evaluation of black carbon estimations in global aerosol models

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2009-11-01

    Full Text Available We evaluate black carbon (BC model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD retrievals from AERONET and Ozone Monitoring Instrument (OMI and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model

  3. Black carbon and the Himalayan cryosphere: A review

    Science.gov (United States)

    Gertler, Charles G.; Puppala, Siva Praveen; Panday, Arnico; Stumm, Dorothea; Shea, Joseph

    2016-01-01

    The Himalayan cryosphere borders global hotspots for emissions of black carbon (BC), a carbonaceous aerosol with a short atmospheric lifespan and potentially significant impacts on glaciers and snow cover. BC in the atmosphere absorbs radiation efficiently, leading to localized positive climate forcing. BC may also be deposited onto snow and ice surfaces, thereby changing their albedo. This review presents up-to-date observational data of BC in the atmosphere and in snow and ice, as well as its effects on the cryosphere in the Hindu-Kush-Himalayan (HKH) region along the northern edge of South Asia. Significant spatial variation exists in the measured concentrations of BC in the atmosphere and cryosphere. A strong seasonal pattern exists, with highest concentrations in the pre-monsoon and lowest during the monsoon. Existing observations show bias towards certain areas, with a noticeable lack of measurements on the south side of the Himalaya. Significant uncertainty persists in the emissions estimates of BC in the HKH region, with a standard deviation of regional emissions from various emission inventories of 0.5150 × 10-9 kg m-2 s-1, or 47.1% of the mean (1.0931 × 10-9 kg m-2 s-1). This and other uncertainties, including poor model resolution, imprecision in deposition modeling, and incongruities among measurement types, propagate through simulations of BC concentration in atmosphere and cryosphere. Modeled atmospheric concentrations can differ from observations by as much as a factor of three with no systematic bias, and modeled concentrations in snow and ice can differ from observations by a factor of 60 in certain regions. In the Himalaya, estimates of albedo change due to BC range from about 2 to 10%, estimates of direct radiative forcing due to BC in the atmosphere from (-2)-7 W m-2, and surface forcing estimates from 0 to 28 W m-2, though every forcing estimate uses its own definition, with varying degrees of complexity and numbers of feedbacks. We find the

  4. Factors Controlling Black Carbon Deposition in Snow in the Arctic

    Science.gov (United States)

    Qi, L.; Li, Q.; He, C.; Li, Y.

    2015-12-01

    This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to

  5. Estimation of Black Carbon Emissions from Dry Dipterocarp Forest Fires in Thailand

    Directory of Open Access Journals (Sweden)

    Ubonwan Chaiyo

    2014-12-01

    Full Text Available This study focused on the estimation of black carbon emissions from dry dipterocarp forest fires in Thailand. Field experiments were set up at the natural forest, Mae Nam Phachi wildlife sanctuary, Ratchaburi Province, Thailand. The dead leaves were the main component consumed of the surface biomass with coverage higher than 90% in volume and mass. The dead leaves load was 342 ± 190 g∙m−2 and followed by a little mass load of twig, 100 g∙m−2. The chemical analysis of the dead leaves showed that the carbon content in the experimental biomass fuel was 45.81 ± 0.04%. From the field experiments, it was found that 88.38 ± 2.02% of the carbon input was converted to carbon released to the atmosphere, while less than 10% were left in the form of residues, and returned to soil. The quantity of dead leaves consumed to produce each gram of carbon released was 2.40 ± 0.02 gdry biomass burned. From the study, the emissions factor of carbon dioxide, carbon monoxide, particulate matter (PM2.5 and black carbon amounted 1329, 90, 26.19 and 2.83 g∙kg−1dry biomass burned, respectively. In Thailand, the amount of black carbon emissions from dry dipterocarp forest fires amounted 17.43 tonnes∙y−1.

  6. Morphology, molecular structure, and stable carbon isotopic composition of black carbon (BC) in urban topsoils.

    Science.gov (United States)

    Zong, Yutong; Xiao, Qing; Lu, Shenggao

    2018-02-01

    Urban soils contain significant amounts of black carbon (BC) from biomass and fossil fuel combustion and regard to be a pool of BC. BC in urban soils has multiple effects on environmental processes in urban system, such as global climate change, air quality, and public health. Urban topsoil samples (0-10 cm) were collected from Anshan, Liaoning Province, northeast China, which is one of the most important old steel industrial bases in China. The BC in urban topsoils was extracted using the density method. Their chemical composition, morphology, molecular structure, and stable carbon isotopic composition were examined using elemental analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and stable carbon isotope (δ 13 C). Elemental analysis shows that carbon content in the BC of studied soils ranged from 64.5 to 78.4%, with the average more than 70%. The O/C atomic ratio of BC is on average 0.18. The BC particle displays different morphology, including porous spherical, irregular porous fragmentary, and blocky shapes. The porous spherical BC particles has atomic molar O/C ratio determined by SEM-EDS ranging from 0.04 to 0.37. XRD indicates that BC exists in mainly combining with mineral phases hematite (Fe 2 O 3 ), kaolinite (Al 2 Si 2 O 5 (OH) 4 ), quartz (SiO 2 ), and calcite (CaCO 3 ). The FTIR spectra of BC particles show major bands at approximately 3400 cm -1 (O-H), 2920 cm -1 (C = H), 1600 cm -1 (C = C), 1230 cm -1 (C = O), and 1070 cm -1 (C = O). The stable carbon isotope (δ 13 C) of BC ranges from -24.48 to -23.18‰ with the average of -23.79 ± 0.39‰. The concentration of BC in the industrial area is significantly (p fuel combustion. Results indicated that a combination of atomic O/C ratio, porous structure, and stable carbon isotopic (δ 13 C) of BC could reflect effectively the origin of BC

  7. Study of tribological properties of natural rubber containing carbon nanotubes and carbon black as hybrid fillers

    Science.gov (United States)

    Harea, Evghenii; Stoček, Radek; Storozhuk, Liudmyla; Sementsov, Yurii; Kartel, Nikolai

    2018-04-01

    Dry friction and wear properties of natural rubber (NR), containing multi-walled carbon nanotubes (MWCNT) and carbon black (CB), were investigated. Natural rubber (NR)-based composites containing all common additives and curatives, and a fixed amount (30 phr—parts per 100 rubber by weight) of hybrid fillers (MWCNT x + CB30-x ) were prepared by simple mixing procedure and tested. The main goal was to study the behaviours of composites at different tribological testing conditions, such as friction speed and normal load. It was found that with an increase of concentration of MWCNT from x = 0 phr to x = 5 phr in studied composites, there was a decrease in the coefficient of friction (COF) with no significant change in wear in the framework of each used combination of testing parameters. Generally, higher friction speed at certain normal force led to the increase of COF of all the samples and wear reflected deliberate value fluctuation. Also, it was established that considerable growth of wear and unexpected reducing of friction coefficient ensued from increasing of applied load for every fixed sliding speed.

  8. Interplay between black carbon and minerals contributes to long term carbon stabilization and mineral transformation

    Science.gov (United States)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Chiang, C. C.; Liu, C. C.; Lehmann, J.

    2017-12-01

    Black carbon receives increasing global wide research attention due to its role in carbon sequestration, soil fertility enhancement and remediation application. Generally considered chemically stable in bulk, the reactive surface of BC can interplays with minerals and form strong chemical bondage, which renders physical protection of BC and contributes to its long term stabilization. Using historical BC-rich Amazonian Dark Earth (ADE), we probe the in-situ organo-mineral association and transformation of BC and minerals over a millennium scale using various synchrotron-based spectroscopic (XANES, FTIR) and microscopic (TXM) methods. Higher content of SRO minerals was found in BC-rich ADE compare to adjacent tropical soils. The iron signature found in BC-rich ADE was mainly ferrihydrite/lepidocrocite, a more reactive form of Fe compared to goethite, which was dominant in adjacent soil. Abundant nano minerals particles were observed in-situ associated with BC surface, in clusters and layers. The organo-mineral interaction lowers BC bioavailability and enhances its long-term stabilization in environment, while at the same time, transforms associated minerals into more reactive forms under rapid redox/weathering environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding. The scale up application of BC/biochar into agricultural systems and natural environments have long lasting impact on the in-situ transformation of associated minerals.

  9. Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline

    KAUST Repository

    An, Yanzhao

    2017-09-23

    In-cylinder combustion visualization and engine-out soot particle emissions were investigated in an optical diesel engine fueled with low octane gasoline. Single injection strategy with an early injection timing (−30 CAD aTDC) was employed to achieve partially premixed combustion (PPC) condition. A high-speed color camera was used to record the combustion images for 150 cycles. The regulated emission of carbon dioxide, carbon monoxide, nitrogen oxides and soot mass concentration were measured experimentally. Full cycle engine simulations were performed using CONVERGE™ and the simulation results matched with the experimental results. The in-cylinder soot particle evolution was performed by coupling a reduced toluene reference fuel mechanism including the PAHs formation/oxidation reactions with particulate size mimic model. The results showed that PPC presents typical stratified combustion characteristics, which is significantly different from the conventional diesel spray-driven combustion. The in-cylinder temperature and equivalence ratio overlaid with soot-NO formation regime revealed that PPC operating condition under study mostly avoided the main sooting conditions throughout the entire combustion. The evaluation of temperature distribution showed formaldehyde could be regarded as an indicator for low temperature reactions, while hydroxyl group represents the high temperature reactions. Soot evolution happened during the combustion process, hydroxyl radicals promoted the soot oxidation.

  10. Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline

    KAUST Repository

    An, Yanzhao; Jaasim, Mohammed; Vallinayagam, R.; Vedharaj, S.; Im, Hong G.; Johansson, Bengt.

    2017-01-01

    In-cylinder combustion visualization and engine-out soot particle emissions were investigated in an optical diesel engine fueled with low octane gasoline. Single injection strategy with an early injection timing (−30 CAD aTDC) was employed to achieve partially premixed combustion (PPC) condition. A high-speed color camera was used to record the combustion images for 150 cycles. The regulated emission of carbon dioxide, carbon monoxide, nitrogen oxides and soot mass concentration were measured experimentally. Full cycle engine simulations were performed using CONVERGE™ and the simulation results matched with the experimental results. The in-cylinder soot particle evolution was performed by coupling a reduced toluene reference fuel mechanism including the PAHs formation/oxidation reactions with particulate size mimic model. The results showed that PPC presents typical stratified combustion characteristics, which is significantly different from the conventional diesel spray-driven combustion. The in-cylinder temperature and equivalence ratio overlaid with soot-NO formation regime revealed that PPC operating condition under study mostly avoided the main sooting conditions throughout the entire combustion. The evaluation of temperature distribution showed formaldehyde could be regarded as an indicator for low temperature reactions, while hydroxyl group represents the high temperature reactions. Soot evolution happened during the combustion process, hydroxyl radicals promoted the soot oxidation.

  11. Low black carbon concentration in agricultural soils of central and northern Ethiopia.

    Science.gov (United States)

    Yli-Halla, Markku; Rimhanen, Karoliina; Muurinen, Johanna; Kaseva, Janne; Kahiluoto, Helena

    2018-08-01

    Soil carbon (C) represents the largest terrestrial carbon stock and is key for soil productivity. Major fractions of soil C consist of organic C, carbonates and black C. The turnover rate of black C is lower than that of organic C, and black C abundance decreases the vulnerablility of soil C stock to decomposition under climate change. The aim of this study was to determine the distribution of soil C in different pools and impact of agricultural management on the abundance of different species. Soil C fractions were quantified in the topsoils (0-15cm) of 23 sites in the tropical highlands of Ethiopia. The sites in central Ethiopia represented paired plots of agroforestry and adjacent control plots where cereal crops were traditionally grown in clayey soils. In the sandy loam and loam soils of northern Ethiopia, the pairs represented restrained grazing with adjacent control plots with free grazing, and terracing with cereal-based cropping with adjacent control plots without terracing. Soil C contained in carbonates, organic matter and black C along with total C was determined. The total C median was 1.5% (range 0.3-3.6%). The median proportion of organic C was 85% (range 53-94%), 6% (0-41%) for carbonate C and 6% (4-21%) for black C. An increase was observed in the organic C and black C fractions attributable to agroforestry and restrained grazing. The very low concentration of the relatively stable black C fraction and the dominance of organic C in these Ethiopian soils suggest vulnerability to degradation and the necessity for cultivation practices maintaining the C stock. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Exploring biomass based carbon black as filler in epoxy composites: Flexural and thermal properties

    International Nuclear Information System (INIS)

    Abdul Khalil, H.P.S.; Firoozian, P.; Bakare, I.O.; Akil, Hazizan Md.; Noor, Ahmad Md.

    2010-01-01

    Carbon blacks (CB), derived from bamboo stem (BS-CB), coconut shells (CNS-CB) and oil palm empty fiber bunch (EFB-CB), were obtained by pyrolysis of fibers at 700 o C, characterized and used as filler in epoxy composites. The results obtained showed that the prepared carbon black possessed well-developed porosities and are predominantly made up of micropores. The BS-CB, CNS-CB and EFB-CB filled composites were prepared and characterized using scanning electron microscope (SEM) and thermogravimetric analyzer (TGA). The SEM showed that the fractured surface of the composite indicates its high resistance to fracture. The CBs-epoxy composites exhibited better flexural properties than the neat epoxy, which was attributed to better adhesion between the CBs and the epoxy resin. TGA showed that there was improvement in thermal stability of the carbon black filled composites compared to the neat epoxy resin.

  13. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®.

    Science.gov (United States)

    Cinti, Stefano; Mazzaracchio, Vincenzo; Cacciotti, Ilaria; Moscone, Danila; Arduini, Fabiana

    2017-10-03

    Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M ® (Heathrow Scientific, Vernon Hills, IL, USA) as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  14. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®

    Directory of Open Access Journals (Sweden)

    Stefano Cinti

    2017-10-01

    Full Text Available Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M® (Heathrow Scientific, Vernon Hills, IL, USA as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  15. Sonoelectrochemical one-pot synthesis of Pt - Carbon black nanocomposite PEMFC electrocatalyst.

    Science.gov (United States)

    Karousos, Dionysios S; Desdenakis, Kostantinos I; Sakkas, Petros M; Sourkouni, Georgia; Pollet, Bruno G; Argirusis, Christos

    2017-03-01

    Simultaneous electrocatalytic Pt-nanoparticle synthesis and decoration of Vulcan XC-72 carbon black substrate was achieved in a novel one-step-process, combining galvanostatic pulsed electrodeposition and pulsed ultrasonication with high power, low-frequency (20kHz) ultrasound. Aqueous chloroplatinic acid precursor baths, as well as carbon black suspensions in the former, were examined and decoration was proven by a combination of characterization methods, namely: dynamic light scattering, transmission electron microscopy, scanning electron microscopy with EDX-analysis and cyclic voltammetry. In particular, PVP was shown to have a beneficial stabilizing effect against free nanoparticle aggregation, ensuring narrow size distributions of the nanoparticles synthesized, but is also postulated to prevent the establishment of a strong metal-substrate interaction. Current pulse amplitude was identified as the most critical nanoparticle size-determining parameters, while only small size particles, under 10nm, appeared to be attached to carbon black. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effect of part replacement of silica sand with carbon black on composite properties

    International Nuclear Information System (INIS)

    Adeosun, B.F.; Olaofe, O.

    2003-01-01

    We have reported the properties of natural rubber filled with locally available materials (Adu et al 2000). The effect of local clay, limestone, silica sand and charcoal on the properties of natural rubber has been examined. Results have shown detrimental effects of silica sand on the properties of natural rubber compound. It has been reported that when silica is used as a part for part replacement of carbon black, the heat build up the composite decreased whilst tear resistance improved. Results revealed that within the filler content range used in the present work, the hardness, modulus, and tensile strength of composites loaded with silica sand/carbon black showed enhanced magnitude over the composite loaded singly with silica sand. These parameters generally increased with increasing carbon black content in the composite. New area of use requiring moderate level of tensile strength, hardness and modulus (as in soles of shoes and engine mounts) is therefore opened up for silica sand.(author)

  17. Thickness effect on electric resistivity on polystyrene and carbon black- based composites

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Lopez, S; Vigueras-Santiago, E [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA) Facultad de Quimica, Paseo Colon Esquina con Paseo Tollocan, s/n, CP 50000, Toluca (Mexico); Mayorga-Rojas, M; Reyes-Contreras, D, E-mail: eviguerass@uaemex.m [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico. Av. Instituto Literario 100 Ote. C. P. 50000, Toluca (Mexico)

    2009-05-01

    Changes on electrical resistivity were experimentally studied for polystyrene and carbon black-based composites respect to the temperature. 22% w/w carbon black composite films at 30{mu}m, 2mm y 1cm thick were submitted to thermal heating-cooling cycles from room temperature to 100 deg. C, slightly up to T{sub g} of the composite. For each cycle changes on electrical resistivity constituent a hysteresis loop that depends on the sample thickness. The changes during the heating stage could be explained as a consequence of the thermal expansion and mobility of the polymer chains at T{sub g}, producing a disconnecting of the electrical contacts among carbon black particles and an important increasing (200%) of the electrical resistivity. For each cycle, the hysteresis loop was observed in thicker samples, whereas for 30 mu m thickness sample the hysteresis loop was lost after four cycles.

  18. Electric anisotropy in high density polyethylene + carbon black composites induced by mechanical deformation

    Energy Technology Data Exchange (ETDEWEB)

    Vigueras-Santiago, E; Hernandez-Lopez, S; Camacho-Lopez, M A; Lara-Sanjuan, O, E-mail: eviguerass@uaemex.m [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, UAEM. Paseo Colon esq. con Paseo Tollocan, s/n. C.P. 50000, Toluca (Mexico)

    2009-05-01

    High density polyethylene + carbon black composites with electrical anisotropy was studied. Electrical anisotropy was induced by uniaxial mechanical deformation and injection moulding. We show that anisotropy depends on the carbon black concentration and percentage deformation. Resistivity had the highest anisotropy resistivity around the percolation threshold. Perpendicular resistivity showed two magnitude orders higher than parallel resistivity for injected samples, whereas resistivity showed an inverse behaviour for 100% tensile samples. Both directions were set respect to the deformation axe. Anisotropy could be explained in terms of the molecular deformation (alignment) of the polymer chains as a response of the deformation process originating a redistribution of the carbon black particles in both directions. Alignment of the polymer chains was evidenced by polarized Raman spectroscopy.

  19. Study of black carbon levels in city centers and industrial centers in Jordan

    International Nuclear Information System (INIS)

    Hamasha, K.M.; Almomani, M.S.; Abu-Allaban, M.; Arnott, W. P.

    2010-01-01

    Light absorption coefficients of black carbon (B abc ) were measured at serveral urban and industrial locations in Jordan during summer of 2007 and winter of 2008 using the photoacoustic instrument at a wavelength of 870 nm. Black carbon mass concentration (BC) was calculated using B abc .Black carbon levels at urban locations in the summer of 2007 were higher than those obtained at industrial centers.Zarqa had the highest value of BC in summer (29.24μg/m 3 ) and in winter (13.27μg/m 3 ). Ibbeen and Irbid city center had relatively high values of BC in winter: 11.75μg/m 3 and 12.48μg/m 3 , respectively. (authors).

  20. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    Science.gov (United States)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  1. Effects of compositional heterogeneity and nanoporosity of raw and treated biomass-generated soot on adsorption and absorption of organic contaminants

    International Nuclear Information System (INIS)

    Chen Baoliang; Huang Wenhai

    2011-01-01

    A biomass-generated soot was sequentially treated by HCl-HF solution, organic solvent, and oxidative acid to remove ash, extractable native organic matter (EOM), and amorphous carbon. The compositional heterogeneity and nano-structure of the untreated and treated soot samples were characterized by elemental analysis, thermal gravimetric analysis, BET-N 2 surface area, and electron microscopic analysis. Sorption properties of polar and nonpolar organic pollutants onto the soot samples were compared, and individual contributions of adsorption and absorption were quantified. The sorption isotherms for raw sample were practically linear, while were nonlinear for the pretreated-soot. The removal of EOM enhanced adsorption and reduced absorption, indicating that EOM served as a partitioning phase and simultaneously masked the adsorptive sites. By drastic-oxidation, the outer amorphous carbon and the inner disordered core of the soot particles were completely removed, and a fullerene-like nanoporous structure (aromatic shell) was created, which promoted additional π-π interaction between phenanthrene and the soot. - Graphical abstract: The dual sorptive nature of the biomass-generated soot, i.e., the adsorptive effect of the carbonized soot fraction and the partition effect of the amorphous soot component. Research highlights: → The biomass-generated soot owns the heterogeneous compositions and nano-structures. → The soot exhibits the dual sorptive nature, i.e., adsorption and absorption. → Removal of the amorphous component weakens absorption, but strengthens adsorption. → The exposed adsorptive sites with highly aromatic nature promotes π-π interaction. → The dual sorptive nature of the soot depends on the various soot components. - The compositional heterogeneity and nano-structure play a regulating role in the adsorption and absorption of organic contaminants with the untreated and treated soot samples.

  2. Commuter exposure to black carbon, carbon monoxide, and noise in the mass transport khlong boats of Bangkok, Thailand

    Science.gov (United States)

    Ziegler, A. D.; Velasco, E.; Ho, K. J.

    2013-12-01

    Khlong (canal) boats are a unique mass transport alternative in the congested city of Bangkok. Canals and rivers provide exclusive transit-ways for reducing the commuting time of thousands of city residents daily. However, as a consequence of the service characteristics and boats design and state of repair, they can represent a potential public health risk and an important source of black carbon and greenhouse gases. This work quantifies commuter exposure to black carbon, CO and noise when waiting for and travelling in these diesel fueled boats. Exposure to toxic pollutants and acute noise is similar or worse than for other transportation modes. Mean black carbon concentrations observed at one busy pier and along the main canal were much higher than ambient concentrations at sites impacted by vehicular traffic. Concentrations of CO were similar to those reported for roadside areas of Bangkok. The equivalent continuous sound levels registered at the landing pier were similar to those reported for roadsides, but values recorded inside the boats were significantly higher. We believe that the boat service is a viable alternative mode of mass transport, but public safety could be improved to provide a high quality service, comparable to modern rail systems or emerging bus rapid transit systems. These investments would also contribute to reduce the emission of black carbon and other greenhouse and toxic pollutants.

  3. A study of the mixing state of black carbon in urban zone

    Science.gov (United States)

    Mallet, M.; Roger, J. C.; Despiau, S.; Putaud, J. P.; Dubovik, O.

    2004-02-01

    The knowledge of the mixing state of black carbon particle with other aerosol species is critical for adequate simulations of the direct radiative effect of black carbon particles and its effect on climate. This paper reports the investigation of the mixing state of black carbon aerosol in the urban zone. The study uses a combination of in situ and ground-based remote sensing observations conducted during the ESCOMPTE experiment, which took place in industrialized region in France in summer of 2001. The criteria we used for identifying mixing state relies on the known enhancement of absorption for aerosol composed by internal versus external mixtures of black carbon with weakly absorbing aerosol components. First, using in situ aerosol data, we performed Mie computations and reconstructed the single scattering albedo of aerosol for the two different mixing assumptions: black carbon mixed externally or internally with other aerosol species. Then, we compared the obtained values ωo,int and ωo,ext with the retrievals of ωo from independent AERONET Sun-photometric measurements. The aerosol single scattering albedo (ωo,aer.) derived from the AERONET photometer observations (with the mean value equal to 0.84 ± 0.04) was found to be close to ωo,ext reconstructed from in situ observation under assumptions of external mixture. This similarity between AERONET values and external mixture simulations was observed during all the days studied. Our conclusion on external mixture of black carbon aerosol with other particles in urban zone during ESCOMPTE (close to the pollution source) is coherent with observations made during other independent studies reported in a number of recent publications.

  4. Carbon distribution in char residue from gasification of kraft black liquor

    International Nuclear Information System (INIS)

    Sricharoenchaikul, Viboon; Frederick, W.J.; Agrawal, Pradeep

    2003-01-01

    The char residue yields and the total carbon and carbonate content were measured for dry black liquor solids after pyrolysis or gasification in a laminar entrained-flow reactor. The experimental conditions were 700-1000 deg. C in N 2 ,CO 2 /N 2 or water vapor/N 2 at 1 bar total pressure, for residence times from 0.3 to 1.7 s. Fixed carbon yields, when measured at the same particle residence time, decreased with increasing reactor temperature. CO 2 and water vapor diminished the char carbon significantly at temperatures above 800 deg. C, compared with pyrolysis in N 2 . Water vapor oxidized the char carbon more rapidly than did CO 2 . At 1000 deg. C, the reactions of carbon with sulfate and carbonate became faster, resulting in a smaller difference between carbon conversion rates in the different gas environments. By the end of devolatilization, the amount of carbonate in the char had changed very little at 700-800 deg. C. After devolatilization, carbonate was formed more rapidly at higher temperatures. The presence of CO 2 or water vapor increased the formation of carbonate. In the presence of these gases, more carbonate was measured at all temperatures and residence times. The maximum carbonate measured in the char was 16% of the carbon in the black liquor solids, as compared to 4.4% in the original dry liquor solids. Under most conditions, the carbonate, as a fraction of carbon input, first increased to a constant, temperature-independent value and then decreased

  5. Factors controlling black carbon distribution in the Arctic

    Science.gov (United States)

    Qi, Ling; Li, Qinbin; Li, Yinrui; He, Cenlin

    2017-01-01

    We investigate the sensitivity of black carbon (BC) in the Arctic, including BC concentration in snow (BCsnow, ng g-1) and surface air (BCair, ng m-3), as well as emissions, dry deposition, and wet scavenging using the global three-dimensional (3-D) chemical transport model (CTM) GEOS-Chem. We find that the model underestimates BCsnow in the Arctic by 40 % on average (median = 11.8 ng g-1). Natural gas flaring substantially increases total BC emissions in the Arctic (by ˜ 70 %). The flaring emissions lead to up to 49 % increases (0.1-8.5 ng g-1) in Arctic BCsnow, dramatically improving model comparison with observations (50 % reduction in discrepancy) near flaring source regions (the western side of the extreme north of Russia). Ample observations suggest that BC dry deposition velocities over snow and ice in current CTMs (0.03 cm s-1 in the GEOS-Chem) are too small. We apply the resistance-in-series method to compute a dry deposition velocity (vd) that varies with local meteorological and surface conditions. The resulting velocity is significantly larger and varies by a factor of 8 in the Arctic (0.03-0.24 cm s-1), which increases the fraction of dry to total BC deposition (16 to 25 %) yet leaves the total BC deposition and BCsnow in the Arctic unchanged. This is largely explained by the offsetting higher dry and lower wet deposition fluxes. Additionally, we account for the effect of the Wegener-Bergeron-Findeisen (WBF) process in mixed-phase clouds, which releases BC particles from condensed phases (water drops and ice crystals) back to the interstitial air and thereby substantially reduces the scavenging efficiency of clouds for BC (by 43-76 % in the Arctic). The resulting BCsnow is up to 80 % higher, BC loading is considerably larger (from 0.25 to 0.43 mg m-2), and BC lifetime is markedly prolonged (from 9 to 16 days) in the Arctic. Overall, flaring emissions increase BCair in the Arctic (by ˜ 20 ng m-3), the updated vd more than halves BCair (by ˜ 20 ng m-3

  6. ESR study on the interaction between carbon blacks and oxygen molecules; ESR ho ni yoru carbon black to sanso bunshi tono sogo sayo no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, M.; Toriyama, K.; Konishi, Y. [National Industrial Research Institute of Nagoya, Nagoya (Japan)

    2000-02-24

    Interaction between carbon blacks and oxygen molecules has been studied by means of electron spin resonance (ESR) spectroscopy. The ESR spectra of the carbon blacks appears at the g-value of free spin, which are contributed by both isolated electrons and conduction electrons. Upon introducing oxygen to the system the ESR linewidth was broadened in proportion to the partial pressure of oxygen. In case of lampblack (LB 101, Degussa) the interaction was not so strong that it took a tong time at 77K for the linewidth to reach the maxmum value. In case of gassblack (P 140 V, Degussa), on the other hand, the oxygen was easily adsorbed at 298K and the linewidth at 77K became its maximum immediately after cooling. The number of unpaired electrons decreased when the system was kept at 298 K and the decrease was prominent for the local spins. These phenomena have been explained with a simple band model for the electron. (author)

  7. Aerosol Absorption by Black Carbon and Dust: Implications of Climate Change and Air Quality in Asia

    Science.gov (United States)

    Chin, Mian

    2010-01-01

    Atmospheric aerosol distributions from 2000 to 2007 are simulated with the global model GOCART to attribute light absorption by aerosol to its composition and sources. We show the seasonal and interannual variations of absorbing aerosols in the atmosphere over Asia, mainly black carbon and dust. and their linkage to the changes of anthropogenic and dust emissions in the region. We compare our results with observations from satellite and ground-based networks, and estimate the importance of black carbon and dust on regional climate forcing and air quality.

  8. Study of the effect of gamma irradiation on carbon black loaded low-density polyethylene films

    International Nuclear Information System (INIS)

    Salem, M.A.; Hussein, A.; El-Ahdal, M.A.

    2003-01-01

    The effect of gamma irradiation on the tensile and physico-chemical properties of low-density polyethylene (LDPE) films loaded with different concentrations of carbon black (C.B) has been studied. The results showed that the behavior of the samples during gamma irradiation is complicated and this may be due to scission and the interaction between oxidation and crosslinking processes. The tensile properties are modified by the presence of carbon black. Film sample containing 7% C.B was found to exhibit a nearly stabilized tensile behavior with radiation dose, which allows to use this formulation in packaging for food sterilization and in preservation of weak cobalt-gamma sources. (author)

  9. Effect of silica concentration on electrical conductivity of epoxy resin-carbon black-silica nanocomposites

    International Nuclear Information System (INIS)

    Zhang Wei; Blackburn, Richard S.; Dehghani-Sanij, Abbas A.

    2007-01-01

    Electrical properties of nanocomposites are determined by the conductive paths of carbon black and influenced by a 'network' of silica. With increasing content of silica, carbon black (CB) particles are optimally dispersed, contributing to the generation of a conductive network between CB particles via direct particle contact and a tunneling effect; maximum conductivity for the epoxy resin-CB-silica nanocomposite described herein occurs at a ratio of 0.6:1.0 (SiO 2 :CB). As a non-conductive component, excessive silica will prevent electron flow, giving rise to low conductivity

  10. Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring

    Science.gov (United States)

    Ryan, M. A.; Shevade, A. V.; Zhou, H.; Homer, M. L.

    2004-01-01

    An electronic nose that uses an array of 32 polymer-carbon black composite sensors has been developed, trained, and tested. By selecting a variety of chemical functionalities in the polymers used to make sensors, it is possible to construct an array capable of identifying and quantifying a broad range of target compounds, such as alcohols and aromatics, and distinguishing isomers and enantiomers (mirror-image isomers). A model of the interaction between target molecules and the polymer-carbon black composite sensors is under development to aid in selecting the array members and to enable identification of compounds with responses not stored in the analysis library.

  11. End of the Little Ice Age in the Alps forced by industrial black carbon

    OpenAIRE

    Painter, Thomas H.; Flanner, Mark G.; Kaser, Georg; Marzeion, Ben; VanCuren, Richard A.; Abdalati, Waleed

    2013-01-01

    The end of the Little Ice Age in the European Alps has long been a paradox to glaciology and climatology. Glaciers in the Alps began to retreat abruptly in the mid-19th century, but reconstructions of temperature and precipitation indicate that glaciers should have instead advanced into the 20th century. We observe that industrial black carbon in snow began to increase markedly in the mid-19th century and show with simulations that the associated increases in absorbed sunlight by black carbon...

  12. Bounding the Role of Black Carbon in the Climate System: a Scientific Assessment

    Science.gov (United States)

    Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Bernsten, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, S.; Karcher, B.; Koch, D.; hide

    2013-01-01

    Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg/yr in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W/sq m with 90% uncertainty bounds of (+0.08, +1.27)W/sq m. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W/sq m. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W/sq m with 90% uncertainty bounds of +0.17 to +2.1 W/sq m. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing

  13. Bounding the Role of Black Carbon in the Climate System: A Scientific Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Tami C.; Doherty, Sarah J.; Fahey, D. W.; Forster, Piers; Berntsen, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, Steven J.; Karcher, B.; Koch, Dorothy; Kinne, Stefan; Kondo, Yutaka; Quinn, P. K.; Sarofim, Marcus; Schultz, Martin; Schulz, M.; Venkataraman, C.; Zhang, Hua; Zhang, Shiqiu; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, Joshua P.; Shindell, Drew; Storelvmo, Trude; Warren, Stephen G.; Zender, C. S.

    2013-06-06

    Black carbon aerosol plays a unique and important role in Earth’s climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. Predominant sources are combustion related; namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption, influence on liquid, mixed-phase, and ice clouds, and deposition on snow and ice. These effects are calculated with models, but when possible, they are evaluated with both microphysical measurements and field observations. Global atmospheric absorption attributable to black carbon is too low in many models, and should be increased by about about 60%. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of black carbon is +0.43 W m-2 with 90% uncertainty bounds of (+0.17, +0.68) W m-2. Total direct forcing by all black carbon sources in the present day is estimated as +0.49 (+0.20, +0.76) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings and their rapid responses and feedbacks. The best estimate of industrial-era (1750 to 2005) climate forcing of black carbon through all forcing mechanisms is +0.77 W m-2 with 90% uncertainty bounds of +-0.06 to +1.53 W m-2. Thus, there is a 96% probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. With a value of +0.77 W m-2, black carbon is likely the second

  14. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam

    2014-05-20

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both temperature and soot measurements presented are line-of-sight averages. The results aid in understanding the kinetic and thermodynamic behavior of the soot formation and oxidation chemistry with changes in diluents, ultimately leading to possible methods of reducing soot emission from practical combustion hardware. The diluted fuel and coflow exit velocities (top-hat profiles) were matched at all pressures to minimize shear effects. In addition to the velocity-matched flow rates, the mass fluxes were held constant for all pressures. Addition of a diluent has a pronounced effect on both the soot surface temperature and volume fraction, with the helium diluted flame yielding the maximum and carbon dioxide diluted flame yielding minimum soot surface temperature and volume fraction. At low pressures, peak soot volume fraction exists at the tip of the flame, and with an increase in pressure, the location shifts lower to the wings of the flame. Due to the very high diffusivity of helium, significantly higher temperature and volume fraction are measured and explained. Carbon dioxide has the most dramatic soot suppression effect. By comparing the soot yield with previously measured soot precursor concentrations in the same flame, it is clear that the lower soot yield is a result of enhanced oxidation rates rather than a reduction in precursor formation. Copyright © 2014 Taylor & Francis Group, LLC.

  15. Hydrogen and Carbon Black Production from Thermal Decomposition of Sub-Quality Natural Gas

    Directory of Open Access Journals (Sweden)

    M. Javadi

    2010-03-01

    Full Text Available The objective of this paper is computational investigation of the hydrogen and carbon black production through thermal decomposition of waste gases containing CH4 and H2S, without requiring a H2S separation process. The chemical reaction model, which involves solid carbon, sulfur compounds and precursor species for the formation of carbon black, is based on an assumed Probability Density Function (PDF parameterized by the mean and variance of mixture fraction and β-PDF shape. The effects of feedstock mass flow rate and reactor temperature on hydrogen, carbon black, S2, SO2, COS and CS2 formation are investigated. The results show that the major factor influencing CH4 and H2S conversions is reactor temperature. For temperatures higher than 1100° K, the reactor CH4 conversion reaches 100%, whilst H2S conversion increases in temperatures higher than 1300° K. The results reveal that at any temperature, H2S conversion is less than that of CH4. The results also show that in the production of carbon black from sub-quality natural gas, the formation of carbon monoxide, which is occurring in parallel, play a very significant role. For lower values of feedstock flow rate, CH4 mostly burns to CO and consequently, the production of carbon black is low. The results show that the yield of hydrogen increases with increasing feedstock mass flow rate until the yield reaches a maximum value, and then drops with further increase in the feedstock mass flow rate.

  16. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black.

    Science.gov (United States)

    Ma-Hock, Lan; Strauss, Volker; Treumann, Silke; Küttler, Karin; Wohlleben, Wendel; Hofmann, Thomas; Gröters, Sibylle; Wiench, Karin; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-06-17

    Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in order to avoid unsafe applications or select

  17. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black

    Science.gov (United States)

    2013-01-01

    Background Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. Methods In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. Results No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. Conclusions The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in

  18. Laser Scanning Microscopic Investigations of the Decontamination of Soot Nanoparticles from the Skin.

    Science.gov (United States)

    Lademann, Jürgen; Knorr, Fanny; Patzelt, Alexa; Meinke, Martina C; Richter, Heike; Krutmann, Jean; Rühl, Eckart; Doucet, Olivier

    2018-01-01

    Airborne pollutants, such as nano-sized soot particles, are increasingly being released into the environment as a result of growing population densities and industrialization. They can absorb organic and metal compounds with potential biological activity, such as polycyclic aromatic hydrocarbons and airborne pollen allergens. Local and systemic toxicities may be induced in the skin if the particulates release their harmful components upon dermal contact. In the present study, skin pretreatments with serum and/or shield as barrier formulations prior to exposure and washing with a cleanser subsequent to exposure were evaluated as a protection and decontamination strategy using laser scanning microscopy. The results indicate that while the application of serum and a cleanser was insufficient for decontamination, the pretreatment with shield prior to nanoparticle exposure followed by washing led to the removal of a considerable amount of the carbon black particles. The combined application of serum and shield before the administration of carbon black particles and subsequent washing led to their elimination from the skin samples. The application of barrier-enhancing formulations in combination with a cleanser may reduce the penetration of harmful airborne particulates by preventing their adhesion to the skin and facilitating their removal by subsequent washing with the cleanser. © 2018 S. Karger AG, Basel.

  19. Isotopic measurements (C,N,O) of detonation soot produced from labeled and unlabeled Composition B-3 indicate source of solid carbon residues

    Science.gov (United States)

    Podlesak, David; Manner, Virginia; Amato, Ronald; Dattelbaum, Dana; Gusavsen, Richard; Huber, Rachel

    2017-06-01

    Detonation of HE is an exothermic process whereby metastable complex molecules are converted to simple stable molecules such as H2 O, N2, CO, CO2, and solid carbon. The solid carbon contains various allotropes such as detonation nanodiamonds, graphite, and amorphous carbon. It is well known that certain HE formulations such as Composition B (60% RDX, 40% TNT) produce greater amounts of solid carbon than other more oxygen-balanced formulations. To develop a greater understanding of how formulation and environment influence solid carbon formation, we synthesized TNT and RDX with 13 C and 15 N at levels slightly above natural abundance levels. Synthesized RDX and TNT were mixed at a ratio of 60:40 to form Composition B and solid carbon residues were collected from detonations of isotopically-labeled as well as un-labelled Composition B. The raw HE and detonation residues were analyzed isotopically for C, N, O isotopic compositions. We will discuss differences between treatments groups as a function of formulation and environment. LA-UR - 17-21266.

  20. Black silicon maskless templates for carbon nanotube forests

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Schmidt, Michael Stenbæk; Boisen, Anja

    2013-01-01

    allows maskless definition of carbon nanotube forests with control of their density, nanotube diameter and height. Four nanograss reactive ion etching recipes are investigated and their wafer-to-wafer repeatability, wafer uniformity, and density control is discussed. Evaluation of carbon nanotube forests...

  1. Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The effects of carbon blacks on vulcanization and mechanical properties of filled ethylene-propylene-diene rubber (EPDM are investigated, by comparing with five types of rubber-grade carbon blacks. Curing kinetics is studied by rheometer and the results indicate that the curing characteristics are influenced by combination of surface area of carbon black and sulphur content on the filler surface, because the former one enhances the physical cross-linking and the latter one introduces the additional chemical cross-linking. Both the degree of cross-linking and cure rate increase with increasing surface area and sulphur content, whereas the optimum cure time and scorch time decrease. The reinforcing nature of the carbon black is assessed from mechanical measurements. It is suggested that the surface area of carbon blacks strongly affects the physical properties of EPDM/carbon black composites. Conductive carbon black (N472 can be used as desirable reinforcing filler due to the higher degree of cross-linking of EPDM with N472 than other EPDM/carbon black composites. The morphology and distribution of particles are studied by using scanning electron microscope. The sound reinforcing ability of N472 is also supported by scanning electron microscope due to the notable dispersibility of N472 within EPDM matrix. N472 ensures the EPDM/N472 composite the most conductive sample among the five composites.

  2. O2 electrocatalysis in acid media on iron naphthalocyanine impregnations. Effect of nitric acid treatment on different carbon black supports

    NARCIS (Netherlands)

    Coowar, F.; Contamin, O.; Savy, M.; Scarbeck, G.; van den Ham, D.; Riga, J.; Verbist, J.J.

    1991-01-01

    O2 electrocatalysis on (2,3)FeNPc impregnations on different carbon blacks was investigated in H2SO4 medium. The effect of nitric acid treatment on the carbon black support is to enhance both the activity and stability of the catalyst. Moreover, as seen by XPS, the dissolution of iron is impeded by

  3. Automatic Method for Controlling the Iodine Adsorption Number in Carbon Black Oil Furnaces

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2008-12-01

    Full Text Available There are numerous of different inlet process factors in carbon black oil furnaces which must be continuously and automatically adjusted, due to stable quality of final product. The most important six inlet process factors in carbon black oil-furnaces are:1. volume flow of process air for combustion2. temperature of process air for combustion3. volume flow of natural gas for insurance the necessary heat for thermal reaction of conversionthe hydrocarbon oil feedstock in oil-furnace carbon black4. mass flow rate of hydrocarbon oil feedstock5. type and quantity of additive for adjustment the structure of oil-furnace carbon black6. quantity and position of the quench water for cooling the reaction of oil-furnace carbon black.The control of oil-furnace carbon black adsorption capacity is made with mass flow rate of hydrocarbon feedstock, which is the most important inlet process factor. Oil-furnace carbon black adsorption capacity in industrial process is determined with laboratory analyze of iodine adsorption number. It is shown continuously and automatically method for controlling iodine adsorption number in carbon black oil-furnaces to get as much as possible efficient control of adsorption capacity. In the proposed method it can be seen the correlation between qualitatively-quantitatively composition of the process tail gasses in the production of oil-furnace carbon black and relationship between air for combustion and hydrocarbon feedstock. It is shown that the ratio between air for combustion and hydrocarbon oil feedstock is depended of adsorption capacity summarized by iodine adsorption number, regarding to BMCI index of hydrocarbon oil feedstock.The mentioned correlation can be seen through the figures from 1. to 4. From the whole composition of the process tail gasses the best correlation for continuously and automatically control of iodine adsorption number is show the volume fraction of methane. The volume fraction of methane in the

  4. Black Ink of Activated Carbon Derived From Palm Kernel Cake (PKC)

    Science.gov (United States)

    Selamat, M. H.; Ahmad, A. H.

    2009-06-01

    Recycling the waste from natural plant to produce useful end products will benefit many industries and help preserve the environment. The research reported in this paper is an investigation on the use of the natural waste of palm kernel cake (PKC) to produce carbon residue as a black carbon for pigment source by using pyrolysis process. The activated carbons (AC) is produced in powder form using ball milling process. Rheological spectra in ink is one of quality control process in determining its performance properties. Findings from this study will help expand the scientific knowledge-base for black ink production and formulation base on PKC. Various inks with different weight percentage compositions of AC will be made and tested against its respective rheological properties in order to determine ideal ink printing system. The items in the formulation used comprised of organic and bio-waste materials with added additive to improve the quality of the black ink. Modified Polyurethane was used as binder. The binder's properties highlighted an ideal vehicle to be applied for good black ink opacity performance. The rheological behaviour is a general foundation for ink characterization where the wt% of AC-PKC resulted in different pseudoplastic behaviors, including the Newtonian behavior. The result found that Newtonian field was located in between 2 wt% and 10 wt% of AC-PKC composition with binder. Mass spectroscopy results shown that the carbon content in PKC is high and very suitable for black performance. In the ageing test, the pigment of PKC perform fairly according to the standard pigment of Black carbon (CB) of ferum oxide pigment. The contact angle for substrate's wettability of the ink system shown a good angle proven to be a water resistive coating on paper subtrates; an advantage of the PKC ink pigment performance.

  5. Particulate Matter and Black Carbon Concentration Levels in Ashaiman, a Semi-Urban Area of Ghana, 2008

    OpenAIRE

    Sam-Quarcoo Dotse; Joshua Kwame Asane; F.G. Ofosu

    2012-01-01

    Particulate matter and black carbon concentration levels in Ashaiman, a semi-urban area of Ghana was assessed. Using IVL PM2.5 and PM10 particle samplers, airborne particulate matter was sampled on Teflon filters for a period of three months. In addition to determination of particulate mass in the two fractions by gravimetrical method, aerosol filters were analyzed to determine Black Carbon (BC) concentration levels using the black smoke method. BC fractions in fine and coarse, together with ...

  6. Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black

    KAUST Repository

    Zhang, Xiaoyuan; Xia, Xue; Ivanov, Ivan; Huang, Xia; Logan, Bruce E.

    2014-01-01

    Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.

  7. High resolution of black carbon and organic carbon emissions in the Pearl River Delta region, China.

    Science.gov (United States)

    Zheng, Junyu; He, Min; Shen, Xingling; Yin, Shasha; Yuan, Zibing

    2012-11-01

    A high-resolution regional black carbon (BC) and organic carbon (OC) emission inventory for the year 2009 was developed for the Pearl River Delta (PRD) region, China, based on the collected activity data and the latest emission factors. PM(2.5), BC and OC emissions were estimated to be 303 kt, 39 kt and 31 kt, respectively. Industrial processes were major contributing sources to PM(2.5) emissions. BC emissions were mainly from mobile sources, accounting for 65.0%, while 34.1% of OC emissions were from residential combustion. The primary OC/BC ratios for individual cities in the PRD region were dependent on the levels of economic development due to differences in source characteristics, with high ratios in the less developed cities and low ratios in the central and southern developed areas. The preliminary temporal profiles were established, showing the highest OC emissions in winter and relatively constant BC emissions throughout the year. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3 km. Large amounts of BC emissions were distributed over the central-southern PRD city clusters, while OC emissions exhibited a relatively even spatial distribution due to the significant biomass burning emissions from the outlying area of the PRD region. Uncertainties in carbonaceous aerosol emissions were usually higher than in other primary pollutants like SO(2), NO(x), and PM(10). One of the key uncertainty sources was the emission factor, due to the absence of direct measurements of BC and OC emission rates. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Brown Carbon and Black Carbon in the Smoky Atmosphere during Boreal Forest Fires

    Science.gov (United States)

    Gorchakov, G. I.; Karpov, A. V.; Pankratova, N. V.; Semoutnikova, E. G.; Vasiliev, A. V.; Gorchakova, I. A.

    2017-12-01

    We have investigated the variability of smoke aerosol absorbing ability with variations in the content of brown carbon (BrC) and black carbon (BC). Using monitoring data on radiative characteristics of smoke aerosol at AERONET stations and the spatial distribution of aerosol optical depth (AOD) obtained by the MODIS spectrometer ( Terra satellite), we have detected large-scale smokes during boreal forest fires in Russia and Canada (1995-2012). The spatial distribution (50°-70° N, 95°-125° W) and temporal variability (at AERONET station Fort McMurray) of AOD during the smoking of a part of Canada in July 2012 have been analyzed. AOD probability distributions for July 14-18, 2012, and an estimate of aerosol radiative forcing of smoke aerosol at the upper boundary of the atmosphere have been obtained. We have proposed a technique for the diagnostics of BrC and BC in smoke aerosol particles from the spectral dependence of the imaginary part of the refractive index. At a wavelength of 440 nm, the contributions of BrC and BC to the smokeaerosol absorbing abitity can be comparable in magnitude. In many cases, the absorption spectra of smoke aerosol can be adequately approximated by either power or exponential functions. The presence of BrC in smoke-aerosol particles highly extends the variety of observed absorption spectra in a smoky atmosphere and spectral dependences of single scattering albedo. In the spectral range of 440-1020 nm, the radiative characteristics of smoke aerosol are largely contributed by its fine mode.

  9. Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black

    KAUST Repository

    Zhang, Xiaoyuan

    2014-02-04

    Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.

  10. Nanoparticle production by UV irradiation of combustion generated soot particles

    International Nuclear Information System (INIS)

    Stipe, Christopher B.; Choi, Jong Hyun; Lucas, Donald; Koshland, Catherine P.; Sawyer, Robert F.

    2004-01-01

    Laser ablation of surfaces normally produce high temperature plasmas that are difficult to control. By irradiating small particles in the gas phase, we can better control the size and concentration of the resulting particles when different materials are photofragmented. Here, we irradiate soot with 193 nm light from an ArF excimer laser. Irradiating the original agglomerated particles at fluences ranging from 0.07 to 0.26 J/cm 2 with repetition rates of 20 and 100 Hz produces a large number of small, unagglomerated particles, and a smaller number of spherical agglomerated particles. Mean particle diameters from 20 to 50 nm are produced from soot originally having a mean electric mobility diameter of 265nm. We use a non-dimensional parameter, called the photon/atom ratio (PAR), to aid in understanding the photofragmentation process. This parameter is the ratio of the number of photons striking the soot particles to the number of the carbon atoms contained in the soot particles, and is a better metric than the laser fluence for analyzing laser-particle interactions. These results suggest that UV photofragmentation can be effective in controlling particle size and morphology, and can be a useful diagnostic for studying elements of the laser ablation process

  11. Effect of carbon black on electrical and rheological properties of graphite nanoplatelets/poly(ethylene-butyl acrylate composites

    Directory of Open Access Journals (Sweden)

    H. Oxfall

    2015-01-01

    Full Text Available The effect of adding carbon black on the electrical and rheological properties of graphite nanoplatelets/poly(ethylene-butyl acrylate copolymer composites produced via melt or solution mixing was studied. By adding a small amount of low- or high-structured carbon black to the nanocomposite, the electrical percolation threshold decreased and the final conductivity (at higher filler contents increased. The effect on the percolation threshold was significantly stronger in case of the high-structured carbon black where replacing 10 wt% of the total filler content with carbon black instead of graphite nanoplatelets reduced the electrical percolation threshold from 6.9 to 4.6 vol%. Finally, the solution mixing process was found to be more efficient leading to a lower percolation threshold. For the composites containing high-structured carbon black, graphite nanoplatelets and their hybrids there was a quite reasonable correlation between the electrical and rheological percolation thresholds.

  12. Electrocatalytic Determination of Isoniazid by a Glassy Carbon Electrode Modified with Poly (Eriochrome Black T)

    OpenAIRE

    Karim Asadpour-Zeynali; Venus Baghalabadi

    2017-01-01

    In this work poly eriochrome black T (EBT) was electrochemically synthesized on the glassy carbon electrode as electrode modifier. On the modified electrode, voltammetric behavior of isoniazid (INH) was investigated. The poly (EBT)-modified glassy carbon electrode has excellent electrocatalytic ability for the electrooxidation of isoniazid. This fact was appeared as a reduced overpotential of INH oxidation in a wide operational pH range from 2 to 13. It has been found that the catalytic peak ...

  13. Spinning, structure and properties of PP/CNTs and PP/carbon black composite fibers

    Science.gov (United States)

    Marcincin, A.; Hricova, M.; Ujhelyiova, A.

    2014-08-01

    In this paper, the effect of the compatibilisers-dispersants and other nanofillers on melt spinning of the polypropylene (PP) composites, containing carbon nanotubes (CNTs), and carbon black pigment (CBP) has been investigated. Further, the structure and selected properties of composite fibers, such as mechanical and electrical have been studied. The results revealed, that percolation threshold for PP/CBP composite fibres was situated within the concentration of 15 - 20 wt%, what is several times higher than for PP/CNTs fibers.

  14. Physical and chemical comparison of soot in hydrocarbon and biodiesel fuel diffusion flames: A study of model and commercial fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matti Maricq, M. [Research and Advanced Engineering, Ford Motor Company, Dearborn, MI (United States)

    2011-01-15

    Data are presented to compare soot formation in both surrogate and practical fatty acid methyl ester biodiesel and petroleum fuel diffusion flames. The approach here uses differential mobility analysis to follow the size distributions and electrical charge of soot particles as they evolve in the flame, and laser ablation particle mass spectrometry to elucidate their composition. Qualitatively, these soot properties exhibit a remarkably similar development along the flames. The size distributions begin as a single mode of precursor nanoparticles, evolve through a bimodal phase marking the onset of aggregate formation, and end in a self preserving mode of fractal-like particles. Both biodiesel and hydrocarbon fuels yield a common soot composition dominated by C{sub x}H{sub y}{sup +} ions, stabilomer PAHs, and fullerenes in the positive ion mass spectrum, and C{sub x}{sup -} and C{sub 2x}H{sup -} in the negative ion spectrum. These ion intensities initially grow with height in the diffusion flames, but then decline during later stages, consistent with soot carbonization. There are important quantitative differences between fuels. The surrogate biodiesel fuel methyl butanoate substantially reduces soot levels, but soot formation and evolution in this flame are delayed relative to both soy and petroleum fuels. In contrast, soots from soy and hexadecane flames exhibit nearly quantitative agreement in their size distribution and composition profiles with height, suggesting similar soot precursor chemistry. (author)

  15. Black carbon emission reduction strategies in healthcare industry for effective global climate change management.

    Science.gov (United States)

    Raila, Emilia Mmbando; Anderson, David O

    2017-04-01

    Climate change remains one of the biggest threats to life on earth to date with black carbon (BC) emissions or smoke being the strongest cause after carbon dioxide (CO 2 ). Surprisingly, scientific evidence about black carbon emissions reduction in healthcare settings is sparse. This paper presents new research findings on the reduction of black carbon emissions from an observational study conducted at the UN Peacekeeping Operations (MINUSTAH) in Haiti in 2014. Researchers observed 20 incineration cycles, 30 minutes for each cycle of plastic and cardboard sharps healthcare waste (HCW) containers ranged from 3 to 14.6 kg. The primary aim was to determine if black carbon emissions from healthcare waste incineration can be lowered by mainstreaming the use of cardboard sharps healthcare waste containers instead of plastic sharps healthcare waste containers. Similarly, the study looks into whether burning temperature was associated with the smoke levels for each case or not. Independent samples t-tests demonstrated significantly lower black carbon emissions during the incineration of cardboard sharps containers (6.81 ± 4.79% smoke) than in plastic containers (17.77 ± 8.38% smoke); a statistically significant increase of 10.96% smoke (95% Confidence Interval ( CI) [4.4 to 17.5% smoke], p = 0.003). Correspondingly, lower bottom burner temperatures occurred during the incineration of cardboard sharps containers than in plastic (95% Cl [16 to 126°C], p = 0.014). Finally, we expect the application of the new quantitative evidence to form the basis for policy formulation, mainstream the use of cardboard sharps containers and opt for non-incineration disposal technologies as urgent steps for going green in healthcare waste management.

  16. Soot in the atmosphere and snow surface of Antarctica

    International Nuclear Information System (INIS)

    Warren, S.G.; Clarke, A.D.

    1990-01-01

    Samples of snow collected near the south pole during January and February 1986 were analyzed for the presence of light-absorbing particles by passing the melted snow through a nuclepore filter. Transmission of light through the filter showed that snow far from the station contains the equivalent of 0.1-0.3 ng of carbon per gram of snow (ng/g). Samples of ambient air were filtered and found to contain about 1-2 ng of carbon per kilogram of air, giving a scavenging ratio of about 150. The snow downwind of the station exhibited a well-defined plume of soot due to the burning of diesel fuel, but even in the center of the plume 1 km downwind, the soot concentration was only 3 ng/g, too small to affect snow albedo significantly. Measurements of snow albedo near large inland stations are therefore probably representative of their surrounding regions

  17. Distribution and Sources of Black Carbon in the Arctic

    Science.gov (United States)

    Qi, Ling

    The Arctic is warming at twice the global rate over recent decades. To slow down this warming trend, there is growing interest in reducing the impact from short-lived climate forcers, such as black carbon (BC), because the benefits of mitigation are seen more quickly relative to CO2 reduction. To propose efficient mitigation policies, it is imperative to improve our understanding of BC distribution in the Arctic and to identify the sources. In this dissertation, we investigate the sensitivity of BC in the Arctic, including BC concentrations in snow (BCsnow) and BC concentrations in air (BCair), to emissions, dry deposition and wet scavenging using a global 3-D chemical transport model (CTM) GEOS-Chem. By including flaring emissions, estimating dry deposition velocity using resistance-in-series method, and including Wegener-Bergeron-Findeisen (WBF) in wet scavenging, simulated BCsnow in the eight Arctic sub-regions agree with the observations within a factor of two, and simulated BCair fall within the uncertainty range of observations. Specifically, we find that natural gas flaring emissions in Western Extreme North of Russia (WENR) strongly enhance BCsnow (by up to ?50%) and BCair (by 20-32%) during snow season in the so-called 'Arctic front', but has negligible impact on BC in the free troposphere. The updated dry deposition velocity over snow and ice is much larger than those used in most of global CTMs and agrees better with observation. The resulting BCsnow changes marginally because of the offsetting of higher dry and lower wet deposition fluxes. In contrast, surface BCair decreases strongly due to the faster dry deposition (by 27-68%). WBF occurs when the environmental vapor pressure is in between the saturation vapor pressure of ice crystals and water drops in mixed-phase clouds. As a result, water drops evaporate and releases BC particles in them back into the interstitial air. In most CTMs, WBF is either missing or represented by a uniform and low BC

  18. A black body absorber from vertically aligned single-walled carbon nanotubes

    Science.gov (United States)

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  19. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    Science.gov (United States)

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  20. Projection of SO2, NOx, NMVOC, particulate matter and black carbon emissions - 2015-2030

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Hjelgaard, Katja Hossy

    This report contains a description of models and background data for projection of SO2, NOX, NMVOC, PM2.5 and black carbon for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts...

  1. Regional Responses to Black Carbon Aerosols: The Importance of Air-Sea Interaction

    Science.gov (United States)

    Gnanadesikan, A.; Scott, A. A.; Pradal, M.-A.; Seviour, W. J. M.; Waugh, D. W.

    2017-12-01

    The impact of modern black carbon aerosols on climate via their changes in radiative balance is studied using a coupled model where sea surface temperatures (SSTs) are allowed to vary and an atmosphere-only version of the same model where SSTs are held fixed. Allowing the ocean to respond is shown to have a profound impact on the pattern of temperature change. Particularly, large impacts are found in the North Pacific (which cools by up to 1 K in the coupled model) and in north central Asia (which warms in the coupled simulation and cools in the fixed SST simulation). Neither set of experiments shows large changes in surface temperatures in the Southeast Asian region where the atmospheric burden of black carbon is highest. These results are related to the stabilization of the atmosphere and changes in oceanic heat transport. Over the North Pacific, atmospheric stabilization results in an increase in stratiform clouds. The resulting shading reduces evaporation, freshening the surface layer of the ocean and reducing the inflow of warm subtropical waters. Over the land, a delicate balance between greater atmospheric absorption, shading of the surface and changes in latent cooling of the surface helps to determine whether warming or cooling is seen. Our results emphasize the importance of coupling in determining the response of the climate system to black carbon and suggest that black carbon may play an important role in modulating climate change over the North Pacific.

  2. Lung clearance of inhaled particles after exposure to carbon black generated from a resuspension system

    International Nuclear Information System (INIS)

    Lee, P.S.; Gorski, R.A.; Hering, W.E.; Chan, T.L.

    1987-01-01

    A system to resuspend carbon black particles for providing submicron aerosols for inhalation exposure studies has been developed. The effect of continuous exposure to carbonaceous material (as a surrogate for the carbonaceous particles in diesel exhaust) on the pulmonary clearance of inhaled diesel tracer particles was studied in male Fischer 344 rats. Submicron carbon black particles with a mass median aerodynamic diameter (MMAD) of 0.22 micron and a size distribution similar to that of exhaust particles from a GM 5.7-liter diesel engine were successfully generated and administered to test animals at a nominal concentration of 6 mg/m3 for 20 hr/day, 7 days/week, for periods lasting 1 to 11 weeks. Immediately after the carbon black exposure, test animals were administered 14 C-tagged diesel particles for 45 min in a nose-only chamber. The pulmonary retention of inhaled radioactive tracer particles was determined at preselected time intervals. Based upon the data collected up to 1 year postexposure, prolonged exposure to carbon black particles exhibits a similar inhibitory effect on pulmonary clearance as does prolonged exposure to diesel exhaust with a comparable particulate dose. This observation indicates that the excessive accumulation of carbonaceous material may be the predominant factor affecting lung clearance

  3. Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice

    DEFF Research Database (Denmark)

    Modrzynska, Justyna; Berthing, Trine; Ravn-Haren, Gitte

    2018-01-01

    Background Little is known about the mechanism underlying the genotoxicity observed in the liver following pulmonary exposure to carbon black (CB) nanoparticles (NPs). The genotoxicity could be caused by the presence of translocated particles or by circulating inflammatory mediators released during...

  4. Net removal of dissolved organic carbon in the anoxic waters of the Black Sea

    NARCIS (Netherlands)

    Margolin, A.R.; Gerringa, L.J.A.; Hansell, D.A.; Rijkenberg, M.J.A.

    2016-01-01

    Dissolved organic carbon (DOC) concentrations in the deep Black Sea are ~2.5 times higher than found in the globalocean. The two major external sources of DOC are rivers and the Sea of Marmara, a transit point for waters from theMediterranean Sea. In addition, expansive phytoplankton blooms

  5. The vacuum pyrolysis of used tires. End-uses for oil and carbon black products

    Energy Technology Data Exchange (ETDEWEB)

    Roy, C.; Chaala, A.; Darmstadt, H. [Institut Pyrovac Inc., Parc Technologique du Quebec Metropolitain, rue Franquet, Sainte-Foy (Canada)

    1999-07-01

    By vacuum pyrolysis, the rubber portion of used tires is transformed into oil and gas and the carbon black filler is recovered as pyrolytic carbon black (CB{sub P}). Several commercial applications for the different products have been investigated and are reported in this article. CB{sub P} surface chemistry and activity are similar to those of commercial carbon blacks. Therefore, CB{sub P} has the potential to replace commercial carbon black grades in certain rubber applications. CB{sub P} was successfully tested as a filler in road pavement. The total pyrolytic oil can be used as a liquid fuel. The oil can also be distilled into different fractions: a light, a middle distillate and a heavy fraction. The light fraction was positively tested as a gasoline additive. Furthermore, this fraction contains valuable chemicals such as d,l-limonene. The middle fraction was successfully tested as a plasticizer in rubbers. The heavy fraction represents a good-quality feedstock for the production of coke and can also be used in road pavements. The pyrolytic gas can be used as a make-up heat source for the pyrolysis process

  6. Top-down estimates of biomass burning emissions of black carbon in the western United States

    Science.gov (United States)

    Y. H. Mao; Q. B. Li; D. Chen; L. Zhang; W. -M. Hao; K.-N. Liou

    2014-01-01

    We estimate biomass burning and anthropogenic emissions of black carbon (BC) in the western US for May-October 2006 by inverting surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network using a global chemical transport model. We first use active fire counts from the Moderate Resolution Imaging Spectroradiometer (MODIS...

  7. Thermal and bonding properties of nano size carbon black filled PDMS

    CSIR Research Space (South Africa)

    Chen, H

    2009-12-01

    Full Text Available is varied from 10% to 25%. The mechanical property is characterized by testing the bond strength of the bond between pure PDMS and PDMS-CB composite. The bond between pure PDMS and 10% carbon black filled PDMS broke at 0.72 MPa. The bond has become very...

  8. Quantification methods of Black Carbon: Comparison of Rock-Eval analysis with traditional methods

    NARCIS (Netherlands)

    Poot, A.; Quik, J.T.K.; Veld, H.; Koelmans, A.A.

    2009-01-01

    Black Carbon (BC) quantification methods are reviewed, including new Rock-Eval 6 data on BC reference materials. BC has been reported to have major impacts on climate, human health and environmental quality. Especially for risk assessment of persistent organic pollutants (POPs) it is important to

  9. Study of positron annihilation lifetime spectroscopy in carbon black-filled HDPE composite

    CERN Document Server

    Zhang Xian Feng; Zhou Xian Yi; Weng Hu Imin; Ye Bang Jiao; Han Rong Dian; Jia Shao Jin; Zhang Zhi Cheng

    2002-01-01

    The variation of the electrical conductivity of high density polyethylene (HDPE) with the carbon black (CB) content was studied using positron annihilation lifetime spectroscopy (PALS) and free-volume model, the crystallinity of HDPE/CB composite and 'percolation' effect were discussed with measurements of conductivity and DSC test

  10. Nanoscale Interactions between Engineered Nanomaterials and Black Carbon (Biochar) in Soil

    Science.gov (United States)

    An understanding of the interactions between engineered nanomaterials (NMs) and soil constituents, and a comprehension of how these interactions may affect biological uptake and toxicity are currently lacking. Charcoal black carbon is a normal constituent of soils due to fire history, and can be pre...

  11. Effects of occupational exposure to carbon black on peripheral white blood cell counts and lymphocyte subsets

    NARCIS (Netherlands)

    Dai, Yufei; Niu, Yong; Duan, Huawei; Bassig, Bryan A; Ye, Meng; Zhang, Xiao; Meng, Tao; Bin, Ping; Jia, Xiaowei; Shen, Meili; Zhang, Rong; Hu, Wei; Yang, Xiaofa; Vermeulen, Roel; Silverman, Debra; Rothman, Nathaniel; Lan, Qing; Yu, Shanfa; Zheng, Yuxin

    2016-01-01

    The International Agency for Research on Cancer has classified carbon black (CB) as a possible (Group 2B) human carcinogen. Given that most CB manufacturing processes result in the emission of various types of chemicals, it is uncertain if the adverse health effects that have been observed in

  12. Robust Means for Estimating Black Carbon-Water Sorption Coefficients of Organic Contaminants in Sediments

    Science.gov (United States)

    2015-07-01

    compounds by black carbon, Springer, Dordrecht. Plata, D.L., Hemingway , J.D. and Gschwend, P.M. (2015) Polyparameter linear free energy relationship for...1320-1331. 32 8. Appendices Scientific/Technical Publications Plata, D.L., J.D. Hemingway , and P.M. Gschwend. Polyparameter linear free energy

  13. Black Carbon Concentrations from ~1850-1980 from a High-Resolution Ice Core from Geladandong, Central Tibetan Plateau

    Science.gov (United States)

    Jenkins, M.; Kaspari, S.; Kang, S.; Grigholm, B. O.; Mayewski, P. A.

    2011-12-01

    Black carbon (BC), produced by the incomplete combustion of fossil and bio-fuels, is estimated to be the second largest contributor to global warming behind CO2; when deposited on snow and ice BC reduces albedos, potentially enhancing surface melt and glacial retreat. The study of BC's past and present variability is imperative in order to better understand and estimate its potential impact on climate and water resources. This is especially important in the Himalaya/Tibetan Plateau, a region that provides fresh water to over a billion people and where BC's climatic effects are estimated to be the largest (Flanner et al., 2007; Ramanathan and Carmichael, 2008). To more accurately constrain BC's past variability in this sensitive region, an ice core recovered in 2005 from Mt. Geladandong (5800 m a.s.l.) on the central Tibetan Plateau was analyzed for BC at high resolution using a Single Particle Soot Photometer (SP2). Results indicate that 1) average BC concentrations at this location are higher than at other locations closer to BC sources and analyzed by the same method (Mt. Everest by Kaspari et al., 2011 and Muztagh Ata by Wang et al., in prep), and 2) BC exists in peak concentrations high enough (>10 μg/L) to cause a >1% reduction in surface albedo at the sampling location (Ming et al., 2009; Hadley et al., 2010). Potential causes of the higher BC concentrations at the Geladandong site include lower annual precipitation and the mechanical trapping and concentration of BC caused by surface melt and/or sublimation (Conway et al., 1996; Huang et al., 2011). Preliminary dating (Grigholm et al., in prep) has dated the top of the core to ~1980, suggesting that annual mass loss at the site has removed the upper portion of the record. This supports the findings of Kehrwald et al. (2008) who reported that glaciers below ~6050 m a.s.l. in the Himalaya/Tibetan Plateau are losing mass annually. Presented here is the record of BC on the central Tibetan Plateau over the time

  14. Comparing black carbon types in sequestering polybrominated diphenyl ethers (PBDEs) in sediments

    International Nuclear Information System (INIS)

    Jia, Fang; Gan, Jay

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are widely found in sediments, especially congeners from the penta-BDE formula. Due to their strong affinity for black carbon (BC), bioavailability of PBDEs may be decreased in BC-amended sediments. In this study, we used a matrix-SPME method to measure the freely dissolved concentration (C free ) of PBDEs as a parameter of their potential bioavailability and evaluated the differences among biochar, charcoal, and activated carbon. Activated carbon displayed a substantially greater sequestration capacity than biochar or charcoal. At 1% amendment rate in sediment with low organic carbon (OC) content (0.12%), C free of six PBDEs was reduced by 47.5–78.0%, 47.3–77.5%, and 94.1–98.3% with biochar, charcoal, and activated carbon, respectively, while the sequestration was more limited in sediment with high OC content (0.87%). Therefore, it is important to consider the type and properties of the BC and the sediment in BC-based remediation or mitigation. -- Highlights: • A matrix-SPME method was developed for measuring C free of PBDEs in sediment porewater. • Different black carbon types differed greatly in their ability to decrease C free of PBDEs in sediments. • Activated carbon was much more efficient in sequestering PBDEs than biochar or charcoal. • The effect of black carbon was more pronounced in sediment with lower indigenous OC content. -- Biochar, charcoal, and activated carbon have been compared for their efficacy in sequestering PBDEs in sediments by using a matrix-SPME method

  15. The chlorination kinetics of zirconium dioxide mixed with carbon black

    International Nuclear Information System (INIS)

    Movahedian, A.; Raygan, Sh.; Pourabdoli, M.

    2011-01-01

    In this research, the effects of chlorine gas at different chlorine partial pressures and carbon concentrations on the carbochlorination of zirconia were studied. It was found that in briquettes containing 18.7 %wt carbon, in a chlorine partial pressure range of 0.25-0.75 atm and for a reacted fraction of less than 0.7, the chemical reaction model was dominant for the carbochlorination process of zirconia. The order of reaction into chlorine gas (n) in this situation was 0.57. Moreover, the best weight ratio of carbon to zirconia was 40/60. In this case, the activation energy of the reaction was 209.9 kJ mol -1 in a temperature range of 1023-1223 K, and the dominant model was the chemical reaction model.

  16. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Abdelgadir, Ahmed; Rakha, Ihsan Allah; Steinmetz, Scott A.; Attili, Antonio; Bisetti, Fabrizio; Roberts, William L.

    2015-01-01

    , coupled with detailed transport and kinetic models, to reproduce experimental measurements of a series of ethylene-air coflow flames. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydro-carbons is used. Soot is modeled

  17. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam; Zhang, Ji; Fang, Tiegang; Roberts, William L.

    2014-01-01

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both

  18. Black Carbon, Dust and Organic Matter at South Cascade Glacier in Washington State, USA: A Comprehensive Characterization of Temporal (1865-2014) and Spatial Variability

    Science.gov (United States)

    Kaspari, S.; Pittenger, D.; Swick, M.; Skiles, M.; Perez, A.; Sethi, H.; Sevier, E.

    2017-12-01

    Rising temperatures are a widely recognized cause of glacial retreat in Washington, however light absorbing aerosols (LAA, including black carbon (BC), dust and organic matter) can also contribute to increased melt by reducing snow albedo. We present updated results of BC and dust variability at South Cascade (SOCAS) glacier spanning 1865-1994 using a 158 m ice core. Peak BC deposition occurred between 1940-1958, when median BC concentrations were 25 times higher than background levels. Post 1958 BC concentrations decrease, followed by an increase post 1980 associated with melt consolidation and/or trans-Pacific aerosol transport. Dust deposition at SOCAS is dominated by local sources. Albedo reductions from LAA are dominated by dust deposition, except during high BC deposition events from wildfires, and during the 1940-1958 period when BC contributes equally to albedo reductions. Results from a 2014 field campaign that included collection of 3 shallow ice cores, surface snow, and snow albedo measurements allow the 1865-1994 ice core record to be extended toward present, and spatial variability in LAA to be characterized. Snow albedo transects were measured using a spectrometer. BC concentrations were measured using a Single Particle Soot Photometer (SP2). Gravimetric filtration was used to determine the total LAA, and a thermal gravimetric technique was used to partition the LAA between dust and organic matter. The organic matter was partitioned into organic and elemental carbon using a thermal optical method. These methods allow LAA abundances be measured, but to partition the contribution of the LAA to albedo reductions requires characterization of LAA optical properties. This was accomplished using a Hyperspectral Imaging Microscope Spectrometer method that allows particle reflectance to be measured at 138 nm2 pixel resolution. By combining these methods, we provide a comprehensive characterization of spatial and temporal LAA variability at SOCAS.

  19. Effect of carbon black on thermal properties of charcoal and salacca leafstalk briquettes

    Science.gov (United States)

    Thassana, Chewa; Nuleg, Witoon

    2017-08-01

    In this work, the effect of a carbon black (CB) on the thermal properties of briquettes produced from the charcoal and the salacca leafstalk with and without CB have been investigated. Four thermal properties of a briquettes compose of the burning time, the calorific value, the percentage moisture (PMC) and an percentage ash content (PAC) were analyzed using standard laboratory methods. Our results were indicated that the sallacca leafstalk mix a carbon black is the long burning times, high heating but a few ash content. Results shown that the burning time and the calorific value of a charcoal, a charcoal with CB, the salacca leafstalk and the salacca leafstalk with carbon black particles is about 58, 63, 76, 81 minutes, and 10.33, 12.96, 13.12, 14.63 MJ/kg, respectively. In addition, the PMC and PAC were in range of 11.6 - 8.14% and 9.33 - 5.42%. So, we can conclude that a cabon black affect on the thermal properties of a briquettes and salacca leaftstalk mixed CB has been most suited for briquetting.

  20. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    Science.gov (United States)

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).

  1. Simulation of soot size distribution in an ethylene counterflow flame

    KAUST Repository

    Zhou, Kun; Abdelgadir, Ahmed Gamaleldin; Bisetti, Fabrizio

    2014-01-01

    Soot, an aggregate of carbonaceous particles produced during the rich combustion of fossil fuels, is an undesirable pollutant and health hazard. Soot evolution involves various dynamic processes: nucleation soot formation from polycyclic aromatic

  2. Time-resolved analysis of particle emissions from residential biomass combustion - Emissions of refractory black carbon, PAHs and organic tracers

    Science.gov (United States)

    Nielsen, Ingeborg E.; Eriksson, Axel C.; Lindgren, Robert; Martinsson, Johan; Nyström, Robin; Nordin, Erik Z.; Sadiktsis, Ioannis; Boman, Christoffer; Nøjgaard, Jacob K.; Pagels, Joakim

    2017-09-01

    Time-resolved particle emissions from a conventional wood stove were investigated with aerosol mass spectrometry to provide links between combustion conditions, emission factors, mixing state of refractory black carbon and implications for organic tracer methods. The addition of a new batch of fuel results in low temperature pyrolysis as the fuel heats up, resulting in strong, short-lived, variable emission peaks of organic aerosol-containing markers of anhydrous sugars, such as levoglucosan (fragment at m/z 60). Flaming combustion results in emissions dominated by refractory black carbon co-emitted with minor fractions of organic aerosol and markers of anhydrous sugars. Full cycle emissions are an external mixture of larger organic aerosol-dominated and smaller thinly coated refractory black carbon particles. A very high burn rate results in increased full cycle mass emission factors of 66, 2.7, 2.8 and 1.3 for particulate polycyclic aromatic hydrocarbons, refractory black carbon, total organic aerosol and m/z 60, respectively, compared to nominal burn rate. Polycyclic aromatic hydrocarbons are primarily associated with refractory black carbon-containing particles. We hypothesize that at very high burn rates, the central parts of the combustion zone become air starved, leading to a locally reduced combustion temperature that reduces the conversion rates from polycyclic aromatic hydrocarbons to refractory black carbon. This facilitates a strong increase of polycyclic aromatic hydrocarbons emissions. At nominal burn rates, full cycle emissions based on m/z 60 correlate well with organic aerosol, refractory black carbon and particulate matter. However, at higher burn rates, m/z 60 does not correlate with increased emissions of polycyclic aromatic hydrocarbons, refractory black carbon and organic aerosol in the flaming phase. The new knowledge can be used to advance source apportionment studies, reduce emissions of genotoxic compounds and model the climate impacts of

  3. Effect of sterilization on mineralization of straw and black carbon

    DEFF Research Database (Denmark)

    Bobul'ská, Lenka; Bruun, Sander; Fazekašová, Danica

    2013-01-01

    vulgare) with a specific activity 2.9 MBq g C. Production of BC was implemented at 300 °C for 24 h in a muffle oven, incubated in soil and C in the evolved CO was measured after 0.5, 1, 2, 4, 8, 16, 26 and 40 days. BC showed much lower and slow evolution of CO than the plant material which refers to high...... the plant material proceeded with a lag phase while CO evolution from the charcoals showed no lag phase. This indicates that microorganisms are not involved in the initial flush of carbon emitted from the BC. We suggest that an alternative source may be carbonates on the surfaces of the BC, but another...

  4. Effects of soot by-product from the synthesis of engineered metallofullerene nanomaterials on terrestrial invertebrates.

    Science.gov (United States)

    Johnson, David R; Boyd, Robert E; Bednar, Anthony J; Weiss, Charles A; Hull, Matt S; Coleman, Jessica G; Kennedy, Alan J; Banks, Cynthia J; Steevens, Jeffery A

    2018-02-23

    The synthesis of carbon-based nanomaterials is often inefficient, generating large amounts of soot with metals as waste by-product. Currently, there are no specific regulations for disposal of engineered nanomaterials or the waste by-products resulting from their synthesis, so it is presumed that by-products are disposed of in the same way as the parent (bulk) materials. We studied the terrestrial toxicity of soot from gadolinium metallofullerene nanomanufacturing on earthworms (Eisenia fetida) and isopods (Porcellio scaber). The metallofullerene soot consisted of carbon particle agglomerates in the nanometer and submicrometer ranges (1-100 and 101-999 nm, respectively), with metals used during nanomanufacturing detectable on the particles. Despite high metal concentrations (>100 000 mg/kg) in the soot, only a relatively small amount of metals leached out of a spiked field soil, suggesting only moderate mobility. Seven- and 14-d exposures in field soil demonstrated that the soot was only toxic to earthworms at high concentrations (>10 000 mg/kg); however, earthworms avoided spiked soils at lower concentrations (as low as 500 mg/kg) and at lower soil pH. The presence of soot in food and soil did not cause isopod avoidance. These data demonstrate that metallofullerene soot from nanomanufacturing may only be toxic to earthworms at high concentrations representative of improper disposal or accidental spills. However, our results indicate that terrestrial invertebrates may avoid soils contaminated with soot at sublethal concentrations. Environ Toxicol Chem 2018;9999:1-12. Published 2018 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work, and as such, is in the public domain in the United States of America. Published 2018 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work, and as such, is in the public domain in the United States of America.

  5. Hydrogen and Carbon Black Production from the Degradation of Methane by Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Leila Cottet

    2014-05-01

    Full Text Available Methane gas (CH4 is the main inducer of the so called greenhouse gases effect. Recent scientific research aims to minimize the accumulation of this gas in the atmosphere and to develop processes capable of producing stable materials with added value. Thermal plasma technology is a promising alternative to these applications, since it allows obtaining H2 and solid carbon from CH4, without the parallel formation of byproducts such as CO2 and NOx. In this work, CH4 was degraded by thermal plasma in order to produce hydrogen (H2 and carbon black. The degradation efficiency of CH4, selectivity for H2 production as well as the characterization of carbon black were studied. The best results were obtained in the CH4 flow rate of 5 L min-1 the degradation percentage and the selectivity for H2 production reached 98.8 % and 48.4 %, respectively. At flow rates of less than 5 L min-1 the selectivity for H2 production increases and reaches 91.9 %. The carbon black has obtained amorphous with hydrophobic characteristics and can be marketed to be used in composite material, and can also be activated chemically and/or physically and used as adsorbent material.

  6. Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions

    Science.gov (United States)

    Pokhrel, Rudra P.; Beamesderfer, Eric R.; Wagner, Nick L.; Langridge, Justin M.; Lack, Daniel A.; Jayarathne, Thilina; Stone, Elizabeth A.; Stockwell, Chelsea E.; Yokelson, Robert J.; Murphy, Shane M.

    2017-04-01

    A wide range of globally significant biomass fuels were burned during the fourth Fire Lab at Missoula Experiment (FLAME-4). A multi-channel photoacoustic absorption spectrometer (PAS) measured dry absorption at 405, 532, and 660 nm and thermally denuded (250 °C) absorption at 405 and 660 nm. Absorption coefficients were broken into contributions from black carbon (BC), brown carbon (BrC), and lensing following three different methodologies, with one extreme being a method that assumes the thermal denuder effectively removes organics and the other extreme being a method based on the assumption that black carbon (BC) has an Ångström exponent of unity. The methodologies employed provide ranges of potential importance of BrC to absorption but, on average, there was a difference of a factor of 2 in the ratio of the fraction of absorption attributable to BrC estimated by the two methods. BrC absorption at shorter visible wavelengths is of equal or greater importance to that of BC, with maximum contributions of up to 92 % of total aerosol absorption at 405 nm and up to 58 % of total absorption at 532 nm. Lensing is estimated to contribute a maximum of 30 % of total absorption, but typically contributes much less than this. Absorption enhancements and the estimated fraction of absorption from BrC show good correlation with the elemental-carbon-to-organic-carbon ratio (EC / OC) of emitted aerosols and weaker correlation with the modified combustion efficiency (MCE). Previous studies have shown that BrC grows darker (larger imaginary refractive index) as the ratio of black to organic aerosol (OA) mass increases. This study is consistent with those findings but also demonstrates that the fraction of total absorption attributable to BrC shows the opposite trend: increasing as the organic fraction of aerosol emissions increases and the EC / OC ratio decreases.

  7. Evaluation of a Lagrangian Soot Tracking Method for the prediction of primary soot particle size under engine-like conditions

    DEFF Research Database (Denmark)

    Cai Ong, Jiun; Pang, Kar Mun; Walther, Jens Honore

    2018-01-01

    This paper reports the implementation and evaluation of a Lagrangian soot tracking (LST) method for the modeling of soot in diesel engines. The LST model employed here has the tracking capability of a Lagrangian method and the ability to predict primary soot particle sizing. The Moss-Brookes soot...... in predicting temporal soot cloud development, mean soot diameter and primary soot size distribution is evaluated using measurements of n-heptane and n-dodecane spray combustion obtained under diesel engine-like conditions. In addition, sensitivity studies are carried out to investigate the influence of soot....... A higher rate of soot oxidation due to OH causes the soot particles to be fully oxidized downstream of the flame. In general, the LST model performs better than the Eulerian method in terms of predicting soot sizing and accessing information of individual soot particles, both of which are shortcomings...

  8. Relation between PAH and black carbon contents in size fractions of Norwegian harbor sediments

    International Nuclear Information System (INIS)

    Oen, Amy M.P.; Cornelissen, Gerard; Breedveld, Gijs D.

    2006-01-01

    Distributions of total organic carbon (TOC), black carbon (BC), and polycyclic aromatic hydrocarbons (PAH) were investigated in different particle size fractions for four Norwegian harbor sediments. The total PAH (16-EPA) concentrations ranged from 2 to 113 mg/kg dry weight with the greatest fraction of PAH mass in the sand fraction for three of the four sediments. TOC contents ranged from 0.84% to 14.2% and BC contents from 0.085% to 1.7%. This corresponds to organic carbon (OC = TOC - BC) contents in the range of 0.81-14% and BC:TOC ratios of 1.3-18.1%. PAH isomer ratios suggested that the PAH in all four sediments were of pyrogenic origin. Furthermore, stronger correlations between PAH versus BC (r 2 = 0.85) than versus OC (r 2 = 0.15) were found. For all size fractions and bulk sediments, the PAH-to-BC ratios for the total PAHs were on average 6 ± 3 mg PAH/g BC. These results suggest that PAH distributions were dominated by the presence of BC, rather than OC. As sorption to BC is much stronger than sorption to OC, this may result in significantly lower dissolved concentrations of PAH than expected on the basis of organic carbon partitioning alone. - PAH contents correlated better with black carbon than organic carbon for four Norwegian harbor sediments

  9. Hot electron-induced electrochemiluminescence at polyetherimide-carbon black-based electrodes

    International Nuclear Information System (INIS)

    Salminen, Kalle; Grönroos, Päivi; Johansson, Leena-Sisko; Campbell, Joseph; Kulmala, Sakari

    2017-01-01

    Highlights: • Generation of hydrated electrons at carbon paste electrodes. • Hydrated electrons are able to produce intense chemiluminescence. • Relationship between carbon black content in electrode and HECL studied. • Performance of composite electrodes is similar to aluminum electrodes. • The present electrodes are good alternative for disposable assay cartridges. - Abstract: Various luminophores produce strong electrogenerated chemiluminescence during cathodic pulse polarization of the present insulating film-covered carbon paste electrodes in fully aqueous solutions. First electrodes made of a commercial conductive carbon paste were successfully utilized as working electrodes and their surface was characterized by ESCA. Then custom in-laboratory made improved composite electrodes were manufactured from the same insulating polymer and conducting carbon black particles. The relationship between the amount of carbon present on the composite electrode, in the bulk and on the surface, and the intensity of electrogenerated chemiluminescence was studied further. The overall performance of these composite electrodes makes them viable low-cost replacements for metal/insulator type electrodes such as oxide-coated silicon electrodes.

  10. Sediment pore water distribution coefficients of PCB congeners in enriched black carbon sediment

    International Nuclear Information System (INIS)

    Martinez, Andres; O'Sullivan, Colin; Reible, Danny; Hornbuckle, Keri C.

    2013-01-01

    More than 2300 sediment pore water distribution coefficients (K PCBids ) of 93 polychlorinated biphenyls (PCBs) were measured and modeled from sediments from Indiana Harbor and Ship Canal. K PCBids were calculated from previously reported bulk sediment values and newly analyzed pore water. PCBs in pore waters were measured using SPME PDMS-fiber and ∑PCB ranged from 41 to 1500 ng L −1 . The resulting K PCBids were ∼1 log unit lower in comparison to other reported values. A simple model for the K PCBid consisted of the product of the organic carbon fraction and the octanol–water partition coefficient and provided an excellent prediction for the measured values, with a mean square error of 0.09 ± 0.06. Although black carbon content is very high in these sediments and was expected to play an important role in the distribution of PCBs, no improvement was obtained when a two-carbon model was used. -- Highlights: •PCB sediment-pore water distribution coefficients were measured and modeled. •Distribution coefficients were lower in comparison to other reported values. •Organic carbon fraction times the K OW yielded the best prediction model. •The incorporation of black carbon into a model did not improve the results. -- The organic carbon fraction times the octanol–water partition coefficient yielded the best prediction model for the sediment pore water distribution coefficient of PCBs

  11. Simulation of soot size distribution in an ethylene counterflow flame

    KAUST Repository

    Zhou, Kun

    2014-01-06

    Soot, an aggregate of carbonaceous particles produced during the rich combustion of fossil fuels, is an undesirable pollutant and health hazard. Soot evolution involves various dynamic processes: nucleation soot formation from polycyclic aromatic hydrocarbons (PAHs) condensation PAHs condensing on soot particle surface surface processes hydrogen-abstraction-C2H2-addition, oxidation coagulation two soot particles coagulating to form a bigger particle This simulation work investigates soot size distribution and morphology in an ethylene counterflow flame, using i). Chemkin with a method of moments to deal with the coupling between vapor consumption and soot formation; ii). Monte Carlo simulation of soot dynamics.

  12. Conductive additive content balance in Li-ion battery cathodes: Commercial carbon blacks vs. in situ carbon from LiFePO{sub 4}/C composites

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, Veronica; Goni, Aintzane; Muro, Izaskun Gil de; Rojo, Teofilo [Departamento de Quimica Inorganica, Universidad del Pais Vasco UPV/EHU, P.O. Box. 644, 48080, Bilbao (Spain); de Meatza, Iratxe; Bengoechea, Miguel [Energy Department, CIDETEC-IK4, P Miramon 196, Parque Tecnologico de San Sebastian, 20009, San Sebastian (Spain); Cantero, Igor [Departamento I+D+i Nuevas Tecnologias, CEGASA, Artapadura, 11, 01013 Vitoria-Gasteiz (Spain)

    2010-11-15

    Two samples of commercial conducting carbon black and the carbon generated in situ during LiFePO{sub 4}/C composite synthesis from citric acid are studied, with the aim of finding out whether carbon from the composite can fulfil the same function as carbon black in the electrode blend for a Li-ion battery. For this purpose, the carbon samples are analyzed by several techniques, such as X-ray diffraction, Raman spectroscopy, transmission electron microscopy, granulometry, BET specific area and conductivity measurements. Different cathode compositions and component proportions are tested for pellet and cast electrodes. Electrochemical results show that a moderate reduction of commercial carbon black content in both kinds of cathodes, by adding more LiFePO{sub 4}/C composite, enhanced the electrochemical behaviour by around 10%. In situ generated carbon can partially replace commercial conducting carbon black because its high specific surface probably enhances electrolyte penetration into the cathode, but it is always necessary to maintain a minimum amount of carbon black that provides better conductivity in order to obtain a good electrochemical response. (author)

  13. Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers

    Directory of Open Access Journals (Sweden)

    A. T. Ahern

    2016-12-01

    Full Text Available Biomass burning is a large source of light-absorbing refractory black carbon (rBC particles with a wide range of morphologies and sizes. The net radiative forcing from these particles is strongly dependent on the amount and composition of non-light-absorbing material internally mixed with the rBC and on the morphology of the mixed particles. Understanding how the mixing state and morphology of biomass-burning aerosol evolves in the atmosphere is critical for constraining the influence of these particles on radiative forcing and climate. We investigated the response of two commercial laser-based particle mass spectrometers, the vacuum ultraviolet (VUV ablation LAAPTOF and the IR vaporization SP-AMS, to monodisperse biomass-burning particles as we sequentially coated the particles with secondary organic aerosol (SOA from α-pinene ozonolysis. We studied three mobility-selected soot core sizes, each with a number of successively thicker coatings of SOA applied. Using IR laser vaporization, the SP-AMS had different changes in sensitivity to rBC compared to potassium as a function of applied SOA coatings. We show that this is due to different effective beam widths for the IR laser vaporization region of potassium versus black carbon. The SP-AMS's sensitivity to black carbon (BC mass was not observed to plateau following successive SOA coatings, despite achieving high OA : BC mass ratios greater than 9. We also measured the ion fragmentation pattern of biomass-burning rBC and found it changed only slightly with increasing SOA mass. The average organic matter ion signal measured by the LAAPTOF demonstrated a positive correlation with the condensed SOA mass on individual particles, despite the inhomogeneity of the particle core compositions. This demonstrates that the LAAPTOF can obtain quantitative mass measurements of aged soot-particle composition from realistic biomass-burning particles with complex morphologies and composition.

  14. Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events.

    Science.gov (United States)

    Hall, J.; Loboda, T. V.

    2017-12-01

    Short lived aerosols and pollutants transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon is recognized as the second most important human emission in regards to climate forcing, behind carbon dioxide with a total climate forcing of +1.1Wm-2. Studies have suggested that cropland burning may be a large contributor to the black carbon emissions which are directly deposited on the snow in the Arctic region. However, accurate monitoring of cropland burning from existing active fire and burned area products is limited, thereby leading to an underestimation in black carbon emissions from cropland burning. This research focuses on 1) assessing the potential for the deposition of hypothetical black carbon emissions from known cropland burning in Russia through low-level transport, and 2) identifying a possible atmospheric pattern that may enhance the transport of black carbon emissions to the Arctic. Specifically, atmospheric blocking events present a potential mechanism that could act to enhance the likelihood of transport or accelerate the transport of pollutants to the snow-covered Arctic from Russian cropland burning based on their persistent wind patterns. This research study confirmed the importance of Russian cropland burning as a potential source of black carbon deposition on the Arctic snow in the spring despite the low injection heights associated with cropland burning. Based on the successful transport pathways, this study identified the potential transport of black carbon from Russian cropland burning beyond 80°N which has important implications for permanent sea ice cover. Further, based on the persistent wind patterns of blocking events, this study identified that blocking events are able to accelerate potential transport and increase the success of transport of black carbon emissions to the snow-covered Arctic during spring when the impact on the snow/ice albedo is at its highest. The

  15. The structure of carbon black-elastomer composites by small-angle neutron scattering and the method of contrast variation

    International Nuclear Information System (INIS)

    Hjelm, R.P.; Wampler, W.; Gerspacher, M.

    1996-01-01

    We have been exploring the use of small-angle neutron scattering and the method of contrast variation to give a new look at a very old problem: reinforcement of elastomers by carbon black in durable rubber products. Carbon black has a hierarchy of structures consisting of particles covalently bound into aggregates, which in turn associate by weak interactions into agglomerates. We found that in one carbon black, HSA, the aggregates are rodlike, containing an average of 4-6 particles. The aggregates have an outer graphitic shell and an inner core of lower density carbon. The core is continuous throughout the carbon black aggregate. Contrast variation of swollen HSA-polyisoprene gels shows that the HSA is completely embedded in polyisoprene and that the agglomerates are formed predominantly by end on associations of the rodlike aggregates. The surface structure of the carbon black appears smooth over length scales above about 10 angstrom. Further studies using production carbon blacks suggest that these structural characteristics are generally present in commercial rubber composites

  16. Modulation of snow reflectance and snowmelt from Central Asian glaciers by anthropogenic black carbon.

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Zhang, Qianggong; Guo, Junming; Li, Yang; Schwikowski, Margit; Farinotti, Daniel

    2017-01-12

    Deposited mineral dust and black carbon are known to reduce the albedo of snow and enhance melt. Here we estimate the contribution of anthropogenic black carbon (BC) to snowmelt in glacier accumulation zones of Central Asia based on in-situ measurements and modelling. Source apportionment suggests that more than 94% of the BC is emitted from mostly regional anthropogenic sources while the remaining contribution comes from natural biomass burning. Even though the annual deposition flux of mineral dust can be up to 20 times higher than that of BC, we find that anthropogenic BC causes the majority (60% on average) of snow darkening. This leads to summer snowmelt rate increases of up to 6.3% (7 cm a -1 ) on glaciers in three different mountain environments in Kyrgyzstan, based on albedo reduction and snowmelt models.

  17. Distribution of black carbon in Ponderosa pine litter and soils following the High Park wildfire

    Science.gov (United States)

    Boot, C. M.; Haddix, M.; Paustian, K.; Cotrufo, M. F.

    2014-12-01

    Black carbon (BC), the heterogeneous product of burned biomass, is a critical component in the global carbon cycle, yet timescales and mechanisms for incorporation into the soil profile are not well understood. The High Park Fire, which took place in northwestern Colorado in the summer of 2012, provided an opportunity to study the effects of both fire intenstiy and geomorphology on properties of carbon (C), nitrogen (N), and BC in the Cache La Poudre River drainage. We sampled montane Ponderosa pine litter, 0-5 cm soils, and 5-15 cm soils four months post-fire in order to examine the effects of slope and burn intensity on %C, C stocks, %N and black carbon (g kg-1 C, and g m-2). We developed and implemented the benzene polycarboxylic acid (BPCA) method for quantifying BC. With regard to slope, we found that steeper slopes had higher C : N than shallow slopes, but that there was no difference in black carbon content or stocks. BC content was greatest in the litter in burned sites (19 g kg-1 C), while BC stocks were greatest in the 5-15 cm subsurface soils (23 g m-2). At the time of sampling, none of the BC deposited on the land surface post-fire had been incorporated into to either the 0-5 cm or 5-15 cm soil layers. The ratio of B5CA : B6CA (less condensed to more condensed BC) indicated there was significantly more older, more processed BC at depth. Total BC soil stocks were relatively low compared to other fire-prone grassland and boreal forest systems, indicating most of the BC produced in this system is likely transported off the surface through erosion events. Future work examining mechanisms for BC transport will be required for understanding the role BC plays in the global carbon cycle.

  18. Comparison of structural health assessment capabilities in epoxy – carbon black and epoxy – carbon nanotube nanocomposites

    Directory of Open Access Journals (Sweden)

    F. Inam

    2014-01-01

    Full Text Available A novel method for comparing structural health of different types of brittle epoxy nanocomposites filled with carbon nanostructured fillers is presented. Epoxy – 0.2 vol% carbon black (CB and epoxy – 0.2 vol% carbon nanotube (CNT nanocomposite bars were prepared by calendering and thermal curing. Nanocomposite bars were subjected to Vickers diamond indentation to produce sub-surface damage. Electrical conductivities were analysed by 4-point method to estimate the structural damage caused by indentation. For comprehensive comparison, fracture toughness and percolation threshold were analysed as well. Because of the systematically induced indentation damage, a sharp decrease of 89% was observed in the electrical conductivity of epoxy – CNT nanocomposite as compared to 25% in the electrical conductivity of epoxy – CB nanocomposite. CNTs impart superior damage sensing capability in brittle nanocomposite structures, in comparison to CB, due to their high aspect ratio (fibrous nature and high electrical conductivity.

  19. Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Donaldson Ken

    2005-12-01

    Full Text Available Abstract Background Alveolar macrophages are a key cell in dealing with particles deposited in the lungs and in determining the subsequent response to that particle exposure. Nanoparticles are considered a potential threat to the lungs and the mechanism of pulmonary response to nanoparticles is currently under intense scrutiny. The type II alveolar epithelial cell has previously been shown to release chemoattractants which can recruit alveolar macrophages to sites of particle deposition. The aim of this study was to assess the responses of a type II epithelial cell line (L-2 to both fine and nanoparticle exposure in terms of secretion of chemotactic substances capable of inducing macrophage migration. Results Exposure of type II cells to carbon black nanoparticles resulted in significant release of macrophage chemoattractant compared to the negative control and to other dusts tested (fine carbon black and TiO2 and nanoparticle TiO2 as measured by macrophage migration towards type II cell conditioned medium. SDS-PAGE analysis of the conditioned medium from particle treated type II cells revealed that a higher number of protein bands were present in the conditioned medium obtained from type II cells treated with nanoparticle carbon black compared to other dusts tested. Size-fractionation of the chemotaxin-rich supernatant determined that the chemoattractants released from the epithelial cells were between 5 and 30 kDa in size. Conclusion The highly toxic nature and reactive surface chemistry of the carbon black nanoparticles has very likely induced the type II cell line to release pro-inflammatory mediators that can potentially induce migration of macrophages. This could aid in the rapid recruitment of inflammatory cells to sites of particle deposition and the subsequent removal of the particles by phagocytic cells such as macrophages and neutrophils. Future studies in this area could focus on the exact identity of the substance(s released by the

  20. The influence of carbon black on curing kinetics and thermal aging of acrylonitrile–butadiene rubber

    OpenAIRE

    Jaroslava Budinski-Simendić; Gordana Marković; Milena Marinović-Cincović; Vojislav Jovanović; Suzana Samardžija-Jovanović

    2009-01-01

    Elastomers based on a copolymer of butadiene and acrylonitrile (NBR) have excellent oil resistance but are very sensitive for degradation at very high temperatures. The aim of this applicative contribution was to determine the effect of high abrasion furnace carbon black with primary particle size 46 nm on aging properties of elastomeric materials based on NBR as network precursor. The curing kinetics was determined using the rheometer with an oscillating disk, in which the network formation ...

  1. Black carbon mixing state impacts on cloud microphysical properties: effects of aerosol plume and environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Ping Pui; Riemer, Nicole; West, Matthew

    2016-05-27

    Black carbon (BC) is usually mixed with other aerosol species within individual aerosol particles. This mixture, along with the particles' size and morphology, determines the particles' optical and cloud condensation nuclei properties, and hence black carbon's climate impacts. In this study the particle-resolved aerosol model PartMC-MOSAIC was used to quantify the importance of black carbon mixing state for predicting cloud microphysical quantities. Based on a set of about 100 cloud parcel simulations a process level analysis framework was developed to attribute the response in cloud microphysical properties to changes in the underlying aerosol population ("plume effect") and the cloud parcel cooling rate ("parcel effect"). It shows that the response of cloud droplet number concentration to changes in BC emissions depends on the BC mixing state. When the aerosol population contains mainly aged BC particles an increase in BC emission results in increasing cloud droplet number concentrations ("additive effect"). In contrast, when the aerosol population contains mainly fresh BC particles they act as sinks for condensable gaseous species, resulting in a decrease in cloud droplet number concentration as BC emissions are increased ("competition effect"). Additionally, we quantified the error in cloud microphysical quantities when neglecting the information on BC mixing state, which is often done in aerosol models. The errors ranged from -12% to +45% for the cloud droplet number fraction, from 0% to +1022% for the nucleation-scavenged black carbon (BC) mass fraction, from -12% to +4% for the effective radius, and from -30% to +60% for the relative dispersion.

  2. 20th-Century Industrial Black Carbon Emissions Altered Arctic Climate Forcing

    OpenAIRE

    McConnell, J. R; Edwards, R.; Kok, G. L; Flanner, M. G; Zender, C. S; Saltzman, E. S; Banta, J. R; Pasteris, D. R; Carter, M. M; Kahl, J. D. W

    2007-01-01

    Black carbon (BC) from biomass and fossil fuel combustion alters chemical and physical properties of the atmosphere and snow albedo, yet little is known about its emission or deposition histories. Measurements of BC, vanillic acid, and non–sea-salt sulfur in ice cores indicate that sources and concentrations of BC in Greenland precipitation varied greatly since 1788 as a result of boreal forest fires and industrial activities. Beginning about 1850, industrial emissions resulted in a sevenfold...

  3. Endothelial dysfunction in normal and prediabetic rats with metabolic syndrome exposed by oral gavage to carbon black nanoparticles

    DEFF Research Database (Denmark)

    Folkmann, Janne Kjærsgaard; Vesterdal, Lise Kristine; Sheykhzade, Majid

    2012-01-01

    Exposure to nanosized particles may increase the risk of cardiovascular diseases by endothelial dysfunction, particularly in susceptible subjects with metabolic syndrome. We investigated vasomotor dysfunction in aorta from obese and lean Zucker rats after oral exposure to nanosized carbon black (...

  4. Use of submicron carbon filaments in place of carbon black as a porous reduction electrode in lithium batteries with a catholyte comprising bromine chloride in thionyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Frysz, C.A. [Wilson Greatbatch, Ltd., Clarence, NY (United States); Shui, X.; Chung, D.D.L. [State Univ. of New York, Buffalo, NY (United States). Composite Materials Research Lab.

    1995-12-31

    Submicron carbon filaments used in place of carbon black as porous reduction electrodes in carbon limited lithium batteries in plate and jellyroll configurations with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8,700 mAh/g carbon, compared to a value of up to 2,900 mAh/g carbon for carbon black. The high specific capacity per g carbon (demonstrating superior carbon efficiency) for the filament electrode is partly due to the filaments` processability into sheets as thin as 0.2 mm with good porosity and without a binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode.

  5. Black carbon inclusive multichemical modeling of PBDE and PCB biomagnification and -transformation in estuarine food webs.

    Science.gov (United States)

    Di Paolo, Carolina; Gandhi, Nilima; Bhavsar, Satyendra P; Van den Heuvel-Greve, Martine; Koelmans, Albert A

    2010-10-01

    Bioavailability and bioaccumulation of polybrominated diphenylethers (PBDEs) are affected by adsorption on black carbon (BC) and metabolism in biota, respectively. Recent studies have addressed these two processes separately, illustrating their importance in assessing contaminant dynamics. In order to properly examine biomagnification of polychlorinated biphenyls (PCBs) and PBDEs in an estuarine food-web, here we set up a black carbon inclusive multichemical model. A dual domain sorption model, which accounted for sorption to organic matter (OM) and black carbon (BC), was used to estimate aqueous phase concentrations from the measured chemical concentrations in suspended solids. We adapted a previously published multichemical model that tracks the movement of a parent compound and its metabolites in each organism and within its food web. First, the model was calibrated for seven PCB congeners assuming negligible metabolism. Subsequently, PBDE biomagnification was modeled, including biotransformation and bioformation of PBDE congeners, keeping the other model parameters the same. The integrated model was capable of predicting trophic magnification factors (TMF) within error limits. PBDE metabolic half-lives ranged 21-415 days and agreed to literature data. The results showed importance of including BC as an adsorbing phase, and biotransformation and bioformation of PBDEs for a proper assessment of their dynamics in aquatic systems.

  6. The theory-practice gap of black carbon mitigation technologies in rural China

    Science.gov (United States)

    Zhang, Weishi; Li, Aitong; Xu, Yuan; Liu, Junfeng

    2018-02-01

    Black carbon mitigation has received increasing attention for its potential contribution to both climate change mitigation and air pollution control. Although different bottom-up models concerned with unit mitigation costs of various technologies allow the assessment of alternative policies for optimized cost-effectiveness, the lack of adequate data often forced many reluctant explicit and implicit assumptions that deviate away from actual situations of rural residential energy consumption in developing countries, where most black carbon emissions occur. To gauge the theory-practice gap in black carbon mitigation - the unit cost differences that lie between what is estimated in the theory and what is practically achieved on the ground - this study conducted an extensive field survey and analysis of nine mitigation technologies in rural China, covering both northern and southern regions with different residential energy consumption patterns. With a special focus on two temporal characteristics of those technologies - lifetimes and annual utilization rates, this study quantitatively measured the unit cost gaps and explain the technical as well as sociopolitical mechanisms behind. Structural and behavioral barriers, which have affected the technologies' performance, are discussed together with policy implications to narrow those gaps.

  7. Quantifying the variability of potential black carbon transport from cropland burning in Russia driven by atmospheric blocking events

    Science.gov (United States)

    Hall, Joanne; Loboda, Tatiana

    2018-05-01

    The deposition of short-lived aerosols and pollutants on snow above the Arctic Circle transported from northern mid-latitudes have amplified the short term warming in the Arctic region. Specifically, black carbon has received a great deal of attention due to its absorptive efficiency and its fairly complex influence on the climate. Cropland burning in Russia is a large contributor to the black carbon emissions deposited directly onto the snow in the Arctic region during the spring when the impact on the snow/ice albedo is at its highest. In this study, our focus is on identifying a possible atmospheric pattern that may enhance the transport of black carbon emissions from cropland burning in Russia to the snow-covered Arctic. Specifically, atmospheric blocking events are large-scale patterns in the atmospheric pressure field that are nearly stationary and act to block migratory cyclones. The persistent low-level wind patterns associated with these mid-latitude weather patterns are likely to accelerate potential transport and increase the success of transport of black carbon emissions to the snow-covered Arctic during the spring. Our results revealed that overall, in March, the transport time of hypothetical black carbon emissions from Russian cropland burning to the Arctic snow is shorter (in some areas over 50 hours less at higher injection heights) and the success rate is also much higher (in some areas up to 100% more successful) during atmospheric blocking conditions as compared to conditions without an atmospheric blocking event. The enhanced transport of black carbon has important implications for the efficacy of deposited black carbon. Therefore, understanding these relationships could lead to possible mitigation strategies for reducing the impact of deposition of black carbon from crop residue burning in the Arctic.

  8. The Properties of SBR/ENR50 Blend Containing Nanoclay/Carbon Black Dual Filler System Cured by Electron Beam

    Directory of Open Access Journals (Sweden)

    Sima Ahmadi-Shooli

    2017-05-01

    Full Text Available Nanocomposites based on an SBR/ENR50 rubber blend with the blend ratio of 50/50 using Cloisite 15A nanoclay (5 and 10 phr and carbon black (20 phr were prepared by melt mixing process. The rubber compounds were crosslinked by electron beam irradiation process at 50 and 100 kGy doses. A reference sample containing carbon black at 35 phr was prepared using a conventional sulphur curing system. The gel content of the samples was specified using gel fraction measurement. The results showed the maximum gel content for the sample having 5 phr nanoclay and 20 phr carbon black. The dynamic mechanical properties, including the storage modulus, loss modulus, and loss factor, of the nanocomposites were evaluated using dynamic mechanical analysis (DMA tests. The results indicated that, in spite of a well dispersed nanoclay in samples containing 10 phr nanoclay and 20 phr carbon black, a minimum loss factor was observed in the sample containing 5 phr nanoclay and 20 phr carbon black at 100 kGy. On the other hand, the storage modulus of the reference sample was found to be higher than that of the sample with 5 phr nanoclay and 20 phr carbon black. The mechanical properties, including the tensile strength, stress at 100%, 200%, and 300% elongation and the percentage of elongation were measured by a tensile machine. The results showed an increase in tensile strength and the stress at different elongations for a sample with 5 phr nanoclay and 20 phr carbon black compared to the reference sample. In the corresponding SEM images of the samples having nanoclay and carbon black irradiated at 100 kGy a significantly higher surface roughness was observed.

  9. Detection of Black Plastics in the Middle Infrared Spectrum (MIR Using Photon Up-Conversion Technique for Polymer Recycling Purposes

    Directory of Open Access Journals (Sweden)

    Wolfgang Becker

    2017-09-01

    Full Text Available The identification of black polymers which contain about 0.5 to 3 mass percent soot or black master batch is still an essential problem in recycling sorting processes. Near infrared spectroscopy (NIRS of non-black polymers offers a reliable and fast identification, and is therefore suitable for industrial application. NIRS is consequently widely used in polymer sorting plants. However, this method cannot be used for black polymers because small amounts of carbon black or soot absorb all light in the NIR spectral region. Spectroscopy in the mid infrared spectral region (MIR offers a possibility to identify black polymers. MIR spectral measurements carried out with Fourier-transform infrared spectrometers (FTIR are not fast enough to meet economic requirements in sorting plants. By contrast, spectrometer systems based on the photon up-conversion technique are fast and sensitive enough and can be applied to sort black polymer parts. Such a system is able to measure several thousand spectra per second hence is suitable for industrial applications. The results of spectral measurements of black polymers are presented.

  10. Roosevelt Island Climate Evolution Project (RICE): A 65 Kyr ice core record of black carbon aerosol deposition to the Ross Ice Shelf, West Antarctica.

    Science.gov (United States)

    Edwards, Ross; Bertler, Nancy; Tuohy, Andrea; Neff, Peter; Proemse, Bernedette; Feiteng, Wang; Goodwin, Ian; Hogan, Chad

    2015-04-01

    Emitted by fires, black carbon aerosols (rBC) perturb the atmosphere's physical and chemical properties and are climatically active. Sedimentary charcoal and other paleo-fire records suggest that rBC emissions have varied significantly in the past due to human activity and climate variability. However, few paleo rBC records exist to constrain reconstructions of the past rBC atmospheric distribution and its climate interaction. As part of the international Roosevelt Island Climate Evolution (RICE) project, we have developed an Antarctic rBC ice core record spanning the past ~65 Kyr. The RICE deep ice core was drilled from the Roosevelt Island ice dome in West Antarctica from 2011 to 2013. The high depth resolution (~ 1 cm) record was developed using a single particle intracavity laser-induced incandescence soot photometer (SP2) coupled to an ice core melter system. The rBC record displays sub-annual variability consistent with both austral dry-season and summer biomass burning. The record exhibits significant decadal to millennial-scale variability consistent with known changes in climate. Glacial rBC concentrations were much lower than Holocene concentrations with the exception of several periods of abrupt increases in rBC. The transition from glacial to interglacial rBC concentrations occurred over a much longer time relative to other ice core climate proxies such as water isotopes and suggests . The protracted increase in rBC during the transition may reflected Southern hemisphere ecosystem / fire regime changes in response to hydroclimate and human activity.

  11. Joseph Black, carbon dioxide, latent heat, and the beginnings of the discovery of the respiratory gases.

    Science.gov (United States)

    West, John B

    2014-06-15

    The discovery of carbon dioxide by Joseph Black (1728-1799) marked a new era of research on the respiratory gases. His initial interest was in alkalis such as limewater that were thought to be useful in the treatment of renal stone. When he studied magnesium carbonate, he found that when this was heated or exposed to acid, a gas was evolved that he called "fixed air" because it had been combined with a solid material. He showed that the new gas extinguished a flame, that it could not support life, and that it was present in gas exhaled from the lung. Within a few years of his discovery, hydrogen, nitrogen, and oxygen were also isolated. Thus arguably Black's work started the avalanche of research on the respiratory gases carried out by Priestley, Scheele, Lavoisier, and Cavendish. Black then turned his attention to heat and he was the first person to describe latent heat, that is the heat added or lost when a liquid changes its state, for example when water changes to ice or steam. Latent heat is a key concept in thermal physiology because of the heat lost when sweat evaporates. Black was a friend of the young James Watt (1736-1819) who was responsible for the development of early steam engines. Watt was puzzled why so much cooling was necessary to condense steam into water, and Black realized that the answer was the latent heat. The resulting improvements in steam engines ushered in the Industrial Revolution. Copyright © 2014 the American Physiological Society.

  12. Temporal and seasonal variations of black carbon in a highly polluted European city: Apportionment of potential sources and the effect of meteorological conditions.

    Science.gov (United States)

    Kucbel, Marek; Corsaro, Agnieszka; Švédová, Barbora; Raclavská, Helena; Raclavský, Konstantin; Juchelková, Dagmar

    2017-12-01

    Black carbon - a primary component of particulate matter emitted from an incomplete combustion of fossil fuels, biomass, and biofuels - has been found to have a detrimental effect on human health and the environment. Since black carbon emissions data are not readily available, no measures are implemented to reduce black carbon emissions. The temporal and seasonal variations of black carbon concentrations were evaluated during 2012-2014. The data were collected in the highly polluted European city - Ostrava, Czech Republic, surrounded by major highways and large industries. Significantly higher black carbon concentrations were obtained in Ostrava, relative to other European cities and the magnitude was equivalent to the magnitude of black carbon concentrations measured in Poland and China. The data were categorized to heating and non-heating seasons based on the periodic pattern of daily and monthly average concentrations of black carbon. A higher black carbon concentration was obtained during heating season than non-heating season and was primarily associated with an increase in residential coal burning and meteorological parameters. The concentration of black carbon was found to be negatively correlated with temperature and wind speed, and positively correlated with the relative humidity. Other black carbon sources potentially included emissions from vehicle exhaust and the local steel-producing industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures.

    Science.gov (United States)

    Glaser, Bruno; Dreyer, Annekatrin; Bock, Michael; Fiedler, Stefan; Mehring, Marion; Heitmann, Tobias

    2005-06-01

    Traffic- and urban-influenced areas are prone to enhanced pollution with products of incomplete combustion of fossil fuels and biomass such as black carbon or polycyclic aromatic hydrocarbons (PAHs). Black carbon is composed of aromatic and graphitic structures and may act as a carrier for pollutants such as PAHs and heavy metals. However, little is known about possible contributions of traffic-derived black carbon to the black carbon inventory in soils. Similar uncertainties exist regarding the contribution of different pollutant sources to total PAH and black carbon contents. Therefore, the objective of this study was to quantify the importance of traffic pollution to black carbon and PAH inventories in soils. PAH contamination of soils adjacent to a major German highway in the urban area of Bayreuth with about 50,000 vehicles per day was in the same order of magnitude compared to highway-close soils reported in other studies. Using molecular (black carbon and PAHs) and compound-specific stable carbon isotope evidence (PAHs) it was demonstrated that this contamination originated not only from automobile exhausts, here primarily diesel, but also from tire abrasion and tailpipe soot which significantly contributed to the traffic-caused black carbon and PAH contamination. Low molecular weight PAHs were more widely transported than their heavy molecular counterparts (local distillation), whereas highway-traffic-caused black carbon contamination was distributed to at least 30 m from the highway. On the other hand, urban fire exhausts were distributed more homogeneously among the urban area.

  14. Historical record of black carbon in urban soils and its environmental implications

    International Nuclear Information System (INIS)

    He Yue; Zhang Ganlin

    2009-01-01

    Energy use in urbanization has fundamentally changed the pattern and fluxes of carbon cycling, which has global and local environmental impacts. Here we have investigated organic carbon (OC) and black carbon (BC) in six soil profiles from two contrast zones in an ancient city (Nanjing) in China. BC in soils was widely variable, from 0.22 to 32.19 g kg -1 . Its average concentration in an ancient residential area (Zone 1) was, 0.91 g kg -1 , whereas in Zone 2, an industrial and commercial area, the figure was 8.62 g kg -1 . The ratio of BC/OC ranged from 0.06 to 1.29 in soil profiles, with an average of 0.29. The vertical distribution of BC in soil is suggested to reflect the history of BC formation from burning of biomass and/or fossil fuel. BC in the surface layer of soils was mainly from traffic emission (especially from diesel vehicles). In contrast, in cultural layers BC was formed from historical coal use. The contents of BC and the ratio of BC/OC may reflect different human activities and pollution sources in the contrasting urban zones. In addition, the significant correlation of heavy metals (Cu, Pb, and Zn) with BC contents in some culture layers suggests the sorption of the metals by BC or their coexistence resulted from the coal-involved smelting. - Soil black carbon can reflect the pollution history of a city during urbanization.

  15. Analysis of the Interphase on Carbon Black Formed in High Voltage Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Scipioni, Roberto

    2015-01-01

    Carbon black (CB) additives commonly used to increase the electrical conductivity of electrodes in Li-ion batteries are generally believed to be electrochemically inert additives in cathodes. Decomposition of electrolyte in the surface region of CB in Li-ion cells at high voltages up to 4.9 V...... is here studied using electrochemical measurements as well as structural and surface characterizations. LiPF6 and LiClO4 dissolved in ethylene carbonate:diethylene carbonate (1:1) were used as the electrolyte to study irreversible charge capacity of CB cathodes when cycled between 4.9 V and 2.5 V....... Synchrotron-based soft X-ray photoelectron spectroscopy (SOXPES) results revealed spontaneous partial decomposition of the electrolytes on the CB electrode, without applying external current or voltage. Depth profile analysis of the electrolyte/cathode interphase indicated that the concentration of decomposed...

  16. Quantification of Black Carbon and Other Pollutant Emissions from a Traditional and an Improved Cookstove

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Preble, Chelsea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Hadley, Odelle [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Gadgil, Ashok [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2010-11-05

    Traditional methods of cooking in developing regions of the world emit pollutants that endanger the lives of billions of people and contribute to climate change. This study quantifies the emission of pollutants from the Berkeley-Darfur Stove and the traditional three-stone fire at the Lawrence Berkeley National Laboratory cookstove testing facility. The Berkeley-Darfur Stove was designed as a fuel efficient alternative to the three-stone fire to aid refugees in Darfur, who walk long distances from their camps and risk bodily harm in search of wood for cooking. A potential co-benefit of the more fuel efficient stove may be reduced pollutant emissions. This study measured emissions of carbon dioxide, carbon monoxide, particulate matter, and sunlight-absorbing black carbon. It also measured climate-relevant optical properties of the emitted particulate matter. Pollutant monitors were calibrated specifically for measuring cookstove smoke.

  17. Influence of black carbon addition on phenanthrene dissipation and microbial community structure in soil

    International Nuclear Information System (INIS)

    Wang Ping; Wang Haizhen; Wu Laosheng; Di Hongjie; He Yan; Xu Jianming

    2012-01-01

    Biodegradation processes and changes in microbial community structure were investigated in black carbon (BC) amended soils in a laboratory experiment using two soils (black soil and red soil). We applied different percentages of charcoal as BC (0%, 0.5% and 1% by weight) with 100 mg kg −1 of phenanthrene. Soil samples were collected at different incubation times (0, 7, 15, 30, 60, 120 d). The amendment with BC caused a marked decrease in the dissipation (ascribed to mainly degradation and/or sequestration) of phenanthrene residues from soil. Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil, 0.5% BC amendments were higher. There were significant changes in the PLFA pattern in phenanthrene-spiked soils with time but BC had little effect on the microbial community structure of phenanthrene-spiked soils, as indicated by principal component analysis (PCA) of the PLFA signatures. - Highlights: ► Extracted phenanthrene increased substantially as the BC amount increased. ► Extracted phenanthrene in black soil with 1% BC were higher, oppositely in red soil. ► BC caused a marked decrease in the dissipation of phenanthrene from soil. ► PLFA pattern in phenanthrene-spiked soils with time had significant changes. - BC amendments on phenanthrene extraction were different for two soils and time was a more effective factor in microbial community changes.

  18. Monte carlo simulation for soot dynamics

    KAUST Repository

    Zhou, Kun

    2012-01-01

    A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.

  19. Oxidation kinetics and soot formation

    Science.gov (United States)

    Glassman, I.; Brezinsky, K.

    1983-01-01

    The research objective is to clarify the role of aromaticity in the soot nucleation process by determining the relative importance of phenyl radical/molecular oxygen and benzene/atomic oxygen reactions in the complex combustion of aromatic compounds. Three sets of chemical flow reactor experiments have been designed to determine the relative importance of the phenyl radical/molecular oxygen and benzene/atomic oxygen reactions. The essential elements of these experiments are 1) the use of cresols and anisole formed during the high temperature oxidation of toluene as chemical reaction indicators; 2) the in situ photolysis of molecular oxygen to provide an oxygen atom perturbation in the reacting aromatic system; and 3) the high temperature pyrolysis of phenol, the cresols and possibly anisole.

  20. Electrochemical properties of arc-black and carbon nano-balloon as electrochemical capacitor electrodes

    International Nuclear Information System (INIS)

    Sato, T; Suda, Y; Uruno, H; Takikawa, H; Tanoue, H; Ue, H; Aoyagi, N; Okawa, T; Shimizu, K

    2012-01-01

    In this study, we used two types of carbon nanomaterials, arc-black (AcB) which has an amorphous structure and carbon nano-balloon (CNB) which has a graphitic structure as electrochemical capacitor electrodes. We made a coin electrode from these carbon materials and fabricated an electric double-layer capacitor (EDLC) that sandwiches a separator between the coin electrodes. On the other hand, RuO 2 was loaded on these carbon materials, and we fabricated a pseudo-capacitor that has an ion insertion mechanism into RuO 2 . For comparison with these carbon materials, activated carbon (AC) was also used for a capacitor electrode. The electrochemical properties of all the capacitors were evaluated in 1M H 2 SO 4 aqueous solution. As a result of EDLC performance, AcB electrode had a higher specific capacitance than AC electrode at a high scan rate (≥ 100 mV/s). In the evaluation of pseudo-capacitor performance, RuO 2 -loaded CNB electrode showed a high specific capacitance of 734 F/g per RuO 2 weight.

  1. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    Science.gov (United States)

    Michael R. Olson; Mercedes Victoria Garcia; Michael A. Robinson; Paul Van Rooy; Mark A. Dietenberger; Michael Bergin; James Jay Schauer

    2015-01-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings....

  2. The relationship between carbon stable isotope ratios of hatchling down and egg yolk in Black-headed Gulls

    NARCIS (Netherlands)

    Klaassen, M.R.J.; Baarspul, T.; Dekkers, T.; Van Tienen, P.

    2004-01-01

    We reconstructed the nutrient source for egg synthesis by sampling Black-headed Gull (Larus ridibundus) eggs for yolk, analyzing their carbon stable isotope ratio, and comparing that to hatchling down. Most of the variation in carbon stable isotope ratio was explained by differences between nests,

  3. Electrochemical properties of Super P carbon black as an anode active material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Gnanamuthu, RM.; Lee, Chang Woo

    2011-01-01

    Highlights: → A novel attempt of Super P carbon black as an anode active material for lithium-ion batteries. → The first discharge capacity was approximately 1256 mAh g -1 and at the end of 20th cycling the capacity was 610 mAh g -1 at 0.1 C rate. → Coulombic efficiency of Super P carbon black electrode was maintained about 84% at the end of cycling. - Abstract: A new approach to investigate upon the electrochemical properties of Super P carbon black anode material is attempted and compared with conventional mesophase pitch-based carbon fibers (MPCFs) anode material for lithium-ion batteries. The prepared Super P carbon black electrodes are characterized using transmission electron microscope (TEM). The assembled 2032-type coin cells are electrochemically characterized by ac impedance spectroscopic and cyclic voltammetric methods. The electrochemical performance of charge and discharge was analyzed using a battery cycler at 0.1 C rate and cut-off potentials of 1.20 and 0.01 V vs. Li/Li + . The electrochemical test illustrates that the discharge capacity corresponding to Li intercalation into the Super P carbon black electrode is higher and coulombic efficiency is maintained approximately 84% at the end of the 20th cycling at room temperature.

  4. Filtration of Oil-furnace Carbon Black Dust Particles from the Tail Gases by Filter Bags With PTFE Membrane

    Directory of Open Access Journals (Sweden)

    Čuzela, D.

    2010-01-01

    Full Text Available During the industrial production of oil furnace carbon black, tail gases containing oil-furnace carbon black dust particles are emitted to the atmosphere. In the carbon black plant, Petrokemija d. d., there are six exhaust stacks for tail gases. Each of them has installed process equipment for cleaning tail gases. Efficiency of cleaning mainly depends on equipment construction and cleaning technology. The vicinity of the town, quality of the air in the region of Kutina, regarding floating particles PM10, and corporate responsibility for further enviromental improvement, imposes development of new methods that will decrease the emmision of oil-furnace carbon black dust particles in the air. Combining centrifugal percipitator and filter, special construction of cyclofilter for filtration of oil-furnace carbon black dust particles from tail gases by using PTFE (polytetrafluoroethylene membrane filter bags, was designed. Developed filtration technique provides η = 99.9 % efficiency of filtration. Construction part of the filter contains the newest generation of PTFE membrane filter bags with the ability of jet pulse cleaning. Using the PTFE membrane filter bags technology, filtration efficiency for oil-furnace carbon black dust particles in tail gases of maximum γ=5mgm-3can be achieved. The filtration efficiency was monitored continuously measuring the concentration of the oil-furnace carbon black dust particles in the tail gases with the help of in situ electronic probe. The accomplished filtration technology is the base for the installation of the PTFE membrane filter bags in the main operation filters which will provide better protection of the air in the town of Kutina against floating particles PM10.

  5. Stochastic Simulation of Soot Formation Evolution in Counterflow Diffusion Flames

    Directory of Open Access Journals (Sweden)

    Xiao Jiang

    2018-01-01

    Full Text Available Soot generally refers to carbonaceous particles formed during incomplete combustion of hydrocarbon fuels. A typical simulation of soot formation and evolution contains two parts: gas chemical kinetics, which models the chemical reaction from hydrocarbon fuels to soot precursors, that is, polycyclic aromatic hydrocarbons or PAHs, and soot dynamics, which models the soot formation from PAHs and evolution due to gas-soot and soot-soot interactions. In this study, two detailed gas kinetic mechanisms (ABF and KM2 have been compared during the simulation (using the solver Chemkin II of ethylene combustion in counterflow diffusion flames. Subsequently, the operator splitting Monte Carlo method is used to simulate the soot dynamics. Both the simulated data from the two mechanisms for gas and soot particles are compared with experimental data available in the literature. It is found that both mechanisms predict similar profiles for the gas temperature and velocity, agreeing well with measurements. However, KM2 mechanism provides much closer prediction compared to measurements for soot gas precursors. Furthermore, KM2 also shows much better predictions for soot number density and volume fraction than ABF. The effect of nozzle exit velocity on soot dynamics has also been investigated. Higher nozzle exit velocity renders shorter residence time for soot particles, which reduces the soot number density and volume fraction accordingly.

  6. Kinetic Modeling of the Reaction Rate for Quartz and Carbon Black Pellet

    Science.gov (United States)

    Li, Fei; Tangstad, Merete

    2018-06-01

    The kinetic modeling for the carbothermal reduction reaction rate in quartz and carbon black pellets is studied at different temperatures, under varying CO partial pressures in ambient atmosphere, varying carbon contents, different quartz particle sizes, and different crucible opening areas. Carbon black is produced by the cracking of natural gas. The activation energy of the SiC-producing step was determined to be 594 kJ/mol. The averaged pre-exponential factor A obtained from 1898 K, 1923 K, and 1948 K (1625 °C, 1650 °C, and 1675 °C) is 2.62E+16 min-1. The reaction rate of the gas-solid interface factor, fix-C content ( X fix-C), temperature ( T), and CO partial pressure ( X CO) can be expressed as follows: {{d/pct}}{{{d}t}} = (1 - 0.40 × X_{{{fix} - C}}^{ - 0.86} × {pct}) × 2.62 × 10^{16} × \\exp ( { - 594000/RT} ) × (2.6 - 0.015 × X_{co} ).

  7. Aerosol deposition (trace elements and black carbon) over the highest glacier of the Eastern European Alps during the last centuries

    Science.gov (United States)

    Bertò, Michele; Barbante, Carlo; Gabrieli, Jacopo; Gabrielli, Paolo; Spolaor, Andrea; Dreossi, Giuliano; Laj, Paolo; Zanatta, Marco; Ginot, Patrick; Fain, Xavier

    2016-04-01

    Ice cores are an archive of a wide variety of climatic and environmental information from the past, retaining them for hundreds of thousands of years. Anthropogenic pollutants, trace elements, heavy metals and major ions, are preserved as well providing insights on the past atmospheric circulations and allowing evaluating the human impact on the environment. Several ice cores were drilled in glaciers at mid and low latitudes, as in the European Alps. The first ice cores drilled to bedrock in the Eastern Alps were retrieved during autumn 2011 on the "Alto dell`Ortles glacier", the uppermost glacier of the Ortles massif (3905m, South Tirol, Italy), in the frame of the "Ortles Project". A preliminary dating of the core suggests that it should cover at least 300-400 years. Despite the summer temperature increase of the last decades this glacier still contain cold ice. Indeed, O and H isotopes profiles well describe the atmospheric warming as well as the low temperatures recorded during the Little Ice Age (LIA). Moreover, this glacier is located close to densely populated and industrialized areas and can be used for reconstructing for the first time past and recent air pollution and the human impact in the Eastern European Alps. The innermost part of the core is under analysis by means of a "Continuous Flow Analysis" system. This kind of analysis offers a high resolution in data profiles. The separation between the internal and the external parts of the core avoid any kind of contamination. An aluminum melting head melts the core at about 2.5 cm min-1. Simultaneous analyses of conductivity, dust concentration and size distribution (from 0.8 to 80 μm), trace elements with Inductive Coupled Plasma Mass Spectrometer (ICP-MS, Agilent 7500) and refractory black carbon (rBC) with the Single Particle Soot Photometer (SP2, Droplet Measurement Technologies) are performed. A fraction of the melt water is collected by an auto-sampler for further analysis. The analyzed elements

  8. Use of carbon filaments in place of carbon black as the current collector of a lithium cell with a thionyl chloride bromine chloride catholyte

    Science.gov (United States)

    Frysz, Christine A.; Shui, Xiaoping; Chung, D. D. L.

    Submicron carbon filaments (ADNH, Applied Sciences Inc.) used in place of carbon black as porous reduction electrodes (i.e., current collectors) in plate and jellyroll configurations in carbon limited lithium batteries with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8700 mAh/g of carbon, compared with a value of up to 2900 mAh/g of carbon for carbon black. The high specific capacity for the filament electrode is partly due to the filaments' processability into sheets as thin as 0.2 mm with good porosity, acceptable mechanical properties and without binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode. Use of solvent-cleansed filaments in place of as-received filaments in making electrodes increased the packing density, thus decreasing capacity per g of carbon. The BCX catholyte acted as a cleanser anyway, due to the thionyl chloride in it. The specific capacity per cm 3 of carbon and that per unit density of carbon were also increased by using carbon filaments in place of carbon black, provided that the filament electrode was not pressed after forming by slurry filtration. Though no binder was needed for the filament plate electrode, it was needed for the filament jellyroll electrode. The Teflon™ binder increased the tensile strength and modulus, but decreased the catholyte absorption and rate of absorption. The filament electrode exhibited 405 less volume electrical resistivity than the carbon black electrode, both without a binder.

  9. Use of carbon filaments in place of carbon black as the current collector of a lithium cell with a thionyl chloride bromine chloride catholyte

    Energy Technology Data Exchange (ETDEWEB)

    Frysz, C.A. [Technology Div., Wilson Greatbatch Ltd., Clarence, NY (United States); Shui Xiaoping [Composite Materials Research Lab., State Univ. of New York, Buffalo, NY (United States); Chung, D.D.L. [Composite Materials Research Lab., State Univ. of New York, Buffalo, NY (United States)

    1996-01-01

    Submicron carbon filaments (ADNH, Applied Sciences Inc.) used in place of carbon black as porous reduction electrodes (i.e., current collectors) in plate and jellyroll configurations in carbon limited lithium batteries with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8700 mAh/g of carbon, compared with a value of up to 2900 mAh/g of carbon for carbon black. The high specific capacity for the filament electrode is partly due to the filaments` processability into sheets as thin as 0.2 mm with good porosity, acceptable mechanical properties and without binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode. Use of solvent-cleansed filaments in place of as-received filaments in making electrodes increased the packing density, thus decreasing capacity per g of carbon. The BCX catholyte acted as a cleanser anyway, due to the thionyl chloride in it. The specific capacity per cm{sup 3} of carbon and that per unit density of carbon were also increased by using carbon filaments in place of carbon black, provided that the filament electrode was not pressed after forming by slurry filtration. Though no binder was needed for the filament plate electrode, it was needed for the filament jellyroll electrode. The Teflon{sup TM} binder increased the tensile strength and modulus, but decreased the catholyte absorption and rate of absorption. The filament electrode exhibited 40% less volume electrical resistivity than the carbon black electrode, both without a binder. (orig.)

  10. Soot Formation In Turbulent Combusting Flows

    National Research Council Canada - National Science Library

    Santoro, Robert

    1998-01-01

    .... Laser-based techniques were used to measure the soot volume fraction, particle size and number density as well as the temperature and relative concentration of hydroxyl radicals and polycyclic aromatic hydrocarbons...

  11. Electrometric aviation soot monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a highly sensitive and portable device to monitor soot particle mass distribution from aircraft engine exhaust. The proposed method is based on...

  12. End of the Little Ice Age in the Alps forced by industrial black carbon.

    Science.gov (United States)

    Painter, Thomas H; Flanner, Mark G; Kaser, Georg; Marzeion, Ben; VanCuren, Richard A; Abdalati, Waleed

    2013-09-17

    Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Alpine temperature and precipitation records suggest that glaciers should instead have continued to grow until circa 1910. Radiative forcing by increasing deposition of industrial black carbon to snow may represent the driver of the abrupt glacier retreats in the Alps that began in the mid-19th century. Ice cores indicate that black carbon concentrations increased abruptly in the mid-19th century and largely continued to increase into the 20th century, consistent with known increases in black carbon emissions from the industrialization of Western Europe. Inferred annual surface radiative forcings increased stepwise to 13-17 W⋅m(-2) between 1850 and 1880, and to 9-22 W⋅m(-2) in the early 1900s, with snowmelt season (April/May/June) forcings reaching greater than 35 W⋅m(-2) by the early 1900s. These snowmelt season radiative forcings would have resulted in additional annual snow melting of as much as 0.9 m water equivalent across the melt season. Simulations of glacier mass balances with radiative forcing-equivalent changes in atmospheric temperatures result in conservative estimates of accumulating negative mass balances of magnitude -15 m water equivalent by 1900 and -30 m water equivalent by 1930, magnitudes and timing consistent with the observed retreat. These results suggest a possible physical explanation for the abrupt retreat of glaciers in the Alps in the mid-19th century that is consistent with existing temperature and precipitation records and reconstructions.

  13. Dielectric study of Poly(styrene- co -butadiene) Composites with Carbon Black, Silica, and Nanoclay

    KAUST Repository

    Vo, Loan T.

    2011-08-09

    Dielectric spectroscopy is used to measure polymer relaxation in styrene-butadiene rubber (SBR) composites. In addition to the bulk polymer relaxation, the SBR nanocomposites also exhibit a slower relaxation attributed to polymer relaxation at the polymer-nanoparticle interface. The glass transition temperature associated with the slower relaxation is used as a way to quantify the interaction strength between the polymer and the surface. Comparisons were made among composites containing nanoclay, silica, and carbon black. The interfacial relaxation glass transition temperature of SBR-clay nanocomposites is more than 80 °C higher than the SBR bulk glass transition temperature. An interfacial mode was also observed for SBR-silica nanocomposites, but the interfacial glass transition temperature of SBR-silica nanocomposite is somewhat lower than that of clay nanocomposites. An interfacial mode is also seen in the carbon black filled system, but the signal is too weak to analyze quantitatively. The interfacial polymer relaxation in SBR-clay nanocomposites is stronger compared to both SBR-carbon black and SBR-silica composites indicating a stronger interfacial interaction in the nanocomposites containing clay. These results are consistent with dynamic shear rheology and dynamic mechanical analysis measurements showing a more pronounced reinforcement for the clay nanocomposites. Comparisons were also made among clay nanocomposites using different SBRs of varying styrene concentration and architecture. The interfacial glass transition temperature of SBR-clay nanocomposites increases as the amount of styrene in SBR increases indicating that styrene interacts more strongly than butadiene with clay. © 2011 American Chemical Society.

  14. Black and brown carbon fractal aggregates from combustion of two fuels widely used in Asian rituals

    International Nuclear Information System (INIS)

    Chakrabarty, Rajan K.; Arnold, Ian J.; Francisco, Dianna M.; Hatchett, Benjamin; Hosseinpour, Farnaz; Loria, Marcela; Pokharel, Ashok; Woody, Brian M.

    2013-01-01

    Incense sticks and mustard oil are the two most popular combustion fuels during rituals and social ceremonies in Asian countries. Given their widespread use in both closed and open burning activities, it is important to quantify the spectral radiative properties of aerosols emitted from the combustion of both fuels. This information is needed by climate models to assess the impact of these aerosols on radiative forcing. In this study, we used a 3-wavelength integrated photoacoustic-nephelometer – operating simultaneously at 405, 532 and 781 nm – to measure the optical coefficients of aerosols emitted from the laboratory combustion of mustard oil lamp and two types of incense sticks. From the measured optical coefficients at three wavelengths, time-varying single scattering albedo (SSA), absorption Ångström exponent (AAE), and scattering Ångström exponent (SAE) were calculated. For incense smoke particles, the time-averaged mean AAE values were found to be as high as 8.32 (between 405 and 532 nm) and 6.48 (between 532 and 781 nm). This spectrally-varying characteristic of AAE indicates that brown carbon – a class of organic carbon which strongly absorbs solar radiation in the blue and near ultraviolet – is the primary component of incense smoke aerosols. For aerosols emitted from the burning of mustard oil lamp, the time-averaged mean AAE values were ∼1.3 (between 405 and 781 nm) indicating that black carbon (BC) is the primary constituent. Scanning electron microscopy combined with image processing revealed the morphology of incense smoke aerosols to be non-coalescing and weakly-bound aggregates with a mean two-dimensional (2-d) fractal dimension (D f )=1.9±0.07, while the mustard oil smoke aerosols had typical fractal-like BC aggregate morphology with a mean 2-d D f =1.85±0.09. -- Highlights: ► Incense and mustard oil burning aerosols characterized by 3-wavelength photoacoustic spectroscopy and nephelometery, and electron microscopy. ► Brown

  15. Diesel soot oxidation under controlled conditions

    OpenAIRE

    Song, Haiwen

    2003-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 11/12/2003. In order to improve understanding of diesel soot oxidation, an experimental rig was designed and set up, in which the soot oxidation conditions, such as temperature, oxygen partial pressure, and CO2 partial pressure, could be varied independently of each other. The oxidizing gas flow in the oxidizer was under laminar condition. This test rig comprised a naturally-aspirated single ...

  16. Sooting limit in counterflow diffusion flames of ethylene/propane fuels and implication to threshold soot index

    KAUST Repository

    Joo, Peter H.

    2013-01-01

    Sooting limits in counterflow diffusion flames of propane/ethylene fuels have been studied experimentally using a light scattering technique, including the effects of dilution, fuel mixing, and strain rate. The results are discussed in view of the threshold soot index (TSI). In soot-formation (SF) flames, where the flame is located on the oxidizer side of the stagnation plane, the sooting limit depends critically on fuel type and subsequently on flame temperature. The sooting limit has a non-linear dependence on the fuel-mixing ratio, which is similar to the non-linear mixing rule for TSI observed experimentally in rich premixed flames, where soot oxidation is absent for both SF and rich premixed flames. In soot-formation-oxidation (SFO) flames, where the flame is located on the fuel side, the sooting limit depends critically on flame temperature, while it is relatively independent on fuel type. This result suggests a linear mixing rule for sooting limits in SFO flames, which is similar to the TSI behavior for coflow diffusion flames. Soot oxidation takes place for both types of flames. The aerodynamic strain effect on the sooting limits has also been studied and an appreciable influence has been observed. Under sooting conditions, soot volume fraction was measured using a light extinction technique. The soot loadings in SF flames of the mixture fuels demonstrated a synergistic effect, i.e., soot production increased for certain mixture fuels as compared to the respective singlecomponent fuels. © 2012 The Combustion Institute.

  17. Interaction between carboxyl-functionalized carbon black nanoparticles and porous media

    Science.gov (United States)

    Kim, Song-Bae; Kang, Jin-Kyu; Yi, In-Geol

    2015-04-01

    Carbon nanomaterials, such as carbon nanotubes, fullerene, and graphene, have received considerable attention due to their unique physical and chemical characteristics, leading to mass production and widespread application in industrial, commercial, and environmental fields. During their life cycle from production to disposal, however, carbon nanomaterials are inevitably released into water and soil environments, which have resulted in concern about their health and environmental impacts. Carbon black is a nano-sized amorphous carbon powder that typically contains 90-99% elemental carbon. It can be produced from incomplete combustion of hydrocarbons in petroleum and coal. Carbon black is widely used in chemical and industrial products or applications such as ink pigments, coating plastics, the rubber industry, and composite reinforcements. Even though carbon black is strongly hydrophobic and tends to aggregate in water, it can be dispersed in aqueous media through surface functionalization or surfactant use. The aim of this study was therefore to investigate the transport behavior of carboxyl-functionalized carbon black nanoparticles (CBNPs) in porous media. Column experiments were performed for potassium chloride (KCl), a conservative tracer, and CBNPs under saturated flow conditions. Column experiments was conducted in duplicate using quartz sand, iron oxide-coated sand (IOCS), and aluminum oxide-coated sand (AOCS) to examine the effect of metal (Fe, Al) oxide presence on the transport of CBNPs. Breakthrough curves (BTCs) of CBNPs and chloride were obtained by monitoring effluent, and then mass recovery was quantified from these curves. Additionally, interaction energy profiles for CBNP-porous media were calculated using DLVO theory for sphere-plate geometry. The BTCs of chloride had relative peak concentrations ranging from 0.895 to 0.990. Transport parameters (pore-water velocity v, hydrodynamic dispersion coefficient D) obtained by the model fit from the

  18. Study of carbon black obtained by pyrolysis of waste scrap tyres

    Czech Academy of Sciences Publication Activity Database

    Mikulová, Z.; Šeděnková, Ivana; Matějová, Lenka; Večeř, M.; Dombek, V.

    2013-01-01

    Roč. 111, č. 2 (2013), s. 1475-1481 ISSN 1388-6150. [Central and Eastern European Conference on Thermal Analysis and Calorimetry /1./ - CEEC-TAC1. Craiova, 07.09.2011-10.09.2011] R&D Projects: GA ČR GA104/09/0972 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z40720504 Keywords : scrap tyres * carbon black * thermogravimetry Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.206, year: 2013

  19. High Voltage Surface Degradation on Carbon Blacks in Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza

    In order to increase the power density of Li-ion batteries, much research is focused on developing cathode materials that can operate at high voltages above 4.5 V with a high capacity, high cycling stability, and rate capability. However, at high voltages all the components of positive electrodes...... including carbon black (CB) additives have a potential risk of degradation. Though the weight percentage of CB in commercial batteries is generally very small, the volumetric amount and thus the surface area of CB compose a rather large part of a cathode due to its small particle size (≈ 50 nm) and high...

  20. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity

    Energy Technology Data Exchange (ETDEWEB)

    Montelongo-Reyes, M.M.; Otazo-Sánchez, E.M.; Romo-Gómez, C.; Gordillo-Martínez, A.J.; Galindo-Castillo, E.

    2015-09-15

    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO{sub 2} emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO{sub 2} sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO{sub 2} gas emissions were also significant, particularly SO{sub 2} (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries. - Highlights: • First GHG & black carbon inventory for Mezquital Valley: Mexico City energy supplier • Energy industries caused the largest CO{sub 2} and SO{sub 2} emissions from residual fuel oil. • Diesel

  1. PM2.5 and aerosol black carbon in Suva, Fiji

    Science.gov (United States)

    Isley, C. F.; Nelson, P. F.; Taylor, M. P.; Mani, F. S.; Maata, M.; Atanacio, A.; Stelcer, E.; Cohen, D. D.

    2017-02-01

    Concentrations of particulate air pollution in Suva, Fiji, have been largely unknown and consequently, current strategies to reduce health risk from air pollution in Suva are not targeted effectively. This lack of air quality data is common across the Pacific Island Countries. A monitoring study, during 2014 and 2015, has characterised the fine particulate air quality in Suva, representing the most detailed study to date of fine aerosol air pollutants for the Pacific Islands; with sampling at City, Residential (Kinoya) and Background (Suva Point) sites. Meteorology for Suva, as it relates to pollutant dispersion for this period of time, has also been analysed. The study design enables the contribution of maritime air and the anthropogenic emissions to be carefully distinguished from each other and separately characterised. Back trajectory calculations show that a packet of air sampled at the Suva City site has typically travelled 724 km in the 24-h prior to sampling, mainly over open ocean waters; inferring that pollutants would also be rapidly transported away from Suva. For fine particulates, Suva City reported a mid-week PM2.5 of 8.6 ± 0.4 μg/m3, averaged over 13-months of gravimetric sampling. Continuous monitoring (Osiris laser photometer) suggests that some areas of Suva may experience levels exceeding the WHO PM2.5 guideline of 10 μg/m3, however, compared to other countries, Fiji's PM2.5 is low. Peak aerosol particulate levels, at all sites, were experienced at night-time, when atmospheric conditions were least favourable to dispersion of air pollutants. Suva's average ambient concentrations of black carbon in PM2.5, 2.2 ± 0.1 μg/m3, are, however, similar to those measured in much larger cities. With any given parcel of air spending only seven minutes, on average, over the land area of Suva Peninsula, these black carbon concentrations are indicative that significant combustion emissions occur within Suva. Many other communities in the Pacific Islands

  2. Effect of Hydroxyl Concentration on Chemical Sensitivity of Polyvinyl Alcohol/Carbon-Black Composite Chemiresistors

    International Nuclear Information System (INIS)

    Hughes, Robert C.; Patel, Sanjay V.; Yelton, W. Graham

    1999-01-01

    The sensitivity and selectivity of polyvinyl alcohol (PVA) / carbon black composite films have been found to vary depending upon the hydroxylation percentage (''-OH'') of the polymer. These chemiresistors made from PVA films whose polymer backbone is 88% hydroxylated (PVA88) have a high sensitivity to water, while chemiresistors made from PVA75 have a higher sensitivity to methanol. The minor differences in polymer composition result in films with different Hildebrand volubility parameters. The relative responses of several different PVA-based chemiresistors to solvents with different volubility parameters are presented. In addition, polyvinyl acetate (PVAC) films with PVA88 are used in an array to distinguish the responses to methanol-water mixtures

  3. Influence of large changes in public transportation (Transantiago) on the black carbon pollution near streets

    Science.gov (United States)

    Gramsch, E.; Le Nir, G.; Araya, M.; Rubio, M. A.; Moreno, F.; Oyola, P.

    2013-02-01

    In 2006 a large transformation was carried out on the public transportation system in Santiago de Chile. The original system (before 2006) had hundreds of bus owners with about 7000 diesel buses. The new system has only 13 firms with about 5900 buses which operate in different parts of the city with little overlap between them. In this work we evaluate the impact of the Transantiago system on the black carbon pollution along four roads directly affected by the modification to the transport system. Measurements were carried out during May-July of 2005 (before Transantiago) and June-July of 2007 (after Transantiago). We have used the Wilcoxon rank-sum test to evaluate black carbon concentration in four streets in year 2005 and 2007. The results show that a statistically significant reduction between year 2005 (before Transantiago) and year 2007 (after Transantiago) in Alameda street, which changed from a mean of 18.8 μg m-3 in 2005 to 11.9 μg m-3 in 2007. In this street there was a decrease in the number of buses as well as the number of private vehicles and an improvement in the technology of public transportation between those years. Other two streets (Usach and Departamental) did not change or experienced a small increase in the black carbon concentration in spite of having less flux of buses in 2007. Eliodoro Yañez Street, which did not have public transportation in 2005 or 2007 experienced a 15% increase in the black carbon concentration between those years. Analysis of the data indicates that the change is related to a decrease in the total number of vehicles or the number of other diesel vehicles in the street rather than a decrease in the number of buses only. These results are an indication that in order to decrease pollution near a street is not enough to reduce the number of buses or improve its quality, but to reduce the total number of vehicles.

  4. Associations between Prenatal Exposure to Black Carbon and Memory Domains in Urban Children: Modification by Sex and Prenatal Stress.

    Science.gov (United States)

    Cowell, Whitney J; Bellinger, David C; Coull, Brent A; Gennings, Chris; Wright, Robert O; Wright, Rosalind J

    2015-01-01

    Whether fetal neurodevelopment is disrupted by traffic-related air pollution is uncertain. Animal studies suggest that chemical and non-chemical stressors interact to impact neurodevelopment, and that this association is further modified by sex. To examine associations between prenatal traffic-related black carbon exposure, prenatal stress, and sex with children's memory and learning. Analyses included N = 258 mother-child dyads enrolled in a Boston, Massachusetts pregnancy cohort. Black carbon exposure was estimated using a validated spatiotemporal land-use regression model. Prenatal stress was measured using the Crisis in Family Systems-Revised survey of negative life events. The Wide Range Assessment of Memory and Learning (WRAML2) was administered at age 6 years; outcomes included the General Memory Index and its component indices [Verbal, Visual, and Attention Concentration]. Relationships between black carbon and WRAML2 index scores were examined using multivariable-adjusted linear regression including effect modification by stress and sex. Mothers were primarily minorities (60% Hispanic, 26% Black); 67% had ≤12 years of education. The main effect for black carbon was not significant for any WRAML2 index; however, in stratified analyses, among boys with high exposure to prenatal stress, Attention Concentration Index scores were on average 9.5 points lower for those with high compared to low prenatal black carbon exposure (P3-way interaction = 0.04). The associations between prenatal exposure to black carbon and stress with children's memory scores were stronger in boys than in girls. Studies assessing complex interactions may more fully characterize health risks and, in particular, identify vulnerable subgroups.

  5. Estimating soot emissions from an elevated flare

    Science.gov (United States)

    Almanza, Victor; Sosa, Gustavo

    2009-11-01

    Combustion aerosols are one of the major concerns in flaring operations, due to both health and environmental hazards. Preliminary results are presented for a 2D transient simulation of soot formation in a reacting jet with exit velocity of 130 m/s under a 5 m/s crossflow released from a 50 m high elevated flare and a 50 cm nozzle. Combustion dynamics was simulated with OpenFOAM. Gas-phase non-premixed combustion was modeled with the Chalmers PaSR approach and a κ-ɛ turbulence model. For soot formation, Moss model was used and the ISAT algorithm for solving the chemistry. Sulfur chemistry was considered to account for the sourness of the fuel. Gas composition is 10 % H2S and 90 % C2H4. A simplified Glassman reaction mechanism was used for this purpose. Results show that soot levels are sensitive to the sulfur present in the fuel, since it was observed a slight decrease in the soot volume fraction. NSC is the current oxidation model for soot formation. Predicted temperature is high (about 2390 K), perhaps due to soot-radiation interaction is not considered yet, but a radiation model implementation is on progress, as well as an oxidation mechanism that accounts for OH radical. Flame length is about 50 m.

  6. Aromatics Oxidation and Soot Formation in Flames

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. B.; Richter, H.

    2005-03-29

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and the growth process to polycyclic aromatic hydrocarbons (PAH) of increasing size, soot and fullerenes formation in flames. The overall objective of the experimental aromatics oxidation work is to extend the set of available data by measuring concentration profiles for decomposition intermediates such as phenyl, cyclopentadienyl, phenoxy or indenyl radicals which could not be measured with molecular-beam mass spectrometry to permit further refinement and testing of benzene oxidation mechanisms. The focus includes PAH radicals which are thought to play a major role in the soot formation process while their concentrations are in many cases too low to permit measurement with conventional mass spectrometry. The radical species measurements are used in critical testing and improvement of a kinetic model describing benzene oxidation and PAH growth. Thermodynamic property data of selected species are determined computationally, for instance using density functional theory (DFT). Potential energy surfaces are explored in order to identify additional reaction pathways. The ultimate goal is to understand the conversion of high molecular weight compounds to nascent soot particles, to assess the roles of planar and curved PAH and relationships between soot and fullerenes formation. The specific aims are to characterize both the high molecular weight compounds involved in the nucleation of soot particles and the structure of soot including internal nanoscale features indicative of contributions of planar and/or curved PAH to particle inception.

  7. The Ångström Exponent and Turbidity of Soot Component in the ...

    African Journals Online (AJOL)

    Corresponding author: ... Origin 50 software was used to plot the graphs. SPSS 16.0 ... The α reflects the dominance of fine-mode particles while α2 at 0% RH reflects the dominance of ... 99% of the mass is carbon, but soot also contains hydrocarbons ...

  8. Alumina supported Co-K-Mo based catalytic material for diesel soot oxidation

    Czech Academy of Sciences Publication Activity Database

    Dhakad, M.; Joshi, A.G.; Rayalu, S.; Tanwar, P.; Bassin, J.K.; Kumar, R.; Lokhande, S.; Šubrt, Jan; Mitsuhashi, T.; Labhsetwar, N.

    2009-01-01

    Roč. 52, 13-20 (2009), s. 2070-2075 ISSN 1022-5528 Institutional research plan: CEZ:AV0Z40320502 Keywords : soot oxidation * diesel particulate filter * catalyst carbon oxidation Subject RIV: CA - Inorganic Chemistry Impact factor: 2.379, year: 2009

  9. In situ TEM study of the coarsening of carbon black supported Pt nanoparticles in hydrogen

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Wang, Yan; Jensen, Jens Oluf

    2017-01-01

    The control of sizes and shapes of nanostructures is of tremendous importance for the catalytic activity in electrochemistry and in catalysis more generally. However, due to relatively large surface free energies, nanostructures often sinter to form coarser and more stable structures that may...... not have the intended physicochemical properties. Pt is known to be a very active catalyst in several chemical reactions and for example as carbon supported nanoparticles in fuel cells. The presentation focusses on coarsening mechanisms of Pt nanoparticles supported on carbon black during exposure...... to hydrogen. By means of in situ transmission electron microscopy (TEM), Pt nanoparticle coarsening was monitored in 6 mbar 20 % H2/Ar while ramping up the temperature to ca. 900 °C. Time-resolved TEM images directly reveal that separated ca. 3 nm sized Pt nanoparticles in the pure hydrogen environment...

  10. pH-dependence of pesticide adsorption by wheat-residue-derived black carbon.

    Science.gov (United States)

    Yang, Yaning; Chun, Yuan; Sheng, Guangyao; Huang, Minsheng

    2004-08-03

    The potential of black carbon as an adsorbent for pesticides in soils may be strongly influenced by the properties of the adsorbent and pesticides and by the environmental conditions. This study evaluated the effect of pH on the adsorption of diuron, bromoxynil, and ametryne by a wheat (Triticum aestivum L.) residue derived black carbon (WC) as compared to a commercial activated carbon (AC). The pH drift method indicated that WC had a point of zero charge of 4.2, much lower than that of 7.8 for AC. The density of oxygen-containing surface functional groups, measured by the Boehm titration, on WC was 5.4 times higher than that on AC, resulting in a pesticide adsorption by WC being 30-50% of that by AC, due to the blockage of WC surface by the waters associated with the functional groups. A small decrease (5.5%/unit pH) in diuron adsorption by WC with increase in pH resulted from increased deprotonation of surface functional groups at higher pH values. A much larger decrease (14-21%/unit pH) in bromoxynil adsorption by WC with increase in pH resulted from the deprotonation of both the adsorbate and surface functional groups of the adsorbent. The deprotonation reduced the adsorptive interaction between bromoxynil and the neutral carbon surface and increased the electrical repulsion between the negatively charged WC surface and bromoxynil anions. Deprotonation of ametryne with increase in pH over the low pH range increased its fraction of molecular form and thus adsorption on WC by 15%/unit pH. Further increase in pH resulted in a 20%/unit pH decrease in ametryne adsorption by WC due primarily to the development of a negative charge on the surface of WC. The pH-dependent adsorption of pesticides by black carbon may significantly influence their environmental fate in soils.

  11. Few-Layer Black Phosphorus Carbide Field-Effect Transistor via Carbon Doping.

    Science.gov (United States)

    Tan, Wee Chong; Cai, Yongqing; Ng, Rui Jie; Huang, Li; Feng, Xuewei; Zhang, Gang; Zhang, Yong-Wei; Nijhuis, Christian A; Liu, Xinke; Ang, Kah-Wee

    2017-06-01

    Black phosphorus carbide (b-PC) is a new family of layered semiconducting material that has recently been predicted to have the lightest electrons and holes among all known 2D semiconductors, yielding a p-type mobility (≈10 5 cm 2 V -1 s -1 ) at room temperature that is approximately five times larger than the maximum value in black phosphorus. Here, a high-performance composite few-layer b-PC field-effect transistor fabricated via a novel carbon doping technique which achieved a high hole mobility of 1995 cm 2 V -1 s -1 at room temperature is reported. The absorption spectrum of this material covers an electromagnetic spectrum in the infrared regime not served by black phosphorus and is useful for range finding applications as the earth atmosphere has good transparency in this spectral range. Additionally, a low contact resistance of 289 Ω µm is achieved using a nickel phosphide alloy contact with an edge contacted interface via sputtering and thermal treatment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Near-Surface Refractory Black Carbon Observations in the Atmosphere and Snow in the McMurdo Dry Valleys, Antarctica, and Potential Impacts of Foehn Winds

    Science.gov (United States)

    Khan, Alia L.; McMeeking, Gavin R.; Schwarz, Joshua P.; Xian, Peng; Welch, Kathleen A.; Berry Lyons, W.; McKnight, Diane M.

    2018-03-01

    Measurements of light-absorbing particles in the boundary layer of the high southern latitudes are scarce, particularly in the McMurdo Dry Valleys (MDV), Antarctica. During the 2013-2014 austral summer near-surface boundary layer refractory black carbon (rBC) aerosols were measured in air by a single-particle soot photometer (SP2) at multiple locations in the MDV. Near-continuous rBC atmospheric measurements were collected at Lake Hoare Camp (LH) over 2 months and for several hours at more remote locations away from established field camps. We investigated periods dominated by both upvalley and downvalley winds to explore the causes of differences in rBC concentrations and size distributions. Snow samples were also collected in a 1 m pit on a glacier near the camp. The range of concentrations rBC in snow was 0.3-1.2 ± 0.3 μg-rBC/L-H2O, and total organic carbon was 0.3-1.4 ± 0.3 mg/L. The rBC concentrations measured in this snow pit are not sufficient to reduce surface albedo; however, there is potential for accumulation of rBC on snow and ice surfaces at low elevation throughout the MDV, which were not measured as part of this study. At LH, the average background rBC mass aerosol concentrations were 1.3 ng/m3. rBC aerosol mass concentrations were slightly lower, 0.09-1.3 ng/m3, at the most remote sites in the MDV. Concentration spikes as high as 200 ng/m3 were observed at LH, associated with local activities. During a foehn wind event, the average rBC mass concentration increased to 30-50 ng/m3. Here we show that the rBC increase could be due to resuspension of locally produced BC from generators, rocket toilets, and helicopters, which may remain on the soil surface until redistributed during high wind events. Quantification of local production and long-range atmospheric transport of rBC to the MDV is necessary for understanding the impacts of this species on regional climate.

  13. Effect of dust and soot on the growth of spruce trees

    Energy Technology Data Exchange (ETDEWEB)

    Rohmeder, E

    1960-07-01

    The effect of chronic exposure to road dust, calcium carbonate and soot on plant growth, was investigated in an experiment with 40 spruces of common heredity that were three years old at the start of the experiment and five years old at its conclusion. The plants were exposed for the entire 1956 growing season to the effect of a heavy coating of dust. In the following year, the growth performance and the production of shoots and needle mass in plants treated with dust were substantially below the untreated control plants. The root mass produced was also smaller in the treated plants than in those untreated. The considerable growth retardation after a heavy layering of dust lasting one growing season is primarily explained by the withdrawal of light and the resultant reduction in assimilation performance. In exposure to soot, however, the corrosive effect of the chemicals contained in the soot increased the extent of the damage to the plants.

  14. Structural, mechanical and electrical characterization of epoxy-amine/carbon black nanonocomposites

    Directory of Open Access Journals (Sweden)

    2008-05-01

    Full Text Available This work presents an insight into the effect of preparation procedure and the filler content on both electrical and mechanical properties of a nanocomposite system. For the preparation of the nanocomposites diglycidyl ether of bisphenol A (DGEBA was used with triethylenetetramine (TETA as a curing agent. As fillers carbon black (CB nanoparticles with size from 25 to 75 nm were used. The characterization was done using Dynamic Mechanical Analysis (DMA, Dielectric Relaxation Spectroscopy (DRS, Differential Scanning Calorimetry (DSC, Wide Angle X-ray Diffraction (WAXD and electrical conductivity measurements. The dependence of the dynamic mechanical and dielectric parameters (E′, E″, tanδ, ε', ε″, σ and Tg is associated with the filler content and is controlled by the employed curing conditions. An increase in electrical conductivity, which is observed at about 1% w/w of carbon black, indicates the creation of conducting paths and is associated with the Maxwell Wagner Sillars (MWS relaxation, probably due to the formation of aggregated microstructures in the bulk composite..

  15. Environmental pollution due to black carbon aerosols and its impacts in a tropical urban city

    Energy Technology Data Exchange (ETDEWEB)

    Madhavi Latha, K. [National Remote Sensing Agency, Department of Space-Government of India, Balanagar, Hyderabad 500 037 (India); Badarinath, K.V.S. [National Remote Sensing Agency, Department of Space-Government of India, Balanagar, Hyderabad 500 037 (India)]. E-mail: badrinath_kvs@nrsa.gov.in

    2005-05-15

    Black carbon (BC) has become the subject of interest in the recent years for a variety of reasons. BC aerosol may cause environmental as well as harmful health effects in densely inhabited regions. BC is a strong absorber of radiation in the visible and near-infrared part of the spectrum, where most of the solar energy is distributed. Black carbon is emitted into the atmosphere as a byproduct of all combustion processes, viz., vegetation burning, industrial effluents, motor vehicle exhausts, etc. In this paper, we present results from our measurements on BC aerosols, total aerosol mass concentration, and aerosol optical depth over an urban environment, namely Hyderabad during January-May, 2003. Diurnal variations of BC suggest that high BC concentrations are observed during 6:00-9:00 h and 19:00-23:00 h. Weekday variations of BC suggest that the day average BC concentrations increases gradually from Monday to Wednesday and gradually decreases from Thursday to Sunday. Fraction of BC to total mass concentration has been observed to be 7%. BC showed positive correlation with total mass concentration and aerosol optical depth at 500 nm. Radiative transfer calculations suggest that during January-May, diurnal averaged aerosol forcing at the surface was calculated to be -33 Wm{sup -2} and at the top of the atmosphere (TOA) it is to be +9 Wm{sup -2}.

  16. BLACK Carbon Emissions from Diesel Sources in the Largest Arctic City: Case Study of Murmansk

    Science.gov (United States)

    Evans, M.; Kholod, N.; Malyshev, V.; Tretyakova, S.; Gusev, E.; Yu, S.; Barinov, A.

    2014-12-01

    Russia has very little data on its black carbon (BC) emissions. Because Russia makes up such a large share of the Arctic, understanding Russian emissions will improve our understanding of overall BC levels, BC in the Arctic and the link between BC and climate change. This paper provides a detailed, bottom-up inventory of BC emissions from diesel sources in Murmansk, Russia, along with uncertainty estimates associated with these emissions. The research team developed a detailed data collection methodology. The methodology involves assessing the vehicle fleet and activity in Murmansk using traffic, parking lot and driver surveys combined with an existing database from a vehicle inspection station and statistical data. The team also assessed the most appropriate emission factors, drawing from both Russian and international inventory methodologies. The researchers also compared fuel consumption using statistical data and bottom-up fuel calculations. They then calculated emissions for on-road transportation, off-road transportation (including mines), diesel generators, fishing and other sources. The article also provides a preliminary assessment of Russia-wide emissions of black carbon from diesel sources.

  17. Black Carbon, Aerosol optical depth and Angstrom Exponent in São Paulo, Brazil

    Science.gov (United States)

    Miranda, R. M.; Perez-Martinez, P. J.; Andrade, M. D. F.

    2017-12-01

    Black carbon (BC) is a major absorber of solar radiation, and its impact on the radiative balance is therefore considered important. Fossil fuel combustion processes and biomass burning result in the emission of BC. Black carbon is being monitored since 2014 with a Multi-Angle Absorption Photometer-MAAP (5012; Thermo Scientific) in the East Zone of São Paulo, Brazil. São Paulo Metropolitan Area with more than 19 million inhabitants, 7 million vehicles, has high concentrations of air pollutants, especially in the winter. Vehicles can be considered the principal source of particles emitted to the atmosphere. Concentration of the pollutant had an average of 1.95 ug.m-3 ± 2.06 and a maximum value of 19.93 ug.m-3. These large variations were due to meteorological effects and to the influence of anthropogenic activities, since samples were collected close to important highways. Winds coming from the East part predominate. Higher concentrations were found in the winter months (June, July and August). Optical data from AERONET (Aerosol Optical Depth-AOD 550 nm and Angstrom Exponent 440-675 nm) were related to BC concentrations for the period from August, 2016. Average values of AOD at 500 nm and Angstrom Parameter (440-675nm) were 0.16±0.11 and 1.44±0.23, respectively. Higher BC concentrations were related to lower Angstrom values.

  18. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.; Cliff, S.S.; Ramanathan, V.

    2010-01-12

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  19. Solar Photothermal Disinfection using Broadband-Light Absorbing Gold Nanoparticles and Carbon Black.

    Science.gov (United States)

    Loeb, Stephanie; Li, Chuanhao; Kim, Jae-Hong

    2018-01-02

    A simple heat treatment, perhaps the most globally recognized point-of-use water sterilization method, is seemingly effective against all major pathogens of concern, but bulk water boiling is not energy efficient or sustainable. Herein, we present the first application of solar-to-thermal converting nanomaterials for the direct inactivation of bacteria and viruses in drinking water through the application of Au nanorods, carbon black, and Au nanorod-carbon black composite materials as light absorbers. With broad absorption bands spanning the visible and near-infrared wavelengths, at sufficient concentrations, these nanoparticles induce multiple scattering events, increasing photon absorption probability and concentrating the light within a small spatial domain, leading to localized, intense heating that inactivates microorganisms in close proximity. Moving toward practical device design, we have developed a facile silane immobilization approach to fabricate films with densely packed layers of photothermal nanomaterials. Our results suggest that upon irraditaion with simulated solar light, these films can thermally inactivate bacteria and viruses, as demonstrated through the inactivation of surrogate organisms Escherichia coli K-12, and bacteriophages MS2 and PR772.

  20. Insights into the attenuated sorption of organic compounds on black carbon aged in soil.

    Science.gov (United States)

    Luo, Lei; Lv, Jitao; Chen, Zien; Huang, Rixiang; Zhang, Shuzhen

    2017-12-01

    Sorption of organic compounds on fresh black carbons (BCs) can be greatly attenuated in soil over time. We examined herein the changes in surface properties of maize straw-derived BCs (biochars) after aged in a black soil and their effects on the sorptive behaviors of naphthalene, phenanthrene and 1,3-dinitrobenzene. Dissolved fulvic and humic acids extracted from the soil were used to explore the role of dissolved organic carbon (DOC) in the aging of biochars. Chromatography analysis indicated that DOC molecules with relatively large molecular weight were preferentially adsorbed on the biochars during the aging processes. DOC sorption led to blockage of the biochar's micropores according to N 2 and CO 2 adsorption analyses. Surface chemistry of the biochars was also substantially modified, with more O-rich functional groups on the aged biochars compared to the original biochars, as evidenced by Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses. The changes in both the physical and chemical surface properties of biochars by DOC led to significant attenuation of the sorption capacity and nonlinearity of the nonionic organic compounds on the aged biochars. Among the tested organic compounds, phenanthrene was the most attenuated in its sorption by the aging treatments, possibly because of its relatively large molecular size and hydrophobicity. The information can help gain a mechanistic understanding of interactions between BCs and organic compounds in soil environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Surface modification of carbon black for the reinforcement of polycarbonate/acrylonitrile–butadiene–styrene blends

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B.B. [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); Chen, Y. [School of materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002 (China); Wang, F. [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); Hong, R.Y., E-mail: rhong@suda.edu.cn [School of Chemical Engineering, Fuzhou University, Fuzhou 350108 (China); College of Chemistry, Chemical Engineering and Materials Science & Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, SIP, Suzhou 215123 (China)

    2015-10-01

    Highlights: • CB was modified through the method of oxygen plasma treatment. • Surface modified CB applied in PC/ABS blends. • The treated CB showed better compatibility in PC/ABS blends. • PC/ABS blends with treated CB showed better mechanical and thermal properties. - Abstract: The surface of carbon black was modified by oxygen plasma treatment for different times (10, 20 and 30 min). In order to increase the applicability of carbon black (CB), functional groups were grafted on the generally inert surface of CB using oxygen plasma. The surface compositional and structural changes that occurred on CB were investigated by SEM, FT-IR, Raman spectroscopy, XRD and BET. Subsequently, CB reinforced polycarbonate (PC)/acrylonitrile-butadiene-styrene (ABS) composites were prepared by internal batch mixing with the addition of different content of CB (3, 6, 9, 12 wt%). The morphology of PC/ABS/CB (7/3/6 wt%) nanocomposites was studied through scanning electron microscopy. Observations of SEM images showed that the plasma-treated CB had a better dispersion in the blend matrix. Moreover, the mechanical tests showed that the tensile strength and impact strength were improved by 32.4% and 22.5%, respectively, with the addition of plasma-treated CB. In addition, the thermal stability was improved and glass transition temperatures of both PC and ABS increased as shown by TGA and DSC, respectively.

  2. Laboratory Validation of Four Black Carbon Measurement Methods for Determination of the Nonvolatile Particulate Matter (nvPM) Mass Emissions from Commercial Aircraft Engines

    Science.gov (United States)

    Four candidate black carbon (BC) measurement techniques have been identified by the SAE International E-31 Committee for possible use in determining nonvolatile particulate matter (nvPM) mass emissions during commercial aircraft engine certification. These techniques are carbon b...

  3. Role of organic carbon in uranium enrichment in the black shales of Jhamarkotra formation of Aravalli Supergroup - a case study

    International Nuclear Information System (INIS)

    Purohit, Ritesh

    2010-01-01

    An illustration on role of TOC (Total organic carbon) in uranium enrichment is examined in present study from the Jhamarkotra Formation of the Palaeoproterozoic Aravalli Supergroup. The study unravels uranium ion mobility during secondary enrichment process which is governed by the depositional environment. Contrasting black shales facies, though coeval, show selective uranium mineralization. This variability is in discordance with the TOC content of the black shale facies, which in turn are governed by the different microenvironmental conditions. Uranium concentrations in the studied black shales are found to be independent of the TOC. The concentration is dependent on uranium ion carrier during secondary enrichment. (author)

  4. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.

    Science.gov (United States)

    Walker, Xanthe J; Mack, Michelle C; Johnstone, Jill F

    2015-08-01

    Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature-induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ∆(13)C responses on a subsample of trees as representative of the wider region. The negative ∆(13)C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ∆(13)C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought-induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions. © 2015 John Wiley & Sons Ltd.

  5. Development of a photoacoustic sensor system for the measurement of atmospheric soot aerosols. Final report; Weiterentwicklung und Charakterisierung des photoakustischen Russsensors. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, L.; Bozoki, Z.; Niessner, R.

    2001-03-01

    The photoacoustic soot sensor (PASS) has been optimised and characterised in this work to enable online atmospheric black carbon (BC) monitoring. The mobility of the sensor suited for outdoor measurements was already achieved by a former setup. The major technical modifications include the use of a new diode laser with an emission wavelength of 680 nm and an output power of 250 mW and the redesign of the photoacoustic resonance cell and all optical components. Additionally, most of the electronic compounds have been exchanged, e.g. function generator, microphone preamplifier, lock-in amplifier. Due to these modifications, the increase in the sensitivity of the system led to a detection limit in the order of 100 ng per m{sup 3}. The selectivity has been enhanced by the use of a magnetic valve, which enables the independent determination of particular and gaseous compounds of the sample. Cross-sensitivities to water vapor or nitrogen dioxide can be excluded by differential measurement. Any influence by other airborne atmospheric particles like scattering salt aerosols, desert dust or humic acid is negligable under atmospheric conditions as has been shown in laboratory experiments. For the determination of low atmospheric BC concentrations, the time resolution of the entire setup by employing a software controlled, automated measurement cycle equals {proportional_to}5 minutes. The PASS was tested in various field campaigns at different measurement sites to determine atmospheric BC (Munich-Grosshadern, Kleiner Feldberg) and diesel soot (AIDA, FZ Karlsruhe; diesel engine, DaimlerChrysler). (orig.)

  6. Historical and projected carbon balance of mature black spruce ecosystems across north america: The role of carbon-nitrogen interactions

    Science.gov (United States)

    Clein, Joy S.; McGuire, A.D.; Zhang, X.; Kicklighter, D.W.; Melillo, J.M.; Wofsy, S.C.; Jarvis, P.G.; Massheder, J.M.

    2002-01-01

    The role of carbon (C) and nitrogen (N) interactions on sequestration of atmospheric CO2 in black spruce ecosystems across North America was evaluated with the Terrestrial Ecosystem Model (TEM) by applying parameterizations of the model in which C-N dynamics were either coupled or uncoupled. First, the performance of the parameterizations, which were developed for the dynamics of black spruce ecosystems at the Bonanza Creek Long-Term Ecological Research site in Alaska, were evaluated by simulating C dynamics at eddy correlation tower sites in the Boreal Ecosystem Atmosphere Study (BOREAS) for black spruce ecosystems in the northern study area (northern site) and the southern study area (southern site) with local climate data. We compared simulated monthly growing season (May to September) estimates of gross primary production (GPP), total ecosystem respiration (RESP), and net ecosystem production (NEP) from 1994 to 1997 to available field-based estimates at both sites. At the northern site, monthly growing season estimates of GPP and RESP for the coupled and uncoupled simulations were highly correlated with the field-based estimates (coupled: R2= 0.77, 0.88 for GPP and RESP; uncoupled: R2 = 0.67, 0.92 for GPP and RESP). Although the simulated seasonal pattern of NEP generally matched the field-based data, the correlations between field-based and simulated monthly growing season NEP were lower (R2 = 0.40, 0.00 for coupled and uncoupled simulations, respectively) in comparison to the correlations between field-based and simulated GPP and RESP. The annual NEP simulated by the coupled parameterization fell within the uncertainty of field-based estimates in two of three years. On the other hand, annual NEP simulated by the uncoupled parameterization only fell within the field-based uncertainty in one of three years. At the southern site, simulated NEP generally matched field-based NEP estimates, and the correlation between monthly growing season field-based and

  7. A comparative study on the sooting tendencies of various 1-alkene fuels in counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2018-02-19

    Alkenes are important components in transportation fuels, and are known to have increased sooting tendencies compared to analogous saturated hydrocarbons with the same carbon number. This work aims to understand the sooting tendencies of various 1-alkenes through experiments and numerical simulations for counterflow diffusion flames. Soot and PAH formation tendencies of 1-alkene fuels, including ethylene (C2H4), propene (C3H6), 1-butene (1-C4H8), 1-pentene (1-C5H10), 1-hexene (1-C6H12) and 1-octene (1-C8H16), were experimentally studied using laser induced-incandescence (LII) and laser-induced fluorescence (LIF) techniques, respectively. From the LII results, 1-C4H8 was found to be the most sooting fuel, followed by C3H6 > 1-C5H10 > 1-C6H12 > 1-C8H16 > C2H4. The LIF data with a detection wavelength of 500 nm indicated the PAH formation tendencies followed the order of 1-C4H8 > 1-C5H10 ∼1-C6H12 > C3H6 > 1-C8H16 > C2H4, which were different from the order of sooting tendencies. Numerical simulations with a comprehensive chemical kinetic model including PAH growth chemistry for the tested 1-alkene fuels were conducted to elucidate the aromatic formation pathways and rationalize the experimentally observed trends. The numerical results highlighted the importance of intermediate species with odd carbon numbers in aromatic species formation, such as propargyl, allyl, cyclopentadienyl and indenyl radicals. Their concentration differences, which could be traced back to the parent fuel molecules through rate of production analysis, rationalize the experimentally observed differences in soot and PAH formation tendencies.

  8. Black Carbon And Co-Pollutants Emissions And Energy Efficiency From Bricks Production In Guanajuato, Mexico

    Science.gov (United States)

    Molina, L. T.; Zavala, M.; Maiz, P.; Monsivais, I.; Chow, J.; Munguia, J.

    2013-12-01

    In many parts of the world, small-scale traditional brick kilns are a notorious informal sector source of urban air pollution. Many are both inefficient and burn highly polluting fuels that emit significant levels of black carbon and other pollutants into local communities and to the atmosphere, resulting in severe health and environmental impacts. It is estimated that there are nearly 20,000 traditional brick kilns in Mexico, in which bricks are still produced as they have been for centuries. They are made by hand, dried in the sun, and generally fired in small, one chamber kilns that use various types of fuels, including plastic refuse, used tires, manure, wood scrap, and used motor oil. Three brick kilns, two traditional kilns and an improved kiln (MK2), were sampled as part of the SLCFs-Mexico campaign in Guanajuato, Mexico during March of 2013. The concept of the MK-2 involves covering the kiln with a dome and channeling the output of an active kiln through a second, identical loaded kiln for its additional filtration of the effluents. The results of energy efficiency and carbon mass balance calculations are presented for comparing the production efficiency and carbon emissions from the sampled kilns. Measurements included PM2.5 mass with quartz filters and temporally-resolved elemental carbon and organic carbon composition obtained using thermo-optical methods. The carbon emissions obtained with the mass balance method are compared with concurrent, high- time resolution, emissions measurements obtained using the Aerodyne mobile laboratory employing the tracer method (see abstract by Fortner et al.)

  9. Electron spin resonance of particulate soot samples from automobiles to help environmental studies

    International Nuclear Information System (INIS)

    Yamanaka, C.; Matsuda, T.; Ikeya, M.

    2005-01-01

    The application of electron spin resonance (ESR) was studied for diesel soot samples and suspended particulate matter (SPM) from automobile engines. Soot samples or diesel exhaust particles (DEP) were recovered at various points: in the exhaust pipe of a diesel engine, at the dust sampler of a highway tunnel (standard DEP), on the soundproofing wall alongside a heavy traffic road, and on the filters of a dust sampler for SPM. The diesel soot samples apparently showed two ESR spectra: one was a broad spectrum at g=2.1 with a line width of ca. 80-120mT and the other was a sharp signal of a carbon radical at g=2.003 with a line width of 0.4mT. Annealing experiments with a DEP sample at 250 deg. C revealed drastic enhancement of the sharp ESR signal, which suggested a thermal process of carbonization of remnant organics. An oximetric study by ESR showed an enhancement of the broad signal in the diesel soot sample as well as in the sharp ESR signal. Therefore, the main part of the broad ESR signal would be attributed to carbon radicals, which form a different configuration, probably closely interacting aggregates. Enhancement of the sharp ESR signal was not observed in the standard DEP sample under vacuum condition, which suggested less adsorption sites on the surface of DEP samples

  10. Variability in and agreement between modeled and personal continuously measured black carbon levels using novel smartphone and sensor technologies.

    Science.gov (United States)

    Nieuwenhuijsen, Mark J; Donaire-Gonzalez, David; Rivas, Ioar; de Castro, Montserrat; Cirach, Marta; Hoek, Gerard; Seto, Edmund; Jerrett, Michael; Sunyer, Jordi

    2015-03-03

    Novel technologies, such as smartphones and small personal continuous air pollution sensors, can now facilitate better personal estimates of air pollution in relation to location. Such information can provide us with a better understanding about whether and how personal exposures relate to residential air pollution estimates, which are normally used in epidemiological studies. The aims of this study were to examine (1) the variability in personal air pollution levels during the day and (2) the relationship between modeled home and school estimates and continuously measured personal air pollution exposure levels in different microenvironments (e.g., home, school, and commute). We focused on black carbon as an indicator of traffic-related air pollution. We recruited 54 school children (aged 7-11) from 29 different schools around Barcelona as part of the BREATHE study, an epidemiological study of the relation between air pollution and brain development. For 2 typical week days during 2012-2013, the children were given a smartphone with CalFit software to obtain information on their location and physical activity level and a small sensor, the micro-aethalometer model AE51, to measure their black carbon levels simultaneously and continuously. We estimated their home and school exposure to PM2.5 filter absorbance, which is well-correlated with black carbon, using a temporally adjusted PM2.5 absorbance land use regression (LUR) model. We found considerable variation in the black carbon levels during the day, with the highest levels measured during commuting periods (geometric mean = 2.8 μg/m(3)) and the lowest levels at home (geometric mean = 1.3 μg/m(3)). Hourly temporally adjusted LUR model estimates for the home and school showed moderate to good correlation with measured personal black carbon levels at home and school (r = 0.59 and 0.68, respectively) and lower correlation with commuting trips (r = 0.32 and 0.21, respectively). The correlation between modeled home

  11. Acid–base interaction between carbon black and polyurethane molecules with different amine values: Dispersion stability of carbon black suspension for use in lithium ion battery cathodes

    International Nuclear Information System (INIS)

    Kil, Ki Chun; Kim, Gu Yeon; Cho, Chae-Woong; Lim, Myung Duk; Kim, Kijun; Jeong, Kyung-Min; Lee, Jinuk; Paik, Ungyu

    2013-01-01

    The dispersion properties of carbon black (CB) slurries as well as the accompanying electrochemical properties of Li(Ni 1/3 Co 1/3 Mn 1/3 )O 2 (NCM) electrodes were investigated by controlling the amine value of polyurethane-based dispersants. The increase in amine value of dispersants leads to an increase in adsorption level on CB surface due to a strong acid/base interaction between dispersants and CB particles, providing the improvement of steric repulsion between particles at the solid–liquid interface. This results in the enhancement of the dispersion stability of CB and the related microstructure of the electrodes. Electrochemical experiments indicated that the rate capabilities and cycle performance of the electrodes are in good agreement with dispersion properties of CB slurries. However, it was found that the excessive addition of the dispersant was deleterious to electrochemical properties because the non-adsorbed dispersants act as an electronic conduction barrier between solid phases. Therefore, it is suggested that the amine value of dispersant and tailored amount of dispersant addition can be key roles for obtaining the optimized dispersion stability of CB and the corresponding excellent electrochemical properties of the cathode

  12. Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization

    Science.gov (United States)

    Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.

    2015-12-01

    Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.

  13. TiN-conductive carbon black composite as counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Li, G.R.; Wang, F.; Song, J.; Xiong, F.Y.; Gao, X.P.

    2012-01-01

    Highlights: ► The TiN nanoparticles are highly dispersed on conductive carbon black matrix (CCB). ► The well dispersion of TiN nanoparticles can improve electrochemical performance. ► The TiN/CCB shows a high photovoltaic performance with high conversion efficiency. - Abstract: TiN-conductive carbon black (CCB)/Ti electrodes are prepared by the nitridation of TiO 2 –CCB mixtures filmed on metallic Ti substrate in ammonia atmosphere. It is demonstrated from X-ray diffraction (XRD) and scanning electron microscopy (SEM) that TiN nanoparticles are highly dispersed on the CCB matrix in the composites. TiN–CCB/Ti electrodes show outstanding electrochemical performances as compared to individual TiN/Ti and CCB/Ti electrodes. In particular, the dye-sensitized solar cell (DSSC) using TiN–CCB (1:1, mass ratio)/Ti electrode presents an energy conversion efficiency of 7.92%, which is higher than that (6.59%) of the device using Pt/FTO (fluorine doped tin oxide) electrode measured under the same test conditions. Based on the analysis of cyclic voltammetry (CV) and electrochemical impedance spectra (EIS), the enhancements for the electrochemical and photochemical performance of TiN–CCB/Ti electrodes are attributed to the fact that the dispersed TiN nanoparticles in the CCB matrix provide an improved electrocatalytic activity and a facilitated diffusion for triiodine ions. This work shows a facile approach to develop metal nitrides–carbon composites as counter electrodes for DSSCs. High energy conversion efficiency and low lost will make the composites have significant potential for replacing the conventional Pt/FTO electrodes in DSSCs.

  14. Sol-gel processed thin-layer ruthenium oxide/carbon black supercapacitors: A revelation of the energy storage issues

    Energy Technology Data Exchange (ETDEWEB)

    Panic, V.V.; Dekanski, A.B.; Stevanovic, R.M. [Institute of Chemistry, Technology and Metallurgy, Department of Electrochemistry, University of Belgrade, Njegoseva 12, Belgrade 125213 (RS)

    2010-07-01

    Hydrous ruthenium oxide/carbon black nanocomposites were prepared by impregnation of the carbon blacks by differently aged inorganic RuO{sub 2} sols, i.e. of different particle size. Commercial Black Pearls 2000 {sup registered} (BP) and Vulcan {sup registered} XC-72 R (XC) carbon blacks were used. Capacitive properties of BP/RuO{sub 2} and XC/RuO{sub 2} composites were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in H{sub 2}SO{sub 4} solution. Capacitance values and capacitance distribution through the composite porous layer were found different if high- (BP) and low- (XC) surface-area carbons are used as supports. The aging time (particle size) of Ru oxide sol as well as the concentration of the oxide solid phase in the impregnating medium influenced the capacitive performance of prepared composites. While the capacitance of BP-supported oxide decreases with the aging time, the capacitive ability of XC-supported oxide is promoted with increasing oxide particle size. The increase in concentration of the oxide solid phase in the impregnating medium caused an improvement of charging/discharging characteristics due to pronounced pseudocapacitance contribution of the increasing amount of inserted oxide. The effects of these variables in the impregnation process on the energy storage capabilities of prepared nanocomposites are envisaged as a result of intrinsic way of population of the pores of carbon material by hydrous Ru oxide particle. (author)

  15. Black carbon exposure more strongly associated with census tract poverty compared to household income among US black, white, and Latino working class adults in Boston, MA (2003–2010)

    International Nuclear Information System (INIS)

    Krieger, Nancy; Waterman, Pamela D.; Gryparis, Alexandros; Coull, Brent A.

    2014-01-01

    We investigated the association of individual-level ambient exposure to black carbon (spatiotemporal model-based estimate for latitude and longitude of residential address) with individual, household, and census tract socioeconomic measures among a study sample comprised of 1757 US urban working class white, black and Latino adults (age 25–64) recruited for two studies conducted in Boston, MA (2003–2004; 2008–2010). Controlling for age, study, and exam date, the estimated average annual black carbon exposure for the year prior to study enrollment at the participants' residential address was directly associated with census tract poverty (beta = 0.373; 95% confidence interval (CI) 0.322, 0.423) but not with annual household income or education; null associations with race/ethnicity became significant only after controlling for socioeconomic position. - Highlights: • The study included 1757 black, Latino, and white working class adults in Boston, MA. • Census tract poverty was associated with annual average black carbon exposure. • Annual household income was not associated with black carbon exposure. • Individual-level education was not associated with black carbon exposure. • The observed socioeconomic patterns varied by race/ethnicity. - In a US multiethnic urban working adult population, exposure to black carbon was more strongly associated with census tract as compared to household- or individual-level socioeconomic measures

  16. Effect of diluents on soot precursor formation and temperature in ethylene laminar diffusion flames

    KAUST Repository

    Abhinavam Kailasanathan, Ranjith Kumar

    2013-03-01

    Soot precursor species concentrations and flame temperature were measured in a diluted laminar co-flow jet diffusion flame at pressures up to eight atmospheres while varying diluent type. The objective of this study was to gain a better understanding of soot production and oxidation mechanisms, which could potentially lead to a reduction in soot emissions from practical combustion devices. Gaseous samples were extracted from the centerline of an ethylene-air laminar diffusion flame, which was diluted individually with four diluents (argon, helium, nitrogen, and carbon dioxide) to manipulate flame temperature and transport properties. The diluted fuel and co-flow exit velocities (top-hat profiles) were matched at all pressures to minimize shear-layer effects, and the mass fluxes were fixed over the pressure range to maintain constant Reynolds number. The flame temperature was measured using a fine gauge R-type thermocouple at pressures up to four atmospheres. Centerline concentration profiles of major non-fuel hydrocarbons collected via extractive sampling with a quartz microprobe and quantification using GC/MS+FID are reported within. The measured hydrocarbon species concentrations are vary dramatically with pressure and diluent, with the helium and carbon dioxide diluted flames yielding the largest and smallest concentrations of soot precursors, respectively. In the case of C2H2 and C6H6, two key soot precursors, helium diluted flames had concentrations more than three times higher compared with the carbon dioxide diluted flame. The peak flame temperature vary with diluents tested, as expected, with carbon dioxide diluted flame being the coolest, with a peak temperature of 1760K at 1atm, and the helium diluted flame being the hottest, with a peak temperature of 2140K. At four atmospheres, the helium diluted flame increased to 2240K, but the CO2 flame temperature increased more, decreasing the difference to approximately 250K. © 2012 The Combustion Institute.

  17. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    KAUST Repository

    Andersen, Myrrha E.

    2016-10-19

    Pulverized bituminous coal was burned in a 10. W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Experiments were designed to produce flames with practically relevant stoichiometric ratios (SR. =1.2-1.4) and constant residence times (2.3. s). Size-classified fly ash samples were collected, and measurements focused on the soot, elemental carbon (EC), and organic carbon (OC) composition of the total and ultrafine (<0.6. μm) fly ash. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxy-combustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Carbonaceous components on particles <0.6. μm measured by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100. C and 550. C with the remaining 29-86% being EC/soot. However, for the 36% oxy condition, OC may comprise over 90% of the ultrafine carbon with a much smaller EC/soot contribution. These data were interpreted by considering the effects of oxy-combustion on flame attachment, ignition delay, and soot oxidation of a bituminous coal, and the effects of these processes on OC and EC emissions. Flame aerodynamics and inlet oxidant composition may influence emissions of organic hazardous air pollutants (HAPs) from a bituminous coal. During oxy-coal combustion, judicious control of inlet oxygen concentration and placement may be used to minimize organic HAP and soot emissions.

  18. Is black carbon a better predictor of polycyclic aromatic hydrocarbon distribution in soils than total organic carbon?

    International Nuclear Information System (INIS)

    Agarwal, Tripti; Bucheli, Thomas D.

    2011-01-01

    Black carbon (BC) and total organic carbon (TOC) were quantified in the surface soils of Switzerland (N = 105) and Delhi (N = 36), India, to examine their relationships with contents of polycyclic aromatic hydrocarbons (PAH). BC content in Swiss (background) soils (N = 104) varied from 0.41 to 4.75 mg/g (median: 1.13 mg/g) and constituted 1-9% (median: 3%) of TOC. Indian (urban) soils had similar BC concentrations (0.37-2.05 mg/g, median: 1.19 mg/g), with relatively higher BC/TOC (6-23%, median: 13%). Similar to TOC, BC showed significant positive correlation with lighter PAH, but no correlation with heavier PAH in Swiss soils. In contrast, heavier PAH were significantly correlated only with BC in Delhi soils. It seems that TOC governs the distribution of PAH in organic matter rich background soils, while the proximity to emission sources is reflected by BC-PAH association in urban soils. - Light PAH correlated with TOC in background soils, whereas heavy PAH were associated with BC close to emission sources.

  19. The effects of carbon nanotubes on electroactive shape-memory behaviors of hydro-epoxy/carbon black composite

    International Nuclear Information System (INIS)

    Wei, Kun; Zhu, Guangming; Tang, Yusheng; Liu, Tingting; Li, Ximin

    2012-01-01

    The objective of this work is to characterize the effect of multi-walled carbon nanotubes (MWCNTs) on the thermomechanical, electrical and shape-memory properties of hydro-epoxy/carbon black (CB) composite. The shape-memory hydro-epoxy composite is fabricated by adding MWCNTs and CB into shape-memory hydro-epoxy resin. The total amount of the fillers fixed at 1.9 wt%, five different composites are produced by varying the amount of MWCNTs between 0 and 0.8 wt% and the amount of CB between 1.1 and 1.9 wt%. The thermomechanical properties and shape-memory performance of the composites are studied. These results indicate that the glass transition temperature (Tg) and the storage modulus of the composites increases at first and then decreases as MWCNTs content increases. The shape recovery time decreases at first and then increases slightly as MWCNTs content increases. The composite presents good shape-memory behavior, and the shape recovery ratio is around 100%. Due to the synergic effect of CB and MWCNTs, the volume electrical resistivity of the composite could decrease by adding a small amount of MWCNTs. (paper)

  20. A Numerical Study on Electrical Percolation of Polymer-Matrix Composites with Hybrid Fillers of Carbon Nanotubes and Carbon Black

    Directory of Open Access Journals (Sweden)

    Yuli Chen

    2014-01-01

    Full Text Available The electrical percolation of polymer-matrix composites (PMCs containing hybrid fillers of carbon nanotubes (CNTs and carbon black (CB is estimated by studying the connection possibility of the fillers using Monte Carlo simulation. The 3D simulation model of CB-CNT hybrid filler is established, in which CNTs are modeled by slender capped cylinders and CB groups are modeled by hypothetical spheres with interspaces because CB particles are always agglomerated. The observation on the effects of CB and CNT volume fractions and dimensions on the electrical percolation threshold of hybrid filled composites is then carried out. It is found that the composite electrical percolation threshold can be reduced by increasing CNT aspect ratio, as well as increasing the diameter ratio of CB groups to CNTs. And adding CB into CNT composites can decrease the CNT volume needed to convert the composite conductivity, especially when the CNT volume fraction is close to the threshold of PMCs with only CNT filler. Different from previous linear assumption, the nonlinear relation between CB and CNT volume fractions at composite percolation threshold is revealed, which is consistent with the synergistic effect observed in experiments. Based on the nonlinear relation, the estimating equation for the electrical percolation threshold of the PMCs containing CB-CNT hybrid fillers is established.

  1. Numerical investigation on soot particles emission in compression ignition diesel engine by using particulate mimic soot model

    Directory of Open Access Journals (Sweden)

    Ibrahim Fadzli

    2017-01-01

    Full Text Available Research via computational method, specifically by detailed-kinetic soot model offers much more advantages than the simple model as more detailed formation/oxidation process is taken into consideration, thus providing better soot mass concentration, soot size, soot number density as well as information regarding other related species. In the present computational study, investigation of in-cylinder soot concentration as well as other emissions in a single cylinder diesel engine has been conducted, using a commercial multidimensional CFD software, CONVERGE CFD. The simulation was carried out for a close-cycle combustion environment from inlet valve closing (IVC to exhaust valve opening (EVO. In this case, detailed-kinetic Particulate Mimic (PM soot model was implemented as to take benefit of the method of moment, instead of commonly implemented simple soot model. Analyses of the results are successfully plotted to demonstrate that the soot size and soot mass concentration are strongly dependent on the detailed soot formation and oxidation process rates. The calculated of soot mass concentration and average soot size at EVO provide the end value of 29.2 mg/m3 and 2.04 × 10−8 m, respectively. Besides, post-processing using EnSight shows the qualitative results of soot concentration along simulation period in the combustion chamber.

  2. Carbon black selection from simulated broth solution for ADU gel spheres

    International Nuclear Information System (INIS)

    Chai, Jeong Kyung; Ho, Eom Sung; Kim, Yeon Ku; Cho, Moon Seoung

    2012-01-01

    The VHTR (Very High Temperature Gas Reactor) is one of the reactor concepts in the Gen IV International Collaboration. The nuclear fuel of a VHTR in the US is based on microspheres containing a mixture of UO 2 and UC 2 coated with multi carbon layers and a SiC layer. This mixture is called a 'UCO (uranium oxi carbide)' kernel. The fabrication process of this kernel was based on the sol-gel method between an ADUN and HMTA and urea, a process referred to as internal gelation. UCO kernel microspheres were first prepared at ORNL in the late 1970s. CB(Carbon Black) as a carbon source in the final UCO kernel is added during the broth solution preparation, in the processing of UCO kernel fabrication. The preparation of a good quality UCO kernel is very difficult due to the homogeneous distribution of carbon in a UCO kernel. The key requirement to obtain a good quality kernel is a uniform distribution of carbon in the ADU gel sphere forming process before the thermal treatment, i.e., during the gel formation step. The internal gelation concept was adapted in ADU gel sphere fabrication in the ORNL process of the US. Generally, UO 2 kernel microspheres are prepared by an internal gelation method (USA, India) or external gelation method (Germany, China, Japan). The UCO kernel microspheres prepared only in the US, use an internal gelation method. A material flow chart on the preparation of the microsphere kernel is simply shown in Fig. 1. The broth solution preparation, the raw material, additives, and thermal steps such as calcining and sintering processes were different to compared with the external gelation and internal gelation methods. In this study, we first carried out the matching CB selection experiments among the various kinds of CBs in a broth solution, for UCO kernel preparation using an external gelation method.

  3. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Science.gov (United States)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dis