WorldWideScience

Sample records for black carbon concentrations

  1. Black Carbon Concentration from Worldwide Aerosol Robotic Network (AERONET)

    Science.gov (United States)

    Schuster, Greg; Dubovik, Oleg; Holben, Brent; Clothiaux, Eugene

    2008-01-01

    Worldwide black carbon concentration measurements are needed to assess the efficacy of the carbon emissions inventory and transport model output. This requires long-term measurements in many regions, as model success in one region or season does not apply to all regions and seasons. AERONET is an automated network of more than 180 surface radiometers located throughout the world. The sky radiance measurements obtained by AERONET are inverted to provide column-averaged aerosol refractive indices and size distributions for the AERONET database, which we use to derive column-averaged black carbon concentrations and specific absorptions that are constrained by the measured radiation field. This provides a link between AERONET sky radiance measurements and the elemental carbon concentration of transport models without the need for an optics module in the transport model. Knowledge of both the black carbon concentration and aerosol absorption optical depth (i.e., input and output of the optics module) will enable improvements to the transport model optics module.

  2. The relationship between black carbon concentration and black smoke: A more general approach

    OpenAIRE

    Heal, Mathew R.; Quincey, Paul

    2012-01-01

    The black carbon (BC) component of ambient particulate matter is an important marker for combustion sources and for its impact on human health and radiative forcing. Extensive data archives exist for the black smoke metric, the historic measure of ambient particle darkness. An expression presented in earlier publications (Quincey, 2007; Quincey et al., 2011) for estimating BC concentrations from traditional black smoke measurements is shown to have limitations that can be addressed by using a...

  3. High Black Carbon (BC) Concentrations along Indian National Highways

    Science.gov (United States)

    Kumar, S.; Singh, A. K.; Singh, R. P.

    2015-12-01

    Abstract:Black carbon (BC), the optically absorbing component of carbonaceous aerosol, has direct influence on radiation budget and global warming. Vehicular pollution is one of the main sources for poor air quality and also atmospheric pollution. The number of diesel vehicles has increased on the Indian National Highways during day and night; these vehicles are used for the transport of goods from one city to another city and also used for public transport. A smoke plume from the vehicles is a common feature on the highways. We have made measurements of BC mass concentrations along the Indian National Highways using a potable Aethalometer installed in a moving car. We have carried out measurements along Varanasi to Kanpur (NH-2), Varanasi to Durgapur (NH-2), Varanasi to Singrauli (SH-5A) and Varanasi to Ghazipur (NH-29). We have found high concentration of BC along highways, the average BC mass concentrations vary in the range 20 - 40 µg/m3 and found high BC mass concentrations up to 600 μg/m3. Along the highways high BC concentrations were characteristics of the presence of industrial area, power plants, brick kilns and slow or standing vehicles. The effect of increasing BC concentrations along the National Highways and its impact on the vegetation and human health will be presented. Key Words: Black Carbon; Aethalometer; mass concentration; Indian National Highways.

  4. Black carbon concentrations and mixing state in the Finnish Arctic

    Science.gov (United States)

    Raatikainen, T.; Brus, D.; Hyvärinen, A.-P.; Svensson, J.; Asmi, E.; Lihavainen, H.

    2015-09-01

    Atmospheric aerosol composition was measured using a Single Particle Soot Photometer (SP2) in the Finnish Arctic during winter 2011-2012. The Sammaltunturi measurement site at the Pallas GAW (Global Atmosphere Watch) station receives air masses from different source regions including the Arctic Ocean and continental Europe. The SP2 provides detailed information about mass distributions and mixing state of refractory black carbon (rBC). The measurements showed widely varying rBC mass concentrations (0-120 ng m-3), which were related to varying contributions of different source regions and aerosol removal processes. The rBC mass was log-normally distributed showing a relatively constant rBC core mass mean diameter with an average of 194 nm (75-655 nm sizing range). On average, the number fraction of particles containing rBC was 0.24 (integrated over 350-450 nm particle diameter range) and the average particle diameter to rBC core volume equivalent diameter ratio was 2.0 (averaged over particles with 150-200 nm rBC core volume equivalent diameters). These average numbers mean that the observed rBC core mass mean diameter is similar to those of aged particles, but the observed particles seem to have unusually high particle to rBC core diameter ratios. Comparison of the measured rBC mass concentration with that of the optically detected equivalent black carbon (eBC) using an Aethalometer and a MAAP showed that eBC was larger by a factor of five. The difference could not be fully explained without assuming that only a part of the optically detected light absorbing material is refractory and absorbs light at the wavelength used by the SP2. Finally, climate implications of five different black carbon mixing state representations were compared using the Mie approximation and simple direct radiative forcing efficiency calculations. These calculations showed that the observed mixing state means significantly lower warming effect or even a net cooling effect when compared with

  5. Atmospheric black carbon and sulfate concentrations in Northeast Greenland

    Directory of Open Access Journals (Sweden)

    A. Massling

    2015-04-01

    Full Text Available Measurements of Black Carbon (BC in aerosols at the high Arctic field site Villum Research Station (VRS at Station Nord in North Greenland showed a seasonal variation in BC concentrations with a maximum in winter and spring at ground level. The data was obtained using a Multi Angle Absorption Photometer (MAAP. A similar seasonal pattern was found for sulfate concentrations with a maximum level during winter and spring analyzed by ion chromatography. A correlation between BC and sulfate concentrations was observed over the years 2011 to 2013. This finding gives the hint that most likely transport of primary emitted BC particles to the Arctic was accompanied by aging of the aerosols through condensational processes. This process may have led to the formation of secondary inorganic matter and further transport of BC particles as cloud processing and further washout of particles is less likely based on the typically observed transport patterns of air masses arriving at VRS. Additionally, concentrations of EC (elemental carbon based on a thermo-optical method were determined and compared to BC measurements. Model estimates of the climate forcing due to BC in the Arctic are based on contributions of long-range transported BC during spring and summer. The measured concentrations were here compared with model results obtained by the Danish Hemispheric Model, DEHM. Good agreement between measured and modeled concentrations of both BC and sulfate was observed. The dominant source is found to be combustion of fossil fuel with biomass burning as a minor though significant source. During winter and spring the Arctic atmosphere is known to be impacted by long-range transport of BC and associated with the Arctic haze phenomenon.

  6. Black carbon concentration trends in Helsinki during 1996–2005

    Directory of Open Access Journals (Sweden)

    T. Pakkanen

    2007-10-01

    Full Text Available The black carbon (BC concentration trends were studied during ten years in Helsinki, Finland. Measurements were made in three campaigns between 1996 and 2005 at an urban area locating two kilometres from the centre of Helsinki. The first campaign was from November 1996 to June 1997, the second from September 2000 to May 2001 and the third from March 2004 to October 2005. In this study, only data from winter and spring months was analysed. The effect of traffic and meteorological variables on the measured BC concentrations was studied by means of a multiple regression analysis, where the meteorological data was obtained from a meteorological pre-processing model (MPP-FMI. During the ten years, the campaign median BC concentrations were found to decrease slightly from 1.11 to 1.00 μg m−3. The lowest campaign median concentration (0.93 μg m−3 was measured during the second campaign in 2000–2001, when also the lowest traffic rates were measured. The strongest decrease between campaigns 1 and 3 was observed during weekday daytimes, when the traffic rates are highest. The variables affecting the measured BC concentrations most were traffic, wind speed and mixing height. On weekdays, traffic had clearly the most important influence and on weekends the effect of wind speed diluted the effect of traffic. The affecting variables and their influence on the BC concentration were similar in winter and spring. The separate examination of the three campaigns showed that the effect of traffic on the BC concentrations had decreased during the studied years. This reduction was caused by cleaner emissions from vehicles, since between years 1996 and 2005 the traffic rates had increased. A rough estimate gave that vehicle number-scaled BC mass concentrations have decreased from 0.0028 to 0.0020 μg m−3 between campaigns 1 and 3.

  7. Atmospheric black carbon and sulfate concentrations in Northeast Greenland

    Science.gov (United States)

    Massling, A.; Nielsen, I. E.; Kristensen, D.; Christensen, J. H.; Sørensen, L. L.; Jensen, B.; Nguyen, Q. T.; Nøjgaard, J. K.; Glasius, M.; Skov, H.

    2015-08-01

    Measurements of equivalent black carbon (EBC) in aerosols at the high Arctic field site Villum Research Station (VRS) at Station Nord in North Greenland showed a seasonal variation in EBC concentrations with a maximum in winter and spring at ground level. Average measured concentrations were about 0.067 ± 0.071 for the winter and 0.011 ± 0.009 for the summer period. These data were obtained using a multi-angle absorption photometer (MAAP). A similar seasonal pattern was found for sulfate concentrations with a maximum level during winter and spring analyzed by ion chromatography. Here, measured average concentrations were about 0.485 ± 0.397 for the winter and 0.112 ± 0.072 for the summer period. A correlation between EBC and sulfate concentrations was observed over the years 2011 to 2013 stating a correlation coefficient of R2 = 0.72. This finding gives the hint that most likely transport of primary emitted BC particles to the Arctic was accompanied by aging of the aerosols through condensational processes. BC and sulfate are known to have only partly similar sources with respect to their transport pathways when reaching the high Arctic. Aging processes may have led to the formation of secondary inorganic matter and further transport of BC particles as cloud processing and further washout of particles is less likely based on the typically observed transport patterns of air masses arriving at VRS. Additionally, concentrations of EC (elemental carbon) based on a thermo-optical method were determined and compared to EBC measurements. EBC measurements were generally higher, but a correlation between EC and EBC resulted in a correlation coefficient of R2 = 0.64. Model estimates of the climate forcing due to BC in the Arctic are based on contributions of long-range transported BC during spring and summer. The measured concentrations were here compared with model results obtained by the Danish Eulerian Hemispheric Model, DEHM. Good agreement between measured and

  8. Origin of black carbon concentration peaks in Cairo (Egypt)

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, K.F.; Wahab, M.M.A. [Cairo Univ, Fac Sci, Astron and Meteorol Dept, Giza (Egypt); Alfaro, S.C. [Univ Paris 12, LISA, F-94010 Creteil, (France); Alfaro, S.C. [Univ Paris 07, CNRS, F-94010 Creteil (France); Favez, O.; Sciare, J. [CEA Saclay, DSM, LSCE IPSL, Lab mixte CEA-CNRS-UVSQ, F-91191 Gif Sur Yvette (France)

    2008-07-01

    The concentration in black carbon (BC) has been monitored in the mega-city of Cairo (Egypt) during the autumn 2004 and spring 2005 intensive observation periods of the Cairo Aerosol Characterization Experiment (CACHE). As expected for a species released by human activities, hourly mean of this concentration is found to be large at all times. It is also significantly larger in autumn than in spring (9.9 {+-} 6.6 and 6.9 {+-} 4.8 {mu}gC/m{sup 3}, respectively) and quite variable at shorter (diurnal) time scales. Indeed, sharp concentration peaks larger than 25 {mu}gC/m{sup 3} are frequently detected during both observation periods. In order to apportion the roles played by emission intensity and meteorological conditions in the development of these peaks, a simple model is developed that allows derivation of the hourly mean BC emissions by the part of town located upwind of the measurement site. The analysis of the time dependence of these emissions indicates that traffic is by far the major source of BC in Cairo during daytime and this even in autumn when biomass burning takes place in the Nile delta. It is only between 03:00 and 05:00 in the night, at a time when traffic emissions are quite reduced, that the influence of this particular source on BC concentration can become significant. This study also indicates that BC emissions by motorized traffic remain important from the morning rush hour until late in the night. During the day, and particularly in spring, the dilution effect resulting from the development of the planetary boundary layer prevents BC concentrations from becoming very large. This is no longer the case just before sunrise and after sunset, when the combination of dense traffic and low boundary layer is responsible for the observed sharp increase in BC concentration. (authors)

  9. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments

    NARCIS (Netherlands)

    Koelmans, A.A.; Nowack, B.; Wiesner, M.

    2009-01-01

    In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to agg

  10. Black carbon in marine sediments

    NARCIS (Netherlands)

    Middelburg, J.J.; Nieuwenhuize, J.; Van Breugel, P.

    1999-01-01

    Concentrations of black carbon were determined for a number of marine sediments. A comparison of black carbon based on thermal oxidation and hot concentrated nitric acid pretreatments revealed that the latter significantly overestimates combustion derived carbon phases. Black carbon accounts for abo

  11. Black carbon and elemental concentration of ambient particulate matter in Makassar Indonesia

    International Nuclear Information System (INIS)

    Airborne particulate matter with aerodynamic diameter of less or equal to 10 um or PM10, has been collected on a weekly basis for one year from February 2012 to January 2013 at one site of Makassar, Province of South Sulawesi Indonesia. The samples were collected using a size selective high volume air sampler sited at Daya, a mixed urban, commercial and industrial area in the city of Makassar. The concentration of black carbon (BC) along with a total of 14 elements (i.e Al, Ba, Ca, Cr, Fe, K, Mg, Ba, Na, Ni, Pb, Si, Ti and Zn) were determined from the sample. Results showed that the average particulate mass concentration was 32.9 ± 11.6 μg/m3 with BC and elemental concentration constituted 6.1% and 10.6% of the particulate concentration, respectively. Both BC and elemental constituents contributed 16.7% while 83.3% of the particulate matter remained to be counted for. The black carbon concentration was higher during the dry months which may be attributed to rampant biomass burning during hot and dry weather conditions, apart from other possible sources. Most of the elements were enriched relative to soil origin illustrating of their possible associations with other sources such as marine and anthropogenic derived aerosols, particularly Cr, Ni, Pb, and Zn, which are known to originate from man-made activities

  12. Spatio-temporal variations of black carbon concentrations in the Megacity Beijing.

    Science.gov (United States)

    Schleicher, Nina; Norra, Stefan; Fricker, Mathieu; Kaminski, Uwe; Chen, Yizhen; Chai, Fahe; Wang, Shulan; Yu, Yang; Cen, Kuang

    2013-11-01

    The spatial and temporal distribution and the flux of black carbon (BC) concentration in Beijing were continuously investigated over a two-year period at five sites to highlight the relative influence of contributing sources. The results demonstrate firstly that there is significant spatio-temporal variability of BC in Beijing. Highest concentrations occurred during winter primarily due to stagnant meteorological conditions, and seasonal BC sources, such as coal combustion for heating purposes. Biomass burning was identified as a minor seasonal source during the summer months. BC also varied spatially with higher concentrations in the SE of Beijing and lower concentrations in the NW, due to the differing emission intensity of various local BC sources such as traffic and industry. Frequently, overnight BC concentrations were higher due to specific meteorological conditions, such as the lower urban mixing layer height and various anthropogenic activities, such as exclusive night-time heavy duty vehicle traffic in the inner-city.

  13. Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India

    Science.gov (United States)

    Apte, Joshua, S.; Kirchstetter, Thomas W.; Reich, Alexander, H.; Deshpande, Shyam J.; Kaushik, Geetanjali; Chel, Arvind; Marshall, Julian D.; Nazaroff, William W.

    2011-08-01

    Concentrations of air pollutants from vehicles are elevated along roadways, indicating that human exposure in transportation microenvironments may not be adequately characterized by centrally located monitors. We report results from ˜180 h of real-time measurements of fine particle and black carbon mass concentration (PM 2.5, BC) and ultrafine particle number concentration (PN) inside a common vehicle, the auto-rickshaw, in New Delhi, India. Measured exposure concentrations are much higher in this study (geometric mean for ˜60 trip-averaged concentrations: 190 μg m -3 PM 2.5, 42 μg m -3 BC, 280 × 10 3 particles cm -3; GSD ˜1.3 for all three pollutants) than reported for transportation microenvironments in other megacities. In-vehicle concentrations exceeded simultaneously measured ambient levels by 1.5× for PM 2.5, 3.6× for BC, and 8.4× for PN. Short-duration peak concentrations (averaging time: 10 s), attributable to exhaust plumes of nearby vehicles, were greater than 300 μg m -3 for PM 2.5, 85 μg m -3 for BC, and 650 × 10 3 particles cm -3 for PN. The incremental increase of within-vehicle concentration above ambient levels—which we attribute to in- and near-roadway emission sources—accounted for 30%, 68% and 86% of time-averaged in-vehicle PM 2.5, BC and PN concentrations, respectively. Based on these results, we estimate that one's exposure during a daily commute by auto-rickshaw in Delhi is as least as large as full-day exposures experienced by urban residents of many high-income countries. This study illuminates an environmental health concern that may be common in many populous, low-income cities.

  14. Comparison of black carbon (BC) aerosols in two urban areas - concentrations and size distributions

    Science.gov (United States)

    Hitzenberger, R.; Tohno, S.

    In this study, the BC aerosol measured at two very different urban sites is compared in terms of concentration, seasonal variation, and size distribution. During a 14 month study, one impactor sample was performed each month on a day with typical meteorological conditions. One (Vienna) or three (Uji) filter samples were obtained during the sampling time of the impactors. BC concentration in both the filter and impactor samples was analyzed with an optical technique (integrating sphere technique), where a calibration curve obtained from commercial carbon black is used to convert the optical signal to BC mass. Gravimetric mass concentration was measured at both sites. The gravimetric mass size distribution was measured only in Vienna. At both sites, the yearly average of the BC concentration on the sampling days was around 5 μg m -3. In Vienna, some seasonal trend with high concentrations during the cold season was observed, while in Uji, no pronounced seasonal trend was found. The BC size distribution in Uji was distinctly bimodal in the submicron size range. Log-normal distributions were fitted through the impactor data. The average BC mass median diameters (MMD) of the two submicron modes were 0.15 and 0.39 μm. Each mode contained about the same amount of BC mass. In Vienna only one submicron BC mode (average MMD 0.3 μm) was found because of the low size resolution of the impactor. An analysis of humidity effects on the MMDs of BC (both sites) and gravimetric mass (Vienna only) indicates that the Vienna aerosol is partly mixed internally with respect to BC, while the Uji aerosol seems to be externally mixed.

  15. An analysis of continuous black carbon concentrations in proximity to an airport and major roadways

    Science.gov (United States)

    Dodson, Robin E.; Andres Houseman, E.; Morin, Barbara; Levy, Jonathan I.

    Black carbon (BC), a constituent of particulate matter, is emitted from multiple combustion sources, complicating determination of contributions from individual sources or source categories from monitoring data. In close proximity to an airport, this may include aircraft emissions, other emissions on the airport grounds, and nearby major roadways, and it would be valuable to determine the factors most strongly related to measured BC concentrations. In this study, continuous BC concentrations were measured at five monitoring sites in proximity to a small regional airport in Warwick, Rhode Island from July 2005 to August 2006. Regression was used to model the relative contributions of aircraft and related sources, using real-time flight activity (departures and arrivals) and meteorological data, including mixing height, wind speed and direction. The latter two were included as a nonparametric smooth spatial term using thin-plate splines applied to wind velocity vectors and fit in a linear mixed model framework. Standard errors were computed using a moving-block bootstrap to account for temporal autocorrelation. Results suggest significant positive associations between hourly departures and arrivals at the airport and BC concentrations within the community, with departures having a more substantial impact. Generalized Additive Models for wind speed and direction were consistent with significant contributions from the airport, major highway, and multiple local roads. Additionally, inverse mixing height, temperature, precipitation, and at one location relative humidity, were associated with BC concentrations. Median contribution estimates indicate that aircraft departures and arrivals (and other sources coincident in space and time) contribute to approximately 24-28% of the BC concentrations at the monitoring sites in the community. Our analysis demonstrated that a regression-based approach with detailed meteorological and source characterization can provide insights

  16. Observation of vertical variability of black carbon concentration in lower troposphere on campaigns in Poland

    Science.gov (United States)

    Chilinski, M. T.; Markowicz, K. M.; Markowicz, J.

    2016-07-01

    This study presents two methods for observation of black carbon (BC) vertical profiles in lower troposphere based on the micro-aethalometer AE-51. In the first method micro-aethalometer was carried by observer along trail on slope of mountain valley. Second method uses unmanned aerial vehicle as a platform for collecting data up to 1500 m above ground. Our study presents vertical profiles collected in and above Subcarphatian Wislok valley. Profiles measured on trial on slopes of Wislok valley, were collected during strong smog conditions during autumn/winter season, when BC concentration reached values above 60 μg/m3. The smog intensive layer is usually close to the surface (up to 100 m) as a results of surface inversion and the mountain breeze circulation, which during the night transports air pollution emitted from houses toward the valley's bottom. Usually the vertical profiles of BC concentration show significant reduction with the altitude, however, some multilayered structures are also observed during night time inversion conditions. It has found that smog condition can develop in clean air mass, and in those cases local pollution has significant impact on the columnar aerosol properties. During such conditions the aerosol optical depth shows diurnal cycle which is rather not observed in the long-term data. UAV flights in the lower troposphere were conducted during two sessions, one with clean polar air masses (BC concentration < 1 μg/m3) and second with moderate aerosol conditions (BC concentration 1-5 μg/m3). Profile of BC concentration shows stratification of absorbing aerosols in a shape of multi-layer structures similarly to the lidar/ceilometer signals.

  17. Parametric uncertainties in global model simulations of black carbon column mass concentration

    Science.gov (United States)

    Pearce, Hana; Lee, Lindsay; Reddington, Carly; Carslaw, Ken; Mann, Graham

    2016-04-01

    Previous studies have deduced that the annual mean direct radiative forcing from black carbon (BC) aerosol may regionally be up to 5 W m‑2 larger than expected due to underestimation of global atmospheric BC absorption in models. We have identified the magnitude and important sources of parametric uncertainty in simulations of BC column mass concentration from a global aerosol microphysics model (GLOMAP-Mode). A variance-based uncertainty analysis of 28 parameters has been performed, based on statistical emulators trained on model output from GLOMAP-Mode. This is the largest number of uncertain model parameters to be considered in a BC uncertainty analysis to date and covers primary aerosol emissions, microphysical processes and structural parameters related to the aerosol size distribution. We will present several recommendations for further research to improve the fidelity of simulated BC. In brief, we find that the standard deviation around the simulated mean annual BC column mass concentration varies globally between 2.5 x 10‑9 g cm‑2 in remote marine regions and 1.25 x 10‑6 g cm‑2 near emission sources due to parameter uncertainty Between 60 and 90% of the variance over source regions is due to uncertainty associated with primary BC emission fluxes, including biomass burning, fossil fuel and biofuel emissions. While the contributions to BC column uncertainty from microphysical processes, for example those related to dry and wet deposition, are increased over remote regions, we find that emissions still make an important contribution in these areas. It is likely, however, that the importance of structural model error, i.e. differences between models, is greater than parametric uncertainty. We have extended our analysis to emulate vertical BC profiles at several locations in the mid-Pacific Ocean and identify the parameters contributing to uncertainty in the vertical distribution of black carbon at these locations. We will present preliminary

  18. Black carbon concentration and deposition estimations in Finland by the regional aerosol–climate model REMO-HAM

    Directory of Open Access Journals (Sweden)

    A. I. Hienola

    2013-04-01

    Full Text Available The prediction skill of the regional aerosol–climate model REMO-HAM was assessed against the black carbon (BC concentration measurements from five locations in Finland, with focus on Hyytiälä station for the year 2005. We examined to what extent the model is able to reproduce the measurements using several statistical tools: median comparison, overlap coefficient (OVL; the common area under two probability distributions curves and Z score (a measure of standard deviation, shape and spread of the distributions. The results of the statistics showed that the model is biased low. The local and regional emissions of BC have a significant contribution, and the model tendency to flatten the observed BC is most likely dominated by the lack of domestic burning of biofuel in the emission inventories. A further examination of the precipitation data from both measurements and model showed that there is no correlation between REMO's excessive precipitation and BC underestimation. This suggests that the excessive wet removal is not the main cause of the low black carbon concentration output. In addition, a comparison of wind directions in relation with high black carbon concentrations shows that REMO-HAM is able to predict the BC source directions relatively well. Cumulative black carbon deposition fluxes over Finland were estimated, including the deposition on snow.

  19. Spatiotemporally resolved black carbon concentration, schoolchildren's exposure and dose in Barcelona.

    Science.gov (United States)

    Rivas, I; Donaire-Gonzalez, D; Bouso, L; Esnaola, M; Pandolfi, M; de Castro, M; Viana, M; Àlvarez-Pedrerol, M; Nieuwenhuijsen, M; Alastuey, A; Sunyer, J; Querol, X

    2016-06-01

    At city level, personal monitoring is the best way to assess people's exposure. However, it is usually estimated from a few monitoring stations. Our aim was to determine the exposure to black carbon (BC) and BC dose for 45 schoolchildren with portable microaethalometers and to evaluate the relationship between personal monitoring and fixed stations at schools (indoor and outdoor) and in an urban background (UB) site. Personal BC concentra-tions were 20% higher than in fixed stations at schools. Linear mixed-effect models showed low R(2) between personal measurements and fixed stations at schools (R(2)  ≤ 0.28), increasing to R(2)  ≥ 0.70 if considering only periods when children were at schools. For the UB station, the respective R(2) were 0.18 and 0.45, indicating the importance of the distance to the monitoring station when assessing exposure. During the warm season, the fixed stations agreed better with personal measurements than during the cold one. Children spent 6% of their time on commuting but received 20% of their daily BC dose, due to co-occurrence with road traffic rush hours and the close proximity to the source. Children received 37% of their daily-integrated BC dose at school. Indoor environments (classroom and home) were responsible for the 56% BC dose. PMID:25924870

  20. Characterization of long-term and seasonal variations of black carbon (BC concentrations at Neumayer, Antarctica

    Directory of Open Access Journals (Sweden)

    R. Weller

    2013-02-01

    Full Text Available Continuous black carbon (BC observations were conducted from 1999 through 2009 by an Aethalometer (AE10 and from 2006 through 2011 by a Multi-Angle Absorption Photometer (MAAP at Neumayer Station (NM under stringent contamination control. Considering the respective observation period, BC concentrations measured by the MAAP were somewhat higher (median ± standard deviation: 2.1 ± 2.0 ng m−3 compared to the AE10 results (1.6 ± 2.1 ng m−3. Neither for the AE10 nor for the MAAP data set a significant long-term trend could be detected. Consistently a pronounced seasonality was observed with both instruments showing a primary annual maximum between October and November and a minimum in April with a maximum/minimum ratio of 4.5/1.6 = 3.8 and 2.7/0.64 = 4.2 for the MAAP and AE10 data, respectively. Occasionally a secondary summer maximum in January/February was visible. With the aim to assess the impact of BC on optical properties of the aerosol at NM, we evaluated the BC data along with particle scattering coefficients measured by an integrating nephelometer. We found the mean single scattering albedo of ω550 = 0.992 ± 0.0090 (median: 0.994 at a wavelength of 550 nm with a range of values from 0.95 to 1.0.

  1. Characterization of long-term and seasonal variations of black carbon (BC concentrations at Neumayer, Antarctica

    Directory of Open Access Journals (Sweden)

    R. Weller

    2012-09-01

    Full Text Available Continuous black carbon (BC observations were conducted from 1999 through 2009 by an Aethalometer (AE10 and from 2006 through 2011 by a Multi-Angle Absorption Photometer (MAAP at Neumayer Station (NM under stringent contamination control. Considering the respective observation period, BC concentrations measured by the MAAP were somewhat higher (median ± standard deviation: 2.1 ± 2.0 ng m−3 compared to the AE10 results (1.6 ± 2.1 ng m−3. Neither for the AE10 nor for the MAAP data set a significant long-term trend could be detected. Consistently a pronounced seasonality was observed with both instruments showing a primary annual maximum between October and November and a minimum in April with a maximum/minimum ratio of 4.5/1.6 = 3.8 and 2.7/0.64 = 4.2 for the MAAP and AE10 data, respectively. Occasionally a secondary summer maximum in January/February was visible. With the aim to assess the impact of BC on optical properties of the aerosol at NM, we evaluated the BC data along with particle scattering coefficients measured by an integrating nephelometer. We found the mean single scattering albedo of ω550 = 0.992 ± 0.0090 (median: 0.994 at a wavelength of 550 nm with a range of values from 0.95 to 1.0.

  2. Characterization of long-term and seasonal variations of black carbon (BC) concentrations at Neumayer, Antarctica

    Science.gov (United States)

    Weller, R.; Minikin, A.; Petzold, A.; Wagenbach, D.; König-Langlo, G.

    2013-02-01

    Continuous black carbon (BC) observations were conducted from 1999 through 2009 by an Aethalometer (AE10) and from 2006 through 2011 by a Multi-Angle Absorption Photometer (MAAP) at Neumayer Station (NM) under stringent contamination control. Considering the respective observation period, BC concentrations measured by the MAAP were somewhat higher (median ± standard deviation: 2.1 ± 2.0 ng m-3) compared to the AE10 results (1.6 ± 2.1 ng m-3). Neither for the AE10 nor for the MAAP data set a significant long-term trend could be detected. Consistently a pronounced seasonality was observed with both instruments showing a primary annual maximum between October and November and a minimum in April with a maximum/minimum ratio of 4.5/1.6 = 3.8 and 2.7/0.64 = 4.2 for the MAAP and AE10 data, respectively. Occasionally a secondary summer maximum in January/February was visible. With the aim to assess the impact of BC on optical properties of the aerosol at NM, we evaluated the BC data along with particle scattering coefficients measured by an integrating nephelometer. We found the mean single scattering albedo of ω550 = 0.992 ± 0.0090 (median: 0.994) at a wavelength of 550 nm with a range of values from 0.95 to 1.0.

  3. Source sector and region contributions to concentration and direct radiative forcing of black carbon in China

    Science.gov (United States)

    Li, Ke; Liao, Hong; Mao, Yuhao; Ridley, David A.

    2016-01-01

    We quantify the contributions from five domestic emission sectors (residential, industry, transportation, energy, and biomass burning) and emissions outside of China (non-China) to concentration and direct radiative forcing (DRF) of black carbon (BC) in China for year 2010 using a nested-grid version of the global chemical transport model (GEOS-Chem) coupled with a radiative transfer model. The Hemispheric Transport of Air Pollution (HTAP) anthropogenic emissions of BC for year 2010 are used in this study. Simulated surface-layer BC concentrations in China have strong seasonal variations, which exceed 9 μg m-3 in winter and are about 1-5 μg m-3 in summer in the North China Plain and the Sichuan Basin. Residential sector is simulated to have the largest contribution to surface BC concentrations, by 5-7 μg m-3 in winter and by 1-3 μg m-3 in summer, reflecting the large emissions from winter heating and the enhanced wet deposition during summer monsoon. The contribution from industry sector is the second largest and shows relatively small seasonal variations; the emissions from industry sector contribute 1-3 μg m-3 to BC concentrations in the North China Plain and the Sichuan Basin. The contribution from transportation sector is the third largest, followed by that from biomass burning and energy sectors. The non-China emissions mainly influence the surface-layer concentrations of BC in western China; about 70% of surface-layer BC concentration in the Tibet Plateau is attributed to transboundary transport. Averaged over all of China, the all-sky DRF of BC at the top of the atmosphere (TOA) is simulated to be 1.22 W m-2. Sensitivity simulations show that the TOA BC direct radiative forcings from the five domestic emission sectors of residential, industry, energy, transportation, biomass burning, and non-China emissions are 0.44, 0.27, 0.01, 0.12, 0.04, and 0.30 W m-2, respectively. The domestic and non-China emissions contribute 75% and 25% to BC DRF in China

  4. Black carbon concentrations across the tropical Atlantic boundary layer using three methods

    Science.gov (United States)

    Pohl, K.; Lohmann, R.; Cantwell, M.; Herckes, P.

    2012-12-01

    24 particulate black carbon (BC) samples were quantified using three methods: a chemo-thermal oxidation at 375°C (CTO-375), a thermal optical transition method (Sunset Method), and pyrene fluorescence loss (PFL). BC samples were taken using a high-volume air sampler aboard the R/V Endeavor during the summer of 2010 in the Equatorial Atlantic Ocean in order to sample the aeolian "hotspot" plume of aerosols that extend from the African continent. Models have shown that annual elemental carbon (EC) deposition fluxes in this area could be as high as 25μg cm-2 a-1, which may be a significant contribution to the overall carbon budget as well as climate forcing simulations. Expected BC concentrations for this area, based on a global BC inventory using the MOGUNTIA global transport model, range between 0.01-1μg/m3 depending on season. The CTO-375 processed samples were run on an IRMS to get the total organic carbon (TOC), BC concentrations, and δ13C isotope ratios. BC was detected in every sample and concentrations ranged between 0.16-9.97μg/m3. BC concentrations were highest off the coast of the US and Caribbean islands but were lower (0.16-0.26μg/m3) in the African plume sampled between 1-5°N and 21-29°W. BC comprised between 13-81% of the TOC pool and δ13C isotopes between the TOC and BC for each sample differed by no more than 3‰. The TOC and BC pools average was -28.9‰ and -28.1‰ respectively, suggesting a C4 plant origin. A different isotope trend was evident for samples 16-19 (African plume). Their δ13C average was -23.1‰ for TOC, suggesting a mostly marine origin of the organic carbon or a mix of marine with C3 and C4 plants. This supports the observed lower BC/TOC ratio in these samples (13-50%). EC concentrations determined by the Sunset Method ranged between 0-0.32μg/m3, with EC being detected in only 8 of the 24 samples. In general, EC was found above the detection limit near the United States coastline or in the "hotspot" plume off Africa

  5. Cluster analysis of particulate matter (PM10) and black carbon (BC) concentrations

    Science.gov (United States)

    Žibert, Janez; Pražnikar, Jure

    2012-09-01

    The monitoring of air-pollution constituents like particulate matter (PM10) and black carbon (BC) can provide information about air quality and the dynamics of emissions. Air quality depends on natural and anthropogenic sources of emissions as well as the weather conditions. For a one-year period the diurnal concentrations of PM10 and BC in the Port of Koper were analysed by clustering days into similar groups according to the similarity of the BC and PM10 hourly derived day-profiles without any prior assumptions about working and non-working days, weather conditions or hot and cold seasons. The analysis was performed by using k-means clustering with the squared Euclidean distance as the similarity measure. The analysis showed that 10 clusters in the BC case produced 3 clusters with just one member day and 7 clusters that encompasses more than one day with similar BC profiles. Similar results were found in the PM10 case, where one cluster has a single-member day, while 7 clusters contain several member days. The clustering analysis revealed that the clusters with less pronounced bimodal patterns and low hourly and average daily concentrations for both types of measurements include the most days in the one-year analysis. A typical day profile of the BC measurements includes a bimodal pattern with morning and evening peaks, while the PM10 measurements reveal a less pronounced bimodality. There are also clusters with single-peak day-profiles. The BC data in such cases exhibit morning peaks, while the PM10 data consist of noon or afternoon single peaks. Single pronounced peaks can be explained by appropriate cluster wind speed profiles. The analysis also revealed some special day-profiles. The BC cluster with a high midnight peak at 30/04/2010 and the PM10 cluster with the highest observed concentration of PM10 at 01/05/2010 (208.0 μg m-3) coincide with 1 May, which is a national holiday in Slovenia and has very strong tradition of bonfire parties. The clustering of

  6. Contributions Of Black Carbon Concentration To Atmospheric Particulate Matter Levels In Navrongo Senior High School. October 2010-March 2011.

    Directory of Open Access Journals (Sweden)

    Abdul-Razak Fuseini

    2015-03-01

    Full Text Available ABSTRACT The objective of this research was to assess the black carbon concentration in air borne particulate matter in ambient air due to the use of biomass for cooking in the Navrongo Senior High School. The Gent air sampler was used to sample airborne particulate matter in the Navrongo Senior High School. These particulates were collected on nuclepore polycarbonate filters for a period of six months. In addition to determination of particulate mass in the two fractions by gravimetric method the aerosol filters were also analyzed for black carbon BC concentration levels using the black smoke reflectometer method. The average fine fraction mass concentration determined was 134.59gm-3 with a minimum of 9.28gm-3 and a maximum of 338.11gm-3 and that of coarse fraction CF was 355.04gm-3 with a minimum of 61.73gm-3 and a maximum of 1117.43gm-3. The black carbon concentration in fine average was 7.62gm-3 with a minimum of 1.68gm-3 and a maximum of 35.35gm-3 and that of the coarse was 6.92gm-3 with a minimum of 1.76gm-3 and a maximum of 22.61gm-3. The results of this research were compared to other works in the country. It was however realized that the values of this research were about twice as much as the other works. This was due to the fact that biomass burning is generally used for cooking in the study area which is usual of Northern Ghana and so produces a lot of black carbon as compared to the other area which are semi-urban areas in the southern part of the country. The values obtained for coarse to fine particulate matter ratio suggest that the particulates were not only largely made up of combustion generated carbonaceous particles but also particulate matter emissions from natural activities.

  7. Variability of levels of PM, black carbon and particle number concentration in selected European cities

    Directory of Open Access Journals (Sweden)

    C. Reche

    2011-03-01

    Full Text Available In many large cities of Europe standard air quality limit values of particulate matter (PM are exceeded. Emissions from road traffic and biomass burning are frequently reported to be the major causes. As a consequence of these exceedances a large number of air quality plans, most of them focusing on traffic emissions reductions, have been implemented in the last decade. In spite of this implementation, a number of cities did not record a decrease of PM levels. Thus, is the efficiency of air quality plans overestimated? Or do we need a more specific metric to evaluate the impact of the above emissions on the levels of urban aerosols?

    This study shows the results of the interpretation of the 2009 variability of levels of PM, black carbon (BC, aerosol number concentration (N and a number of gaseous pollutants in seven selected urban areas covering road traffic, urban background, urban-industrial, and urban-shipping environments from southern, central and northern Europe.

    The results showed that variations of PM and N levels do not always reflect the variation of the impact of road traffic emissions on urban aerosols. However, BC levels vary proportionally with those of traffic related gaseous pollutants, such as CO, NO2 and NO. Due to this high correlation, one may suppose that monitoring the levels of these gaseous pollutants would be enough to extrapolate exposure to traffic-derived BC levels. However, the BC/CO, BC/NO2 and BC/NO ratios vary widely among the cities studied, as a function of distance to traffic emissions, vehicle fleet composition and the influence of other emission sources such as biomass burning. Thus, levels of BC should be measured at air quality monitoring sites.

    During traffic rush hours, a narrow variation in the N/BC ratio was evidenced, but a wide variation of this ratio was determined for the noon period. Although in central and northern Europe N and BC levels tend to vary

  8. Carbon black recovery

    International Nuclear Information System (INIS)

    A process and apparatus for recovering carbon black from hot smoke which comprises passing the smoke through a cyclone separation zone following cooling, then through aggregate filter beds and regeneration of filter beds with clean off-gas which is recycled to the carbon black reaction zone as quench

  9. Characteristics of High Time-Resolved Concentrations of Particulate Inorganic Ions and Black Carbon Downwind of Seoul, Korea

    Science.gov (United States)

    Lee, Y.; Choi, Y.; Kim, C.; Ghim, Y.

    2012-12-01

    Concentrations of inorganic ions and black carbon (BC) in PM2.5 were continuously measured using PILS (particle-into-liquid sampler, ADI 2081, Applikon) and MAAP (Multiangle Absorption Photometer, Model 5012, Thermo), respectively, for three and half months from mid-February to May, at intervals of 20-30 minutes. The measurements were made at the Global Campus of Hankuk University of Foreign Studies, about 35 km southeast of downtown Seoul, the general area of which is affected by prevailing northwesterlies. The site is considered to be an ideal place for exploring transport of air pollutants and formation of secondary ions by photochemical reactions since there are no major emission sources nearby except a 4-lane road running about 1.4 km to the west. Analyses were made by two stages. In the first stage, typical types of diurnal variations in inorganic ions and BC concentrations were identified using cluster analysis. Diurnal variations in concentrations of each cluster were compared with the mean diurnal variations during the measurement period. Factors causing the differences in diurnal variations were discussed by cluster and by species. In the second stage, high and low concentration episodes were determined based on three-day moving averages of the sum of concentrations of particulate inorganic ions and BC. Mean concentrations and compositions in each episode were compared with those during the measurement period.

  10. Airborne black carbon concentrations over an urban region in western India-temporal variability, effects of meteorology, and source regions.

    Science.gov (United States)

    Bapna, Mukund; Sunder Raman, Ramya; Ramachandran, S; Rajesh, T A

    2013-03-01

    This study characterizes over 5 years of high time resolution (5 min), airborne black carbon (BC) concentrations (July 2003 to December 2008) measured over Ahmedabad, an urban region in western India. The data were used to obtain different time averages of BC concentrations, and these averages were then used to assess the diurnal, seasonal, and annual variability of BC over the study region. Assessment of diurnal variations revealed a strong association between BC concentrations and vehicular traffic. Peaks in BC concentration were co-incident with the morning (0730 to 0830, LST) and late evening (1930 to 2030, LST) rush hour traffic. Additionally, diurnal variability in BC concentrations during major festivals (Diwali and Dushera during the months of October/November) revealed an increase in BC concentrations due to fireworks displays. Maximum half hourly BC concentrations during the festival days were as high as 79.8 μg m(-3). However, the high concentrations rapidly decayed suggesting that local meteorology during the festive season was favorable for aerosol dispersion. A multiple linear regression (MLR) model with BC as the dependent variable and meteorological parameters as independent variables was fitted. The variability in temperature, humidity, wind speed, and wind direction accounted for about 49% of the variability in measured BC concentrations. Conditional probability function (CPF) analysis was used to identify the geographical location of local source regions contributing to the effective BC measured (at 880 nm) at the receptor site. The east north-east (ENE) direction to the receptor was identified as a major source region. National highway (NH8) and two coal-fired thermal power stations (at Gandhinagar and Sabarmati) were located in the identified direction, suggesting that local traffic and power plant emissions were likely contributors to the measured BC.

  11. Black Carbon Concentrations and Diesel Vehicle Emission FactorsDerived from Coefficient of Haze Measurements in California:1967-2003

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

    2007-10-01

    We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population's exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of {approx}3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

  12. Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003

    Energy Technology Data Exchange (ETDEWEB)

    Tast, CynthiaL; Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.; Fairley, David

    2007-11-09

    We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population?s exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of ~;;3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

  13. Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

    Science.gov (United States)

    Pohl, K.; Cantwell, M.; Herckes, P.; Lohmann, R.

    2013-11-01

    Black carbon (BC) is the highly carbonaceous byproduct of biomass burning and fossil fuel combustion with a composition ranging from thermally stable soot to less recalcitrant charcoal. Atmospheric particulate matter samples across the tropical Atlantic Ocean were quantified for BC using four different methods: chemothermal oxidation at 375 °C (CTO-375), pyrene fluorescence loss, thermal optical transmittance, and optical transmission attenuation. The highest BC concentrations were detected in the Caribbean Sea and off the African coast, with a regional average of 0.6 μg m-3 for both. The lowest average concentrations were measured off the coast of South America at 0.2 to 0.3 μg m-3. The thermally-based CTO-375 method generally detected lower BC concentrations than the other three methods. The ratio of soot-like BC, as defined by the CTO-375 method, relative to the broader BC combustion continuum, as defined by the pyrene fluorescence loss, was <1 for all regions except for the Caribbean, supporting that charcoal was an important fraction of the aerosol BC. Regions impacted by biomass burning emissions should utilize multiple methods to better apportion the BC concentrations and sources.

  14. Correction for a measurement artifact of the Multi-Angle Absorption Photometer (MAAP at high black carbon mass concentration levels

    Directory of Open Access Journals (Sweden)

    A.-P. Hyvärinen

    2013-01-01

    Full Text Available The Multi-Angle Absorption Photometer (MAAP is a widely-used instrument for aerosol black carbon (BC measurements. In this paper, we show correction methods for an artifact found to affect the instrument accuracy in environments characterized by high black carbon concentrations. The artifact occurs after a filter spot change – as BC mass is accumulated on a fresh filter spot, the attenuation of the light (raw signal is weaker than anticipated. This causes a sudden decrease, followed by a gradual increase in measured BC concentration. The artifact is present in the data when the BC concentration exceeds ~3 μg m−3 at the typical MAAP flow rate of 16.7 L min−1 or 1 m3 h−1. The artifact is caused by erroneous dark counts in the photodetector measuring the transmitted light, in combination with an instrument internal averaging procedure of the photodetector raw signals. It was found that, in addition to the erroneous temporal response of the data, concentrations higher than 9 μg m−3 (at the flow rate of 16.7 L min−1 are underestimated by the MAAP. The underestimation increases with increasing BC accumulation rate. At a flow rate of 16.7 L min−1 and concentration of about 24 μg m−3 (BC accumulation rate ~0.4 μg min−1, the underestimation is about 30%. There are two ways of overcoming the MAAP artifact. One method is by logging the raw signal of the 165° photomultiplier measuring the reflected light from the filter spot. As this signal is not affected by the artifact, it can be converted to approximately correct absorption and BC values. However, as the typical print formats of the MAAP do not give the reflected signal as an output, a semi-empirical correction method was developed based on laboratory experiments to correct for the results in the post-processing phase. The correction function was applied to three MAAP datasets from

  15. Correction for a measurement artifact of the Multi-Angle Absorption Photometer (MAAP) at high black carbon mass concentration levels

    Science.gov (United States)

    Hyvärinen, A.-P.; Vakkari, V.; Laakso, L.; Hooda, R. K.; Sharma, V. P.; Panwar, T. S.; Beukes, J. P.; van Zyl, P. G.; Josipovic, M.; Garland, R. M.; Andreae, M. O.; Pöschl, U.; Petzold, A.

    2013-01-01

    The Multi-Angle Absorption Photometer (MAAP) is a widely-used instrument for aerosol black carbon (BC) measurements. In this paper, we show correction methods for an artifact found to affect the instrument accuracy in environments characterized by high black carbon concentrations. The artifact occurs after a filter spot change - as BC mass is accumulated on a fresh filter spot, the attenuation of the light (raw signal) is weaker than anticipated. This causes a sudden decrease, followed by a gradual increase in measured BC concentration. The artifact is present in the data when the BC concentration exceeds ~3 μg m-3 at the typical MAAP flow rate of 16.7 L min-1 or 1 m3 h-1. The artifact is caused by erroneous dark counts in the photodetector measuring the transmitted light, in combination with an instrument internal averaging procedure of the photodetector raw signals. It was found that, in addition to the erroneous temporal response of the data, concentrations higher than 9 μg m-3 (at the flow rate of 16.7 L min-1) are underestimated by the MAAP. The underestimation increases with increasing BC accumulation rate. At a flow rate of 16.7 L min-1 and concentration of about 24 μg m-3 (BC accumulation rate ~0.4 μg min-1), the underestimation is about 30%. There are two ways of overcoming the MAAP artifact. One method is by logging the raw signal of the 165° photomultiplier measuring the reflected light from the filter spot. As this signal is not affected by the artifact, it can be converted to approximately correct absorption and BC values. However, as the typical print formats of the MAAP do not give the reflected signal as an output, a semi-empirical correction method was developed based on laboratory experiments to correct for the results in the post-processing phase. The correction function was applied to three MAAP datasets from Gual Pahari (India), Beijing (China), and Welgegund (South Africa). In Beijing, the results could also be compared against a

  16. Correction for a measurement artifact of the Multi-Angle Absorption Photometer (MAAP at high black carbon mass concentration levels

    Directory of Open Access Journals (Sweden)

    A.-P. Hyvärinen

    2012-09-01

    Full Text Available The Multi-Angle Absorption Photometer (MAAP is a widely-used instrument for aerosol black carbon observations. In this paper, we show correction methods for an artifact found to affect the instrument accuracy in environments with high black carbon concentrations. The artifact occurs after a filter spot change – as BC mass is accumulated on a fresh filter spot, the attenuation of the light (raw signal is weaker than anticipated. This causes a sudden decrease, followed by a gradual increase in measured BC concentration. The artifact is present in the data when the BC concentration exceeds ∼3 μg m−3 at the typical MAAP flow rate of 16.7 l min−1 or 1 m3 h−1. The artifact is caused by erroneous dark counts in the photo detector measuring the transmitted light, in combination with an instrument internal averaging procedure of the photo detector raw signals. It was found that in addition to the erroneous temporal response of the data, concentrations higher than 9 μg m−3 (at the flow rate of 16.7 l min−1 are underestimated by the MAAP. The underestimation increases with increasing BC accumulation rate. At a flow rate of 16.7 l min−1 and concentration of about 24 μg m−3 (BC accumulation rate ∼0.4 μg min−1, the underestimation is about 30%. There are two ways of overcoming the MAAP artifact. One method is by logging the raw signal of the 165° photomultiplier measuring the reflected light from the filter spot. As this signal is not affected by the artifact, it can be converted to approximately correct absorption and BC values. However, as the typical print formats of the MAAP do not give the reflected signal as an output, a semi-empirical correction method was developed based on laboratory experiments to correct for the results in the post-processing phase. The correction function was applied to three MAAP datasets from Gual Pahari

  17. Associations of PM2.5 and black carbon concentrations with traffic, idling, background pollution, and meteorology during school dismissals.

    Science.gov (United States)

    Richmond-Bryant, J; Saganich, C; Bukiewicz, L; Kalin, R

    2009-05-01

    An air quality study was performed outside a cluster of schools in the East Harlem neighborhood of New York City. PM(2.5) and black carbon concentrations were monitored using real-time equipment with a one-minute averaging interval. Monitoring was performed at 1:45-3:30 PM during school days over the period October 31-November 17, 2006. The designated time period was chosen to capture vehicle emissions during end-of-day dismissals from the schools. During the monitoring period, minute-by-minute volume counts of idling and passing school buses, diesel trucks, and automobiles were obtained. These data were transcribed into time series of number of diesel vehicles idling, number of gasoline automobiles idling, number of diesel vehicles passing, and number of automobiles passing along the block adjacent to the school cluster. Multivariate regression models of the log-transform of PM(2.5) and black carbon (BC) concentrations in the East Harlem street canyon were developed using the observation data and data from the New York State Department of Environmental Conservation on meteorology and background PM(2.5). Analysis of variance was used to test the contribution of each covariate to variability in the log-transformed concentrations as a means to judge the relative contribution of each covariate. The models demonstrated that variability in background PM(2.5) contributes 80.9% of the variability in log[PM(2.5)] and 81.5% of the variability in log[BC]. Local traffic sources were demonstrated to contribute 5.8% of the variability in log[BC] and only 0.43% of the variability in log[PM(2.5)]. Diesel idling and passing were both significant contributors to variability in log[BC], while diesel passing was a significant contributor to log[PM(2.5)]. Automobile idling and passing did not contribute significant levels of variability to either concentration. The remainder of variability in each model was explained by temperature, along-canyon wind, and cross-canyon wind, which were

  18. Fine Particulate Matter in São Paulo During the Winter Months: Concentrations and Black Carbon Comparison Between Techniques and Equipments

    Science.gov (United States)

    Miranda, R. M.; Andrade, M. D. F.

    2014-12-01

    During the winter months in São Paulo, Brazil, particulate matter and black carbon were monitored using a Dust Trak (TSI model 8533), a Black Carbon monitor (MAAP-Thermo) and a PM2.5 sampler (Partisol-Thermo). The concentrations were obtained every 5 minutes, from June to August 2014, for the first and second and every 12 hours for the third. The experiment took place in a site at the University of São Paulo which is located in the Southeast part of the Metropolitan Area of São Paulo (MASP). MASP is one of the biggest urban centers of the world, with more than 20 million inhabitants, 10 million vehicles and high values of some regulated pollutants, as particulate matter, especially in winter. Ambient fine particles associated with vehicle emissions have been linked to adverse health effects. Black carbon has a significant share of particulate mass concentrations. Previous studies showed a contribution of more than 30% for São Paulo. This year the climate was atypical in São Paulo. The summer was the driest of the last 30 years. The winter was hot and also dry. Dust trak monitor showed peaks of more than 120 μg/m3 for PM2.5. For a specific period, black carbon concentrations from the MAAP monitor were compared to black carbon measured by optical reflectance on teflon filters collected by the Partisol sampler. Monitor values were around 30% higher, but specific characteristics can influence this value. In the past, optical reflectance and thermal techniques for black carbon were compared. The reflectance technique showed higher results for the fine fraction than the thermal method. Now, reflectance is being compared to instrument measurements and results are also satisfactory.

  19. Measurement of black carbon concentration as an indicator of air quality benefits of traffic restriction policies within the ecopass zone in Milan, Italy

    Science.gov (United States)

    Invernizzi, Giovanni; Ruprecht, Ario; Mazza, Roberto; De Marco, Cinzia; Močnik, Griša; Sioutas, Costantinos; Westerdahl, Dane

    2011-07-01

    Traffic restrictions are an unpopular tool to mitigate urban air pollution, and a measurable improvement in air quality is needed to demonstrate the effectiveness of this measure. Previous attempts failed to detect measurable reductions of PM mass pollution within the areas subject to traffic restriction. However black carbon, which is emitted primarily by traffic sources, could be a PM metric more suitable than PM mass to demonstrate pollutant reductions. In this study we report the results of a black carbon monitoring campaign carried out in Milan, Italy, with the aim to detect - and demonstrate more suitably than PM mass - differences in local urban air quality among three zones located very closely with different traffic intensity. The study was carried out in three different days by measuring simultaneously black carbon and PM mass concentrations with fixed monitoring stations located in three main radial roads connecting the outskirts to the city center, each with three segments: 1) an outer one, with no traffic restrictions 2) an intermediate one, subject to the congestion traffic charge called "Ecopass", where a ticket is required to enter for cars equipped with engines prior to Euro 4 standard; 3) the pedestrian zone (no cars admitted) of Duomo Square in the city center, where each of the three main roads ends. The results demonstrated a sharply declining gradient in black carbon levels from the outer zone, without traffic restrictions, to the more central areas, for all of the three radial main roads. The differences in mean black carbon levels in the same day in the different traffic scheme locations were highly significant for each comparison. In contrast to the Black carbon results, mean PM 10, PM 2.5, PM 1 concentrations did not show significant differences among the different traffic zones on the different campaign days. The ratio of black carbon to PM 10 decreased by 47% and 62% in the Ecopass zone and in the pedestrian zone, respectively, as

  20. Black carbon (BC) of urban topsoil of steel industrial city (Anshan), Northeastern China: Concentration, source identification and environmental implication.

    Science.gov (United States)

    Zong, Yutong; Xiao, Qing; Lu, Shenggao

    2016-11-01

    Black carbon (BC) and total carbon (TC) concentrations in urban topsoils and vertical profiles from steel industrial city, Anshan, Northeastern China, were determined. A total of 115 topsoil samples and 4 soil profiles were collected, in which the BC concentrations were determined using chemical oxidation technique. The BC concentrations in urban topsoils are in the range of 1.86 to 246.46gkg(-1) with an average of 33.86gkg(-1). Both BC and TC concentrations decrease sharply with soil depth, whereas BC/TC ratio shows a little variation with depth. The spatial distribution of BC in urban topsoils reveals that the BC concentration is much higher in the northern part of the city, which is consistent with the steel production. The distribution factors (DF) of BC are the highest in 1000-500 and 500-250μm size fractions, while the lowest in 50-2μm fraction. The mass loading of BC in 250-50 and 50-2μm size fractions accounts for 76.2% of bulk soil, indicating these two size fractions responsible for BC accumulation in soils. Enrichment factor (EF) of BC in urban topsoils ranges from 0.92 to 122.01 with an average of 16.76, indicating that the urban topsoils studied are moderately or severely accumulated by the BC. Strong correlation is found between BC and pollution load index (PLI) of heavy metals, indicating the possibility of similar sources of BC and heavy metals in soils. The BC/TC ratio in soils ranges from 0.45 to 0.97, with an average of 0.75. The BC/TC ratio shows the mixed sources of BC derived from fossil fuel combustion and vehicle emissions. The BC concentration and BC/TC ratio may reflect the degree of industrial activities and pollution sources in urban soils. The study demonstrated that BC is an effective indicator of degree and "hotspots" of heavy metals pollution in urban soils. PMID:27450257

  1. Mass concentrations of black carbon measured by four instruments in the middle of Central East China in June 2006

    Science.gov (United States)

    Kanaya, Y.; Komazaki, Y.; Pochanart, P.; Liu, Y.; Akimoto, H.; Gao, J.; Wang, T.; Wang, Z.

    2008-12-01

    Mass concentrations of black carbon (BC) were determined in June 2006 at the top of Mount Tai (36.26° N, 117.11° E, 1534 m a.s.l.), located in the middle of Central East China, using four different instruments: a multi-angle absorption photometer (5012 MAAP, Thermo), a particle soot absorption photometer (PSAP, Radiance Research), an ECOC semi-continuous analyzer (Sunset Laboratory) and an Aethalometer (AE-21, Magee Scientific). High correlation coefficients (R2>0.88) were obtained between the measurements of the BC mass concentrations made using the different instruments. From the range of the slopes of the linear least-square fittings, we concluded that BC concentrations regionally-representative of the area were measured in a range with a maximum-to-minimum ratio of 1.5 (an exception was that the BC (PM2.5) concentrations derived from MAAP were ~2 times higher than the optical measurements (PM2.5) derived from the ECOC analyzer). While this range is significant, it is still sufficiently narrow to better constrain the large and highly uncertain emission rate of BC from Central East China. In detail, two optical instruments (the MAAP and the PSAP equipped with a heated inlet 400°C) tended to give higher concentrations than the thermal EC concentrations observed by the ECOC analyzer. The ratios of optical BC to thermal EC showed a positive correlation with the OC/EC ratio reported by the ECOC analyzer, suggesting two explanations. One is that the optical instruments overestimated BC concentrations in spite of careful cancellation of the scattering effect in the MAAP instrument and the expected evaporation of volatile species by heating the inlet of the PSAP instrument. The other is that the determined split points between OC and EC were too late when a large amount of OC underwent charring during the analysis, resulting in an underestimation of EC by the ECOC analyzer. High ratios of optical BC to thermal EC were recorded when the NOx/NOy ratio was low, implying

  2. Mass concentrations of black carbon measured by four instruments in the middle of Central East China in June 2006

    Directory of Open Access Journals (Sweden)

    Y. Kanaya

    2008-12-01

    Full Text Available Mass concentrations of black carbon (BC were determined in June 2006 at the top of Mount Tai (36.26° N, 117.11° E, 1534 m a.s.l., located in the middle of Central East China, using four different instruments: a multi-angle absorption photometer (5012 MAAP, Thermo, a particle soot absorption photometer (PSAP, Radiance Research, an ECOC semi-continuous analyzer (Sunset Laboratory and an Aethalometer (AE-21, Magee Scientific. High correlation coefficients (R2>0.88 were obtained between the measurements of the BC mass concentrations made using the different instruments. From the range of the slopes of the linear least-square fittings, we concluded that BC concentrations regionally-representative of the area were measured in a range with a maximum-to-minimum ratio of 1.5 (an exception was that the BC (PM2.5 concentrations derived from MAAP were ~2 times higher than the optical measurements (PM2.5 derived from the ECOC analyzer. While this range is significant, it is still sufficiently narrow to better constrain the large and highly uncertain emission rate of BC from Central East China. In detail, two optical instruments (the MAAP and the PSAP equipped with a heated inlet 400°C tended to give higher concentrations than the thermal EC concentrations observed by the ECOC analyzer. The ratios of optical BC to thermal EC showed a positive correlation with the OC/EC ratio reported by the ECOC analyzer, suggesting two explanations. One is that the optical instruments overestimated BC concentrations in spite of careful cancellation of the scattering effect in the MAAP instrument and the expected evaporation of volatile species by heating the inlet of the PSAP instrument. The other is that the determined split points between OC and EC were too late when a large amount of OC underwent charring during the analysis, resulting in an underestimation of EC by the ECOC analyzer. High ratios of optical BC to thermal EC were

  3. Mass concentrations of black carbon measured by four instruments in the middle of Central East China in June 2006

    Directory of Open Access Journals (Sweden)

    Y. Kanaya

    2008-08-01

    Full Text Available Mass concentrations of black carbon (BC were determined in June 2006 at the top of Mount Tai (36.26° N, 117.11° E, 1534 m a.s.l., located in the middle of Central East China, using four different instruments: a multi-angle absorption photometer (5012 MAAP, Thermo, a particle soot absorption photometer (PSAP, Radiance Research, an ECOC semi-continuous analyzer (Sunset Laboratory and an Aethalometer (AE-21, Magee Scientific. High correlation coefficients (R2>0.88 were obtained between the measurements of the BC mass concentrations by the different instruments. From the range of the slopes of the linear least-square fittings, we concluded that the BC concentrations regionally-representative of the area were measured in a range with a maximum-to-minimum ratio of 1.5 (an exception was that the BC (PM2.5 concentrations derived from MAAP were ~2 times higher than the optical measurements (PM2.5 derived from the ECOC analyzer. This range is significant, but is still sufficiently narrow to better constrain the large and highly uncertain emission rate of BC from China. In detail, two optical instruments (the MAAP instrument and the PSAP instrument equipped with a heated inlet (400°C tended to give higher concentrations than the thermal EC concentrations observed by the ECOC analyzer. The ratios of optical BC to thermal EC showed a positive correlation with the OC/EC ratio reported by the ECOC analyzer, suggesting two possibilities. One is that the optical instruments overestimated BC concentrations in spite of careful cancellation of the scattering effect in the MAAP instrument and the expected evaporation of volatile species by heating the inlet of the PSAP instrument. The other is that the determined split points between OC and EC were too late when a large amount of OC underwent charring during the analysis, resulting in an underestimation of EC by the ECOC analyzer. High ratios of optical BC to thermal EC

  4. The seasonal cycle of the mixing layer height and its impact on black carbon concentrations in the Kathmandu Valley (Nepal)

    Science.gov (United States)

    Mues, Andrea; Rupakheti, Maheswar; Hoor, Peter; Bozem, Heiko; Münkel, Christoph; Lauer, Axel; Butler, Tim

    2016-04-01

    The properties and the vertical structure of the mixing layer as part of the planetary boundary layer are of key importance for local air quality. They have a substantial impact on the vertical dispersion of pollutants in the lower atmosphere and thus on their concentrations near the surface. In this study, ceilometer measurements taken within the framework of the SusKat project (Sustainable Atmosphere for the Kathmandu Valley) are used to investigate the mixing layer height in the Kathmandu Valley, Nepal. The applied method is based on the assumption that the aerosol concentration is nearly constant in the vertical and distinctly higher within the mixing layer than in the air above. Thus, the height with the steepest gradient within the ceilometer backscatter profile marks the top of the mixing layer. Ceilometer and black carbon (BC) measurements conducted from March 2013 through February 2014 provide a unique and important dataset for the analysis of the meteorological and air quality conditions in the Kathmandu Valley. In this study the mean diurnal cycle of the mixing layer height in the Kathmandu Valley for each season (pre-monsoon, monsoon, post-monsoon and winter season) and its dependency on the meteorological situation is investigated. In addition, the impact of the mixing layer height on the BC concentration is analyzed and compared to the relevance of other important processes such as emissions, horizontal advection and deposition. In all seasons the diurnal cycle is typically characterized by low mixing heights during the night, gradually increasing after sun rise reaching to maximum values in the afternoon before decreasing again. Seasonal differences can be seen particularly in the height of the mixing layer, e.g. from on average 153/1200 m (pre-monsoon) to 241/755 m (monsoon season) during the night/day, and the duration of enhanced mixing layer heights during daytime (around 12 hours (pre-monsoon season) to 8 hours (winter)). During the monsoon

  5. Wildfires in a warmer climate: Emission fluxes, emission heights, and black carbon concentrations in 2090-2099

    Science.gov (United States)

    Veira, A.; Lasslop, G.; Kloster, S.

    2016-04-01

    Global warming is expected to considerably impact wildfire activity and aerosol emission release in the future. Due to their complexity, the future interactions between climate change, wildfire activity, emission release, and atmospheric aerosol processes are still uncertain. Here we use the process-based fire model SPITFIRE within the global vegetation model JSBACH to simulate wildfire activity for present-day climate conditions and future Representative Concentration Pathways (RCPs). The modeled fire emission fluxes and fire radiative power serve as input for the aerosol-climate model ECHAM6-HAM2, which has been extended by a semiempirical plume height parametrization. Our results indicate a general increase in extratropical and a decrease in tropical wildfire activity at the end of the 21st century. Changes in emission fluxes are most pronounced for the strongest warming scenario RCP8.5 (+49% in the extratropics, -37% in the tropics). Tropospheric black carbon (BC) concentrations are similarly affected by changes in emission fluxes and changes in climate conditions with regional variations of up to -50% to +100%. In the Northern Hemispheric extratropics, we attribute a mean increase in aerosol optical thickness of +0.031±0.002 to changes in wildfire emissions. Due to the compensating effects of fire intensification and more stable atmospheric conditions, global mean emission heights change by at most 0.3 km with only minor influence on BC long-range transport. The changes in wildfire emission fluxes for the RCP8.5 scenario, however, may largely compensate the projected reduction in anthropogenic BC emissions by the end of the 21st century.

  6. Polycyclic aromatic hydrocarbons and black carbon in intertidal sediments of China coastal zones: Concentration, ecological risk, source and their relationship.

    Science.gov (United States)

    Li, Xiaofei; Hou, Lijun; Li, Ye; Liu, Min; Lin, Xianbiao; Cheng, Lv

    2016-10-01

    Polycyclic aromatic hydrocarbons (PAHs) and black carbon (BC) have attracted many attentions, especially in the coastal environments. In this study, spatiotemporal distributions of PAHs and BC, and the correlations between BC and PAHs were investigated in the intertidal sediments of China coastal zones. BC in sediments was measured through dichromate oxidation (BCCr) and thermal oxidation (BCCTO). The concentrations of BCCr in the intertidal sediments ranged between 0.61 and 6.32mgg(-1), while BCCTO ranged between 0.57 and 4.76mgg(-1). Spatial variations of δ(13)C signatures in TOC and BC were observed, varying from -21.13‰ to -24.87‰ and from -23.53‰ to -16.78‰, respectively. PAH contents of sediments ranged from 195.9 to 4610.2ngg(-1) in winter and 98.2 to 2796.5ngg(-1) in summer, and significantly seasonal variations were observed at most sampling sites. However, the results of potential toxicity assessment indicated low ecological risk in the intertidal sediments of China coastal zones. Greater concentrations of PAHs measured in the sediments of estuarine environments indicated that rivers runoff may have been responsible for the higher PAH pollution levels in the intertidal sediments of China coastal zones. Pearson's correlation analysis suggested that pyrogenic compounds of PAH were significantly related to BC, due to that both BC and these compounds derived mainly from the combustion process of fossil fuels and biomass. Overall, increasing energy consumptions caused by anthropogenic activities can contribute more emissions of BC as well as PAHs and thus improve the importance of BC in indicating pyrogenic compounds of PAHs in the intertidal sediments of China coastal zones. PMID:27266522

  7. Measurement of Atmospheric Black Carbon Concentrations, [BC]atm, in the Arctic Region from ~1700 to 2013

    Science.gov (United States)

    Husain, L.; Sarkar, S.; Jyethi, D. S.; Ruppel, M.; Dutkiewicz, V. A.

    2015-12-01

    Atmospheric black carbon (BC) aerosols play a key role in Earth's climate through direct and indirect effects. Due to a lack of long-term BC data, climate models are used to estimate BC based on fuel inventories, which have large uncertainties. Hence, long term BC data is needed to verify global models. We report here the first measurements of atmospheric BC concentrations, [BC]atm, from ~1700 to 2013 using sediments from Finnish lakes, Saanajarvi (SJ)(690 44' N, 200 52' E), and Vuoskojarvi (VJ)(69044'N, 26057'E). The cores were collected from the deepest parts of the lakes using a HTH gravity corer, sliced in 0.25 cm sections; freeze dried, and ages determined using 210Pb dating method. The BC was chemically separated, and [BC] determined by the thermal optical method. The [BC] varied from 50 to 1140µg/gdry weight in SJ; and 20 to 130µg/gdry weight in VJ. Husain et al.,(JGR, vol 113, D13102,doi:10.1029/2007JD009398, 2008) showed that the atmospheric deposition of BC into lake sediments depends on the characteristic of individual lakes, BC washout ratios, precipitation intensity, and sedimentation rates. The deposition rate, K, for a lake is defined by, [BC]sed = K[BC]atm where [BC]sed, is the concentration of BC in the sediment. We have measured [BC]atm from 1970 to 2010 in Kevo, Finland, where VJ and SJ are located. The [BC]atm from Kevo, and [BC]sed from VJ, and SJ were used to determine K for each of the lake. Owing to the availability of the long term atmospheric BC data from 1970 to 2010 multiple measurements of K were made, and provided a high measure of precision. The mean values of K for VJ, and SJ were 226 ± 60, and 830 ± 290 (m3air/ gdry weight). The K values were used to determine [BC]atm for the years before 1970. The [BC]atm from 2013 to 2006 was 82ng/m3. It increased slowly reaching a peak value of about 947 ± 322 ng/m3.The concentrations decreased subsequently to 244 ± 83ng/m3 in 1920, and changed little ~ 1774.The lowest concentration, 77

  8. The effect of mitigation measures on size distributed mass concentrations of atmospheric particles and black carbon concentrations during the Olympic Summer Games 2008 in Beijing.

    Science.gov (United States)

    Schleicher, Nina; Norra, Stefan; Dietze, Volker; Yu, Yang; Fricker, Mathieu; Kaminski, Uwe; Chen, Yuan; Cen, Kuang

    2011-12-15

    The period of the 2008 Olympic Summer Games in Beijing can be considered as a unique opportunity to study the influences of emission reduction measures on air quality improvement. Within this study atmospheric particles of different size classes (2.5 to 80 μm) were investigated before, during, and after the Olympic Games period in order to observe and assess the success of short-term measures to mitigate extreme urban aerosol pollution and also to investigate, which particle size classes were reduced most effectively. Furthermore, black carbon (BC) concentrations in fine particles (PM(2.5)) during the source control period were compared to those of the previous years in order to investigate the decrease of combustion-derived aerosols. It is shown that besides the implemented mitigation measures precipitation decisively contributed to a considerable decrease of particulate air pollution in Beijing compared to the respective concentrations during the time directly before and after the Olympic Games, and also compared to average August concentrations during the previous years and the following year 2009. Particles of the fine fraction of the coarse mode (2.5 to 5 μm), which have a residence time in the order of several days and which, therefore, are typically transported over long distances from outside of Beijing, were less efficiently reduced than coarser particles. This indicates that long-range transport of atmospheric particles is difficult to control and that presumably the established mitigation area was not large enough to also reduce the fine fraction of the coarse mode more efficiently. Furthermore, the study showed that coarse geogenic particles, which originated to a high percentage from construction sites and resuspension processes due to traffic seemed to be reduced most efficiently during the Olympic Games period. PMID:22035559

  9. Black Carbon, Metal Concentrations and Lead Isotopes Ratios in Aerosols as Tracers of Human and Natural Activities in Northern Vietnam

    Science.gov (United States)

    Guinot, B. P.

    2015-12-01

    Atmospheric brown clouds (ABC) observed as widespread layers of brownish haze are regional scale plumes of air pollutants with a hot spot of emission located in East Asia. ABC are mainly composed of aerosol particles such as Black Carbon (BC) emitted to the atmosphere during biomass burning and fossil fuels combustion. The atmospheric lifetime of BC ranges from a few days in wet season up to one month in dry season. The use of stable lead isotopes and 21 elements as tracers of air pollution was applied to identify and characterized the main sources of anthropogenic activities in Asian region. Aerosol samples from Haiphong (North Vietnam) were collected by a high volume sampler for a period of one year from October 2012 to October 2013. Vietnam's 207Pb/206Pb ratios were almost identical to those found for China. Ratios of 207Pb/206Pb ranged from 0.837 to 0.871 which agrees with values previously reported for the last 10 years in China (0.841 - 0.879). No significant variation in isotope ratio was observed during the sampling period, which suggests that there was no large seasonal variation in the isotope ratios of airborne lead. Trajectory analysis showed that almost two third of the air masses originated from East Northeast which implies that China was a major source of lead in atmosphere. Enrichment factor calculations indicated a large influence of coal activity (EF(Al) As = 1982 ± 796, EF(Al) Cd = 972 ± 659, EF(Al) Sb = 1358 ± 930) but the difference between combustion and mining exploitation could not be evidenced. Significant correlations were found between two others groups of elements: As, Cu, Ni, Zn, and Al, Fe K, Co. Wind dilution was effective on metals concentration variation. During the cold and dry season (winter) ambient concentrations were high and variable, during the warm and wet season (summer) concentrations were stable and low. Taken together, these factors also identified industrial and lithogenic activities in the region.

  10. Black carbon concentrations in the highly polluted Kathmandu Valley, Nepal: a three year monitoring with a dual-spot Aethalometer

    Science.gov (United States)

    Rupakheti, Maheswar; Drinovec, Luka; Puppala, SivaPraveen; Mahata, Khadak; Rupakheti, Dipesh; Kathayat, Bhogendra; Singdan, Pratik; Panday, Arnico; Lawrence, Mark

    2016-04-01

    Our knowledge about ambient black carbon (BC) in the vast Himalayan region, a region vulnerable to impacts of global warming, is very limited due to unavailability of a long-term ambient monitoring. Here we present results from a continuous monitoring of ambient BC concentrations, with a new generation Aethalometer (AE33), over a three year period (January 2013- January 2016) at a semi-urban site in the highly polluted Kathmandu Valley in the foothills of the central Himalaya, one of the most polluted cities in the world. This is the longest time series of BC concentrations that have been monitored with AE33 (which uses the dual-spot technique for a real-time filter loading compensation) in highly polluted ambient environment. The measurements were carried out under the framework of project SusKat (Sustainable Atmosphere for the Kathmandu Valley). BC concentrations were found to be extremely high, especially in winter and the pre-monsoon period, with the hourly-averaged values often exceeding 50 μg/m3. BC concentrations showed a clear diurnal cycle with a prominent peak around 8-9 am and a second peak around 8-9 pm local time in all four seasons. Night-time BC was also fairly high. The diurnal cycle was driven by a combination of increased emissions from traffic, cooking activities, garbage burning, and lower mixing heights (˜200 m) and reduced horizontal ventilation in the mornings and evenings. BC concentrations showed significant seasonal variations - a maximum in winter season and minimum during the monsoon (rainy) season, with monthly average values in the range 5-30 μg/m3. An increase in emissions from the operation of over 100 brick kilns in winter and spring, and an increase in the use of small but numerous diesel power generators during hours with power cuts contributed significantly to ambient BC concentrations in the valley. Fractional contributions of biomass burning and fossil fuel combustion to BC was estimated based on a real-time method for

  11. Fire emission heights in the climate system – Part 2: Impact on transport, black carbon concentrations and radiation

    Directory of Open Access Journals (Sweden)

    A. Veira

    2015-07-01

    Full Text Available Wildfires represent a major source for aerosols impacting atmospheric radiation, atmospheric chemistry and cloud micro-physical properties. Previous case studies indicated that the height of the aerosol–radiation interaction may crucially affect atmospheric radiation, but the sensitivity to emission heights has been examined with only a few models and is still uncertain. In this study we use the general circulation model ECHAM6 extended by the aerosol module HAM2 to investigate the impact of wildfire emission heights on atmospheric long-range transport, black carbon (BC concentrations and atmospheric radiation. We simulate the wildfire aerosol release using either various versions of a semi-empirical plume height parametrization or prescribed standard emission heights in ECHAM6-HAM2. Extreme scenarios of near-surface or free-tropospheric-only injections provide lower and upper constraints on the emission height climate impact. We find relative changes in mean global atmospheric BC burden of up to 7.9±4.4 % caused by average changes in emission heights of 1.5–3.5 km. Regionally, changes in BC burden exceed 30–40 % in the major biomass burning regions. The model evaluation of aerosol optical thickness (AOT against Moderate Resolution Imaging Spectroradiometer (MODIS, AErosol RObotic NETwork (AERONET and Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP observations indicates that the implementation of a plume height parametrization slightly reduces the ECHAM6-HAM2 biases regionally, but on the global scale these improvements in model performance are small. For prescribed emission release at the surface, wildfire emissions entail a total sky top-of-atmosphere (TOA radiative forcing (RF of −0.16±0.06 W m−2. The application of a plume height parametrization which agrees reasonably well with observations introduces a slightly stronger negative TOA RF of −0.20±0.07 W m−2. The standard ECHAM6-HAM2 model in which 25 % of the

  12. Pyrolytic carbon coated black silicon.

    Science.gov (United States)

    Shah, Ali; Stenberg, Petri; Karvonen, Lasse; Ali, Rizwan; Honkanen, Seppo; Lipsanen, Harri; Peyghambarian, N; Kuittinen, Markku; Svirko, Yuri; Kaplas, Tommi

    2016-01-01

    Carbon is the most well-known black material in the history of man. Throughout the centuries, carbon has been used as a black material for paintings, camouflage, and optics. Although, the techniques to make other black surfaces have evolved and become more sophisticated with time, carbon still remains one of the best black materials. Another well-known black surface is black silicon, reflecting less than 0.5% of incident light in visible spectral range but becomes a highly reflecting surface in wavelengths above 1000 nm. On the other hand, carbon absorbs at those and longer wavelengths. Thus, it is possible to combine black silicon with carbon to create an artificial material with very low reflectivity over a wide spectral range. Here we report our results on coating conformally black silicon substrate with amorphous pyrolytic carbon. We present a superior black surface with reflectance of light less than 0.5% in the spectral range of 350 nm to 2000 nm. PMID:27174890

  13. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon concentrations at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.)

    OpenAIRE

    Cristofanelli, P; Fierli, F.; Marinoni, A.; Duchi, R.; Burkhart, J.; A. Stohl; M. Maione; Arduini, J.; Bonasoni, P.

    2012-01-01

    This work investigates the variability of ozone (O3), carbon monoxide (CO) and equivalent black carbon (BC) concentrations at the Italian Climate Observatory "O. Vittori" (ICO-OV), part of the Mt. Cimone global GAW-WMO station (Italy). For this purpose, ICO-OV observations carried out in the period January 2007–June 2009, have been analysed and correlated with the output of the FLEXPART Lagrangian dispersion model to specifically evaluate the influence of biomass...

  14. Correlation of black carbon aerosol and carbon monoxide concentrations measured in the high-altitude environment of Mt. Huangshan, Eastern China

    Directory of Open Access Journals (Sweden)

    X. L. Pan

    2011-02-01

    Full Text Available Understanding the relationship between black carbon (BC and carbon monoxide (CO will help improve BC emission inventories and the evaluation of global/regional climate forcing effects. In the present work, the BC (PM1 and CO mixing ratio was continuously measured at a~high-altitude background station on the summit of Mt Huangshan between 2006 and 2009. Annual mean BC concentration was 654.6 ± 633.4 ng m−3 with maxima in spring and autumn, when biomass was burned over a large area in Eastern China. The yearly averaged CO concentration was 446.4 ± 167.6 ppbv, and the increase in the CO concentration was greatest in the cold season, implying that the large-scale domestic coal/biofuel combustion for heating has an effect. The BC–CO relationship was found to have different seasonal features but strong positive correlation (R > 0.8. Back trajectory cluster analysis showed that the ΔBC/ΔCO ratio of plumes from the Yangtze River Delta region was 6.58 ± 0.96 ng m−3 ppbv−1, which is consistent with result from INTEX-B emission inventory. The ΔBC/ΔCO ratios for air masses from Northern, Central Eastern and Southern China were 5.2 ± 0.63, 5.65 ± 0.58 and 5.21 ± 0.93 ng m−3 ppbv−1, respectively. Over the whole observation period, the ΔBC/ΔCO ratio had unimodal diurnal variations and had a maximum during the day (09:00–17:00 LST and minimum at night (21:00–04:00 LST in spring, summer, autumn and winter, indicating the effects of the intrusion of clean air mass from the high troposphere. The case study combined with measurements of urban PM10 concentrations and satellite observations demonstrated that the ΔBC/ΔCO ratio for a plume of burning biomass was 12.4 ng m−3 ppbv−1 and that for urban plumes in Eastern China was 5.3 ± 0.53 ng m−3 ppbv−1. Transportation and industry were deemed as

  15. Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN

    Directory of Open Access Journals (Sweden)

    W. Birmili

    2015-11-01

    Full Text Available The German Ultrafine Aerosol Network (GUAN is a cooperative atmospheric observation network, which aims at improving the scientific understanding of aerosol-related effects in the troposphere. The network addresses research questions dedicated to both, climate and health related effects. GUAN's core activity has been the continuous collection of tropospheric particle number size distributions and black carbon mass concentrations at seventeen observation sites in Germany. These sites cover various environmental settings including urban traffic, urban background, rural background, and Alpine mountains. In association with partner projects, GUAN has implemented a high degree of harmonisation of instrumentation, operating procedures, and data evaluation procedures. The quality of the measurement data is assured by laboratory intercomparisons as well as on-site comparisons with reference instruments. This paper describes the measurement sites, instrumentation, quality assurance and data evaluation procedures in the network as well as the EBAS repository, where the data sets can be obtained (doi:10.5072/guan.

  16. Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN)

    Science.gov (United States)

    Birmili, Wolfram; Weinhold, Kay; Rasch, Fabian; Sonntag, André; Sun, Jia; Merkel, Maik; Wiedensohler, Alfred; Bastian, Susanne; Schladitz, Alexander; Löschau, Gunter; Cyrys, Josef; Pitz, Mike; Gu, Jianwei; Kusch, Thomas; Flentje, Harald; Quass, Ulrich; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Meinhardt, Frank; Schwerin, Andreas; Bath, Olaf; Ries, Ludwig; Wirtz, Klaus; Fiebig, Markus

    2016-08-01

    The German Ultrafine Aerosol Network (GUAN) is a cooperative atmospheric observation network, which aims at improving the scientific understanding of aerosol-related effects in the troposphere. The network addresses research questions dedicated to both climate- and health-related effects. GUAN's core activity has been the continuous collection of tropospheric particle number size distributions and black carbon mass concentrations at 17 observation sites in Germany. These sites cover various environmental settings including urban traffic, urban background, rural background, and Alpine mountains. In association with partner projects, GUAN has implemented a high degree of harmonisation of instrumentation, operating procedures, and data evaluation procedures. The quality of the measurement data is assured by laboratory intercomparisons as well as on-site comparisons with reference instruments. This paper describes the measurement sites, instrumentation, quality assurance, and data evaluation procedures in the network as well as the EBAS repository, where the data sets can be obtained (doi:10.5072/guan).

  17. Measurements of Mass Concentrations of Black Carbon by Using Four Instruments at the Summit of Mount Tai, in the Center of the North China Plain in June 2006

    Science.gov (United States)

    Kanaya, Y.; Komazaki, Y.; Pochanart, P.; Liu, Y.; Akimoto, H.; Gao, J.; Wang, T.; Wang, Z.

    2007-12-01

    Although the emission rate of black carbon (BC) aerosols from the North China Plain (NCP) has been estimated to be high and it would impact climate severely, the BC mass concentrations at a regionally representative location in the plain have been scarcely observed. During a comprehensive field campaign performed at the summit of Mount Tai (36.26 N, 117.11 E, 1534 m asl) in June 2006, BC (or elemental carbon, EC) concentrations were measured by four instruments: an Aethalometer, a Multi-Angle Absorption Photometry (MAAP) instrument, a Particle Soot Absorption Photometer, and a semi-continuous ECOC analyzer with two thermal protocols (IMPROVE and NIOSH). The hourly BC concentration (PM2.5) as measured by the MAAP instrument ranged from -0.1 to 40.8 μgC m-3, with an average of 3.7 μgC m-3. For both of the first 20-day and the latter 10-day periods during the campaign, for which all the instruments provided PM1 and PM2.5 measurements, respectively, we found strong correlations (R2 >0.88) for all the pairs with which >30 hours of coincident observations were made. The slopes and the intercept values of regression lines ranged from 1.00 to 1.42 and from -0.2 to +0.8 μgC m-3, respectively. This general agreement suggested that we were able to determine the BC concentrations regionally representative over the NCP with an uncertainty of ±50% and thereby reduce the uncertainty factor of >4 associating with the BC emission rate from China. The temporal variation of BC concentrations in June 2006 was dominated by the influence from crop (winter wheat) residue burning after the harvest. The relative importance of BC in comparison to CO2 in terms of heating of the atmosphere over this region is also discussed.

  18. Comparison of Spheroidal Carbonaceous Particle Data with Modelled Atmospheric Black Carbon Concentration and Deposition and Air Mass Sources in Northern Europe, 1850–2010

    Directory of Open Access Journals (Sweden)

    Meri Ruppel

    2013-01-01

    Full Text Available Spheroidal carbonaceous particles (SCP are a well-defined fraction of black carbon (BC, produced only by the incomplete combustion of fossil fuels such as coal and oil. Their past concentrations have been studied using environmental archives, but, additionally, historical trends of BC concentration and deposition can be estimated by modelling. These models are based on BC emission inventories, but actual measurements of BC concentration and deposition play an essential role in their evaluation and validation. We use the chemistry transport model OsloCTM2 to model historical time series of BC concentration and deposition from energy and industrial sources and compare these to sedimentary measurements of SCPs obtained from lake sediments in Northern Europe from 1850 to 2010. To determine the origin of SCPs we generated back trajectories of air masses to the study sites. Generally, trends of SCP deposition and modelled results agree reasonably well, showing rapidly increasing values from 1950, to a peak in 1980, and a decrease towards the present. Empirical SCP data show differences in deposition magnitude between the sites that are not captured by the model but which may be explained by different air mass transport patterns. The results highlight the need for numerous observational records to reliably validate model results.

  19. Concentration and 14C Content of Total Organic Carbon and Black Carbon in Small (<100 ug C) Samples from Low-Latitude Alpine Ice Cores

    Science.gov (United States)

    Kehrwald, N. M.; Czimczik, C. I.; Santos, G. M.; Thompson, L. G.; Ziolkowski, L.

    2008-12-01

    Many low latitude glaciers are receding with consequences for the regional energy budget and hydrology. Ice loss has been linked to climate change and the deposition of organic aerosols such as black carbon (BC) which is formed during incomplete combustion. Little is known about how the contents of BC and total organic carbon (TOC) in aerosols change over time and how anthropogenic activities (e.g. land-use change) impact this variability. Low-latitude ice cores are located closer to population centers than polar ice caps and can provide a regional synthesis of TOC and BC variability. Radiocarbon (14C) may be used to partition BC aerosols into fossil (>50 kyrs) and modern sources (e.g. fossil-fuels vs. wildfires). We quantified TOC, BC, and their 14C content in three low-latitude ice cores: Naimona'nyi (30°27'N, 81°91'E) and Dasuopu (28°23'N, 85°43'E), Tibet, and Quelccaya (13°56'S; 70°50'W), Peru. Aerosols (52-256 g ice on filters) were separated into TOC and BC using thermal oxidation (CTO- 375). 14C was measured by AMS. TOC contents were 0.11-0.87, 0.05-0.43, and 0.06-0.19 μg C (g ice) -1 for Naimona'nyi, Dasuopu, and Quelccaya, respectively. BC contents were 18±8, 27±4, and 29±12 %TOC. Procedural blanks were 0.8 ± 0.4 μg C (TOC) and 1.2 ± 0.6 μg C (BC). In ice cores well dated through annual layer counting and/or independent ages (e.g. volcanic horizons) such as Quelccaya, the ability to separate BC from TOC, as well as partition BC into fossil and modern contributions has potential for reconstructing pre- and post-industrial changes in aerosol composition and their impact on the energy budget.

  20. Assessing the impact of the forthcoming decrease in diesel exhaust particulate matter emissions on air quality: implications for black carbon concentrations in ambient air

    Science.gov (United States)

    González, Y.; Rodríguez, S.; Cuevas, E.; Ramos, R.; Abreu-Afonso, J.; Baldasano, J. M.

    2009-04-01

    Forthcoming regulations (e.g. EURO 5 and EURO 6) are planned to reduce particulate matter emissions (PM) in the exhaust of forthcoming vehicles. In this study we assess the impact of such reduction in the diesel PM exhaust emissions on the urban ambient air PM concentrations. This has been done by studying the relationship between black carbon (BC) and carbon monoxide (CO) in urban ambient air and in the exhaust of current and forthcoming vehicles. The slope of the BC-vs-CO linear relationship is mainly affected by the percentage (%) of diesel automobiles in the urban vehicles fleet. This slope is a better indicator of the diesel PM emissions than bulk BC concentrations in urban ambient air. BC-vs-CO slopes within the range 1-3 and 7-14 ngBC/µgCO are typically observed in urban areas with low (fuel consumption for on road transportation, respectively. The entry into force of forthcoming regulations will decrease the BC-vs-CO slope in urban ambient air from about 10 to 5 ngBC/µgCO in the next decade, according to calculations based on the current data on diesel vehicles in urban fleets in Spanish cities. However, this will not necessary prompt a significant decrease in the urban BC concentrations if road traffic volume follows the increasing trend of the last decade. The results of this study shows that the analysis of the BC-vs-CO slope trend in ambient air is an useful tool for understanding the involvement "of the changes in the vehicle exhaust emissions rates" and "of the changes in the road traffic volume" in the BC and PMx trends in urban ambient air.

  1. A multi-site analysis of the association between black carbon concentrations and vehicular idling, traffic, background pollution, and meteorology during school dismissals.

    Science.gov (United States)

    Richmond-Bryant, J; Bukiewicz, L; Kalin, R; Galarraga, C; Mirer, F

    2011-05-01

    A study was performed to assess the relationship between black carbon (BC), passing traffic, and vehicular idling outside New York City (NYC) schools during student dismissal. Monitoring was performed at three school sites in East Harlem, the Bronx, and Brooklyn for 1month per year over a two-year period from November 2006-October 2008. Monitoring at each site was conducted before and after the Asthma Free School Zone (AFSZ) asthma reduction education program was administered. Real-time equipment with a one-minute averaging interval was used to obtain the BC data, while volume counts of idling and passing school busses, trucks, and automobiles were collected each minute by study staff. These data were matched to ambient PM(2.5) and meteorology data obtained from the New York State Department of Environmental Conservation. A generalized additive model (GAM) model was run to examine the relationship between BC concentration and each variable while accounting for site-to-site differences. F-tests were employed to assess the significance of each of the predictor variables. The model results suggested that variability in ambient PM(2.5) concentration contributed 24% of the variability in transformed BC concentration, while variability in the number of idling busses and trucks on the street during dismissal contributed 20% of the variability in transformed BC concentration. The results of this study suggest that a combination of urban scale and local traffic control approaches in combination with cessation of school bus idling will produce improved local BC concentration outside schools.

  2. A multi-site analysis of the association between black carbon concentrations and vehicular idling, traffic, background pollution, and meteorology during school dismissals.

    Science.gov (United States)

    Richmond-Bryant, J; Bukiewicz, L; Kalin, R; Galarraga, C; Mirer, F

    2011-05-01

    A study was performed to assess the relationship between black carbon (BC), passing traffic, and vehicular idling outside New York City (NYC) schools during student dismissal. Monitoring was performed at three school sites in East Harlem, the Bronx, and Brooklyn for 1month per year over a two-year period from November 2006-October 2008. Monitoring at each site was conducted before and after the Asthma Free School Zone (AFSZ) asthma reduction education program was administered. Real-time equipment with a one-minute averaging interval was used to obtain the BC data, while volume counts of idling and passing school busses, trucks, and automobiles were collected each minute by study staff. These data were matched to ambient PM(2.5) and meteorology data obtained from the New York State Department of Environmental Conservation. A generalized additive model (GAM) model was run to examine the relationship between BC concentration and each variable while accounting for site-to-site differences. F-tests were employed to assess the significance of each of the predictor variables. The model results suggested that variability in ambient PM(2.5) concentration contributed 24% of the variability in transformed BC concentration, while variability in the number of idling busses and trucks on the street during dismissal contributed 20% of the variability in transformed BC concentration. The results of this study suggest that a combination of urban scale and local traffic control approaches in combination with cessation of school bus idling will produce improved local BC concentration outside schools. PMID:21406309

  3. Monitoring of black carbon and size-segregated particle number concentrations at 9-m and 65-m distances from a major road in Helsinki

    Energy Technology Data Exchange (ETDEWEB)

    Pakkanen, T.A.; Maekelae, T.; Hillamo, R.E. [Finnish Meteorological Inst., Helsinki (Finland); Virtanen, A.; Roenkkoe, T.; Keskinen, J. [Tampere Univ. of Technology, Inst. of Physics, Aerosol Physics Lab. , Tampere (Finland); Pirjola, L.; Parviainen, H. [Helsinki Polytechnic, Dept. of Technology, Helsinki (Finland); Hussein, T.; Haemeri, K. [Helsinki Univ., Dept. of Physical Sciences, Helsinki (Finland)

    2006-07-01

    In February and August 2003, black carbon (BC) and size-segregated particle number concentrations were monitored simultaneously at 9-m and 65-m distances from a major road in Helsinki, Finland, using aethalometers and electrical low-pressure impactors, respectively. During weekdays in winter, the average total particle number concentrations in the diameter range 0.007-1{mu}m increased during morning rush hours from the nighttime values of 17000 and 12000 cm{sup -3} to 190000 and 130000 cm{sup -3} at the 9-m and 65-m stations, respectively. The corresponding BC concentrations increased from 730 and 430 ng m{sup -3} to 2800 and 1550 ng m{sup -3}. Compared with those in winter, the average rush-hour particle number concentrations were much lower in summer, the likely reason being enhanced nucleation in cold winter conditions. BC concentrations were slightly higher during summer than during winter. Number size distributions measured at the 9-m and 65-m distances and at a background site had similar modal characteristics with the highest peak occurring below 0.03 {mu}m. Despite the different wind conditions in winter and summer, concentrations of total particle number and BC decreased similarly between the 9-m and 65-m stations, the likely principal mechanism being mixing with background air. The strong diurnal variation in concentrations during the weekdays, together with the large concentration difference between the 9-m and 65-m distances, suggests that local traffic was the main source of the measured pollutants, especially during rush hours at the 9-m site. In winter, the decrease in the particle number concentrations from the 9-m site to the 65-m site was most pronounced for the smallest exhaust particles. During an episodic pollution event in winter there were indications of condensational growth of 0.007-0.03 {mu}m particles, which increased the number concentration of 0.03-0.06 {mu}m particles at the 65-m site. (orig.)

  4. Phase Behavior of Dilute Carbon Black Suspensions and Carbon Black Stabilized Emulsions

    Science.gov (United States)

    Godfrin, Michael; Tiwari, Ayush; Bose, Arijit; Tripathi, Anubhav

    2014-11-01

    We use para-amino benzoic acid terminated carbon black (CB) as a tunable model particulate material to study the effect of inter-particle interactions on phase behavior and steady shear stresses in suspensions and particle-stabilized emulsions. We modulate inter-particle interactions by adding NaCl to the suspension, thus salting surface carboxylate groups. Surprisingly, yield stress behavior emerged at a volume fraction of CB as low as ϕCB = 0.008, and gel behavior was observed at ϕCB >0.05, well below the percolation threshold for non-interacting particles. The yield stress was found to grow rapidly with carbon black concentration suggesting that salt-induced hydrophobicity leads to strong inter-particle interactions and the formation of a network at low particle concentrations. The yield stresses of CB-stabilized emulsions also grows rapidly with carbon black concentrations, implying that inter-droplet interactions can be induced through the tuning of carbon black concentration in emulsion systems. Emulsions stabilized by ionic surfactants show no inter-droplet interactions. In contrast, oil droplets in the CB-stabilized emulsion move collectively or are immobilized because of an interconnected CB network in the aqueous phase.

  5. Effect of emissions uncertainty and variability on high-resolution concentrations of carbon monoxide, fine particle black carbon, and nitrogen oxides in Fort Collins, Colorado: development of a Bayesian uncertainty modeling and evaluation framework

    Science.gov (United States)

    Mendoza, D. L.; Stuart, A. L.; Dagne, G.; Yu, H.

    2013-12-01

    Uncertainties in emissions estimates are known to be one of the primary sources of uncertainty in calculating concentrations and subsequent exposure estimates. Despite continued improvement in the accuracy of emissions downscaling, the quantification of uncertainties is necessary in order to generate a representative emissions product. Bayesian data assimilation is a promising approach to uncertainty estimation when used to calibrate model results with measurement data. This study discusses an emissions inventory and concentration estimates for carbon monoxide (CO), fine particle (PM2.5) black carbon, and nitrogen oxides (NOx) for the city of Fort Collins, Colorado. The development of a Bayesian framework for updating estimates of emissions and concentrations in multiple stages, using measurement data, is also presented. The emissions inventory was constructed using the 2008 National Emissions Inventory (NEI). The spatial and temporal allocation methods from the Emission Modeling Clearinghouse data set are used to downscale the NEI data from annual and county-level resolution for point, nonpoint, and nonroad sources. Onroad mobile source emissions were estimated by combining a bottom-up emissions calculation approach (using emission factors and activities) for large roadway links within Fort Collins with a top-down spatial allocation approach for other roadways. Vehicle activity data for road links were obtained from local 2009 travel demand model results and automatic traffic recorder (ATR) data. The CALPUFF Gaussian puff dispersion model was used to estimate air pollutant concentrations. Hourly, 1.33 km x 1.33 km MM5 meteorological data was used to capture temporal variability in transport. Distributions of concentrations are obtained for spatial locations and time spans using a Monte Carlo sampling approach. Data for ensemble members are sampled from distributions defined from the emissions inventory and meteorological data. Modeled concentrations of CO, PM2

  6. Applicability of a noise-based model to estimate in-traffic exposure to black carbon and particle number concentrations in different cultures.

    Science.gov (United States)

    Dekoninck, Luc; Botteldooren, Dick; Panis, Luc Int; Hankey, Steve; Jain, Grishma; S, Karthik; Marshall, Julian

    2015-01-01

    Several studies show that a significant portion of daily air pollution exposure, in particular black carbon (BC), occurs during transport. In a previous work, a model for the in-traffic exposure of bicyclists to BC was proposed based on spectral evaluation of mobile noise measurements and validated with BC measurements in Ghent, Belgium. In this paper, applicability of this model in a different cultural context with a totally different traffic and mobility situation is presented. In addition, a similar modeling approach is tested for particle number (PN) concentration. Indirectly assessing BC and PN exposure through a model based on noise measurements is advantageous because of the availability of very affordable noise monitoring devices. Our previous work showed that a model including specific spectral components of the noise that relate to engine and rolling emission and basic meteorological data, could be quite accurate. Moreover, including a background concentration adjustment improved the model considerably. To explore whether this model could also be used in a different context, with or without tuning of the model parameters, a study was conducted in Bangalore, India. Noise measurement equipment, data storage, data processing, continent, country, measurement operators, vehicle fleet, driving behavior, biking facilities, background concentration, and meteorology are all very different from the first measurement campaign in Belgium. More than 24h of combined in-traffic noise, BC, and PN measurements were collected. It was shown that the noise-based BC exposure model gives good predictions in Bangalore and that the same approach is also successful for PN. Cross validation of the model parameters was used to compare factors that impact exposure across study sites. A pooled model (combining the measurements of the two locations) results in a correlation of 0.84 when fitting the total trip exposure in Bangalore. Estimating particulate matter exposure with traffic

  7. High black carbon and ozone concentrations during pollution transport in the Himalayas: Five years of continuous observations at NCO-P global GAW station

    Institute of Scientific and Technical Information of China (English)

    A.Marinoni; P.Cristofanelli; P.Laj; R.Duchi; D.Putero; F.Calzolari; T.C.Landi

    2013-01-01

    To study the influence of polluted air-mass transport carrying ozone (O3) and black carbon (BC) in the high H-hmalayas,since March 2006 the Nepal Climate Observatory at Pyramid (NCO-P) GAW-WMO global station (Nepal,5079 m a.s.l.) is operative.During the first 5-year measurements,the O3 and BC concentrations have shown a mean value of 48 ± 12 ppb (± standard deviation) and 208 ± 374 ng/m3,respectively.Both O3 and BC showed well defined seasonal cycles with maxima during pre-monsoon (O3:61.3 ± 7.7 ppbV; BC:444 ± 433 ng/m3) and minima during the summer monsoon (O3:40.1 ± 12.4 ppbV; BC∶ 64 ± 101 ng/m3).The analysis of the days characterised by the presence of a significant BC increase with respect to the typical seasonal cycle identified 156 days affected by "acute" pollution events,corresponding to 9.1% of the entire data-set.Such events mostly occur in the pre-monsoon period,when the O3 diurnal variability is strongly related to the transport of polluted air-mass rich on BC.On average,these "acute" pollution events were characterised by dramatic increases of BC (352%) and O3 (29%) levels compared with the remaining days.

  8. Black carbon measurements using an integrating sphere

    Science.gov (United States)

    Hitzenberger, R.; Dusek, U.; Berner, A.

    1996-08-01

    An integrating sphere was used to determine the black carbon (BC) content of aerosol filter samples dissolved in chloroform (method originally described by Heintzenberg [1982]). The specific absorption coefficient Ba (equal to absorption per mass) of the samples was also measured using the sphere as an integrating detector for transmitted light. Comparing the Ba of ambient samples taken in Vienna, Austria, to the BC concentrations measured on the dissolved filters, a value of approximately 6 m2/g was found to be a reasonable value for the Ba of the black carbon found at the site. The size dependence of Ba of a nebulized suspension of soot was measured using a rotating impactor, and a reasonable agreement between measured and calculated values was found.

  9. Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set

    Directory of Open Access Journals (Sweden)

    S. Eckhardt

    2015-04-01

    Full Text Available The concentrations of sulfate, black carbon (BC and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze and low values in summer. Models have long been struggling to capture this seasonality and especially the high concentrations associated with Arctic Haze. In this study, we evaluate sulfate and BC concentrations from eleven different models driven with the same emission inventory against a comprehensive pan-Arctic measurement data set over a time period of two years (2008–2009. The set of models consisted of one Lagrangian particle dispersion model, four chemistry-transport models (CTMs, one atmospheric chemistry-weather forecast model and five chemistry-climate models (CCMs, of which two were nudged to meteorological analyses and three were running freely. The measurement data set consisted of surface measurements of equivalent BC (eBC from five stations (Alert, Barrow, Pallas, Tiksi and Zeppelin, elemental carbon (EC from Station Nord and Alert and aircraft measurements of refractory BC (rBC from six different campaigns. We find that the models generally captured the measured eBC/rBC and sulfate concentrations quite well, compared to past comparisons. However, the aerosol seasonality at the surface is still too weak in most models. Concentrations of eBC and sulfate averaged over three surface sites are underestimated in winter/spring in all but one model (model means for January-March underestimated by 59 and 37% for BC and sulfate, respectively, whereas concentrations in summer are overestimated in the model mean (by 88 and 44% for July–September, but with over- as well as underestimates present in individual models. The most pronounced eBC underestimates, not included in the above multi-site average, are found for the station Tiksi in Siberia where the measured annual mean eBC concentration is three times higher than the average annual mean for all other stations. This suggests

  10. Admix Compatibility in Carbon Black Loaded Toners

    Institute of Scientific and Technical Information of China (English)

    Paul C. Julien

    2004-01-01

    In a xerographic system where the charge on the toner is controlled by the electrical nature of the carbon black used as a pigment, it is found that the speed with which added toner is charged to the proper level depends on the relative electrical negativity of the carbon black in the original and added toner. This is due to the fact that the incumbent toner typically shares its charge with the new toner through charge exchange among the conductive carbon black particles. If the carbon blacks are electrically dissimilar, this charge sharing may fail.Thus, a toner may work well by itself in a machine, but the same toner may fail when added to a machine already running with a toner from a different vendor or even a different lot of toner from the same vendor. Thus the electrical nature of the carbon black needs to be controlled. This can be done by controlling the oxidation of the carbon black.

  11. Longitudinal variability of black carbon vertical profiles

    Science.gov (United States)

    Schwarz, J. P.; Weinzierl, B.; Samset, B. H.; Perring, A. E.; Dollner, M.; Heimerl, K.; Markovic, M. Z.; Ziemba, L. D.

    2015-12-01

    Black carbon (BC) aerosol contributes substantially to both climate forcing and climate forcing uncertainty. An important source of this uncertainty derives from the difficulty in predicting BC's global abundance and vertical distribution. Here we present a multi-year record of black carbon (BC) vertical concentration profiles from both sides of the Atlantic, obtained from airborne Single Particle Soot Photometers (SP2s) flown on the NASA DC-8, and the DLR Falcon research aircraft from the CONCERT, ACCESS, DC3, SEAC4RS, and SALTRACE campaigns. The measurements constrain the relative rates of BC transport/removal from, and zonal mixing in, the upper troposphere, as well as the range of BC loadings in these regions. They also constrain the time-rates of change of BC loads in altitudes at which it is a highly efficient (although sparse) climate forcer, and a relatively long-lived aerosol tracer. We find that concentration of BC in the upper troposphere can vary by a factor 10. Over the Northern mid-latitudes concentrations are however consistent to a fraction of this range over wide longitudinal ranges, over month-long timescales. The data show that BC becomes zonally mixed here starting at 500 hPa and extending to near the tropopause. These results imply broader value than previously associated with measured vertical profiles in constraining global scale BC loadings aloft.

  12. Long-term observations of black carbon mass concentrations at Fukue Island, western Japan, during 2009-2015: constraining wet removal rates and emission strengths from East Asia

    Science.gov (United States)

    Kanaya, Yugo; Pan, Xiaole; Miyakawa, Takuma; Komazaki, Yuichi; Taketani, Fumikazu; Uno, Itsushi; Kondo, Yutaka

    2016-08-01

    Long-term (2009-2015) observations of atmospheric black carbon (BC) mass concentrations were performed using a continuous soot-monitoring system (COSMOS) at Fukue Island, western Japan, to provide information on wet removal rate constraints and the emission strengths of important source regions in East Asia (China and others). The annual average mass concentration was 0.36 µg m-3, with distinct seasonality; high concentrations were recorded during autumn, winter, and spring and were caused by Asian continental outflows, which reached Fukue Island in 6-46 h. The observed data were categorized into two classes, i.e., with and without a wet removal effect, using the accumulated precipitation along a backward trajectory (APT) for the last 3 days as an index. Statistical analysis of the observed ΔBC / ΔCO ratios was performed to obtain information on the emission ratios (from data with zero APT only) and wet removal rates (including data with nonzero APTs). The estimated emission ratios (5.2-6.9 ng m-3 ppb-1) varied over the six air mass origin areas; the higher ratios for south-central East China (30-35° N) than for north-central East China (35-40° N) indicated the relative importance of domestic emissions and/or biomass burning sectors. The significantly higher BC / CO emission ratios adopted in the bottom-up Regional Emission inventory in Asia (REAS) version 2 (8.3-23 ng m-3 ppb-1) over central East China and Korea needed to be reduced at least by factors of 1.3 and 2.8 for central East China and Korea, respectively, but the ratio for Japan was reasonable. The wintertime enhancement of the BC emission from China, predicted by REAS2, was verified for air masses from south-central East China but not for those from north-central East China. Wet removal of BC was clearly identified as a decrease in the ΔBC / ΔCO ratio against APT. The transport efficiency (TE), defined as the ratio of the ΔBC / ΔCO ratio with precipitation to that without precipitation, was

  13. Influence of public transport in black carbon

    Science.gov (United States)

    Vasquez, Y.; Oyola, P.; Gramsch, E. V.; Moreno, F.; Rubio, M.

    2013-05-01

    As a consequence of poor air quality in Santiago de Chile, several measures were taken by the local authorities to improve the environmental conditions and protect the public health. In year 2005 the Chilean government implemented a project called "Transantiago" aimed to introduce major modifications in the public transportation system. The primary objectives of this project were to: provide an economically, socially and environmentally sustainable service and improve the quality of service without increasing fares. In this work we evaluate the impact of the Transantiago system on the black carbon pollution along four roads directly affected by the modification to the transport system. The black carbon has been used to evaluate changes in air quality due to changes in traffic. The assessment was done using measurements of black carbon before Transantiago (June-July 2005) and after its implementation (June-July 2007). Four sites were selected to monitor black carbon at street levels, one site (Alameda) that represents trunk-bus streets, i.e., buses crossing the city through main avenues. Buses using these streets had an important technological update with respect to 2005. Two streets (Usach and Departamental) show a mixed condition, i.e., they combine feeder and trunk buses. These streets combine new EURO III buses with old buses with more than 3 years of service. The last street (Eliodoro Yañez) represent private cars road without public transportation and did not experience change. Hence, the results from the years 2005 and 2007 can be directly compared using an appropriate methodology. To ensure that it was not the meteorological conditions that drive the trends, the comparison between year 2005 and 2007 was done using Wilcoxon test and a regression model. A first assessment at the four sites suggested a non decrease in black carbon concentration from 2005 to 2007, except for Alameda. A first statistical approach confirmed small increases in BC in Usach and E

  14. Fracture resistance of rubbers with MWCNT, organoclay, silica and carbon black fillers as assessed by the J-integral: Effects of rubber type and filler concentration

    Directory of Open Access Journals (Sweden)

    T. Ricco

    2012-07-01

    Full Text Available The fracture resistance of different rubbers containing various nanofillers, such as multiwall carbon nanotube (MWCNT, organoclay, silica and carbon black (CB, was determined by the J-integral making use of the single edge notched tensile loaded (SEN-T single specimen approach. The elastomeric matrices were natural (NR, ethylene propylene diene (EPDM and hydrogenated nitrile rubbers (HNBR. Moreover, the strain softening (Payne effect of selected rubbers with 30 part per hundred rubber (phr filler content was also investigated by dynamic mechanical thermal analysis (DMTA in shear mode. DMTA results indicated that the Payne effect follows the ranking: MWCNT(fibrous > organoclay(platy > silica(spherical. J-resistance (JR curves were constructed by plotting the J value as a function of the crack tip opening displacement (CTOD*, monitored during loading. CTOD* = 0.1 mm was considered as crack initiation threshold and thus assigned to the critical value JIc. JIc increased with increasing filler loading, whereby MWCNT outperformed both silica and CB. On the other hand, JIc did not change with filler loading for the NR/organoclay systems that was traced to straininduced crystallization effect in NR. The tearing modulus (TJ also increased with increasing filler loading. The related increase strongly depended on both rubber and filler types. Nonetheless, the most prominent improvement in TJ among the fillers studied was noticed for the fibrous MWCNT.

  15. A strategy to achieve enhanced electromagnetic interference shielding at low concentration with a new generation of conductive carbon black in a chlorinated polyethylene elastomeric matrix.

    Science.gov (United States)

    Mondal, Subhadip; Ganguly, Sayan; Rahaman, Mostafizur; Aldalbahi, Ali; Chaki, Tapan K; Khastgir, Dipak; Das, Narayan Ch

    2016-09-21

    The fabrication of scalable and affordable conductive Ketjen carbon black (K-CB)-elastomer composites for adjustable electromagnetic interference (EMI) shielding remains a difficult challenge. Herein, chlorinated polyethylene (CPE)-K-CB composites have been developed by single step solution mixing to achieve high EMI shielding performance associated with absorption dominance potency by conductive dissipation as well as the reflection of electromagnetic waves. The dispersion of K-CB inside the CPE matrix has been corroborated by electron micrographs and atomic force microscopy (AFM). The K-CB filler and CPE polymer interaction has been investigated through the bound rubber content (Bdr) and the dynamic mechanical properties. The relatively low loading of K-CB with respect to other conventional carbon fillers contributes to a promising low percolation threshold (9.6 wt% K-CB) and a reasonably high EMI shielding effectiveness (EMI SE) value of 38.4 dB (at 30 wt% loading) in the X-band region (8.2 to 12.4 GHz). Classical percolation theory reveals that the electrical conduction behavior through the composite system is quasi-two dimensional in nature. Our belief lies in the promotion of scalable production of flexible and cost-effective K-CB-CPE composites of superior EMI SE to avoid electromagnetic radiation pollution. PMID:27539886

  16. Personal exposure to Black Carbon in transport microenvironments

    Science.gov (United States)

    Dons, Evi; Int Panis, Luc; Van Poppel, Martine; Theunis, Jan; Wets, Geert

    2012-08-01

    We evaluated personal exposure of 62 individuals to the air pollutant Black Carbon, using 13 portable aethalometers while keeping detailed records of their time-activity pattern and whereabouts. Concentrations encountered in transport are studied in depth and related to trip motives. The evaluation comprises more than 1500 trips with different transport modes. Measurements were spread over two seasons. Results show that 6% of the time is spent in transport, but it accounts for 21% of personal exposure to Black Carbon and approximately 30% of inhaled dose. Concentrations in transport were 2-5 times higher compared to concentrations encountered at home. Exposure was highest for car drivers, and car and bus passengers. Concentrations of Black Carbon were only half as much when traveling by bike or on foot; when incorporating breathing rates, dose was found to be twice as high for active modes. Lowest 'in transport' concentrations were measured in trains, but nevertheless these concentrations are double the concentrations measured at home. Two thirds of the trips are car trips, and those trips showed a large spread in concentrations. In-car concentrations are higher during peak hours compared to off-peak, and are elevated on weekdays compared to Saturdays and even more so on Sundays. These findings result in significantly higher exposure during car commute trips (motive 'Work'), and lower concentrations for trips with motive 'Social and leisure'. Because of the many factors influencing exposure in transport, travel time is not a good predictor of integrated personal exposure or inhaled dose.

  17. Are black carbon and soot the same?

    Directory of Open Access Journals (Sweden)

    P. R. Buseck

    2012-09-01

    Full Text Available The climate change and environmental literature, including that on aerosols, is replete with mention of black carbon (BC, but neither reliable samples nor standards exist. Thus, there is uncertainty about its exact nature. That confusion can be avoided if terms are defined and widely understood. Here we discuss an ambiguity between BC and soot and propose a more precise definition for soot as a specific material, which we call ns-soot, where "ns" refers to carbon nanospheres. We define ns-soot as particles that consist of nanospheres, typically with diameters < 100 nm, that possess distinct structures of concentrically wrapped, graphene-like layers of carbon and with grape-like (acinoform morphologies. We additionally propose that, because of their importance for climate modeling and health issues, distinctions are made among bare, coated, and embedded ns-soot. BC, on the other hand, is not a well-defined material. We propose that the term should be restricted to light-absorbing refractory carbonaceous matter of uncertain character and that the uncertainty is stated explicitly.

  18. Evaluation of black carbon estimations in global aerosol models

    NARCIS (Netherlands)

    Koch, D.; Schulz, M.; McNaughton, C.; Spackman, J.R.; Balkanski, Y.; Bauer, S.; Krol, M.C.

    2009-01-01

    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentr

  19. Worker exposure to ultrafine particles during carbon black treatment

    Directory of Open Access Journals (Sweden)

    Urszula Mikołajczyk

    2015-07-01

    Full Text Available Background: The aim of the project was to assess the exposure of workers to ultrafine particles released during handling and packing of carbon black. The assessment included the results of the measurements performed in a carbon black handling plant before, during, and after work shift. Material and Methods: The number concentration of particles within the dimension range 10–1000 nm and 10–100 nm was assayed by a condensation particle counter (CPC. The mass concentration of particles was determined by a DustTrak II DRX aerosol concentration monitor. The surface area concentration of the particles potentially deposited in the alveolar (A and tracheo-bronchial (TB regions was estimated by an AeroTrak 9000 nanoparticle monitor. Results: An average mass concentration of particles during the process was 6-fold higher than that before its start, while a 3-fold increase in the average number concentration of particles within the dimension range 10–1000 nm and 10–100 nm was observed during the process. At the same time a 4-fold increase was found in the surface area concentration of the particles potentially deposited in the A and TB regions. Conclusions: During the process of carbon black handling and packing a significantly higher values of each of the analysed parameters, characterizing the exposure to ultrafine particles, were noted. Med Pr 2015;66(3:317–326

  20. Pyrolytic carbon black composite and method of making the same

    Energy Technology Data Exchange (ETDEWEB)

    Naskar, Amit K.; Paranthaman, Mariappan Parans; Bi, Zhonghe

    2016-09-13

    A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. A method of making a battery electrode is also disclosed.

  1. Black carbon, particle number concentration and nitrogen oxide emission factors of random in-use vehicles measured with the on-road chasing method

    Directory of Open Access Journals (Sweden)

    I. Ježek

    2015-06-01

    Full Text Available The chasing method was used in an on-road measurement campaign, and emission factors (EF of black carbon (BC, particle number (PN and nitrogen oxides (NOx were determined for 139 individual vehicles of different types encountered on the roads. The aggregated results provide EFs for BC, NOx and PN for three vehicle categories: goods vehicles, gasoline and diesel passenger cars. This is the first on-road measurement study where BC EFs of numerous individual diesel cars were determined in real-world driving conditions. We found good agreement between EFs of goods vehicles determined in this campaign and the results of previous studies that used either chasing or remote sensing measurement techniques. The composition of the sampled car fleet determined from the national vehicle registry information is reflective of Eurostat statistical data on the Slovenian and European vehicle fleet. The median BC EF of diesel and gasoline cars that were in use for less than 5 years, decreased by 60 and 47% from those in use for 5–10 years, respectively, the median NOx and PN EFs, of goods vehicles that were in use for less than five years, decreased from those in use for 5–10 years by 52 and 67%, respectively. The influence of engine maximum power of the measured EFs showed an increase in NOx EF from least to more powerful vehicles with diesel engines. Finally a disproportionate contribution of high emitters to the total emissions of the measured fleet was found; the top 25% of emitting diesel cars contributed 63, 47 and 61% of BC, NOx and PN emissions respectively. With the combination of relatively simple on-road measurements with sophisticated post processing individual vehicles EF can be determined and useful information about the fleet emissions can be obtained by exactly representing vehicles which contribute disproportionally to vehicle fleet emissions; and monitor how the numerous emission reduction approaches are reflected in on-road driving

  2. Black carbon, a short lived climate forcer

    International Nuclear Information System (INIS)

    Black carbon, an indicator of urban pollution health effects, is at the heart of adaptation issues as benefits of its control can be felt both at the scale of climate phenomenon and air quality. This element has to do with several notions whose definitions need to be stated again. It sets urban policies at the crossing of climate, air pollution, population health and sustainable development stakes. The CITEPA has made available Mark Tuddenham's literature monitoring concerning black carbon, and, more widely, SLFC (Short lived climate forcers). (authors)

  3. Studies of activated carbon and carbon black for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R.; Mueller, S.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  4. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon concentrations at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.

    Directory of Open Access Journals (Sweden)

    P. Cristofanelli

    2012-08-01

    Full Text Available This work investigates the variability of ozone (O3, carbon monoxide (CO and equivalent black carbon (BC concentrations at the Italian Climate Observatory "O. Vittori" (ICO-OV, part of the Mt. Cimone global GAW-WMO station (Italy. For this purpose, ICO-OV observations carried out in the period January 2007–June 2009, have been analysed and correlated with the output of the FLEXPART Lagrangian dispersion model to specifically evaluate the influence of biomass burning (BB and anthropogenic emissions younger than 20 days. During the investigation period, the average O3, CO and BC concentrations at ICO-OV were 54 ± 3 ppbv, 122 ± 7 ppbv and 213 ± 34 ng m−3 (mean ± expanded uncertainty with p<95%, with clear seasonal cycles characterized by summer maxima and winter minima for O3 and BC and spring maximum and summer minimum for CO.

    According to FLEXPART output, BB impact is maximized during the warm months from July to September but appeared to have a significant contribution to the observed tracer concentrations only during specific transport events. We characterised in detail five major events with respect to transport scales (i.e. global, regional and local, source regions and O3, CO and BC variations. For these events, very large variability of enhancement ratios O3/CO (from −0.22 to 0.71 and BC/CO (from 2.69 to 29.83 ng m−3 ppbv−1 were observed.

    CO related with anthropogenic emissions (COant contributed to 17.4% of the mean CO value observed at ICO-OV, with the warm months appearing particularly affected by transport events of air-masses rich in anthropogenic pollution. The proportion of tracer variability that is described by FLEXPART COant peaked to 37% (in May–September for CO, 19% (in May–September for O3 and 32% (in January–April for BC. During May–September, the analysis of

  5. Black carbon, particle number concentration and nitrogen oxide emission factors of random in-use vehicles measured with the on-road chasing method

    Science.gov (United States)

    Ježek, I.; Katrašnik, T.; Westerdahl, D.; Močnik, G.

    2015-10-01

    The chasing method was used in an on-road measurement campaign, and emission factors (EF) of black carbon (BC), particle number (PN) and nitrogen oxides (NOx) were determined for 139 individual vehicles of different types encountered on the roads. The aggregated results provide EFs for BC, NOx and PN for three vehicle categories: goods vehicles, gasoline and diesel passenger cars. This is the first on-road measurement study where BC EFs of numerous individual diesel cars were determined in real-world driving conditions. We found good agreement between EFs of goods vehicles determined in this campaign and the results of previous studies that used either chasing or remote-sensing measurement techniques. The composition of the sampled car fleet determined from the national vehicle registry information is reflective of Eurostat statistical data on the Slovenian and European vehicle fleet. The median BC EF of diesel and gasoline cars that were in use for less than 5 years decreased by 60 and 47 % from those in use for 5-10 years, respectively; the median NOx and PN EFs of goods vehicles that were in use for less than 5 years decreased from those in use for 5-10 years by 52 and 67 %, respectively. Surprisingly, we found an increase of BC EFs in the newer goods vehicle fleet compared to the 5-10-year old one. The influence of engine maximum power of the measured EFs showed an increase in NOx EF from least to more powerful vehicles with diesel engines. Finally, a disproportionate contribution of high emitters to the total emissions of the measured fleet was found; the top 25 % of emitting diesel cars contributed 63, 47 and 61 % of BC, NOx and PN emissions respectively. With the combination of relatively simple on-road measurements and sophisticated post processing, individual vehicle EF can be determined and useful information about the fleet emissions can be obtained by exactly representing vehicles which contribute disproportionally to vehicle fleet emissions; and

  6. Modified carbon black materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  7. Black Carbon, The Pyrogenic Clay Mineral?

    Science.gov (United States)

    Most soils contain significant amounts of black carbon, much of which is present as discrete particles admixed with the coarse clay fraction (0.2–2.0 µm e.s.d.) and can be physically separated from the more abundant diffuse biogenic humic materials. Recent evidence has shown that naturally occurring...

  8. Black carbon: The reverse of its dark side

    NARCIS (Netherlands)

    Koelmans, A.A.; Jonker, M.T.O.; Cornelissen, G.; Bucheli, T.D.; Noort, van P.C.M.; Gustafsson, O.

    2006-01-01

    The emission of black carbon is known to cause major environmental problems. Black carbon particles contribute to global warming, carry carcinogenic compounds and cause serious health risks. Here, we show another side of the coin. We review evidence that black carbon may strongly reduce the risk pos

  9. Opportunities and Challenges for Being a Carbon Black Great Power

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    1. The "Uth Five-year Plan" Lay- ing the Foundation for Carbon Black Great Power 1.1 Rapid growth of carbon black output and production capacity During the "llth Five-year Plan" Period, China carbon black output was increased by 1.1 times and realized doubling; and the production capacity of carbon black realized an average annu- al growth of 16.9%. In 2011, the carbon black output was 3.853 million tons, increased by 14.2% compared with that of the last year, and the pro- portion of carbon black output in the world carbon black output was increased from 16% to 36%. The carbon black production capacity was 5.345 mil- lion tons, increased by 6% compared with that of the last year, and the proportion of carbon black production capacity in the world carbon black out- put reached 38%. Chinese carbon black output has been ranking the 1st place throughout the world for 6 years successively, and China has become a great power of carbon black production in the world.

  10. Comparative analysis of black carbon in soils

    Science.gov (United States)

    Schmidt, Michael W. I.; Skjemstad, Jan O.; Czimczik, Claudia I.; Glaser, Bruno; Prentice, Ken M.; Gelinas, Yves; Kuhlbusch, Thomas A. J.

    2001-03-01

    Black carbon (BC), produced by incomplete combustion of fossil fuels and vegetation, occurs ubiquitously in soils and sediments. BC exists as a continuum from partly charred material to highly graphitized soot particles, with no general agreement on clear-cut boundaries of definition or analysis. In a comparative analysis, we measured BC forms in eight soil samples by six established methods. All methods involved removal of the non-BC components from the sample by thermal or chemical means or a combination of both. The remaining carbon, operationally defined as BC, was quantified via mass balance, elemental composition or by exploiting benzenecarboxylic acids as molecular markers or applying 13C MAS NMR (magic angle spinning nuclear magnetic resonance) spectroscopy. BC concentrations measured for individual samples vary over 2 orders of magnitude (up to a factor of 571). One possible explanation for this wide range of results is that the individual BC methods rely on operational definitions with clear-cut but different boundaries and developed for specific scientific questions, whereas BC represents a continuum of materials with widely contrasting physicochemical properties. Thus the methods are inherently designed to analytically determine different parts of the continuum, and it is crucial to know how measurements made by different techniques relate to each other. It is clear from this preliminary comparative analysis that a collection of BC reference materials should be established as soon as possible 1 ) to ensure long-term intralaboratory and interlaboratory data quality and 2) to facilitate comparative analyses between different analytical techniques and scientific approaches

  11. Black carbon characterization in Quebec black spruce forests

    Science.gov (United States)

    Soucemarianadin, Laure; Quideau, Sylvie; Wasylishen, Roderick; MacKenzie, M. Derek

    2014-05-01

    Black carbon (BC), an important component of the global soil carbon pool, is a major by-product of wildfires in Quebec black spruce forests. However, BC characteristics vary depending on the environmental conditions under which it is formed and this may further affect its resistance to degradation. The objective of this study was to characterize the chemical and physical properties of BC formed under variable fire severity to assess its potential for recalcitrance as a passive carbon pool. Samples (n = 267) of BC produced by early season wildfires in 2005-2007 were collected from the surface of black spruce forest floors to cover the range of severity encountered in these fire-affected forests. Representative samples (n = 33) were then analyzed using elemental analysis, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscopy and surface area analysis (BET method). Properties of BC sampled in the field were compared with those of samples produced under a range of controlled formation conditions in the laboratory. The NMR spectra of the BC collected on sites affected by low fire severity showed a distribution of total intensity between the different spectral regions very similar to those of unburned fuels, and were dominated by peaks indicative of cellulose, while spectra for BC from higher fire severity sites were dominated by a broad peak assigned to aromatic carbons. Atomic H/C and O/C ratios decreased along the fire severity gradient, confirming that increasing severity was associated with an increase in condensation. By comparing field- to laboratory-produced samples, we concluded that the temperature of formation in the field ranged between 75 and 250 ° C. In all analyzed BC samples, the fraction of aromatic carbon:total carbon was low, suggesting that the freshly produced BC in this boreal forest environment may be susceptible to rapid physical alteration and chemical degradation. Nevertheless, it is important to highlight

  12. Barrow Black Carbon Source and Impact Study Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Tate [Baylor Univ., Waco, TX (United States)

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.

  13. Influence of black tea concentrate on kombucha fermentation

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2006-01-01

    Full Text Available Kombucha is cultivated on substrates prepared with different concentrations of black tea and substrate obtained by diluting a substrate with highest concentration of black tea with cold tap water. Qualify of produced beverages is compared with the beverage obtained in traditional fermentation of 1.5 g/L of black tea, sweetened with 70 g/L of sucrose. Inoculation was performed with 10% (v/v of fermentation liquid from previous process, and the fermentation was carried out at 28°C under aerobic conditions, for ten days. Process of fermentation was monitored by following pH, total acids. D-gluconic acid and caffeine content. Beverages obtained in fermentation with diluted black tea concentrate had similar amounts of investigated metabolites compared with traditional one. Use of diluted black tea concentrate as a substrate needs the shorter time for the substrate preparation, which significantly saves energy.

  14. Influence of carbon black and indium tin oxide absorber particles on laser transmission welding

    Science.gov (United States)

    Aden, Mirko; Mamuschkin, Viktor; Olowinsky, Alexander

    2015-06-01

    For laser transmission welding of polypropylene carbon black and indium tin oxide (ITO) are used as absorber particles. Additionally, the colorant titanium dioxide is mixed to the absorbing part, while the transparent part is kept in natural state. The absorption coefficients of ITO and carbon black particles are obtained, as well as the scattering properties of polypropylene loaded with titanium dioxide (TiO2). At similar concentrations the absorption coefficient of ITO is an order of magnitude smaller than that of carbon black. Simulations of radiation propagation show that the penetration depth of laser light is smaller for carbon black. Therefore, the density of the released heat is higher. Adding TiO2 changes the distribution of heat in case of ITO, whereas for carbon black the effect is negligible. Thermal simulations reveal the influence of the two absorbers and TiO2 on the heat affected zone. The results of the thermal simulations are compared to tensile test results.

  15. Barrow Black Carbon Source and Impact Study Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Tate

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact campaign was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility site in Barrow, Alaska. The carbonaceous component was characterized by measuring the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the PM, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine PM fractions (PM2.5) and 49 coarse (PM10) PM fractions were collected at weekly and bi-monthly intervals. The PM2.5 sampler operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the Barrow Black Carbon Source and Impact (BBCSI) study used standard Tisch “hi-vol” motors that have a known lifetime of approximately 1 month under constant use; this necessitated monthly maintenance, and it is suggested that, for future deployment in the Arctic, the motors be upgraded to industrial blowers. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric PM samples from Barrow, Alaska, from July 2012 to June 2013. Preliminary analysis of the OC and BC concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer. However, the annual OC concentrations had a very different seasonal pattern with the highest concentrations during the summer, lowest concentrations during the fall, and increased concentrations during the winter and spring (Figure 1).

  16. Reinforcing Effects of Carbon Black on Asphalt Binder for Pavement

    OpenAIRE

    Yamaguchi, Katsuyuki; Sasaki, Iwao; Nishizaki, Itaru; Meiarashi, Seishi; Moriyoshi, Akihiro

    2005-01-01

    Carbon black, used as a reinforcing filler for rubber materials, was evaluated for asphalt binders in pavements. Carbon black added to straight asphalt within 20 wt% caused an increase in the elastic modulus and a decrease in the viscosity of the asphalt, especially at temperatures higher than room temperature. Addition of carbon black raised the maximum service temperature of asphalt in the category of the binder performance grade according to the SHRP (Strategic Highway Research Program) sp...

  17. Sources of uncertainties in modelling Black Carbon at the global scale

    Directory of Open Access Journals (Sweden)

    F. Cavalli

    2009-11-01

    Full Text Available Our understanding of the global black carbon cycle is essentially qualitative due to uncertainties in our knowledge of the properties of black carbon. This work investigates uncertainties related to modelling black carbon: due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and due to the uncertainties in the definition and quantification of observed black carbon, which propagate through to both the emission inventories, and the measurements used for the model evaluation.

    The schemes for the atmospheric processing of black carbon that have been tested with the model are (i a simple approach considering black carbon as bulk aerosol and a simple treatment in the removal and (ii a more complete description of microphysical aging within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol. In the first approach a fixed 70% of black carbon is scavenged in clouds and removed when rain is present. The second leads to a global average of 40% black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, showing that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of magnitude.

  18. CCN activation of pure and coated carbon black particles.

    Science.gov (United States)

    Dusek, U; Reischl, G P; Hitzenberger, R

    2006-02-15

    The CCN (cloud condensation nucleus) activation of pure and coated carbon black particles was investigated using the University of Vienna cloud condensation nuclei counter (Giebl, H.; Berner, A.; Reischl, G.; Puxbaum, H.; Kasper-Giebl, A.; Hitzenberger, R. J. Aerosol Sci. 2002, 33, 1623-1634). The particles were produced by nebulizing an aqueous suspension of carbon black in a Collison atomizer. The activation of pure carbon black particles was found to require higher supersaturations than predicted by calculations representing the particles as insoluble, wettable spheres with mobility equivalent diameter. To test whether this effect is an artifact due to heating of the light-absorbing carbon black particles in the laser beam, experiments at different laser powers were conducted. No systematic dependence of the activation of pure carbon black particles on laser power was observed. The observations could be modeled using spherical particles and an effective contact angle of 4-6 degrees of water at their surface. The addition of a small amount of NaCl to the carbon black particles (by adding 5% by mass NaCl to the carbon black suspension) greatly enhanced their CCN efficiency. The measured CCN efficiencies were consistent with Kohler theory for particles consisting of insoluble and hygroscopic material. However, coating the carbon black particles with hexadecanol (a typical film-forming compound with one hydrophobic and one hydrophilic end) efficiently suppressed the CCN activation of the carbon black particles.

  19. Measuring black carbon spectral extinction in the visible and infrared

    Science.gov (United States)

    Smith, A. J. A.; Peters, D. M.; McPheat, R.; Lukanihins, S.; Grainger, R. G.

    2015-09-01

    This work presents measurements of the spectral extinction of black carbon aerosol from 400 nm to 15 μm. The aerosol was generated using a Miniature Combustion Aerosol Standard soot generator and then allowed to circulate in an aerosol cell where its extinction was measured using a grating spectrometer in the visible and a Fourier transform spectrometer in the infrared. Size distribution, number concentration, and mass extinction cross sections have also been obtained using single-particle aerosol samplers. A mean mass extinction cross section at 550 nm of 8.3 ± 1.6 m2 g-1 is found which, assuming a reasonable single scatter albedo of 0.2, corresponds to a mass absorption cross section of 6.6 ± 1.3 m2 g-1. This compares well with previously reported literature values. Computer analysis of electron microscope images of the particles provides independent confirmation of the size distribution as well as fractal parameters of the black carbon aerosol. The aerosol properties presented in this work are representative of very fresh, uncoated black carbon aerosol. After atmospheric processing of such aerosols (which could include mixing with other constituents and structural changes), different optical properties would be expected.

  20. Prenatal Exposure to Carbon Black (Printex 90)

    DEFF Research Database (Denmark)

    Jackson, Petra; Vogel, Ulla; Wallin, Håkan;

    2011-01-01

    Maternal pulmonary exposure to ultrafine particles during pregnancy may affect the health of the child. Developmental toxicity of carbon black (Printex 90) nanoparticles was evaluated in a mouse model. Time-mated mice were intratracheally instilled with Printex 90 dispersed in Millipore water on ...... on gestation days (GD) 7, 10, 15 and 18, with total doses of 11, 54 and 268 mu g Printex 90/animal. The female offspring prenatally exposed to 268 mu g Printex 90/animal displayed altered habituation pattern during the Open field test....

  1. Intercontinental transport of black carbon to the Arctic free troposphere

    Science.gov (United States)

    Liu, Dantong; Quennehen, Boris; Allan, James; Darbyshire, Eoghan; Williams, Paul; Taylor, Jonathan; Flynn, Michael; Bower, Keith; Coe, Hugh

    2015-04-01

    Black carbon has a large radiative forcing potential in the Arctic, through altering the atmosphere's radiative balance and also initiating ice melt after deposition. Here we present an analysis of aerosol data collected aboard the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft during five flights in the free troposphere in the region of Svalbard in March 2013 as part of the Natural Environment Research Council (NERC) Aerosol-Cloud Coupling and Climate Interaction in the Arctic (ACCACIA) project. A number of discrete layers of pollution typical of continental emissions were detected, evidenced by black carbon (measured using a single particle soot photometer), carbon monoxide, organic matter and sulphate (measured using an aerosol mass spectrometer). These were detected at all altitudes within the free troposphere (up to 8 km) and potential source regions were investigated on a plume-by-plume basis using FLEXPART and HYSPLIT. Continental areas were identified as separate potential sources for the different plumes, with transit times of up to 12 days. East Asia showed the strongest influence, being responsible for high concentration plumes at all layers and Europe was found to be responsible for plumes in the lower to mid troposphere. North America had a somewhat weaker influence and no significant influence from Northern Russia was found. Emissions inventory data was used in conjunction with the FLEXPART potential source footprints to try to estimate the relative significance of different sources and it was found that direct emissions from human activities (e.g. transport, industry) were more prevalent than open biomass burning. Significant loadings were detected (of the order of 100 ng sm-3 black carbon relative to CO concentrations of around 50 ppbv) even when instrumental data and model outputs suggest that significant precipitation occurred during uplift, indicating that inefficient scavenging is taking place.

  2. Effect of sterilization on mineralization of straw and black carbon

    DEFF Research Database (Denmark)

    Bobul'ská, Lenka; Bruun, Sander; Fazekašová, Danica

    2013-01-01

    The study was aimed at investigating the role of microorganisms in the degradation of BC (black carbon). CO evolution was measured under sterilized and non-sterilized soil using BC and straw amendments. Black carbon and straw were produced from homogenously C labelled roots of barley (Hordeum vul...... abiotic source must also be present perhaps abiotic mineralization of labile BC components....

  3. Low-Wind and Other Microclimatic Factors in Near-road Black Carbon Variability: A Case Study and Assessment Implications

    Science.gov (United States)

    Airborne black carbon from urban traffic is a climate forcing agent and has been associated with health risk to near-road populations. In this paper, we describe a case study of black carbon concentration and compositional variability at and near a traffic-laden multi-lane highw...

  4. Double-walled carbon nanotubes synthesized using carbon black as the dot carbon source

    Science.gov (United States)

    Chen, Zhi-Gang; Li, Feng; Ren, Wen-Cai; Cong, Hongtao; Liu, Chang; Qing Lu, Gao; Cheng, Hui-Ming

    2006-07-01

    Double-walled carbon nanotubes (DWNTs) were synthesized used carbon black as the dot carbon source by a semi-continuous hydrogen arc discharge process. High-resolution transmission electron microscopy (HRTEM) observations revealed that most of the tubes were DWNTs with outer and inner diameters in the range of 2.67-4 nm and 1.96-3.21 nm, respectively. Most of the DWNTs were in a bundle form of about 10-30 nm in diameter with high purity (about 70%) from thermal gravimetric analysis (TGA), resonant laser Raman spectroscopy, scanning electron microscopy (SEM) and TEM characterizations. It was found that carbon black as the dot carbon source could be easy controlled to synthesize one type of nanotube. A simple process combining oxidation and acid treatment to purify the DWNT bundles was used without damaging the bundles. The structure of carbon black, as the key element for influencing purity, bundle formation and purification of DWNTs, is discussed.

  5. Thermal properties of carbon black aqueous nanofluids for solar absorption

    Directory of Open Access Journals (Sweden)

    Han Dongxiao

    2011-01-01

    Full Text Available Abstract In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  6. Metal concentrations and carbonaceous matter in the black shale type rocks of the Urals

    Science.gov (United States)

    Shumilova, T. G.; Shevchuk, S. S.; Isayenko, S. I.

    2016-07-01

    Here, the results of examination of black shale type rocks from the Urals for noble metal mineralization are presented for the first time: they have been obtained using atomic-absorption spectrometry along with data of a complex analysis of a carbon mineralization applying a complex of high-resolution techniques. The data acquired demonstrate anomalously high Au concentrations in all the rocks examined. The carbon matter occurs in a wide range of phase states, including nanocrystalline graphite, carbon nanofiber, nanoglobules, diamond-like carbon, and bitumens. The black shale type rocks were found to be promising for further studies in order to seek industrially valuable objects including in areas of the northern part of the Urals.

  7. Cycling of black carbon in the ocean

    Science.gov (United States)

    Coppola, Alysha I.; Druffel, Ellen R. M.

    2016-05-01

    Black carbon (BC) is a by-product of combustion from wildfires and fossil fuels and is a slow-cycling component of the carbon cycle. Whether BC accumulates and ages on millennial time scales in the world oceans has remained unknown. Here we quantified dissolved BC (DBC) in marine dissolved organic carbon isolated by solid phase extraction at several sites in the world ocean. We find that DBC in the Atlantic, Pacific, and Arctic oceans ranges from 1.4 to 2.6 μM in the surface and is 1.2 ± 0.1 μM in the deep Atlantic. The average 14C age of surface DBC is 4800 ± 620 14C years and much older in a deep water sample (23,000 ± 3000 14C years). The range of DBC structures and 14C ages indicates that DBC is not homogeneous in the ocean. We show that there are at least two distinct pools of marine DBC, a younger pool that cycles on centennial time scales and an ancient pool that cycles on >105 year time scales.

  8. Estimation and prediction of black carbon emissions in Beijing City

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Shao, M. [Peking University, Beijing (China)

    2007-05-15

    Black carbon is a by-product of incomplete combustion of carbon containing fuels. It can alter atmospheric radiation property and make adverse impacts on human health. The energy consumption in Beijing City depends largely on coal burning. Recently, Beijing City has been performing the municipal energy structure adjustment as a tool for air pollution abatement, aiming at the air quality goal for the Beijing 2008 Olympic Games. Based on Beijing energy use data in 2000, combined with emission factors of major sources of black carbon, the emission of black carbon in Beijing City is estimated to be 7.77 Gg. Coke, raw coal and biomass as non-commercial energy are the main contributors to municipal black carbon emissions. Based on Beijing energy planning in the year 2008, the emission of black carbon in 2008 will be 2.97 Gg if the contribution from biomass is not taken into account. Assuming that the black carbon emission from rural biomass in 2008 is the same as that in 2004, the biomass burning will be the largest emitter of black carbon to Beijing City in 2008.

  9. Estimation and prediction of black carbon emissions in Beijing City

    Institute of Scientific and Technical Information of China (English)

    LIU Yuan; SHAO Min

    2007-01-01

    Black carbon is a by-product of incomplete combustion of carbon containing fuels. It can alter atmospheric radiation property and make adverse impacts on human health. The energy consumption in Beijing City depends largely on coal burning. Recently, Beijing City has been performing the municipal energy structure adjustment as a tool for air pollution abatement, aiming at the air quality goal for the Beijing 2008 Olympic Games. Based on Beijing energy use data in 2000, combined with emission factors of major sources of black carbon, the emission of black carbon in Beijing City is estimated to be 7.77 Gg. Coke, raw coal and biomass as non-commercial energy are the main contributors to municipal black carbon emissions. Based on Beijing energy planning in the year 2008, the emission of black carbon in 2008 will be 2.97 Gg if the contribution from biomass is not taken into account. Assuming that the black carbon emission from rural biomass in 2008 is the same as that in 2004, the biomass burning will be the largest emitter of black carbon to Beijing City in 2008.

  10. Addressing inconsistencies in black carbon literature

    Science.gov (United States)

    Shonkoff, S. B.; Chafe, Z.; Smith, K. R.

    2010-12-01

    The literature describing black carbon (BC) emissions, and their effect on Earth’s climate, is growing rapidly. Unfortunately, inconsistencies in definitions; data collection and characterization; system boundaries; and time horizons have led to confusion about the relative importance of BC compared to other climate-active pollutant (CAPs). We discuss three sources of confusion: 1) Currently available BC inventories are not directly comparable to those used by the IPCC to track the greenhouse gases (GHGs) considered in the Kyoto Protocol (CO2, CH4, N2O). In particular, BC inventories often include all emissions: natural and anthropogenic in origin, controllable and non-controllable. IPCC inventories include only anthropogenic emissions. This BC accounting is appropriate for atmospheric science deliberations, but risks being interpreted as an overstatement against official Kyoto GHG inventories in a policy or control context. The IPCC convention of using 1750 as the starting year for emission inventories further complicates matters: significant BC emissions were emitted previous to that date by both human and natural sources. Though none of the pre-1750 BC emissions remain in the atmosphere today, their legacy presents challenges in assigning historical responsibility for associated global warming among sectors and regional populations. 2) Inconsistencies exist in the specific emissions sources considered in atmospheric models used to predict net BC forcing often lead to widely varying climate forcing estimates. For example, while some analyses consider only fossil fuel 1, others include both open biomass burning and fossil fuel combustion 2, and yet others include sources beyond biomass and fossil fuel burning 3. 3) Inconsistencies exist in how analyses incorporate the relationship between BC emissions and the associated cooling aerosols and processes, such as organic carbon (OC), and aerosol indirect effects (AIE). Unlike Kyoto GHGs, BC is rarely emitted in pure

  11. Preparation and application of active gangue's carbon black

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang-lin; ZHANG Yi-dong

    2007-01-01

    After three-stage pulverization, dry-distillated activation and coupling agent surface modification, the kaolinite-typed gangue of Sichuan Hongni Coal Mine(SHCM) can be manufactured into activated gangue's carbon black. Its surface area is >25 m2/g, and possesses carbon black's carbon framework and structure. It can be used as strengthening agent of high polymer material such as rubber.

  12. PTCR effect in carbon black/copolymer composites

    Science.gov (United States)

    Costa, L. C.; Chakki, A.; Achour, M. E.; Graça, M. P. F.

    2011-01-01

    Some materials show an abrupt increase in resistivity when the temperature changes only over a few degrees. This phenomenon, known as PTCR effect (positive temperature coefficient of resistivity), has been largely studied in the last few years, due to its potential applications in industry. Particularly, it can be used in auto controlled heaters, temperature sensors, protection circuits and in security systems for power electronic circuits. In this work we present the study of the electrical properties of the percolating system carbon black particles filled with ethylene butylacrylate copolymer composite (EBA), in the temperature range from -100 to 100 °C and in frequencies between 10 Hz and 100 kHz. The PTCR effect was observed at temperatures slightly above the room temperature, for concentrations higher than that of the percolation critical concentration. The mechanism responsible for the change in resistivity, at this stage, is predominantly tunnelling, wherein the conductive filler particles are not in physical contact, and the electrons tunnel through the insulating gap between them. At low temperatures, such as below and close to the glass transition temperature, the DC conductivity obeys the Arrhenius law. The calculated activation energy values are independent of carbon black contents inside the copolymer matrix, suggesting that these particles do not interact significantly with the chain segments of the macromolecules in the EBA copolymer.

  13. Black carbon as a carbon source for young soils in a glacier forefield?

    Science.gov (United States)

    Eckmeier, E.; Pichler, B.; Krebs, R.; Mavris, C.; Egli, M.

    2012-04-01

    Most evident changes in Alpine soils today occur in proglacial areas where existing young soils are continuously developing. Due to climate change, additional areas will become ice-free and subject to weathering and new soil formation. The glacier forefields of the European Alps are continuously exposed since the glaciers reached their maximum expansion in the 1850s. In these proglacial areas, initial soils have started to develop so that they may offer, under optimal conditions, a continuous chronosequence from 0 to 150 year-old soils. The buildup of organic carbon (Corg) in soil is an important factor controlling weathering and the formation of soils. Not only autochthonous but also distant (allochthonous) sources may contribute to the accumulation of soil organic carbon in young soils and surfaces of glacier forefields. Black carbon could be an important component in Alpine soils. However, only little is known about black carbon in very young soils that develop in glacier forefields. The aim of our study was to examine whether black carbon as an allochthonous source of soil organic matter can be detected in the initial soils, and to estimate its relative contribution (as a function of time) to total organic carbon. We investigated surface soil samples (topsoils, A or AO horizon) from 35 sites distributed over the whole proglacial area of Morteratsch, where ideal conditions for a soil chronosequence from 0 to 150 years can be found. Along this sequence, bare till sediments to weakly developed soils (Leptosols) can be encountered. Black carbon concentrations were determined in fine-earth using the benzene polycarboxylic acid (BPCA) marker method as described by Brodowski et al. (2005). We found that the proportion of BPCA-C to total Corg was related to the time since the surface was exposed. The youngest soils (younger than 40 years) contained the highest proportion of BPCA-C (up to 120 g BPCA-C/kg Corg). In these soils, however, the Corg concentrations were very

  14. Compare of black carbon concentration variation between dongguan and maofengshan%东莞与帽峰山黑碳气溶胶浓度变化特征的对比

    Institute of Scientific and Technical Information of China (English)

    陈慧忠; 吴兑; 廖碧婷; 李海燕; 李菲

    2013-01-01

    A comparison analysis was carried out on black carbon (BC) concentrations in Dongguang at an altitude of 30m and Maofengshan at an altitude of 550 m in the Pearl River Delta (PRD) region. The annual average concentration of BC was 5.27μg/m3 at Dongguan and 2.43μg/m3 at Maofengshan. Concentrations of BC at both sites were significantly lower than level of 8.42 μg/m3 observed in Nancun station in Guangzhou, a site in the heart of the PRD area. The results show that in the rainy season, the diurnal variations at the Dongguang and Maofengshan were different as a result of influence of vertical convection. The heat-induced convection brought BC from ground to higher altitudes, lowering concentration on the ground while increasing concentration at higher latitudes. This explains that at noontime, Dongguan experienced the minimum BC concentration while BC peaked at Maofengshan. In the dry season when the synoptic weather in South China was controlled by high-pressure systems, the weak descending air had little effect in promoting vertical mixing and air dispersion was dominated by horizontal advection. Consequently, similar diurnal variations were observed at the two locations. Due to closer proximity to BC sources, the monthly variation of BC in Dongguan (standard deviation: 0.60μg/m3) was larger than that in Maofengshan (standard deviation: 0.14 μg/m3). The value of a, which is the power index of the wavelength of BC absorption coefficient, was found to be close to 1 at both sites, indicating that BC at the two sites had fossil fuel combustion as the common source.%将东莞(海拔30m,位于平原地区)与帽峰山(海拔550m,位于山地地区)的黑碳气溶胶(BC)浓度进行对比,结果表明,东莞地区BC浓度年均值为5.27μ g/m3,帽峰山BC浓度值为2.43μg/m3,两个站点的浓度都比位于珠三角核心区的南村站浓度(8.42μg/m3)低.雨季,东莞与帽峰山BC浓度的日变化特征在中午呈现反位相,这是因为两站近地

  15. Sources of uncertainties in modelling black carbon at the global scale

    Directory of Open Access Journals (Sweden)

    E. Vignati

    2010-03-01

    Full Text Available Our understanding of the global black carbon (BC cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the measurements used for the model evaluation.

    The schemes for the atmospheric processing of black carbon that have been tested with the model are (i a simple approach considering BC as bulk aerosol and a simple treatment of the removal with fixed 70% of in-cloud black carbon concentrations scavenged by clouds and removed when rain is present and (ii a more complete description of microphysical ageing within an aerosol dynamics model, where removal is coupled to the microphysical properties of the aerosol, which results in a global average of 40% in-cloud black carbon that is scavenged in clouds and subsequently removed by rain, thus resulting in a longer atmospheric lifetime. This difference is reflected in comparisons between both sets of modelled results and the measurements. Close to the sources, both anthropogenic and vegetation fire source regions, the model results do not differ significantly, indicating that the emissions are the prevailing mechanism determining the concentrations and the choice of the aerosol scheme does not influence the levels. In more remote areas such as oceanic and polar regions the differences can be orders of magnitude, due to the differences between the two schemes. The more complete description reproduces the seasonal trend of the black carbon observations in those areas, although not always the magnitude of the signal, while the more simplified approach underestimates black carbon concentrations by orders of

  16. Global emission inventory and atmospheric transport of black carbon. Evaluation of the associated exposure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rong

    2015-06-01

    This thesis presents research focusing on the improvement of high-resolution global black carbon (BC) emission inventory and application in assessing the population exposure to ambient BC. A particular focus of the thesis is on the construction of a high-resolution (both spatial and sectorial) fuel consumption database, which is used to develop the emission inventory of black carbon. Above all, the author updates the global emission inventory of black carbon, a resource subsequently used to study the atmospheric transport of black carbon over Asia with the help of a high-resolution nested model. The thesis demonstrates that spatial bias in fuel consumption and BC emissions can be reduced by means of the sub-national disaggregation approach. Using the inventory and nested model, ambient BC concentrations can be better validated against observations. Lastly, it provides a complete uncertainty analysis of global black carbon emissions, and this uncertainty is taken into account in the atmospheric modeling, helping to better understand the role of black carbon in regional and global air pollution.

  17. Analysis of transpacific transport of black carbon during HIPPO-3: implications for black carbon aging

    Directory of Open Access Journals (Sweden)

    Z. Shen

    2014-01-01

    Full Text Available Long-range transport of black carbon (BC is a growing concern as a result of the efficiency of BC in warming the climate and its adverse impact on human health. We study transpacific transport of BC during HIPPO-3 using a combination of inverse modeling and sensitivity analysis. We use the GEOS-Chem chemical transport model and its adjoint to constrain Asian BC emissions and estimate the source of BC over the North Pacific. We find that different sources of BC dominate the transport to the North Pacific during the southbound (29 March 2010 and northbound (13 April 2010 measurements in HIPPO-3. While biomass burning in Southeast Asia (SE contributes about 60% of BC in March, more than 90% of BC comes from fossil fuel and biofuel combustion in East Asia (EA during the April mission. GEOS-Chem simulations generally resolve the spatial and temporal variation of BC concentrations over the North Pacific, but are unable to reproduce the low and high tails of the observed BC distribution. We find that the optimized BC emissions derived from inverse modeling fail to improve model simulations significantly. This failure indicates that uncertainties in BC transport, rather than in emissions, account for the major biases in GEOS-Chem simulations of BC. The aging process, transforming BC from hydrophobic into hydrophilic form, is one of the key factors controlling wet scavenging and remote concentrations of BC. Sensitivity tests on BC aging suggest that the aging time scale of anthropogenic BC from EA is several hours, faster than assumed in most global models, while the aging process of biomass burning BC from SE may occur much slower, with a time scale of a few days. To evaluate the effects of BC aging and wet deposition on transpacific transport of BC, we develop an idealized model of BC transport. We find that the mid-latitude air masses sampled during HIPPO-3 may have experienced a series of precipitation events, particularly near the EA and SE source

  18. A New Grade Carbon Black Produced by Thermal Plasma Process

    Institute of Scientific and Technical Information of China (English)

    李娟; 何方方; 罗义文; 印永祥; 戴晓雁; 廖旭

    2003-01-01

    This paper presents a new route about producing carbon black, by which the naturalgas cracking is carried out in the absence of oxygen thanks to an electric energy supply externallygiven by a plasma jet. The carbon black produced by this process has a narrow size distributionand a small average diameter of 38 nm as well as a highly branched aggregate. The higher DBPvalue of 1.40 ml/g shows it should be a high structure carbon black. The FTIR spectra shows thatthere are lots of aromatic c-c bonds and a large amount of nitrogen-containing functional groupson the carbon blacks surface, such as -NH, -CN as well as -CH, -OH, -COOH groups.

  19. Low-wind and other microclimatic factors in near-road black carbon variability: A case study and assessment implications

    Science.gov (United States)

    Liang, Marissa S.; Keener, Timothy C.; Birch, M. Eileen; Baldauf, Richard; Neal, Jill; Yang, Y. Jeffrey

    2013-12-01

    Airborne black carbon from urban traffic is a climate forcing agent and has been associated with health risks to near-road populations. In this paper, we describe a case study of black carbon concentration and compositional variability at and near a traffic-laden multi-lane highway in Cincinnati, Ohio, using an onsite aethalometer and filter-based NIOSH Method 5040 measurements; the former measured 1-min average black carbon concentrations and the latter determined the levels of organic and elemental carbon (OC and EC) averaged over an approximately 2-h time interval. The results show significant wind and temperature effects on black carbon concentration and composition in a way more complex than predicted by Gaussian dispersion models. Under oblique low winds, namely ux[=u×sin(θ)]˜ (0, -0.5 m s-1), which mostly occurred during morning hours, black carbon concentrations per unit traffic flow were highest and had large variation. The variability did not always follow Gaussian dispersion but was characteristic of a uniform distribution at a near-road distance. Under all other wind conditions, the near-road black carbon variation met Gaussian dispersion characteristics. Significant differences in roadside dispersion are observed between OC and EC fractions, between PM2.5 and PM10-2.5, and between the morning period and rest of the day. In a general case, the overall black carbon variability at the multi-lane highway can be stated as bimodal consisting of Gaussian dispersion and non-Gaussian uniform distribution. Transition between the two types depends on wind velocity and wind angle to the traffic flow. In the order of decreasing importance, the microclimatic controlling factors over the black carbon variability are: 1) wind velocity and the angle with traffic; 2) diurnal temperature variations due to thermal buoyancy; and 3) downwind Gaussian dispersion. Combinations of these factors may have created various traffic-microclimate interactions that have significant

  20. Effects of Surface-modification of Carbon Black on the Characteristics of Polymerized Toner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Ho; Kim, Dae Su [Chungbuk National University, Cheongju (Korea, Republic of)

    2013-10-15

    Carbon black was surface-modified to prepare styrene-based suspension polymerized toner with excellent carbon black dispersibility inside toner particles. Carbon black was oxidized first to introduce hydroxyl groups on the surfaces, then esterification between the hydroxyl groups and carboxyl groups of organic acids (oleic acid, palmitic acid, acrylic acid) was followed to obtain organically surface-modified carbon black. The surface-modification of carbon black was confirmed by FTIR. Apparent carbon black dispersibility in the monomer mixture of the binder resin was tested and the particle size of dispersed carbon black was measured by particle size analyzer. Optical micrographs showed that carbon black dispersibility inside toner particles was improved considerably when the carbon black surface-modified with oleic acid was used. The polymerized toner prepared with the carbon black surface-modified with oleic acid showed ideal particle size and size distribution as a toner.

  1. Comparative DEMS study on the electrochemical oxidation of carbon blacks

    DEFF Research Database (Denmark)

    Ashton, Sean James; Arenz, Matthias

    2012-01-01

    heat-treated between 2100 and 3200 °C, such as those typically used as corrosion resistant carbon (CRC) supports for polymer electrolyte membrane fuel cell (PEMFC) catalysts. A methodology combining cyclic voltammetry (CV) and differential electrochemical mass spectrometry (DEMS) is used, which allows...... the characterisation and comparison of the complete electrochemical oxidation rates and behaviours of the various carbon blacks. It is observed that the behaviour of the carbon black towards electrochemical oxidation is highly dynamic, and dependent on the properties of the pristine carbon back, the degree...

  2. Temporal variations of black carbon during haze and non-haze days in Beijing

    Science.gov (United States)

    Liu, Qingyang; Ma, Tangming; Olson, Michael R.; Liu, Yanju; Zhang, Tingting; Wu, Yu; Schauer, James J.

    2016-09-01

    Black carbon (BC) aerosol has been identified as one of key factors responsible for air quality in Beijing. BC emissions abatement could help slow regional climate change while providing benefits for public health. In order to quantify its variations and contribution to air pollution, we systematically studied real-time measurements of equivalent black carbon (eBC) in PM2.5 aerosols at an urban site in Beijing from 2010 to 2014. Equivalent black carbon (eBC) is used instead of black carbon (BC) for data derived from Aethalometer-31 measurement. Equivalent BC concentrations showed significant temporal variations with seasonal mean concentration varying between 2.13 and 5.97 μg m-3. The highest concentrations of eBC were found during autumn and winter, and the lowest concentrations occurred in spring. We assessed the temporal variations of eBC concentration during haze days versus non-haze days and found significantly lower eBC fractions in PM2.5 on haze days compared to those on non-haze days. Finally, we observed a clear inverse relationship between eBC and wind speed. Our results show that wind disperses PM2.5 more efficiently than eBC; so, secondary aerosols are not formed to the same degree as primary aerosols over the same transport distance during windy conditions.

  3. Temporal variations of black carbon during haze and non-haze days in Beijing.

    Science.gov (United States)

    Liu, Qingyang; Ma, Tangming; Olson, Michael R; Liu, Yanju; Zhang, Tingting; Wu, Yu; Schauer, James J

    2016-01-01

    Black carbon (BC) aerosol has been identified as one of key factors responsible for air quality in Beijing. BC emissions abatement could help slow regional climate change while providing benefits for public health. In order to quantify its variations and contribution to air pollution, we systematically studied real-time measurements of equivalent black carbon (eBC) in PM2.5 aerosols at an urban site in Beijing from 2010 to 2014. Equivalent black carbon (eBC) is used instead of black carbon (BC) for data derived from Aethalometer-31 measurement. Equivalent BC concentrations showed significant temporal variations with seasonal mean concentration varying between 2.13 and 5.97 μg m(-3). The highest concentrations of eBC were found during autumn and winter, and the lowest concentrations occurred in spring. We assessed the temporal variations of eBC concentration during haze days versus non-haze days and found significantly lower eBC fractions in PM2.5 on haze days compared to those on non-haze days. Finally, we observed a clear inverse relationship between eBC and wind speed. Our results show that wind disperses PM2.5 more efficiently than eBC; so, secondary aerosols are not formed to the same degree as primary aerosols over the same transport distance during windy conditions. PMID:27634102

  4. Temporal variations of black carbon during haze and non-haze days in Beijing.

    Science.gov (United States)

    Liu, Qingyang; Ma, Tangming; Olson, Michael R; Liu, Yanju; Zhang, Tingting; Wu, Yu; Schauer, James J

    2016-09-16

    Black carbon (BC) aerosol has been identified as one of key factors responsible for air quality in Beijing. BC emissions abatement could help slow regional climate change while providing benefits for public health. In order to quantify its variations and contribution to air pollution, we systematically studied real-time measurements of equivalent black carbon (eBC) in PM2.5 aerosols at an urban site in Beijing from 2010 to 2014. Equivalent black carbon (eBC) is used instead of black carbon (BC) for data derived from Aethalometer-31 measurement. Equivalent BC concentrations showed significant temporal variations with seasonal mean concentration varying between 2.13 and 5.97 μg m(-3). The highest concentrations of eBC were found during autumn and winter, and the lowest concentrations occurred in spring. We assessed the temporal variations of eBC concentration during haze days versus non-haze days and found significantly lower eBC fractions in PM2.5 on haze days compared to those on non-haze days. Finally, we observed a clear inverse relationship between eBC and wind speed. Our results show that wind disperses PM2.5 more efficiently than eBC; so, secondary aerosols are not formed to the same degree as primary aerosols over the same transport distance during windy conditions.

  5. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2006-01-01

    Full Text Available Although the definition and measurement techniques for atmospheric 'black carbon' ('BC' or 'elemental carbon'' ('EC' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black ('brown carbon, Cbrown' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes from (1 spectral aerosol light absorption measurements near specific combustion sources, (2 observations of spectral properties of water extracts of continental aerosol, (3 laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and (4 indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that brown carbon may severely bias measurements of 'BC' and 'EC' over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of Cbrown is high relative to that of soot carbon. Chemical measurements to determine 'EC' are biased by the refractory nature of Cbrown as well as by complex matrix interferences. Optical measurements of 'BC' suffer from a number of problems: (1 many of the presently used instruments introduce a substantial bias into the determination of aerosol light absorption, (2 there is no unique conversion factor between light absorption and 'EC' or 'BC' concentration in ambient aerosols, and (3 the difference in spectral properties between the different types of LAC, as well as the chemical complexity of Cbrown, lead to several conceptual as well as practical complications. We also suggest that due to the sharply increasing absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. We discuss the possible consequences of these effects for our

  6. Light Absorption in Arctic Sea Ice - Black Carbon vs Chlorophyll

    Science.gov (United States)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Hunke, E. C.; Flanner, M.; Wang, H.; Dubey, M. K.; Jeffery, N.

    2015-12-01

    The fingerprint of climate change is more obvious in the Arctic than any other place on Earth. This is not only because the surface temperature there has increased at twice the rate of global mean temperature but also because Arctic sea ice extent has reached a record low of 49% reduction relative to the 1979-2000 climatology. Radiation absorption through black carbon (BC) deposited on Arctic snow and sea ice surface is one of the major hypothesized contributors to the decline. However, we note that chlorophyll-a absorption owing to increasing biology activity in this region could be a major competitor during boreal spring. Modeling of sea-ice physical and biological processes together with experiments and field observations promise rapid progress in the quality of Arctic ice predictions. Here we develop a dynamic ice system module to investigate discrete absorption of both BC and chlorophyll in the Arctic, using BC deposition fields from version 5 of Community Atmosphere Model (CAM5) and vertically distributed layers of chlorophyll concentrations from Sea Ice Model (CICE). To this point, our black carbon mixing ratios compare well with available in situ data. Both results are in the same order of magnitude. Estimates from our calculations show that sea ice and snow around the Canadian Arctic Archipelago and Baffin Bay has the least black carbon absorption while values at the ice-ocean perimeter in the region of the Barents Sea peak significantly. With regard to pigment concentrations, high amounts of chlorophyll are produced in Arctic sea ice by the bottom microbial community, and also within the columnar pack wherever substantial biological activity takes place in the presence of moderate light. We show that the percentage of photons absorbed by chlorophyll in the spring is comparable to the amount attributed to BC, especially in areas where the total deposition rates are decreasing with time on interannual timescale. We expect a continuous increase in

  7. An Important Supplement to NAA in Study on Atmosphere Pollution:Determination of Black Carbon

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Light absorption in the atmosphere is dominated by elemental carbon (EC), sometimes called black carbon (BC). Black carbon is an important indication of man-made pollution in airborne particulate matter

  8. Commuter exposure to black carbon, carbon monoxide, and noise in the mass transport khlong boats of Bangkok, Thailand

    Science.gov (United States)

    Ziegler, A. D.; Velasco, E.; Ho, K. J.

    2013-12-01

    Khlong (canal) boats are a unique mass transport alternative in the congested city of Bangkok. Canals and rivers provide exclusive transit-ways for reducing the commuting time of thousands of city residents daily. However, as a consequence of the service characteristics and boats design and state of repair, they can represent a potential public health risk and an important source of black carbon and greenhouse gases. This work quantifies commuter exposure to black carbon, CO and noise when waiting for and travelling in these diesel fueled boats. Exposure to toxic pollutants and acute noise is similar or worse than for other transportation modes. Mean black carbon concentrations observed at one busy pier and along the main canal were much higher than ambient concentrations at sites impacted by vehicular traffic. Concentrations of CO were similar to those reported for roadside areas of Bangkok. The equivalent continuous sound levels registered at the landing pier were similar to those reported for roadsides, but values recorded inside the boats were significantly higher. We believe that the boat service is a viable alternative mode of mass transport, but public safety could be improved to provide a high quality service, comparable to modern rail systems or emerging bus rapid transit systems. These investments would also contribute to reduce the emission of black carbon and other greenhouse and toxic pollutants.

  9. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    OpenAIRE

    Bosak, Z.; Barta, D; Zečević, N.; Šiklušić, S.

    2009-01-01

    This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV) oxide, carbon(II) oxide, hydrogen, methane, hydrogen sulfide, nitrogen...

  10. Utilization of low-ash biochar to partially replace carbon black in SBR composites

    Science.gov (United States)

    A biochar made from woody waste feedstock with low ash content was blended with carbon black as filler for styrene-butadiene rubber. At 10% total filler concentration (w/w), composites made from 25 or 50% biochar showed improved tensile strength, elongation, and toughness compared to similar composi...

  11. Atmospheric black carbon and warming effects influenced by the source and absorption enhancement in central Europe

    NARCIS (Netherlands)

    Nordmann, S.; Cheng, Y.F.; Carmichael, G.R.; Yu, M.; Denier Van Der Gon, H.A.C.; Zhang, Q.; Saide, P.E.; Pöschl, U.; Su, H.; Birmili, W.; Wiedensohler, A.

    2014-01-01

    Particles containing black carbon (BC), a strong absorbing substance, exert a rather uncertain direct and indirect radiative forcing in the atmosphere. To investigate the mass concentration and absorption properties of BC particles over central Europe, the model WRF-Chem was used at a resolution of

  12. Nanohybrid TiO2/carbon black sensor for NO2 gas

    Institute of Scientific and Technical Information of China (English)

    Wei-Jen Liou; Hong-Ming Lin

    2007-01-01

    A nanohybrid sensor of nanosized TiO2-coated carbon black particles, prepared by sol-gel technology for the detection of NO2 gas, has been developed. The response of the electric resistance of the hybrid sensor to NO2 concentration is investigated, showing that the sensitivity of the hybrid sensor is raised as certain ratio of the TiO2 content in the sensor. Easy and cheap to fabricate, the hybrid TiO2/carbon black promises to be a practical sensor for detecting NO2 gas.

  13. Electric anisotropy in high density polyethylene + carbon black composites induced by mechanical deformation

    Energy Technology Data Exchange (ETDEWEB)

    Vigueras-Santiago, E; Hernandez-Lopez, S; Camacho-Lopez, M A; Lara-Sanjuan, O, E-mail: eviguerass@uaemex.m [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, UAEM. Paseo Colon esq. con Paseo Tollocan, s/n. C.P. 50000, Toluca (Mexico)

    2009-05-01

    High density polyethylene + carbon black composites with electrical anisotropy was studied. Electrical anisotropy was induced by uniaxial mechanical deformation and injection moulding. We show that anisotropy depends on the carbon black concentration and percentage deformation. Resistivity had the highest anisotropy resistivity around the percolation threshold. Perpendicular resistivity showed two magnitude orders higher than parallel resistivity for injected samples, whereas resistivity showed an inverse behaviour for 100% tensile samples. Both directions were set respect to the deformation axe. Anisotropy could be explained in terms of the molecular deformation (alignment) of the polymer chains as a response of the deformation process originating a redistribution of the carbon black particles in both directions. Alignment of the polymer chains was evidenced by polarized Raman spectroscopy.

  14. Photo-lability of deep ocean dissolved black carbon

    Directory of Open Access Journals (Sweden)

    A. Stubbins

    2012-05-01

    Full Text Available Dissolved black carbon (DBC, defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzenepolycarboxylic acid (BPCA oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance were determined over the course of a 28 day irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM-C to 55 ± 15 nM-C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. The concentration of DBC correlated with CDOM absorbance and the quality of DBC indicated by the ratios of different BPCAs correlated with CDOM absorbance spectral slope, suggesting the optical properties of CDOM may provide a proxy for both DBC concentrations and quality in natural waters. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 years. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Consequently, photo-degradation is posited as the primary sink for oceanic DBC and the apparent survival of DBC molecules in the oceans for millennia appears to be facilitated not by their

  15. MORPHOLOGY OF BLACK CARBON AEROSOLS AND UBIQUITY OF 50-NANOMETER BLACK CARBON AEROSOLS IN THE ATMOSPHERE

    Institute of Scientific and Technical Information of China (English)

    Fengfu Fu; Liangjun Xu; Wei Ye; Yiquan Chen; Mingyu Jiang; Xueqin Xu

    2006-01-01

    Different-sized aerosols were collected by an Andersen air sampler to observe the detailed morphology of the black carbon (BC) aerosols which were separated chemically from the other accompanying aerosols, using a Scanning Electron Microscope equipped with an Energy Dispersive X-ray Spectrometer (SEM-EDX). The results indicate that most BC aerosols are spherical particles of about 50 nm in diameter and with a homogeneous surface. Results also show that these particles aggregate with other aerosols or with themselves to form larger agglomerates in the micrometer range. The shape of these 50-nm BC spherical particles was found to be very similar to that of BC particles released from petroleum-powered vehicular internal combustion engines. These spherical BC particles were shown to be different from the previously reported fullerenes found using Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS).

  16. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2006-05-01

    Full Text Available Although the definition and measurement methods of atmospheric ''black carbon'' (''BC'' have long been subjects of scientific controversy, the recent discovery of light-absorbing carbon that is not black (''brown carbon, Cbrown'' makes it imperative to reassess and redefine the components that make up light-absorbing carbonaceous matter (LAC in the atmosphere. Evidence for the atmospheric presence of Cbrown comes directly from aerosol absorption measurements near specific combustion sources, from observations of spectral properties of water extracts of continental aerosol, from laboratory studies indicating the formation of light-absorbing organic matter in the atmosphere, and indirectly from the chemical analogy of aerosol species to colored natural humic substances. We show that these species may severely bias measurements of ''BC'' and ''EC'' over vast parts of the troposphere, where mass concentration of Cbrown is high relative to that of combustion soot. We also imply that due to the strongly skewed absorption of Cbrown towards the UV, single-wavelength light absorption measurements may not be adequate for the assessment of absorption of solar radiation in the troposphere. The possible consequences of these effects on our understanding of tropospheric processes are discussed.

  17. Long-term airborne black carbon measurements on a Lufthansa passenger aircraft

    Science.gov (United States)

    Ditas, Jeannine; Su, Hang; Scharffe, Dieter; Wang, Siwen; Zhang, Yuxuan; Brenninkmeijer, Carl; Pöschl, Ulrich; Cheng, Yafang

    2016-04-01

    Aerosol particles containing black carbon are the most absorbing component of incoming solar radiation and exert a significant positive radiative forcing thus forming next to CO² the strongest component of current global warming (Bond, 2013). Nevertheless, the role of black carbon particles and especially their complex interaction with clouds needs further research which is hampered by the limited experimental data, especially observations in the free and upper troposphere, and in the UTLS (upper troposphere and lower stratosphere). Many models underestimate the global atmospheric absorption attributable to black carbon by a factor of almost 3 (Bond, 2013). In August 2014, a single particle soot photometer was included in the extensive scientific payload of the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) project. CARIBIC is in operation since 1997 (with an interruption for 2002-2005) and carries out systematic observations at 10-12 km altitude. For this a special air freight container combining different instruments is transported on a monthly basis using a Lufthansa Airbus A340-600 passenger aircraft with destinations from 120°W to 120°E and 10°N to 75°N. The container has equipment for trace gas analyses and sampling and aerosol analyses and sampling and is connected to an inlet system that is part of the aircraft which contains a camera and DOAS remote sensing system. The integration of a single particle soot photometer (SP2) offers the possibility for the first long-term measurement of global distribution of black carbon and so far flights up to November 2015 have been conducted with more than 400 flight hours. So far the SP2 measurements have been analysed for flights over four continents from Munich to San Francisco, Sao Paulo, Tokyo, Beijing, Cape Town, Los Angeles and Hong Kong). The first measurements show promising results of black carbon measurements. Background concentrations in the UTLS

  18. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2009-01-01

    Full Text Available This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV oxide, carbon(II oxide, hydrogen, methane, hydrogen sulfide, nitrogen, oxygen, and water vapor.The quantitative composition and lower caloric value of process tail gases change depending on the type of feedstock used in the production, as well as the type of process. The lower caloric value of process tail gases is relatively small with values ranging between 1500 and 2300 kJ m–3.In the conventional production of oil-furnace carbon black, process tail gases purified from carbon black dust are freely released into the atmosphere untreated. In this manner, the process tail gases pollute the air in the town of Kutina, because their quantitative values are much higher than the prescribed emissions limits for hydrogen sulfide and carbon(II oxide. A logical solution for the prevention of such air pollution is combustion of the process tail gases, i. e. their thermal oxidation. For this purpose, a specially designed flare system has been developed. Consuming minimum amounts of natural gas needed for oxidation, the flare system is designed to combust low caloric process tail gases with 99 % efficiency. Thus, the toxic and flammable components of the tail gases (hydrogen sulfide, hydrogen, carbon(II oxide, methane and other trace hydrocarbons would be transformed into environmentally acceptable components (sulfur(IV oxide, water, carbon(IV oxide and nitrogen(IV oxide, which are in compliance with the emissions limit values prescribed by law.Proper operation of this flare system in the production of oil-furnace carbon black would solve

  19. Elementary concentration of Peruibe black mud by neutron activation analysis

    International Nuclear Information System (INIS)

    The Peruibe Black Mud is used in therapies such as psoriasis, peripheral dermatitis, acne, seborrehea, myalgia arthritis and rheumatic non-articular processes. This material is characterized by is fine organic matter particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is considered natural, it may not be free of possible adverse health effects, like toxic chemical elements, when used for therapeutic purposes. In the therapeutic treatments involving clays, clays are used in mud form also called peloids, obtained by maturation process. Five in natura and three maturated Black Mud samples were collected in Peruibe city, Sao Paulo State, Brazil. To investigate the distribution of major, trace and rare earth elements in the in natura and maturated clays that constitute the Peruibe Black Mud, neutron activation analysis (NAA) was used. A comparison between in natura and maturated mud shows that major, trace and rare earth elements follow the same order in both types. Generally, the concentrations in the maturated mud are slightly lower than in natura mud. Enrichment on the upper continental crust could be observed for the elements As, Br, Sb and Se, in these types of mud. (author)

  20. Elementary concentration of Peruibe black mud by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilha, Jefferson K.; Ponciano, Ricardo; Silva, Paulo S.C da, E-mail: jeffkoy@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The Peruibe Black Mud is used in therapies such as psoriasis, peripheral dermatitis, acne, seborrehea, myalgia arthritis and rheumatic non-articular processes. This material is characterized by is fine organic matter particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is particles, sulphate reducing bacteria and a high content of potential reduction ions. Although this material is considered natural, it may not be free of possible adverse health effects, like toxic chemical elements, when used for therapeutic purposes. In the therapeutic treatments involving clays, clays are used in mud form also called peloids, obtained by maturation process. Five in natura and three maturated Black Mud samples were collected in Peruibe city, Sao Paulo State, Brazil. To investigate the distribution of major, trace and rare earth elements in the in natura and maturated clays that constitute the Peruibe Black Mud, neutron activation analysis (NAA) was used. A comparison between in natura and maturated mud shows that major, trace and rare earth elements follow the same order in both types. Generally, the concentrations in the maturated mud are slightly lower than in natura mud. Enrichment on the upper continental crust could be observed for the elements As, Br, Sb and Se, in these types of mud. (author)

  1. AC electrical conductivity of poly(methyl methacrylate)/carbon black composite

    International Nuclear Information System (INIS)

    The study deals with the ac electrical conduction of poly(methyl methacrylate)/carbon black composite of different carbon black (CB) filler concentrations (2, 6, 12 wt%). The ac electrical conductivity was studied as a function of filler concentration, frequency in the range from 100 kHz to 2 MHz, and temperature in the range from 300 to 450 K. It was found that ac electrical conductivity increases by increasing both temperature and CB concentration. The observed overall mechanism of electrical conduction has been related to the transfer of electrons through the CB aggregations distributed in the polymer matrix. The observed increase in conductivity with CB concentration was interpreted through the percolation theory

  2. 20 years of Black Carbon measurements in Germany

    Science.gov (United States)

    Kutzner, Rebecca; Quedenau, Jörn; Kuik, Friderike; von Schneidemesser, Erika; Schmale, Julia

    2016-04-01

    Black Carbon (BC) is an important short-lived climate-forcing pollutant contributing to global warming through absorption of sunlight. At the same time, BC, as a component of particulate matter (PM) exerts adverse health effects, like decreased lung function and exacerbated asthma. Globally, anthropogenic emission sources of BC include residential heating, transport, and agricultural fires, while the dominant natural emission sources are wildfires. Despite the various adverse effects of BC, legislation that requires mandatory monitoring of BC concentrations does not currently exist in the European Union. Instead, BC is only indirectly monitored as component of PM10 and PM2.5 (particulate matter with a diameter smaller 10 μm and 2.5 μm). Before the introduction of mandatory PM10 and PM2.5 monitoring in the European Union in 2005 and 2015, respectively, 'black smoke', a surrogate for BC, was a required measurement in Germany from the early 1990s. The annual mean limit value was 14 μg m-3 from 1995 and 8 μg m-3 from 1998 onwards. Many 'black smoke' measurements were stopped in 2004, with the repeal of the regulations obtaining at the time. However, in most German federal states a limited number BC monitoring stations continued to operate. Here we present a synthesis of BC data from 213 stations across Germany covering the period between 1994 and 2014. Due to the lack of a standardized method and respective legislation, the data set is very heterogeneous relying on twelve different measurement methods including chemical, optical, and thermal-optical methods. Stations include locations classified as background, urban-background, industrial and traffic among other types. Raw data in many different formats has been modelled and integrated in a relational database, allowing various options for further data analysis. We highlight results from the year 2009, as it is the year with the largest measurement coverage based on the same measurement method, with 30 stations. In

  3. Measurement of black carbon at Syowa station, Antarctica: seasonal variation, transport processes and pathways

    OpenAIRE

    Hara, K.; K. Osada; Yabuki, M.; Hayashi, M; Yamanouchi, T; Shiobara, M.; Wada, M.

    2008-01-01

    Measurement of black carbon (BC) was carried out at Syowa station Antarctica (69° S, 39° E) from February 2004 until January 2007. The BC concentration at Syowa ranged from below detection to 176 ng m−3 during the measurements. Higher BC concentrations were observed mostly under strong wind (blizzard) conditions due to the approach of a cyclone and blocking event. The BC-rich air masses traveled from the lower troposphere of the Atlantic and In...

  4. Adsorption of Remazol Black B dye on Activated Carbon Felt

    OpenAIRE

    Donnaperna Lucio; Duclaux Laurent; Gadiou Roger

    2008-01-01

    The adsorption of Remazol Black B (anionic dye) on a microporous activated carbon felt is investigated from its aqueous solution. The surface chemistry of activated carbon is studied using X-ray microanalysis, "Boehm" titrations and pH of PZC measurements which indicates that the surface oxygenated groups are mainly acidic in nature. The kinetics of Remazol Black B adsorption is observed to be pH dependent and governed by the diffusion of the dye molecules. The experimental data can be explai...

  5. Costs and global impacts of black carbon abatement strategies

    OpenAIRE

    Rypdal, Kristin; Rive, Nathan; Berntsen, Terje K.; Klimont, Zbigniew; Mideksa, Torben K.; Myhre, Gunnar; Skeie, Ragnhild B.

    2011-01-01

    Abatement of particulate matter has traditionally been driven by health concerns rather than its role in global warming. Here we assess future abatement strategies in terms of how much they reduce the climate impact of black carbon (BC) and organic carbon (OC) from contained combustion. We develop global scenarios which take into account regional differences in climate impact, costs of abatement and ability to pay, as well as both the direct and indirect (snow-albedo) climate impact of BC and...

  6. Carbon dioxide gasification of carbon black: isotope study of carbonate catalysis

    International Nuclear Information System (INIS)

    Temperature-programmed reaction was used with labeled isotopes (13C and 18O) to study interactions between carbon black and potassium carbonate in pure He and 10% CO2/90% He atmospheres. Catalytic gasification precursor complexes were observed. Carbon and oxygen-bearing carbon surface groups interacted with the carbonate above 500 K to form surface complexes. Between 500 and 950 K, and in the presence of gaseous CO2, the complexes participated in C and O exchange with the gas phase while oxygen atoms within the complexes also exchanged with those on the carbon surface. As the temperature rose, the complexes decomposed, with CO2 the initial product. Decomposition started around 500 K in pure He, and around 950 K in CO2/He. Catalytic gasification began only after decomposition of significant portions of the complexes. Elemental potassium formed, and the active catalyst appears to alternate between being potassium metal and a potassium-oxygen-carbon complex. Potassium carbonate is not part of the catalytic cycle. 20 references, 10 figures

  7. Molecular simulation of polycyclic aromatic hydrocarbon sorption to black carbon

    NARCIS (Netherlands)

    J.J.H. Haftka; J.R. Parsons; H.A.J. Govers

    2009-01-01

    Strong sorption of hydrophobic organic contaminants to soot or black carbon (BC) is an important environmental process limiting the bioremediation potential of contaminated soils and sediments. Reliable methods to predict BC sorption coefficients for organic contaminants are therefore required. A co

  8. Are emissions of black carbon from gasoline vehicles overestimated? Real-time, in situ measurement of black carbon emission factors.

    Science.gov (United States)

    Wang, Yang; Xing, Zhenyu; Zhao, Shuhui; Zheng, Mei; Mu, Chao; Du, Ke

    2016-03-15

    Accurately quantifying black carbon (BC) emission factors (EFs) is a prerequisite for estimation of BC emission inventory. BC EFs determined by measuring BC at the roadside or chasing a vehicle on-road may introduce large uncertainty for low emission vehicles. In this study, BC concentrations were measured inside the tailpipe of gasoline vehicles with different engine sizes under different driving modes to determine the respective EFs. BC EFs ranged from 0.005-7.14 mg/kg-fuel under the speeds of 20-70 km/h, 0.05-28.95 mg/kg-fuel under the accelerations of 0.5-1.5m/s(2). Although the water vapor in the sampling stream could result in an average of 12% negative bias, the BC EFs are significantly lower than the published results obtained with roadside or chasing vehicle measurement. It is suggested to conduct measurement at the tailpipe of gasoline vehicles instead of in the atmosphere behind the vehicles to reduce the uncertainty from fluctuation in ambient BC concentration.

  9. 40 CFR 458.10 - Applicability; description of the carbon black furnace process subcategory.

    Science.gov (United States)

    2010-07-01

    ... carbon black furnace process subcategory. 458.10 Section 458.10 Protection of Environment ENVIRONMENTAL... CATEGORY Carbon Black Furnace Process Subcategory § 458.10 Applicability; description of the carbon black furnace process subcategory. The provisions of this subpart are applicable to discharges resulting...

  10. Black silicon maskless templates for carbon nanotube forests

    DEFF Research Database (Denmark)

    Wierzbicki, Rafal; Schmidt, Michael Stenbæk; Boisen, Anja;

    2013-01-01

    We present here a proof of concept for a novel fabrication method of vertically aligned carbon nanotube forests, utilizing black silicon nanograss (a forest of silicon nanometer-sized spikes created with reactive ion etching) coated with titanium tungsten diffusion barrier as a template. The method...... allows maskless definition of carbon nanotube forests with control of their density, nanotube diameter and height. Four nanograss reactive ion etching recipes are investigated and their wafer-to-wafer repeatability, wafer uniformity, and density control is discussed. Evaluation of carbon nanotube forests...

  11. Synthesis of carbon black/carbon nitride intercalation compound composite for efficient hydrogen production.

    Science.gov (United States)

    Wu, Zhaochun; Gao, Honglin; Yan, Shicheng; Zou, Zhigang

    2014-08-21

    The photoactivity of g-C3N4 is greatly limited by its high recombination rate of photogenerated carriers. Coupling g-C3N4 with other materials has been demonstrated to be an effective way to facilitate the separation and transport of charge carriers. Herein we report a composite of conductive carbon black and carbon nitride intercalation compound synthesized through facile one-step molten salt method. The as-prepared carbon black/carbon nitride intercalation compound composite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), UV-vis absorption spectrum and photoluminescence spectroscopy (PL). The carbon black nanoparticles, homogeneously dispersed on the surface of carbon nitride intercalation compound, efficiently enhanced separation and transport of photogenerated carriers, thus improving the visible-light photocatalytic activity. The composite of 0.5 wt% carbon black and carbon nitride intercalation compound exhibited a H2 production rate of 68.9 μmol h(-1), which is about 3.2 times higher than hydrogen production on pristine carbon nitride intercalation compound.

  12. Characterization of Black Carbon Mixing State Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Sedlacek, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Davidovits, P. [Boston College, Chestnut Hill, MA (United States); Lewis, E. R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Onasch, T. B. [Aerodyne Research, Billerica, MA (United States)

    2016-04-01

    Interpreting the temporal relationship between the scattering and incandescence signals recorded by the Single Particle Soot Photometer (SP2), Sedlacek et al. (2012) reported that 60% of the refractory black carbon containing particles in a plume containing biomass burning tracers exhibited non-core-shell structure. Because the relationship between the rBC (refractory black carbon) incandescence and the scattering signals had not been reported in the peer-reviewed literature, and to further evaluate the initial interpretation by Sedlacek et al., a series of experiments was undertaken to investigate black carbon-containing particles of known morphology using Regal black (RB), a proxy for collapsed soot, as the light-absorbing substance to characterize this signal relationship. Particles were formed by coagulation of RB with either a solid substance (sodium chloride or ammonium sulfate) or a liquid substance (dioctyl sebacate), and by condensation with dioctyl sebacate, the latter experiment forming particles in a core-shell configuration. Each particle type experienced fragmentation (observed as negative lagtimes), and each yielded similar lagtime responses in some instances, confounding attempts to differentiate particle morphology using current SP2 lagtime analysis. SP2 operating conditions, specifically laser power and sample flow rate, which in turn affect the particle heating and dissipation rates, play an important role in the behavior of particles in the SP2, including probability of fragmentation. This behavior also depended on the morphology of the particles and on the thermochemical properties of the non-RB substance. Although these influences cannot currently be unambiguously separated, the SP2 analysis may still provide useful information on particle mixing states and black carbon particle sources. This work was communicated in a 2015 publication (Sedlacek et al. 2015)

  13. Phase Transformations of Graphite and Carbon Black by Laser with Low Power Density

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The structure phase transformations of graphite and carbon black induced by pulsed laser were studied in this paper. Under irradiation with laser beam of 1.06μm wavelength and power density of 106 W· cm- 2, both graphite structure and carbon black structure were changed obviously. The results of Raman analyses and Transmission Electron Microscopy (TEM) observations show that graphite transforms into nanodiamond about 5 nm and carbon black is graphitized. It is demonstrated that graphite is the intermediate phase in the transformation from carbon black to diamond, and graphite is easier to transform into diamond by laser irradiation than carbon black.

  14. Evaluation of black carbon estimations in global aerosol models

    Directory of Open Access Journals (Sweden)

    D. Koch

    2009-07-01

    Full Text Available We evaluate black carbon (BC model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD from AERONET and Ozone Monitoring Instrument (OMI retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50 N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimates the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a

  15. Evaluation of Black Carbon Estimations in Global Aerosol Models

    Energy Technology Data Exchange (ETDEWEB)

    Koch, D.; Schulz, M.; Kinne, Stefan; McNaughton, C. S.; Spackman, J. R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, Tami C.; Boucher, Olivier; Chin, M.; Clarke, A. D.; De Luca, N.; Dentener, F.; Diehl, T.; Dubovik, O.; Easter, Richard C.; Fahey, D. W.; Feichter, J.; Fillmore, D.; Freitag, S.; Ghan, Steven J.; Ginoux, P.; Gong, S.; Horowitz, L.; Iversen, T.; Kirkevag, A.; Klimont, Z.; Kondo, Yutaka; Krol, M.; Liu, Xiaohong; Miller, R.; Montanaro, V.; Moteki, N.; Myhre, G.; Penner, J.; Perlwitz, Ja; Pitari, G.; Reddy, S.; Sahu, L.; Sakamoto, H.; Schuster, G.; Schwarz, J. P.; Seland, O.; Stier, P.; Takegawa, Nobuyuki; Takemura, T.; Textor, C.; van Aardenne, John; Zhao, Y.

    2009-11-27

    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) from AERONET and OMI retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the

  16. Evaluation of black carbon estimations in global aerosol models

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2009-11-01

    Full Text Available We evaluate black carbon (BC model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD retrievals from AERONET and Ozone Monitoring Instrument (OMI and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model

  17. Carbon black directed synthesis of ultrahigh mesoporous carbon aerogels

    OpenAIRE

    Macías, Carlos; Haro Remón, Marta; Rasines, Gloria; Parra Soto, José Bernardo; Ovín Ania, María Concepción

    2013-01-01

    [EN] A simple modification of the conventional sol–gel polymerization of resorcinol–formaldehyde mixtures allowed a facile preparation of ultrahigh mesoporous carbon gels. In the conventional synthesis the growth of the cluster polymer particles leading to the development of the porosity is controlled by the R/C ratio. In the presence of a carbon conductive additive, the polymerization of the reactants proceeded through the formation of less-branched polymer clusters resulting in carbon gels ...

  18. Aerosol light absorption, black carbon, and elemental carbon at the Fresno Supersite, California

    Science.gov (United States)

    Chow, Judith C.; Watson, John G.; Doraiswamy, Prakash; Chen, Lung-Wen Antony; Sodeman, David A.; Lowenthal, Douglas H.; Park, Kihong; Arnott, W. Patrick; Motallebi, Nehzat

    2009-08-01

    Particle light absorption ( bap), black carbon (BC), and elemental carbon (EC) measurements at the Fresno Supersite during the summer of 2005 were compared to examine the equivalency of current techniques, evaluate filter-based bap correction methods, and determine the EC mass absorption efficiency (σ ap) and the spectral dependence of bap. The photoacoustic analyzer (PA) was used as a benchmark for in-situ bap. Most bap measurement techniques were well correlated ( r ≥ 0.95). Unadjusted Aethalometer (AE) and Particle Soot Absorption Photometer (PSAP) bap were up to seven times higher than PA bap at similar wavelengths because of absorption enhancement by backscattering and multiple scattering. Applying published algorithms to correct for these effects reduced the differences to 24 and 17% for the AE and PSAP, respectively, at 532 nm. The Multi-Angle Absorption Photometer (MAAP), which accounts for backscattering effects, overestimated bap relative to the PA by 51%. BC concentrations determined by the AE, MAAP, and Sunset Laboratory semi-continuous carbon analyzer were also highly correlated ( r ≥ 0.93) but differed by up to 57%. EC measured with the IMPROVE/STN thermal/optical protocols, and the French two-step thermal protocol agreed to within 29%. Absorption efficiencies determined from PA bap and EC measured with different analytical protocols averaged 7.9 ± 1.5, 5.4 ± 1.1, and 2.8 ± 0.6 m 2/g at 532, 670, and 1047 nm, respectively. The Angström exponent (α) determined from adjusted AE and PA bap ranged from 1.19 to 1.46. The largest values of α occurred during the afternoon hours when the organic fraction of total carbon was highest. Significant biases associated with filter-based measurements of bap, BC, and EC are method-specific. Correcting for these biases must take into account differences in aerosol concentration, composition, and sources.

  19. Dissolved black carbon in Antarctic lakes: Chemical signatures of past and present sources

    Science.gov (United States)

    Khan, Alia L.; Jaffé, Rudolf; Ding, Yan; McKnight, Diane M.

    2016-06-01

    The perennially ice-covered, closed-basin lakes in the McMurdo Dry Valleys, Antarctica, serve as sentinels for understanding the fate of dissolved black carbon from glacial sources in aquatic ecosystems. Here we show that dissolved black carbon can persist in freshwater and saline surface waters for thousands of years, while preserving the chemical signature of the original source materials. The ancient brines of the lake bottom waters have retained dissolved black carbon with a woody chemical signature, representing long-range transport of black carbon from wildfires. In contrast, the surface waters are enriched in contemporary black carbon from fossil fuel combustion. Comparison of samples collected 25 years apart from the same lake suggests that the enrichment in anthropogenic black carbon is recent. Differences in the chemical composition of dissolved black carbon among the lakes are likely due to biogeochemical processing such as photochemical degradation and sorption on metal oxides.

  20. Oxidation behavior of a kind of carbon black

    Institute of Scientific and Technical Information of China (English)

    TANG JunShi; SONG Qiang; HE BaiLei; YAO Qiang

    2009-01-01

    The DTG curves of a kind of carbon black during TPO tests were found to have multiple peaks with an unusual sharp peak after the main peak. TPO tests with different sample loads, oxygen fractions and heating rates were carried out to study the influence of the experimental parameters on the sharp peak. The results show that the sharp peak is not caused by heat and mass transfer limitations, but by the intrinsic oxidation kinetics of the carbon black. The evolution of the specific surface area during the intrinsic kinetic controlled oxidation process was then analyzed using isothermal oxidation at low temperatures which showed that the sharp peak is caused by the increase of the specific surface area. The pore structure changes greatly influence the oxidation process when the reaction is controlled by the intrinsic kinetics. When there were no heat and mass transfer limitations, the different oxidation processes result in the same specific surface area evolution.

  1. Electromagnetic properties of carbon black and barium titanate composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Guiqin [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)], E-mail: c2b2chen@163.com; Chen Xiaodong; Duan Yuping; Liu Shunhua [School of Material Science and Engineering, Dalian University of Technology, Dalian 116023 (China)

    2008-04-24

    Nanocrystalline carbon black/barium titanate compound particle (CP) was synthesized by sol-gel method. The phase structure and morphology of compound particle were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM) and Raman spectrum measurements, the electroconductivity was test by trielectrode arrangement and the precursor powder was followed by differential scanning calorimetric measurements (DSC) and thermal gravimetric analysis (TGA). In addition, the complex relative permittivity and permeability of compound particle were investigated by reflection method. The compound particle/epoxide resin composite (CP/EP) with different contents of CP were measured. The results show barium titanate crystal is tetragonal phase and its grain is oval shape with 80-100 nm which was coated by carbon black film. As electromagnetic (EM) complex permittivity, permeability and reflection loss (RL) shown that the compound particle is mainly a kind of electric and dielectric lossy materials and exhibits excellent microwave absorption performance in the X- and Ku-bands.

  2. Comparison of Toxicity and Deposition of Nano-Sized Carbon Black Aerosol Prepared With or Without Dispersing Sonication

    Science.gov (United States)

    Kang, Mingu; Han, Jeong-Hee

    2013-01-01

    Nanotoxicological research has shown toxicity of nanomaterials to be inversely related to particle size. However, the contribution of agglomeration to the toxicity of nanomaterials has not been sufficiently studied, although it is known that agglomeration is associated with increased nanomaterial size. In this study, we prepared aerosols of nano-sized carbon black by 2 different ways to verify the effects of agglomeration on the toxicity and deposition of nano-sized carbon black. The 2 methods of preparation included the carbon black dispersion method that facilitated clustering without sonication and the carbon black dispersion method involving sonication to achieve scattering and deagglomeration. Male Sprague-Dawley rats were exposed to carbon black aerosols 6 hr a day for 3 days or for 2 weeks. The median mass aerodynamic diameter of carbon black aerosols averaged 2.08 μm (for aerosol prepared without sonication; group N) and 1.79 μm (for aerosol prepared without sonication; group S). The average concentration of carbon black during the exposure period for group N and group S was 13.08 ± 3.18 mg/m3 and 13.67 ± 3.54 mg/ m3, respectively, in the 3-day experiment. The average concentration during the 2-week experiment was 9.83 ± 3.42 mg/m3 and 9.08 ± 4.49 mg/m3 for group N and group S, respectively. The amount of carbon black deposition in the lungs was significantly higher in group S than in group N in both 3-day and 2-week experiments. The number of total cells, macrophages and polymorphonuclear leukocytes in the bronchoalveolar lavage (BAL) fluid, and the number of total white blood cells and neutrophils in the blood in the 2- week experiment were significantly higher in group S than in normal control. However, differences were not found in the inflammatory cytokine levels (IL-1β, TNF-α, IL-6, etc.) and protein indicators of cell damage (albumin and lactate dehydrogenase) in the BAL fluid of both group N and group S as compared to the normal control. In

  3. Black carbon mixing state impacts on cloud microphysical properties: effects of aerosol plume and environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Ping Pui; Riemer, Nicole; West, Matthew

    2016-05-27

    Black carbon (BC) is usually mixed with other aerosol species within individual aerosol particles. This mixture, along with the particles' size and morphology, determines the particles' optical and cloud condensation nuclei properties, and hence black carbon's climate impacts. In this study the particle-resolved aerosol model PartMC-MOSAIC was used to quantify the importance of black carbon mixing state for predicting cloud microphysical quantities. Based on a set of about 100 cloud parcel simulations a process level analysis framework was developed to attribute the response in cloud microphysical properties to changes in the underlying aerosol population ("plume effect") and the cloud parcel cooling rate ("parcel effect"). It shows that the response of cloud droplet number concentration to changes in BC emissions depends on the BC mixing state. When the aerosol population contains mainly aged BC particles an increase in BC emission results in increasing cloud droplet number concentrations ("additive effect"). In contrast, when the aerosol population contains mainly fresh BC particles they act as sinks for condensable gaseous species, resulting in a decrease in cloud droplet number concentration as BC emissions are increased ("competition effect"). Additionally, we quantified the error in cloud microphysical quantities when neglecting the information on BC mixing state, which is often done in aerosol models. The errors ranged from -12% to +45% for the cloud droplet number fraction, from 0% to +1022% for the nucleation-scavenged black carbon (BC) mass fraction, from -12% to +4% for the effective radius, and from -30% to +60% for the relative dispersion.

  4. Effect of carbon dioxide concentration on the bioleaching of a pyrite-arsenopyrite ore concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, S.; Dahlstrom, D. (Univ. of Utah, Salt Lake City (United States)); Oolman, T. (Radian Corp., Austin, TX (United States))

    1993-02-20

    The effect of carbon dioxide concentration on the bacterial leaching of a pyrite-arsenopyrite ore concentrate was studied in continuous-flow reactors. Steady-state operation with two feed slurry densities, 6 wt% and 16wt% solids, were tested for the effect of carbon dioxide concentration. Bacterial growth rates were estimated via the measurement of carbon dioxide consumption rates. Aqueous-phase carbon dioxide concentrations in excess of 10 mg/L were found to be inhibitory to bacterial growth.

  5. Cellphones as a Distributed Platform for Black Carbon Data Collection

    Science.gov (United States)

    Ramanathan, N.; Ramana, M.; Lukac, M. L.; Siva, P.; Ahmed, T.; Kar, A.; Rehman, I.; Ramanathan, V.

    2010-12-01

    Black carbon (BC), the visible component of soot that gives emissions such as diesel engine exhaust their dark color, has come to be recognized as a major contributor to global warming, and a frontline concern for climate change strategies (Ramanathan 2001, Jacobson 2010). We have developed a new low-cost instrument for gathering and measuring atmospheric BC concentrations that leverages cellphones to transmit data from an air filtration unit to a centralized database for analysis. Our new system relies on image processing techniques, as opposed to other more expensive optical methods, to interpret images of filters captured with a cellphone camera. As a result, the entire system costs less than $500 (and is orders of magnitude cheaper than an Aethalometer, the prevailing method for measuring atmospheric BC). We are working with three community groups in Los Angeles, and will recruit three groups in the San Francisco Bay Area, to enable 40 citizens to be actively engaged in monitoring BC across California. We are working with The Energy Resources Institute, an international NGO based in India, to deploy this instrument with 60 people in conjunction with Project Surya, which aims to deploy clean cookstoves and rigorously evaluate their impact on BC emissions. Field tests of this new instrument performed in California report an average error of 0.28 µg/m3 when compared with an Aethelometer. These excellent results hold the promise of making large-scale data collection of BC feasible and relatively easy to reproduce (Ramanathan et al., forthcoming). The use of cellphones for data collection permits monitoring of BC to occur on a greater, more comprehensive scale not previously possible, and serves as a means of instituting more precise, variation-sensitive evaluations of emissions. By storing the data in a publicly available repository, our system will provide real-time access to mass-scale BC measurements to researchers and the public. Through our pilot

  6. Black carbon inclusive multichemical modeling of PBDE and PCB biomagnification and -transformation in estuarine food webs.

    Science.gov (United States)

    Di Paolo, Carolina; Gandhi, Nilima; Bhavsar, Satyendra P; Van den Heuvel-Greve, Martine; Koelmans, Albert A

    2010-10-01

    Bioavailability and bioaccumulation of polybrominated diphenylethers (PBDEs) are affected by adsorption on black carbon (BC) and metabolism in biota, respectively. Recent studies have addressed these two processes separately, illustrating their importance in assessing contaminant dynamics. In order to properly examine biomagnification of polychlorinated biphenyls (PCBs) and PBDEs in an estuarine food-web, here we set up a black carbon inclusive multichemical model. A dual domain sorption model, which accounted for sorption to organic matter (OM) and black carbon (BC), was used to estimate aqueous phase concentrations from the measured chemical concentrations in suspended solids. We adapted a previously published multichemical model that tracks the movement of a parent compound and its metabolites in each organism and within its food web. First, the model was calibrated for seven PCB congeners assuming negligible metabolism. Subsequently, PBDE biomagnification was modeled, including biotransformation and bioformation of PBDE congeners, keeping the other model parameters the same. The integrated model was capable of predicting trophic magnification factors (TMF) within error limits. PBDE metabolic half-lives ranged 21-415 days and agreed to literature data. The results showed importance of including BC as an adsorbing phase, and biotransformation and bioformation of PBDEs for a proper assessment of their dynamics in aquatic systems. PMID:20828201

  7. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar).

    Science.gov (United States)

    Teixidó, Marc; Pignatello, Joseph J; Beltrán, José L; Granados, Mercè; Peccia, Jordan

    2011-12-01

    Adsorption of ionizable compounds by black carbon is poorly characterized. Adsorption of the veterinary antibiotic sulfamethazine (SMT; a.k.a., sulfadimidine; pK(a1) = 2.28, pK(a2) = 7.42) on a charcoal was determined as a function of concentration, pH, inorganic ions, and organic ions and molecules. SMT displayed unconventional adsorption behavior. Despite its hydrophilic nature (log K(ow) = 0.27), the distribution ratio K(d) at pH 5, where SMT(0) prevails, was as high as 10(6) L kg(-1), up to 10(4) times greater than literature reported K(oc). The K(d) decreases at high and low pH but not commensurate with the decline in K(ow) of the ionized forms. At pH 1, where SMT(+) is predominant and the surface is positive, a major driving force is π-π electron donor-acceptor interaction of the protonated aniline ring with the π-electron rich graphene surface, referred to as π(+)-π EDA, rather than ordinary electrostatic cation exchange. In the alkaline region, where SMT(-) prevails and the surface is negative, adsorption is accompanied by near-stoichiometric proton exchange with water, leading to the release of OH(-) and formation of an exceptionally strong H-bond between SMT(0) and a surface carboxylate or phenolate, classified as a negative charge-assisted H-bond, (-)CAHB. At pH 5, SMT(0) adsorption is accompanied by partial proton release and is competitive with trimethylphenylammonium ion, signifying contributions from SMT(+) and/or the zwitterion, SMT(±), which take advantage of π(+)-π EDA interaction and Coulombic attraction to deprotonated surface groups. In essence, both pK(a1) and pK(a2) increase, and SMT(±) is stabilized, in the adsorbed relative to the dissolved state. PMID:22026725

  8. Aerosol organic carbon to black carbon ratios: Analysis ofpublished data and implications for climate forcing

    Energy Technology Data Exchange (ETDEWEB)

    Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

    2005-07-11

    Measurements of organic carbon (OC) and black carbon (BC)concentrations over a variety of locations worldwide, have been analyzed to infer the spatial distributions of the ratios of OC to BC. Since these ratios determine the relative amounts of scattering and absorption, they are often used to estimate the radiative forcing due to aerosols. An artifact in the protocol for filter measurements of OC has led to widespread overestimates of the ratio of OC to BC in atmospheric aerosols. We developed a criterion to correct for this artifact and analyze corrected OC to BC ratios. The OC to BC ratios, ranging from 1.3to 2.4, appear relatively constant and are generally unaffected by seasonality, sources or technology changes, at the locations considered here. The ratios compare well with emission inventories over Europe and China but are a factor of two lower in other regions. The reduced estimate for OC/BC in aerosols strengthens the argument that reduction of soot emissions maybe a useful approach to slow global warming.

  9. Factors Controlling Black Carbon Deposition in Snow in the Arctic

    Science.gov (United States)

    Qi, L.; Li, Q.; He, C.; Li, Y.

    2015-12-01

    This study evaluates the sensitivity of black carbon (BC) concentration in snow in the Arctic to BC emissions, dry deposition and wet scavenging efficiency using a 3D global chemical transport model GEOS-Chem driven by meteorological field GEOS-5. With all improvements, simulated median BC concentration in snow agrees with observation (19.2 ng g-1) within 10%, down from -40% in the default GEOS-Chem. When the previously missed gas flaring emissions (mainly located in Russia) are included, the total BC emission in the Arctic increases by 70%. The simulated BC in snow increases by 1-7 ng g-1, with the largest improvement in Russia. The discrepancy of median BC in snow in the whole Arctic reduces from -40% to -20%. In addition, recent measurements of BC dry deposition velocity suggest that the constant deposition velocity of 0.03 cm s-1 over snow and ice used in the GEOS-Chem is too low. So we apply resistance-in-series method to calculate the dry deposition velocity over snow and ice and the resulted dry deposition velocity ranges from 0.03 to 0.24 cm s-1. However, the simulated total BC deposition flux in the Arctic and BC in snow does not change, because the increased dry deposition flux has been compensated by decreased wet deposition flux. However, the fraction of dry deposition to total deposition increases from 16% to 25%. This may affect the mixing of BC and snow particles and further affect the radative forcing of BC deposited in snow. Finally, we reduced the scavenging efficiency of BC in mixed-phase clouds to account for the effect of Wegener-Bergeron-Findeisen (WBF) process based on recent observations. The simulated BC concentration in snow increases by 10-100%, with the largest increase in Greenland (100%), Tromsø (50%), Alaska (40%), and Canadian Arctic (30%). Annual BC loading in the Arctic increases from 0.25 to 0.43 mg m-2 and the lifetime of BC increases from 9.2 to 16.3 days. This indicates that BC simulation in the Arctic is really sensitive to

  10. Aerosol black carbon at five background measurement sites over Finland, a gateway to the Arctic

    Science.gov (United States)

    Hyvärinen, A.-P.; Kolmonen, P.; Kerminen, V.-M.; Virkkula, A.; Leskinen, A.; Komppula, M.; Hatakka, J.; Burkhart, J.; Stohl, A.; Aalto, P.; Kulmala, M.; Lehtinen, K. E. J.; Viisanen, Y.; Lihavainen, H.

    2011-08-01

    Aerosol equivalent black carbon (BC e) was measured at five different background stations in Finland, with the longest data set from Hyytiälä, December 2004-December 2008. Measurements were conducted either with an aethalometer or a Multi-Angle Absorption Photometer, MAAP. Measured black carbon concentrations were highest in Virolahti in southeastern Finland, with annual averages ranging from 385 to 460 ng m -3, followed by Hyytiälä (250-370 ng m -3), Utö (230-270 ng m -3), Puijo (225-230 ng m -3), and Pallastunturi (60-70 ng m -3) in northern Finland. The BC e fractions of measured PM 2.5 concentrations were generally between 5 and 10%, with highest fractions at Virolahti close to the Eastern border. At all the stations, the highest concentrations were observed during the spring and the winter, and the lowest concentrations during the summer. The seasonal cycle could generally be attributed to the reaching of long-range-transported black carbon. Additional reasons were increasing domestic wood burning and reduced boundary-layer height during winter, and a more effective vertical mixing during summer. The highest concentrations for each station occurred with southerly winds, and on the basis of trajectory analyses, the source areas of BC e resided mostly in Central and Eastern Europe. Occasionally the long-range-transported BC e concentrations were elevated for short periods to fulfill the characteristics of pollution episodes. From these episodes, about 62% were a result of non-fire anthropogenic sources and 36% due to open biomass burning sources. Episodes from the biomass burning sources were most often observed during the spring.

  11. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    Science.gov (United States)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.

  12. Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat

    Directory of Open Access Journals (Sweden)

    O. L. Hadley

    2010-08-01

    Full Text Available Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  13. Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat

    Directory of Open Access Journals (Sweden)

    O. L. Hadley

    2010-04-01

    Full Text Available Modeling studies show that the darkening of snow and ice by black carbon (BC deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition on the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  14. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.; Cliff, S.S.; Ramanathan, V.

    2010-01-12

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  15. Characteristic of black carbon in fine particulate matter at Bandung and Lembang sites 2004 - 2005

    International Nuclear Information System (INIS)

    Black carbons (BC) are impure forms of carbon produced by incomplete combustion of fossils fuels or biomass. It has a significant influence in climate forcing due to its light absorption capabilities. In the atmosphere main source of BC are anthropogenic include biomass burning, motor vehicles and industrial sources such as coal combustion. Black carbon typically 10-40% of the fine particulate matter size less than 2.5 µm, therefore it is important to measure the BC correctly. In this study, the measurement of black carbon in fine fractions PM2.5 was done based on reflectance method using EEL Smoke Stain Reflectometer. The sampling was carried out using Gent Stacked Filter Unit twice a week in two locations (BATAN Bandung and Bureau of Meteorological and Geophysics Station Lembang). The results showed there was a significant increasing in both sampling sites in 2005 compared to previous year. The annual average of BC in 2004 at sampling site Bandung and Lembang were 3.16 and 2.42 µg/m3 respectively; in 2005 similarly BC levels at Bandung were higher than that of Lembang with annual average of 3.90 and 2.61 µg/m3 respectively. These concentrations contribute around 18 - 25 % of the fine particulate matter. Comparison the BC concentration with other countries in Asia that used the same method and formula is also presented to show the distribution of BC in Asia. The results showed that BC concentration in Indonesia was lower compared to other countries in Asia. (author)

  16. Intercomparison of Measurement Techniques for Black or Elemental Carbon Under Urban Background Conditions in Wintertime: Influence of Biomass Combustion

    OpenAIRE

    Reisinger, Peter; Wonaschutz, Anna; Hitzenberger, Regina; Petzold, Andreas; Bauer, Heidi; Jankowski, Nicole; Puxbaum, Hans; Chi, Xuguang; Maenhaut, Willy

    2008-01-01

    A generally accepted method to measure black carbon (BC) or elemental carbon (EC) still does not exist. An earlier study in the Vienna area comparing practically all measurement methods in use in Europe gave comparable BC and EC concentrations under summer conditions (Hitzenberger et al., 2006a).Undersummerconditions, Diesel traffic is the major source for EC or BC in Vienna. Under winter conditions, space heating (also with biomass as fuel) is another important source (Caseiro et al., 2007)....

  17. Centennial black carbon turnover observed in a Russia steppe soil

    Energy Technology Data Exchange (ETDEWEB)

    Hammes, K.; Torn, M.S.; Lapenas, A.G.; Schmidt, M.W.I.

    2008-09-15

    Black carbon (BC), from incomplete combustion of fuels and biomass, has been considered highly recalcitrant and a substantial sink for carbon dioxide. Recent studies have shown that BC can be degraded in soils. We use two soils with very low spatial variability sampled 100 years apart in a Russian steppe preserve to generate the first whole-profile estimate of BC stocks and turnover in the field. Quantities of fire residues in soil changed significantly over a century. Black carbon stock was 2.5 kg m{sup -2}, or about 7-10% of total organic C in 1900. With cessation of biomass burning, BC stocks decreased 25% over a century, which translates into a centennial soil BC turnover (293 years best estimate; range 182-541 years), much faster than so-called inert or passive carbon in ecosystem models. The turnover time presented here is for loss by all processes, namely decomposition, leaching, and erosion, although the latter two were probably insignificant in this case. Notably, at both time points, the peak BC stock was below 30 cm, a depth interval, which is not typically accounted for. Also, the quality of the fire residues changed with time, as indicated by the use benzene poly carboxylic acids (BPCA) as molecular markers. The proportions of less-condensed (and thus more easily degradable) BC structures decreased, whereas the highly condensed (and more recalcitrant) BC structures survived unchanged over the 100-year period. Our results show that BC cannot be assumed chemically recalcitrant in all soils, and other explanations for very old soil carbon are needed.

  18. Mesozoic black shales, source mixing and carbon isotopes

    Science.gov (United States)

    Suan, Guillaume

    2016-04-01

    Over the last decades, considerable attention has been devoted to the paleoenvironmental and biogeochemical significance of Mesozoic black shales. Black shale-bearing successions indeed often display marked changes in the organic carbon isotope composition (δ13Corg), which have been commonly interpreted as evidence for dramatic perturbations of global carbon budgets and CO2 levels. Arguably the majority of these studies have discarded some more "local" explanations when interpreting δ13Corg profiles, most often because comparable profiles occur on geographically large and distant areas. Based on newly acquired data and selected examples from the literature, I will show that the changing contribution of organic components with distinct δ13C signatures exerts a major but overlooked influence of Mesozoic δ13Corg profiles. Such a bias occurs across a wide spectrum of sedimentological settings and ages, as shown by the good correlation between δ13Corg values and proxies of kerogen proportions (such as rock-eval, biomarker, palynofacies and palynological data) recorded in Mesozoic marginal to deep marine successions of Triassic, Jurassic and Cretaceous age. In most of these successions, labile, 12C-enriched amorphous organic matter of marine origin dominates strata deposited under anoxic conditions, while oxidation-resistant, 13C-rich terrestrial particles dominate strata deposited under well-oxygenated conditions. This influence is further illustrated by weathering profiles of Toarcian (Lower Jurassic) black shales from France, where weathered areas dominated by refractory organic matter show dramatic 13C-enrichment (and decreased total organic carbon and pyrite contents) compared to non-weathered portions of the same horizon. The implications of these results for chemostratigraphic correlations and pCO2 reconstructions of Mesozoic will be discussed, as well as strategies to overcome this major bias.

  19. World Carbon Black Output to Reach 12.7 Million Tons in 2015

    Institute of Scientific and Technical Information of China (English)

    Zhu Yongkang

    2012-01-01

    From April 13 to April 17, "Carbon Black China of 2012" (CBC2012) was held in Hangzhou, China. Mr. Paul Ita, the president of US marketing research institution Notch Consulting Group, announced that the prospect of carbon black industry was closely linked with the development of auto industry and tire industry. The demand for carbon black of 2010 increased by 15% compared with that of 2009; the growth rate of demand for carbon black was 5.8% in 2011 and the total output was 10.7 million tons, which increased by about 5.5% compared with that of 2010.

  20. Recommendations for the interpretation of "black carbon" measurements

    Directory of Open Access Journals (Sweden)

    A. Petzold

    2013-04-01

    Full Text Available Although black carbon (BC is one of the key atmospheric particulate components driving climate change and air quality, there is no agreement on the terminology that considers all aspects of specific properties, definitions, measurement methods, and related uncertainties. As a result, there is much ambiguity in the scientific literature of measurements and numerical models that refer to BC with different names and based on different properties of the particles, with no clear definition of the terms. The authors present here a recommended terminology to clarify the terms used for BC in atmospheric research, with the goal of establishing unambiguous links between terms, targeted material properties and associated measurement techniques.

  1. Modal character of atmospheric black carbon size distributions

    Science.gov (United States)

    Berner, A.; Sidla, S.; Galambos, Z.; Kruisz, C.; Hitzenberger, R.; ten Brink, H. M.; Kos, G. P. A.

    1996-08-01

    Samples of atmospheric aerosols, collected with cascade impactors in the urban area of Vienna (Austria) and at a coastal site on the North Sea, were investigated for black carbon (BC) as the main component of absorbing material and for mass. The size distributions are structured. The BC distributions of these samples show a predominant mode, the accumulation aerosol, in the upper submicron size range, a less distinct finer mode attributable to fresh emissions from combustion sources, and a distinct coarse mode of unclear origin. It is important to note that some parameters of the accumulation aerosol are related statistically, indicating the evolution of the atmospheric accumulation aerosol.

  2. Adsorption Behavior of Black Carbon for Radioactive Iodine Species in Subsurface Environments

    Science.gov (United States)

    Choung, S.; Kim, M.; Um, W.

    2012-12-01

    Releases of radioactive iodines (125/129/131I) into subsurface environments occur during nuclear power plant operations, nuclear weapons tests, and nuclear accidents such as Chernobyl and Fukushima. Environmental concern is mostly for 129I due to high toxicity and long-half life, t1/2=1,600,000 years. The fate and transport of radioactive iodines depend on the speciation in the environments. Sorption of iodate (IO3-) is strongly affected by natural organic matter (NOM) in soil/sediments, while iodide (I-) sorption is less. Although there are numerous forms and compositions of NOM in soil/sediments, previous studies were mostly focused on general organic matter such as humic and fulvic acids. The objective of this study is addressed to evaluate the impact of black carbon as different NOM forms in subsurface environments. Laboratory-produced wood char was used as a representative of black carbon for sorption batch experiments. Commercial humic acid was added to experiments for comparison of iodine sorption behavior to black carbon material. Stable iodine isotope, 127I, was used as a surrogate of radioactive iodine. The 13C-NMR analyses indicated that the wood char consisted of dominantly aromatic chemical structures, while the humic acid exhibited relatively more aliphatic structures than aromaticity. The char and humic acid significantly increased iodide and iodate sorption, respectively. However, iodate sorption on char and iodide sorption on humic acid were negligible in this study. These observations implied different sorption mechanisms between black carbon and humic acid due to different pore structures and chemical compositions. Both of sorption isotherms are dependent on aqueous concentrations, following Freundlich isotherm with n~0.7. The sorption behavior and mechanism of iodine is significantly influenced by the NOM types in soils and sediments, which can enhance iodine retardation in the subsurface environment.

  3. Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    , Ce1-xREExO2-δ (REE = Pr, Sm)) and metal oxides (LiMn2O4, Ag2O). Materials showing the highest activity in carbon black (Mn2O3, CeO2, Ce0.6Pr0.4O2-δ, Ag2O) were subsequently tested for catalytic activity toward bituminous coal, as revealed by both I-V-P curves and electrochemical impedance......Hybrid direct carbon fuel cells (HDCFCs) consisting of a solid carbon (carbon black)-molten carbonate ((62–38 wt% Li-K)2CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell type full-cell are tested for their electrochemical performance between 700 and 800°C. Performance...... was investigated using current-voltage-power density curves. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, Mn3O4, MnO), metal carbonates (Ag2CO3, MnCO3, Ce2(CO3)3), metals (Ag, Ce, Ni), doped-ceria (CeO2, Ce1-xGdxO2-x/2...

  4. An approach to a black carbon emission inventory for Mexico by two methods

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Núñez, Xochitl, E-mail: xcruz@unam.mx

    2014-05-01

    A black carbon (BC) emission inventory for Mexico is presented. Estimate was performed by using two approaches, based on fuel consumption and emission factors in a top-down scheme, and the second from PM25 emission data and its correlation with black carbon by source category, assuming that black carbon = elemental carbon. Results show that black carbon emissions are in interval 53–473 Gg using the fuel consumption approach and between 62 and 89 using the sector method. Black carbon key sources come from biomass burning in the rural sector, with 47 percent share to the National total. Mobile sources emissions account to 16% to the total. An opportunity to reduce, in the short-term, carbon dioxide equivalent (CO2-eq) emissions by reducing black carbon emissions would be obtained in reducing emissions mainly from biomass burning in rural housing sector and diesel emissions in the transport sector with important co-benefits in direct radiative forcing, public health and air quality. - Highlights: • Black carbon emissions are estimated between 53 and 473 Gg/year on a fuel consumption method. • Black carbon emissions are estimated between 62 and 89 Gg/year on a sector method.

  5. Fibrinogen concentration and its role in CVD risk in black South Africans - effect of urbanisation

    NARCIS (Netherlands)

    Pieters, Marlien; De Maat, Moniek P. M.; Jerling, Johann C.; Hoekstra, Tiny; Kruger, Annamarie

    2011-01-01

    The aim of this study was to investigate correlates of fibrinogen concentration in black South Africans, as well as its association with cardiovascular disease (CVD) risk and whether urbanisation influences this association. A total of 1,006 rural and 1,004 urban black South Africans from the PURE s

  6. Effect of the Purple carbon black on the properties of NR/BR blend

    Science.gov (United States)

    Yanfang, Zhao; Dan, Liu; Shengbo, Lin; Binjian; Yinmei, Zhao; Shuangquan, Liao

    2014-08-01

    Purple black is light colored mineral filler mining in recent years in Hainan. The effect of the dosage of the purple carbon black and purple carbon black modificated by Si69 on the vulcanization characteristics, mechanical properties, thermal stability, the damping performance of NR/BR blend rubber were studied, and the blending adhesive tensile sections were analyzed by SEM. Research showed that, with the increasing dosage of the purple carbon black, vulcanization characteristics of NR/BR blend had a little change. Adding the purple carbon black into blending had a reinforcing effect. when the dosage of the purple carbon black was 20, the mechanical properties of blending adhesive was good; Coupling agent Si69 had a modification effect on the purple carbon black. With increasing dosage of Si69, performance of the rubber was improved initially and then decreased; when the mass fraction of Si69 was 8% of the dosage of the purple carbon black, rubber performance was optimal. Purple carbon black had no obvious effect on thermal stability of the rubber, but it improved the damping rubber temperature and damping factor.

  7. Occupational exposure to carbon black in its manufacture.

    Science.gov (United States)

    Gardiner, K; Trethowan, W N; Harrington, J M; Calvert, I A; Glass, D C

    1992-10-01

    Carbon black is manufactured by the vapour phase pyrolysis of heavy aromatic hydrocarbon feedstocks. Its manufacture is worldwide and the majority of its production is for use in the rubber industry especially tyre manufacture. Its carbonaceous nature has led many to investigate the occurrence of exposure-related medical conditions. To quantify any such relationships, it is necessary to assess exposure accurately. As part of such an epidemiological investigation survey involving the measurement both of respirable and of total inhalable carbon black was undertaken in 18 plants in seven European countries between mid-1987 and mid-1989. A total of 1298 respirable samples (SIMPEDS cyclone) and 1317 total inhalable samples (IOM head) were taken and deemed of sufficient quality for inclusion in the study. The distributions of the time-weighted average values were assessed and found to be best described by a log-normal distribution, and so exposure is characterized by geometric means and standard deviations. The data are presented in terms of 13 separate job titles for both dust fractions and shows a wide variation between job titles, with the highest mean exposure experienced by the site cleaners, and 30% of the samples taken from the warehouse packers being in excess of the relevant countries' occupational exposure limits for total inhalable dust. The quality and extent of this data allows both for comparison with exposure standards and for generation of occupational exposure indices, which will be presented in another paper (Gardiner et al., in preparation). PMID:1444068

  8. Oxidation behavior of a kind of carbon black

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The DTG curves of a kind of carbon black during TPO tests were found to have multiple peaks with an unusual sharp peak after the main peak.TPO tests with different sample loads,oxygen fractions and heating rates were carried out to study the influence of the experimental parameters on the sharp peak.The results show that the sharp peak is not caused by heat and mass transfer limitations,but by the intrinsic oxidation kinetics of the carbon black.The evolution of the specific surface area during the intrinsic kinetic controlled oxidation process was then analyzed using isothermal oxidation at low temperatures which showed that the sharp peak is caused by the increase of the specific surface area.The pore structure changes greatly influence the oxidation process when the reaction is controlled by the intrinsic kinetics.When there were no heat and mass transfer limitations,the different oxidation processes result in the same specific surface area evolution.

  9. Historical record of black carbon in urban soils and its environmental implications

    International Nuclear Information System (INIS)

    Energy use in urbanization has fundamentally changed the pattern and fluxes of carbon cycling, which has global and local environmental impacts. Here we have investigated organic carbon (OC) and black carbon (BC) in six soil profiles from two contrast zones in an ancient city (Nanjing) in China. BC in soils was widely variable, from 0.22 to 32.19 g kg-1. Its average concentration in an ancient residential area (Zone 1) was, 0.91 g kg-1, whereas in Zone 2, an industrial and commercial area, the figure was 8.62 g kg-1. The ratio of BC/OC ranged from 0.06 to 1.29 in soil profiles, with an average of 0.29. The vertical distribution of BC in soil is suggested to reflect the history of BC formation from burning of biomass and/or fossil fuel. BC in the surface layer of soils was mainly from traffic emission (especially from diesel vehicles). In contrast, in cultural layers BC was formed from historical coal use. The contents of BC and the ratio of BC/OC may reflect different human activities and pollution sources in the contrasting urban zones. In addition, the significant correlation of heavy metals (Cu, Pb, and Zn) with BC contents in some culture layers suggests the sorption of the metals by BC or their coexistence resulted from the coal-involved smelting. - Soil black carbon can reflect the pollution history of a city during urbanization.

  10. Variability in Carbon Monoxide Concentration in Kaduna Metropolis, Nigeria

    Directory of Open Access Journals (Sweden)

    J.D. Ariko

    2014-04-01

    Full Text Available This study compared Carbon Monoxide concentrations in Urban core and Control station in Kaduna Metropolis, Nigeria. USB-CO data loggers were used for data acquisition for a period of one month. 1hour mean of Carbon Monoxide concentrations for Urban core and Control station were subjected to student “t” test to determine any significant difference in Carbon Monoxide concentration between the two sampled sites. Analysis of Variance (ANOVA test was employed to test the temporal variability in Carbon Monoxide concentrations in the Urban core. The “t” test results showed a significant difference in Carbon Monoxide concentrations, between the Urban core and the Control station. The ANOVA results showed that there is a significant difference in Carbon Monoxide concentrations level between different times of the day. The 1 h mean WHO recommendation for Carbon Monoxide concentration was occasionally exceeded, while the 8 h mean was daily exceeded in the evening periods in Urban core. In the Control station, there was no time both 1 h and 8 h means WHO recommendation were exceeded. These imply that the Rural environment is relatively more livable than the Urban environment in Kaduna metropolis in terms of Carbon Monoxide concentration levels.

  11. Sources of uncertainties in modelling black carbon at the global scale

    NARCIS (Netherlands)

    Vignati, E.; Karl, M.; Krol, M.C.; Wilson, J.; Stier, P.; Cavalli, F.

    2010-01-01

    Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in th

  12. Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver

    DEFF Research Database (Denmark)

    Bourdon, Julie A; Saber, Anne T; Jacobsen, Nicklas R;

    2012-01-01

    Widespread occupational exposure to carbon black nanoparticles (CBNPs) raises concerns over their safety. CBNPs are genotoxic in vitro but less is known about their genotoxicity in various organs in vivo.......Widespread occupational exposure to carbon black nanoparticles (CBNPs) raises concerns over their safety. CBNPs are genotoxic in vitro but less is known about their genotoxicity in various organs in vivo....

  13. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M;

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically insignificant...

  14. Contribution of regional transport to the black carbon aerosol during winter haze period in Beijing

    Science.gov (United States)

    Wang, Qiyuan; Huang, Ru-Jin; Cao, Junji; Tie, Xuexi; Shen, Zhenxing; Zhao, Shuyu; Han, Yongming; Li, Guohui; Li, Zhengqiang; Ni, Haiyan; Zhou, Yaqing; Wang, Meng; Chen, Yang; Su, Xiaoli

    2016-05-01

    The mass concentrations of atmospheric refractory black carbon (rBC), an important absorber of solar radiation, were continuously measured with a single particle soot photometer (SP2) during wintertime haze period to investigate the transport of pollution to Beijing. The average mass concentration of rBC was 6.1 ± 3.9 μg m-3 during hazy periods, which was 4.7 times higher than it during non-hazy periods. Cluster analysis showed that the air parcels arriving at Beijing mainly originated from the northwest, passed through the south and brought the most polluted air to Beijing. Concentration-weighted trajectory analyses indicated that the central North China Plain were the most likely source region for the rBC that impacted Beijing. Furthermore, the Weather Research and Forecasting-Black Carbon model showed that 71.4-82.0% of the rBC at Beijing was from regional transport during the high rBC episodes and that 47.9-56.8% of the rBC can be attributed to sources in the central North China Plain. These results suggest that regional transport from the central North China Plain, rather than local emissions, was a more important source for rBC pollution in Beijing.

  15. Isotopic composition of carbon-13 and oxygen-18 from authigenic carbonates, Black Sea region

    Science.gov (United States)

    Logvina, E.; Mazurenko, L.; Prasolov, E.

    2004-05-01

    Several types of authigenic carbonates related to the fluid discharge zones were sampled during the international expeditions onboard R/V "Professor Vodyanitskiy" (56th cruise) and R/V "Professor Logachev" (11th cruise of UNESCO-TTR) in the northwest part of the Black sea. These carbonates are represented as mounds, build-ups and chimney-like structures, cemented sediments, crusts and concretions. The isotope analyses of carbonates were conducted using mass-spectrometer MS-20 in the Laboratory of Isotope Geology (St.Petersburg State University). The obtained values of oxygen-18 varied from +0,6 to -1,9 per mille (up to C0.8 per mille on average). This value is corresponding to normal seawater oxygen-18 value (about 0 per mille); we suspect, that the source of oxygen for carbonate formation is the seawater. The carbonates are characterized by low carbon-13 (from -35,4 to -42,6 per mille) in comparison with normal marine carbonates (about 0 per mille). We have reason to suppose that carbonates associated with fluid venting were formed by light isotopic composition of carbon dioxide (carbon-13 -45 to -52 per mille), which forming under methane microbiologic oxidation with such isotopic composition. This is because of crossing fluid process of carbon dioxide to carbonate with 8~10 degrees temperature carbon became heaver to 10- 11 per mille. The isotopic composition study of carbonate build-ups is of interest because its association with the gas hydrate accumulations is quite often in the gas seeps. This work is financially supported by Russian Foundation for Basic Research, grant 02-05-64346.

  16. Preservation of black carbon in the shelf sediments of the East China Sea

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Concentrations and carbon isotopic (14C, 13C) compositions of black carbon (BC) were measured for three sediment cores collected from the Changjiang River estuary and the shelf of the East China Sea. BC concentrations ranged from 0.02 to 0.14 mg/g (dry weight), and accounted for 5% to 26% of the sedimentary total organic carbon (TOC) pool. Among the three sediment cores collected at each site, sediment from the Changjiang River estuary had relatively high BC contents compared with the sediments from the East China Sea shelf, suggesting that the Changjiang River discharge played an important role in the delivery of BC to the coastal region. Radiocarbon measurements indicate that the ages of BC are in the range of 6910 to 12250 years old B.P. (before present), that is in general, 3700 to 9000 years older than the 14C ages of TOC in the sediments. These variable radiocarbon ages suggest that the BC preserved in the sediments was derived from the products of both biomass fire and fossil fuel combustion, as well as from ancient rock weathering. Based on an isotopic mass balance model, we calculated that fossil fuel combustion contributed most (60%―80%) of the BC preserved in these sediments and varied with depth and locations. The deposition and burial of this "slow-cycling" BC in the sediments of the East China Sea shelf represent a significant pool of carbon sink and could greatly in-fluence carbon cycling in the region.

  17. Brief Analysis on the Production & Operation Situation of Chinese Carbon Black Industry in the First Half Year

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    At present, there are about 120 carbon black manufacturing enterprises in China with the production capacity of 3.41 million tons, accounting for 78% of the total production capacity of the country, in which there are 31 carbon black enterprises with the production capacity of over 50,000 tons. Compared with the international carbon black industry, our carbon black industry has a low intensification.

  18. Modeling the impact of black carbon on snowpack properties at an high altitude site in the Himalayas

    Science.gov (United States)

    Jacobi, Hans-Werner; Ménégoz, Martin; Gallée, Hubert; Lim, Saehee; Zanatta, Marco; Jaffrezo, Jean-Luc; Cozic, Julie; Laj, Paolo; Bonasoni, Paolo; Cristofanelli, Paolo; Stocchi, Paolo; Marinoni, Angela; Verza, Gianpietro; Vuillermoz, Elisa

    2013-04-01

    Light absorbing aerosols in the snow can modify the snow albedo. As a result, the seasonal snowpack can melt earlier compared to the unaffected snow leading to a warming effect on the atmosphere. Several global model studies have indicated that the long-range transport of light absorbing aerosols into the Himalayas and the subsequent deposition to the snow have contributed to a temperature rise in these regions. Due to its strong light absorbing properties, black carbon (BC) may play an important role in this process. To evaluate the possible impact of BC on snow albedo we determined BC concentrations in a range of fresh and older snow samples collected between 2009 and 2012 in the vicinity of the Pyramid station, Nepal at an altitude of more than 5000 m. BC concentrations in the snow were obtained after nebulizing the melted samples using a single particle soot photometer. The observed seasonal cycle in BC concentrations in the snow corresponds to observed seasonal cycles in atmospheric BC detected at the Pyramid station. Older snow showed somewhat higher concentrations compared to fresh snow samples indicating the influence of dry deposition of BC. In order to study in detail the impact of black carbon on snow properties, we upgraded the existing one-dimensional physical snowpack model CROCUS to account for the influence of black carbon on the absorption of radiation by the snow. A radiative transfer scheme was implemented into the snowpack model taking into account the solar zenith angle, the snow water equivalent and grain size, the soil albedo, and the concentration of black carbon in the snow. The upgraded model was applied to a high altitude site in the Himalayas using observed BC concentrations and meteorological data recorded at Pyramid station. First results of the simulations will be presented.

  19. Electrical properties of foamed polypropylene/carbon black composites

    Science.gov (United States)

    Iliev, M.; Kotzev, G.; Vulchev, V.

    2016-02-01

    Polypropylene composites containing carbon black fillers were produced by vibration assisted extrusion process. Solid (unfoamed) composite samples were molded by conventional injection molding method, while structural foams were molded by a low pressure process. The foamed samples were evidenced to have a solid skin-foamed core structure which main parameters were found to depend on the quantity of material injected in the mold. The average bubbles' sizes and their distribution were investigated by scanning electron microscopy. It is established that the conductivity of the foamed samples gradually decreases when reducing the sample density. Nevertheless, the conductivity is found to be lower than the conductivity of the unfoamed samples both being of the same order. The flexural properties of the composites were studied and the results were discussed in the context of the structure parameters of the foamed samples.

  20. Black Carbon Vertical Profiles Strongly Affect its Radiative Forcing Uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, Susanne E.; Berntsen, T.; Bian, Huisheng; Bellouin, N.; Diehl, T.; Easter, Richard C.; Ghan, Steven J.; Iversen, T.; Kinne, Stefan; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, Xiaohong; Penner, Joyce E.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, Kai

    2013-03-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  1. Serum creatinine concentration at the onset of uremia: higher levels in black males.

    Science.gov (United States)

    Abuelo, J G; Shemin, D; Chazan, J A

    1992-06-01

    We compared serum creatinine and blood urea nitrogen concentrations, estimated creatinine clearances and frequency of uremic symptoms at the start of chronic hemodialysis in all 20 black and 179 white males treated between 1969 and 1983. Serum creatinine concentrations were significantly higher in black males (16.5 +/- 5.9 mg/dl) than in white males (11.7 +/- 4.7 mg/dl; p = 0.016). There were no significant differences in blood urea nitrogen concentration, estimated creatinine clearance and frequency of uremic symptoms between the two groups. Blood urea nitrogen to serum creatinine ratios were lower in black males, (7.3 +/- 1.9) than in white males (11.4 +/- 3.8; p = 0.0001), and only one black male had a ratio greater than 10 compared to 60% of whites. We concluded that black males tend to have higher serum creatinine concentrations than white males at the onset of uremic symptoms, and that higher striated muscle creatinine production in black males and not lower renal function may be the cause.

  2. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M;

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically insignificant....... Thus hyperkalaemia is unlikely to develop in patients with normal renal function undergoing carbon dioxide pneumoperitoneum for laparoscopic surgery....

  3. Continuous flux of dissolved black carbon from a vanished tropical forest biome

    Science.gov (United States)

    Dittmar, Thorsten; de Rezende, Carlos Eduardo; Manecki, Marcus; Niggemann, Jutta; Coelho Ovalle, Alvaro Ramon; Stubbins, Aron; Bernardes, Marcelo Correa

    2012-09-01

    Humans have used fire extensively as a tool to shape Earth's vegetation. The slash-and-burn destruction of Brazil's Atlantic forest, which once covered over 1.3millionkm2 of present-day Brazil and was one of the largest tropical forest biomes on Earth, is a prime example. Here, we estimate the amount of black carbon generated by the burning of the Atlantic forest, using historical records of land cover, satellite data and black carbon conversion ratios. We estimate that before 1973, destruction of the Atlantic forest generated 200-500 million tons of black carbon. We then estimate the amount of black carbon exported from this relict forest between 1997 and 2008, using measurements of polycyclic aromatic black carbon collected from a large river draining the region, and a continuous record of river discharge. We show that dissolved black carbon (DBC) continues to be mobilized from the watershed each year in the rainy season, despite the fact that widespread forest burning ceased in 1973. We estimate that the river exports 2,700 tons of DBC to the ocean each year. Scaling our findings up, we estimate that 50,000-70,000 tons of DBC are exported from the former forest each year. We suggest that an increase in black carbon production on land could increase the size of the refractory pool of dissolved organic carbon in the deep ocean.

  4. Automatic Method for Controlling the Iodine Adsorption Number in Carbon Black Oil Furnaces

    OpenAIRE

    Zečević, N.

    2008-01-01

    There are numerous of different inlet process factors in carbon black oil furnaces which must be continuously and automatically adjusted, due to stable quality of final product. The most important six inlet process factors in carbon black oil-furnaces are:1. volume flow of process air for combustion2. temperature of process air for combustion3. volume flow of natural gas for insurance the necessary heat for thermal reaction of conversionthe hydrocarbon oil feedstock in oil-furnace carbon blac...

  5. Classroom Carbon Dioxide Concentration, School Attendance, and Educational Attainment

    Science.gov (United States)

    Gaihre, Santosh; Semple, Sean; Miller, Janice; Fielding, Shona; Turner, Steve

    2014-01-01

    Background: We tested the hypothesis that classroom carbon dioxide (CO[subscript 2]) concentration is inversely related to child school attendance and educational attainment. Methods: Concentrations of CO[subscript 2] were measured over a 3-5?day period in 60 naturally ventilated classrooms of primary school children in Scotland. Concentrations of…

  6. Carbon black dispersion pre-plating technology for printed wire board manufacturing. Final technology evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    Folsom, D.W.; Gavaskar, A.R.; Jones, J.A.; Olfenbuttel, R.F.

    1993-10-01

    The project compared chemical use, waste generation, cost, and product quality between electroless copper and carbon-black-based preplating technologies at the printed wire board (PWB) manufacturing facility of McCurdy Circuits in Orange, CA. The carbon-black based preplating technology evaluated is used as an alternative process for electroless copper (EC) plating of through-holes before electrolytic copper plating. The specific process used at McCurdy is the BlackHole (BH) technology process, which uses a dispersion of carbon black in an aqueous solution to provide a conductive surface for subsequent electrolytic copper plating. The carbon-black dispersion technology provided effective waste reduction and long-term cost savings. The economic analysis determined that the new process was cost efficient because chemical use was reduced and the process proved more efficient; the payback period was less than 4 yrs.

  7. Interaction between carboxyl-functionalized carbon black nanoparticles and porous media

    Science.gov (United States)

    Kim, Song-Bae; Kang, Jin-Kyu; Yi, In-Geol

    2015-04-01

    Carbon nanomaterials, such as carbon nanotubes, fullerene, and graphene, have received considerable attention due to their unique physical and chemical characteristics, leading to mass production and widespread application in industrial, commercial, and environmental fields. During their life cycle from production to disposal, however, carbon nanomaterials are inevitably released into water and soil environments, which have resulted in concern about their health and environmental impacts. Carbon black is a nano-sized amorphous carbon powder that typically contains 90-99% elemental carbon. It can be produced from incomplete combustion of hydrocarbons in petroleum and coal. Carbon black is widely used in chemical and industrial products or applications such as ink pigments, coating plastics, the rubber industry, and composite reinforcements. Even though carbon black is strongly hydrophobic and tends to aggregate in water, it can be dispersed in aqueous media through surface functionalization or surfactant use. The aim of this study was therefore to investigate the transport behavior of carboxyl-functionalized carbon black nanoparticles (CBNPs) in porous media. Column experiments were performed for potassium chloride (KCl), a conservative tracer, and CBNPs under saturated flow conditions. Column experiments was conducted in duplicate using quartz sand, iron oxide-coated sand (IOCS), and aluminum oxide-coated sand (AOCS) to examine the effect of metal (Fe, Al) oxide presence on the transport of CBNPs. Breakthrough curves (BTCs) of CBNPs and chloride were obtained by monitoring effluent, and then mass recovery was quantified from these curves. Additionally, interaction energy profiles for CBNP-porous media were calculated using DLVO theory for sphere-plate geometry. The BTCs of chloride had relative peak concentrations ranging from 0.895 to 0.990. Transport parameters (pore-water velocity v, hydrodynamic dispersion coefficient D) obtained by the model fit from the

  8. Significance of black carbon in the sediment-water partitioning of organochlorine pesticides (OCPs) in the Indus River, Pakistan.

    Science.gov (United States)

    Ali, Usman; Bajwa, Anam; Chaudhry, Muhammad Jamshed Iqbal; Mahmood, Adeel; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2016-04-01

    This study was conducted with the aim of assessing the levels and black carbon mediated sediment-water partitioning of organochlorine pesticides (OCPs) from the Indus River. ∑OCPs ranged between 52-285 ng L(-1) and 5.6-29.2 ng g(-1) in water and sediment samples respectively. However, the ranges of sedimentary fraction of total organic carbon (f(TOC)) and black carbon (f(BC)) were 0.82-2.26% and 0.04-0.5% respectively. Spatially, OCPs concentrations were higher at upstream sites as compared to downstream sites. Source diagnostic ratios indicated the technical usage of HCH (α-HCH/γ-HCH>4) and significant presence of DDT metabolites with fresh inputs into the Indus River as indicated by the ratios of (DDE+DDD)/∑DDTs (0.27-0.96). The partitioning of OCPs between the sediments and water can be explained by two carbon Freundlich adsorption model which included both organic carbon and black carbon pools as partitioning media. PMID:26761782

  9. The chlorination kinetics of zirconium dioxide mixed with carbon black

    International Nuclear Information System (INIS)

    In this research, the effects of chlorine gas at different chlorine partial pressures and carbon concentrations on the carbochlorination of zirconia were studied. It was found that in briquettes containing 18.7 %wt carbon, in a chlorine partial pressure range of 0.25-0.75 atm and for a reacted fraction of less than 0.7, the chemical reaction model was dominant for the carbochlorination process of zirconia. The order of reaction into chlorine gas (n) in this situation was 0.57. Moreover, the best weight ratio of carbon to zirconia was 40/60. In this case, the activation energy of the reaction was 209.9 kJ mol-1 in a temperature range of 1023-1223 K, and the dominant model was the chemical reaction model.

  10. Distribution and preservation of black carbon in the East China Sea sediments: Perspectives on carbon cycling at continental margins

    Science.gov (United States)

    Huang, Liang; Zhang, Jing; Wu, Ying; Wang, Jinlong

    2016-02-01

    We determined the concentrations and radiocarbon (14C) compositions of black carbon (BC) in the sediments of the East China Sea (ECS). The BC concentrations, which were in the range of 0.30-1.52 mg/g, accounted for 12-65% of the total organic carbon (TOC). The distribution of BC in ECS sediments was controlled by factors such as grain size, distance from the coast, and deposition rate. Radiocarbon measurements of BC yielded ages of 6350-10,440 years before present (BP), suggesting that the percentage of BC derived from biomass combustion was in the range of 29-48%. The BC burial flux in sediments of the ECS was estimated to be ∼1.39×106 t/yr, which was similar to burial fluxes reported for shelf sediments in other areas. However, the magnitude of the total BC sink was far greater than that of any other shelf regions studied to date, indicating the global importance of BC accumulation in the ECS, and the magnitude of BC input from large rivers (e.g., the Changjiang). The riverine delivery of BC to the ECS (73%) was far greater than that of atmospheric flux (27%). Further study of the BC cycle and the interactions of BC with other organic compounds in marginal seas was required to better understand the role of BC in the global carbon cycle.

  11. Black carbon emissions from in-use ships: a California regional assessment

    Directory of Open Access Journals (Sweden)

    G. M. Buffaloe

    2013-09-01

    Full Text Available Black carbon (BC mass emission factors (EFBC; g-BC (kg-fuel−1 from a variety of ocean going vessels have been determined from measurements of BC and carbon dioxide (CO2 concentrations in ship plumes intercepted by the R/V Atlantis during the 2010 California Nexus (CalNex campaign. The ships encountered were all operating within 24 nautical miles of the California coast and were utilizing relatively low sulphur fuels. Black carbon concentrations within the plumes, from which EFBC values are determined, were measured using four independent instruments: a photoacoustic spectrometer and a particle soot absorption photometer, which measure light absorption, and a single particle soot photometer and soot particle aerosol mass spectrometer, which measure the mass concentration of refractory BC directly. The measured EFBC have been divided into vessel type categories and engine type categories, from which averages have been determined. The geometric average EFBC, determined from over 71 vessels and 135 plumes encountered, was 0.31 g-BC (kg-fuel−1. The most frequent engine type encountered was the slow speed diesel (SSD, and the most frequent SSD vessel type was the cargo ship sub-category. Average and median EFBC values from the SSD category are compared with previous observations from the Texas Air Quality Study (TexAQS in 2006, during which the ships encountered were predominately operating on high sulphur fuels. There is a statistically significant difference between the EFBC values from CalNex and TexAQS for SSD vessels and for the cargo and tanker ship types within this engine category. The CalNex EFBC values are lower than those from TexAQS, suggesting that operation on lower sulphur fuels is associated with smaller EFBC values.

  12. Black carbon contributes to organic matter in young soils in the Morteratsch proglacial area (Switzerland)

    Science.gov (United States)

    Eckmeier, E.; Mavris, C.; Krebs, R.; Pichler, B.; Egli, M.

    2013-03-01

    Most glacier forefields of the European Alps are being progressively exposed since the glaciers reached their maximum expansion in the 1850s. Global warming and climate changes additionally promote the exposure of sediments in previously glaciated areas. In these proglacial areas, initial soils have started to develop so that they may offer a continuous chronosequence from 0 to 150-yr-old soils. The build-up of organic matter is an important factor of soil formation, and not only autochthonous but also distant sources might contribute to its accumulation in young soils and surfaces of glacier forefields. Only little is known about black carbon in soils that develop in glacier forefields, although charred organic matter could be an important component of organic carbon in Alpine soils. The aim of our study was to examine whether black carbon (BC) is present in the initial soils of a proglacial area, and to estimate its relative contribution to soil organic matter. We investigated soil samples from 35 sites distributed over the whole proglacial area of Morteratsch (Upper Engadine, Switzerland), covering a chronosequence from 0 to 150 yr. BC concentrations were determined in fine earth using the benzene polycarboxylic acid (BPCA) marker method. We found that charred organic matter occurred in the whole area, and that it was a main compound of soil organic matter in the youngest soils, where total Corg concentrations were very low. The absolute concentrations of BC in fine earth were generally low but increased in soils that had been exposed for more than 40 yr. Specific initial microbial communities may profit from this additional C source during the first years of soil evolution and potentially promote soil development in its early stage.

  13. Dielectric study of Poly(styrene- co -butadiene) Composites with Carbon Black, Silica, and Nanoclay

    KAUST Repository

    Vo, Loan T.

    2011-08-09

    Dielectric spectroscopy is used to measure polymer relaxation in styrene-butadiene rubber (SBR) composites. In addition to the bulk polymer relaxation, the SBR nanocomposites also exhibit a slower relaxation attributed to polymer relaxation at the polymer-nanoparticle interface. The glass transition temperature associated with the slower relaxation is used as a way to quantify the interaction strength between the polymer and the surface. Comparisons were made among composites containing nanoclay, silica, and carbon black. The interfacial relaxation glass transition temperature of SBR-clay nanocomposites is more than 80 °C higher than the SBR bulk glass transition temperature. An interfacial mode was also observed for SBR-silica nanocomposites, but the interfacial glass transition temperature of SBR-silica nanocomposite is somewhat lower than that of clay nanocomposites. An interfacial mode is also seen in the carbon black filled system, but the signal is too weak to analyze quantitatively. The interfacial polymer relaxation in SBR-clay nanocomposites is stronger compared to both SBR-carbon black and SBR-silica composites indicating a stronger interfacial interaction in the nanocomposites containing clay. These results are consistent with dynamic shear rheology and dynamic mechanical analysis measurements showing a more pronounced reinforcement for the clay nanocomposites. Comparisons were also made among clay nanocomposites using different SBRs of varying styrene concentration and architecture. The interfacial glass transition temperature of SBR-clay nanocomposites increases as the amount of styrene in SBR increases indicating that styrene interacts more strongly than butadiene with clay. © 2011 American Chemical Society.

  14. Organic carbon isotopes of the Sinian and Early Cambrian black shales on Yangtze Platform, China

    Institute of Scientific and Technical Information of China (English)

    李任伟; 卢家烂; 张淑坤; 雷加锦

    1999-01-01

    Organic matter of the Sinian and early Cambrian black shales on the Yangtze Platform belongs to the light carbon group of isotopes with the δ13C values from - 27 % to -35 % , which are lower than those of the contemporaneously deposited carbonates and phosphorites. A carbon isotope-stratified paleooceanographic model caused by upwelling is proposed, which can be used not only to interpret the characteristics of organic carbon isotopic compositions of the black shales, but also to interpret the paleogeographic difference in the organic carbon isotope compositions of various types of sedimentary rocks.

  15. The impact of black wattle encroachment of indigenous grasslands on soil carbon, Eastern Cape, South Africa

    DEFF Research Database (Denmark)

    Oelofse, Myles; Birch-Thomsen, Torben; Magid, Jakob;

    2016-01-01

    adverse environmental impacts in South Africa. Little is known about the effects of black wattle encroachment on soil carbon, therefore the aim of this study was to investigate the impact of black wattle encroachment of natural grassland on soil carbon stocks and dynamics. Focussing on two sites...... in the Eastern Cape, South Africa, the study analysed carbon stocks in soil and litter on a chronosequence of black wattle stands of varying ages (up to >50 years) and compared these with adjacent native grassland. The study found that woody encroachment of grassland at one site had an insignificant effect...

  16. Grafted, cross-linked carbon black as a double-layer capacitor electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R.; Mueller, S.; Wokaun, A.

    2001-03-01

    Isocyanate prepolymers readily react with oxidic functional groups on carbon black. On carbon black grafted with diisocyanates, reactive isocyanate groups are available for cross-linking to a polyurethane system. This cross-linked carbon black was considered as a new active material for electrochemical electrodes. Active material for electric double-layer capacitor electrodes was produced which had values of specific capacitance of up to 200 F/g. Cross-linking efficiencies of up to 58 % of the polymers utilised were achieved. (author)

  17. Black carbon estimation in French calcareous soils using chemo-thermal oxidation method

    OpenAIRE

    Caria, G.; Arrouays, D.; Dubromel, E.; Jolivet, C.; Ratié, C.; Bernoux, MARTIAL,; Barthès, Bernard; Brunet, Didier; Grinand, Clovis

    2011-01-01

    We studied the black carbon (BC) content of ca. 405 samples from French topsoil and artificial soil and carbonate mixtures. Our protocol involved three main steps: (i) decarbonation by HCl, (ii) elimination of non-pyrogenic organic carbon in a furnace at 375 degrees C, and (iii) quantification of residual carbon by CHN analysis. BC content increased for calcareous soils according to their carbonates content. Subsequent analyses confirmed the existence of a methodological artefact for BC deter...

  18. 黑碳的研究历史与现状%A REVIEW OF BLACK CARBON STUDY: HISTORY AND CURRENT STATUS

    Institute of Scientific and Technical Information of China (English)

    穆燕; 秦小光; 刘嘉麒; 殷志强

    2011-01-01

    Black carbon is an attentive research topic in the field of global change. In this paper, the recent research on black carbon aerosol and sediment black carbon is reviewed. As we know, black carbon aerosol plays an important role in climate change and has become the second important component in green house effect. The top-of-the atmosphere (TOA)forcing is positive and the surface forcing is negative due to black carbon absorbing solar radiation. With regard to soil and sediment black carbon, scientists, according to black carbon records, have calculated the history of using fossil fuel, rebuilt fire events and estimated the relation between paleoclimate change and black carbon concentration in glacial and interglacial stages. The measuring methods of black carbon concentration are also summarized in this paper. Optical method is about a real-time measurement using aethalometer. And chemothermal oxidation methods and thermal/optical reflectance method are used for black carbon concentration based on chemical pretreatment.%黑碳是目前在全球变化研究中备受关注的焦点问题之一.介绍了国内外黑碳气溶胶和沉积物黑碳的研究现状,在黑碳气溶胶方面,重点归纳了其在气候效应方面的作用:黑碳气溶胶吸收太阳辐射,在大气顶产生正辐射强迫,在地表产生负辐射强迫,被认为是导致温室效应仅次于二氧化碳的第二大成分;在沉积物黑碳方面,概括了不同研究者利用提取的黑碳浓度记录,推算化石燃料的使用历史,重建古火灾时间序列,在冰期间冰期尺度上估计气候冷暖干湿变化和黑碳浓度的关系;在黑碳浓度测量方面,概括了目前黑碳研究中几种常用的测量方法:光学方法是用黑碳测量仪进行实时监测,化学氧化、热氧化和热光反射等方法是在化学预处理的基础上获取黑碳浓度估计值.

  19. Distribution, Transport, and Accumulation of Pyrogenic Black Carbon in Post-Wildfire Watersheds

    Science.gov (United States)

    Galanter, A.; Cadol, D. D.; Frey, B.; Lohse, K. A.

    2014-12-01

    Large, high severity wildfires greatly alter forest structure, water quality, and soil development/erosion. With increased frequency of such wildfires also follows heavy post-wildfire debris flows and flooding which deliver high loads of sediment and pyrogenic black carbon (PyC) to downstream waterways. The accumulation of PyC is a multi-faceted and dynamic issue in the critical zone. Generated by incomplete combustion of organic matter, PyC (in the form of soot and char) impacts turbidity, biological and chemical oxygen demand, and pH. In addition, PyC has the potential to sequester contaminants and can store carbon over short and long timescales. The impacts of two recent wildfires in Northern New Mexico are studied with the goal of understanding the fluxes and residence times of PyC in post-wildfire, mountainous watersheds. Employing burn severity maps and geospatial data, we selected three sites to collect soil and water samples to characterize PyC: a control, an area impacted by a large, severe burn (2011), and an area impacted by a smaller, less severe burn (2013). By collaborating with researchers at the Jemez Critical Zone Observatory, soil samples are being analyzed and will provide pre-wildfire PyC concentrations for the 2013 burn area. In this study, PyC is treated as both a particulate and a solute that is transported throughout the watershed as well as degraded in soils, surface water and groundwater. We used two black carbon quantification methods: the chemo-thermal oxidation (CTO-375) method to distinguish between soil soot and char, and the benzene polycarboxylic acids (BPCA) method to quantify the total concentrations of PyC in soil and water samples. Preliminary soil data from the CTO-375 method show comparable soot concentrations in the control, 2011, and 2013 burn indicating that the soot is more recalcitrant than char and remains in the watershed long after a wildfire. This data also suggests that the fluxes of black carbon over short time

  20. Snow cover sensitivity to black carbon deposition in the Himalayas: from atmospheric and ice core measurements to regional climate simulations

    OpenAIRE

    M. Ménégoz; G. Krinner; Balkanski, Y.; Boucher, O.; Cozic, A.; Lim, S.; Ginot, P.; Laj, P.; H. Gallée; P. Wagnon; Marinoni, A.; Jacobi, H. W.

    2014-01-01

    We applied a climate-chemistry global model to evaluate the impact of black carbon (BC) deposition on the Himalayan snow cover from 1998 to 2008. Using a stretched grid with a resolution of 50 km over this complex topography, the model reproduces reasonably well the remotely sensed observations of the snow cover duration. Similar to observations, modelled atmospheric BC concentrations in the central Himalayas reach a minimum during the monsoon and a maximum during the post- ...

  1. Relationship between Polymer Dielectric Constant and Percolation Threshold in Conductive Poly(styrene)-Type Polymer and Carbon Black Composites

    OpenAIRE

    Mariana Castro Martínez; Susana Hernández López; Enrique Vigueras Santiago

    2015-01-01

    We study the effect of dielectric constant of some poly(styrene)-type polymer matrix on the percolation threshold in conductive polymer composites with carbon black (CB). We demonstrate that percolation threshold diminishes with an increment of the dielectric constant of polymer matrix. We chose polystyrene and other three polymers similar in structure and molecular weight but with different chemical nature. The corresponding dielectric constant and critical concentration, Xc, in volume frac...

  2. Ice nucleating particles from biomass combustion: emission rates and the role of refractory black carbon

    Science.gov (United States)

    Levin, E. J.; McMeeking, G. R.; McCluskey, C. S.; Carrico, C. M.; Nakao, S.; Stockwell, C.; Yokelson, R. J.; Sullivan, R. C.; DeMott, P. J.; Kreidenweis, S. M.

    2015-12-01

    Ice nucleating particles (INPs) allow initial ice crystal formation in clouds at temperatures warmer than about -36 °C and are thus important for cloud and precipitation development. One potential source of INPs to the atmosphere is biomass combustion, such as wildfires, prescribed burning and agricultural burning, which emits large quantities of particulate matter into the atmosphere and is a major source of black carbon (BC) aerosol. To better understand and constrain INP emissions from biomass combustion, globally relevant fuels were used in a series of burns during a study called FLAME 4 at the USFS Fire Sciences Laboratory in Missoula, MT. Concentrations of immersion mode INPs were measured using a Colorado State University Continuous Flow Diffusion Chamber (CFDC). During the first part of the study, emissions were measured in real time as fires progressed from ignition to flaming and smoldering phases. INP emissions were observed predominately during periods of intensely flaming combustion. Roughly 75% of measured burns produced detectable INP concentrations and these had, on average, higher combustion efficiencies and higher BC emissions. During the second half of FLAME 4, we directly measured the contribution of refractory black carbon (rBC) to INP concentrations by selectively removing these particles via laser-induced incandescence (LII) using a Single Particle Soot Photometer (SP2; Droplet Measurement Technologies). The SP2 uses a 1064 nm Na:YAG laser to heat rBC aerosol to their vaporization temperatures, thus removing them from the sampled aerosol. By passing combustion aerosol through the SP2 with the laser on and off while measuring the remaining aerosol with the CFDC, we were able to determine the contribution of rBC to the INP population. Reductions in INPs of 0 - 70% were observed when removing rBC from the combustion aerosol, indicating the importance of rBC particles to INP concentrations for some burn scenarios.

  3. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity

    Energy Technology Data Exchange (ETDEWEB)

    Montelongo-Reyes, M.M.; Otazo-Sánchez, E.M.; Romo-Gómez, C.; Gordillo-Martínez, A.J.; Galindo-Castillo, E.

    2015-09-15

    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO{sub 2} emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO{sub 2} sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO{sub 2} gas emissions were also significant, particularly SO{sub 2} (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries. - Highlights: • First GHG & black carbon inventory for Mezquital Valley: Mexico City energy supplier • Energy industries caused the largest CO{sub 2} and SO{sub 2} emissions from residual fuel oil. • Diesel

  4. Black carbon and trace gases over South Asia: Measurements and Regional Climate model simulations

    Science.gov (United States)

    Bhuyan, Pradip; Pathak, Binita; Parottil, Ajay

    2016-07-01

    Trace gases and aerosols are simulated with 50 km spatial resolution over South Asian CORDEX domain enclosing the Indian sub-continent and North-East India for the year 2012 using two regional climate models RegCM4 coupled with CLM4.5 and WRF-Chem 3.5. Both models are found to capture the seasonality in the simulated O3 and its precursors, NOx and CO and black carbon concentrations together with the meteorological variables over the Indian Subcontinent as well as over the sub-Himalayan North-Eastern region of India including Bangladesh. The model simulations are compared with the measurements made at Dibrugarh (27.3°N, 94.6°E, 111 m amsl). Both the models are found to capture the observed diurnal and seasonal variations in O3 concentrations with maximum in spring and minimum in monsoon, the correlation being better for WRF-Chem (R~0.77) than RegCM (R~0.54). Simulated NOx and CO is underestimated in all the seasons by both the models, the performance being better in the case of WRF-Chem. The observed difference may be contributed by the bias in the estimation of the O3 precursors NOx and CO in the emission inventories or the error in the simulation of the meteorological variables which influences O3 concentration in both the models. For example, in the pre-monsoon and winter season, the WRF-Chem model simulated shortwave flux overestimates the observation by ~500 Wm-2 while in the monsoon and post monsoon season, simulated shortwave flux is equivalent to the observation. The model predicts higher wind speed in all the seasons especially during night-time. In the post-monsoon and winter season, the simulated wind pattern is reverse to observation with daytime low and night-time high values. Rainfall is overestimated in all the seasons. RegCM-CLM4.5 is found to underestimate rainfall and other meteorological parameters. The WRF-Chem model closely captured the observed values of black carbon mass concentrations during pre-monsoon and summer monsoon seasons, but

  5. Adsorption mechanism of sodium dodecyl benzene sulfonate on carbon blacks by adsorption isotherm and zeta potential determinations.

    Science.gov (United States)

    Zhao, Yapei; Lu, Pei; Li, Caiting; Fan, Xiaopeng; Wen, Qingbo; Zhan, Qi; Shu, Xin; Xu, Tieliang; Zeng, Guangming

    2013-01-01

    Surfactant solutions were propounded to remove fine and hydrophobic carbon black particles from coal-fired flue gas. The adsorption mechanisms between sodium dodecyl benzene sulfonate (SDBS, an anionic surfactant) and carbon black particles in suspension were investigated. The influence of inorganic salt (NaCl) was also considered. As results showed, hydrophobic interactions contributed to the strong adsorption between SDBS and carbon black particles in the absence of NaCl, and adding NaCl affected the adsorption process. The adsorption amount of SDBS significantly increased when NaCl was added into the SDBS solution; however, when SDBS was in low concentration, the amount of adsorbed SDBS, which was responsible for the shift of zeta potentials, varied little under different concentrations of NaCl. This indicated that the adsorption of SDBS was mainly caused by hydrophobic interaction and Na+ could not change the adsorption of SDBS on adsorption site when SDBS was in low concentration. Moreover, the adsorbed SDBS and Na+ were retained in the Stern layer. PMID:23530331

  6. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering

    Science.gov (United States)

    Jaffe, Lillie A.; Peucker-Ehrenbrink, Bernhard; Petsch, Steven T.

    2002-05-01

    This study investigates the effects of black shale weathering on the Re-Os isotope system, platinum group element concentrations and the degradation of organic matter. Samples from a weathering profile in Late Devonian (˜365 Myr) Ohio Shale show a pronounced decrease (˜77%) in organic carbon (C org) near the present soil surface, relative to the interior portion of the outcrop. A similar trend is observed for total N (˜67% loss). Conversely, organic phosphorus (P org) concentrations increase by ˜59% near the soil surface. The decrease in C org is accompanied by a pronounced decrease in Re (˜99%) and, to a lesser extent, Os (˜39%). Palladium and Pt do not appear to be significantly mobile. The effects of Re and Os mobility on the Re-Os isotope system are significant: none of the samples plots on a 365 Myr isochron. Rather, the samples define a trend with a slope corresponding to an age of ˜18 Myr with an initial 187Os/ 188Os of ˜6.1. This indicates recent disturbance of the Re-Os system. Isotope mass balance calculations imply that the labile fraction of Os is significantly more radiogenic ( 187Os/ 188Os of ˜7.8) than the average of the unweathered samples ( 187Os/ 188Os of ˜6.4). Based on data from this study, the molar ratio of labile Re to C org in Ohio Shale is estimated at 7×10 -8. We estimate the present-day riverine, black shale-derived Re flux to seawater using literature data on Re burial in anoxic marine sediments, and assuming steady-state between Re release during black shale weathering and Re burial in anoxic marine sediments. Then, the labile Re/C org observed in this study implies that ˜0.5 Tmol of C org is released annually from weathering of black shales, a trace lithology in the continental crust. This flux corresponds to ˜12% of the estimated annual CO 2 flux from oxidative weathering of sedimentary rocks. The labile molar Re/Os of ˜270 indicates that black shale weathering releases ˜130 mol Os per year, which accounts for ˜7% of

  7. Impact of time-activity patterns on personal exposure to black carbon

    Science.gov (United States)

    Dons, Evi; Int Panis, Luc; Van Poppel, Martine; Theunis, Jan; Willems, Hanny; Torfs, Rudi; Wets, Geert

    2011-07-01

    Time-activity patterns are an important determinant of personal exposure to air pollution. This is demonstrated by measuring personal exposure of 16 participants for 7 consecutive days: 8 couples of which one person was a full-time worker and the other was a homemaker; both had a very different time-activity pattern. We used portable aethalometers to measure black carbon levels with a high temporal resolution and a PDA with GPS-logger and electronic diary. The exposure to black carbon differs between partners by up to 30%, although they live at the same location. The activity contributing most to this difference is transport: Average exposure in transport is 6445 ng m -3, followed by exposure during shopping (2584 ng m -3). Average exposure is lowest while sleeping (1153 ng m -3) and when doing home-based activities (1223 ng m -3). Full-time workers spend almost twice as much time in transport as the homemakers. As a result of the study design we measured in several different homes, shops, cars, etc. enabling a better insight in true overall exposure in those microenvironments. Other factors influencing personal exposure are: background concentrations and location of residence in an urban, suburban or rural environment.

  8. Sulfonated carbon black-based composite membranes for fuel cell applications

    Indian Academy of Sciences (India)

    Hacer Doǧan; Emel Yildiz; Metin Kaya; Tülay Y Inan

    2013-08-01

    Two different commercial grade carbon black samples, Cabot Regal 400R (C1) and Cabot Mogul L (C2), were sulfonated with diazonium salt of sulfanilic acid. The resultant sulfonated carbon black samples (S–C) were characterized by Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis (TGA). Composite membranes were then prepared using S–C as fillers and sulfonated poly(ether ether ketone) (SPEEK) as polymer matrix with three different sulfonation degrees (DS = 60, 70 and 82%). Structure and properties of the composite membranes were characterized by FTIR, TGA, scanning electron microscopy, proton conduction, water uptake, ion exchange capacity and chemical stability. Incorporation of S–C particles above 0.25 wt% caused decrease in chemical stability. Pristine and composite membranes prepared from SPEEK82 decomposed completely in <1 h, which is undesirable for fuel cell applications. SPEEK60 membrane having wt% of 0.25–0.5 with S–C particles led to higher proton conductivity than that of pristine membrane. No positive effect was observed on the properties of the composite membranes with the addition of S–C particles at high concentrations due to the agglomeration problems and decrease in the content of conductive polymer matrix.

  9. Wetting and Non-Wetting Models of Black Carbon Activation

    Science.gov (United States)

    Henson, B. F.; Laura, S.

    2006-12-01

    We present the results of recent modeling studies on the activation of black carbon (BC) aerosol to form cloud condensation nuclei (CCN). We use a model of BC activation based on a general modification of the Koehler equation for insoluble activation in which we introduce a term based on the activity of water adsorbed on the particle surface. We parameterize the model using the free energy of adsorption, a parameter directly comparable to laboratory measurements of water adsorption on carbon. Although the model of the water- surface interaction is general, the form of the activation equation that results depends upon a further model of the distribution of water on the particle. One possible model involves the symmetric growth of a water shell around the isoluble particle core (wetting). This model predicts upper and lower bounding curves for the activation supersaturation given by the range of water interaction energies from hydrophobic to hydrophilic which are in agreement with a large body of recent activation data. The resulting activation diameters are from 3 to 10 times smaller than activation of soluble particles of identical dry diameter. Another possible model involves an exluded liquid droplet growing in contact with the particle (non-wetting). The geometry of this model much more resembles classic assumptions of heterogeneous nucleation theory. This model can yield extremely high activation supersaturation as a function of diameter, as has been observed in some experiments, and enables calculations in agreement with some of these results. We discuss these two geometrical models of water growth, the different behaviors predicted by the resulting activation equation, and the means to determine which model of growth is appropriate for a given BC particle characterized by either water interaction energy or morphology. These simple models enable an efficient and physically reasonable means to calculate the activation of BC aerosol to form CCN based upon a

  10. Russia's black carbon emissions: focus on diesel sources

    Science.gov (United States)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-01

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25-30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  11. Black Carbon Inclusive Multichemical Modeling of PBDE and PCB Biomagnification and -Transformation in Estuarine Food Webs

    NARCIS (Netherlands)

    Paolo, C.; Gandhi, N.; Bhavsar, S.; Heuvel-Greve, van den M.J.; Koelmans, A.A.

    2010-01-01

    Bioavailability and bioaccumulation of polybrominated diphenylethers (PBDEs) are affected by adsorption on black carbon (BC) and metabolism in biota, respectively. Recent studies have addressed these two processes separately, illustrating their importance in assessing contaminant dynamics. In order

  12. Black carbon aerosols and the third polar ice cap

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John; Orlikowski, Daniel

    2010-04-15

    Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from 1990 to 2000), and are mainly obtained with the newer BC estimates.

  13. Characteristics and source of black carbon aerosol over Taklimakan Desert

    Institute of Scientific and Technical Information of China (English)

    FU; S.Joshua

    2010-01-01

    Black carbon(BC) and PM10 in the center of the Taklimakan Desert were online monitored in the whole year of 2007.In addi-tion,TSP samples were also synchronously daily collected by medium-volume samplers with Whatman41 filters in the spring of 2007.BC in the dust aerosol was up to 1.14%of the total mass of PM10.A remarkable seasonal variation of BC in the aerosol was observed in the order of winter>spring>autumn>summer.The peak value of BC appeared at midnight while the lowest one in the evening each day,which was just the reverse of that in the urban area.The contribution of BC to the total mass of PM10 on non-dust storm days was~11 times of that in dust storm.Through back trajectory and principal component analysis,it was found that BC in the dust aerosol over Taklimakan Desert might be attributed to the emission from the anthropogenic activities,including domestic heating,cooking,combustion of oil and natural gas,and the medium-range transport from those oases located in the margins of the desert.The total BC aerosol from the Taklimakan Desert to be transported to the eastward downstream was estimated to be 6.3×104 ton yr-1.

  14. Hygroscopicity of Black-Carbon-Containing Aerosol in Wildfire Plumes

    Science.gov (United States)

    Perring, A. E.; Schwarz, J. P.; Markovic, M. Z.; Fahey, D. W.; Yokelson, R. J.; Jimenez, J. L.; Campuzano Jost, P.; Day, D. A.; Palm, B. B.; Wisthaler, A.; Ziemba, L. D.; Anderson, B. E.; Diskin, G. S.; Huey, L. G.; Gao, R. S.

    2015-12-01

    Water uptake by black carbon (BC) containing aerosol has been quantified in wildfire plumes of varying age (from 1 to ~40 hr old) sampled in North America during the NASA SEAC4RS mission of 2013. Measurements were made in flight using parallel single-particle soot photometers (SP2) that simultaneously detected the BC component of the ambient aerosol ensemble under contrasting humidity conditions. The hygroscopicity parameter, κ, of material internally mixed with BC derived from this data set is consistent with previous estimates of bulk aerosol hygroscopicity from biomass burning sources. We explore the temporal evolution of κ during aging of the Yosemite Rim Fire plume to constrain the rate of conversion of BC-containing aerosol from hydrophobic to hydrophilic modes in these emissions. We also investigate the relationship between κ values for BC-containing particles and the oxidation state and hygroscopicity of the bulk aerosol. These observations have implications for BC transport and removal in biomass burning plumes and provide important constraints on model treatment of BC optical and microphysical properties from wildfire sources in ambient conditions.

  15. Anaerobic Treatment of Concentrated Black Water in a UASB Reactor at a Short HRT

    Directory of Open Access Journals (Sweden)

    Cees J. N. Buisman

    2010-02-01

    Full Text Available This research describes the feasibility of applying a UASB reactor for the treatment of concentrated black (toilet water at 25 °C. On average 78% of the influent load of COD at an HRT of 8.7 days was removed. Produced methane can be converted to 56 MJ/p/y as electricity and 84 MJ/p/y as heat by combined heat and power (CHP. Minimum reactor volume at full scale was calculated to be 63L per person (for black water containing 16 gCOD/L produced at 5 L/p/d and this is more than two times smaller than other type of reactors for anaerobic treatment of concentrated black water.

  16. Catalytic Oxidation of Propylene, Toluene, Carbon Monoxide, and Carbon Black over Au/CeO2 Solids: Comparing the Impregnation and the Deposition-Precipitation Methods

    Directory of Open Access Journals (Sweden)

    Antoine Aboukaïs

    2013-01-01

    Full Text Available Au/CeO2 solids were prepared by two methods: deposition-precipitation (DP and impregnation (Imp. The prepared solids were calcined under air at 400°C. Both types of catalysts have been tested in the total oxidation of propylene, toluene, carbon monoxide, and carbon black. Au/CeO2-DP solids were the most reactive owing to the high number of gold nanoparticles and Au+ species and the low concentration of Cl- ions present on its surface compared to those observed in Au/CeO2-Imp solids.

  17. Sources of uncertainties in modelling black carbon at the global scale

    OpenAIRE

    Vignati, E.; Karl, M; M. Krol; Wilson, J.(School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom); Stier, P; F. Cavalli

    2010-01-01

    Our understanding of the global black carbon (BC) cycle is essentially qualitative due to uncertainties in our knowledge of its properties. This work investigates two source of uncertainties in modelling black carbon: those due to the use of different schemes for BC ageing and its removal rate in the global Transport-Chemistry model TM5 and those due to the uncertainties in the definition and quantification of the observations, which propagate through to both the emission inventories, and the...

  18. Using Pyrolized Carbon Black (PCB) from Waste Tires in Asphalt Pavement (Part 2, Asphalt Binder)

    OpenAIRE

    Zeng, Yongdong; Lovell, C. W.

    1996-01-01

    Scrap tires derived from automobiles have become a large environmental problem in the United States. In this study, research is carried out to investigate the potential use of tire-derived pyrolyzed carbon black from scrap tires as an asphalt cement modifier. The asphalt cements used in this research were AC10 and AC20. Penetration and softening point tests were performed to obtain the consistency of the asphalt cements. The pyrolyzed carbon black, as provided by Wolf Industries, was comb...

  19. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Directory of Open Access Journals (Sweden)

    Aron eStubbins

    2015-10-01

    Full Text Available Wildfires have produced black carbon (BC since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC. The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon were analyzed for dissolved organic carbon (DOC, colored dissolved organic matter (CDOM, and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254. Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  20. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Science.gov (United States)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  1. Modelling of Black and Organic Carbon Variability in the Northern Hemisphere

    Science.gov (United States)

    Kurganskiy, Alexander; Nuterman, Roman; Mahura, Alexander; Kaas, Eigil; Baklanov, Alexander; Hansen Sass, Bent

    2016-04-01

    Black and organic carbon as short-lived climate forcers have influence on air quality and climate in Northern Europe and Arctic. Atmospheric dispersion, deposition and transport of these climate forcers from remote sources is especially difficult to model in Arctic regions due to complexity of meteorological and chemical processes and uncertainties of emissions. In our study, the online integrated meteorology-chemistry/aerosols model Enviro-HIRLAM (Environment - High Resolution Limited Area Model) was employed for evaluating spatio-temporal variability of black and organic carbon aerosols in atmospheric composition in the Northern Hemisphere regions. The model setup included horizontal resolution of 0.72 deg, time step of 450 sec, 6 h meteorological surface data assimilation, 1 month spin-up; and model was run for the full year of 2010. Emissions included anthropogenic (ECLIPSE), shipping (AU_RCP&FMI), wildfires (IS4FIRES), and interactive sea salt, dust and DMS. Meteorological (from IFS at 0.75 deg) and chemical (from MACC Reanalysis at 1.125 deg) boundary conditions were obtained from ECMWF. Annual and month-to-month variability of mean concentration, accumulated dry/wet and total deposition fluxes is analyzed for the model domain and selected European and Arctic observation sites. Modelled and observed BC daily mean concentrations during January and July showed fair-good correlation (0.31-0.64) for stations in Germany, UK and Italy; however, for Arctic stations (Tiksi, Russia and Zeppelin, Norway) the correlations were negative in January, but higher correlations and positive (0.2-0.7) in July. For OC, it varied 0.45-0.67 in January and 0.19-0.57 in July. On seasonal scale, during both summer and winter seasons the BC and OC correlations are positive and higher for European stations compared with Arctic. On annual scale, both BC and OC correlations are positive and vary between 0.4-0.6 for European stations, and these are smoothed to negligible values for Arctic

  2. Direct measurement of surface carbon concentrations. [in lunar soil

    Science.gov (United States)

    Filleux, C.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    Measurements of surface concentrations of carbon in lunar soils and soil breccias provide information on the origin of carbon in the regolith. The reaction C-12 (d, p sub zero) is used to measure 'surface' and 'volume' concentrations in lunar samples. This method has a depth resolution of 1 micron, which permits only a 'surface' and a 'volume' component to be measured. Three of four Apollo 16 double drive tube samples show a surface carbon concentration of about 8 by 10 to the 14th power/sq cm, whereas the fourth sample gave 4 by 10 to the 14th power/sq cm. It can be convincingly shown that the measured concentration does not originate from fluorocarbon or hydrocarbon contaminants. Surface adsorbed layers of CO or CO2 are removed by a sputter cleaning procedure using a 2-MeV F beam. It is shown that the residual C concentration of 8 by 10 to the 14th power/sq cm cannot be further reduced by increased F fluence, and it is therefore concluded that it is truly lunar. If one assumes that the measured surface C concentration is a steady-state concentration determined only by a balance between solar-wind implantation and sputtering, a sputter erosion rate of 0.1 A/yr is obtained. However, it would be more profitable to use an independently derived sputter erosion rate to test the hypothesis of a solar-wind origin of the surface carbon.

  3. Factorial Based Response Surface Modeling with Confidence Intervals for Optimizing Thermal Optical Transmission Analysis of Atmospheric Black Carbon

    Science.gov (United States)

    We demonstrate how thermal-optical transmission analysis (TOT) for refractory light-absorbing carbon in atmospheric particulate matter was optimized with empirical response surface modeling. TOT employs pyrolysis to distinguish the mass of black carbon (BC) from organic carbon (...

  4. Intercomparison of thermal and optical measurement methods for elemental carbon and black carbon at an urban location.

    Science.gov (United States)

    Hitzenberger, R; Petzold, A; Bauer, H; Ctyroky, P; Pouresmaeil, P; Laskus, L; Puxbaum, H

    2006-10-15

    Despite intensive efforts during the past 20 years, no generally accepted standard method exists to measure black carbon (BC) or elemental carbon (EC). Data on BC and EC concentrations are method specific and can differ widely (e.g. Schmid et al., 2001, ten Brink et al., 2004). In this study, a comprehensive set of methods (both optical and thermal) is compared. Measurements were performed under urban background conditions in Vienna, Austria, a city heavily impacted by diesel emissions. Filter and impactor samples were taken during 3 weeks in summer 2002 and analyzed for EC with thermal methods: a modified Cachier method (Cachier et al., 1989), a thermal-optical method (Schmid et al., 2001), and the VDI method (VDI, 1996); for BC with optical methods: a filter transmission method and the integrating sphere method (Hitzenberger et al., 1996); and for total carbon (TC) with a combustion method (Puxbaum and Rendl, 1983). The online methods aethalometer (Hansen et al., 1984) and the multiangle absorption photometer MAAP (Petzold et al., 2002) to measure BC were also used. The average values of BC and EC obtained with the methods agreed within their standard deviations. A conversion table was set up to allow comparisons between data measured elsewhere under urban background conditions (with similar source characteristics) with different instruments. An approach to estimate the absorption coefficient from attenuation data is derived so that existing records of aethalometer data in urban environments may be used to obtain also the absorption coefficients.

  5. Influence of the carbon dioxide concentration on the resistance to carbonation of concrete

    NARCIS (Netherlands)

    Visser, J.H.M.

    2013-01-01

    Carbonation of concrete at ambient CO2 concentration is a slow process. This makes the testing of the resistance of concrete against carbonation often too slow to be applicable for service life assessments of new structures. Raising the CO2-concentration will accelerate the test but the validity of

  6. Selection and Characterization of Carbon Black and Surfactants for Development of Small Scale Uranium Oxicarbide Kernels

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [ORNL

    2006-01-01

    This report supports the effort for development of small scale fabrication of UCO (a mixture of UO{sub 2} and UC{sub 2}) fuel kernels for the generation IV high temperature gas reactor program. In particular, it is focused on optimization of dispersion conditions of carbon black in the broths from which carbon-containing (UO{sub 2} {center_dot} H{sub 2}O + C) gel spheres are prepared by internal gelation. The broth results from mixing a hexamethylenetetramine (HMTA) and urea solution with an acid-deficient uranyl nitrate (ADUN) solution. Carbon black, which is previously added to one or other of the components, must stay dispersed during gelation. The report provides a detailed description of characterization efforts and results, aimed at identification and testing carbon black and surfactant combinations that would produce stable dispersions, with carbon particle sizes below 1 {micro}m, in aqueous HMTA/urea and ADUN solutions. A battery of characterization methods was used to identify the properties affecting the water dispersability of carbon blacks, such as surface area, aggregate morphology, volatile content, and, most importantly, surface chemistry. The report introduces the basic principles for each physical or chemical method of carbon black characterization, lists the results obtained, and underlines cross-correlations between methods. Particular attention is given to a newly developed method for characterization of surface chemical groups on carbons in terms of their acid-base properties (pK{sub a} spectra) based on potentiometric titration. Fourier-transform infrared (FTIR) spectroscopy was used to confirm the identity of surfactants, both ionic and non-ionic. In addition, background information on carbon black properties and the mechanism by which surfactants disperse carbon black in water is also provided. A list of main physical and chemical properties characterized, samples analyzed, and results obtained, as well as information on the desired trend or

  7. Challenges for Reducing Emissions of Black Carbon from the Transport Sector in Urban Areas

    Science.gov (United States)

    Zavala, M. A.; Molina, L. T.

    2013-05-01

    The transport sector is a large contributor of harmful gaseous and particulate emissions in many urban areas. Black carbon is a component of short-lived particulate matter emitted predominantly by freight, public transport, and heavy- duty trucks. Controlling the emissions of black carbon from the transport sector is important for mitigating its impacts on climate, ecosystems, and human health. However, reducing the emissions of black carbon from mobile sources may be a challenging task in many developing urban areas due to economic, social, and technical constrains. Several emissions control technologies offer a proven approach for reducing emissions of black carbon from diesel-powered mobile sources, but the accurate quantification of associated emissions benefits in developing urban areas is not well documented. We describe recent advances for the estimation of black carbon emissions from the transport sector in real world driving conditions and present examples of the potential benefits of implementing various emission control technologies in Mexico. The results can help in the identification of key factors that hinder the implementation of control emissions for reducing emissions of black carbon elsewhere.

  8. Measurement of Black Carbon and Co-pollutants Emitted from Diesel Vehicles in Mexico

    Science.gov (United States)

    Zavala, M. A.; Molina, L. T.; Fortner, E.; Herndon, S.; Knighton, B.; Yacovitch, T. I.; Floerchinger, C. R.; Roscioli, J. R.; Kolb, C. E.; Paramo, V. H.; Zirath, S.; Mejia, J.; Jazcilevich, A. D.

    2013-12-01

    Freight, public transport, and heavy-duty trucks can contribute to harmful emissions of black carbon and other co-pollutants in many urban areas. Controlling the emissions of black carbon from the transport sector is important for the potential of mitigating its impacts on climate, ecosystems, and human health. However, reducing the emissions of black carbon from mobile sources is be a challenging task in many developing urban areas due to economic, social, and technical constrains, as well as the uncertainties surrounding the accurate quantification of the associated benefits. Several emissions control technologies offer a proven approach for reducing emissions of black carbon from diesel-powered mobile sources, but the accurate quantification of associated emissions benefits in developing urban areas is not well documented. We present the results of the measurement of black carbon and co-emitted pollutants of dozens of diesel powered vehicles, including freight trucks, public transport buses, and intra-city metrobuses sampled during a 4-day experiment in Mexico City in February of 2013 as part of the SLCFs-Mexico project. Measurements were obtained with the Aerodyne Mobile Laboratory, remote sensing, and portable emissions measurements, and encompassed the sampling of several vehicle models and technologies in experimental and real-world driving conditions. The results can help in the identification of key factors that hinder the implementation of control emissions for reducing emissions of black carbon elsewhere and the potential benefits of implementing various emission control technologies.

  9. Modelling anaerobic digestion of concentrated black water and faecal matter in accumulation system

    NARCIS (Netherlands)

    Elmitwalli, T.; Zeeman, G.; Otterpohl, R.

    2011-01-01

    A dynamic mathematical model based on anaerobic digestion model no. 1 (ADM1) was developed for accumulation (AC) system treating concentrated black water and faecal matter at different temperatures. The AC system was investigated for the treatment of waste(water) produced from the following systems:

  10. The nature of carbon material in the black shale rock mass of Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, L.G.

    1981-01-01

    Carbon material is closely tied to ores of various origin lying in the carbon (black shale) rock masses of Kazakhastan. The nature of the carbon material in several gold fields is closely examined. Shungite, its paragenesis with ore materials and its role in the carbon and ore material processes, is described. The accumulation of shungite in zones determined to consist of ores, is looked at in terms of prospecting criteria.

  11. Improved Dispersion of Carbon Nanotubes in Polymers at High Concentrations

    OpenAIRE

    Chao-Xuan Liu; Jin-Woo Choi

    2012-01-01

    The polymer nanocomposite used in this work comprises elastomer poly(dimethylsiloxane) (PDMS) as a polymer matrix and multi-walled carbon nanotubes (MWCNTs) as a conductive nanofiller. To achieve uniform distribution of carbon nanotubes within the polymer, an optimized dispersion process was developed, featuring a strong organic solvent—chloroform, which dissolved PDMS base polymer easily and allowed high quality dispersion of MWCNTs. At concentrations as high as 9 wt.%, MWCNTs were...

  12. Impacts of black carbon and co-pollutant emissions from transportation sector in Mexico City

    Science.gov (United States)

    Zavala, Miguel; Almanza, Victor; Garcia, Agustin; Jazcilevich, Aron; Lei, Wenfang; Molina, Luisa

    2016-04-01

    Black carbon is one of the most important short-lived climate-forcing agents, which is harmful to human health and also contributes significantly to climate change. Transportation is one of the largest sources of black carbon emissions in many megacities and urban complexes, with diesel vehicles leading the way. Both on-road and off-road vehicles can emit substantial amounts of harmful BC-containing particulate matter (PM) and are also responsible for large emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), and many other co-emitted volatile organic compounds (VOCs). Regionally, black carbon emissions contributions from mobile sources may vary widely depending on the technical characteristics of the vehicle fleet, the quality and chemical properties of the fuels consumed, and the degree of local development and economic activities that foster wider and more frequent or intensive use of vehicles. This presentation will review and assess the emissions of black carbon from the on-road and off-road transportation sector in the Mexico City Metropolitan Area. Viable mitigation strategies, including innovative technological alternatives to reduce black carbon and co-pollutants in diesel vehicles and their impacts on climate, human health and ecosystems will be described.

  13. Black carbon aerosols and their radiative properties in the Pearl River Delta region

    Institute of Scientific and Technical Information of China (English)

    WU Dui; MAO JieTai; DENG XueJiao; TIE XueXi; ZHANG YuanHang; ZENG LiMin; LI Fei; TAN HaoBo; BI XueYan; HUANG XiaoYing; CHEN Jing; DENG Tao

    2009-01-01

    The climatic and environmental effects of atmospheric aerosols are a hot topic in global science community, and radiative properties of the aerosols are one of the important parameters in assessing climatic change. Here we studied the black carbon concentration and absorption coefficient measured with aethalometers, scattering coefficient measured with nephelometers, and single scattering albedo derived at an atmospheric composition watch station in Guangzhou from 2004 to 2007. Our main resuits are as follows. The data of black carbon concentration and absorption coefficients measured with instruments cannot be directly used until they are measured in parallel with internationally accepted instruments for comparison, calibration, and reduction. After evaluation of the data, the result shows that the monthly mean of BC concentration varies 3.1-14.8 pg. m-3 and the concentration decreases by about 1 μg. m-3 in average over the four years; It is higher in the dry season with a multi-year mean of monthly mean concentration occurred in December 2004 and extreme minimum in July 2007, end a 4-year mean is 8.4 pg. m-3. It is also shown that monthly mean scattering coefficient derived varies 129 -565 Mm-1, monthly mean absorption coefficient 32-139 Mm-1, and monthly mean single scattering albedo 0.71-0.91, with annual mean values of 0.80, 0.82, 0.79 and 0.84 for 2004, 2005, 2006 and 2007, respectively. Three instruments were used to take simultaneous measurements of BC in PM10, PM2.5, and PM1 and the results showed that PM2.5 took up about 90% of PM10 and PM1 accounted for about 66% of PM2.5, and BC aerosols are mainly present in fine particulates. The variability of BC concentrations is quite consistent between the Nancun station (141 m above sea level) and the Panyu station (13 m above sea level), which are 8 km apart from each other. The concentration in higher altitude station (Panyu) is consistently lower than the lower altitude station (Nancun), and the difference of

  14. Black carbon aerosols and their radiative properties in the Pearl River Delta region

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The climatic and environmental effects of atmospheric aerosols are a hot topic in global science community, and radiative properties of the aerosols are one of the important parameters in assessing climatic change. Here we studied the black carbon concentration and absorption coefficient measured with aethalometers, scattering coefficient measured with nephelometers, and single scattering albedo derived at an atmospheric composition watch station in Guangzhou from 2004 to 2007. Our main results are as follows. The data of black carbon concentration and absorption coefficients measured with instruments cannot be directly used until they are measured in parallel with internationally accepted instruments for comparison, calibration, and reduction. After evaluation of the data, the result shows that the monthly mean of BC concentration varies 3.1―14.8 μg·m-3 and the concentration decreases by about 1 μg·m-3 in average over the four years; It is higher in the dry season with a multi-year mean of 8.9 μg/m3 and lower in the rainy season with a multi-year mean of 8.0 μg·m-3; The extreme maximum of monthly mean concentration occurred in December 2004 and extreme minimum in July 2007, and a 4-year mean is 8.4 μg·m-3. It is also shown that monthly mean scattering coefficient derived varies 129 -565 Mm-1, monthly mean absorption coefficient 32-139 Mm-1, and monthly mean single scattering albedo 0.71-0.91, with annual mean values of 0.80, 0.82, 0.79 and 0.84 for 2004, 2005, 2006 and 2007, respectively. Three instruments were used to take simultaneous measurements of BC in PM10, PM2.5, and PM1 and the results showed that PM2.5 took up about 90% of PM10 and PM1 accounted for about 68% of PM2.5, and BC aerosols are mainly present in fine particulates. The variability of BC concentrations is quite consistent between the Nancun station (141 m above sea level) and the Panyu station (13 m above sea level), which are 8 km apart from each other. The concentration in higher

  15. Effects of wet deposition on the abundance and size distribution of black carbon in East Asia

    Science.gov (United States)

    Kondo, Y.; Moteki, N.; Oshima, N.; Ohata, S.; Koike, M.; Shibano, Y.; Takegawa, N.; Kita, K.

    2016-05-01

    An improved understanding of the variations in the mass concentration and size distribution of black carbon (BC) in the free troposphere (FT) over East Asia, where BC emissions are very high, is needed to reliably estimate the radiative forcing of BC in climate models. We measured these parameters and the carbon monoxide (CO) concentration by conducting the Aerosol Radiative Forcing in East Asia (A-FORCE) 2013W aircraft campaign in East Asia in winter 2013 and compared these data with measurements made in the same region in spring 2009. The median BC concentrations in the FT originating from North China (NC) and South China (SC) showed different seasonal variations, which were primarily caused by variations in meteorological conditions. CO concentrations above the background were much higher in SC than in NC in both seasons, suggesting a more active upward transport of CO. In SC, precipitation greatly increased from winter to spring, leading to an increased wet deposition of BC. As a result, the median BC concentration in the FT was highest in SC air in winter. This season and region were optimal for the effective transport of BC from the planetary boundary layer to the FT. The count median diameters of the BC size distributions generally decreased with altitude via wet removal during upward transport. The altitude dependence of the BC size distributions was similar in winter and spring, in accord with the similarity in the BC mixing state. The observed BC concentrations and microphysical properties will be useful for evaluating the performance of climate models.

  16. Research on properties of carbon black/polypropylene composites by dynamic injection molding

    Science.gov (United States)

    Wu, Ming-Chun; He, Guang-Jian; Huang, Zhao-Xia; Zhou, Li-Ying; He, He-Zhi

    2016-03-01

    Polymer composites filled with conductive carbon black (CB) are gaining popularity for electromagnetic shielding applications. Dynamic injection molding method was adopted to study the influences of vibration force field on electrical properties of polypropylene/CB composites. The results showed that the percolation phenomenon of conductivity of composites occurred at 15wt% and the calculated SE was positive correlated with the variation trend of conductivity. The calculated SE of composite was more than 30dB at a CB concentration of 30wt%, which could obtain good shielding effects. The result could offer optimum vibration parameters for producing electromagnetic shielding composites by respectively changing the amplitudes and frequencies of the vibration force field.

  17. NONLINEAR CURRENT-VOLTAGE CHARACTERISTICS OF CONDUCTIVE POLYETHYLENE COMPOSITES WITH CARBON BLACK FILLED PET MICROFIBRILS

    Institute of Scientific and Technical Information of China (English)

    Qian-ying Chen; Jing Gao; Kun Dai; Huan Pang; Jia-zhuang Xu; Jian-hua Tang; Zhong-ming Li

    2013-01-01

    Current-voltage electrical behavior of in situ microfibrillar carbon black (CB)/poly(ethylene terephthalate)(PET)/polyethylene (PE) (m-CB/PET/PE) composites with various CB concentrations at ambient temperatures was studied under a direct-current electric field.The current-voltage (Ⅰ-Ⅴ) curves exhibited nonlinearity beyond a critical value of voltage.The dynamic random resistor network (DRRN) model was adopted to semi-qualitatively explain the nonlinear conduction behavior of m-CB/PET/PE composites.Macroscopic nonlinearity originated from the interracial interactions between CB/PET micro fibrils and additional conduction channels.Combined with the special conductive networks,an illustration was proposed to interpret the nonlinear Ⅰ-Ⅴ characteristics by a field emission or tunneling mechanism between CB particles in the CB/PET microfibers intersections.

  18. Assessing the Extent of Black Carbon Absorption Enhancements from Field Observations

    Science.gov (United States)

    Cappa, C. D.; Zhang, X.; Metcalf, A. R.; Kim, H.; Zhang, Q.; Zimmermann, K.; Bertram, T. H.; Corrigan, A. L.; Russell, L. M.

    2013-12-01

    Black carbon (BC) and brown carbon (BrC) play important roles as short-lived climate forcers (SLCFs) as a result of their short atmospheric lifetimes and ability to absorb solar radiation. The direct impacts of BC on climate depend on just how efficiently a given BC particle absorbs solar radiation, while the impacts of BrC depend on the specific properties of the BrC. The addition of 'coatings' to BC particles can theoretically increase the absorption by a given particle, and this theoretical 'lensing' enhancement has been confirmed through laboratory experiments. However, recent field observations (from the CalNex and CARES studies; Cappa et al. 2012), using a novel thermodenuder-absorption method, have suggested that the actual enhancement for ambient particles is substantially less than theoretically expected. Here, we will discuss results from similar measurements made during two recent field studies, the 2013 DISCOVER-AQ Fresno study and the 2013 SOAS Look Rock study. DISCOVER-AQ took place in Jan/Feb 2013 in Fresno, CA. This region is severely impacted by particulate matter from local and regional residential biomass burning, and thus provides a sharp contrast to the previous CalNex and CARES studies. SOAS took place during June/July 2013 at Look Rock National Park, TN, a relatively remote region strongly impacted by biogenic emissions (predominately isoprene) and located approximately 30 miles away from Knoxville, TN. The difference in absorption for dry, ambient particles will be compared with absorption measured for particles that have been passed through a thermodenuder. Additionally, variations in the mass absorption coefficient, determined from comparison of the measured light absorption and refractory black carbon concentrations, will be examined. The relative contributions of BrC and BC to total absorption at 405 nm, 532 nm and 870 nm will be discussed. The overall measurements suggest a relatively small role for lensing-induced absorption

  19. Central Asian supra-glacier snow melt enhanced by anthropogenic black carbon

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Farinotti, Daniel; Zhang, Qianggong; Guo, Junming; Li, Yang; Lawrence, Mark; Schwikowski, Margit

    2016-04-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. Densely populated areas near lower-lying mountain ranges are particularly vulnerable and a recent study showed that the region might lose 50 % of its glacier mass by 2050. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and snow melt. 218 snow samples were taken on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental carbon, mineral dust and iron among other parameters. We find the elemental carbon concentration to be at the higher end of the range reported for neighboring mountain ranges between 70 and 502 ng g-1 (interquartile range). To investigate the origin of the snow impurities, we used a Lagrangian particle dispersion model, LAGRANTO. Back trajectory ensembles of 40 members with varied starting points to capture the meteorological spread were released every 6 hours for the covered period at all sites. "Footprints" were calculated and combined with emission inventories to estimate the relative contribution of anthropogenic and natural BC to deposited aerosol on the glaciers. We find that more than 94 % of BC is of anthropogenic origin and the major source region is Central Asia followed by the Middle East. Further exploring the implications of mineral dust and BC deposition, we calculate the snow albedo reduction with the Snow-Ice-Aerosol-Radiative model (SNICAR). Even though mineral dust concentrations were up to a factor of 50 higher than BC concentrations, BC dominates the albedo reduction. Using these results we calculate the snow melt induced by

  20. End of the "Little Ice Age" in the Alps not forced by industrial black carbon

    Science.gov (United States)

    Sigl, Michael; Osmont, Dimtri; Gabrieli, Jacopo; Barbante, Carlo; Schwikowski, Margit

    2016-04-01

    Light absorbing aerosols present in the atmosphere and cryosphere play an important role in the climate system. Their presence in ambient air and snow changes radiative properties of these media, thus contributing to increased atmospheric warming and snowmelt. High spatio-temporal variability of aerosol concentrations in these media and a shortage of long-term observations contribute to large uncertainties in properly assigning the climate effects of these aerosols through time. Glaciers in the European Alps began to retreat abruptly from their mid-19th century maximum, marking what appeared to be the end of the Little Ice Age. Radiative forcing by increasing deposition of industrial black carbon to snow has been suggested as the main driver of the abrupt glacier retreats in the Alps (Painter et al. 2012). Basis for this hypothesis were model simulations using ice-core measurements of elemental carbon at low temporal resolution from two ice cores in the Alps. Here we present sub-annually resolved, well replicated ice-core measurements of refractory black carbon (rBC; using a SP2 soot photometer), mineral dust (Fe, Ca), biomass burning (NH4, K) and distinctive industrial pollution tracers (Bi, Pb, SO4) from an ice core in the Alps covering the past 250 years. These reconstructions allow to precisely compare the timing of observed acceleration of glacier melt in the mid-19th century with that of the increase of soot deposition on ice-sheets caused by the industrialization of Western Europe. Our study suggests that at the time when European rBC emission rates started to significantly increase Alpine glaciers have already experienced more than 70% of their total 19th century length reduction. Industrial BC emissions can therefore not been considered as the primary forcing of the rapid deglaciation at the end of the Little Ice Age in the Alps. References: Painter, T. H., M. G. Flanner, G. Kaser, B. Marzeion, R. A. VanCuren, and W. Abdalati (2013), End of the Little Ice

  1. New Routes to Functionalize Carbon Black for Polypropylene Nanocomposites.

    Science.gov (United States)

    Shepherd, Céline; Hadzifejzovic, Emina; Shkal, Fatma; Jurkschat, Kerstin; Moghal, Jonathan; Parker, Emily M; Sawangphruk, Montree; Slocombe, Daniel R; Foord, John S; Moloney, Mark G

    2016-08-01

    Methods for chemical surface functionalization for carbon black (CB) nanoparticles were studied to produce (CB)/polypropylene (PP) nanocomposites with superior electrical and thermal properties. Nanoparticle dispersion is known to directly control the extent to which nanocomposites maximize the unique attributes of their nanoscale fillers. As a result, tailored nanoparticle surface chemistry is a widely utilized method to enhance the interfacial interactions between nanoparticles and polymer matrices, assisting improved filler dispersion. In this work, a rapid chemical functionalization approach using a number of diarylcarbene derivatives, followed by the azo-coupling of substituted diazonium salts, for the covalent introduction of selected functional groups to the CB surface, is reported. Characterization of the modified CB by XPS, TGA, CHN, and ATR-IR collectively confirmed surface functionalization, estimating surface grafting densities of the order of 10(13) and 10(14) molecules/cm(2). Nanocomposites, synthesized by solvent mixing PP with pristine and modified CB, demonstrated macroscopic property changes as a result of the nanoparticle surface functionalization. Pronounced improvements were observed for PP nanocomposites prepared with a dodecyl-terminated diaryl functionalized CB, in which TEM analysis established improved nanofiller dispersion owing to the enhanced CB-PP interfacial interactions in the nanocomposite. Observed dielectric relaxation responses at 20 wt % loading and a reduced percolation threshold realized conductivities of 1.19 × 10(-4) S cm(-1) at 10 wt %, compared to 2.62 × 10(-15) S cm(-1) for pristine CB/PP nanocomposites at the same filler loading. In addition, thermal properties signify an increase in the number of nucleation sites by the raised degree of crystallinity as well as increased melting and crystallization temperatures. PMID:27417277

  2. Increased fire frequency optimization of black carbon mixing and storage

    Science.gov (United States)

    Pyle, Lacey; Masiello, Caroline; Clark, Kenneth

    2016-04-01

    Soil carbon makes up a substantial part of the global carbon budget and black carbon (BC - produced from incomplete combustion of biomass) can be significant fraction of soil carbon. Soil BC cycling is still poorly understood - very old BC is observed in soils, suggesting recalcitrance, yet in short term lab and field studies BC sometimes breaks down rapidly. Climate change is predicted to increase the frequency of fires, which will increase global production of BC. As up to 80% of BC produced in wildfires can remain at the fire location, increased fire frequency will cause significant perturbations to soil BC accumulation. This creates a challenge in estimating soil BC storage, in light of a changing climate and an increased likelihood of fire. While the chemical properties of BC are relatively well-studied, its physical properties are much less well understood, and may play crucial roles in its landscape residence time. One important property is density. When BC density is less than 1 g/cm3 (i.e. the density of water), it is highly mobile and can easily leave the landscape. This landscape mobility following rainfall may inflate estimates of its degradability, making it crucial to understand both the short- and long term density of BC particles. As BC pores fill with minerals, making particles denser, or become ingrown with root and hyphal anchors, BC is likely to become protected from erosion. Consequently, how quickly BC is mixed deeper into the soil column is likely a primary controller on BC accumulation. Additionally the post-fire recovery of soil litter layers caps BC belowground, protecting it from erosional forces and re-combustion in subsequent fires, but still allowing bioturbation deeper into the soil column. We have taken advantage of a fire chronosequence in the Pine Barrens of New Jersey to investigate how density of BC particles change over time, and how an increase in fire frequency affects soil BC storage and soil column movement. Our plots have

  3. Real-time indoor and outdoor measurements of black carbon at primary schools

    Science.gov (United States)

    Reche, C.; Rivas, I.; Pandolfi, M.; Viana, M.; Bouso, L.; Àlvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J.; Querol, X.

    2015-11-01

    Epidemiological and toxicological studies have demonstrated the association between Black Carbon in indoor and outdoor air and the occurrence of health risks. Data on air quality in schools is of special interest, as children are more vulnerable to health hazards. In this context, indoor and outdoor measurements of real-time Equivalent Black Carbon (EBC) were collected at 39 primary schools located in Barcelona (Spain), with classrooms naturally ventilated under warm weather conditions. A main contribution of road traffic emissions to indoor and outdoor EBC levels was evidenced through different approaches. Simultaneous measurements of EBC levels at schools under different traffic conditions revealed concentrations by 30-35% higher at schools exposed to higher vehicles intensities. Moreover, a significant correlation was obtained between average outdoor EBC levels at different districts of the city and the percentage of surface area in each district used for the road network (R2 = 0.61). Higher indoor than outdoor levels were recorded at some instances when the indoor sampling location was relatively closer to road traffic, even under low outdoor temperatures. Indeed, the average indoor/outdoor EBC ratios for each school correlate moderately between campaigns in spite of significant differences in temperature between sampling periods. These two facts highlight the strong dependency of the EBC levels on the distance to traffic. The peaks of exposure inside the classrooms seemed to be determined by outdoor concentrations, as shown by the parallelism between indoor and outdoor mean EBC daily cycles and the similar contribution of traffic rush hours to indoor and outdoor daily mean levels. The airtightness of the classroom was suggested as the responsible for the indoor/outdoor ratios of EBC higher than 1 recorded at nights.

  4. Implementation and validation of a modeling framework to assess personal exposure to black carbon.

    Science.gov (United States)

    Dons, Evi; Van Poppel, Martine; Kochan, Bruno; Wets, Geert; Int Panis, Luc

    2014-01-01

    Because people tend to move from one place to another during the day, their exposure to air pollution will be determined by the concentration at each location combined with the exposure encountered in transport. In order to estimate the exposure of individuals in a population more accurately, the activity-based modeling framework for Black Carbon exposure assessment, AB(2)C, was developed. An activity-based traffic model was applied to model the whereabouts of individual agents. Exposure to black carbon (BC) in different microenvironments is assessed with a land use regression model, combined with a fixed indoor/outdoor factor for exposure in indoor environments. To estimate exposure in transport, a separate model was used taking into account transport mode, timing of the trip and degree of urbanization. The modeling framework is validated using weeklong time-activity diaries and BC exposure as revealed from a personal monitoring campaign with 62 participants. For each participant in the monitoring campaign, a synthetic population of 100 model-agents per day was made up with all agents meeting similar preconditions as each real-life agent. When these model-agents pass through every stage of the modeling framework, it results in a distribution of potential exposures for each individual. The AB(2)C model estimates average personal exposure slightly more accurately compared to ambient concentrations as predicted for the home subzone; however the added value of a dynamic model lies in the potential for detecting short term peak exposures rather than modeling average exposures. The latter may bring new opportunities to epidemiologists: studying the effect of frequently repeated but short exposure peaks on long term exposure and health. PMID:24161448

  5. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    Science.gov (United States)

    Clack, Herek L

    2012-07-01

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  6. Study on Behavior of Carbon Reduction of Monazite Concentrate

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The behavior of monazite concentrate reduced by carbon, especially the decomposed procedure of rare earth phosphates, was investigated by X-ray diffraction , electron probe, TG method and chemical analysis. The results show that rare earth phosphates in monazite concentrate can be reduced to their oxides, among them the decomposition processes of cerium phosphate are not in step with lanthanum phosphate, neodymium phosphate and so on, and the phosphorus was volatilized into air in simple form.

  7. Is Carbon Black a Suitable Model Colloidal Substrate for Diesel Soot?

    Science.gov (United States)

    Growney, David J; Mykhaylyk, Oleksandr O; Middlemiss, Laurence; Fielding, Lee A; Derry, Matthew J; Aragrag, Najib; Lamb, Gordon D; Armes, Steven P

    2015-09-29

    Soot formation in diesel engines is known to cause premature engine wear. Unfortunately, genuine diesel soot is expensive to generate, so carbon blacks are often used as diesel soot mimics. Herein, the suitability of a commercial carbon black (Regal 250R) as a surrogate for diesel soot dispersed in engine base oil is examined in the presence of two commonly used polymeric lubricant additives. The particle size, morphology, and surface composition of both substrates are assessed using BET surface area analysis, TEM, and XPS. The extent of adsorption of a poly(ethylene-co-propylene) (dOCP) statistical copolymer or a polystyrene-block-poly(ethylene-co-propylene) (PS-PEP) diblock copolymer onto carbon black or diesel soot from n-dodecane is compared indirectly using a supernatant depletion assay technique via UV spectroscopy. Thermogravimetric analysis is also used to directly determine the extent of copolymer adsorption. Degrees of dispersion are examined using optical microscopy, TEM, and analytical centrifugation. SAXS studies reveal some structural differences between carbon black and diesel soot particles. The mean radius of gyration determined for the latter is significantly smaller than that calculated for the former, and in the absence of any copolymer, diesel soot suspended in n-dodecane forms relatively loose mass fractals compared to carbon black. SAXS provides evidence for copolymer adsorption and indicates that addition of either copolymer transforms the initially compact agglomerates into relatively loose aggregates. Addition of dOCP or PS-PEP does not significantly affect the structure of the carbon black primary particles, with similar results being observed for diesel soot. In favorable cases, remarkably similar data can be obtained for carbon black and diesel soot when using dOCP and PS-PEP as copolymer dispersants. However, it is not difficult to identify simple copolymer-particle-solvent combinations for which substantial differences can be observed

  8. On-road black carbon instrument intercomparison and aerosol characteristics by driving environment

    Science.gov (United States)

    Holder, Amara L.; Hagler, Gayle S. W.; Yelverton, Tiffany L. B.; Hays, Michael D.

    2014-05-01

    Large spatial variations of black carbon (BC) concentrations in the on-road and near-road environments necessitate measurements with high spatial resolution to assess exposure accurately. A series of measurements was made comparing the performance of several different BC instruments (Single Particle Soot Photometer, Photo-Acoustic Soot Spectrometer, and Aethalometer) for high time resolution mobile measurements, capable of mapping spatial gradients. All instruments were highly correlated at high time resolution (r2 = 0.80-0.89 at a 2-s resolution), however the slope ranged from 0.52 to 1.03, with the Single Particle Soot Photometer (SP2) consistently reporting the lowest BC concentrations. BC and ultrafine particle (UFP) concentrations were two-fold higher on the highway compared to surrounding roads with lower traffic counts. The BC size distribution had a mass median diameter of approximately 120 nm, which was smaller and less coated than aged urban BC. Mean UFP and BC concentrations were 2 and 1.4 times greater, respectively, during free flowing traffic on the highway compared with times when there was stop-and-go congestion, providing evidence that transit time is not a good predictor of BC or UFP exposure.

  9. Measurements of atmospheric carbon dioxide concentration above the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Voskresenskii, A.I.; Kamenogradskii, N.E.

    1984-01-01

    Changes in the composition of the atmosphere can have a destabilizing effect on the climate. One change is related to an increase in the concentration of carbon dioxide as a result of the combustion of organic fuels. The most effective procedures for monitoring the atmospheric carbon dioxide concentration are discussed, taking into account suitable analytic methods and the most appropriate locations for the conduction of the measurements. It is found that polar and oceanic regions are best suited for the performance of the considered measurements. The analytic procedure selected is based on a spectroscopic approach utilizing the absorption of solar radiation by carbon dioxide at a wavelength of 2.06 microns. A description is given of measurements conducted on Soviet expeditions to the Antarctic during the time from 1979 to 1981. The concentration of atmospheric carbon dioxide as a function of geographic latitude is shown in graphs, taking into account data for January, February, March, and April. Water vapor concentrations are also shown. 11 references.

  10. Carbon dioxide concentration in Mediterranean greenhouses : how much lost production?

    NARCIS (Netherlands)

    Stanghellini, C.; Incrocci, L.; Gazquez, J.C.; Dimauro, B.

    2008-01-01

    In the absence of artificial supply of carbon dioxide in the greenhouse environment, the CO2 absorbed in the process of photosynthesis must ultimately come from the external ambient through the ventilation openings. This requires that the CO2 concentration within the house must be lower than the ext

  11. Quantification and radiocarbon source apportionment of black carbon in atmospheric aerosols using the CTO-375 method

    Science.gov (United States)

    Zencak, Zdenek; Elmquist, Marie; Gustafsson, Örjan

    To make progress towards linking the atmosphere and biogeosphere parts of the black carbon (BC) cycle, a chemothermal oxidation method (CTO-375), commonly applied for isolating BC from complex geomatrices such as soils, sediments and aquatic particles, was applied to investigate the BC also in atmospheric particles. Concentrations and 14C-based source apportionment of CTO-375 based BC was established for a reference aerosol (NIST RM-8785) and for wintertime aerosols collected in Stockholm and in a Swedish background area. The results were compared with thermal-optical (OC/EC) measurements. For NIST RM-8785, a good agreement was found between the BC CTO-375 concentration and the reported elemental carbon (EC) concentration measured by the "Speciation Trends Network—National Institute of Occupational Safety and Health" method (EC NIOSH) with BC CTO-375 of 0.054±0.002 g g -1 and EC NIOSH of 0.067±0.008 g g -1. In contrast, there was an average factor of ca. 20 difference between BC CTO-375 and EC NIOSH for the ambient Scandinavian wintertime aerosols, presumably reflecting a combination of BC CTO-375 isolating only the recalcitrant soot-BC portion of the BC continuum and the EC NIOSH metric inadvertently including some intrinsically non-pyrogenic organic matter. Isolation of BC CTO-375 with subsequent off-line radiocarbon analysis yielded fraction modern values (fM) for total organic carbon (TOC) of 0.93 (aerosols from a Swedish background area), and 0.58 (aerosols collected in Stockholm); whereas the fM for BC CTO-375 isolates were 1.08 (aerosols from a Swedish background area), and 0.87 (aerosols collected in Stockholm). This radiocarbon-based source apportionment suggests that contribution from biomass combustion to cold-season atmospheric BC CTO-375 in Stockholm was 70% and in the background area 88%.

  12. The role of carbon black/coal-tar pitch interactions in the early stage of carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, R.; Fernandez, J.J.; Bermejo, J.; Cebolla, V.; Mochida, I.; Korai, Y. [Instituto Nacional del Carbon, Oviedo (Spain)

    1996-09-01

    A study was undertaken of the types of interaction between pitch and carbon black (CB) occurring during thermal treatment in the initial stages of carbonization, and the effects on subsequent coke structures. A commercial coal-tar pitch was blended with CB and thermally treated at temperatures between 400-450{degree}C, for 5 hours - except for 430{degree}C, for 10 hours. The same thermal treatments were applied in the absence of CB to test the effects of temperature alone. Parent and treated pitches were characterized by elemental analysis, optical microscopy, thermomechanical analysis and sequential solvent extraction. Some of the fractions were characterized by FTIR, GC and {sup 1}H-NMR. Cokes obtained at 900{degree}C were characterized by optical microscopy in terms of their porosity and optical texture. Results show that the type of CB/pitch interactions are temperature dependent, the interactions being more significant at lower temperatures. Hydrogenation and polymerization reactions have successively occurred alone the range of temperatures used. CB produced an increase of pitch carbon yield without affecting pitch fluidity at the lower temperatures. The effect on the reduction of coke porosity was pronounced at the initial stages of the treatment. Coke optical texture was affected by the presence of CB showing smaller sizes. 14 refs., 4 figs., 6 tabs.

  13. Relationship between Black Carbon and heavy traffic in São Paulo, Brazil

    Science.gov (United States)

    Miranda, R. M.; Perez-Martinez, P.; Ribeiro, F. N. D.; Andrade, M. D. F.

    2015-12-01

    Carbonaceous aerosols play an important role in air quality, human health and global climate change. Black Carbon (BC) can be considered the most efficient light absorber in the visible spectrum and is mainly found in the fine fraction of aerosol. Typically is emitted by incomplete combustion of fossil fuels related to traffic, industrial processes and biomass burning. São Paulo Metropolitan Area (SPMA) with more than 19 million inhabitants, 7 million vehicles, as well as the major industrial and technological park of the country, has high concentrations of air pollutants, especially in the winter and vehicles are considered the principal source of particles emitted to the atmosphere. Since November 2014, Black Carbon and PM2.5 are being monitored using a MAAP (Multi Angle Absorption Photometer) Thermo 5012 and a Dust Trak DRX-8533 TSI in the East Campus of University of São Paulo, close to important highways and also to the largest airport of Brazil (Guarulhos Airport). Average BC concentration was 1.7 μg/m3 with some peaks above 17.0 μg/m3 and for PM2.5 average was 10.2 μg/m3. Particle concentrations reached values greater than the air quality standard (60 μg/m3) in the winter months. Winds coming from the East direction predominate. Traffic restrictions to heavy duty vehicles in the road-rings next to the sampling site during some hours of the day are the responsible for the daily BC and PM2.5 behavior (figure below), where high concentrations occur early in the morning and late at night, when heavy diesel vehicles are released for transit. Seasonal variations are different for BC and PM2.5 due to local sources of BC and meteorological conditions that have more influence on the particles. The weekly variation indicates that concentrations are lower on Sundays and higher from Tuesday to Thursday. Emission factors for BC were calculated based on traffic information.

  14. Characterization of black carbon at roadside sites and along vehicle roadways in the Bangkok Metropolitan Region

    Science.gov (United States)

    Hung, Nguyen Tri Quang; Lee, Seung-Bok; Hang, Nguyen Thanh; Kongpran, Jira; Kim Oanh, Nguyen Thi; Shim, Shang-Gyoo; Bae, Gwi-Nam

    2014-08-01

    To understand the seasonality of concentrations of traffic-related black carbon (BC) in a megacity, BC concentrations in fine particles were monitored at the roadside and on roads during both the wet and dry seasons of 2010 in the city center of Bangkok, Thailand. The BC concentration measured every 2 min by an aethalometer at the Dingdaeng roadside in the dry season was 17.9 ± 6.6 μg m-3, which was 1.6-fold higher than the value (11.5 ± 2.7 μg m-3) during the wet season. This seasonal difference could not be explained by washout by rain but was instead due to more frequent upwind conditions caused by a prevailing wind direction from the monitoring site toward the road in the wet season. When the prevailing wind direction was from the road, the average BC concentration at the roadside increased up to 30 μg m-3 during both seasons. In contrast, when the wind direction was from the site to the road, the BC concentration was reduced to the level of urban background concentrations measured inside Lumphini Park and the Dusit Zoo of Bangkok. Roadside BC concentrations were strongly correlated with NOx concentrations and elemental carbon (EC) concentrations measured in 24-h PM2.5 filter samples. Both relationships exhibited linear determination coefficients of more than 0.80, implying that NOx can be used as an indicator and an alternative for traffic-related BC at this roadside site when real-time BC monitors are not available. The average on-road BC concentration (25.5 μg m-3) was similar to the average at the roadside under downwind conditions (25.5 μg m-3) from morning to evening only. In contrast, the latter value was 1.7-fold higher than the daily average at the roadside (14.7 μg m-3) and 7.3-fold higher than the urban background level during the daytime (3.5 μg m-3). The results of this study suggest that residents who live next to major roads, pedestrians at the roadside, and drivers on the roads experience a high risk of exposure to severe levels of

  15. Hydropyrolysis: implications for radiocarbon pre-treatment and characterization of Black Carbon

    OpenAIRE

    Ascough, P.; M. I. Bird; Meredith, W.; Wood, R. E.; Snape, C.E.; Brock, F.; Higham, T.F.; Large, D.J.; Apperley, D. C.

    2010-01-01

    Charcoal is the result of natural and anthropogenic burning events, when biomass is exposed to elevated temperatures under conditions of restricted oxygen. This process produces a range of materials, collectively known as pyrogenic carbon, the most inert fraction of which is known as Black Carbon (BC). BC degrades extremely slowly, and is resistant to diagenetic alteration involving the addition of exogenous carbon making it a useful target substance for radiocarbon dating particularly of ...

  16. Dissolved black carbon along the land to ocean continuum of Paraiba do Sul River, Brazil

    Science.gov (United States)

    Marques da Silva Junior, Jomar; Dittmar, Thorsten; Niggemann, Jutta; Gomes de Almeida, Marcelo; de Rezende, Carlos Eduardo

    2016-04-01

    Rivers annually carry 25-28 Tg of pyrogenic dissolved organic matter (or dissolved black carbon, DBC) into the ocean, which is equivalent to about 10% of the entire land-ocean flux of dissolved organic carbon (Jaffé et al., Science 340, 345-347). Objective of this study was to identify the main processes behind the release and turnover of DBC on a riverine catchment scale. As model system we chose the land to ocean continuum of Paraíba do Sul River (Brazil), the only river system for which long-term DBC flux data exist (Dittmar, Rezende et al., Nature Geoscience 5, 618-622). The catchment was originally covered by Atlantic rain forest (mainly C3 plants) which was almost completely destroyed over the past centuries by slash-and-burn. As a result, large amounts of wood-derived charcoal reside in the soils. Today, fire-managed pasture and sugar cane (both dominated by C4 plants) cover most of the catchment. Water samples were collected at 24 sites along the main channel of the river, at 14 sites of the main tributaries and at 21 sites along the salinity gradient in the estuary and up to 35 km offshore. Sampling was performed in the wet seasons of 2013 and 2014, and the dry season of 2013. DBC was determined on a molecular level as benzenepolycarboxylic acids after nitric acid oxidation (Dittmar, Limnology and Oceanography: Methods 6, 230-235). Stable carbon isotopes (δ13C) were determined in solid phase extractable dissolved organic carbon (SPE-DOC) to distinguish C4 and C3 sources. Our results clearly show a relationship between hydrology and DBC concentrations in the river, with highest DBC concentrations in the wet season and lowest in the dry season. This relationship indicates that DBC is mainly mobilized from the upper soil horizons during heavy rainfalls. A significant correlation between DBC concentrations and δ13C-SPE-DOC indicated that most of DBC in the river system originates from C3 plants, i.e. from the historic burning event of the Atlantic rain

  17. Estimate the influence of snow grain size and black carbon on albedo

    Institute of Scientific and Technical Information of China (English)

    ZhongMing Guo; NingLian Wang; XiaoBo Wu; HongBo Wu; YuWei Wu

    2015-01-01

    Estimation of the influence of snow grain size and black carbon on albedo is essential in obtaining the accurate albedo. In this paper, field measurement data, including snow grain size, snow depth and density was obtained. Black carbon samples were collected from the snow surface. A simultaneous observation using Analytical Spectral Devices was employed in the Qiyi Glacier located in the Qilian Mountain. Analytical Spectral Devices spectrum data were used to analyze spectral re-flectance of snow for different grain size and black carbon content. The measurements were compared with the results obtained from the Snow, Ice, and Aerosol Radiation model, and the simulation was found to correlate well with the ob-served data. However, the simulated albedo was near to 0.98 times of the measured albedo, so the other factors were as-sumed to be constant using the corrected Snow, Ice, and Aerosol Radiation model to estimate the influence of measured snow grain size and black carbon on albedo. Field measurements were controlled to fit the relationship between the snow grain size and black carbon in order to estimate the influence of these factors on the snow albedo.

  18. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2013-09-01

    Full Text Available Arctic haze is a seasonal phenomenon with high concentrations of accumulation-mode aerosols occurring in the Arctic in winter and early spring. Chemistry transport models and climate chemistry models struggle to reproduce this phenomenon, and this has recently prompted changes in aerosol removal schemes to remedy the modeling problems. In this paper, we show that shortcomings in current emission data sets are at least as important. We perform a 3 yr model simulation of black carbon (BC with the Lagrangian particle dispersion model FLEXPART. The model is driven with a new emission data set ("ECLIPSE emissions" which includes emissions from gas flaring. While gas flaring is estimated to contribute less than 3% of global BC emissions in this data set, flaring dominates the estimated BC emissions in the Arctic (north of 66° N. Putting these emissions into our model, we find that flaring contributes 42% to the annual mean BC surface concentrations in the Arctic. In March, flaring even accounts for 52% of all Arctic BC near the surface. Most of the flaring BC remains close to the surface in the Arctic, so that the flaring contribution to BC in the middle and upper troposphere is small. Another important factor determining simulated BC concentrations is the seasonal variation of BC emissions from residential combustion (often also called domestic combustion, which is used synonymously in this paper. We have calculated daily residential combustion emissions using the heating degree day (HDD concept based on ambient air temperature and compare results from model simulations using emissions with daily, monthly and annual time resolution. In January, the Arctic-mean surface concentrations of BC due to residential combustion emissions are 150% higher when using daily emissions than when using annually constant emissions. While there are concentration reductions in summer, they are smaller than the winter increases, leading to a systematic increase of

  19. Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion emissions

    Science.gov (United States)

    Stohl, A.; Klimont, Z.; Eckhardt, S.; Kupiainen, K.; Shevchenko, V. P.; Kopeikin, V. M.; Novigatsky, A. N.

    2013-09-01

    Arctic haze is a seasonal phenomenon with high concentrations of accumulation-mode aerosols occurring in the Arctic in winter and early spring. Chemistry transport models and climate chemistry models struggle to reproduce this phenomenon, and this has recently prompted changes in aerosol removal schemes to remedy the modeling problems. In this paper, we show that shortcomings in current emission data sets are at least as important. We perform a 3 yr model simulation of black carbon (BC) with the Lagrangian particle dispersion model FLEXPART. The model is driven with a new emission data set ("ECLIPSE emissions") which includes emissions from gas flaring. While gas flaring is estimated to contribute less than 3% of global BC emissions in this data set, flaring dominates the estimated BC emissions in the Arctic (north of 66° N). Putting these emissions into our model, we find that flaring contributes 42% to the annual mean BC surface concentrations in the Arctic. In March, flaring even accounts for 52% of all Arctic BC near the surface. Most of the flaring BC remains close to the surface in the Arctic, so that the flaring contribution to BC in the middle and upper troposphere is small. Another important factor determining simulated BC concentrations is the seasonal variation of BC emissions from residential combustion (often also called domestic combustion, which is used synonymously in this paper). We have calculated daily residential combustion emissions using the heating degree day (HDD) concept based on ambient air temperature and compare results from model simulations using emissions with daily, monthly and annual time resolution. In January, the Arctic-mean surface concentrations of BC due to residential combustion emissions are 150% higher when using daily emissions than when using annually constant emissions. While there are concentration reductions in summer, they are smaller than the winter increases, leading to a systematic increase of annual mean Arctic

  20. Estimation of Black Carbon Emissions from Dry Dipterocarp Forest Fires in Thailand

    Directory of Open Access Journals (Sweden)

    Ubonwan Chaiyo

    2014-12-01

    Full Text Available This study focused on the estimation of black carbon emissions from dry dipterocarp forest fires in Thailand. Field experiments were set up at the natural forest, Mae Nam Phachi wildlife sanctuary, Ratchaburi Province, Thailand. The dead leaves were the main component consumed of the surface biomass with coverage higher than 90% in volume and mass. The dead leaves load was 342 ± 190 g∙m−2 and followed by a little mass load of twig, 100 g∙m−2. The chemical analysis of the dead leaves showed that the carbon content in the experimental biomass fuel was 45.81 ± 0.04%. From the field experiments, it was found that 88.38 ± 2.02% of the carbon input was converted to carbon released to the atmosphere, while less than 10% were left in the form of residues, and returned to soil. The quantity of dead leaves consumed to produce each gram of carbon released was 2.40 ± 0.02 gdry biomass burned. From the study, the emissions factor of carbon dioxide, carbon monoxide, particulate matter (PM2.5 and black carbon amounted 1329, 90, 26.19 and 2.83 g∙kg−1dry biomass burned, respectively. In Thailand, the amount of black carbon emissions from dry dipterocarp forest fires amounted 17.43 tonnes∙y−1.

  1. Effect of Thermal Aging on the Viscosity of Suspensions of Carbon Black in Polybutadiene

    Science.gov (United States)

    von Meerwall, E.; Hong, M. P.; Kelley, F. N.

    1998-05-01

    We have studied the effects of aging time and temperature on the viscosity of an hydroxyl-terminated polybutadiene (HTPB) containing suspended carbon black. After surface application such HTPB suspensions are crosslinked to form liners in solid rocket motors. The suspension viscosity decreases with aging time, more rapidly at higher temperatures, and approaches a lower asymptote which depends on filler fraction. Heat-drying the carbon black before incorporation lessens the magnitude of this effect and accelerates the approach to equilibrium; moistening the black enlarges it and delays the approach. We conclude that this effect is related to the moisture adsorbed on the black particles. The water is not completely soluble in the polymer, resulting in reversible emulsification, and is driven off during aging. A variety of secondary experiments performed (use of a wetting agent, centrifugation, dc electrical resistivity, NMR spin-spin relaxation and self-diffusion, optical microscopy) eliminate several other likely explanations.

  2. Atmospheric black carbon and warming effects influenced by the source and absorption enhancement in Central Europe

    Directory of Open Access Journals (Sweden)

    S. Nordmann

    2014-06-01

    Full Text Available Particles containing black carbon (BC, a strong absorbing substance, exert a rather uncertain direct and indirect radiative forcing in the atmosphere. To investigate the mass concentration and absorption properties of BC particles over Central Europe, the model WRF-Chem was used at a resolution of 12 km in conjunction with a high resolution BC emission inventory (EUCAARI 42-Pan-European Carbonaceous Aerosol Inventory; 1/8° × 1/16°. The model simulation was evaluated using measurements of equivalent soot carbon, absorption coefficients and particle number concentrations at 7 sites within the German Ultrafine Aerosol Network, PM10 mass concentrations from the dense measurement network of the German Federal Environmental Agency at 392 monitoring stations, and aerosol optical depth from MODIS and AERONET. A distinct time period (25 March to 10 April 2009 was chosen, during which the clean marine air mass prevailed in the first week and afterwards the polluted continental air mass mainly from south-east dominated with elevated daily average BC concentration up to 4 μg m−3. The simulated PM10 mass concentration, aerosol number concentration and optical depth were in a good agreement with the observations, while the modelled BC mass concentrations were found to be a factor of 2 lower than the observations. Together with backtrajectories, detailed model bias analyses suggested that the current BC emission in countries to the east and south of Germany might be underestimated by a factor of 5, at least for the simulation period. Running the model with upscaled BC emissions in these regions led to a smaller model bias and a better correlation between model and measurement. On the contrary, the particle absorption coefficient was positively biased by about 20% even when the BC mass concentration was underestimated by around 50%. This indicates that the internal mixture treatment of BC in the WRF-Chem optical calculation is unrealistic in our case

  3. Concentration Levels of Imidacloprid and Dinotefuran in Five Tissue Types of Black Walnut, Juglans nigra

    Directory of Open Access Journals (Sweden)

    Paul Merten

    2013-11-01

    Full Text Available Black walnut, a valuable economic and environmentally important species, is threatened by thousand cankers disease. Systemic imidacloprid and dinotefuran applications were made to mature black walnut trees to evaluate their translocation and concentration levels in various tissue types including leaf, twig, trunk core, nutmeat, and walnut husk. The metabolism of imidacloprid in plants produces a metabolite, olefin-imidacloprid, which has been documented to have insecticidal properties in other systems. Trunk CoreTect (imidacloprid soil pellets and a trunk spray of dinotefuran were applied to mature black walnuts in spring 2011. Imidacloprid concentrations were detected in both the lower and upper strata in all tissue types tested and progressively increased through month 12 post-treatment in twig and leaf tissue. Olefin-imidacloprid was detected in the nutmeat and walnut husk. Dinotefuran was only detected in the first sampling period and was found in low concentration levels in leaf and twig tissue types, and was not detected in the trunk, nutmeat or the walnut husk.

  4. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau

    Science.gov (United States)

    Kopacz, M.; Mauzerall, D. L.; Wang, J.; Leibensperger, E. M.; Henze, D. K.; Singh, K.

    2011-03-01

    The remote and high elevation regions of central Asia are influenced by black carbon (BC) emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and find the forcing due to the BC induced snow-albedo effect to vary from 5-15 W m-2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo likely accelerates glacier melting. Our analysis may help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.

  5. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity.

    Science.gov (United States)

    Montelongo-Reyes, M M; Otazo-Sánchez, E M; Romo-Gómez, C; Gordillo-Martínez, A J; Galindo-Castillo, E

    2015-09-15

    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO2 emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO2 sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO2 gas emissions were also significant, particularly SO2 (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries. PMID:25981943

  6. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    M. Kopacz

    2011-03-01

    Full Text Available The remote and high elevation regions of central Asia are influenced by black carbon (BC emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and find the forcing due to the BC induced snow-albedo effect to vary from 5–15 W m−2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo likely accelerates glacier melting. Our analysis may help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.

  7. Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    M. Kopacz

    2010-09-01

    Full Text Available The remote and high elevation regions of central Asia are influenced by black carbon (BC emissions from a variety of locations. BC deposition contributes to melting of glaciers and questions exist, of both scientific and policy interest, as to the origin of the BC reaching the glaciers. We use the adjoint of the GEOS-Chem model to identify the location from which BC arriving at a variety of locations in the Himalayas and Tibetan Plateau originates. We then calculate its direct and snow-albedo radiative forcing. We analyze the seasonal variation in the origin of BC using an adjoint sensitivity analysis, which provides a detailed map of the location of emissions that directly contribute to black carbon concentrations at receptor locations. We find that emissions from northern India and central China contribute the majority of BC to the Himalayas, although the precise location varies with season. The Tibetan Plateau receives most BC from western and central China, as well as from India, Nepal, the Middle East, Pakistan and other countries. The magnitude of contribution from each region varies with season and receptor location. We find that sources as varied as African biomass burning and Middle Eastern fossil fuel combustion can significantly contribute to the BC reaching the Himalayas and Tibetan Plateau. We compute radiative forcing in the snow-covered regions and estimate the forcing due to the BC induced snow-albedo effect at about 5–15 W m−2 within the region, an order of magnitude larger than radiative forcing due to the direct effect, and with significant seasonal variation in the northern Tibetan Plateau. Radiative forcing from reduced snow albedo accelerates glacier melting. Our analysis can help inform mitigation efforts to slow the rate of glacial melt by identifying regions that make the largest contributions to BC deposition in the Himalayas and Tibetan Plateau.

  8. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity.

    Science.gov (United States)

    Montelongo-Reyes, M M; Otazo-Sánchez, E M; Romo-Gómez, C; Gordillo-Martínez, A J; Galindo-Castillo, E

    2015-09-15

    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO2 emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO2 sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO2 gas emissions were also significant, particularly SO2 (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries.

  9. Blood selenium concentrations in female Pacific black brant molting in Arctic Alaska: Relationships with age and habitat salinity

    Science.gov (United States)

    Franson, J. Christian; Flint, Paul L.; Schmutz, Joel A.

    2016-01-01

    Blood samples collected from 81 female Pacific black brant (Branta bernicla nigricans) molting near Teshekpuk Lake, Alaska, were analyzed for selenium concentration. The concentration of selenium in blood of after second year (hatched two or more years ago) females (0.84 μg/g wet weight) was significantly greater than the concentration in second year (hatched the previous year) females (0.61 μg/g wet weight). The concentrations of selenium we found in blood of black brant were 1.5 to 2 times greater than baseline values typical of freshwater birds, but considerably lower than reported in other marine waterfowl sampled in Alaska. This finding may be attributable in part to the nearly exclusive herbivorous diet of black brant. No relationship was noted between blood selenium concentration and molting habitat salinity. We are unaware of any previous reports of blood selenium concentrations in black brant.

  10. Comparison Between Elemental Carbon Measured Using Thermal-Optical Analysis and Black Carbon Measurements Using A Novel Cellphone-Based System

    Science.gov (United States)

    Ramanathan, N.; Khan, B.; Leong, I.; Lukac, M.

    2011-12-01

    Black carbon (BC) is produced through the incomplete combustion of fossil and solid fuels. Current BC emissions inventories have large uncertainties of factors of 2 or more due to sparse measurements and because BC is often emitted by local sources that vary over time and space (Bond et al, 2004). Those uncertainties are major sources of error in air pollution models. Emissions from a variety of improved cookstove/fuel/combustion conditions were collected on pre-conditioned 47 mm quartz-fiber filters and analyzed for organic carbon (OC) and elemental carbon (EC) using thermal-optical analysis (TOA). The samples were then analyzed for BC concentration by using cellphone-based instrumentation developed by Ramanathan et al., 2011. The cellphone-based monitoring system (CBMS) is a wireless, low-cost, low-power system that monitors BC emissions. The CBMS is comprised of an aerosol filter sampler containing a battery-powered air pump and a 25mm filter holder that draws air in through a quartz-fiber filter. As black carbon deposits increase, the filter darkens--the darkest color representing the highest loading. A cellphone photograph of the filter with the black carbon deposit is taken and relayed to an analytics unit for comparison to a reference scale to estimate airborne BC concentration. The BC concentration can then be compared to the thermally derived EC concentration. TOA was conducted on a Sunset Laboratory Dual Optics Carbon Analyzer using a modified version of the Birch and Cary (1996) NIOSH 5040 protocol. The dual-optical instrument permitted simultaneous monitoring of the transmission (TOT) and reflectance (TOR). 619 samples were collected; EC was obtained using NIOSH TOT and NIOSH TOR methods, and BC was obtained using the CBMS analytics unit. The mean BC value reported by the CBMS agrees within 20% of the reference values for EC, confirming the findings in Ramanathan et al. (2011) based on samples from India. Given this accuracy, we conclude that the CBMS

  11. Abundance and sinking of particulate black carbon in the western Arctic and Subarctic Oceans

    Science.gov (United States)

    Fang, Ziming; Yang, Weifeng; Chen, Min; Zheng, Minfang; Hu, Wangjiang

    2016-07-01

    The abundance and sinking of particulate black carbon (PBC) were examined for the first time in the western Arctic and Subarctic Oceans. In the central Arctic Ocean, high PBC concentrations with a mean of 0.021 ± 0.016 μmol L‑1 were observed in the marginal ice zone (MIZ). A number of parameters, including temperature, salinity and 234Th/238U ratios, indicated that both the rapid release of atmospherically deposited PBC on sea ice and a slow sinking rate were responsible for the comparable PBC concentrations between the MIZ and mid-latitudinal Pacific Ocean (ML). On the Chukchi and Bering Shelves (CBS), PBC concentrations were also comparable to those obtained in the ML. Further, significant deficits of 234Th revealed the rapid sinking of PBC on the CBS. These results implied additional source terms for PBC in addition to atmospheric deposition and fluvial discharge on the western Arctic shelves. Based on 234Th/238U disequilibria, the net sinking rate of PBC out of the surface water was ‑0.8 ± 2.5 μmol m‑3 d‑1 (mean ± s.d.) in the MIZ. In contrast, on the shelves, the average sinking rate of PBC was 6.1 ± 4.6 μmol m‑3 d‑1. Thus, the western Arctic Shelf was probably an effective location for burying PBC.

  12. Removal of Cr (VI) with wheat-residue derived black carbon: Reaction mechanism and adsorption performance

    International Nuclear Information System (INIS)

    The removal of Cr (VI) from aqueous solutions using black carbon (BC) isolated from the burning residues of wheat straw was investigated as a function of pH, contact time, reaction temperature, supporting electrolyte concentration and analytical initial Cr (VI) concentration in batch studies. The effect of surface properties on the adsorption behavior of Cr (VI) was investigated with scanning electron microscope (SEM) equipped with the energy dispersive X-ray spectroscope (EDS) and Fourier transform-infrared (FTIR) spectroscopy. The removal mechanism of Cr (VI) onto the BC was investigated and the result showed that the adsorption reaction consumed a large amount of protons along the reduction of Cr (VI) to Cr (III). The oxidation of the BC took place concurrently to the chromium reduction and led to the formation of hydroxyl and carboxyl functions. An initial solution pH of 1.0 was most favorable for Cr (VI) removal. The adsorption process followed the pseudo-second order equation and Freundlich isotherm very well. The Cr (VI) adsorption was temperature-dependent and almost independent on the sodium chloride concentrations. The maximum adsorption capacity for Cr (VI) was found at 21.34 mg/g in an acidic medium, which is comparable to other low-cost adsorbents.

  13. Abundance and sinking of particulate black carbon in the western Arctic and Subarctic Oceans.

    Science.gov (United States)

    Fang, Ziming; Yang, Weifeng; Chen, Min; Zheng, Minfang; Hu, Wangjiang

    2016-01-01

    The abundance and sinking of particulate black carbon (PBC) were examined for the first time in the western Arctic and Subarctic Oceans. In the central Arctic Ocean, high PBC concentrations with a mean of 0.021 ± 0.016 μmol L(-1) were observed in the marginal ice zone (MIZ). A number of parameters, including temperature, salinity and (234)Th/(238)U ratios, indicated that both the rapid release of atmospherically deposited PBC on sea ice and a slow sinking rate were responsible for the comparable PBC concentrations between the MIZ and mid-latitudinal Pacific Ocean (ML). On the Chukchi and Bering Shelves (CBS), PBC concentrations were also comparable to those obtained in the ML. Further, significant deficits of (234)Th revealed the rapid sinking of PBC on the CBS. These results implied additional source terms for PBC in addition to atmospheric deposition and fluvial discharge on the western Arctic shelves. Based on (234)Th/(238)U disequilibria, the net sinking rate of PBC out of the surface water was -0.8 ± 2.5 μmol m(-3) d(-1) (mean ± s.d.) in the MIZ. In contrast, on the shelves, the average sinking rate of PBC was 6.1 ± 4.6 μmol m(-3) d(-1). Thus, the western Arctic Shelf was probably an effective location for burying PBC. PMID:27417410

  14. Hydrologic significance of carbon monoxide concentrations in ground water

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.

    2007-01-01

    Dissolved carbon monoxide (CO) is present in ground water produced from a variety of aquifer systems at concentrations ranging from 0.2 to 20 nanomoles per liter (0.0056 to 0.56 ??g/L). In two shallow aquifers, one an unconsolidated coastal plain aquifer in Kings Bay, Georgia, and the other a fractured-bedrock aquifer in West Trenton, New Jersey, long-term monitoring showed that CO concentrations varied over time by as much as a factor of 10. Field and laboratory evidence suggests that the delivery of dissolved oxygen to the soil zone and underlying aquifers by periodic recharge events stimulates oxic metabolism and produces transiently high CO concentrations. In between recharge events, the aquifers become anoxic and more substrate limited, CO is consumed as a carbon source, and CO concentrations decrease. According to this model, CO concentrations provide a transient record of oxic metabolism affecting ground water systems after dissolved oxygen has been fully consumed. Because the delivery of oxygen affects the fate and transport of natural and anthropogenic contaminants in ground water, CO concentration changes may be useful for identifying predominantly anoxic ground water systems subject to periodic oxic or microaerophilic conditions. ?? 2007 National Ground Water Association.

  15. Inventory and burial fluxes of Black Carbon in the Swedish continental shelf sediments

    Science.gov (United States)

    Sánchez-García, L.; Cato, I.; Gustafsson, Ö.

    2009-04-01

    Highly condensed black carbon (BC) particles, mainly derived from incomplete combustion of biomass and fossil fuel, are involved in several important processes in the biogeosphere [1], including sedimentary carbon burial, sequestration of organic pollutants in soils and sediments, affecting Earth's radiative heat balance and even human respiratory health. BC is commonly found to constitute several to 20% of total sedimentary carbon, and thus plays an important but poorly constrained role in the global biogeospheric carbon cycle. Sequestration of biogenic carbon as BC is a direct sink of the element from the rapidly cycling atmosphere-biosphere reservoirs, whereas burial of petrogenic/fossil BC is simply a conversion of one form of geological carbon to another [2]. Considerable emphasis has been made on the relevant role this recalcitrant form of organic matter (OM) may play on the global C cycle and yet large uncertainty exists around BC detection and quantification. This work seeks to provide a large-scale estimate of the reservoir and burial sink flux of BC in sediments from the extensive Swedish continental shelf (SCS), as a first approach to global inventories. To this end, a total of 120 sediment samples were collected from the Exclusive Economic Zone (EEZ) along the ?2000 km SCS stretch. The most recalcitrant fraction of the sedimentary OM was isolated and determined by means of a commonly applied method in biogeochemical studies of soils and sediments: chemo-thermal oxidation at 375˚ C in air (CTO-375). The obtained BC concentration was used to estimate the inventory and burial flux of BC in the SCS surface sediments, following [3], which takes into account key geophysical and geochemical properties of the nine distinct sedimentary regimes of the SCS that was separately assessed. Globally representative values of the sediment properties (e.g. density of dried sediments, bioturbated mixing depth, sedimentation rate or porosity over the mixed depth) were

  16. Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xiaoming, E-mail: pengxiaoming70@126.com [School of Civil Engineering, Southeast University, Nanjing 210096 (China); Hu, Xijun [Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,China (China); Fu, Dafang, E-mail: fdf@seu.edu.cn [School of Civil Engineering, Southeast University, Nanjing 210096 (China); Lam, Frank L.Y. [Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,China (China)

    2014-03-01

    Highlights: • Ordered mesoporous carbon was prepared using template. • Ordered mesoporous carbon was introduced of N-containing group by Chemical vapor deposition method. • Modified CMK-3 have better adsorption capacity and efficiency than virgin CMK-3 to removal AB1 dye. - Abstract: A novel ordered mesoporous carbon CMK-3 and synthetic CMK-3 containing nitrogen functional groups by ammonia-treated were applied for acid black 1(AB1) dye adsorption. The ammonia-treated(chemical vapor deposition method) before and after CMK-3 were characterized by using a Micrometitics ASAP 2020 surface area analyzer (ASAP 2020), Fourier transform infrared spectrophotometer (FT–IR), X-ray Photoelectron Spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM) and equilibrium studies. This result indicates that the prepared CMK-3 and modified CMK-3 were almost uniform, as rope-like domains and their uniform mesopore with diameter centered at 3.2 nm and 3.7 nm. The FIIR analysis depicted that the presence of a variety of new basic functional groups on the modified CMK-3 surface. Several effect variables of pH, dye concentration and temperature were studied. The pseudo second-order model showed the fitter well to agree with the kinetic data. The experimental data were analyzed by the Langmuir and Freundlich models, with the latter found to closely the isotherm model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The results show that CMK-3 using ammonia gas modified by thermal treatment system is an effective method to improvement capacity as it shows the highest adsorption capacity of AB1, as compared to the unmodified CMK-3 and the bamboo-based carbon, respectively.

  17. Black carbon and polycyclic aromatic hydrocarbons (PAHs) in surface sediments of China's marginal seas

    Institute of Scientific and Technical Information of China (English)

    KANG Yanju; WANG Xuchen; DAI Minhan; FENG Huan; LI Anchun; SONG Qian

    2009-01-01

    This study investigates the distribution of black carbon (BC) and its correlation with total polycyclic aromatic hydrocarbons (ΣPAH) in the surface sediments of China's marginal seas. BC content ranges from <0.10 to 2.45 mg/g dw (grams dry weight) in the sediments studied, and varied among the different coastal regions. The Bohai Bay sediments had the highest BC contents (average 2.18 mg/g dw),which comprises a significant fraction (27%-41%) of the total organic carbon (TOC) preserved in the sediments. In comparison, BC in the surface sediments of the North Yellow Sea, Jiaozhou Bay, East China Sea and the South China Sea is less abundant and accounted for an average of 6%, 8%, 14% and 5%,respectively, of the sedimentary organic carbon pool. The concentration of ΣPAH in the surface sediments ranges from 41 to 3 667 ng/g dw and showed large spatial variations among the sampling sites of different costal regions. The Bohai Bay has the highest ΣPAH values, ranging from 79 to 3 667 ng/g dw. This reflects the high anthropogenically contaminated nature of the sediments in the bay. BC is positively correlated to TOC but a strong correlation is not found between BC and ΣPAH in the surface sediments studied, suggesting that BC and PAHs preserved in the sediments are derived from different sources and controlled by different biogeochemical processes. Our study suggests that the abundance of BC preserved in the sediments could represent a significant sink pool of carbon cycling in China's marginal seas.

  18. Scavenging of biomass burning refractory black carbon and ice nuclei in a Western Pacific extratropical storm

    Directory of Open Access Journals (Sweden)

    J. L. Stith

    2011-01-01

    Full Text Available In situ airborne sampling of refractory black carbon (rBC particles and Ice Nuclei (IN was conducted in and near an extratropical cyclonic storm in the Western Pacific Ocean during the Pacific Dust Experiment, PACDEX, in the spring of 2007. Airmass origins were from Eastern Asia. Cloud hydrometeors were evaporated by a counterflow virtual impactor and the residue was sampled by a single particle soot photometer (SP2 instrument and a continuous flow diffusion chamber ice nucleus detector. Clouds associated primarily with the warm sector of the storm were sampled at various locations and altitudes. In storm midlevels at temperatures where heterogeneous freezing is expected to be significant (here −24 to −29 °C, IN measurements from ice particle residues generally agreed well with simultaneous measurements of total ice concentrations provided that the measurements were made at ambient temperatures similar to those in the CFDC chamber, suggesting heterogeneous freezing as the dominant ice formation process in the mid levels of these warm sector clouds. Lower in the storm, at warmer temperatures (−22 to −6.4 °C, ice particle concentrations were similar to IN concentrations at CFDC chamber temperatures representative of colder temperatures. This is consistent with ice particles forming at storm mid-levels by heterogeneous freezing on IN, followed by sedimentation to lower altitudes. Homogeneous freezing did not appear to contribute significantly to midlevel ice concentrations and rime-splintering was also unlikely due to the absence of significant supercooled liquid water in the warm sector clouds. IN number concentrations were typically about a~factor of five to ten lower than simultaneous measurements of rBC concentrations in cloud.

  19. Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam

    OpenAIRE

    Yining Ding; Zhipei Chen; Zhibo Han; Yulin Zhang; Torgal, Fernando Pacheco

    2013-01-01

    The nano-carbon black (NCB) and carbon fiber (CF) as electric conductive materials were added into the concrete. The effect of the NCB and CF on the mechanical properties and on the fractional change in resistance (FCR) of concrete was investigated. The relationships among the FCR, the strain of initial geometrical neutral axis (IGNA) and the beam damage degree were developed. The results showed that the relationship between the FCR and IGNA strain can be described by the First Or...

  20. A soft photo-mask with embedded carbon black and its application in contact photolithography

    International Nuclear Information System (INIS)

    This paper presents a new type of soft photo-mask which can be used in contact photolithography for achieving small line-width, large area, and high throughput ultraviolet (UV) patterning. It starts from a polydimethylsiloxane (PDMS) mold replicated from a silicon master mold. A carbon black photo-resist (PR) is spin-coated on top of the PDMS mold and then thermally cured. After a contact transfer process, the solidified carbon black PR exists only in the concave region of the PDMS mold, which converts the PDMS mold into a carbon-black/PDMS soft photo-mask. Due to its flexibility, this soft photo-mask can be used in contact photolithography on a slightly curved substrate. Experiments on preparing this new soft photo-mask and its application for fabricating patterned sapphire substrates (PSSs) used in the light-emitting-diode (LED) industry are carried out. Successful results are observed. (paper)

  1. Thickness effect on electric resistivity on polystyrene and carbon black- based composites

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Lopez, S; Vigueras-Santiago, E [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA) Facultad de Quimica, Paseo Colon Esquina con Paseo Tollocan, s/n, CP 50000, Toluca (Mexico); Mayorga-Rojas, M; Reyes-Contreras, D, E-mail: eviguerass@uaemex.m [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico. Av. Instituto Literario 100 Ote. C. P. 50000, Toluca (Mexico)

    2009-05-01

    Changes on electrical resistivity were experimentally studied for polystyrene and carbon black-based composites respect to the temperature. 22% w/w carbon black composite films at 30{mu}m, 2mm y 1cm thick were submitted to thermal heating-cooling cycles from room temperature to 100 deg. C, slightly up to T{sub g} of the composite. For each cycle changes on electrical resistivity constituent a hysteresis loop that depends on the sample thickness. The changes during the heating stage could be explained as a consequence of the thermal expansion and mobility of the polymer chains at T{sub g}, producing a disconnecting of the electrical contacts among carbon black particles and an important increasing (200%) of the electrical resistivity. For each cycle, the hysteresis loop was observed in thicker samples, whereas for 30 mu m thickness sample the hysteresis loop was lost after four cycles.

  2. Black carbon measurements during winter 2013-2014 in Athens and intercomparison between different techniques

    Science.gov (United States)

    Liakakou, Eleni; Stravroulas, Jason; Roukounakis, Nikolaos; Paraskevopoulou, Despina; Fourtziou, Luciana; Psiloglou, Vassilis; Gerasopoulos, Evangelos; Sciare, Jean; Mihalopoulos, Nikolaos

    2014-05-01

    Black carbon (BC) is a particulate pollutant species emitted from the combustion of fuels, biomass burning for agricultural purposes and forest fires, with the first two anthropogenic sources being the major contributors to the atmospheric burden of BC. The presence of BC is important due to its direct and indirect physicochemical effects and its use as a tracer of burning and subsequent transport processes. Black carbon measurements took place during winter 2013 -2014 in the frame of a pollution monitoring experiment conducted at the urban site of Thissio, Athens (city center) at the premises of the National Observatory of Athens. The economic crisis in Greece and the resulting turn of Athens inhabitants to wood burning for domestic heating, has led to increased daily concentrations of BC in the range of 2-6 μg m-3, peaking at night time (15-20 μg m-3). Three different optical methods were used for the determination of BC. A Particle Soot Absorption Photometer (PSAP; Radiance Research) commercial instrument was used to monitor the light absorption coefficient (σap) at 565 nm of ambient aerosols, with 1 minute resolution. During parts of the campaign, a portable Aethalometer (AE-42; Magee Scientific) was also used to provide measurement of the aerosol BC content at 7 wavelengths over 5 minutes intervals. Exploiting the measurements at different wavelengths is was feasible to separate wood burning BC from BC related to fossil fuel. Two Multi Angle Absorption Photometers (MAAP; Thermo) were also operated as reference. Finally, aerosol samples were collected on 12-hour basis using a sequential dichotomous sampler for the sampling of PM2.5, PM2.5-10and PM10 fractions of aerosols on quartz filters, and the filters were analyzed for elemental carbon (EC) by a thermal - optical transmission technique. The main objective of the study is the intercomparison of the different BC monitoring techniques under a large range of ambient concentrations achieved due to the special

  3. Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon

    Science.gov (United States)

    Peng, Xiaoming; Hu, Xijun; Fu, Dafang; Lam, Frank L. Y.

    2014-03-01

    A novel ordered mesoporous carbon CMK-3 and synthetic CMK-3 containing nitrogen functional groups by ammonia-treated were applied for acid black 1(AB1) dye adsorption. The ammonia-treated(chemical vapor deposition method) before and after CMK-3 were characterized by using a Micrometitics ASAP 2020 surface area analyzer (ASAP 2020), Fourier transform infrared spectrophotometer (FT-IR), X-ray Photoelectron Spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM) and equilibrium studies. This result indicates that the prepared CMK-3 and modified CMK-3 were almost uniform, as rope-like domains and their uniform mesopore with diameter centered at 3.2 nm and 3.7 nm. The FIIR analysis depicted that the presence of a variety of new basic functional groups on the modified CMK-3 surface. Several effect variables of pH, dye concentration and temperature were studied. The pseudo second-order model showed the fitter well to agree with the kinetic data. The experimental data were analyzed by the Langmuir and Freundlich models, with the latter found to closely the isotherm model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The results show that CMK-3 using ammonia gas modified by thermal treatment system is an effective method to improvement capacity as it shows the highest adsorption capacity of AB1, as compared to the unmodified CMK-3 and the bamboo-based carbon, respectively.

  4. Concentrations and solubility of selected trace metals in leaf and bagged black teas commercialized in Poland

    Directory of Open Access Journals (Sweden)

    L. Polechońska

    2015-09-01

    Full Text Available The objective of this study was to determine the concentrations of heavy metals in bagged and leaf black teas of the same brand and evaluate the percentage transfer of metals to tea infusion to assess the consumer exposure. Ten leaf black teas and 10 bagged black teas of the same brand available in Poland were analyzed for Zn, Mn, Cd, Pb, Ni, Co, Cr, Al, and Fe concentrations both in dry material and their infusion. The bagged teas contained higher amounts of Pb, Mn, Fe, Ni, Al, and Cr compared with leaf teas of the same brand, whereas the infusions of bagged tea contained higher levels of Mn, Ni, Al, and Cr compared with leaf tea infusions. Generally, the most abundant trace metals in both types of tea were Al and Mn. There was a wide variation in percentage transfer of elements from the dry tea materials to the infusions. The solubility of Ni and Mn was the highest, whereas Fe was insoluble and only a small portion of this metal content may leach into infusion. With respect to the acceptable daily intake of metals, the infusions of both bagged and leaf teas analyzed were found to be safe for human consumption.

  5. Impact of time-activity patterns on personal exposure to black carbon

    OpenAIRE

    Dons, Evi; Int Panis, Luc; Van Poppel, Martine; Theunis, Jan; Willems, Hanny; Torfs, Rudi; Wets, Geert

    2011-01-01

    Time-activity patterns are an important determinant of personal exposure to air pollution. This is demonstrated by measuring personal exposure of 16 participants for 7 consecutive days: 8 couples of which one person was a full-time worker and the other was a homemaker; both had a very different time-activity pattern. We used portable aethalometers to measure black carbon levels with a high temporal resolution and a PDA with GPS-logger and electronic diary. The exposure to black carbon differs...

  6. On the quantitative Amido Black B staining of protein spots in agar gel at low local protein concentrations

    NARCIS (Netherlands)

    Jansen, M.T.

    1962-01-01

    Protein spots in agar gel of identical protein content but different in surface area are found to bind different amounts of dye upon staining with Amido Black B. The lower the protein concentration within the agar gel, the more the Amido Black B content of the spot falls short of the value expected

  7. Effect of black tea intake on blood cholesterol concentrations in individuals with mild hypercholesterolemia: A diet-controlled randomized trial

    Science.gov (United States)

    Habitual intake of black tea has predominantly been associated with relatively lower serum cholesterol concentrations in observational studies. However, clinical trials evaluating the potential effects of black tea on serum cholesterol have had inconsistent results. These mixed results could be expl...

  8. Comparison between measurements of black carbon, charcoal and associated nutrients in western Amazonan soils

    Science.gov (United States)

    Zimmerman, A. R.; McMichael, C.; Hanlon, C.; Bush, M. B.

    2011-12-01

    To construct fire and climate history and human occupation records from soils and lake sediment profiles, climatologists and anthropologists have traditionally measured charcoal abundances by microscopic image analysis. In contrast, geochemists have developed methods of black carbon (BC) quantification using chemical extraction. We compared charcoal (>0.5 mm particle size) versus BC (measured via the CTO-340 method of Kuhlbusch, 1995) in multiple soil profiles from four western Amazon regions with evidence of pre-Columbian occupation. A secondary goal of this project was to understand the relative influence of climate and humans in the fire and ecological history of the Amazon. BC concentration in soils of the Amazon varied widely from an average of 0.5 mg g 1 in cores around Lake Gentry (southeastern Peru) to 5.5 mg g 1 around Lake Ayauchi (southeastern Ecuador), corresponding to the evidence of greater land use around the latter. Surprising, BC concentrations in habitation horizon soils at Quistococha, near Iquitos, Peru were similar to Lake Gentry, averaging about 0.6 mg g 1. However, BC as a percent of soil organic carbon (SOC) was much more uniform with an average of 12.0, 13.3, 14.6, and 13.0% in Quistococha, Gentry, Ayauchi, and Los Amigos (central-eastern Peru) soils, respectively, suggesting that the same processes that concentrate SOC also concentrate BC. BC may act to protect SOC via sorption or produce SOC via microbial community enhancement. These findings also show that BC is not regionally enriched as it might be were climate to be a predominant factor in BC production, and seem to track land use more closely. Charcoal and BC concentrations were linearly correlated in only about half the soil profiles and neither BC nor charcoal were consistently correlated with chemical anthropogenic indicators such as P or Ca within soil profiles or specific regions. However, there was a statistical covariance between each of these parameters suggesting that each

  9. The geographic concentration of blue carbon in the continental US

    Science.gov (United States)

    Feagin, R. A.; Hinson, A.

    2014-12-01

    Salt water wetlands have the potential to be bought and sold as relatively rich reservoirs of carbon in the context of sequestration projects. However, little is known about the geographic distribution of this potential, and no coarse scale investigation has addressed this ecosystem service at the continental scale. Our objective was to determine blue carbon stocks and flux in coastal wetland soils in the United States and categorize the potential for projects by estuarine basin, state, and wetland type. We linked National Wetlands Inventory (NWI) data with the Soil Survey Geographic Database (SSURGO) through spatial analysis within a Geographic Information System (GIS). We then calculated and mapped soil organic carbon across the continental US. Results were filtered by state, estuarine basin, wetland type, and accumulation rate, and ranking lists for each categorization were produced. The results showed that belowground carbon accumulation is concentrated in specific regions, with the richest and largest reservoirs in the Gulf and Atlantic southeastern estuaries, for example mangrove zones in Florida. Salt marshes on the southern Pacific Coast were relatively low in carbon due to small areas of coverage and the presence of sandy and inorganic soil. The geomorphic position of a wetland within a given estuary, for example on an exposed barrier island versus recessed towards inflowing headwaters, accounted for a greater degree of soil carbon variation than the wetland type, for example woody mangroves versus herbaceous marshes. The potential of a blue carbon sequestration project in relation to its location could be influential in determining wetland policy, conservation, and restoration in the coming decades.

  10. Bounding the Role of Black Carbon in the Climate System: a Scientific Assessment

    Science.gov (United States)

    Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Bernsten, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, S.; Karcher, B.; Koch, D.; Kinne, S.; Kondo, Y.; Quinn, P. K.; Sarofim, M. C.; Schultz, M. G.; Schulz, M.; Venkataraman, C.; Zhang, H.; Zhang, S.; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, J. P.; Shindell, D.; Storelvmo, T.; Warren, S. G.; Zender, C. S.

    2013-01-01

    Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg/yr in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W/sq m with 90% uncertainty bounds of (+0.08, +1.27)W/sq m. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W/sq m. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W/sq m with 90% uncertainty bounds of +0.17 to +2.1 W/sq m. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing

  11. Measurements and Analysis of Black Carbon Aerosols in the Eastern Mediterranean Megacity

    Science.gov (United States)

    Unal, A.; Ozdemir, H.; Kindap, T.; Demir, G.; Karaca, M.; Khan, M. N.

    2010-12-01

    In a world where at least 50 percent of the population is living in urban environments, air pollution and specifically particulate matter became one of the most critical issues. There have been many studies that focused on mass concentration measurements of PM10 and PM2.5. Recent studies suggest that chemical composition is critical in understanding the effects of PM on health as well as climate. For example, public health studies reveal that, components of the atmospheric aerosols have different impacts on human health. Smith et al. (2009) stated that; on the basis of the 1μg/m3 contrast, the percentage increase in all-cause mortality for PM2.5 was 0.58; sulfate effects were about twice those of PM2.5, and effects of elemental carbon (an indicator of black carbon mass) about ten times greater. To date, many studies and national inventories have been based on particulate matter (PM10 and PM2.5), and the major greenhouse pollutants, but not speciated emissions, especially in the developing world (Smith et al., 2009; Chow et al., 2010). But air quality standards will soon need to include particulate black carbon (BC), as it directly afffects climate, visibility, and human health. Anthropogenic emissions are increasing dramatically worldwide and recent estimates of global BC emissions range from 8 to 24 Tg (1012 g) per year. In this study, we investigated BC pollution for the first time in Istanbul, Turkey. Istanbul is a megacity of over 15 million inhabitants (OECD, 2008). On-road traffic is also increasing rapidly in the city (over 3 million vehicles on the road). Hence, the city has a potential to be an important source for both local and regional pollution in the Eastern Mediterranean. In our study, an Aethalometer (<0.1μg/m3 sensitivity) was used for continuous and real-time measurements of BC concentration. Measurements were carried out at the selected five different locations throughout the city. 1st and 2nd sites were near high-traffic streets; in the city

  12. Measurement of black carbon at Syowa station, Antarctica: seasonal variation, transport processes and pathways

    Directory of Open Access Journals (Sweden)

    K. Hara

    2008-05-01

    Full Text Available Measurement of black carbon (BC was carried out at Syowa station Antarctica (69° S, 39° E from February 2004 until January 2007. The BC concentration at Syowa ranged from below detection to 176 ng m−3 during the measurements. Higher BC concentrations were observed mostly under strong wind (blizzard conditions due to the approach of a cyclone and blocking event. The BC-rich air masses traveled from the lower troposphere of the Atlantic and Indian Oceans to Syowa (Antarctic coast. During the summer (November–February, the BC concentration showed a diurnal variation together with surface wind speed and increased in the katabatic wind from the Antarctic continent. Considering the low BC source strength in the Antarctic continent, the higher BC concentration in the continental air (katabatic wind might be caused by long range transport of BC via the free troposphere from mid- and low- latitudes. The seasonal variation of BC at Syowa had a maximum in August, while at the other coastal stations (Halley, Neumayer, and Ferraz and the continental station (Amundsen-Scott, the maximum occurred in October. This difference may result from different transport pathways and scavenging of BC by precipitation during the transport from the source regions. During the austral summer, long-range transport of BC via the free troposphere is likely to make an important contribution to the ambient BC concentration. The BC transport flux indicated that BC injection into the Antarctic region strongly depended on the frequency of storm (blizzard conditions. The seasonal variation of BC transport flux increased by 290 mg m−2 month−1 in winter–spring when blizzards frequently occurred, whereas the flux decreased to lower than 50 mg m−2 month−1 in the summer with infrequent blizzards.

  13. Biomass burning contribution to black carbon in the western United States mountain ranges

    Directory of Open Access Journals (Sweden)

    Y. Mao

    2011-05-01

    Full Text Available Forest fires are an important source to carbonaceous aerosols in the western United States (WUS. We quantify the relative contribution of biomass burning to black carbon (BC in the WUS mountain ranges by analyzing surface BC observations for 2006 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE network using the GEOS-Chem global chemical transport model. Observed surface BC concentrations show broad maxima during late June to early November. Enhanced potassium concentrations and potassium/sulfur ratios observed during the high-BC events indicate a dominant biomass burning influence during the peak fire season. Model surface BC reproduces the observed day-to-day and synoptic variabilities in regions downwind of and near urban centers. Major discrepancies are found at elevated mountainous sites during the July–October when simulated BC concentrations are biased low by a factor of two. We attribute these biases largely to the underestimated and temporally misplaced biomass burning emissions of BC in the model. Additionally, we find that the biomass burning contribution to surface BC concentrations in the US likely was underestimated in a previous study using GEOS-Chem (Park et al., 2003, because of the unusually low planetary boundary layer (PBL heights and weak precipitation in the GEOS-3 meteorological reanalysis data used to drive the model. PBL heights from GEOS-4 and GEOS-5 reanalysis data are comparable to those from the North American Regional Reanalysis (NARR. Model simulations show improved agreements with the observations when driven by GEOS-5 reanalysis data, but model results are still biased low. The use of biomass burning emissions with diurnal cycle, synoptic variability, and plume injection has relatively small impact on the simulated surface BC concentrations in the WUS.

  14. Biomass burning contribution to black carbon in the Western United States Mountain Ranges

    Directory of Open Access Journals (Sweden)

    Y. H. Mao

    2011-11-01

    Full Text Available Forest fires are an important source to carbonaceous aerosols in the Western United States (WUS. We quantify the relative contribution of biomass burning to black carbon (BC in the WUS mountain ranges by analyzing surface BC observations for 2006 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE network using the GEOS-Chem global chemical transport model. Observed surface BC concentrations show broad maxima during late June to early November. Enhanced potassium concentrations and potassium/sulfur ratios observed during the high-BC events indicate a dominant biomass burning influence during the peak fire season. Model surface BC reproduces the observed day-to day and synoptic variabilities in regions downwind of but near urban centers. Major discrepancies are found at elevated mountainous sites during the July-October fire season when simulated BC concentrations are biased low by a factor of two. We attribute these low biases largely to the underestimated (by more than a factor of two and temporally misplaced biomass burning emissions of BC in the model. Additionally, we find that the biomass burning contribution to surface BC concentrations in the USA likely was underestimated in a previous study using GEOS-Chem (Park et al., 2003, because of the unusually low planetary boundary layer (PBL heights in the GEOS-3 meteorological reanalysis data used to drive the model. PBL heights from GEOS-4 and GEOS-5 reanalysis data are comparable to those from the North American Regional Reanalysis (NARR. Model simulations show slightly improved agreements with the observations when driven by GEOS-5 reanalysis data, but model results are still biased low. The use of biomass burning emissions with diurnal cycle, synoptic variability, and plume injection has relatively small impact on the simulated surface BC concentrations in the WUS.

  15. Associations between iron concentration and productivity in montane streams of the Black Hills, South Dakota

    Science.gov (United States)

    Hayer, Cari Ann; Holcomb, Benjamin M.; Chipps, Steven R.

    2013-01-01

    Iron is an important micronutrient found in aquatic systems that can influence nutrient availability (e.g., phosphorus) and primary productivity. In streams, high iron concentrations often are associated with low pH as a result of acid mine drainage, which is known to affect fish and invertebrate communities. Streams in the Black Hills of South Dakota are generally circumneutral in pH, yet select streams exhibit high iron concentrations associated with natural iron deposits. In this study, we examined relationships among iron concentration, priphyton biomass, macroinvertebrate abundance, and fish assemblages in four Black Hills streams. The stream with the highest iron concentration (~5 mg Fe/L) had reduced periphyton biomass, invertebrate abundance, and fish biomass compared to the three streams with lower iron levels (0.1 to 0.6 mg Fe/L). Reduced stream productivity was attributed to indirect effects of ferric iron Fe+++), owing to iron-hydroxide precipitation that influenced habitat quality (i.e., substrate and turbidity) and food availability (periphyton and invertebrates) for higher trophic levels (e.g., fish). Additionally, reduced primary and secondary production was associated with reduced standing stocks of salmonid fishes. Our findings suggested that naturally occurring iron deposits may constrain macroinvertebrate and fish production.

  16. Effect of the secondary organic aerosol coatings on black carbon water uptake, cloud condensation nuclei activity, and particle collapse

    Science.gov (United States)

    The ability of black carbon aerosols to absorb water and act as a cloud condensation nuclei (CCN) directly controls their lifetime in the atmosphere as well as their impact on cloud formation, thus impacting the earth’s climate. Black carbon emitted from most combustion pro...

  17. Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The effects of carbon blacks on vulcanization and mechanical properties of filled ethylene-propylene-diene rubber (EPDM are investigated, by comparing with five types of rubber-grade carbon blacks. Curing kinetics is studied by rheometer and the results indicate that the curing characteristics are influenced by combination of surface area of carbon black and sulphur content on the filler surface, because the former one enhances the physical cross-linking and the latter one introduces the additional chemical cross-linking. Both the degree of cross-linking and cure rate increase with increasing surface area and sulphur content, whereas the optimum cure time and scorch time decrease. The reinforcing nature of the carbon black is assessed from mechanical measurements. It is suggested that the surface area of carbon blacks strongly affects the physical properties of EPDM/carbon black composites. Conductive carbon black (N472 can be used as desirable reinforcing filler due to the higher degree of cross-linking of EPDM with N472 than other EPDM/carbon black composites. The morphology and distribution of particles are studied by using scanning electron microscope. The sound reinforcing ability of N472 is also supported by scanning electron microscope due to the notable dispersibility of N472 within EPDM matrix. N472 ensures the EPDM/N472 composite the most conductive sample among the five composites.

  18. Automatic Method for Controlling the Iodine Adsorption Number in Carbon Black Oil Furnaces

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2008-12-01

    Full Text Available There are numerous of different inlet process factors in carbon black oil furnaces which must be continuously and automatically adjusted, due to stable quality of final product. The most important six inlet process factors in carbon black oil-furnaces are:1. volume flow of process air for combustion2. temperature of process air for combustion3. volume flow of natural gas for insurance the necessary heat for thermal reaction of conversionthe hydrocarbon oil feedstock in oil-furnace carbon black4. mass flow rate of hydrocarbon oil feedstock5. type and quantity of additive for adjustment the structure of oil-furnace carbon black6. quantity and position of the quench water for cooling the reaction of oil-furnace carbon black.The control of oil-furnace carbon black adsorption capacity is made with mass flow rate of hydrocarbon feedstock, which is the most important inlet process factor. Oil-furnace carbon black adsorption capacity in industrial process is determined with laboratory analyze of iodine adsorption number. It is shown continuously and automatically method for controlling iodine adsorption number in carbon black oil-furnaces to get as much as possible efficient control of adsorption capacity. In the proposed method it can be seen the correlation between qualitatively-quantitatively composition of the process tail gasses in the production of oil-furnace carbon black and relationship between air for combustion and hydrocarbon feedstock. It is shown that the ratio between air for combustion and hydrocarbon oil feedstock is depended of adsorption capacity summarized by iodine adsorption number, regarding to BMCI index of hydrocarbon oil feedstock.The mentioned correlation can be seen through the figures from 1. to 4. From the whole composition of the process tail gasses the best correlation for continuously and automatically control of iodine adsorption number is show the volume fraction of methane. The volume fraction of methane in the

  19. Black Ink of Activated Carbon Derived From Palm Kernel Cake (PKC)

    Science.gov (United States)

    Selamat, M. H.; Ahmad, A. H.

    2009-06-01

    Recycling the waste from natural plant to produce useful end products will benefit many industries and help preserve the environment. The research reported in this paper is an investigation on the use of the natural waste of palm kernel cake (PKC) to produce carbon residue as a black carbon for pigment source by using pyrolysis process. The activated carbons (AC) is produced in powder form using ball milling process. Rheological spectra in ink is one of quality control process in determining its performance properties. Findings from this study will help expand the scientific knowledge-base for black ink production and formulation base on PKC. Various inks with different weight percentage compositions of AC will be made and tested against its respective rheological properties in order to determine ideal ink printing system. The items in the formulation used comprised of organic and bio-waste materials with added additive to improve the quality of the black ink. Modified Polyurethane was used as binder. The binder's properties highlighted an ideal vehicle to be applied for good black ink opacity performance. The rheological behaviour is a general foundation for ink characterization where the wt% of AC-PKC resulted in different pseudoplastic behaviors, including the Newtonian behavior. The result found that Newtonian field was located in between 2 wt% and 10 wt% of AC-PKC composition with binder. Mass spectroscopy results shown that the carbon content in PKC is high and very suitable for black performance. In the ageing test, the pigment of PKC perform fairly according to the standard pigment of Black carbon (CB) of ferum oxide pigment. The contact angle for substrate's wettability of the ink system shown a good angle proven to be a water resistive coating on paper subtrates; an advantage of the PKC ink pigment performance.

  20. Bounding the role of black carbon in the climate system: A scientific assessment

    Science.gov (United States)

    Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Berntsen, T.; Deangelo, B. J.; Flanner, M. G.; Ghan, S.; KäRcher, B.; Koch, D.; Kinne, S.; Kondo, Y.; Quinn, P. K.; Sarofim, M. C.; Schultz, M. G.; Schulz, M.; Venkataraman, C.; Zhang, H.; Zhang, S.; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, J. P.; Shindell, D.; Storelvmo, T.; Warren, S. G.; Zender, C. S.

    2013-06-01

    carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr-1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m-2 with 90% uncertainty bounds of (+0.08, +1.27) W m-2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m-2 with 90% uncertainty bounds of +0.17 to +2.1 W m-2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm

  1. The sources of atmospheric black carbon at a European gateway to the Arctic.

    Science.gov (United States)

    Winiger, P; Andersson, A; Eckhardt, S; Stohl, A; Gustafsson, Ö

    2016-01-01

    Black carbon (BC) aerosols from incomplete combustion of biomass and fossil fuel contribute to Arctic climate warming. Models-seeking to advise mitigation policy-are challenged in reproducing observations of seasonally varying BC concentrations in the Arctic air. Here we compare year-round observations of BC and its δ(13)C/Δ(14)C-diagnosed sources in Arctic Scandinavia, with tailored simulations from an atmospheric transport model. The model predictions for this European gateway to the Arctic are greatly improved when the emission inventory of anthropogenic sources is amended by satellite-derived estimates of BC emissions from fires. Both BC concentrations (R(2)=0.89, P<0.05) and source contributions (R(2)=0.77, P<0.05) are accurately mimicked and linked to predominantly European emissions. This improved model skill allows for more accurate assessment of sources and effects of BC in the Arctic, and a more credible scientific underpinning of policy efforts aimed at efficiently reducing BC emissions reaching the European Arctic. PMID:27627859

  2. Contribution of Black Carbon, Brown Carbon and Lensing Effect to Total Aerosol Absorption in Indo-Gangetic Plain

    Science.gov (United States)

    Shamjad, Pm; Tripathi, Sachchida; Bergin, Mike; Vreeland, Heidi

    2016-04-01

    This study reports the optical and physical properties of atmospheric and denuded (heated at 300°C) aerosols from Indo-Gangetic Plain (IGP) during 20 December 2014 to 28 February 2015. A Single Particle Soot Photometer (SP2) and High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) were used to measure black carbon (BC) and organic carbon (OC) in real time respectively. During experiments large scale carbonaceous aerosol loading is observed in IGP. Multiple biomass burning events are observed with varying intensity and duration. Refractive index of brown carbon (BrC) is derived from filter extracts using Liquid Core Wave Capillary Cell (LWCC). Refractive index of BrC at 405 is 4 times higher in IGP when compared to studies conducted in USA. Through Mie modelling we identified the percentage contribution of black carbon, BrC and lensing effect to total aerosol absorption. On average 75% of absorption is from black carbon alone, while rest is contributed from volatile components. Within the volatile component contribution, at 405 nm BrC contributes around 20% and rest from lensing effect. But at 781 nm lensing contributed more than BrC. Overall results indicate the special characteristics on BrC aerosols in IGP and the importance of considering spectral absorption in global aerosol modelling studies.

  3. 1 Mixing state and absorbing properties of black carbon during Arctic haze

    Science.gov (United States)

    Zanatta, Marco; Gysel, Martin; Eleftheriadis, Kosas; Laj, Paolo; Hans-Werner, Jacobi

    2016-04-01

    The Arctic atmosphere is periodically affected by the Arctic haze occurring in spring. One of its particulate components is the black carbon (BC), which is considered to be an important contributor to climate change in the Arctic region. Beside BC-cloud interaction and albedo reduction of snow, BC may influence Arctic climate interacting directly with the solar radiation, warming the corresponding aerosol layer (Flanner, 2013). Such warming depends on BC atmospheric burden and also on the efficiency of BC to absorb light, in fact the light absorption is enhanced by mixing of BC with other atmospheric non-absorbing materials (lensing effect) (Bond et al., 2013). The BC reaching the Arctic is evilly processed, due to long range transport. Aging promote internal mixing and thus absorption enhancement. Such modification of mixing and is quantification after long range transport have been observed in the Atlantic ocean (China et al., 2015) but never investigated in the Arctic. During field experiments conducted at the Zeppelin research site in Svalbard during the 2012 Arctic spring, we investigated the relative precision of different BC measuring techniques; a single particle soot photometer was then used to assess the coating of Arctic black carbon. This allowed quantifying the absorption enhancement induced by internal mixing via optical modelling; the optical assessment of aged black carbon in the arctic will be of major interest for future radiative forcing assessment.Optical characterization of the total aerosol indicated that in 2012 no extreme smoke events took place and that the aerosol population was dominated by fine and non-absorbing particles. Low mean concentration of rBC was found (30 ng m-3), with a mean mass equivalent diameter above 200 nm. rBC concentration detected with the continuous soot monitoring system and the single particle soot photometer was agreeing within 15%. Combining absorption coefficient observed with an aethalometer and rBC mass

  4. Temporal variations of black carbon in Guangzhou, China, in summer 2006

    Directory of Open Access Journals (Sweden)

    R. L. Verma

    2010-07-01

    Full Text Available In situ measurements of the mass concentration of black carbon (BC and mixing ratios of carbon monoxide (CO and carbon dioxide (CO2 were made at Guangzhou, an urban measurement site in the Pearl River Delta (PRD, China, in July 2006. The average ± standard deviation (SD concentrations of BC, CO, and CO2 were 4.7± 2.3 μgC m−3, 798± 459 ppbv, and 400± 13 ppmv, respectively. The trends of these species were mainly controlled by synoptic-scale changes in meteorology during the campaign. Based on back trajectories, data are analyzed separately for two different air mass types representing northerly and southerly flows. The northerly air masses, which constituted ~25% of the campaign, originated mostly in the PRD and hence represent observations on regional scales. On the other hand, during southerly flow (~75%, the measurements were influenced by dilution due to cleaner marine air. The diurnal patterns of BC, CO, and CO2 exhibited peak concentrations during the morning and evening hours coinciding with rush-hour traffic. The ratios of OC/BC were lower during the morning hour peaks in the concentrations of primary pollutants due to their fresh emissions mainly from vehicular traffic in Guangzhou. The diurnal variations of BC observed in southerly air masses tended to follow the traffic patterns of heavy-duty vehicles (HDV in Guangzhou, while the roles of other sources need to be investigated. The slopes of ΔBC/ΔCO, ΔBC/ΔCO2, and ΔCO/ΔCO2 observed during northerly flows were 0.0045 μgC m−3/ppbv, 0.13 μgC m−3/ppmv, and 49.4 ppbv/ppmv, respectively, agreeing reasonably with their respective emission ratios derived from regional emission inventories.

  5. Measurement of black carbon emissions from in-use diesel-electric passenger locomotives in California

    Science.gov (United States)

    Tang, N. W.; Kirchstetter, T.; Martien, P. T.; Apte, J.

    2015-12-01

    Black carbon (BC) emission factors were measured for a California commuter rail line fleet of diesel-electric passenger locomotives (Caltrain). The emission factors are based on BC and carbon dioxide (CO2) concentrations in the exhaust plumes of passing locomotives, which were measured from pedestrian overpasses using portable analyzers. Each of the 29 locomotives in the fleet was sampled on 4-20 separate occasions at different locations to characterize different driving modes. The average emission factor expressed as g BC emitted per kg diesel consumed was 0.87 ± 0.66 g kg-1 (±1 standard deviation, n = 362 samples). BC emission factors tended to be higher for accelerating locomotives traveling at higher speeds with engines in higher notch settings. Higher fuel-based BC emission factors (g kg-1) were measured for locomotives equipped with separate "head-end" power generators (SEP-HEPs), which power the passenger cars, while higher time-based emission factors (g h-1) were measured for locomotives without SEP-HEPs, whose engines are continuously operated at high speeds to provide both head-end and propulsion power. PM10 emission factors, estimated assuming a BC/PM10 emission ratio of 0.6 and a typical power output-to-fuel consumption ratio, were generally in line with the Environmental Protection Agency's locomotive exhaust emission standards. Per passenger mile, diesel-electric locomotives in this study emit only 20% of the CO2 emitted by typical gasoline-powered light-duty vehicles (i.e., cars). However, the reduction in carbon footprint (expressed in terms of CO2 equivalents) due to CO2 emissions avoidance from a passenger commuting by train rather than car is appreciably offset by the locomotive's higher BC emissions.

  6. Variational estimates of black carbon emissions in the western United States

    Directory of Open Access Journals (Sweden)

    Y. H. Mao

    2014-08-01

    Full Text Available We estimate black carbon (BC emissions in the Western United States (WUS for July–September 2006 by inverting surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE network using a global chemical transport model (GEOS-Chem and its adjoint. Our best estimate of the BC emissions is 49.9 Gg at 2° × 2.5° (a factor of 2.1 increase and 47.3 Gg at 0.5° × 0.667° (1.9 times increase. Model results now capture the observed major fire episodes with substantial bias reductions (∼35% at 2° × 2.5° and ∼15% at 0.5° × 0.667°. The emissions are ∼20–50% larger than those from our earlier analytical inversions (Mao et al., 2014. The discrepancy is especially drastic in the partitioning of anthropogenic vs. biomass burning emissions. The August biomass burning BC emissions are 4.6–6.5 Gg and anthropogenic BC emissions 8.6–12.8 Gg, varying with the model resolution, error specifications, and subsets of observations used. On average both increase twofold relative to the respective a priori emissions, in distinct contrast to the halving of the anthropogenic and tripling of the biomass burning emissions in the analytical inversions. We attribute these discrepancies to the inability of the inversion system, with limited spatiotemporal coverage of the IMPROVE observations, to effectively distinguish collocated anthropogenic and biomass burning emissions on model grid scales. This calls for concurrent measurements of other tracers of biomass burning and fossil fuel combustion (e.g., carbon monoxide and carbon isotopes. We find that the inversion system as is has sufficient information content to constrain the total emissions of BC on the model grid scales.

  7. Improvement of the Rotary Dryers of Wet Pelletized Oil-Furnace Carbon Blacks

    Directory of Open Access Journals (Sweden)

    Zečević, M

    2010-05-01

    Full Text Available Due to the demand for higher production capacity and natural-gas energy savings, improvements were made to the rotary dryers in the drying process of wet pelletized oil-furnace carbon blacks. Since the rotary dryers were originally designed for drying semi-wet pelletized oil-furnace carbon blacks, they did not entirely satisfy optimal conditions for drying wet pelletized oil-furnace carbon blacks. Figure 1 shows the drying principle with key dimensions. The energy for drying the wet pelletized oil-furnace carbon blacks was provided by natural gas combustion in an open-furnace system with an uncontrolled feed of combustion air. Improvements on the rotary dryers were carried out by adjusting the excess oxygen in the gases passing through the butterfly valve on the dryer exhaust stack. By regulating the butterfly valve on the dryer exhaust stack, and applying the prescribed operations for drying wet pelletized oil furnace carbon blacks, the excess oxygen in the tail gases was adjusted in the range of φ = 3.0 % and 5.0 %, depending on the type of oil-furnace carbon blacks. Suggested also is installation of a direct-reverse automatic butterfly valve on the dryer exhaust stack to automatically determine the volume fraction of oxygen in the tail gas, and the volume flow rate of natural gas for combustion. The results the improvements carried out are shown in Tables 3 to 5. Table 2 shows the thermal calculations for the hood of the rotary dryer. Preheating of the process water in the temperature range of 70 °C and 80 °C is also recommended using the net heat from the oil-furnace process for wet pelletization. The results of preheating the process water are shown in Table 1. Depending on the type of oil-furnace carbon black, the aforementioned improvements resulted in natural gas energy savings ranging from 25 % to 35 % in relation to the average natural gas requirement in the drying process, and thus a reduction in carbon emissions of up to 40

  8. Quantifying black carbon from biomass burning by means of levoglucosan - a one year time series at the Arctic observatory Zeppelin

    Science.gov (United States)

    Yttri, K. E.; Myhre, C. Lund; Eckhardt, S.; Fiebig, M.; Dye, C.; Hirdman, D.; Ström, J.; Klimont, Z.; Stohl, A.

    2013-12-01

    Levoglucosan, a highly specific tracer of particulate matter from biomass burning, has been used to study the influence of residential wood burning, agricultural waste burning and boreal forest fire emissions on the Arctic atmosphere black carbon (BC) concentration. A one year time series from March 2008 to March 2009 of levoglucosan has been established at the Zeppelin Observatory in the European Arctic. Elevated concentrations of levoglucosan in winter (Mean: 1.02 ng m-3) compared to summer (Mean: 0.13 ng m-3) were observed, resembling the seasonal variation seen for e.g. sulphate and BC. The mean concentration in the winter period was two to three orders of magnitude lower than typical values reported for European urban areas in winter, and one to two orders of magnitude lower than European rural background concentrations. Episodes of elevated levoglucosan concentration were more frequent in winter than in summer and peak values were higher, exceeding 10 ng m-3 at the most. Concentrations of elemental carbon from biomass burning (ECbb) were obtained by combining measured concentrations of levoglucosan and emission ratios of levoglucosan and EC for wild/agricultural fires and for residential wood burning. Neglecting chemical degradation by OH provides minimum levoglucosan concentrations, corresponding to a mean ECbb concentration of 3.7±1.2 ng m-3 in winter (October-April) and 0.8±0.3 ng m-3 in summer (May-September) or 8.8±4.5% of the measured equivalent black carbon (EBC) concentration in winter and 6.1±3.4% in summer. When accounting for chemical degradation of levoglucosan by OH, an upper estimate of 31-45% of EBC could be attributed to ECbb* (ECbb adjusted for chemical degradation) in winter and wild fires during summer, and residential wood burning in winter. The model overestimates by a factor of 2.2 in winter and 4.4 in summer when compared to the observationally derived mean ECbb concentration, which provides the minimum estimate, whereas it

  9. Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black

    KAUST Repository

    Zhang, Xiaoyuan

    2014-02-04

    Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.

  10. Critical review of black carbon and elemental carbon source apportionment in Europe and the United States

    Science.gov (United States)

    Briggs, Nicole L.; Long, Christopher M.

    2016-11-01

    An increasing number of air pollution source apportionment studies in Europe and the United States have focused on the black carbon (BC) fraction of ambient particulate matter (PM) given its linkage with adverse public health and climate impacts. We conducted a critical review of European and US BC source apportionment studies published since 2003. Since elemental carbon (EC) has been used as a surrogate measure of BC, we also considered source apportionment studies of EC measurements. This review extends the knowledge presented in previous ambient PM source apportionment reviews because we focus on BC and EC and critically examine the differences between source apportionment results for different methods and source categories. We identified about 50 BC and EC source apportionment studies that have been conducted in either Europe or the US since 2003, finding a striking difference in the commonly used source apportionment methods between the two regions and variations in the assigned source categories. Using three dominant methodologies (radiocarbon, aethalometer, and macro-tracer methods) that only allow for BC to be broadly apportioned into either fossil fuel combustion or biomass burning source categories, European studies generally support fossil fuel combustion as the dominant ambient BC source, but also show significant biomass burning contributions, in particular in wintertime at non-urban locations. Among US studies where prevailing methods such as chemical mass balance (CMB) and positive matrix factorization (PMF) models have allowed for estimation of more refined source contributions, there are fewer findings showing the significance of biomass burning and variable findings on the relative proportion of BC attributed to diesel versus gasoline emissions. Overall, the available BC source apportionment studies provide useful information demonstrating the significance of both fossil fuel combustion and biomass burning BC emission sources in Europe and the US

  11. Size distribution of black (BC) and total carbon (TC) in Vienna and Ljubljana.

    Science.gov (United States)

    Hitzenberger, R; Ctyroky, P; Berner, A; Tursic, J; Podkrajsek, B; Grgić, I

    2006-12-01

    During two campaigns in winter 2004, size segregated impactor samples (0.1-10 microm) and filter samples were taken in two Central European cities (Vienna, Austria and Ljubljana, Slovenia). The impactor samples were analyzed for major inorganic ions and short-chain organic acids, total carbon (TC) and black carbon (BC). Maximum concentrations of total mass were 71.6 microg m(-3) in Vienna and 73.1 microg m(-3) in Ljubljana. Minimum concentrations in Vienna were only half those in Ljubljana. The BC content of the aerosol was similar (ca. 8%), but the BC/TC ratio was higher in Vienna than in Ljubljana (0.39 vs. 0.29), reflecting the different contribution of diesel traffic emissions. The mass median diameters of the submicron size distributions of all major fractions (total mass, TC, BC and SO(4)(2-)) were smaller in Vienna (0.43 microm, 0.41 microm, 0.38 microm and 0.48 microm, respectively) than in Ljubljana (0.55 microm, 0.44 microm, 0.42 microm and 0.60 microm, respectively). Impactor/filter ratios for total mass were 0.79 in Vienna and 0.82 in Ljubljana, while the ratios for BC were 0.56 in Vienna and 0.49 in Ljubljana. An estimation of the mixing state of accumulation mode BC indicated that 33% and 37% of BC, respectively, are mixed externally to the aerosol in the accumulation size range in Vienna and Ljubljana.

  12. Application of microwave induced combustion in closed vessels for carbon black-containing elastomers decomposition

    International Nuclear Information System (INIS)

    A rapid digestion procedure for the determination of Al, Fe, Mn, Sr and Zn in carbon black-containing elastomers (30%) has been developed using sample combustion in closed quartz vessels. Microwave radiation was used for ignition. Combustion takes place in the presence of oxygen under pressure using ammonium nitrate (50 μl of 6 mol l-1) as aid for ignition. Samples of nitrile-butadiene rubber and ethylenepropylene-diene monomer were decomposed. A quartz device was used simultaneously as a sample holder and for the protection of vessel cap. The influence of the absorption solution (nitric acid or water) and the necessity of an additional reflux step were evaluated. Determination of Al, Fe, Mn, Sr and Zn was performed by inductively coupled plasma optical emission spectrometry. A reference method (ASTM D 4004-06) based on conventional dry ashing and flame atomic absorption spectrometry was used for comparison (Mn and Zn). Results were also compared to those obtained by using wet acid digestion in closed systems. Concentrated and diluted (4 mol l-1) nitric acid, with 5 min of reflux after the combustion, gave best recoveries for all analytes (from 97 to 101%). For dry ashing quantitative recoveries were found only for Zn whereas for Al, Fe, Mn and Sr the recoveries were only 14, 37, 72 and 37%, respectively. With the proposed procedure the residual carbon content was below 0.5% and further determination of analytes was feasible with only the combustion step (for Fe a reflux with diluted HNO3 was necessary). Complete sample digestion is obtained in less time using the proposed procedure than with other procedures and no concentrated acids were necessary

  13. Key Findings of the AMAP 2015 Assessment on Black Carbon and Tropospheric Ozone as Arctic Climate Forcers

    Science.gov (United States)

    Quinn, P.

    2015-12-01

    The Arctic Monitoring and Assessment Programme (AMAP) established an Expert Group on Short-Lived Climate Forcers (SLCFs) in 2009 with the goal of reviewing the state of science surrounding SLCFs in the Arctic and recommending science tasks to improve the state of knowledge and its application to policy-making. In 2011, the result of the Expert Group's work was published in a technical report entitled The Impact of Black Carbon on Arctic Climate (AMAP, 2011). That report focused entirely on black carbon (BC) and co-emitted organic carbon (OC). The SLCFs Expert Group then expanded its scope to include all species co-emitted with BC as well as tropospheric ozone. An assessment report, entitled Black Carbon and Tropospheric Ozone as Arctic Climate Forcers, was published in 2015. The assessment includes summaries of measurement methods and emissions inventories of SLCFs, atmospheric transport of SLCFs to and within the Arctic, modeling methods for estimating the impact of SLCFs on Arctic climate, model-measurement inter-comparisons, trends in concentrations of SLCFs in the Arctic, and a literature review of Arctic radiative forcing and climate response. In addition, three Chemistry Climate Models and five Chemistry Transport Models were used to calculate Arctic burdens of SLCFs and precursors species, radiative forcing, and Arctic temperature response to the forcing. Radiative forcing was calculated for the direct atmospheric effect of BC, BC-snow/ice effect, and cloud indirect effects. Forcing and temperature response associated with different source sectors (Domestic, Energy+Industry+Waste, Transport, Agricultural waste burning, Forest fires, and Flaring) and source regions (United States, Canada, Russia, Nordic Countries, Rest of Europe, East and South Asia, Arctic, mid-latitudes, tropics, southern hemisphere) were calculated. To enable an evaluation of the cost-effectiveness of regional emission mitigation options, the normalized impacts (i.e., impacts per unit

  14. The role of iron and black carbon in aerosol light absorption

    Directory of Open Access Journals (Sweden)

    Y. Derimian

    2008-07-01

    Full Text Available Iron is a major component of atmospheric aerosols, influencing the light absorption ability of mineral dust, and an important micronutrient that affects oceanic biogeochemistry. The regional distribution of the iron concentration in dust is important for climate studies; however, this is difficult to obtain since it requires in-situ aerosol sampling or simulation of complex natural processes. Simultaneous studies of aerosol chemical composition and radiometric measurements of aerosol optical properties, which were performed in the Negev desert of Israel continuously for about eight years, suggest a potential for deriving a relationship between chemical composition and light absorption properties, in particular the spectral single-scattering albedo.

    The two main data sets of the present study were obtained by a sun/sky radiometer and a stacked filter unit sampler that collects particles in coarse and fine size fractions. Analysis of chemical and optical data showed the presence of mixed dust and pollution aerosol in the study area, although their sources appear to be different. Spectral SSA showed an evident response to increased concentrations of iron, black carbon equivalent matter, and their mixing state. A relationship that relates the spectral SSA, the percentage of iron in total particulate mass, and the pollution components was derived. Results calculated, using this relationship, were compared with measurements from dust episodes in several locations around the globe. The comparison showed reasonable agreement between the calculated and the observed iron concentrations, and supported the validity of the suggested approach for the estimation of iron concentrations in mineral dust.

  15. Detection and characterization of nanomaterials released in low concentrations during multi-walled carbon nanotube spraying process in a cleanroom.

    Science.gov (United States)

    Ji, Jun Ho; Woo, Daekwang; Lee, Seung-Bok; Kim, Taesung; Kim, Duckjong; Kim, Jae-Hyun; Bae, Gwi-Nam

    2013-12-01

    Release of nanomaterials was assessed in a cleanroom workplace designed for the handling of multi-walled carbon nanotubes. During the process, the nanotubes were sprayed in a chamber fitted with an exhaust duct system. The front door of the spraying chamber was completely closed, but rear end of the chamber was partially open. Throughout a series of spray processes, three detectors - an optical particle counter, a nanoparticle aerosol monitor, and an aethalometer - counted and characterized particles escaping the chamber. Concentrations of particle surface area and black carbon emitted by the spraying were assessed assuming zero background aerosol concentration in the cleanroom. Very low concentrations of black carbon, 0.4 μg/m(3), were observed. In conclusion, in a cleanroom, low concentrations of nanomaterials were detected to be emitted from a spraying chamber into the workplace. The level of particles reaching the workplace was sufficiently low to have made their detection difficult in a normal environment. Both target nanomaterial and non-intended incidental nanomaterials were released during spraying. Despite the use of exhaust duct system in the process chamber, workers would be exposed to some particles if the chamber were partially open. The exhaust duct system was not enough to remove all the particles released in the chamber.

  16. The Carbon-Nitrogen Balance of the Nodule and Its Regulation under Elevated Carbon Dioxide Concentration

    Directory of Open Access Journals (Sweden)

    Marc Libault

    2014-01-01

    Full Text Available Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2. In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  17. Crop soil air carbon dioxide concentration and sludge

    Energy Technology Data Exchange (ETDEWEB)

    Guiresse, M.; Gers, C.; Dourel, L.; Kaemmerer, M.; Revel, J.C. [Institut National Polytechnique de Toulouse, Toulouse (France). Ecole Nationale Superieure Agronomique de Toulouse

    1995-12-31

    The introduction of organic compounds into the soil may increase carbon dioxide emission and thus change the composition of the soil air and microfauna. These factors were studied in a field experiment in luvi-redoxisoils in the South West of France. The untreated liquid sludge from the wastewater treatment plant of Toulouse was tested. The first field plot was an unploughed plot, without any fertilizer and any sludge; the second was a control plot sown with Zea mays and a standard mineral fertilizer without any sludge; the third plot was sown with Zea mays and a normal amount of sludge; and the last plot was sown with Zea mays and a large amount of sludge. In these plots soil air dioxide carbon concentration during all the maize cultivation was measured using the Draeger field method twice a week. The results showed that burying degradable organic compounds increases soil air CO{sub 2}. 8 refs., 6 figs.

  18. Investigation of reinforcement of the modified carbon black from wasted tires by nuclear magnetic resonance

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jie; YANG Yong-rong; REN Xiao-hong; STAPF Siegfried

    2006-01-01

    Pyrolysis has the potential of transforming waste into recyclable products. Pyrolytic carbon black (PCB) is one of the most important products from the pyrolysis of used tires. Techniques for surface modifications of PCB have been developed. One of the most significant applications for modified PCB is to reinforce the rubber matrix to obtain high added values. The transverse relaxation and the chain dynamics of vulcanized rubber networks with PCB and modified PCB were studied and compared with those of the commercial carbon blacks using selective 1H transverse relaxation (T2) experiments and dipolar correlation effect (DCE) experiments on the stimulated echo. Demineralization and coupling agent modification not only intensified the interactions between the modified PCB and the neighboring polyisoprene chains, but also increased the chemical cross-link density of the vulcanized rubber with modified PCB. The mechanical testing of the rubbers with different kinds of carbon blacks showed that the maximum strain of the rubber with modified PCB was improved greatly. The mechanical testing results confirmed the conclusion obtained by nuclear magnetic resonance (NMR). PCB modified by the demineralization and NDZ-105 titanate coupling agent could be used to replace the commercial semi-reinforcing carbon black.

  19. Black carbon as isolated by chemical oxidation: characterization and contribution in litter and soil

    OpenAIRE

    Alexis, M. A.; Rumpel, C.; Knicker, Heike; Rasse, D.; Péchot, N.; Mariotti, A.

    2007-01-01

    Comunicación oral BG1.05-1WE4O-001, presentada a la sesión BG1.05 Analysis and Characterization of Black Carbon in the Environment (co-listed in AS, HS, OS & SSS).-- Congreso celebrado del 15 -20 de abril, 2007, en Viena, Austria.

  20. Analysis of the Interphase on Carbon Black Formed in High Voltage Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Scipioni, Roberto;

    2015-01-01

    Carbon black (CB) additives commonly used to increase the electrical conductivity of electrodes in Li-ion batteries are generally believed to be electrochemically inert additives in cathodes. Decomposition of electrolyte in the surface region of CB in Li-ion cells at high voltages up to 4.9 V is ...

  1. Evaluation of Methods for the Determination of Black Carbon Emissions from an Aircraft Gas Turbine Engine

    Science.gov (United States)

    The emissions from aircraft gas turbine engines consist of nanometer size black carbon (BC) particles plus gas-phase sulfur and organic compounds which undergo gas-to-particle conversion downstream of the engine as the plume cools and dilutes. In this study, four BC measurement ...

  2. Electrical Percolation of Carbon Black Filled Poly (ethylene oxide) Composites in Relation to the Matrix Morphology

    Institute of Scientific and Technical Information of China (English)

    Gen Shui CHENG; Ji Wen HU; Ming Qiu ZHANG; Ming Wei LI; Ding Shu XIAO; Min Zhi RONG

    2004-01-01

    The present work studies the electrical conduction performance of carbon black (CB)filled poly(ethylene oxide) (PEO) composites. The addition of CB leads to reduced matrix crystallinity as the fillers which are partly situated inside the lamellae and hinder the growth of PEO crystallites. As a result, the electrical percolation behavior is related with the matrix morphology.

  3. Nanoscale Interactions between Engineered Nanomaterials and Black Carbon (Biochar) in Soil

    Science.gov (United States)

    An understanding of the interactions between engineered nanomaterials (NMs) and soil constituents, and a comprehension of how these interactions may affect biological uptake and toxicity are currently lacking. Charcoal black carbon is a normal constituent of soils due to fire history, and can be pre...

  4. Effect of increased carbon dioxide concentrations on stratospheric ozone

    International Nuclear Information System (INIS)

    During the past several years, much attention has been focused on the destruction of ozone by anthropogenic pollutants such as the nitrogen oxides and chlorofluoromethane. Little or no attention has been given to the influence on ozone of an increased carbon dioxide concentration for which a measurable growth has been observed. Increased carbon dioxide can directly affect ozone by perturbing atmospheric temperatures, which will alter ozone production, whose rate displays a fairly strong temperature dependence. This paper presents one-dimensional model results for the steady state ozone behavior when the CO2 concentration is twice its ambient level which account for coupling between chemistry and temperature. When the CO2 level doubled, the total ozone burden increased in relation to the ambient burden by 1.2--2.5%, depending on the vertical diffusion coefficient used. Above 30 km. In this region the relation variations were insensitive to the choice of diffusion coefficient. Below 30 km, ozone concentrations were smaller than the unperturbed values and were sensitive to the vertical diffusion profile in this region (10--30 km). Ozone decreases in the lower stratosphere because of a reduction in ozone-producing solar radiation, which results in smaller downward ozone fluxes from the region at 25--30 km relative to the flux values for the ambient atmosphere. These offsetting changes occurring in the upper and lower stratosphere act to minimize the variation in total ozone

  5. Alteration of Oceanic Nitrification Under Elevated Carbon Dioxide Concentrations

    Science.gov (United States)

    Beman, J.; Chow, C. E.; Popp, B. N.; Fuhrman, J. A.; Feng, Y.; Hutchins, D. A.

    2008-12-01

    Atmospheric carbon dioxide (CO2) concentrations are increasing exponentially and expected to double by the year 2100. Dissolution of excess CO2 in the upper ocean reduces pH, alters carbonate chemistry, and also represents a potential resource for autotrophic organisms that convert inorganic carbon into biomass--including a broad spectrum of marine microbes. These bacteria and archaea drive global biogeochemical cycles of carbon and nitrogen and constitute the vast majority of biomass in the sea, yet their responses to reduced pH and increased pCO2 remain largely undocumented. Here we show that elevated pCO2 may sharply reduce nitrification rates and populations of nitrifying microorganisms in the ocean. Multiple experiments were performed in the Sargasso Sea and the Southern California Bight under glacial maximum (193 ppm), present day (390 ppm), and projected (750 ppm) pCO2 concentrations, over time scales from hours to multiple days, and at depths of 45 m to 240 m. Measurement of nitrification rates using isotopically-labeled nitrogen showed 2-5 fold reduction under elevated pCO2--as well as an increase under glacial maximum pCO2. Marine Crenarchaeota are likely involved in nitrification as ammonia-oxidizing archaea (AOA) and are among the most abundant microbial groups in the ocean, yet this group decreased by 40-80% under increased pCO2, based on quantification of both 16S rRNA and ammonia monooxygenase (amoA) gene copies. Crenarchaeota also steadily declined over the course of multiple days under elevated pCO2, whereas ammonia-oxidizing (AOB) and nitrite-oxidizing bacteria (NOB) were more variable in their responses or were not detected. These findings suggest that projected increases in pCO2 and subsequent decreases in pH may strongly influence marine biogeochemistry and microbial community structure in the sea.

  6. Continuous measurement of carbon black in a densely populated area of Mexico City

    Science.gov (United States)

    Peralta, Oscar; Ortinez, Abraham; Castro, Telma; Espinosa, Maria; Saavedra, Isabel; Alvarez, Harry; Basaldud, Roberto; Paramo, Víctor; Martínez, Amparo

    2015-04-01

    The black carbon (BC) is a byproduct of burning fossil fuels and is an important short-lived climate forcer because it absorbs solar radiation altering the Earth's radiative budget and climate. It is also an atmospheric pollutant that promotes reactions of other compounds in the atmosphere. Despite its importance for health and climate, in Mexico there are very few studies on ambient concentrations of BC in urban areas and virtually no information of continuous measurements over long periods (more than a month of measurements). So, in order to develop more efficient local and regional mitigation strategies and policies that allow reducing ambient concentrations of BC, it is necessary to know BC seasonal evolution, contribution to radiative budget and impacts on health. This study shows continuous measurements (from July 2013 to July 2014) of BC to perform an analysis of seasonal variations. The selected monitoring site is located at Iztapalapa, a densely populated area with high traffic on the southeastern part of Mexico City. BC concentrations were obtained by two aethalometers (Magee Scientific Company, models AET31 and AET42) placed 15 meters above the ground. The aethalometers operate in the wavelength range of 370-950 nm and use a standard value of mass absorption coefficient MAC = 10.8 m2/g to calculate BC environmental concentration. To correct the aethalometers readings to the conditions of Mexico City, it was employed MAC = to 6.7 m2/g, which was determined for PM2.5 with a carbon analyzer (UIC, Inc.) and represents the mass absorption coefficient of soot emitted in Mexico City. The average value of the corrected concentration of BC in Mexico City during the period from July 2013 to July 2014 was 5.39 ± 1.89 μg/m3 (1.6 higher than readings recorded by aethalometers), which is greater than that measured in Shanghai in 2014 (annual average 2.33 μg/m3) and those reported for some U.S. cities; the value implies a potential danger to the health of

  7. Organic carbon concentrations and stocks in Romanian mineral forest soils

    Directory of Open Access Journals (Sweden)

    Lucian C. Dincă

    2012-12-01

    Full Text Available Estimating soils organic carbon stock and its change in time is an actual concern for scientists and climate change policy makers. The present article firstly focus on determination of C stocks in Romania on forest soil types, as well as development of the spatial distribution mapping using a Geographic Information System (GIS and also the secondly on the quantification of uncertainty associated with currently available data on C concentration on forest soils geometrical layers. Determination of C stock was done based on forest management plans database created over 2000-2006. Unlike original database, the data for this study was harmonized on following depths: 0-10 cm, 10-20 cm, 20-40 cm, and > 40 cm. Then, the obtained values were grouped by soil types, resulting average values for the main forest soils from Romania. A soil area weighted average value of 137 t/ha is calculated for Romania, in the range of estimations for other European geographic and climatic areas. The soils that have the largest amount of organic carbon are andosols, vertisols, entic and haplic podzols, whereas the ones that have the smallest values of organic carbon are solonetz and solonchaks. Although current assessment relies on very large number of samples from the forest management planning database, the variability of C concentration remains very large, ~40-50% for coefficient the variation and ~100% of the average, when defining the range of 95% of entire soil population, rather showing the variability than uncertainty of the average estimated. Best fit for C concentration on geometric layers in any forest soil is asymmetric, associated with log-normal distributions.

  8. Acute exposure of mice to high-dose ultrafine carbon black decreases susceptibility to pneumococcal pneumonia

    Directory of Open Access Journals (Sweden)

    Gordon Stephen

    2010-10-01

    Full Text Available Abstract Background Epidemiological studies suggest that inhalation of carbonaceous particulate matter from biomass combustion increases susceptibility to bacterial pneumonia. In vitro studies report that phagocytosis of carbon black by alveolar macrophages (AM impairs killing of Streptococcus pneumoniae. We have previously reported high levels of black carbon in AM from biomass smoke-exposed children and adults. We therefore aimed to use a mouse model to test the hypothesis that high levels of carbon loading of AM in vivo increases susceptibility to pneumococcal pneumonia. Methods Female outbred mice were treated with either intranasal phosphate buffered saline (PBS or ultrafine carbon black (UF-CB in PBS; 500 μg on day 1 and day 4, and then infected with S. pneumoniae strain D39 on day 5. Survival was assessed over 72 h. The effect of UF-CB on AM carbon loading, airway inflammation, and a urinary marker of pulmonary oxidative stress was assessed in uninfected animals. Results Instillation of UF-CB in mice resulted a pattern of AM carbon loading similar to that of biomass-smoke exposed humans. In uninfected animals, UF-CB treated animals had increased urinary 8-oxodG (P = 0.055, and an increased airway neutrophil differential count (P . pneumoniae, whereas morbidity and mortality after infection was reduced in UF-CB treated animals (median survival 48 h vs. 30 h, P . pneumoniae colony forming unit counts, and lower airway levels of keratinocyte-derived chemokine/growth-related oncogene (KC/GRO, and interferon gamma. Conclusion Acute high level loading of AM with ultrafine carbon black particles per se does not increase the susceptibility of mice to pneumococcal infection in vivo.

  9. Morphology and Optical Properties of Black-Carbon Particles Relevant to Engine Emissions

    Science.gov (United States)

    Michelsen, H. A.; Bambha, R.; Dansson, M. A.; Schrader, P. E.

    2013-12-01

    Black-carbon particles are believed to have a large influence on climate through direct radiative forcing, reduction of surface albedo of snow and ice in the cryosphere, and interaction with clouds. The optical properties and morphology of atmospheric particles containing black carbon are uncertain, and characterization of black carbon resulting from engines emissions is needed. Refractory black-carbon particles found in the atmosphere are often coated with unburned fuel, sulfuric acid, water, ash, and other combustion by-products and atmospheric constituents. Coatings can alter the optical and physical properties of the particles and therefore change their optical properties and cloud interactions. Details of particle morphology and coating state can also have important effects on the interpretation of optical diagnostics. A more complete understanding of how coatings affect extinction, absorption, and incandescence measurements is needed before these techniques can be applied reliably to a wide range of particles. We have investigated the effects of coatings on the optical and physical properties of combustion-generated black-carbon particles using a range of standard particle diagnostics, extinction, and time-resolved laser-induced incandescence (LII) measurements. Particles were generated in a co-flow diffusion flame, extracted, cooled, and coated with oleic acid. The diffusion flame produces highly dendritic soot aggregates with similar properties to those produced in diesel engines, diffusion flames, and most natural combustion processes. A thermodenuder was used to remove the coating. A scanning mobility particle sizer (SMPS) was used to monitor aggregate sizes; a centrifugal particle mass analyzer (CPMA) was used to measure coating mass fractions, and transmission electron microscopy (TEM) was used to characterize particle morphologies. The results demonstrate important differences in optical measurements between coated and uncoated particles.

  10. Characterisation of surface ionisation and adsorption of phenol and 4-nitrophenol on non-porous carbon blacks

    OpenAIRE

    Carrott, Peter; Carrott, Manuela; Vale, Tania; Valente Nabais, Joao; Mourao, Paulo

    2008-01-01

    The adsorption of phenol and 4-nitrophenol from aqueous solutions by carbon blacks was studied. Particular attention was paid to the characterisation of the surface chemistry and ionisation of the carbon blacks by use of a simple carbon surface ionisation model, as well as the use of a normalised form of the Freundlich equation for the analysis of the adsorption isotherms. The results indicated that the solutes interact directly with the graphene layers and that the adsorpti...

  11. Seasonal and diurnal trends in black carbon properties and co-pollutants in Mexico City

    Science.gov (United States)

    Retama, A.; Baumgardner, D.; Raga, G. B.; McMeeking, G. R.; Walker, J. W.

    2015-08-01

    The Mexico City metropolitan area (MCMA) is a region that continues to grow in population and vehicular traffic as well as being the largest source of short-lived climate pollutants (SLCP) in Latin America. The local city government has made significant progress in controlling some of these pollutants, i.e., ozone (O3) and carbon monoxide (CO), but particulate matter (PM2.5 and PM10) and black carbon (BC) have shown a less positive response to mitigation strategies that have been in place for almost 3 decades. For the first time, extended measurements of equivalent black carbon (eBC), derived from light absorption measurements, have been made using a Photoacoustic Extinctiometer (PAX) over a 13 month period from March 2013 through March 2014. The daily trends in workdays (Monday through Saturday) and Sunday eBC, PM2.5 and the co-pollutants CO, O3 and NOx are evaluated with respect to the three primary seasons in the MCMA: rainy, cold and dry and warm and dry. The maximum values in all of the particle and gas concentrations were significantly larger (Student's t test, P < 0.05) during the dry periods than in the rainy season. The changes from rainy to dry seasons for eBC, PM2.5, CO, O3 and NOx were 8.8 to 13.1 μg m-3 (40 %), 49 to 73 μg m-3 (40 %), 2.5 to 3.8 ppm (40 %), 73 to 100 ppb (30 %) and 144 to 252 ppb (53 %), respectively. The primary factors that lead to these large changes between the wet and dry seasons are the accelerated vertical mixing of boundary layer and free tropospheric air by the formation of clouds that dilutes the concentration of the SLCPs, the decreased actinic flux that reduces the production of ozone by photochemical reactions and the heavy, almost daily rain that removes particulate matter. A significant "weekend effect" was also identified, particularly the decrease in BC due to fewer large transport vehicles that are fueled by diesel, which produces a large fraction of the BC. The other co-pollutant concentrations are also

  12. Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles

    Directory of Open Access Journals (Sweden)

    C. E. Corrigan

    2007-08-01

    Full Text Available Measurements of the vertical distribution of aerosol properties provide essential information for generating more accurate model estimates of radiative forcing and atmospheric heating rates compared with employing remotely sensed column averaged properties. A month long campaign over the Indian Ocean during March 2006 investigated the interaction of aerosol, clouds, and radiative effects. Routine vertical profiles of aerosol and water vapor were determined using autonomous unmanned aerial vehicles equipped with miniaturized instruments. Comparisons of these airborne instruments with established ground-based instruments and in aircraft-to-aircraft comparisons demonstrated an agreement within 10%.

    Aerosol absorption optical depths measured directly using the unmanned aircraft differed from columnar AERONET sun-photometer results by only 20%. Measurements of total particle concentration, particle size distributions, aerosol absorption and black carbon concentrations are presented along with the trade wind thermodynamic structure from the surface to 3000 m above sea level. Early March revealed a well-mixed layer up to the cloud base at 500 m above mean seal level (m a.s.l., followed by a decrease of aerosol concentrations with altitude. The second half of March saw the arrival of a high altitude plume existing above the mixed layer that originated from a continental source and increased aerosol concentrations by more than tenfold, yet the surface air mass showed little change in aerosol concentrations and was still predominantly influenced by marine sources. Black carbon concentrations at 1500 m above sea level increased from 70 ng/m³ to more than 800 ng/m³ with the arrival of this polluted plume. The absorption aerosol optical depth increased from as low as 0.005 to as much as 0.035 over the same period. The spectral dependence of the aerosol absorption revealed an absorption Angstrom exponent of 1.0, which is typical of an aerosol with

  13. Radiocarbon-based source apportionment of black carbon (BC) in PM 10 aerosols from residential area of suburban Tokyo

    Science.gov (United States)

    Uchida, Masao; Kumata, Hidetoshi; Koike, Yasuyo; Tsuzuki, Mikio; Uchida, Tatsuya; Fujiwara, Kitao; Shibata, Yasuyuki

    2010-04-01

    The AMS technique was applied to analyse black carbon (BC), total organic carbon (TOC), and previously reported polycyclic aromatic hydrocarbons (PAHs) in PM 10 aerosols from a residential area, suburban Tokyo, to determine natural abundance of radiocarbon ( 14C), an ideal tracer to distinguish fossil fuel ( 14C-free) from modern biomass combustion sources of pyrolytic products. The 14C concentrations in BC, isolated using the CTO-375 method, were 42% and 30% pMC (in terms of percent Modern Carbon: pMC) in summer and winter, respectively. The 14C concentrations in BC were also compared with those of compound-class specific 14C content of PAHs previously reported for the same samples: they were 45% and 33% pMC in summer and winter, respectively. The 14C signals of BC were identical to those of high molecular weight (MW ⩾ 226, 5-6 rings) PAHs. The resemblance between 14C signals of BC and PAHs can be referred as a 'certificate' for the validity of the BC isolation method employed in this study. Also, it suggests that 14C-BC approach can be a surrogate for PAHs specific 14C analyses to monitor seasonal source variation of combustion-derived pyrolytic products. On the other hand, 14C contents of total organic carbon in 2004 were 61% and 42% pMC in summer and winter, respectively. This is likely attributed to higher contribution of plant activity in summer.

  14. Natural variability in the surface ocean carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. S. Lovenduski

    2015-11-01

    Full Text Available We investigate variability in the surface ocean carbonate ion concentration ([CO32−] on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32−] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32−] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC in association with El Niño–Southern Oscillation. In the North Pacific, surface [CO32−] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20–30-year periods. North Atlantic [CO32−] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results

  15. A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements

    Directory of Open Access Journals (Sweden)

    R. S. Stone

    2014-06-01

    Full Text Available Abstract Aerosols, transported from distant source regions, influence the Arctic surface radiation budget. When deposited on snow and ice, carbonaceous particles can reduce the surface albedo, which accelerates melting, leading to a temperature-albedo feedback that amplifies Arctic warming. Black carbon (BC, in particular, has been implicated as a major warming agent at high latitudes. BC and co-emitted aerosols in the atmosphere, however, attenuate sunlight and radiatively cool the surface. Warming by soot deposition and cooling by atmospheric aerosols are referred to as “darkening” and “dimming” effects, respectively. In this study, climatologies of spectral aerosol optical depth AOD (2001–2011 and Equivalent BC (EBC (1989–2011 from three Arctic observatories and from a number of aircraft campaigns are used to characterize Arctic aerosols. Since the 1980s, concentrations of BC in the Arctic have decreased by more than 50% at ground stations where in situ observations are made. AOD has increased slightly during the past decade, with variations attributed to changing emission inventories and source strengths of natural aerosols, including biomass smoke and volcanic aerosol, further influenced by deposition rates and airflow patterns.

  16. Climatic impacts of stratospheric geoengineering with sulfate, black carbon and titania injection

    Science.gov (United States)

    Jones, Anthony C.; Haywood, James M.; Jones, Andy

    2016-03-01

    In this paper, we examine the potential climatic effects of geoengineering by sulfate, black carbon and titania injection against a baseline RCP8.5 scenario. We use the HadGEM2-CCS model to simulate scenarios in which the top-of-the-atmosphere radiative imbalance due to rising greenhouse gas concentrations is offset by sufficient aerosol injection throughout the 2020-2100 period. We find that the global-mean temperature is effectively maintained at historical levels for the entirety of the period for all three aerosol-injection scenarios, though there is a wide range of side-effects which are discussed in detail. The most prominent conclusion is that although the BC injection rate necessary to produce an equivalent global mean temperature response is much lower, the severity of stratospheric temperature changes (> +70 °C) and precipitation impacts effectively exclude BC from being a viable option for geoengineering. Additionally, while it has been suggested that titania would be an effective particle because of its high scattering efficiency, it also efficiently absorbs solar ultraviolet radiation producing a significant stratospheric warming (> +20 °C). As injection rates and climatic impacts for titania are close to those for sulfate, there appears to be little benefit in terms of climatic influence of using titania when compared to the injection of sulfur dioxide, which has the added benefit of being well-modeled through extensive research that has been carried out on naturally occurring explosive volcanic eruptions.

  17. DNA biosensor based on a glassy carbon electrode modified with electropolymerized Eriochrome Black T

    International Nuclear Information System (INIS)

    We report on an electrochemical DNA biosensor consisting of a glassy carbon electrode modified with a film of electropolymerized Eriochrome Black T (pEBT) that serves as a functional platform for the immobilization of probe DNA. pEBT was deposited via cyclic voltammetry, and the amino-modified DNA capture probe was covalently linked to the surface via a sulfanilamide coupling reaction. The single step of the assembly process was monitored by atomic force microscopy and electrochemistry. The surface density of DNA probe on the biosensor interface was calculated to be 1.7 × 10−10 mol cm−2 using methylene blue as an electroactive probe. Hybridization experiments showed the peak currents of methylene blue to decrease with increasing concentration of complementary sequence in the range from 5.0 f. to 5.0 pM. The detection limit is as low as 0.11 fM. Selectivity studies showed that the biosensor can discriminate a fully complementary sequence from a single-base mismatch, three-base mismatch, and a fully non-complementary sequence. The biosensor displays good stability and can be regenerated due to the beneficial effects of electropolymerization and covalent immobilization of probe DNA. (author)

  18. Optimized method for black carbon analysis in ice and snow using the Single Particle Soot Photometer

    Directory of Open Access Journals (Sweden)

    I. A. Wendl

    2014-03-01

    Full Text Available In this study we attempt to optimize the method for measuring black carbon (BC in snow and ice using a single particle soot photometer (SP2. Beside the previously applied ultrasonic (CETAC and Collison-type nebulizers we introduce a jet (APEX-Q nebulizer to aerosolize the aqueous sample for SP2 analysis. Both CETAC and APEX-Q require small sample volumes (few milliliters which makes them suitable for ice core analysis. The APEX-Q shows the least size-dependent nebulizing efficiency in the BC particle diameter range of 100–1000 nm. The CETAC has the advantage that air and liquid flows can be monitored continuously. All nebulizer-types require a calibration with BC standards for the determination of the BC mass concentration in unknown aqueous samples. We found Aquadag to be a suitable material for preparing calibration standards. Further, we studied the influence of different treatments for fresh discrete snow and ice samples as well as the effect of storage. The results show that samples are best kept frozen until analysis. Once melted, they should be sonicated for 25 min, immediately analyzed while being stirred and not be refrozen.

  19. Corrosion behavior of modified nano carbon black/epoxy coating in accelerated conditions

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • By using SDS as a surfactant, nano particles of CB were uniformly dispersed. • CB nanoparticle in the epoxy coating improved the corrosion resistance of the coating. • By addition of CB nanoparticles to the epoxy diffusion ions and water became limited. • The dominance of barrier mechanism was proved by calculation of the diffusion coefficients. - Abstract: The electrochemical behavior and anticorrosion properties of modified carbon black (CB) nanoparticles in epoxy coatings were investigated in accelerated conditions. Nanoparticles of CB were modified by sodium dodecyl sulfate (SDS) as surfactant. Dispersion of nanoparticles into epoxy was confirmed by Transmission Electron Microscopy (TEM). The accelerated condition was prepared at 65 °C. CB nanoparticles improved corrosion resistance of the epoxy coating. The optimum concentration of CB in the epoxy coating was 0.75 wt%. Results showed that the CB hinder the corrosion due to its barrier properties. CB can decrease the diffusion coefficient of water in the coating with filling the micropores

  20. Corrosion behavior of modified nano carbon black/epoxy coating in accelerated conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi-Kahrizsangi, Ahmad; Shariatpanahi, Homeira, E-mail: shariatpanahih@ripi.ir; Neshati, Jaber; Akbarinezhad, Esmaeil

    2015-03-15

    Graphical abstract: - Highlights: • By using SDS as a surfactant, nano particles of CB were uniformly dispersed. • CB nanoparticle in the epoxy coating improved the corrosion resistance of the coating. • By addition of CB nanoparticles to the epoxy diffusion ions and water became limited. • The dominance of barrier mechanism was proved by calculation of the diffusion coefficients. - Abstract: The electrochemical behavior and anticorrosion properties of modified carbon black (CB) nanoparticles in epoxy coatings were investigated in accelerated conditions. Nanoparticles of CB were modified by sodium dodecyl sulfate (SDS) as surfactant. Dispersion of nanoparticles into epoxy was confirmed by Transmission Electron Microscopy (TEM). The accelerated condition was prepared at 65 °C. CB nanoparticles improved corrosion resistance of the epoxy coating. The optimum concentration of CB in the epoxy coating was 0.75 wt%. Results showed that the CB hinder the corrosion due to its barrier properties. CB can decrease the diffusion coefficient of water in the coating with filling the micropores.

  1. A new algorithm for brown and black carbon identification and organic carbon detection in fine atmospheric aerosols by a multi-wavelength Aethalometer

    Directory of Open Access Journals (Sweden)

    F. Esposito

    2012-02-01

    Full Text Available A novel approach for the analysis of aerosol absorption coefficient measurements is presented. A 7-wavelenghts aethalometer has been employed to identify brown carbon (BrC and black carbon (BC and to detect organic carbon (OC in fine atmospheric aerosols (PM2.5. The Magee Aethalometer estimates the BC content in atmospheric particulate by measuring the light attenuation in the aerosols accumulated on a quartz filter, at the standard wavelength λ = 0.88 μm. The known Magee algorithm is based on the hypothesis of a mass absorption coefficient inversely proportional to the wavelength. The new algorithm has been developed and applied to the whole spectral range; it verifies the spectral absorption behavior and, thus, it distinguishes between black and brown carbon. Moreover, it allows also to correct the absorption estimation at the UV wavelength commonly used to qualitatively detect the presence of mixed hydrocarbons. The algorithm has been applied to data collected in Agri Valley, located in Southern Italy, where torched crude oil undergoes a pre-treatment process.

    The Magee Aethalometer has been set to measure Aerosol absorption coefficients τaer (λ, t every 5 min. Wavelength dependence of τaer (λ, t has been analyzed by a best-fit technique and, excluding UV-wavelengths, both the absorption Angstrom coefficient α and the BC (or BrC concentration have been determined. Finally, daily histograms of α provide information on optical properties of carbonaceous aerosol, while the extrapolation at UV-wavelengths gives information on the presence of semivolatile organic carbon (OC particles.

  2. Simulation of Arctic Black Carbon using Hemispheric CMAQ: Role of Russia's BC Emissions, Transport, and Deposition

    Science.gov (United States)

    Huang, K.; Fu, J. S.

    2015-12-01

    Black carbon plays a unique role in the Arctic climate system due to its multiple effects. It causes Arctic warming by directly absorbing sunlight from space and by darkening the surface albedo of snow and ice, which indirectly leads to further warming and melting, thus inducing an Arctic amplification effect. BC depositions over the Arctic are more sensitive to regions in close proximity. In this study, we reconstruct BC emissions for Russian Federation, which is the country that occupies the largest area in the Arctic Circle. Local Russia information such as activity data, emission factors and other emission source data are used. In 2010, total anthropogenic BC emission of Russia is estimated to be around 254 Gg. Gas flaring, a commonly ignored black carbon source, contributes a dominant 43.9% of Russia's total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 22.0%, 17.8%, 11.5%, and 4.8%, respectively. BC simulations were conducted using the hemispheric version of CMAQ with polar projection. Emission inputs are from a global emissions database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulations using the new Russian BC emission inventory could improve 46 - 61% of the Absorption Aerosol Optical Depth (AAOD) measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four air monitoring sites (Zeppelin, Barrow, Alert, and Tiksi) in the Arctic Circle, surface BC simulations are improved the most during the Arctic haze periods (October - March). Emission perturbation studies show that Russia's BC emissions contribute over 50% of the surface BC concentrations over the Arctic during the cold seasons. This study demonstrates the good capability of H-CMAQ in

  3. Intercomparison of measurement techniques for black or elemental carbon under urban background conditions in wintertime: influence of biomass combustion.

    Science.gov (United States)

    Reisinger, P; Wonaschütz, A; Hitzenberger, R; Petzold, A; Bauer, H; Jankowski, N; Puxbaum, H; Chi, X; Maenhaut, W

    2008-02-01

    A generally accepted method to measure black carbon (BC) or elemental carbon (EC) still does not exist. An earlier study in the Vienna area comparing practically all measurement methods in use in Europe gave comparable BC and EC concentrations under summer conditions (Hitzenberger et al., 2006a). Under summer conditions, Diesel traffic is the major source for EC or BC in Vienna. Under winter conditions, space heating (also with biomass as fuel) is another important source (Caseiro et al., 2007). The present study compares the response of thermal methods (a modified Cachier method, Cachier et al., 1989; a thermal-optical method, Schmid et al., 2001; and two thermal-optical (TOT) methods using Sunset instruments, Birch and Cary, 1996 and Schauer et al., 2003) and optical methods (a light transmission method, Hansen et al., 1984; the integrating sphere method, Hitzenberger et al., 1996; and the multiangle absorption photometer MAAP, Petzold and Schönlinner, 2004). Significant differences were found between the TOT methods on the one hand and all other methods on the other. The TOT methods yielded EC concentrations that were lower by 44 and 17% than the average of all measured concentrations (including the TOT data). The largest discrepancy was found when the contribution of brown carbon (measured with the integrating sphere method) was largest.

  4. Soil Organic Carbon, Black Carbon, and Enzyme Activity Under Long-Term Fertilization

    Institute of Scientific and Technical Information of China (English)

    SHAO Xing-hua; ZHENG Jian-wei

    2014-01-01

    The present study aims to understand the effects of long-term fertilization on soil organic carbon (SOC), black carbon (BC), enzyme activity, and the relationships among these parameters. Paddy ifeld was continuously fertilized over 30 yr with nine different fertilizer treatments including N, P, K, NP, NK, NPK, 2NPK (two-fold NPK), NPK+manure (NPKM), and CK (no fertilization), N, 90 kg urea-N ha-1 yr-1; P, 45 kg triple superphosphate-P2O5 ha-1 yr-1; K, 75 kg potassium chloride-K2O ha-1 yr-1;and pig manure, 22 500 kg ha-1 yr-1. Soil samples were collected and determined for SOC, BC content, and enzyme activity. The results showed that the SOC in the NPKM treatment was signiifcantly higher than those in the K, P, and CK treatments. The lowest SOC content was found in the CK treatment. SOC content was similar in the N, NP, NK, NPK, 2NPK, and NPKM treatments. There was no signiifcant difference in BC content among different treatments. The BC-to-SOC ratios (BC/SOC) ranged from 0.50 to 0.63, suggesting that BC might originate from the same source. Regarding enzyme activity, NPK treatment had higher urease activity than NPKM treatment. The urease activity of NPKM treatment was signiifcantly higher than that of 2NPK, NP, N, P, K, CK, and NPKM treatment which produced higher activities of acid phosphatase, catalase, and invertase than all other treatments. Our results indicated that long-term fertilization did not signiifcantly affect BC content. Concurrent application of manure and mineral fertilizers increased SOC content and signiifcantly enhanced soil enzyme activities. Correlation analysis showed that catalase activity was signiifcantly associated with invertase activity, but SOC, BC, and enzyme activity levels were not signiifcantly correlated with one another. No signiifcant correlations were observed between BC and soil enzymes. It is unknown whether soil enzymes play a role in the decomposition of BC.

  5. Seasonal trends in black carbon properties and co-pollutants in Mexico City

    Science.gov (United States)

    Retama, A.; Baumgardner, D.; Raga, G. B.; McMeeking, G. R.; Walker, J. W.

    2015-04-01

    The Mexico City Metropolitan Area (MCMA) is a region that continues to grow in population and vehicular traffic as well as being the largest source of short lived climate pollutants (SLCP) in Latin America. The local city government has made significant progress in controlling some of these pollutants, i.e. ozone (O3) and carbon monoxide (CO), but particulate matter (PM2.5 and PM10) and black carbon (BC) have shown little response to mitigation strategies that have been in place for more than two decades. For the first time, extended measurements have been made of equivalent black carbon (eBC), derived from light absorption measurements made with a Photoacoustic Extinctiometer (PAX), over a 13 month period from March 2013 through March 2014. The daily trends in workday (Monday through Saturday) and Sunday eBC, PM2.5 and the co-pollutants CO, O3 and NOx are evaluated with respect to the three primary seasons in that region: rainy, cold-dry and warm-dry. The maximum values in all of the particle and gas concentrations were significantly larger (Student's t test, P< 0.05) during the dry periods than in the rainy season. The changes from rainy to dry seasons for eBC, PM2.5, CO, O3, and NOx were 8.8 to 13.1 μg m-3 (40%), 49 to 73 μg m-3 (40%), 2.5 to 3.8 ppm (40%), 73 to 100 ppb (30%) and 144 to 252 ppb (53%), respectively. The primary factors that lead to these large changes between the wet and dry seasons are the accelerated vertical mixing of boundary layer and free tropospheric air by the formation of clouds that dilutes the concentration of the SLCPs and the decreased actinic flux that reduces the production of ozone by photochemical reactions. A significant "weekend effect" was also identified, particularly the decrease in BC due to fewer large transport vehicles that are fueled by diesel that produces a large fraction of the BC emissions. The other co-pollutant concentrations are also significantly less on weekends except for O3 that shows no change in maximum

  6. A dense Black Carbon network in the region of Paris, France: Implementation, objectives, and first results

    Science.gov (United States)

    Sciare, Jean; Petit, Jean-Eudes; Sarda-Esteve, Roland; Bonnaire, Nicolas; Gros, Valérie; Pernot, Pierre; Ghersi, Véronique; Ampe, Christophe; Songeur, Charlotte; Brugge, Benjamin; Debert, Christophe; Favez, Olivier; Le Priol, Tiphaine; Mocnik, Grisa

    2013-04-01

    Motivations. Road traffic and domestic wood burning emissions are two major contributors of particulate pollution in our cities. These two sources emit ultra-fine, soot containing, particles in the atmosphere, affecting health adversely, increasing morbidity and mortality from cardiovascular and respiratory conditions and casing lung cancer. A better characterization of soot containing aerosol sources in our major cities provides useful information for policy makers for assessment, implementation and monitoring of strategies to tackle air pollution issues affecting human health with additional benefits for climate change. Objectives. This study on local sources of primary Particulate Matter (PM) in the megacity of Paris is a follow-up of several programs (incl. EU-FP7-MEGAPOLI) that have shown that fine PM - in the Paris background atmosphere - is mostly secondary and imported. A network of 14 stations of Black Carbon has been implemented in the larger region of Paris to provide highly spatially resolved long term survey of local combustion aerosols. To our best knowledge, this is the first time that such densely BC network is operating over a large urban area, providing novel information on the spatial/temporal distribution of combustion aerosols within a post-industrialized megacity. Experimental. As part of the PRIMEQUAL "PREQUALIF" project, a dense Black Carbon network (of 14 stations) has been installed over the city of Paris beginning of 2012 in order to produce spatially resolved Equivalent Black Carbon (EBC) concentration maps with high time resolution through modeling and data assimilation. This network is composed of various real-time instruments (Multi-Angle Absorption Photometer, MAAP by THERMO; Multi-wavelength Aethalometers by MAGEE Scientific) implemented in contrasted sites (rural background, urban background, traffic) complementing the regulated measurements (PM, NOx) in the local air quality network AIRPARIF (http

  7. Feasibility study of production of radioactive carbon black or carbon nanotubes in cyclotron facilities for nanobioscience applications

    International Nuclear Information System (INIS)

    A feasibility study regarding the production of radioactive carbon black and nanotubes has been performed by proton beam irradiation. Experimental and theoretical excitation functions of the nuclear reaction natC(p,x)7Be in the proton energy range 24–38 MeV are reported, with an acceptable agreement. We have demonstrated that sufficient activities of 7Be radioisotope can be produced in carbon black and nanotube that would facilitate studies of their possible impact on human and environment. - Highlights: ► We measured the excitation functions of the reaction natC(p,x)7Be in the energy range 24–38 MeV. ► We calculated the excitation functions of the reaction natC(p,x)7Be in the energy range 24–38 MeV. ► We assessed the thick target yield of the reaction natC(p,x)7Be. ► We reported results on the radiolabeling yields of carbon black and nanotubes with Beryllium 7

  8. Black Carbon Particle Number Distribution Measurements during the ATHENS-2013 Winter Campaign

    Science.gov (United States)

    Gkatzelis, Georgios; Papanastasiou, Dimitris; Florou, Kalliopi; Kaltsonoudis, Christos; Louvaris, Eyaggelos; Bezentakos, Spiridon; Biskos, Georgios; Pandis, Spuros

    2014-05-01

    Black Carbon (BC) particles emitted by anthropogenic sources play an important role both in climate change and in air quality degradation. Open burning in forests and savannas, combustion of diesel and solid fuels for cooking and heating in homes represent the majority of BC emissions. Earlier work has focused on the BC atmospheric direct radiative forcing that is mostly related to its mass concentration and optical properties of the corresponding particles. A variety of measurement techniques are used to measure the mass concentration of BC by taking advantage of its optical or physical properties. Moreover, the carbonaceous particles containing BC are also important for the indirect forcing of climate. This effect is mostly related to the number concentration of BC particles. The number distribution of BC particles especially below 100 nm is quite uncertain due to limitations of the existing measurement techniques. In this work we employed a thermodenuder-based method as an approach for the measurement of the BC number distribution. More specifically, we combined a thermodenuder (TD) operating at temperatures up to 300 ° C, with a Scanning Mobility Particle Sizer (SMPS) and a High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF AMS). Aerosol size and composition measurements were carried out both at ambient and at elevated TD temperatures in Athens field campaign during January and February of 2013. In parallel, a Multi-Angle Absorption Photometer (MAAP) provided information about the BC mass concentration while a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) measured the mixing state and the hygroscopicity of the particles as a function of their size. These measurements were then combined to estimate the number concentration of BC particles. Our analysis focused on different periods during the study. During some of them one source dominated the carbonaceous aerosol concentration. Such periods included rush hour traffic, nighttime wood

  9. Black carbon fractal morphology and short-wave radiative impact: a modelling study

    Directory of Open Access Journals (Sweden)

    M. Kahnert

    2011-08-01

    Full Text Available We investigate the impact of the morphological properties of freshly emitted black carbon aerosols on optical properties and on radiative forcing. To this end, we model the optical properties of fractal black carbon aggregates by use of numerically exact solutions to Maxwell's equations within a spectral range from the UVC to the mid-IR. The results are coupled to radiative transfer computations, in which we consider six realistic case studies representing different atmospheric pollution conditions and surface albedos. The spectrally integrated radiative impacts of black carbon are compared for two different fractal morphologies, which brace the range of recently reported experimental observations of black carbon fractal structures. We also gauge our results by performing corresponding calculations based on the homogeneous sphere approximation, which is commonly employed in climate models. We find that at top of atmosphere the aggregate models yield radiative impacts that can be as much as 2 times higher than those based on the homogeneous sphere approximation. An aggregate model with a low fractal dimension can predict a radiative impact that is higher than that obtained with a high fractal dimension by a factor ranging between 1.1–1.6. Although the lower end of this scale seems like a rather small effect, a closer analysis reveals that the single scattering optical properties of more compact and more lacy aggregates differ considerably. In radiative flux computations there can be a partial cancellation due to the opposing effects of differences in the optical cross sections and asymmetry parameters. However, this cancellation effect can strongly depend on atmospheric conditions and is therefore quite unpredictable. We conclude that the fractal morphology of black carbon aerosols and their fractal parameters can have a profound impact on their radiative forcing effect, and that the use of the homogeneous sphere model introduces unacceptably

  10. Hydrogen and Carbon Black Production from the Degradation of Methane by Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Leila Cottet

    2014-05-01

    Full Text Available Methane gas (CH4 is the main inducer of the so called greenhouse gases effect. Recent scientific research aims to minimize the accumulation of this gas in the atmosphere and to develop processes capable of producing stable materials with added value. Thermal plasma technology is a promising alternative to these applications, since it allows obtaining H2 and solid carbon from CH4, without the parallel formation of byproducts such as CO2 and NOx. In this work, CH4 was degraded by thermal plasma in order to produce hydrogen (H2 and carbon black. The degradation efficiency of CH4, selectivity for H2 production as well as the characterization of carbon black were studied. The best results were obtained in the CH4 flow rate of 5 L min-1 the degradation percentage and the selectivity for H2 production reached 98.8 % and 48.4 %, respectively. At flow rates of less than 5 L min-1 the selectivity for H2 production increases and reaches 91.9 %. The carbon black has obtained amorphous with hydrophobic characteristics and can be marketed to be used in composite material, and can also be activated chemically and/or physically and used as adsorbent material.

  11. Organic Carbon Geochemistry in the North-western Black Sea Danube River System

    Science.gov (United States)

    Galimov, E. M.; Kodina, L. A.; Zhiltsova, L. I.; Tokarev, V. G.; Vlasova, L. N.; Bogacheva, M. P.; Korobeinik, G. S.; Vaisman, T. I.

    2002-03-01

    The isotopic and chemical composition of organic matter from sediments collected on the north-western shelf of the Black Sea and the Danube River are discussed. The δ 13C distribution pattern in organic carbon from surface sediments (0-1 cm) of the western part of the Black Sea has been established. It reveals a rather complicated picture, reflecting the superposition of several factors: local marine primary productivity, terrestrial input to the Danube River discharge and possible contribution from anaerobic microbial activity. The analysis of organic carbon by a pyrolysis-chromatography technique showed that the H/O indices of organic matter from marine sediments are in correlation with δ 13C values. This is an indication of the mixed origin of the organic carbon in the littoral sediments. However, samples from the zone where H 2S conditions prevail deviate from the correlation line of δ 13C vs H/O indices. We believe that this is due to the contribution of the biomass of chemosynthetic bacteria in the sediments. Thus, we argue that in the Danube-Black Sea system several consecutive zones are distinguished. River discharge delivers organic carbon with δ 13C values from -28 to -26 (PSU is used). Mixing of the land-derived material with autochtonous marine primary production gives δ 13C values of about -26 to -23 for the organic carbon in coastal sediments. On the shelf area, beyond significant influence of both terrestrial and sulphide regime factors, plankton material dominates as a source of organic carbon in sediments. In the hydrogen sulphide zone, chemosynthetic bacteria produce additional amounts of organic matter with hydrogen to oxygen indices similar to those of plankton, but with different isotopic composition, which results in the appearance of relatively isotopically light organic carbon in the deep-sea sediments.

  12. Sediment pore water distribution coefficients of PCB congeners in enriched black carbon sediment

    International Nuclear Information System (INIS)

    More than 2300 sediment pore water distribution coefficients (KPCBids) of 93 polychlorinated biphenyls (PCBs) were measured and modeled from sediments from Indiana Harbor and Ship Canal. KPCBids were calculated from previously reported bulk sediment values and newly analyzed pore water. PCBs in pore waters were measured using SPME PDMS-fiber and ∑PCB ranged from 41 to 1500 ng L−1. The resulting KPCBids were ∼1 log unit lower in comparison to other reported values. A simple model for the KPCBid consisted of the product of the organic carbon fraction and the octanol–water partition coefficient and provided an excellent prediction for the measured values, with a mean square error of 0.09 ± 0.06. Although black carbon content is very high in these sediments and was expected to play an important role in the distribution of PCBs, no improvement was obtained when a two-carbon model was used. -- Highlights: •PCB sediment-pore water distribution coefficients were measured and modeled. •Distribution coefficients were lower in comparison to other reported values. •Organic carbon fraction times the KOW yielded the best prediction model. •The incorporation of black carbon into a model did not improve the results. -- The organic carbon fraction times the octanol–water partition coefficient yielded the best prediction model for the sediment pore water distribution coefficient of PCBs

  13. Abundance, distribution, and isotopic composition of particulate black carbon in the northern Gulf of Mexico

    Science.gov (United States)

    Yang, Weifeng; Guo, Laodong

    2014-11-01

    There exists increasing evidence supporting the important role of black carbon in global carbon cycles. Particulate black carbon (PBC) is allochthonous and has distinct reactivities compared to the bulk particulate organic carbon (tot-POC) in marine environments. However, the abundance, geochemical behavior of PBC and its importance in oceanic carbon budget remain poorly understood. Here we report the abundance, distribution, and stable isotopic signatures of BC derived from the chemo-thermal oxidation (CTO-375) method (BCCTO) in the Gulf of Mexico. Our results show that BCCTO abundance decreased from shelf to basin, and more than a half of riverine BCCTO could be removed over the shelf. Moreover, BCCTO is much more refractory compared to the tot-POC and has δ13C values lower than those of BC-excluded POC. These results highlight the significance of PBC in marine carbon cycles and potentially suggest the need for a new end-member term in quantifying POC sources in the ocean.

  14. The Riverine Export of Particulate and Dissolved Black Carbon Following a Colorado Wildfire

    Science.gov (United States)

    Wagner, S.; Cawley, K.; Rosario-Ortiz, F.; Jaffe, R.

    2014-12-01

    Wildfires are one of the primary sources of combustion-derived, polycondensed aromatic molecules known as black carbon (BC) in the environment. BC can be mobilized from soils and char in fire-affected aquatic systems, potentially impacting downstream water quality. The High Park Fire burned over 87,000 acres of the Cache La Poudre River watershed in Larimer County, Colorado during June of 2012. Since the Cache La Poudre River serves as one of the main sources of drinking water for the city of Fort Collins, the implications of pyrogenic organic matter inputs to such waterways must be assessed. The export of BC in both the dissolved (DBC) and particulate (PBC) phases from the Cache La Poudre River was measured biweekly at two downstream fire-affected sites and one upstream unburned reference site during the year following the High Park Fire. Both DBC and DOC concentrations were low during base flow and increased with spring melt and increasing water discharge. Seasonal changes in DBC composition indicated a shift in hydrology and associated DOM source between base and peak flow conditions. However, there was little difference observed in overall DBC or DOC concentration between the burned and reference sites. This suggested that most dissolved organic matter within the river is sourced upstream. Although the mobilization of DBC did not notably increase with recent fire activity, PBC export was substantially greater at fire affected sites when compared with the unburned site. This indicates that BC export in riverine ecosystems occurs mainly in the particulate phase during the years immediately following a significant wildfire event, while the mobilization of the DBC may be uncoupled from the PBC due to mobilization processes acting on different time scales.

  15. Seasonality of Global and Arctic Black Carbon Processes in the Arctic Monitoring and Assessment Programme Models

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, R.; Von Salzen, Knut; Flanner, M. G.; Sand, M.; Langner, J.; Wang, Hailong; Huang, L.

    2016-06-22

    This study quantifies black carbon (BC) processes in three global climate models and one chemistry transport model, with focus on the seasonality of BC transport, emissions, wet and dry deposition in the Arctic. In the models, transport of BC to the Arctic from lower latitudes is the major BC source for this region while Arctic emissions are very small. All models simulated a similar annual cycle of BC transport from lower latitudes to the Arctic, with maximum transport occurring in July. Substantial differences were found in simulated BC burdens and vertical distributions, with CanAM (NorESM) producing the strongest (weakest) seasonal cycle. CanAM also has the shortest annual mean residence time for BC in the Arctic followed by SMHI-MATCH, CESM and NorESM. The relative contribution of wet and dry deposition rates in removing BC varies seasonally and is one of the major factors causing seasonal variations in BC burdens in the Arctic. Overall, considerable differences in wet deposition efficiencies in the models exist and are a leading cause of differences in simulated BC burdens. Results from model sensitivity experiments indicate that scavenging of BC in convective clouds acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens and a more pronounced seasonal cycle compared to simulations without convective BC scavenging. In contrast, the simulated seasonality of BC concentrations in the upper troposphere is only weakly influenced by wet deposition in stratiform (layer) clouds whereas lower tropospheric concentrations are highly sensitive.

  16. Tethered balloon-based black carbon profiles within the lower troposphere of Shanghai in the 2013 East China smog

    Science.gov (United States)

    Li, Juan; Fu, Qingyan; Huo, Juntao; Wang, Dongfang; Yang, Wen; Bian, Qinggen; Duan, Yusen; Zhang, Yihua; Pan, Jun; Lin, Yanfen; Huang, Kan; Bai, Zhipeng; Wang, Sheng-Hsiang; Fu, Joshua S.; Louie, Peter K. K.

    2015-12-01

    A Tethered balloon-based field campaign was launched for the vertical observation of air pollutants within the lower troposphere of 1000 m for the first time over a Chinese megacity, Shanghai in December of 2013. A custom-designed instrumentation platform for tethered balloon observation and ground-based observation synchronously operated for the measurement of same meteorological parameters and typical air pollutants. One episodic event (December 13) was selected with specific focus on particulate black carbon, a short-lived climate forcer with strong warming effect. Diurnal variation of the mixing layer height showed very shallow boundary of less than 300 m in early morning and night due to nocturnal inversion while extended boundary of more than 1000 m from noon to afternoon. Wind profiles showed relatively stagnant synoptic condition in the morning, frequent shifts between upward and downward motion at noon and in the afternoon, and dominant downward motion with sea breeze in the evening. Characteristics of black carbon vertical profiles during four different periods of a day were analyzed and compared. In the morning, surface BC concentration averaged as high as 20 μg/m3 due to intense traffic emissions from the morning rush hours and unfavorable meteorological conditions. A strong gradient of BC concentrations with altitude was observed from the ground to the top of boundary layer at around 250-370 m. BC gradients turned much smaller above the boundary layer. BC profiles measured during noon and afternoon were the least dependent on heights. The largely extended boundary layer with strong vertical convection was responsible for a well mixing of BC particles in the whole measured column. BC profiles were similar between the early-evening and late-evening phases. The lower troposphere was divided into two stratified air layers with contrasted BC vertical distributions. Profiles at night showed strong gradients from the relatively high surface concentrations to

  17. Assessing the combined influence of TOC and black carbon in soil-air partitioning of PBDEs and DPs from the Indus River Basin, Pakistan.

    Science.gov (United States)

    Ali, Usman; Mahmood, Adeel; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Katsoyiannis, Athanasios; Jones, Kevin C; Malik, Riffat Naseem

    2015-06-01

    Levels of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DPs) were investigated in the Indus River Basin from Pakistan. Concentrations of ∑PBDEs and ∑DPs were ranged between 0.05 and 2.38 and 0.002-0.53 ng g(-1) in the surface soils while 1.43-22.1 and 0.19-7.59 pg m(-3) in the passive air samples, respectively. Black carbon (fBC) and total organic carbon (fTOC) fractions were also measured and ranged between 0.73 and 1.75 and 0.04-0.2%, respectively. The statistical analysis revealed strong influence of fBC than fTOC on the distribution of PBDEs and DPs in the Indus River Basin soils. BDE's congener profile suggested the input of penta-bromodiphenylether (DE-71) commercial formulation in the study area. Soil-air partitioning of PBDEs were investigated by employing octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of both models suggested the combined influence of total organic carbon (absorption) and black carbon (adsorption) in the studied area. PMID:25795070

  18. Corals concentrate dissolved inorganic carbon to facilitate calcification.

    Science.gov (United States)

    Allison, Nicola; Cohen, Itay; Finch, Adrian A; Erez, Jonathan; Tudhope, Alexander W

    2014-01-01

    The sources of dissolved inorganic carbon (DIC) used to produce scleractinian coral skeletons are not understood. Yet this knowledge is essential for understanding coral biomineralization and assessing the potential impacts of ocean acidification on coral reefs. Here we use skeletal boron geochemistry to reconstruct the DIC chemistry of the fluid used for coral calcification. We show that corals concentrate DIC at the calcification site substantially above seawater values and that bicarbonate contributes a significant amount of the DIC pool used to build the skeleton. Corals actively increase the pH of the calcification fluid, decreasing the proportion of DIC present as CO2 and creating a diffusion gradient favouring the transport of molecular CO2 from the overlying coral tissue into the calcification site. Coupling the increases in calcification fluid pH and [DIC] yields high calcification fluid [CO3(2-)] and induces high aragonite saturation states, favourable to the precipitation of the skeleton.

  19. Conductive additive content balance in Li-ion battery cathodes: Commercial carbon blacks vs. in situ carbon from LiFePO{sub 4}/C composites

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, Veronica; Goni, Aintzane; Muro, Izaskun Gil de; Rojo, Teofilo [Departamento de Quimica Inorganica, Universidad del Pais Vasco UPV/EHU, P.O. Box. 644, 48080, Bilbao (Spain); de Meatza, Iratxe; Bengoechea, Miguel [Energy Department, CIDETEC-IK4, P Miramon 196, Parque Tecnologico de San Sebastian, 20009, San Sebastian (Spain); Cantero, Igor [Departamento I+D+i Nuevas Tecnologias, CEGASA, Artapadura, 11, 01013 Vitoria-Gasteiz (Spain)

    2010-11-15

    Two samples of commercial conducting carbon black and the carbon generated in situ during LiFePO{sub 4}/C composite synthesis from citric acid are studied, with the aim of finding out whether carbon from the composite can fulfil the same function as carbon black in the electrode blend for a Li-ion battery. For this purpose, the carbon samples are analyzed by several techniques, such as X-ray diffraction, Raman spectroscopy, transmission electron microscopy, granulometry, BET specific area and conductivity measurements. Different cathode compositions and component proportions are tested for pellet and cast electrodes. Electrochemical results show that a moderate reduction of commercial carbon black content in both kinds of cathodes, by adding more LiFePO{sub 4}/C composite, enhanced the electrochemical behaviour by around 10%. In situ generated carbon can partially replace commercial conducting carbon black because its high specific surface probably enhances electrolyte penetration into the cathode, but it is always necessary to maintain a minimum amount of carbon black that provides better conductivity in order to obtain a good electrochemical response. (author)

  20. Microphysics-based black carbon aging in a global CTM: constraints from HIPPO observations and implications for global black carbon budget

    Science.gov (United States)

    He, Cenlin; Li, Qinbin; Liou, Kuo-Nan; Qi, Ling; Tao, Shu; Schwarz, Joshua P.

    2016-03-01

    We develop and examine a microphysics-based black carbon (BC) aerosol aging scheme that accounts for condensation, coagulation, and heterogeneous chemical oxidation processes in a global 3-D chemical transport model (GEOS-Chem) by interpreting the BC measurements from the HIAPER Pole-to-Pole Observations (HIPPO, 2009-2011) using the model. We convert aerosol mass in the model to number concentration by assuming lognormal aerosol size distributions and compute the microphysical BC aging rate (excluding chemical oxidation aging) explicitly from the condensation of soluble materials onto hydrophobic BC and the coagulation between hydrophobic BC and preexisting soluble particles. The chemical oxidation aging is tested in the sensitivity simulation. The microphysical aging rate is ˜ 4 times higher in the lower troposphere over source regions than that from a fixed aging scheme with an e-folding time of 1.2 days. The higher aging rate reflects the large emissions of sulfate-nitrate and secondary organic aerosol precursors hence faster BC aging through condensation and coagulation. In contrast, the microphysical aging is more than 5-fold slower than the fixed aging in remote regions, where condensation and coagulation are weak. Globally, BC microphysical aging is dominated by condensation, while coagulation contribution is largest over eastern China, India, and central Africa. The fixed aging scheme results in an overestimate of HIPPO BC throughout the troposphere by a factor of 6 on average. The microphysical scheme reduces this discrepancy by a factor of ˜ 3, particularly in the middle and upper troposphere. It also leads to a 3-fold reduction in model bias in the latitudinal BC column burden averaged along the HIPPO flight tracks, with largest improvements in the tropics. The resulting global annual mean BC lifetime is 4.2 days and BC burden is 0.25 mg m-2, with 7.3 % of the burden at high altitudes (above 5 km). Wet scavenging accounts for 80.3 % of global BC

  1. Effects of Nanoscale Carbon Black Modified by HNO3 on Immobilization and Phytoavailability of Ni in Contaminated Soil

    Directory of Open Access Journals (Sweden)

    Jiemin Cheng

    2015-01-01

    Full Text Available A surface-modified nanoscale carbon black (MCB as Ni adsorbent in contaminated soil was prepared by oxidizing the carbon black with 65% HNO3. The surface properties of the adsorbent were characterized by zeta potential analysis, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy (FTIRs. Batch experiments were conducted to evaluate the improvement of Ni2+ adsorption by MCB. Greenhouse cultivation experiments were conducted to examine the effect of MCB on the DTPA-extractable Ni2+ in soil, Ni2+ uptake of ryegrass shoot, and growth of ryegrass. Results indicated that MCB had much lower negative zeta potential, more functional groups for exchange and complexation of cation, and more heterogeneous pores and cavities for the adsorption of cation than the unmodified parent one (CB. MCB showed enhanced sorption capacity for Ni (qmax, 49.02 mg·g−1 compared with CB (qmax, 39.22 mg·g−1. Greenhouse cultivation experiment results showed that the biomass of ryegrass shoot and the Ni uptake of the ryegrass shoot were significantly increased and the concentrations of DTPA-extractable Ni in soil were significantly decreased with the increasing of MCB amount. It is clear from this work that the MCB had good adsorption properties for the Ni and could be applied in the in situ immobilization and remediation of heavy metal contaminated saline-alkali soils.

  2. Natural variability in the surface ocean carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. S. Lovenduski

    2015-08-01

    Full Text Available We investigate variability in the surface ocean carbonate ion concentration ([CO32−] on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32−] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite are already or nearly detectable at the sustained, open-ocean timeseries sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32−] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC in association with El Niño–Southern Oscillation. In the North Pacific, surface [CO32−] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20–30 year periods. North Atlantic [CO32−] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these

  3. Relation between coal aromatic carbon concentration and proximate analysis fixed carbons

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.

    1981-01-01

    Good agreement has been obtained between measured proximate analysis values for fixed carbon (FC) and the predictions of a thermal decomposition model. The model provides a basis for understanding the relation between FC and coal structure and between FC measured under proximate analysis conditions and coke or char measured in other thermal decomposition experiments. The key parameters in the model are the aromatic carbon concentration (C/sub ar/) and the tar yield. C/sub ar/ has been determined for 43 coals using quantitative infrared analysis. The aliphatic hydrogen concentration is measured from the absorption near 2900 cm/sub -1/ and the aliphatic carbon concentration is computed assuming a stoichiometry of CH/sub 1/./sub 8/. C/sub ar/ is then computed by difference. The results verify the good correlation between C/sub ar/ and FC discussed by van Krevelen. To explain this correlation, use has been made of a coal thermal decomposition model which has been successful in simulating the quantity and composition of volatile components yielded under vacuum pyrolysis conditions. To apply the model to proximate analysis, it was necessary to estimate the tar yields obtained with thick beds and the amounts of O, N, H, and S which remain with the FC. The tar yields for proximate analysis conditions have been estimated to be 1/3 to 1/4 the yields for thin beds in vacuum. To determine the composition of the FC, measurements were made on a lignite and a bituminous char produced in a thin bed heated by a wire grid for the time (7 min) and temperature (950 C) used in the proximate analysis, and on the FC residues from a proximate analysis volatile matter determination. Both residues give similar results, showing that approximately 10% of the 'fixed carbon' is not carbon. Values of FC computed with the model adjusted for the above conditions are in good agreement with the measured values. 25 refs.

  4. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black.

    Science.gov (United States)

    Vuong, Ngoc Q; Goegan, Patrick; Mohottalage, Susantha; Breznan, Dalibor; Ariganello, Marianne; Williams, Andrew; Elisma, Fred; Karthikeyan, Subramanian; Vincent, Renaud; Kumarathasan, Premkumari

    2016-09-01

    Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, "Proteomic changes in human lung epithelial cells (A549) in response to carbon black and titanium dioxide exposures" (Vuong et al., 2016) [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures.

  5. Heat generation of mechanically abused lithium-ion batteries modified by carbon black micro-particulates

    International Nuclear Information System (INIS)

    In the current study, we experimentally investigated the effects of carbon black micro-particulates (CBMP) on the temperature increase of lithium-ion battery coin cells subjected to nail penetration and blunt impact. The major difference between CBMP and regular carbon black additives is in particle size. The testing data showed that addition of 1 wt% of CBMP in the cathode and anode does not influence the cycle life, while can reduce the heat generation rate by nearly 50%, after the peak temperature is reached. Thermal treatment of the modified cells at 100 °C would further reduce the heat generate rate. The initial temperature increase rate, the maximum temperature, as well as the total energy dissipation are not affected. These findings shed light on thermal runaway mitigation of high-energy batteries. (paper)

  6. Preparation of Waterborne Nanoscale Carbon Black Dispersion with Sodium Carboxymethyl Cellulose

    Institute of Scientific and Technical Information of China (English)

    YUAN Xia; FANG Kuan-jun

    2006-01-01

    Waterborne nanoscale carbon black dispersion (NCBD) was widely used in inkjet printing, spun-dyeing fibers and coloration fabrics. In this paper, NCBD was prepared using sodium carboxymethyl cellulose (CMC) as dispersant.Effects of CMC viscosity, ultrasonic time and oxidation with hydrogen peroxide on carbon black (CB) particle size were discussed. The results showed that CB particle size decreased by mechanical agitation while it increased by ultrasonic with the increase of CMC viscosity. Ultrasonic is a more effective method to disperse CB particles than that of mechanical agitation. CB particle size obviously decreased with increasing ultrasonic time and arrived at about 160 nm for 60 min. In addition, oxidation with 2 mol/L of H2O2 and 0.2 wt% of CMC300 reduced CB particle size to 160 nm at 90℃ for 2.5 h.

  7. Current Situation and Prospect of White Carbon Black Industry in China

    Institute of Scientific and Technical Information of China (English)

    Zhu Chunyu

    2011-01-01

    1.Analysis of Market Operation in 2010 Year 2010 is the ending year of the "11th Five-Year Plan".Under the effect of a series of central government policies including coping with the international financial crisis,accelerating the transformation of economic development pattern and economic restructuring,and promoting steady and rapid development of economy,the situation is basically established that industrial economy operation changes from turnaround to steady growth,and industrial economy develops steadily and rapidly.This can be shown in the white carbon black industry,through the whole year,white carbon black industry maintains steady and rapid development,and the output of which has grown greatly compared with last year.

  8. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black.

    Science.gov (United States)

    Vuong, Ngoc Q; Goegan, Patrick; Mohottalage, Susantha; Breznan, Dalibor; Ariganello, Marianne; Williams, Andrew; Elisma, Fred; Karthikeyan, Subramanian; Vincent, Renaud; Kumarathasan, Premkumari

    2016-09-01

    Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, "Proteomic changes in human lung epithelial cells (A549) in response to carbon black and titanium dioxide exposures" (Vuong et al., 2016) [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures. PMID:27508218

  9. Human lung epithelial cell A549 proteome data after treatment with titanium dioxide and carbon black

    Directory of Open Access Journals (Sweden)

    Ngoc Q. Vuong

    2016-09-01

    Full Text Available Here, we have described the dataset relevant to the A549 cellular proteome changes after exposure to either titanium dioxide or carbon black particles as compared to the non-exposed controls, “Proteomic changes in human lung epithelial cells (A549 in response to carbon black and titanium dioxide exposures” (Vuong et al., 2016 [1]. Detailed methodologies on the separation of cellular proteins by 2D-GE and the subsequent mass spectrometry analyses using MALDI-TOF-TOF-MS are documented. Particle exposure-specific protein expression changes were measured via 2D-GE spot volume analysis. Protein identification was done by querying mass spectrometry data against SwissProt and RefSeq protein databases using Mascot search engine. Two-way ANOVA analysis data provided information on statistically significant A549 protein expression changes associated with particle exposures.

  10. NANOMECHANICAL MAPPING OF CARBON BLACK REINFORCED NATURAL RUBBER BY ATOMIC FORCE MICROSCOPY

    Institute of Scientific and Technical Information of China (English)

    Toshio Nishi; Hideyuki Nukaga; So Fujinami; Ken Nakajima

    2007-01-01

    Atomic force microscopy (AFM) has the advantage of obtaining mechanical properties as well as topographic information at the same time. By analyzing force-distance curves measured over two-dimensional area using Hertzian contact mechanics, Young's modulus mapping was obtained with nanometer-scale resolution. Furthermore, the sample deformation by the force exerted was also estimated from the force-distance curve analyses. We could thus reconstruct a real topographic image by incorporating apparent topographic image with deformation image. We applied this method to carbon black reinforced natural rubber to obtain Young's modulus distribution image together with reconstructed real topographic image.Then we were able to recognize three regions; rubber matrix, carbon black (or bound rubber) and intermediate regions.Though the existence of these regions had been investigated by pulsed nuclear magnetic resonance, this paper would be the first to report on the quantitative evaluation of the interfacial region in real space.

  11. 238U series isotopes and 232Th in carbonates and black shales from the Lesser Himalaya: implications to dissolved uranium abundances in Ganga-Indus source waters.

    Science.gov (United States)

    Singh, S K; Dalai, Tarun K; Krishnaswami, S

    2003-01-01

    238U and (232)Th concentrations and the extent of (238)U-(234)U-(230)Th radioactive equilibrium have been measured in a suite of Precambrian carbonates and black shales from the Lesser Himalaya. These measurements were made to determine their abundances in these deposits, their contributions to dissolved uranium budget of the headwaters of the Ganga and the Indus in the Himalaya and to assess the impact of weathering on (238)U-(234)U-(230)Th radioactive equilibrium in them. (238)U concentrations in Precambrian carbonates range from 0.06 to 2.07 microg g(-1). The 'mean' U/Ca in these carbonates is 2.9 ng U mg(-1) Ca. This ratio, coupled with the assumption that all Ca in the Ganga-Indus headwaters is of carbonate origin and that U and Ca behave conservatively in rivers after their release from carbonates, provides an upper limit on the U contribution from these carbonates, to be a few percent of dissolved uranium in rivers. There are, however, a few streams with low uranium concentrations, for which the carbonate contribution could be much higher. These results suggest that Precambrian carbonates make only minor contributions to the uranium budget of the Ganga-Indus headwaters in the Himalaya on a basin wide scale, however, they could be important for particular streams. Similar estimates of silicate contribution to uranium budget of these rivers using U/Na in silicates and Na* (Na corrected for cyclic and halite contributions) in river waters show that silicates can contribute significantly (approximately 40% on average) to their U balance. If, however, much of the uranium in these silicates is associated with weathering resistant minerals, then the estimated silicate uranium component would be upper limits. Uranium concentration in black shales averages about 37 microg g(-1). Based on this concentration, supply of U from at least approximately 50 mg of black shales per liter of river water is needed to balance the average river water U concentration, 1.7 microg L

  12. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset provides all data used to generate the figures and tables in the article entitled "Particulate matter and black carbon optical properties and emission...

  13. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells

    OpenAIRE

    Baeza-Squiban Armelle; Fleury Jocelyne; Martens Johan A; Andreau Karine; Borot Marie-Caroline; Ferecatu Ioana; Thomassen Leen CJ; Hussain Salik; Marano Francelyne; Boland Sonja

    2010-01-01

    Abstract Background Increasing environmental and occupational exposures to nanoparticles (NPs) warrant deeper insight into the toxicological mechanisms induced by these materials. The present study was designed to characterize the cell death induced by carbon black (CB) and titanium dioxide (TiO2) NPs in bronchial epithelial cells (16HBE14o- cell line and primary cells) and to investigate the implicated molecular pathways. Results Detailed time course studies revealed that both CB (13 nm) and...

  14. Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions

    OpenAIRE

    Millstein, Dev

    2009-01-01

    Fine particulate matter (PM) affects public health, visibility, climate, and influences ecosystem productivity and species diversity. Diesel engines are an important source of air pollution and will face a variety of new regulations, so emissions from these vehicles are expected to undergo changes over the next decade that will have important effects on primary PM emissions, especially black carbon (BC) emissions, as well as nitrogen oxide (NOx) emissions and therefore secondary pollutants su...

  15. Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Donaldson Ken

    2005-12-01

    Full Text Available Abstract Background Alveolar macrophages are a key cell in dealing with particles deposited in the lungs and in determining the subsequent response to that particle exposure. Nanoparticles are considered a potential threat to the lungs and the mechanism of pulmonary response to nanoparticles is currently under intense scrutiny. The type II alveolar epithelial cell has previously been shown to release chemoattractants which can recruit alveolar macrophages to sites of particle deposition. The aim of this study was to assess the responses of a type II epithelial cell line (L-2 to both fine and nanoparticle exposure in terms of secretion of chemotactic substances capable of inducing macrophage migration. Results Exposure of type II cells to carbon black nanoparticles resulted in significant release of macrophage chemoattractant compared to the negative control and to other dusts tested (fine carbon black and TiO2 and nanoparticle TiO2 as measured by macrophage migration towards type II cell conditioned medium. SDS-PAGE analysis of the conditioned medium from particle treated type II cells revealed that a higher number of protein bands were present in the conditioned medium obtained from type II cells treated with nanoparticle carbon black compared to other dusts tested. Size-fractionation of the chemotaxin-rich supernatant determined that the chemoattractants released from the epithelial cells were between 5 and 30 kDa in size. Conclusion The highly toxic nature and reactive surface chemistry of the carbon black nanoparticles has very likely induced the type II cell line to release pro-inflammatory mediators that can potentially induce migration of macrophages. This could aid in the rapid recruitment of inflammatory cells to sites of particle deposition and the subsequent removal of the particles by phagocytic cells such as macrophages and neutrophils. Future studies in this area could focus on the exact identity of the substance(s released by the

  16. Association between Traffic-Related Black Carbon Exposure and Lung Function among Urban Women

    OpenAIRE

    Suglia, Shakira Franco; Gryparis, Alexandros; Schwartz, Joel David; Wright, Rosalind Jo

    2008-01-01

    Background: Although a number of studies have documented the relationship between lung function and traffic-related pollution among children, few have focused on adult lung function or examined community-based populations. Objective: We examined the relationship between black carbon (BC), a surrogate of traffic-related particles, and lung function among women in the Maternal–Infant Smoking Study of East Boston, an urban cohort in Boston, Massachusetts. Methods: We estimated local BC levels us...

  17. Impact of future Arctic shipping on high-latitude black carbon deposition

    OpenAIRE

    J. Browse; Carslaw, KS; Schmidt, A.; Corbett, JJ

    2013-01-01

    The retreat of Arctic sea ice has led to renewed calls to exploit Arctic shipping routes. The diversion of ship traffic through the Arctic will shorten shipping routes and possibly reduce global shipping emissions. However, deposition of black carbon (BC) aerosol emitted by additional Arctic ships could cause a reduction in the albedo of snow and ice, accelerating snowmelt and sea ice loss. Here we use recently compiled Arctic shipping emission inventories for 2004 and 2050 together with a gl...

  18. Multilayer Graphene/Carbon Black/Chlorine Isobutyl Isoprene Rubber Nanocomposites

    OpenAIRE

    Daniele Frasca; Dietmar Schulze; Volker Wachtendorf; Bernd Krafft; Thomas Rybak; Bernhard Schartel

    2016-01-01

    High loadings of carbon black (CB) are usually used to achieve the properties demanded of rubber compounds. In recent years, distinct nanoparticles have been investigated to replace CB in whole or in part, in order to reduce the necessary filler content or to improve performance. Multilayer graphene (MLG) is a nanoparticle made of just 10 graphene sheets and has recently become commercially available for mass-product nanocomposites. Three phr (part for hundred rubbers) of MLG are added to chl...

  19. Concretionary methane-seep carbonates and associated microbial communities in Black Sea sediments

    OpenAIRE

    Reitner, J.; Peckmann, J.; M. Blumenberg; W. Michaelis; Reimer, A; V. Thiel

    2005-01-01

    Gas seeps in the euxinic northwestern Black Sea provide an excellent opportunity to study anaerobic, methane-based ecosystems with minimum interference from oxygen-dependent processes. An integrated approach using fluorescence- and electron microscopy, fluorescence in situ hybridization, lipid biomarkers, stable isotopes (δ13C), and petrography revealed insight into the anatomy of concretionary methane-derived carbonates currently forming within the sediment around seeps. Some of the carbonat...

  20. Temperature Compensation in Determining of Remazol Black B Concentrations Using Plastic Optical Fiber Based Sensor

    Directory of Open Access Journals (Sweden)

    Su Sin Chong

    2014-08-01

    Full Text Available In this study, the construction and test of tapered plastic optical fiber (POF sensors, based on an intensity modulation approach are described. Tapered fiber sensors with different diameters of 0.65 mm, 0.45 mm, and 0.35 mm, were used to measure various concentrations of Remazol black B (RBB dye aqueous solutions at room temperature. The concentrations of the RBB solutions were varied from 0 ppm to 70 ppm. In addition, the effect of varying the temperature of the RBB solution was also investigated. In this case, the output of the sensor was measured at four different temperatures of 27 °C, 30 °C, 35 °C, and 40 °C, while its concentration was fixed at 50 ppm and 100 ppm. The experimental results show that the tapered POF with d = 0.45 mm achieves the best performance with a reasonably good sensitivity of 61 × 10−4 and a linearity of more than 99%. It also maintains a sufficient and stable signal when heat was applied to the solution with a linearity of more than 97%. Since the transmitted intensity is dependent on both the concentration and temperature of the analyte, multiple linear regression analysis was performed to combine the two independent variables into a single equation. The resulting equation was then validated experimentally and the best agreement between the calculated and experimental results was achieved by the sensor with d = 0.45 mm, where the minimum discrepancy is less than 5%. The authors conclude that POF-based sensors are suitable for RBB dye concentration sensing and, with refinement in fabrication, better results could be achieved. Their low fabrication cost, simple configuration, accuracy, and high sensitivity would attract many potential applications in chemical and biological sensing.

  1. Temperature Compensation in Determining of Remazol Black B Concentrations Using Plastic Optical Fiber Based Sensor

    Science.gov (United States)

    Chong, Su Sin; Aziz, A.R. Abdul; Harun, Sulaiman W.; Arof, Hamzah

    2014-01-01

    In this study, the construction and test of tapered plastic optical fiber (POF) sensors, based on an intensity modulation approach are described. Tapered fiber sensors with different diameters of 0.65 mm, 0.45 mm, and 0.35 mm, were used to measure various concentrations of Remazol black B (RBB) dye aqueous solutions at room temperature. The concentrations of the RBB solutions were varied from 0 ppm to 70 ppm. In addition, the effect of varying the temperature of the RBB solution was also investigated. In this case, the output of the sensor was measured at four different temperatures of 27 °C, 30 °C, 35 °C, and 40 °C, while its concentration was fixed at 50 ppm and 100 ppm. The experimental results show that the tapered POF with d = 0.45 mm achieves the best performance with a reasonably good sensitivity of 61 × 10−4 and a linearity of more than 99%. It also maintains a sufficient and stable signal when heat was applied to the solution with a linearity of more than 97%. Since the transmitted intensity is dependent on both the concentration and temperature of the analyte, multiple linear regression analysis was performed to combine the two independent variables into a single equation. The resulting equation was then validated experimentally and the best agreement between the calculated and experimental results was achieved by the sensor with d = 0.45 mm, where the minimum discrepancy is less than 5%. The authors conclude that POF-based sensors are suitable for RBB dye concentration sensing and, with refinement in fabrication, better results could be achieved. Their low fabrication cost, simple configuration, accuracy, and high sensitivity would attract many potential applications in chemical and biological sensing. PMID:25166498

  2. Online single particle measurements of black carbon coatings, structure and optical properties

    Science.gov (United States)

    Allan, James; Liu, Dantong; Taylor, Jonathan; Flynn, Michael; Williams, Paul; Morgan, William; Whitehead, James; Alfarra, Rami; McFiggans, Gordon; Coe, Hugh

    2016-04-01

    The impacts of black carbon on meteorology and climate remain a major source of uncertainty, owing in part to the complex relationship between the bulk composition of the particulates and their optical properties. A particular complication stems from how light interacts with particles in response to the microphysical configuration and any 'coatings', i.e. non-black carbon material that is either co-emitted or subsequently obtained through atmospheric processing. This may cause the particle to more efficiently absorb or scatter light and may even change the sign of its radiative forcing potential. While much insight has been gained through measurements of bulk aerosol properties, either while suspended or after collection on a filter or impactor substrate, this does not provide a complete picture and thus may not adequately constrain the system. Here we present an overview of recent work to better constrain the properties of black carbon using online, in situ measurements of single particles, primarily using a Single Particle Soot Photometer (SP2). We have developed novel methods of inverting the data produced and combining the different metrics derived so as to give the most effective insights into black carbon sources, processes and properties. We have also used this measurement in conjunction with other instruments (sometimes in series) and used the data to challenge many commonly used models of optical properties such as core-shell Mie, Rayleigh-Debeye-Gans and effective medium. This work has been carried out in a variety of atmospheric environments and with laboratory-produced soots, e.g. from a diesel engine rig. Highlights include the finding that with real-world atmospheric aerosols, bulk optical measurements may be insufficient to derive brown carbon parameters without detailed morphological data. We also show that the enhancement of absorption for both ambient and laboratory generated particles only occurs after the coating mass fraction reaches a certain

  3. Black Carbon Emissions and Impacts on the South American Glacial Region

    Science.gov (United States)

    Molina, L. T.; Gallardo, L.; Schmitt, C. G.

    2015-12-01

    Black carbon is one of the key short-lived climate pollutants, which is a topic of growing interest for near-term mitigation of climate change and air quality improvement. In this presentation we will examine the emissions and impact of black carbon and co-pollutants on the South American glacial region and describe some recent measurements associated with the PISAC (Pollution and its Impacts on the South American Cryosphere) Initiative. The Andes is the longest continental mountain range in the world, extending about 7000 km along western South America through seven countries with complex topography and covering several climate zones, diversity of ecosystems and communities. Air pollution associated with biomass burning and urban emissions affects extensive areas in the region and is a serious public health concern. Scientific evidence indicates that the Andean cryosphere is changing rapidly as snow fields and glaciers generally recede, leading to changes in stream flow and water quality along the Andes. The challenge is to identify the principal causes of the observed changes so that action can be taken to mitigate this negative trend. Despite the paucity of systematic observations along the Andes, a few modeling and observational studies have indicated the presence of black carbon in the high Andes, with potentially significant impact on the Andean cryosphere.

  4. Distinctive sorption mechanisms of 4-chlorophenol with black carbons as elucidated by different pH.

    Science.gov (United States)

    Shih, Yang-hsin; Su, Yuh-fan; Ho, Ren-yu; Su, Po-hsin; Yang, Chien-ying

    2012-09-01

    Black carbon (BC) has been considered as an important sorbent in the environment in recent years due to its high sorption capacity and unique sorption behavior. Sorption characteristics of black carbons from two main sources were investigated to get a better understanding of organic chemical fate in the environment. The present study showed sorption mechanisms of 4-chlorophenol, a common organic contaminant in the surroundings, in two kinds of black carbons, soot surrogate (BC1) and environmental char (BC2) derived from rice straw. Sorption capacity of 4-chlorophenol was much higher in BC1 than on BC2 due to the larger surface area of BC1. However, the surface-area normalized sorption coefficients (sorption capacity per surface area) of BC2 were higher than those of BC1, indicating electrostatic attraction and actions of polar foundational groups on BC2 can react with 4-chlorophenol. With increasing temperature, sorption of BC1 decreased but the sorption of BC2 significantly increased at pH 10 and only slightly increased at pH 4. An exothermic sorption reaction was found for BC1; however, an endothermic reaction of chemical sorption occurred on BC2 at pH 10 due to the electrostatic attraction. At pH4, sorption capacity of BC2 decreased and the small positive sorption enthalpy indicated that less electrostatic attractions occurred because of the neutral form of 4-chlorophenol and the domination of mainly hydrophobic interactions. PMID:22842752

  5. The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol

    Directory of Open Access Journals (Sweden)

    J. Browse

    2012-08-01

    Full Text Available The seasonal cycle in Arctic aerosol is typified by high concentrations of large aged anthropogenic particles transported from lower latitudes in the late Arctic winter and early spring followed by a sharp transition to low concentrations of locally sourced smaller particles in the summer. However, multi-model assessments show that many models fail to simulate a realistic cycle. Here, we use a global aerosol microphysics model (GLOMAP and surface-level aerosol observations to understand how wet scavenging processes control the seasonal variation in Arctic black carbon (BC and sulphate aerosol. We show that the transition from high wintertime concentrations to low concentrations in the summer is controlled by the transition from ice-phase cloud scavenging to the much more efficient warm cloud scavenging in the late spring troposphere. This seasonal cycle is amplified further by the appearance of warm drizzling cloud in the late spring and summer boundary layer. Implementing these processes in GLOMAP greatly improves the agreement between the model and observations at the three Arctic ground-stations Alert, Barrow and Zeppelin Mountain on Svalbard. The SO4 model-observation correlation coefficient (R increases from: −0.33 to 0.71 at Alert (82.5° N, from −0.16 to 0.70 at Point Barrow (71.0° N and from −0.42 to 0.40 at Zeppelin Mountain (78° N. The BC model-observation correlation coefficient increases from −0.68 to 0.72 at Alert and from −0.42 to 0.44 at Barrow. Observations at three marginal Arctic sites (Janiskoski, Oulanka and Karasjok indicate a far weaker aerosol seasonal cycle, which we show is consistent with the much smaller seasonal change in the frequency of ice clouds compared to higher latitude sites. Our results suggest that the seasonal cycle in Arctic aerosol is driven by temperature-dependent scavenging processes that may be susceptible to modification in a future climate.

  6. The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol

    Directory of Open Access Journals (Sweden)

    J. Browse

    2012-01-01

    Full Text Available The seasonal cycle in Arctic aerosol is typified by high concentrations of large aged anthropogenic particles transported from lower latitudes in the late Arctic winter and early spring followed by a sharp transition to low concentrations of locally sourced smaller particles in the summer. However, multi-model assessments show that many models fail to simulate a realistic cycle. Here, we use a global aerosol microphysics model and surface-level aerosol observations to understand how wet scavenging processes control the seasonal variation in Arctic black carbon (BC and sulphate aerosol concentrations. We show that the transition from high wintertime to low summertime Arctic aerosol concentrations is caused by the change from inefficient scavenging in ice clouds to the much more efficient scavenging in warm liquid clouds. This seasonal cycle is amplified further by the appearance of warm drizzling cloud in late spring and summer at a time when aerosol transport shifts mainly to low levels. Implementing these processes in a model greatly improves the agreement between the model and observations at the three Arctic ground-stations Alert, Barrow and Zeppelin Mountain on Svalbard. The SO4 model-observation correlation coefficient (R increases from: −0.33 to 0.71 at Alert (82.5° N, from −0.16 to 0.70 at Point Barrow (71.0° N and from −0.42 to 0.40 at Zeppelin Mountain (78° N while, the BC model-observation correlation coefficient increases from −0.68 to 0.72 at Alert and from −0.42 to 0.44 at Barrow. Observations at three marginal Arctic sites (Janiskoski, Oulanka and Karasjok indicate a far weaker aerosol seasonal cycle, which we show is consistent with the much smaller seasonal changes in ice clouds compared to the higher latitude sites. Our results suggest that the seasonal cycle in Arctic aerosol is driven by temperature-dependent scavenging processes that may be susceptible to modification in a future climate.

  7. Seasonal variation of ozone and black carbon observed at Paknajol, an urban site in the Kathmandu Valley, Nepal

    Directory of Open Access Journals (Sweden)

    D. Putero

    2015-08-01

    Full Text Available The Kathmandu Valley in South Asia is considered as one of the global "hot spots" in terms of urban air pollution. It is facing severe air quality problems as a result of rapid urbanization and land use change, socioeconomic transformation and high population growth. In this paper, we present the first full year (February 2013–January 2014 analysis of simultaneous measurements of two short-lived climate forcers/pollutants (SLCF/P, i.e. ozone (O3 and equivalent black carbon (hereinafter noted as BC and aerosol number concentration at Paknajol, in the center of the Kathmandu metropolitan city. The diurnal behavior of equivalent black carbon (BC and aerosol number concentration indicated that local pollution sources represent the major contributions to air pollution in this city. In addition to photochemistry, the planetary boundary layer (PBL and wind play important roles in determining O3 variability, as suggested by the analysis of seasonal diurnal cycle and correlation with meteorological parameters and aerosol properties. Especially during pre-monsoon, high values of O3 were found during the afternoon/evening; this could be related to mixing and entrainment processes between upper residual layers and the PBL. The high O3 concentrations, in particular during pre-monsoon, appeared well related to the impact of major open vegetation fires occurring at regional scale. On a synoptic-scale perspective, westerly and regional atmospheric circulations appeared to be especially conducive for the occurrence of the high BC and O3 values. The very high values of SLCF/P, detected during the whole measurement period, indicated persisting adverse air quality conditions, dangerous for the health of over 3 million residents of the Kathmandu Valley, and the environment. Consequently, all of this information may be useful for implementing control measures to mitigate the occurrence of acute pollution levels in the Kathmandu Valley and surrounding area.

  8. Assessing the combined influence of TOC and black carbon in soil–air partitioning of PBDEs and DPs from the Indus River Basin, Pakistan

    International Nuclear Information System (INIS)

    Levels of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DPs) were investigated in the Indus River Basin from Pakistan. Concentrations of ∑PBDEs and ∑DPs were ranged between 0.05 and 2.38 and 0.002–0.53 ng g−1 in the surface soils while 1.43–22.1 and 0.19–7.59 pg m−3 in the passive air samples, respectively. Black carbon (fBC) and total organic carbon (fTOC) fractions were also measured and ranged between 0.73 and 1.75 and 0.04–0.2%, respectively. The statistical analysis revealed strong influence of fBC than fTOC on the distribution of PBDEs and DPs in the Indus River Basin soils. BDE's congener profile suggested the input of penta–bromodiphenylether (DE-71) commercial formulation in the study area. Soil–air partitioning of PBDEs were investigated by employing octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC−A). The results of both models suggested the combined influence of total organic carbon (absorption) and black carbon (adsorption) in the studied area. - Highlights: • Model based calculations of black carbon-air partition coefficients for PBDEs. • Soil and air levels of PBDEs and DPs reported first time for ecologically important sites of the Indus River Basin, Pakistan. • Both, fBC and fTOC showed combined influence on soil–air partitioning of PBDEs in the Indus River Basin, Pakistan. - BC and TOC showed combined influence on soil–air partitioning of POPs i-e., PBDEs in the Indus River Basin, Pakistan

  9. Effect of ZnO Addition on Structural Properties of ZnO-PANi/ Carbon Black Thin Films

    International Nuclear Information System (INIS)

    The aim of this project was to investigate the effect of ZnO addition on the structural properties of ZnO-PANi/ carbon black thin films. The sol gel method was employed for the preparation of ZnO sol. The sol was dried for 24 h at 100 degree Celsius and then annealed at 600 degree Celsius for 5 h. XRD characterization of the ZnO powder showed the formation of wurtzite type ZnO crystals. The ZnO powder were mixed into PANi/ carbon black solution which was dissolved into M-Pyrol, N-Methyl-2-Pyrrolidinone (NMP) to produce a composite solution of ZnO-PANi/ carbon black. The weight ratio of ZnO were 4 wt %, 6 wt % and 8 wt %. The composite solutions were deposited onto glass substrates using a spin-coating technique to fabricate ZnO-PANi/ carbon black thin films. AFM characterization showed the decreasing of average roughness from 7.98 nm to 2.23 nm with the increment of ZnO addition in PANi/ carbon black films. The thickness of the films also decreased from 59.5 nm to 28.3 nm. FESEM image revealed that ZnO-PANi/ carbon black thin films have changed into agglomerated surface morphology resulting in the increment of porosity of the films. (author)

  10. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella.

    Science.gov (United States)

    Fan, Jianhua; Xu, Hui; Luo, Yuanchan; Wan, Minxi; Huang, Jianke; Wang, Weiliang; Li, Yuanguang

    2015-03-01

    Biodiesel production by microalgae with photosynthetic CO2 biofixation is thought to be a feasible way in the field of bioenergy and carbon emission reduction. Knowledge of the carbon-concentrating mechanism plays an important role in improving microalgae carbon fixation efficiency. However, little information is available regarding the dramatic changes of cells suffered upon different environmental factors, such as CO2 concentration. The aim of this study was to investigate the growth, lipid accumulation, carbon fixation rate, and carbon metabolism gene expression under different CO2 concentrations in oleaginous Chlorella. It was found that Chlorella pyrenoidosa grew well under CO2 concentrations ranging from 1 to 20 %. The highest biomass and lipid productivity were 4.3 g/L and 107 mg/L/day under 5 % CO2 condition. Switch from high (5 %) to low (0.03 %, air) CO2 concentration showed significant inhibitory effect on growth and CO2 fixation rate. The amount of the saturated fatty acids was increased obviously along with the transition. Low CO2 concentration (0.03 %) was suitable for the accumulation of saturated fatty acids. Reducing the CO2 concentration could significantly decrease the polyunsaturated degree in fatty acids. Moreover, the carbon-concentrating mechanism-related gene expression revealed that most of them, especially CAH2, LCIB, and HLA3, had remarkable change after 1, 4, and 24 h of the transition, which suggests that Chlorella has similar carbon-concentrating mechanism with Chlamydomonas reinhardtii. The findings of the present study revealed that C. pyrenoidosa is an ideal candidate for mitigating CO2 and biodiesel production and is appropriate as a model for mechanism research of carbon sequestration.

  11. Black carbon in the atmosphere and snow, from pre-industrial times until present

    Directory of Open Access Journals (Sweden)

    R. B. Skeie

    2011-03-01

    Full Text Available The distribution of black carbon (BC in the atmosphere and the deposition of BC on snow surfaces since pre-industrial time until present are modelled with the Oslo CTM2 model. The model results are compared with observations including recent measurements of BC in snow in the Arctic. The global mean burden of BC from fossil fuel and biofuel sources increased during two periods. The first period, until 1920, is related to increases in emissions in North America and Europe, and the last period after 1970 are related mainly to increasing emissions in East Asia. Although the global burden of BC from fossil fuel and biofuel increases, in the Arctic the maximum atmospheric BC burden as well as in the snow was reached in 1960s, with a slight reduction thereafter. The global mean burden of BC from open biomass burning sources has not changed significantly since 1900. With current inventories of emissions from open biomass sources, the modelled burden of BC in snow and in the atmosphere north of 65° N is small compared to the BC burden of fossil fuel and biofuel origin. From the concentration changes radiative forcing time series due to the direct aerosol effect as well as the snow-albedo effect is calculated for BC from fossil fuel and biofuel. The calculated radiative forcing in 2000 for the direct aerosol effect is 0.35 W m−2 and for the snow-albedo effect 0.016 W m−2. Due to a southward shift in the emissions there is an increase in the lifetime of BC as well as an increase in normalized radiative forcing, giving a change in forcing per unit of emissions of 26% since 1950.

  12. Arctic Deposition of Black Carbon from Fires in Northern Eurasia from 2002 to 2013

    Science.gov (United States)

    Hao, W. M.; Evangeliou, N.; Balkanski, Y.; Urbanski, S. P.

    2015-12-01

    Black carbon (BC) in smoke plumes from fires in Northern Eurasia can be transported and deposited on Arctic ice and accelerate ice melting. Thus, we developed daily BC emissions from fires in this region at a 500 m x 500 m resolution from 2002 to 2013 and modeled the BC transport and deposition in the Arctic. BC emissions were estimated based on MODIS land cover maps and detected burned areas, the Forest Inventory Survey of the Russian Federation, and biomass specific BC emission factors. An average of 250,000 km2 were burned annually in Northern Eurasia. Grassland dominates the total burned area (61%), followed by forest (27%). For grassland fires, about three-quarters of the area burned occurred in Central and Western Asia and about 17% in Russia. More than 90% of the forest burned area was in Russia. Annual BC emissions from Northern Eurasian fires varied enormously with an average of 0.82±0.50 Tg. In contrast to burned area, forest fires dominated BC emissions and accounted for about two-thirds of the emissions, followed by grassland fires (15%). More than 90% of the BC emissions from forest fires occurred in Russia. Overall, Russia contributed 83% of the total BC emissions from fires in Northern Eurasia. The transport and deposition of BC on Arctic ice from all the global sources was estimated using the LMDz-OR-INCA global chemistry-aerosol-climate model. About 7.9% of emitted BC from fires were deposited on the Arctic ice, accounting for 45-78% of the BC deposited from all sources. However, about 20% of the BC emitted from fires were deposited on Arctic in spring which is the most effective period for acceleration of melting of ice. The simulated BC concentrations are consistent with obserations at the Arctic monitoring stations of Albert, Barrow, Nord, Zeppelin, and Tiksi.

  13. Black carbon in the atmosphere and snow, from pre-industrial times until present

    Directory of Open Access Journals (Sweden)

    R. B. Skeie

    2011-07-01

    Full Text Available The distribution of black carbon (BC in the atmosphere and the deposition of BC on snow surfaces since pre-industrial time until present are modelled with the Oslo CTM2 model. The model results are compared with observations including recent measurements of BC in snow in the Arctic. The global mean burden of BC from fossil fuel and biofuel sources increased during two periods. The first period, until 1920, is related to increases in emissions in North America and Europe, and the last period after 1970 are related mainly to increasing emissions in East Asia. Although the global burden of BC from fossil fuel and biofuel increases, in the Arctic the maximum atmospheric BC burden as well as in the snow was reached in 1960s, with a slight reduction thereafter. The global mean burden of BC from open biomass burning sources has not changed significantly since 1900. With current inventories of emissions from open biomass sources, the modelled burden of BC in snow and in the atmosphere north of 65° N is small compared to the BC burden of fossil fuel and biofuel origin. From the concentration changes radiative forcing time series due to the direct aerosol effect as well as the snow-albedo effect is calculated for BC from fossil fuel and biofuel. The calculated radiative forcing in 2000 for the direct aerosol effect is 0.35 W m−2 and for the snow-albedo effect 0.016 W m−2 in this study. Due to a southward shift in the emissions there is an increase in the lifetime of BC as well as an increase in normalized radiative forcing, giving a change in forcing per unit of emissions of 26 % since 1950.

  14. Emissions of Black Carbon Particles in Anthropogenic and Biomass Plumes over California during CARB 2008

    Science.gov (United States)

    Sahu, L. K.; Kondo, Y.; Moteki, N.; Takegawa, N.; Zhao, Y.; Vay, S. A.; Diskin, G. S.; Wisthaler, A.; Huey, L. G.

    2009-12-01

    Measurements of black carbon (BC) and other chemical species were made from the NASA DC-8 aircraft during the CARB campaign conducted over California in June 2008. We operated an SP2 system that measured BC and scattering particles. The vertical profiles of BC and scattering particles show enhancements in the lower troposphere. We have used relations of CO-CH3CN-SO2 to identify the sources of major plumes. The plumes originating from anthropogenic activities, mainly due to the use of fossil fuels (FF), were observed near the surface. However, the influence of smoke plumes from wild fire or biomass-burning (BB) sources was observed up to 3 km. Overall, the 1-minute average BC mass concentrations were in the ranges of about 90-500 ng/m3 and 300-700 ng/m3 in FF and BB plumes, respectively. The shell/core diameter ratios were much lagerer in BB plumes than those in FF plumes. Namely, the median shell/core ratios were 1.2-1.4 for FF plumes, while they were 1.4-1.7 for BB plumes. In both FF and BB plumes, the mass-size distributions of BC were single mode lognormal. However, the mass median diameters FF plumes were considerably smaller. The BC-CO2 regression slopes were 19±9 ng m-3/ppmv and 270±90 ng m-3/ppmv for FF and BB plumes, respectively. On the other hand the regression slopes of BC-CO were about 3.3 ng m-3/ppbv in both the plumes. Conversely, the regression slopes of BC with other co-emitted combustions products can be used to estimate the contributions of emissions from different sources.

  15. The effects of folic acid on carbon black toxicity in mouse embryo in vivo

    Directory of Open Access Journals (Sweden)

    Roshdy, H.M and Bibars, M.H

    2004-03-01

    Full Text Available The wide commercial use of carbon black oil (CBO to produce asphalt and other commercial product has resulted in numerous environmental problems and harmful effects on human health especially during the pregnancy. This study, examining the effect of maternal low and high dietary folate intake and to protect the pregnant women from the developmental toxicity of CBO. Virgin females CD--1 mice were assigned to diets containing either low 500 or 1300 high (control nmol folic acid/kg for 6 weeks prior to mating and thought out breeding and gestation. From gestation day (GD 6 to 18 females were given by gavage corn oil or CBO at 500 mg/kg body weight, once daily. On CD 18, mice were weight and killed and the liver removed and weighed. Implantation sites, live and dead fetuses, and resorptions were counted, fetuses were weighed individually and examined for external malformations. The low dietary FA treatment alone and with CBO treatment resulted in low maternal liver as well as low fetal liver folate concentrations relative to the high FA dietary groups. Low FA treatment alone resulted in malformed embryos; there were no embryos affected with malformed in the adequate FA-control group. Low folic acid-CBO treatment resulted in a further increase in the malformed embryos. The percent of malformed embryos in high folic acid-CBO treatment was very low compared to the low folic acid-CBO group. The frequency of chromosomal aberrations in maternal and their fetuses was increased significantly in the low folic-CBO group than high folic acid-CBO group. These results show that the low folate dietary diet with the exposure to the high levels of CBO toxic material in pregnant women significantly increases the developmental and mutagenic toxicity in the small fetuses.

  16. Aerosol optical properties and mixing state of black carbon in the Pearl River Delta, China

    Science.gov (United States)

    Tan, Haobo; Liu, Li; Fan, Shaojia; Li, Fei; Yin, Yan; Cai, Mingfu; Chan, P. W.

    2016-04-01

    Aerosols contribute the largest uncertainty to the total radiative forcing estimate, and black carbon (BC) that absorbs solar radiation plays an important role in the Earth's energy budget. This study analysed the aerosol optical properties from 22 February to 18 March 2014 at the China Meteorological Administration Atmospheric Watch Network (CAWNET) station in the Pearl River Delta (PRD), China. The representative values of dry-state particle scattering coefficient (σsp), hemispheric backscattering coefficient (σhbsp), absorption coefficient (σabsp), extinction coefficient (σep), hemispheric backscattering fraction (HBF), single scattering albedo (SSA), as well as scattering Ångström exponent (α) were presented. A comparison between a polluted day and a clean day shows that the aerosol optical properties depend on particle number size distribution, weather conditions and evolution of the mixing layer. To investigate the mixing state of BC at the surface, an optical closure study of HBF between measurements and calculations based on a modified Mie model was employed for dry particles. The result shows that the mixing state of BC might be between the external mixture and the core-shell mixture. The average retrieved ratio of the externally mixed BC to the total BC mass concentration (rext-BC) was 0.58 ± 0.12, and the diurnal pattern of rext-BC can be found. Furthermore, considering that non-light-absorbing particles measured by a Volatility-Tandem Differential Mobility Analyser (V-TDMA) exist independently with core-shell and homogenously internally mixed BC particles, the calculated optical properties were just slightly different from those based on the assumption that BC exist in each particle. This would help understand the influence of the BC mixing state on aerosol optical properties and radiation budget in the PRD.

  17. Measurement of Black Carbon and Particle Number Emission Factors from Individual Heavy-Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

    2009-02-02

    Emission factors for black carbon (BC) and particle number (PN) were measured from 226 individual heavy-duty (HD) diesel-fueled trucks driving through a 1 km-long California highway tunnel in August 2006. Emission factors were based on concurrent increases in BC, PN, and CO{sub 2}B concentrations (measured at 1 Hz) that corresponded to the passage of individual HD trucks. The distributions of BC and PN emission factors from individual HD trucks are skewed, meaning that a large fraction of pollution comes from a small fraction of the in-use vehicle fleet. The highest-emitting 10% of trucks were responsible for {approx} 40% of total BC and PN emissions from all HD trucks. BC emissions were log-normally distributed with a mean emission factor of 1.7 g kg {sup -1} and maximum values of {approx} 10 g kg{sup -1}. Corresponding values for PN emission factors were 4.7 x 10{sup 15} and 4 x 10{sup 16} kg{sup -1}. There was minimal overlap among high-emitters of these two pollutants: only 1 of the 226 HD trucks measured was found to be among the highest 10% for both BC and PN. Monte Carlo resampling of the distribution of BC emission factors observed in this study revealed that uncertainties (1{sigma}) in extrapolating from a random sample of n HD trucks to a population mean emission factor ranged from {+-} 43% for n = 10 to {+-} 8% for n = 300, illustrating the importance of sufficiently large vehicle sample sizes in emissions studies. Studies with low sample sizes are also more easily biased due to misrepresentation of high-emitters. As vehicles become cleaner on average in future years, skewness of the emissions distributions will increase, and thus sample sizes needed to extrapolate reliably from a subset of vehicles to the entire in-use vehicle fleet are expected to become more of a challenge.

  18. The influence of different black carbon and sulfate mixing methods on their optical and radiative properties

    Science.gov (United States)

    Zhang, Hua; Zhou, Chen; Wang, Zhili; Zhao, Shuyun; Li, Jiangnan

    2015-08-01

    Three different internal mixing methods (Core-Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20-70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20-50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core-Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC-sulfate aerosol is about -3.18 W/m2 for the external method and -6.91 W/m2 for the internal methods at the surface, and -3.03/-1.56/-1.85 W/m2 for the external/Core-Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause.

  19. Black carbon in cloud-water and rain water during monsoon season at a high altitude station in India

    Science.gov (United States)

    Budhavant, K. B.; Rao, P. S. P.; Safai, P. D.; Leck, C.; Rodhe, H.

    2016-03-01

    We present results of measurements of black carbon (BC) from ground-based wet-only rainwater (RW) and cloud-water (CW) sampling at a mountain field station, Sinhagad, situated in south western India during the period from June 2008 to October 2010. The amount of BC in the sample was determined by photometry at a wavelength of 528 nm after a procedure including the filtration through a 0.4 μm polycarbonate membrane filter. Water soluble concentrations of major anions in RW and CW were also determined. The average concentration of BC in RW (16 μmol dm-3) is higher by at least a factor 2 than that found in similar studies reported from other parts of the world. On the other hand, the average concentration of BC in CW (47 μmol dm-3) is lower by about a factor of 2 than that found at other sites. The ratio between the average concentrations in CW and RW varies from 2 (K+) to 7 (SO42-). The ratio for BC was about 3. No significant difference was observed for pH. Analysis of air mass back trajectories and of correlations between the various components indicates that long range transport of pollutants and dust from East Africa and Southern part of the Arabian peninsula might contribute to the high concentrations of BC and some of the ionic constituents at Sinhagad during the monsoon season.

  20. Black Carbon in Estuarine (Coastal) High-molecular-weight Dissolved Organic Matter

    Science.gov (United States)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Dissolved organic matter (DOM) in the ocean constitutes one of the largest pools of organic carbon in the biosphere, yet much of its composition is uncharacterized. Observations of black carbon (BC) particles (by-products of fossil fuel combustion and biomass burning) in the atmosphere, ice, rivers, soils and marine sediments suggest that this material is ubiquitous, yet the contribution of BC to the ocean s DOM pool remains unknown. Analysis of high-molecular-weight DOM isolated from surface waters of two estuaries in the northwest Atlantic Ocean finds that BC is a significant component of DOM, suggesting that river-estuary systems are important exporters of BC to the ocean through DOM. We show that BC comprises 4-7% of the dissolved organic carbon (DOC) at coastal ocean sites, which supports the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition. Flux calculations suggest that BC could be as important as vascular plant-derived lignin in terms of carbon inputs to the ocean. Production of BC sequesters fossil fuel- and biomass-derived carbon into a refractory carbon pool. Hence, BC may represent a significant sink for carbon to the ocean.

  1. Processing of styrene butadiene rubber-carbon black nanocomposites with gradation of crosslink density: Static and dynamic mechanical characterization

    International Nuclear Information System (INIS)

    The concentrations of sulfur and accelerator were varied in the nanocomposites of carbon black (CB)-filled styrene-butadiene rubber (SBR) matrix to introduce the gradation of the crosslink density. These curatives were varied from 1 to 11 phr (per hundred rubber) along the span of 3-mm thick sheet using the construction-based layering method. The static and dynamic mechanical characterizations of these functionally graded polymeric nanocomposites (FGPNCs) were carried out. With increasing crosslink density along thickness, hardness and modulus increase while the ultimate properties like tensile strength and elongation at break droop down. The dynamic mechanical analysis of FGPNCs exhibits the increment in the storage modulus than the uniformly dispersed polymeric nanocomposites (UDPNCs) employing the same average amount of curatives. The peak position of tan δmax remains at the same temperature while the value mitigates in FGPNCs. In FGPNCs, tan δ peak intimates the broadness in the transition region

  2. DNA Damage Following Pulmonary Exposure by Instillation to Low Doses of Carbon Black (Printex 90) Nanoparticles in Mice

    DEFF Research Database (Denmark)

    Kyjovska, Zdenka O.; Jacobsen, Nicklas R.; Saber, Anne T.;

    2015-01-01

    of 0.67, 2, 6, and 162 mu g Printex 90 NPCB and vehicle. Cellular composition and protein concentration was evaluated in BAL fluid as markers of inflammatory response and cell damage. DNA strand breaks in BAL cells, lung, and liver tissue were assessed using the alkaline comet assay. The pulmonary......We previously observed genotoxic effects of carbon black nanoparticles at low doses relative to the Danish Occupational Exposure Limit (3.5 mg/m3). Furthermore, DNA damage occurred in broncho-alveolar lavage (BAL) cells in the absence of inflammation, indicating that inflammation is not required...... the comet assay. We interpret the increased DNA strand breaks occurring following these low exposure doses of NPCB as DNA damage caused by primary genotoxicity in the absence of substantial inflammation, cell damage, and acute phase response. Environ. Mol. Mutagen. 56:41-49, 2015. (c) 2014 The Authors...

  3. Processing of styrene butadiene rubber-carbon black nanocomposites with gradation of crosslink density: Static and dynamic mechanical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ahankari, S.S. [Advanced Nano Engineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Kar, Kamal K. [Advanced Nano Engineering Materials Laboratory, Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Advanced Nano Engineering Materials Laboratory, Materials Science Programme and Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)], E-mail: kamalkk@iitk.ac.in

    2008-09-15

    The concentrations of sulfur and accelerator were varied in the nanocomposites of carbon black (CB)-filled styrene-butadiene rubber (SBR) matrix to introduce the gradation of the crosslink density. These curatives were varied from 1 to 11 phr (per hundred rubber) along the span of 3-mm thick sheet using the construction-based layering method. The static and dynamic mechanical characterizations of these functionally graded polymeric nanocomposites (FGPNCs) were carried out. With increasing crosslink density along thickness, hardness and modulus increase while the ultimate properties like tensile strength and elongation at break droop down. The dynamic mechanical analysis of FGPNCs exhibits the increment in the storage modulus than the uniformly dispersed polymeric nanocomposites (UDPNCs) employing the same average amount of curatives. The peak position of tan {delta}{sub max} remains at the same temperature while the value mitigates in FGPNCs. In FGPNCs, tan {delta} peak intimates the broadness in the transition region.

  4. Tailoring the morphology of raspberry-like carbon black/polystyrene composite microspheres for fabricating superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Yubin [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Li, Qiuying, E-mail: liqy@ecust.edu.cn [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Shanghai Key Laboratory Polymeric Materials (China); Key Laboratory of Ultrafine Materials of Ministry of Education (China); Xue, Pengfei; Huang, Jianfeng; Wang, Jibin; Guo, Weihong; Wu, Chifei [Polymer Alloy Lab., School of Material Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

    2011-05-15

    In our previous report, raspberry-like carbon black/polystyrene (CB/PS) composite microsphere was prepared through heterocoagulation process. Based on the previous study, in the present work, the morphology of raspberry-like CB/PS particle is tailored through adjusting the polarity and the concentration ratio of CB/PS colloidal suspension with the purpose to prepare particulate film for the fabrication of superhydrophobic surface. Scanning electron microscope (SEM) confirms the morphology of raspberry-like particle and the coverage of CB. Rough surfaces fabricated by raspberry-like particles with proper morphology are observed by SEM and clear evidence of superhydrophobic surface is shown. The structure of raspberry-like particle is analyzed by atom force microscope. The proposed relationship between the hydrophobicity and the structure of CB aggregates on the surface of PS microsphere is discussed in details.

  5. Comparison of the Level of Boron Concentrations in Black Teas with Fruit Teas Available on the Polish Market

    Directory of Open Access Journals (Sweden)

    Anetta Zioła-Frankowska

    2014-01-01

    Full Text Available The determination of boron by inductively coupled plasma-atomic emission spectrometry has been carried in water-soluble and acid soluble (total content fractions of 36 samples of traditional black tea and fruit brew. The estimation of the impact of the type of tea on the concentration of boron in water-soluble and acid extracts and potential human health risk from the daily intake of boron was carried out in this study. The levels of boron differed significantly in black and fruit tea types. The mean total content of boron ranged from 8.31 to 18.40 mg/kg in black teas, from 12.85 to 15.13 mg/kg in black tea with fruit flavor, and from 12.09 to 22.77 mg/kg in fruit brews. The degree of extraction of boron in black tea ranged from 8% to 27% and for fruit tea from 17% to 69%. In addition, the values below 25% were of black teas with fruit flavors. The daily intake of B from tea infusions (three cups/day is still within the average daily intake except for some of the fruit brews which exceed acceptable regulations of the daily intake of total boron by humans. Hence, it may not produce any health risks for human consumption, if other sources of metal contaminated food are not taken at the same time.

  6. Effect of temperature variation on hormonal concentration at various gestation stages in black Bengal goat

    Directory of Open Access Journals (Sweden)

    Binod Kumar

    2015-09-01

    Full Text Available Aim: The present study was conducted to evaluate the effect of risingtemperature on the metabolic as well as the reproductive performance of the black Bengal goat. Materials and Methods: A total 27 numbers of non-pregnant black Bengal goats of the same parity comprised the experimental animals. The selected goats were randomly assigned to 3 groups of 9 each, maintaining uniformity in body weight (average 14-18 kg. Goats in Group-I were kept between the temperature ranges of 35-40°C, in Group-II between 20°Cand 27°C, and Group-III were kept under loose housing system and serve as a control. Goats in all the groups were bred naturally. Blood was collected prior to feeding in the morning on the day 1 (estrus, 20, 45, 90, and 135, expected day of parturition and also 2 days after parturition from goats of all the three groups. Results: It was observed that the level of plasma estrogen decreased (p˂0.05 up to day 45 of gestation, then after increased up to 135 days of gestation and was maximum on expected day of parturition which was significantly (p˂0.05 higher than all the values. Plasma progesterone level increased from day 20 and was the highest on day 90 and then decreased significantly (p˂0.05 on expected date of parturition. The luteinizing hormone value decreased significantly (p˂0.05 on expected day of parturition and day 2 after parturition in all the groups. Follicle stimulating hormone concentration showed a significant (p˂0.05 decrease from day 1 to 2 days after parturition in all the groups. The plasma triiodothyronine (T3 level did not vary between and within the treatment groups at any stage of the experiment. The plasma thyroxine (T4 level varied significantly (p˂0.01 within and (p˂0.05 between groups at all stages of reproduction. A significant (p<0.05 variation in plasma cortisol concentration in all the groups increased significantly until the day of parturition and dropped significantly (p<0.01 in 2 days after

  7. Triglyceride concentration and waist circumference influence alcohol-related plasminogen activator inhibitor-1 activity increase in black South Africans

    NARCIS (Netherlands)

    Pieters, Marlien; de Lange, Zelda; Hoekstra, Tiny; Ellis, Suria M.; Kruger, Annamarie

    2010-01-01

    We investigated the association between alcohol consumption and plasminogen activator inhibitor-1 activity (PAI-1(act)) and fibrinogen concentration in a black South African population presenting with lower PAI-1(act) and higher fibrinogen than what is typically observed in white populations. We, fu

  8. Inequalities Between Size and Charge for Bodies and the Existence of Black Holes Due to Concentration of Charge

    CERN Document Server

    Khuri, Marcus A

    2015-01-01

    A universal inequality that bounds the charge of a body by its size is presented, and is proven as a consequence of the Einstein equations in the context of initial data sets which satisfy an appropriate energy condition. We also present a general sufficient condition for the formation of black holes due to concentration of charge, and discuss the physical relevance of these results.

  9. Quantifying global terrestrial carbon influx and storage as stimulated by an increase in atmospheric carbon dioxide concentration

    OpenAIRE

    Luo, Yiqi

    1997-01-01

    EXTRACT (SEE PDF FOR FULL ABSTRACT): Measurements of spatial and temporal distributions of carbon dioxide concentration and carbon-13/carbon-12 ratio in the atmosphere suggest a strong biospheric carbon sink in terrestrial ecosystems. Quantifying the sink, however, has become an enormous challenge for Earth system scientists because of great uncertainties associated with biological variation and environmental heterogeneity in the ecosystems. This paper presents an approach that uses two d...

  10. Physico-mechanical and electrical properties of conductive carbon black reinforced chlorosulfonated polyethylene vulcanizates

    Directory of Open Access Journals (Sweden)

    2008-12-01

    Full Text Available The present work deals with the effect of conductive carbon black (Ensaco 350G on the physico-mechanical and electrical properties of chlorosulfonated polyethylene (CSM rubber vulcanizates. The physico-mechanical properties like tensile strength, tear strength, elongation at break, compression set, hardness and abrasion resistance have been studied before and after heat ageing. Up to 30 parts per hundred rubber (phr filler loading both tensile and tear strength increases beyond which it shows a decreasing trend whereas modulus gradually increases with the filler loading. Incorporation of carbon black increases the hysteresis loss of filled vulcanizates compared to gum vulcanizates. Unlike gum vulcanizate, in filled vulcanizates the rate of relaxation shows increasing trend. The bound rubber content is found to increase with increase in filler loading. Dielectric relaxation spectra were used to study the relaxation behavior as a function of frequency (100 to 106 Hz at room temperature. Variation in real and imaginary parts of electric modulus has been explained on the basis of interfacial polarization of fillers in the polymer medium. The percolation limit of the conductive black as studied by ac conductivity measurements has also been reported.

  11. Ac conductance and capacitance of carbon black polymer composites during thermal cycling and isothermal annealing

    Science.gov (United States)

    Jäger, K.-M.; McQueen, D. H.; Vilcáková, J.

    2002-05-01

    The ac electrical properties of acetylene black composites mixed into ethylene butylacrylate copolymer (EBA) and into poly (methyl methacrylate) (PMMA) have been measured in thermal cycling and isothermal annealing experiments. The results show that changes in electrical properties are due to rearrangement of gaps between the carbon black aggregates. This has been concluded using an exponent z that relates the critical frequency ωc denoting the crossover of the conductivity from the dc-plateau to its frequency-dependent part to the dc conductivity, σdc, according to ωc ∝σdcz. Below the melting range of EBA and the glass transition of PMMA z is about one corresponding to strong variation of the conductivity and weak dependence of the permittivity on the gaps. Above the melting range of EBA z is about 1.5, indicating strong dependence of both the conductivity and the permittivity on the gaps, as predicted by percolation theory. This was not found in the PMMA composites above the glass transition. We conclude that the polymer matrix affects the nature of the gaps between carbon black aggregates, either allowing their size to vary continuously (z about 1) or letting them open and close (z about 1.5).

  12. Soil carbon dioxide emission from intensively cultivated black soil in Northeast China. Nitrogen fertilization effect

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Kang [Chinese Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture; Graduate University of Chinese Academy of Sciences, Beijing (China); Ding, Weixin; Cai, Zucong [Chinese Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture; Wang, Yufeng; Zhang, Xilin; Zhou, Baoku [Heilongjiang Academy of Agricultural Sciences, Harbin (China). Inst. of Soil and Fertilizer

    2012-08-15

    Purpose: The aim of this study was to understand the effect of nitrogen fertilization on soil respiration and native soil organic carbon (SOC) decomposition and to identify the key factor affecting soil respiration in a cultivated black soil. Materials and methods: A field experiment was conducted at the Harbin State Key Agroecological Experimental Station, China. The study consisted of four treatments: unplanted and N-unfertilized soil (U0), unplanted soil treated with 225 kg N ha{sup -1} (UN), maize planted and N-unfertilized soil (P0), and planted soil fertilized with 225 kg N ha{sup -1} (PN). Soil CO{sub 2} and N{sub 2}O fluxes were measured using the static closed chamber method. Results and discussion: Cumulative CO{sub 2} emissions during the maize growing season with the U0, UN, P0, and PN treatments were 1.29, 1.04, 2.30 and 2.27 Mg C ha{sup -1}, respectively, indicating that N fertilization significantly reduced the decomposition of native SOC. However, no marked effect on soil respiration in planted soil was observed because the increase of rhizosphere respiration caused by N addition was counteracted by the reduction of native SOC decomposition. Soil CO{sub 2} fluxes were significantly affected by soil temperature but not by soil moisture. The temperature sensitivity (Q{sub 10}) of soil respiration was 2.16-2.47 for unplanted soil but increased to 3.16-3.44 in planted soil. N addition reduced the Q{sub 10} of native SOC decomposition possibly due to low labile organic C but increased the Q{sub 10} of soil respiration due to the stimulation of maize growth. The estimated annual CO{sub 2} emission in N-fertilized soil was 1.28 Mg C ha{sup -1} and was replenished by the residual stubble, roots, and exudates. In contrast, the lost C (1.53 Mg C ha{sup -1}) in N-unfertilized soil was not completely supplemented by maize residues, resulting in a reduction of SOC. Although N fertilization significantly increased N{sub 2}O emissions, the global warming potential

  13. Evaluating hydropyrolysis as a method for quantification and characterisation of Black Carbon in environmental matrices

    Science.gov (United States)

    Ascough, P. L.; Meredith, W.; Bird, M. I.; Large, D.; Snape, C.; Tilston, E.

    2012-04-01

    Black carbon (BC) is the highly aromatic, recalcitrant product of incomplete biomass and fossil fuel combustion. Black carbon is generally accepted to display extreme environmental longevity, whereas other products of biomass combustion often appear subject to environmental degradation on comparatively short timescales. It is clear that BC plays a key role within global biogeochemical cycles, and improved understanding of BC cycling is an important research goal. Currently a wide selection of thermal, chemical and optical methods are available for BC quantification in environmental matrices, and large method-dependant differences in results are apparent. We present results of a study to evaluate the efficacy of a new approach for BC isolation, known as hydropyrolysis (hypy). In this process sample pyrolysis is assisted by high hydrogen pressures (15 MPa), facilitating complete reductive removal of labile organic matter, while suppressing the neoformation of secondary char. The potential of hypy for both isolation and quantification of BC was evaluated using 12 reference materials of the International BC Ring Trial (http://www.geo.uzh.ch/en/units/physical-geography-soilbio/services/black-carbon-reference-materials/), including high-BC samples, BC-containing environmental matrices and potentially interfering materials. The results show that it is possible to identify hypy operating conditions whereby lignocellulosic, humic and other labile organic carbon is removed, while the sample BC is preserved for recovery. This is apparent for all of the environmental samples tested, facilitating BC quantification in a wide range of materials. The BC contents of all 12 samples are within the range of the inter-comparison study of the International BC Ring Trial, and the technique appears to reproducibly (±2%) isolate a carbonaceous fraction comprising a chemically well-defined polyaromatic structure from a wide range of different samples. Hypy therefore provides a means of

  14. Quantification of Black Carbon and Other Pollutant Emissions from a Traditional and an Improved Cookstove

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Preble, Chelsea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Hadley, Odelle [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Gadgil, Ashok [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2010-11-05

    Traditional methods of cooking in developing regions of the world emit pollutants that endanger the lives of billions of people and contribute to climate change. This study quantifies the emission of pollutants from the Berkeley-Darfur Stove and the traditional three-stone fire at the Lawrence Berkeley National Laboratory cookstove testing facility. The Berkeley-Darfur Stove was designed as a fuel efficient alternative to the three-stone fire to aid refugees in Darfur, who walk long distances from their camps and risk bodily harm in search of wood for cooking. A potential co-benefit of the more fuel efficient stove may be reduced pollutant emissions. This study measured emissions of carbon dioxide, carbon monoxide, particulate matter, and sunlight-absorbing black carbon. It also measured climate-relevant optical properties of the emitted particulate matter. Pollutant monitors were calibrated specifically for measuring cookstove smoke.

  15. A global 3-D CTM evaluation of black carbon in the Tibetan Plateau

    Science.gov (United States)

    He, C.; Li, Q. B.; Liou, K. N.; Zhang, J.; Qi, L.; Mao, Y.; Gao, M.; Lu, Z.; Streets, D. G.; Zhang, Q.; Sarin, M. M.; Ram, K.

    2014-07-01

    We systematically evaluate the black carbon (BC) simulations for 2006 over the Tibetan Plateau by a global 3-D chemical transport model (CTM) (GEOS-Chem) driven by GEOS-5 assimilated meteorological fields, using in situ measurements of BC in surface air, BC in snow, and BC absorption aerosol optical depth (AAOD). Using improved anthropogenic BC emission inventories for Asia that account for rapid technology renewal and energy consumption growth (Zhang et al., 2009; Lu et al., 2011) and improved global biomass burning emission inventories that account for small fires (van der Werf et al., 2010; Randerson et al., 2012), we find that model results of both BC in surface air and in snow are statistically in good agreement with observations (biases factor of 2 of the observations at remote sites. Part of the discrepancy is explained by the deficiencies of the meteorological fields over the complex Tibetan terrain. We find that BC concentrations in snow computed from modeled BC deposition and GEOS-5 precipitation are spatiotemporally consistent with observations (r = 0.85). The computed BC concentrations in snow are a factor of 2-4 higher than the observations at several Himalayan sites because of excessive BC deposition. The BC concentrations in snow are biased low by a factor of 2 in the central plateau, which we attribute to the absence of snow aging in the CTM and strong local emissions unaccounted for in the emission inventories. Modeled BC AAOD is more than a factor of 2 lower than observations at most sites, particularly to the northwest of the plateau and along the southern slopes of the Himalayas in winter and spring, which is attributable in large part to underestimated emissions and the assumption of external mixing of BC aerosols in the model. We find that assuming a 50% increase of BC absorption associated with internal mixing reduces the bias in modeled BC AAOD by 57% in the Indo-Gangetic Plain and the northeastern plateau and to the northeast of the plateau

  16. Effects of Strain-Induced Crystallization on Mechanical Properties of Elastomeric Composites Containing Carbon Nanotubes and Carbon Black

    International Nuclear Information System (INIS)

    The effects of strain-induced crystallization (SIC) on the mechanical properties of elastomeric composites as functions of extension ratio (λ), multi walled carbon nanotube (CNT) content, and carbon black (CB) content are investigated. The differential scanning calorimetry (DSC) analysis shows that the degree of crystallinity increases with the increase in the CB and CNT content. As λ increases, the glass transition temperature (Tg) of the composites increases, and the latent heat of crystallization (LHc) of the composites is maximum at λ=1.5. It is found that the mechanical properties have a linear relation with LHc, depending on the CNT content. According to the TGA (thermogravimetric analysis), the weight loss of the composite matrix is 94.3% and the weight of the composites decreases with the filler content. The ratio of tensile modulus (Ecomp/ Ematrix) is higher than that of tensile strength (σcomp/ σmatrix) because of the CNT orientation inside the elastomeric composites

  17. Heavy Metal concentrations in the Sea Snail Rapana venosa (Valenciennes, 1846) from Sinop Coasts of the Black Sea

    OpenAIRE

    BAT, Levent; Gonlaigiir, Gamze; Andae, Miiberra; Öztürk, Meral; Oztürk, Mehmet

    2000-01-01

    Abstract The concentrations of copper, zinc, iron, lead, nickel, manganese and cadmium in the living tissue of the sea snail Rapana venosa (Valenciennes, 1846) from the Sinop coasts of the Black Sea have been measured by atomic absorption spectrophotometer for monitoring metal pollution in the coastal water. A statistically significant difference in the concentrations of all metals was observed among three sampling stations. The results were compared to those of several bivalves and gast...

  18. Carbon Dynamics of Forest Floor and Stem in Black Spruce Forest Soils, Interior Alaska

    Science.gov (United States)

    Kim, Yongwon; Kim, Seong-Deog; Kim, Woongji

    2010-05-01

    Our automated open/close chamber system (AOCC) consists of eight chambers, a pump, CO2 gas analyzer, and a datalogger for CO2 data on the lichen, tussock, feather moss, and sphagnum moss of a black spruce forest, Interior Alaska, during the growing seasons of 2007 and 2008. During the observing periods of 2007 and 2008, the seasonal NEE was 0.127±0.049 and -0.039±0.025 mgCO2/m2/s in tussock regime, and 0.006±0.011 and 0.028±0.017 mgCO2/m2/s in sphagnum moss, respectively. Air temperature is a more significant regulator than soil temperature in determining the GPP and Re of forest floor vegetations. Air temperature explained 77-95% of the variability in GPP and Re of the floor vegetations. The contributions (%) of simulated seasonal GPP to the black spruce forest during non-growing periods (DOY 1-120 and 244-365) and during the growing period (DOY 121-243) of 2007 are 63-72%, 20-25%, and 8-18%, respectively. This indicates that the floor CO2 exchange, as well as the contribution of winter carbon emission, is a component of the regional carbon budget that cannot be neglected. As the result of simulated GPP and Re in tussock during 2007, tussocks are found to have on atmospheric CO2 release, similar to results of observation for 63-day of 2007. On the other hand of stem respiration rates of black spruce (Picea Mariana), the continuous measurement of stem respiration was conducted in black spruce stands of different ages (4.3 to 13.5 cm in DBH) in Interior Alaska during the growing seasons of 2007 and 2008, using a pump, CO2 analyzer, chambers, and data-logger. The averaged whole stem respiration rate is 0.011±0.005 mgCO2/m2/s (range 0.005±0.002 to 0.015±0.008 mgCO2/m2/s, CV 45%) in black spruce stands, indicating remarkably diurnal and seasonal variations of stem respiration among the stems during the growing season. It is found that metabolism exhibits 1.5-fold higher in the younger black spruce stand than in the older. Temperatures in the air and stem are

  19. Century-long Record of Black Carbon in an Ice Core from the Eastern Pamirs: Estimated Contributions from Biomass Burning

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mo; Xu, B.; Kaspari, Susan D.; Gleixner, Gerd; Schwab, Valerie; Zhao, Huabiao; Wang, Hailong; Yao, Ping

    2015-08-01

    We analyzed refractory black carbon (rBC) in an ice core spanning 1875-2000 AD from Mt. Muztagh Ata, the Eastern Pamirs, using a Single Particle Soot Photometer (SP2). Additionally a pre-existing levoglucosan record from the same ice core was used to differentiate rBC that originated from open fires, energy-related combustion of biomass, and fossil fuel combustion. Mean rBC concentrations increased four-fold since the mid-1970s and reached maximum values at the end of 1980s. The observed decrease of the rBC concentrations during the 1990s was likely driven by the economic recession of former USSR countries in Central Asia. Levoglucosan concentrations showed a similar temporal trend to rBC concentrations, exhibiting a large increase around 1980 AD followed by a decrease in the 1990s that was likely due to a decrease in energy-related biomass combustion. The time evolution of levoglucosan/rBC ratios indicated stronger emissions from open fires during the 1940s-1950s, while the increase in rBC during the 1980s-1990s was caused from an increase in energy-related combustion of biomass and fossil fuels.

  20. Century-long record of black carbon in an ice core from the Eastern Pamirs: Estimated contributions from biomass burning

    Science.gov (United States)

    Wang, Mo; Xu, Baiqing; Kaspari, Susan D.; Gleixner, Gerd; Schwab, Valérie F.; Zhao, Huabiao; Wang, Hailong; Yao, Ping

    2015-08-01

    We analyzed refractory black carbon (rBC) in an ice core spanning 1875-2000 AD from Mt. Muztagh Ata, the Eastern Pamirs, using a Single Particle Soot Photometer (SP2). Additionally a pre-existing levoglucosan record from the same ice core was used to differentiate rBC that originated from open fires, energy-related combustion of biomass, and fossil fuel combustion. Mean rBC concentrations increased four-fold since the mid-1970s and reached maximum values at end of the 1980s. The observed decrease of the rBC concentrations during the 1990s was likely driven by the economic recession of former USSR countries in Central Asia. Levoglucosan concentrations showed a similar temporal trend to rBC concentrations, exhibiting a large increase around 1980 AD followed by a decrease in the 1990s that was likely due to a decrease in energy-related biomass combustion. The time evolution of levoglucosan/rBC ratios indicated stronger emissions from open fires during the 1940s-1950s, while the increase in rBC during the 1980s-1990s was caused from an increase in energy-related combustion of biomass and fossil fuels.

  1. Influence of Ingredients of Carbon Black Nano-Particle Suspension of Ammonia Solution on Viscosity of Nanofluid

    Institute of Scientific and Technical Information of China (English)

    CHENG Bo; DU Kai; ZHANG Xiao-song; YANG Liu

    2009-01-01

    A series of experiments were performed on the viscosity of a nanofluid,produced by mixing car-bon black and mulsifier OP-10 using ammonia-water with the ultrasonic dispersion.The results show that,when adding surfactant separately in low mass concentrations,at first the viscosity of solution decreases sharply compared with that of ammonia-water.then increases with increasing the concentration of OP-IO.In a certain concentration of surfactant,the viscosity of nanofluids increases with increasing the concentration of nanoparti·des.Based on Einstein model and Langrnuir absorption theory,a new model啪s summed up for nanoflukls.Compared with test values,the calcuhted values on the new model have verified that the model is suitable to predict the viscosity of rmnofluids.beoll.k.the maximum relative error is less than 5%.Nano-particles absorp-tion in the nanofluids is not only single-molecule layer adsorption,but aLso multi-layer molecular adsorption and other complicated adsorption.So the new model,ordy based on single-molecule layer adsorption theory of Lang-muir.is not fully in line with the real circumstances.

  2. Dust and Black Carbon Radiative Forcing Controls on Snowmelt in the Colorado River Basin

    Science.gov (United States)

    Skiles, Sara McKenzie

    Light absorbing impurities (LAIs), like dust and black carbon (BC), initiate powerful albedo feedbacks when deposited on snow cover, yet due to a scarcity of observations radiative forcing by LAIs is often neglected, or poorly constrained, in climate and hydrological models. This has important consequences for regions like the Colorado River Basin, where dust deposition to mountain snow cover frequently occurs in the upper basin in the springtime, a relatively new phenomenon since western expansion of the US. Previous work showed that dust on snow (DOS) enhances snowmelt by 3-7 weeks, shifts timing and intensity of runoff, and reduces total water yield. Here, advanced methods are presented to measure, model, and monitor DOS in the hydrologically sensitive Colorado River Basin. A multi-year multi-site spatial variability analysis indicates the heaviest dust loading comes from point sources in the southern Colorado Plateau, but also shows that lower levels of dust loading from diffuse sources still advances melt by 3-4 weeks. A high-resolution snow property dataset, including vertically resolved measurements of snow optical grain size and dust/BC concentrations, confirms that impurity layers remain in the layer in which they are deposited and converge at the surface as snow melts: influencing snow properties, rapidly reducing snow albedo, and increasing snowmelt rates. The optical properties of deposited impurities, which are mainly dust, are determined using an inversion technique from measurements of hemispherical reflectance and particle size distributions. Using updated optical properties in the snow+aerosols radiative transfer model SNICAR improves snow albedo modeling over a more general dust characterization, reducing errors by 50% across the full range of snow reflectance. Radiative forcing by LAIs in the CRB, estimated directly from measurements and updated optical properties, is most strongly controlled by dust concentrations in the uppermost surface layer

  3. Using city-wide mobile noise assessments to estimate bicycle trip annual exposure to Black Carbon.

    Science.gov (United States)

    Dekoninck, Luc; Botteldooren, Dick; Int Panis, Luc

    2015-10-01

    Several studies have shown that a significant amount of daily air pollution exposure, in particular Black Carbon (BC), is inhaled during bicycle trips. Previously, the instantaneous BC exposure of cyclists was modeled as the sum of a background concentration and a local traffic related component based on a local assessment of traffic noise. We present a fast and low cost methodology to achieve a city-wide assessment of yearly average BC exposure of cyclists along their trips, based on a city-wide mobile noise sensing campaign. The methodology requires participatory sensing measurements of noise, partially combined with BC and/or other air pollutants sensitive to local traffic variations. The combined measurements cover the spatial and meteorological variability and provide the data for an instantaneous exposure model. The mobile noise-only measurements map the full city; and yearly meteorology statistics are used to extrapolate the instantaneous exposure model to a yearly average map of in-traffic air pollution exposure. Less than four passages at each segment along the network with mobile noise equipment are necessary to reach a standard error of 500 ng/m(3) for the yearly average BC exposure. A strong seasonal effect due to the BC background concentration is detected. The background contributes only 25% to the total trip exposure during spring and summer. During winter the background component increases to 50-60%. Engine related traffic noise along the bicyclist's route is a valid indicator of the BC exposure along the route, independent of the seasonal background. Low exposure route selection results in an exposure reduction of 35% in winter and 60% in summer, sensitive to the weather conditions, specific trip attributes and the available alternatives. The methodology is relevant for further research into the local effects of air pollution on health. Mobile noise mapping adds local traffic data including traffic dynamics into the air pollution exposure

  4. Quantifying Black Carbon emissions in high northern latitudes using an Atmospheric Bayesian Inversion

    Science.gov (United States)

    Evangeliou, Nikolaos; Thompson, Rona; Stohl, Andreas; Shevchenko, Vladimir P.

    2016-04-01

    Black carbon (BC) is the main light absorbing aerosol species and it has important impacts on air quality, weather and climate. The major source of BC is incomplete combustion of fossil fuels and the burning of biomass or bio-fuels (soot). Therefore, to understand to what extent BC affects climate change and pollutant dynamics, accurate knowledge of the emissions, distribution and variation of BC is required. Most commonly, BC emission inventory datasets are built by "bottom up" approaches based on activity data and emissions factors, but these methods are considered to have large uncertainty (Cao et al, 2006). In this study, we have used a Bayesian Inversion to estimate spatially resolved BC emissions. Emissions are estimated monthly for 2014 and over the domain from 180°W to 180°E and 50°N to 90°N. Atmospheric transport is modeled using the Lagrangian Particle Dispersion Model, FLEXPART (Stohl et al., 1998; 2005), and the inversion framework, FLEXINVERT, developed by Thompson and Stohl, (2014). The study domain is of particular interest concerning the identification and estimation of BC sources. In contrast to Europe and North America, where BC sources are comparatively well documented as a result of intense monitoring, only one station recording BC concentrations exists in the whole of Siberia. In addition, emissions from gas flaring by the oil industry have been geographically misplaced in most emission inventories and may be an important source of BC at high latitudes since a significant proportion of the total gas flared occurs at these high latitudes (Stohl et al., 2013). Our results show large differences with the existing BC inventories, whereas the estimated fluxes improve modeled BC concentrations with respect to observations. References Cao, G. et al. Atmos. Environ., 40, 6516-6527, 2006. Stohl, A. et al. Atmos. Environ., 32(24), 4245-4264, 1998. Stohl, A. et al. Atmos. Chem. Phys., 5(9), 2461-2474, 2005. Stohl, A. et al. Atmos. Chem. Phys., 13

  5. Temporal variability and radiative impact of black carbon aerosol over tropical urban station Hyderabad

    Science.gov (United States)

    Dumka, U. C.; Manchanda, R. K.; Sinha, P. R.; Sreenivasan, S.; Moorthy, K. Krishna; Suresh Babu, S.

    2013-12-01

    Time variability of black carbon (BC) aerosols over different timescales (daily, weekly and annual) is studied over a tropical urban location Hyderabad in India using seven channel portable Aethalometer. The results for the 2-year period (January 2009-December 2010) show a daily-mean BC variability from ~1.00±0.12 μg m-3 to 12.50±3.06 μg m-3, with a remarkable annual pattern of winter high and monsoon low. The BC values maximize during winter (December-January), ~6.67±0.22 μg m-3, and drop during summer (June-August), ~2.36±0.09 μg m-3, which establishes a large seasonal variation. Furthermore, the BC mass concentration exhibits a well-defined diurnal variation, with a morning peak and early afternoon minimum. The magnitude of the diurnal variations is seasonal dependent, which maximizes during the winter months. Air mass back trajectories indicated several different transport pathways, while the concentration weighted trajectory (CWT) analysis reveals that the most important potential sources for BC aerosols are the Indo-Gangetic plain (IGP), central India and some hot spots in Pakistan, Arabian Peninsula and Persian Gulf. The absorbing Ångström exponent (αabs) estimated from the spectral values of absorption coefficient (σabs) ranges from 0.9 to 1.1 indicating high BC/OC ratio typical of fossil fuel origin. The annual average BC mass fraction to composite aerosols is found to be (10±3) % contributing to the atmospheric forcing by (55±10) %. The BC radiative forcing at the atmosphere shows strong seasonal dependency with higher values in winter (33.49±7.01) and spring (31.78±12.89) and moderate in autumn (18.94±6.71) and summer (13.15±1.66). The BC radiative forcing at the top of the atmosphere (TOA) is positive in all months, suggesting an overall heating of the regional climate over Hyderabad.

  6. Electrochemical evaluation of carbon nanotubes and carbon black for the cathode of Li-air batteries

    Science.gov (United States)

    Fuentes, Roderick E.; Colón-Mercado, Héctor R.; Fox, Elise B.

    2014-06-01

    Cyclic Voltammetry (CV) was used to screen carbon catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance as electrodes for the Li-air battery. Lithium bis(trifluoromethylsulfonyl)imide (LiTF2N) in tetraethylene glycol dimethyl ether (TEGDME) was used as the electrolyte during testing. The effect of manganese/manganese oxide addition on the performance of the carbons was compared to that of the bare carbons in a cycling study. From CV results, it was found that single walled carbon nanotubes (SWCNT) had the highest peak current density per gram for ORR and OER than the other types of carbon studied. The SWCNT ORR peak decreased 49% after 100 cycles and only 36% when manganese/manganese oxide was added. The high activity of SWCNT with manganese/manganese oxide spheres make it a desirable material to use as the cathode for Li-air batteries.

  7. Occupational exposure to carbon black in its manufacture: data from 1987 to 1992.

    Science.gov (United States)

    Gardiner, K; Calvert, I A; van Tongeren, M J; Harrington, J M

    1996-02-01

    Carbon black is a very pure form of very finely divided particulate carbon used mainly in the automotive tyre industry. Its carbonaceous nature and submicron size (unpelleted) have raised concerns with regard to its ability to affect respiratory morbidity. This paper describes the exposure to carbon black dust in the first and second phase of a large multi-national epidemiological study investigating the magnitude of these exposure-related effects. In Phase I, 1278 respirable dust samples were taken (SIMPEDS cyclone) which increased to 2941 in Phase II with a similar rise in the number of total inhalable dust samples (IOM head) from 1288 in Phase I to 3433 Phase II. Exposure dropped markedly between the two phases with total inhalable dust showing a bigger reduction (49.9%) than respirable dust (42%), although the mean exposure for certain factories and job categories dropped more than others. The data are presented by the 14 job titles/numbers (21-34). The highest mean exposure in both phases and for both dust fractions is experienced by the warehouse packers and they are also most likely to exceed the OES of 3.5 mg m-3 (35.1% of samples in Phase I and 12.0% in Phase II). PMID:9054303

  8. In vitro toxicity of carbon nanotubes, nano-graphite and carbon black, similar impacts of acid functionalization.

    Science.gov (United States)

    Figarol, Agathe; Pourchez, Jérémie; Boudard, Delphine; Forest, Valérie; Akono, Céline; Tulliani, Jean-Marc; Lecompte, Jean-Pierre; Cottier, Michèle; Bernache-Assollant, Didier; Grosseau, Philippe

    2015-12-25

    Carbon nanotubes (CNT) and nano-graphite (NG) are graphene-based nanomaterials which share exceptional physicochemical properties, but whose health impacts are unfortunately still not well understood. On the other hand, carbon black (CB) is a conventional and widely studied material. The comparison of these three carbon-based nanomaterials is thus of great interest to improve our understanding of their toxicity. An acid functionalization was carried out on CNT, NG and CB so that, after a thorough characterization, their impacts on RAW 264.7 macrophages could be compared for a similar surface chemistry (15 to 120 μg·mL(-1) nanomaterials, 90-min to 24-h contact). Functionalized nanomaterials triggered a weak cytotoxicity similar to the pristine nanomaterials. Acid functionalization increased the pro-inflammatory response except for CB which did not trigger any TNF-α production before or after functionalization, and seemed to strongly decrease the oxidative stress. The toxicological impact of acid functionalization appeared thus to follow a similar trend whatever the carbon-based nanomaterial. At equivalent dose expressed in surface and equivalent surface chemistry, the toxicological responses from murine macrophages to NG were higher than for CNT and CB. It seemed to correspond to the hypothesis of a platelet and fiber paradigm.

  9. Using Combustion Tracers to Estimate Surface Black Carbon Distributions in WRF-Chem

    Science.gov (United States)

    Raman, A.; Arellano, A. F.

    2015-12-01

    Black Carbon (BC) emissions significantly affect the global and regional climate, air quality, and human health. However, BC observations are currently limited in space and time; leading to considerable uncertainties in the estimates of BC distribution from regional and global models. Here, we investigate the usefulness of carbon monoxide (CO) in quantifying BC across continental United States (CONUS). We use high resolution EPA AQS observations of CO and IMPROVE BC to estimate BC/CO ratios. We model the BC and CO distribution using the community Weather Research and Forecasting model with Chemistry (WRF-Chem). We configured WRF-Chem using MOZART chemistry, NEI 2005, MEGAN, and FINNv1.5 for anthropogenic, biogenic and fire emissions, respectively. In this work, we address the following three key questions: 1) What are the discrepancies in the estimates of BC and CO distributions across CONUS during summer and winter periods?, 2) How do BC/CO ratios change for different spatial and temporal regimes?, 3) Can we get better estimates of BC from WRF-Chem if we use BC/CO ratios along with optimizing CO concentrations? We compare ratios derived from the model and observations and develop characteristic ratios for several geographical and temporal regimes. We use an independent set of measurements of BC and CO to evaluate these ratios. Finally, we use a Bayesian synthesis inversion to optimize CO from WRF-Chem using regionally tagged CO tracers. We multiply the characteristic ratios we derived with the optimized CO to obtain BC distributions. Our initial results suggest that the maximum ratios of BC versus CO occur in the western US during the summer (average: 4 ng/m3/ppbv) and in the southeast during the winter (average: 5 ng/m3/ppbv). However, we find that these relationships vary in space and time and are highly dependent on fuel usage and meteorology. We find that optimizing CO using EPA-AQS provides improvements in BC but only over areas where BC/CO ratios are close

  10. Black and brown carbon fractal aggregates from combustion of two fuels widely used in Asian rituals

    International Nuclear Information System (INIS)

    Incense sticks and mustard oil are the two most popular combustion fuels during rituals and social ceremonies in Asian countries. Given their widespread use in both closed and open burning activities, it is important to quantify the spectral radiative properties of aerosols emitted from the combustion of both fuels. This information is needed by climate models to assess the impact of these aerosols on radiative forcing. In this study, we used a 3-wavelength integrated photoacoustic-nephelometer – operating simultaneously at 405, 532 and 781 nm – to measure the optical coefficients of aerosols emitted from the laboratory combustion of mustard oil lamp and two types of incense sticks. From the measured optical coefficients at three wavelengths, time-varying single scattering albedo (SSA), absorption Ångström exponent (AAE), and scattering Ångström exponent (SAE) were calculated. For incense smoke particles, the time-averaged mean AAE values were found to be as high as 8.32 (between 405 and 532 nm) and 6.48 (between 532 and 781 nm). This spectrally-varying characteristic of AAE indicates that brown carbon – a class of organic carbon which strongly absorbs solar radiation in the blue and near ultraviolet – is the primary component of incense smoke aerosols. For aerosols emitted from the burning of mustard oil lamp, the time-averaged mean AAE values were ∼1.3 (between 405 and 781 nm) indicating that black carbon (BC) is the primary constituent. Scanning electron microscopy combined with image processing revealed the morphology of incense smoke aerosols to be non-coalescing and weakly-bound aggregates with a mean two-dimensional (2-d) fractal dimension (Df)=1.9±0.07, while the mustard oil smoke aerosols had typical fractal-like BC aggregate morphology with a mean 2-d Df=1.85±0.09. -- Highlights: ► Incense and mustard oil burning aerosols characterized by 3-wavelength photoacoustic spectroscopy and nephelometery, and electron microscopy. ► Brown carbon

  11. 雪冰中黑碳的研究进展%Research Progress of Black Carbon in Snow and Ice

    Institute of Scientific and Technical Information of China (English)

    刘昌明; 党素珍; 王中根; 王书功

    2012-01-01

    Black carbon aerosol is an important component of the atmospheric aerosols. When it is settled in snow and ice,it can decrease the reflectivity of the surface of snow and ice. As a result.it can affect the melting process of snow and ice,and lead to the potential global and regional climate change. In addition, the radiative forcing effects of black carbon in snow and ice are of great concern. China discharges lots of black carbon aerosol, therefore the issues of black carbon in snow and ice merit the attention. This paper describes briefly the importance of the study of black carbon in snow and ice, and emphasizes the sources and historical environmental records of black carbon in snow and ice, and the calculation method of the effects of black carbon on the reflectivity in snow and ice and the radiative forcing effects of black carbon. Finally, this paper presents the prospect of the study of black carbon in snow and ice,and proposes three aspects of research which needs to be further strengthened.%黑碳气溶胶是大气气溶胶的一种重要成分,沉降在雪冰中可减小雪冰表面的反照率,影响雪冰的融化过程,导致全球和区域气候变化.黑碳气溶胶沉降在雪冰中产生的辐射强迫效应值得关注.中国是黑碳气溶胶排放大国,雪冰黑碳的问题值得关注.现简要介绍雪冰中黑碳研究的意义,着重综述雪冰中黑碳的来源,历史环境记录,现有的计算雪冰中黑碳对反照率影响的方法以及其辐射强迫效应的研究.对未来雪冰中黑碳的研究进行了展望,提出3点今后需加强研究的内容.

  12. Uptake of Reactive Black 5 by pumice and walnut activated carbon: Chemistry and adsorption mechanisms

    OpenAIRE

    Heibati, B.; Rodriguez-Couto, S.; Amrane, A; M. Rafatullah; Hawari, A.; Al-Ghouti, M. A.

    2014-01-01

    The potential of using pumice and walnut wood activated carbon as low-cost adsorbents for the removal of the diazo dye Reactive Black 5 (RB5) from aqueous solutions was investigated. The Langmuir isotherm fit to the data specified the presence of two different natures of adsorption sites with different binding energies on the AC-W surface. Kinetic modelling showed that the adsorption behaviour and mechanism of RB5 for both adsorbents is believed to happen via surface adsorption followed by di...

  13. Fractal morphology of black carbon aerosol enhances absorption in the thermal infrared wavelengths.

    Science.gov (United States)

    Heinson, William R; Chakrabarty, Rajan K

    2016-02-15

    In this Letter, we numerically calculate the mass absorption cross sections (MACs) of black carbon fractal aggregates in the thermal infrared solar spectrum. Compared to equivalent-size spheres, the MAC values of aggregates show a percent enhancement of ≈150 and 400 at small and large length scales, respectively. The absorption properties of aggregates with size parameters >1 surprisingly continued to remain in the Rayleigh optics regime. We explain this phenomenon using the Maxwell-Garnett effective medium theory and the concept of phase shift parameter. PMID:26872194

  14. Electrothermal Performances of Poly(Vinylidiene Fluoride)/Fluorine Rubber Conductive Composite Filled with Carbon Black

    Institute of Scientific and Technical Information of China (English)

    LUO; YanLing

    2001-01-01

    The conductive polymer composites and their corresponding resistors with PTC (positive temperature coefficient) characteristic can be manufactured by mixing conductive carbon blacks with poly(vinylidiene fluoride )matrix. The Joule heat can produce when alternative voltage is exerted on the composite resistors, and the resistors can produce when alternative voltage is exerted on the current from flowing at a high temperature because of their PTC effect, thus becoming a kind of important thermoelectric switching materials as heating, temperature-controlling and currentlinfiting element applications.  ……

  15. Electrothermal Performances of Poly(Vinylidiene Fluoride)/Fluorine Rubber Conductive Composite Filled with Carbon Black

    Institute of Scientific and Technical Information of China (English)

    LUO YanLing

    2001-01-01

    @